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INTRODUCTION TO THE SERIES

This series consists of a number of hitherto unpublished studies, which
are introduced by the editors in the belief that they represent fresh
contributions to economic science.

The term ‘economic analysis’ as used in the title of the series has been
adopted because it covers both the activities of the theoretical
economist and the research worker.

Although the analytical methods used by the various contributors are -
not the same, they are nevertheless conditioned by the common origin of
their studies, namely theoretical problems encountered in practical
research. Since for this reason, business cycle research and national
accounting, research work on behalf of economic policy, and problems
of planning are the main source of the subjects dealt with, they neces-
sarily determine the manner of approach adopted by the authors. Their
methods tend to be ‘practical’ in the sense of not being too far remote
from application to actual economic conditions. In addition they are
quantitative rather than qualitative.

It is the hope of the editors that the publication of these studies will
help to stimulate the exchange of scientific information and to reinforce
international cooperation in the field of economics.

The Editors



PREFACE

The traditional starting point of production theory is a set of physical
technological possibilities, often described by a production or trans-
formation function. The development of the theory then parallels the
process of firm operation, with the firm seeking to achieve its goals
subject to the limitation of its technology and of the economic en-
vironment. The results are constructed input demands and output
supplies, expressed as functions of the technology and the economic
environment.

An alternative approach to production theory is to start directly from
observed economic data - supplies, demands, prices, costs, and profits.
The advantage of such an attack is that the theory can be formulated
directly in terms of the causal economic relationships that are presumed
to hold, without the intervening constructive steps required in the
traditional theory. Because this approach is not bound by computational
tractability in the step from production technology to economic obser-
vations, the prospect is opened for more satisfactory models of complex
production problems.

It would at first appear that a theory of production couched in terms
of economic observables would be less fundamental than one based on
the physical technology, and that one could never be sure in an
economic theory of consistency with a physical model. However, the
theory of production duality establishes that the two approaches are
equivalent and equally fundamental. Using duality, the technology
underlying an economic model can be reconstructed and tested for
compatibility with physical laws, as necessary. Then, the main thrust of
analysis can be devoted to developing the structure and relationships of
observed economic variables.

The purpose of these volumes is to develop the theory of production
from the standpoint of the “dual” - the relationships between economic
observables which are dual to the physical technology. The spirit of our
treatment is the view that the end purpose of production theory is
econometric study of economic problems involving technological limita-
tions. The volumes emphasized the empirical implications of the theory,
and therefore the development of the theoretical concepts proceeds with
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an eye towards the econometric framework inherent in empirical ap-
plications. We hold the view that there is an intimate, symbiotic rela-
tionship between theory and econometrics, and that development of a
fully successful economic analysis of production requires an integration
of theoretical and econometric ideas in a unified approach. The papers in
the two volumes of Production Economics represent an attempt to
achieve this ideal.

The theory of production duality had its beginnings in the work of
Hotelling (1932), Hicks (1946), Roy (1942), and Samuelson (1947). A
pioneering book by Shephard (1953) provided the first comprehensive
treatment of the subject and proof of the basic duality of cost and
production. Extensions of the formal theory of duality were later made
by McFadden (1962), Uzawa (1964), Shephard (1970), and Diewert
(1971). Many of the basic duality results were also obtained by Gorman
(1970), working independently. In a paper on the estimation of returns to
scale, Nerlove (1963) utilized a cost function to derive econometric
estimating equations. Subsequent work by McFadden (1964), Diewert
(1969a,b), Christensen, Jorgenson and Lau (1971), and others have
established the use of dual cost and profit functions as a basic tool in
econometric production analysis.

It is possible to trace the origins of the present volumes back to 1961
when D. McFadden worked as a research assistant to M. Nerlove and H.
Uzawa at Stanford University. The contributions of Uzawa (1962, 1964),
McFadden (1962, 1963), and Nerlove (1963) date from that period. The
empirical implications of duality theory were developed in McFadden
(1964 and 1966). The first explicit empirical application of dual flexible
functional forms appeared in Diewert’s (1969a) study of labor demand
functions for the Canadian Department of Manpower and Immigration.
The generalized Leontief function [Diewert (1971)] was introduced in
that study. The subsequent generation and empirical application of
flexible functional forms received their major impetus from McFadden
(1966) and Diewert (1969a,b).

Applications of the basic duality concepts continued to evolve at the
University of California, Berkeley, during the years 1968-1970 under the
auspices of ‘the Project for the Optimization and Evaluation of
Economic Growth. The introduction of the transiog function by Chris-
tensen, Jorgenson, and Lau (1971, 1973), the nested generalized Leontief
form by Fuss (1970, 1977b), the hybrid generalized Leontief form by Hall
(1973), and the generalized CES form by Denny (1974a) all result from
research begun at that time. A. Belinfante, T. Cowing, and P. Frenger also



Preface ix
were associated with the Economic Growth Project at various times. M.
Bruno was a visiting scholar at M.I.T., together with D. McFadden, in 1971
when his chapter was written.

The idea of collecting a group of studies in duality under a common
cover grew out of a seminar series held at the Economic Growth Project
during the summer of 1969. A tentative title, An Econometric Approach
to Production Theory, was chosen at that time. A number of the papers
which appear in this volume have been referenced under that title. Since
that time, the contents of the volumes evolved through several additions
and deletions and M. Fuss joined D. McFadden as a co-editor. We feel
that the current title more accurately reflects the spirit and content of
the books. .

Production Economics is divided into two main parts. Volume 1
contains the basic theoretical analysis of the duality of cost, profit, and
production and a number of investigations of specific functional forms.
Volume 2 contains the empirical applications. In keeping with the spirit
of this work, these applications draw heavily on the analysis of Volume
1. Details of the contents of both volumes can be found in the two
introductions.

The editors have been unable to standardize notation throughout the
volumes; however, the notation in each chapter is self-contained. In
almost all cases, upper case boldface letters denote sets, lower case
boldface letters denote vectors. Upper and lower case Roman and Greek
letters are used variously to denote scalars and functions. Derivatives
are denoted variously by subscripts (the symbol for the variable with
respect to which derivatives are being taken, or the ordinal position of
this variable among the arguments), primes, the V operator, or the usual
notation Jf/dx.

The editors wish to acknowledge the contributions that many in-
dividuals have made to the preparation of Production Economics. Dale
Jorgenson and Zvi Griliches have provided encouragement and ideas. A
large intellectual debt is owed to K.J. Arrow, W.M. Gorman, L. Hur-
wicz, M. Nerlove, and H. Uzawa, whose work provided the background
for most of the developments in these books. We thank the contributors,
who have displayed stoic patience and goodwill in the lengthy process of
refereeing and publication. We also wish to acknowledge the help of
several scholars who participated in the early planning, and who have
published related work elsewhere: T. Cowing (1974), W. E. Diewert
(1971, 1974a), R.E. Hall (1973), C.K. Liew (1976), and M. Ohta
(1975).
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To G. Katagiri and N. Katagiri goes the credit for careful typing and

editing of the manuscript.

The editors accept responsibility for all errors not allocatable to
individual contributors. Finally, we thank our wives, Beverlee and Susan,
for tolerance and encouragement through the lengthy process of

bringing these volumes to completion.
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INTRODUCTION

Volume 1 develops the theory of production from the standpoint of
economic observables — prices, demands, supplies, cost, and profit - util-
izing duality to relate this approach to the underlying production tech-
nology. The papers of Part I set out models of production and basic
duality theorems, and discuss theoretical applications of these models.

In Chapter 1.1, McFadden provides an introduction to cost, revenue,
and profit functions. The first twelve sections of his chapter provide a
detailed description of properties of production and cost functions,
duality, the geometry of cost functions, and the comparative statics of
the firm using cost functions. The remainder of the chapter introduces the
concept of the restricted profit function - of which cost, revenue, and
total profit functions are special cases-and utilizes the mathematical
theory of convex conjugate and polar reciprocal forms to deduce the
properties implied for the restricted profit function by various properties
on the technology, and vice versa. Of particular interest are Tables 1, 3,
and 4 listing dual properties; Tables 2 and 5 listing composition rules for
concave functions which can be used to construct functional forms or
deduce theorems on production structure; and Tables 6 and 7 sum-
marizing the duality mappings holding for restricted profit functions.

In Chapter 1.2, Hanoch shows how formal duality theory can be used
to generate new functional forms for cost and production functions. This
chapter explores the use and implications of structural assumptions on
technology, cost, and profit in the specification of functional forms.

In Chapter 1.3, Lau applies the restricted profit function to a variety of
theoretical production problems. Using the classical theory of Legendre
transformations, he develops a convenient formal calculus for working
with derivatives of dual production and profit functions. Lau establishes
the implications for the profit function of various homotheticity and
separability properties, and develops a number of specific functional
forms. He considers the formulation in terms of the profit function of
measures of the elasticity of technical substitution and rates of technical
change. Finally, he explores the structure of production in multiple-
output firms and its implications.
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Part II concentrates on the development of functional forms for
econometric analysis, and the interaction of functional and stochastic
specification. In Chapter II.1, Fuss, McFadden, and Mundlak set out the
criteria that might be used to choose among functional forms, and use
these criteria to compare many of the econometric forms appearing in
the literature. The issue of stochastic specification is surveyed in the
context of an extended example.

In Chapter I1.2, McFadden outlines a general procedure for generating
linear-in-parameters functional forms, and establishes conditions under
which an arbitrary restricted profit function can be approximated to the
second order by a specified approximating form.

In Chapter I1.3, Hanoch applies the concepts of symmetric duality and
polar production functions to develop specific functional forms for the
study of substitutability in multiple-factor production functions.

In Chapter 1.4, Fuss and McFadden develop a nested generalized
Leontief functional form for the econometric representation of an ex
ante-ex post production structure, and suggest methods for the analysis
of technological flexibility within this structure.

This volume has a series of mathematical appendices which develop
some of the concepts and tools used. Appendix A.l gives a self-
contained treatment of the theory of definite quadratic forms subject to
constraint. Appendix A.2 surveys necessary and sufficient conditions for
the use of classical Lagrangian methods for constrained optimization.
The third appendix is a survey of convex analysis —the mathematical
theory of convex sets and functions. In addition to outlining the stan-
dard theory, this appendix develops new results on the behavior of polar
reciprocal convex correspondences. Appendix A.4 develops methods for
imposing or testing concavity on a fitted production or cost function.



Part I

Duality of Production, Cost, and
Profit Functions



Chapter 1.1

COST, REVENUE, AND PROFIT FUNCTIONS

DANIEL McFADDEN*

University of California, Berkeley

1. Introduction

In the classical theory of cost and production, the firm is assumed to
face fixed technological possibilities and competitive input markets, and
to choose an input bundle to minimize the cost of producing each
possible output. For fixed input prices, this behavior determines mini-
mum cost as a function of output, yielding the standard cost curves of
elementary textbooks. An immediate generalization is to allow input
prices to vary and consider minimum cost as a function of both input
prices and output. With this minor modification, the cost function
becomes a powerful analytic tool in the theory of production, partic-
ularly in econometric applications.

The principal practical advantage of the cost function lies in its
computationally simple relation to the cost minimizing input demand
functions: the partial derivatives of the cost function with respect to
input prices yield the corresponding input demand functions, and the
sum of the values of the input demands equals cost. The useful analytic
properties of the cost function derive from a fundamental duality

*This research was supported in part by the National Science Foundation Grants
GS-2345, GS-35890X, SOC-05551A02, and SOC75-22657. 1 am indebted to M. Nerlove,
H. Uzawa, and S. Winter, who stimulated this work; to S. Cosslett, G. Debreu, E. Diewert,
D. Gale, and D. Jorgenson for many useful discussions; and to G. Katagiri, N. Katagiri,
L. Chichilnisky, and C. Gilchrist for editorial assistance. I retain sole responsibility for

€ITOrS.
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between this function and the underlying production possibilities. The
definition of the cost function as the result of an optimization yields
strong mathematical properties, and establishes the cost function as a
“sufficient statistic” for all the economically relevant characteristics of
the underlying technology.

In econometric applications, use of the cost function as the starting
point for developing models avoids the difficulty of deriving demand
systems constructively from production possibilities, while at the same
time insuring consistency with the hypothesis of competitive cost
minimization. Further, under a number .of econometric specifications of
firm behavior, the cost function and its derivatives define the reduced
form of the model.

Properties of the cost function can also be used to generalize and
simplify the qualitative implications of cost minimization. In particular, a
number of comparative statics results can be derived without assuming
divisibility of commodities, or convexity and smoothness of production
- possibilities.

Two concepts are closely related to the cost function and also are
useful in theory and applications. One is the revenue function of a
multiple-product firm facing competitive markets, defining maximum
revenue as a function of output prices and inputs. The second is the
profit function of a firm facing competitive markets for inputs and
outputs, defining maximum profits as a function of input and output
prices. Cost, revenue, and profit functions can all be considered as
special cases of a restricted profit function, defining maximum profits
over a subset of inputs and outputs with competitive prices when
quantities of the remaining inputs and outputs are fixed.

This chapter can be divided into two parts. The first part, consisting of
Sections 2 to 12, is a self-contained treatment of the theory of cost
functions and its applications. Mathematical rigor and generality are
deemphasized for pedagogic simplicity, and economic interpretations are
stressed. These sections will be accessible to readers with modest
technical backgrounds. Proofs of more difficult results are postponed.
The second part, consisting of Sections 13 to 20, gives a formal analysis
of the properties of restricted profit functions for the more technical
reader. Examples of restricted profit functions are discussed in Section
18. Appendix A.3 gives a self-contained survey of properties of convex
sets and functions used in this chapter.
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PART I. COST FUNCTIONS

2. History

The cost curve is a classical concept in economics, antedating even the
concept of a production function. However, the systematic analysis of
the properties of price derivatives of the cost function seems to have
originated in a paper of Hotelling (1932) on the mathematically
equivalent problem of minimizing consumer expenditure subject to a
utility level constraint. The cost function and its properties were dis-
cussed in Samuelson (1947), and later led Samuelson to develop the
concept of a factor-price frontier (which is a level curve of a cost
function).

The properties of consumer expenditure functions were developed
further by Roy (1942) and McKenzie (1957). McKenzie seems to have
first noted that the properties of expenditure functions can be obtained
as a consequence of optimization using the mathematical theory of
convex functions with much weaker assumptions than were employed
by the earlier authors.

The theory establishing the dual relation between cost functions and
production functions was introduced into economics by Shephard
(1953), who drew heavily on properties of convex sets discovered by
Fenchel (1953). Additional contributions to economic applications of
duality theory have been made by Uzawa (1964), McFadden (1962),
Diewert (1974a), Hanoch (1975a), and Lau (1976a).

Perhaps because the theoretical resuits on cost functions were scat-
tered and relatively inaccessible, their potential worth in econometric
analysis was not recognized until Nerlove (1963) employed the Cobb-
Douglas case in a study of returns to scale in electric utilities. Since the
mid-1960s, a series of empirical studies, including papers by Diewert
(19692), and Jorgenson and Lau (1974a), have made systematic use of
duality concepts.

3. Production Technologies

Basic to a model of the firm are descriptions of the commodities with
which it deals and the technological limits on its actions. Following
Debreu (1959), the concept of a commodity is taken generally to include
both physical goods, such as wheat and fuel, and services, such as
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transportation and labor. Further, commodities are distinguished by
location and date; e.g., trucks delivered at different locations and/or in
different months will be considered distinct commodities. In particular,
dated commodities extend over the planning horizon of the firm, and
static and intertemporal theories of the producer are formally
equivalent.

Occasionally, the same good will appear on both the input and output
ledgers of a firm. If inputs are delivered temporally prior to outputs,
these quantities are properly recorded as distinct commodities.
However, if the ledgers of the firm also record intermediate goods in the
production process (and this is particularly likely to be true if ‘“‘inter-
temporal decentralization of accounts™ is imposed on a firm having a
lengthy production process), the same good may appear simuitaneously
as an input and an output. In this case, it is sometimes adequate for an
economic problem to record net output. For other problems, it is
conventent to treat the input and output as separate commodities in the
firm’s accounts. In the following analysis, we shall treat inputs and
outputs as distinct commodities, making the artificial accounting dis-
tinction above necessary.

We consider a firm which uses N inputs indexed n =1,2,...,N, to
produce M outputs, indexed m = 1,2,....M. An input bundle is an N-
tuple of non-negative real numbers, v = (v,,...,vx5), as i$ an input price
vector r = (ry,...,rx). An output bundie is an M -tuple of non-negative real
numbers, y = (yy,...,Va). The cost of an input bundle v at an input price
vector r is given by the inner product of v and r, c=rv=
o+ ravs+ -+ ryow.

The technological limits on the actions of the firm can be described by
the set Y of pairs of input and output bundies (v,y) which are possible, in
the sense that the firm can deliver the prescribed output bundle y by
using the input bundie v; Y is termed the production possibility set of the
firm. For example, a Cobb-Douglas production function y,= v{?v3”
corresponds to a production possibility set with one output and two
inputs, Y = {(v1,v2,y1)|01,0: Z 0&v%v3? = y,}.

The production possibility set of a firm is determined first by the state
of technological knowledge and physical laws. For example, the outputs
of chemical refining processes are limited by chemical laws and the
current knowledge of chemical engineers. There may be further limita-
tions on the availability of techniques due to imperfect information and
legal restrictions (e.g., patent agreements, pollution control regulations,
safety standards). Non-transferable commodities, such as ‘‘managerial
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capacity”, climate, and environmental factors, may also enter the
determination of production possibilities. Finally, in most economic
problems, the firm will be required to meet restrictions on some input
and output quantities due to prior contracts, quotas, rationing, or “‘hard-
ening” of commodities following ex ante design decisions. Common
examples are commitments to fixed plant and equipment inputs, and
contracts to purchase inputs (e.g., labor services) or supply outputs. It
should be noted that “fixed”” inputs or outputs can be either included or
excluded from the commodity list facing the firm, depending on the
economic problem. The sources of restrictions on the firm’s production
possibilities will be important in determining the economic interpretation
of the cost function and its generalizations, but can be left undefined in
the derivation of the formal properties of these functions.

With virtually no loss of economic generality, we usually assume that
the production possibility set of a firm is non-empty and closed, and that
a non-zero output bundle requires a non-zero input bundle. The con-
dition that the production possibility set be closed requires that there be
no “thresholds” at which discontinuities in required mputs or attainable
outputs occur.' A production possibility set with these properties will be
called regular.

In examining the cost function, it is convenient to work with
“isoquants” rather than the production possibility set itself. First define
the producible output set Y* containing all the output bundles y which
appear in some pair of input and output bundles in the production
possibility set; i.e., Y* = {yl(v.y) € Y for some v}. Next, for each y in Y*,
define the input requirement set V(y) containing all the input bundles v
which can produce y; i.e., V(y) = {v|(v,y) € Y}. The input requirement set
corresponds to the conventional notion of an isoquant, except that it
may include “inefficient” input bundles. Note that the input requirement
set is well-defined in both the single-output and multiple-output cases.
For the earlier example of the Cobb-Douglas production possibility set
Y = {(01,02,y)|v1,02 Z 0&v?v}? = y;}, the producible output set is the
non-negative real line and the input requirement sets are the isoquants
V(y) = {(v,v2)]01,0: 2 0, 017037 = yi}.

A production possibility set Y will be termed input-regular if (1) the

1A set is closed if it contains its boundaries; i.e., if the limit of each convergent sequence
of points from the set is also contained in the set. Closedness does not rule out the
possibility of lumpy (integer-valued) commodities. For example, the set Y=
{(vr,y)lv1 =0,1,... & v, Zy, =0} is closed, as is the set Y={(v,,y)lv:=0 & [»1= y, =0},
where [v] denotes the largest integer less than or equal to v.
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set of producible outputs Y* is non-empty, and (2) for each y in the set
of producible outputs, the input requirement set V(y) is closed, and for a
non-zero output bundle does not contain the zero input bundle. Clearly,
if a production possibility set is regular, then it is also input-regular.

In the conventional theory of the firm, marginal products of inputs are
assumed to be non-negative, and marginal rates of substitution between
inputs are assumed to be non-increasing. Stated in terms of the input
requirement sets, these conditions become:

Assumption A. There is free disposal of inputs; i.e., if an input
bundle v can produce an output bundie y, and a second input bundie
v/ is at least as large as v in every component, then v’ can also

produce y.

Assumption B. The input requirement sets are convex from
below: i.e., if two input bundles v and v’ are in an input requirement
set V(y), then for any weighted combination of v and v', say
v/ =0v+(1—-6) with 6 a scalar, 0 <@ <1, there exists an input
bundle v* in the input requirement set such that v” is at least as large
as v* in every component. -

In set notation, Assumption A is sometimes written V(y) + E} C V(y),
where EY is the non-negative orthant of the N-dimensional input com-
modity space, and the algebraic sum of sets is defined by V(y)+EY =
{v+v|veE V(y) & v €EY}. Geometrically, V(y)+EY is the set formed
from V(y) by adding all points northeast of each point in V(y); V(y) + EY
is called the free disposal hull of V(y). The assumption is then that V(y)
contains its free disposal hull. A set is said to be convex if it contains the
line segment connecting any two of its elements. Assumption B can be
restated as requiring that the free disposal hull V(y) + EY be convex.

Justifications for these assumptions appear in most textbooks. Free
disposal holds if firms can stockpile or refuse delivery of inputs, or if the
technology is such that application of an additional unit of input always
yields some non-negative amount of additional output and outputs can
be disposed freely if necessary. Convexity from below holds if the
technology is such that substitution of one input combination for a
second, keeping output constant, results in a diminishing marginal
reduction in the second input combination, or if production activities can
be operated side by side (or sequentially) without interfering with each
other. However, the importance of Assumptions A and B in traditional
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production analysis lies in their analytic convenience rather than in their
economic realism; they provide the groundwork for application of
calculus tools to the firm’s cost minimization problem. One of the useful
observations resulting from the analysis of cost functions is that the
standard qualitative implications for supply and demand by the com-
petitive firm can be obtained without imposing these conditions. Obser-
ved input demand functions for a cost minimizing firm facing positive
input prices can be treated as if they come from input requirement sets
satisfying Assumptions A and B even if these conditions fail to hold for
the true technology.

Figure 1 illustrates Assumptions A and B. In (a), the input requirement
set contains all the points northeast of any point in the set, thus satisfying
Assumption A. In (b), the bundle v is in the set while the larger bundle v’

V2 [. VZ

a) A holds b) A fails

c) B fails d) B holds

FIGURE 1
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is not, and Assumption A fails. Assumption B fails in (¢}, where v” is an
average of two points v and v’ in the set, but is not itself northeast of any
point in the set. In (d), on the other hand, Assumption B holds. Even
though the weighted average v’ of v and v’ is not in the set, it lies
northeast of v* and the definition of convexity from below is satisfied.

A regular production possibility set satisfying Assumptions A and B
will be termed conventional. Thus, in summary, a conventional produc-
tion possibility set is non-empty and closed, with non-zero outputs
requiring non-zero inputs, and has input requirement sets satisfying free
disposal and convexity from below. An input-regular production pos-
sibility set satisfying Assumptions A and B will be termed input-

conventional.

4. The Cost Function

Suppose that a firm has an input-regular production possibility set with a
producible output set Y* and input requirement sets V(y) for y in Y*.
Suppose that the firm faces competitive input markets with strictly
positive prices r = (ri,...,7~), and chooses an input bundle v to minimize
the cost ¢ = r-v = rjv; + -+ + ryvy of producing a given producible output
bundle vy = (¥,...,yu). The cost function is then defined by

¢ = C(y,r) = Min{r-vlv € V(y)}, (1)

and specifies the least cost of producing y with input prices r.

We first verify that the cost function exists for all y in the producible
output set and all strictly positive r, using a mathematical theorem that a
continuous function on a non-empty, closed, bounded set achieves a
minimum in the set. The linear function r-v is continuous in v. Since V(y)
is non-empty, it contains at least one input bundle v’, and the search for
a minimizing bundle can be confined to the points in V(y) satisfying
r-v=<r-v.. But this set is closed and bounded since r is strictly positive
(see Figure 2), and the mathematical theorem above implies that r-v
achieves a minimum on this set (at v in the figure).

Since v and r are non-negative, the cost function is clearly non-
negative. Further, if the output bundle y is non-zero, then every input
bundle v which can produce y is non-zero. Since r is strictly positive,
this implies that the cost function is strictly positive for non-zero output
bundles.

We next show that for a fixed producible output bundle y, the cost
function is non-decreasing in input prices. Consider any strictly positive
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FIGURE 2

input price vector r and a second price vector r’ which is at least as large
in every component. Suppose for the price vector r’, cost is minimized at
some input bundle v'. Then, minimum cost at the input price vector r can
be no higher than r-v’, which in turn can be no higher than r’-v’, which is
the minimum cost at the input price vector r'.

Note that if an input bundle v is cost minimizing at a strictly positive
price vector r, and if all prices are multiplied by a positive scalar 8, then
v remains a cost minimizing bundle and the level of minimum cost is
multiplied by 4. A function with this property is termed positively linear
homogeneous.’

2A function C(r) is said to be homogeneous of degree k in r if C(Ar)
= A“C(r) for all A>0, and linear homogeneous if k=1. If C is differentiable
in r, then C is homogeneous of degree k if and only if r(aClar)+ -+ r,(aClar,)
=kC for all r. This is Euler's law. To demonstrate its validity, first differentiate
the identity C(Ar)= AC(r) with respect to A, obtaining r,Ci(Ar)+ -+ 1,Ca(AT) =
kA*"'C(r), and set y = 1. [We let Ci(r)=aCjar.} Second, evaluate the formula r,Ci(r) +
woo+ 7,Ca(r) = kC(r) at Ar for a fixed vector r, obtaining A[nCAr)+ -+ rRC(AN] =
kC(Ar). Treating C as a function of A, the term in brackets is just dC/dA, and we have
(1/CXdCJdA) = (k/A). This differential equation has the solution C(Ar) = A*A, where A is 2
term independent of A but depending in general on r. Setting A = | implies A = C(r), and
hence C(Ar) = A*C(r).

An implication of homogeneity is that if C(r) is homogeneous of degree k., then its
derivatives C,(r) are homogeneous of degree k-1, and second derivatives C;(r)=
32Clérdr, are homogeneous of degree k —2.
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A function is concave if it has the curvature of an overturned bowl.?
We next show the cost function to be concave in input prices for each
fixed output level. Consider any pair of strictly positive input price
vectors r’ and r, and a weighted average of these vectors, r* =
or°+(1— @), with 0<9<1. Let v°, v/, and v* be cost minimizing
input bundles corresponding to r° r’, and r*, respectively. Then,
r’v*=Cyr) and r-v*=C@yyx), implying Clyr*)=r*v*=
A’ v¥) + (1 — 9)(r'-v*) = 6C(y.r’) + (1 — 8)C(y,r'). This inequality is just
the algebraic definition of a concave function, requiring that the chord
between any two points in the graph of the function is no higher than the
graph itself. Hence, the cost function is concave in input prices.

It is possible to obtain a further result that the cost function is
continuous in input prices for fixed output, as a mathematical con-
sequence of the concavity of the function.*

The property that the cost function is positively linear homogeneous
in prices is one form of the old adage that only relative prices enter the
economic calculus. The concavity of the cost function in prices is less
intuitive economically, despite the almost trivial argument by which it
was demonstrated. The reader’s intuition may be helped by the following
example: if the price of an input, say input 1, is raised by one infinitesi-
mal unit, the cost of production is raised by v, units, where v, is the
quantity of this input used. (One might expect an offsetting effect due to
compensating adjustments in the input mix. However, this effect turns
out to be a higher order infinitesimal which can be neglected.) At a

3A real-valued function f on E" is concave if for every pair of points x and x’ in E" and
every scalar 8 satisfying 0<6 <1, f(x+(1—0)x)Z 6f(x)+ (1~ 0)f(x'). Geometrically,
this requires that the chord between any two points in the graph of the function be no
higher than the graph itself. f is guasi-concave if f(8x+ (1— 8)x'} = min{f(x),f(x')} for
0< 8 < 1. Geometrically, this requires that upper contour sets, {x € E"|f(x) = a}, be convex
for all real a. A function f is (quasi-) convex if —f is (quasi-) concave.

“See Fenchel (1949, p. 75) or Rockafellar (1970, p. 82). We can also give a direct
argument for this result. Suppose a sequence of strictly positive prices r' converges to a
strictly positive price r’. Then, there exist strictly positive price vectors r’ and r" bounding
the r', i.e., = r 2" for each i. Let v and v’ be cost minimizing bundles for r' and r°,
respectively. Since v = ri-v' =r'-v®, the set of minimizing bundles v' lie in the closed and
bounded set of non-negative v satisfying r"-v = r’-v*. Hence, the sequence of v' will have a
subsequence converging to v* in the input requirement set. Retaining the notation v' for
any convergent subsequence, we then have the inequalities Cly.r)=r'-v’ and Cy.r") =
r’-v* and the limits r'-v*=>r’v’= C(y,r’) and r-v' > r’v*. The first inequality and limit
imply lim C(y,r) = C(y.1°), while the second inequality and limit imply lim C(y,r') = r’-v* 2=
C(y.r". Since these inequalities hold for every limit point v* of the original sequence, the
result lim,.,» C(y.r') = C(yx") is established.
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higher price of input 1, a lower quantity of the input will be used at the
cost minimum, and the effect on cost of an infinitesimal unit increase in
the price will be less than previously. This declining marginal effect is a
classical characterization of the concavity property.

Thus far, the cost function has been defined only for strictly positive
input prices. We can extend the definition (1) to the case in which some
prices are zero, provided we relax the requirement that a minimum cost
input bundle actually be achievable. This is done for a non-negative
price vector r by defining

C(y,r)=Inf{r-vivEV(y)}, (12)

where “Inf’ denotes the infinum, or greatest lower bound, of the
numbers in the set. For positive r, this definition coincides with (1). For
non-negative r with some zero components, if a cost minimizing input
bundle exists, the definition (1a) will yield a cost equal to the value of
this input bundle. Alternately, no cost minimizing input bundie may exist
(this is the case, for example, in the Cobb-Douglas input requirement
sets illustrated in Section 3), and the cost C(y,r) in (1a) is approached by
the values of an unbounded sequence of input bundles. With minor
variations, the arguments we gave earlier that the cost function is
positively linear homogeneous and concave in positive input prices for a
fixed output bundle can be applied to the extended definition (1a) to
establish these properties for all non-negative prices. A more difficuit
argument [see Rockafellar (1970, p. 85) or Appendix A.3, Section 12.7]
establishes that the extended cost function is continuous in all non-
negative input prices for a fixed output bundle.

The basic properties of the cost function demonstrated in this section
are summarized in the following result.

Lemma 1. Suppose that a firm has an input-regular production
possibility set with a producible output set Y* and input require-
ment sets V(y) for y € Y*. Suppose that the firm faces competitive
input markets with a non-negative input price vector r. Then, the
cost function defined by (1) exists for all yEY* and all strictly
positive r, and coincides with the extended cost function defined by
(1a), which exists for all y € Y* and all non-negative r. Further, for
each y€ Y*, the (extended) cost function as a function of r is
non-negative, positive when r is strictly positive and y is non-zero,
non-decreasing, positively linear homogeneous, concave, and con-
tinuous.
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5. The Derivative Property

The cost function is related to the cost minimizing input demand
functions through its partial derivatives with respect to input prices.
Again consider a firm with an input-regular production possibility set,
and let ¢ = C(y,r) denote its cost function, with r = (r,,...,ry) a vector of
positive input prices. When the partial derivative of the cost function
with respect to an input price r, exists at an argument (y,r), it will be
denoted by C,.(y,r) = dC/dr,. We now establish the following result: If
C,(y,r) exists, then it equals the unique cost minimizing input of good n
at the argument (y,r); and if there is a unique cost minimizing input of
good n at the argument (y,r), then C,(y,r) exists. This property, known
as Shephard’s lemma, was first noted by Hotelling (1932) and established
formally by Shephard (1953). The demonstration given below was first
used by McKenzie (1957).

Suppose y is a producible output bundle and r® is a strictly positive
input price vector, and suppose v is a corresponding cost minimizing
input bundle. Consider any vector of input price increments Ar =
(4ry,...,Ary). For any scalar 8 which is sufficiently small to make r’+ 64r
strictly positive, the definition of the cost function implies the inequality
C(y,r’+ 04r) = (r’+ 04r)-v°. Since r’v’ = C(y,r%, this inequality can be
rewritten as

C(y,r’+ 8Ar) — C(y,r") = 6(Ar)-v". (2)
Single out one commodity, say the first, and define Ar,=1 and
Ar, = --- = Ary = 0. Define the ratio

g(8) =[C@y.r1 + 6,7%,....r%) — C(y, 1, 13,...,r) 6,
for 8 0. If 0 is positive, (2) can be written

g(6) = v). (3a)
If @ is negative, the inequality reverses to give

g(8) = vf. (3b)

If the partial derivative C(y,r’ exists, then by its definition g(6) has a
limiting value, as # approaches zero from above or below, equal to
Ci(y,r®. The inequalities then imply C\(y,r’) = v?. Since this equality
must hold for any cost minimizing input vector, the cost minimizing
input of good 1 is unique. This proves the first half of the lemma, and
shows that differentiability of the cost function in input prices rules out
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the existence of flat segments in isoquants where multiple minima can
occur.

The second half of Shephard’s lemma requires a more advanced
mathematical argument; see Appendix A.3, Lemma 13.8, or Rockafellar
(1970, p. 265(e)). ,

A second justification of the derivative property of cost functions can
be given using classical calculus arguments provided we add some
facilitating assumptions on the technology. The following argument 1s
due to Samuelson (1938). Suppose for a given producible output bundle
y, the input requirement set is defined by the input bundles v satisfying
F(y,v)= 1, where F is a transformation function which is twice con-
tinuously differentiable in v. The problem of cost minimization can then
be restated as a classical constrained minimization problem: Minimize
r-v subject to F(y,v)= 1. Form the Lagrangian L =r-v— A(F(y,v)~1).
Ignoring for simplicity the possibility of a corner solution or non-binding
constraint, the first-order conditions for a mimimum are given by equat-
ing to zero the partial derivatives of the Lagrangian with respect to v and
A. (See Appendix A.2.) This procedure yields N +1 equations, the
constraint F(y,v) =1 plus the marginal conditions r, = AdF/dv,, n =
1,...,N. Suppose this system has a unique solution for v and A as a
function of (y.,r), and let v, = h"(y.r) denote the solution for v,. Assume
the h" are continuously differentiable in r. From the deﬁmtlon C(yr)=
2“1 r.h"(y,r), we obtain the condition Cy(y,r)=h'(y, )+2 -1 I,dh" ory.
But r, = AdF]dv, and F(y,h'(y,r),....h" (y,r)) = 1 imply, by differentiation,

N N
% >, ra(8h"[ory) = 2 (9F10v)(3h"ar) = 0, (4)

and hence C,(y,r) = h'(y.r).

Several stronger derivative properties of the cost function can be
obtained as corollaries of the mathematical theory of convex functions.
For each producible output bundle, the cost function can be shown to
possess first and second differentials for almost all strictly positive input
price vectors (i.e., for all positive input price vectors except those in a
set of Lebesgue measure zero). This implies that for almost all input
price vectors there is a unique input bundle demanded under cost
minimization. Further, the second partial derivatives of the cost function
with respect to input prices are found to be independent of the order of
differentiation whenever the second differential exists. Since these
second differentials are the first partial derivatives of the cost minimiz-
ing input demands, this result implies a production analogue of the
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symmetry of the Slutsky substitution effects in consumer theory. It
should be noted that these properties hold without any assumptions on
the structure of the technology beyond the condition that it be regular.
In particular, they hold even if the underlying technology exhibits
non-convexities, indivisible inputs or outputs, or failures of free dis-
posal. Lemma 12.1 in Appendix A.3 states these results formally.

In many economic applications, particularly comparative statics, it is
convenient to know that the cost minimizing input demands are unique
for all positive input prices (Shephard’s lemma then implies that the cost
function possesses a first differential in input prices for all positive
values of these prices). A stronger version of Assumption B on the
convexity of the input requirement sets from below is necessary and
sufficient to give this property. Define a plane (or hyperplane) in input
space to be a set of ““isocost’ points; i.e., a set H of points v satisfying
rv=ruv +--+ryoy =r, for some fixed non-zero vector r and some
scalar r°. The vector r gives the direction numbers of the plane, and is
termed a normal to the plane. A plane H bounds a set V if the set is
contained in one of the closed half-spaces defined by the plane; 1.e., if
rv=r,for vin H, and rrv=zr, for vE€V, then H bounds V. A plane H
supports a set V if it bounds V, and H and V meet.

Assumption B-2. The input requirement sets are strictly convex
from below; i.e., if H is any plane with a strictly positive normal
which supports V(y) from below,’ then H meets V(y) at exactly one
point.

This assumption states that if v and v’ are in V(y), with v #v', and
v'=6v+(1—-8)v,0< 8 <1, then there exists v* in V(y) such that v* = v"
and either (i) v* # v” or (ii) there exists no plane H with strictly positive
normal which contains v and v’ and which supports V(y) from below. If
V(y) or its free disposal hull is a strictly convex set, then Assumption
B-2 holds, and condition (1) above is always satisfied.

Figure 3 illustrates this assumption. In (a), the weighted average v of
two points v and v’ lies northeast of v* in the set. The points v’ and v*
satisfy condition (ii) above since the only plane through them is parallel
to the v, axis, and hence has a zero direction number. In (b}, the
assumption fails because the isoquant contains a fiat segment. A three-

>The plane H bounds (or supports) V(y) from below if r-v=r, for v€H, and r-vZ r, for
vE V(y).
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FIGURE 3. (a) Assumption B-2 holds. (b) Assumption B-2 fails.

input requirement set is illustrated in (c). The points v and v’ both lieina
plane, identified by the rectangle ABCD, parallel to the v; coordinate
axis and bounding V(y) from below. This plane has a zero direction
number in the direction vi. Every other plane containing v and v’ cuts
through the input requirement set rather than bounding it. Hence,
condition (ii) above holds for v and v'. For distinct pairs of points such
as v’ and v*, the input requirement set contains a point v® no greater than
and unequal to a linear combination v’ = v+ (1 — 6)v*, 0 < 6 < 1. Hence,
v? and v* satisfy condition (i) above.

It is clear that this condition implies that minimum cost is achieved by
a unique input bundle for any strictly positive input price vector: if two
distinct input bundles simultaneously minimized cost, then a weighted
average of them would also have this minimum cost, and Assumption
B-2 would imply the existence of another bundle in the input require-
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ment set costing less, and thus contradict the initial supposition. As
noted earlier, this uniqueness of the cost minimizing input demand
bundle guarantees that the cost function has a differential in input prices
for all positive input price vectors. The mathematical properties of
convex functions then imply that the cost function is continuously
differentiable in input prices.

Then, Assumption B-2 and Shephard’s lemma imply that (1) unigue
cost minimizing input demands exist for all positive input prices and are
given by the price derivatives of the cost function, and (2) the input
demands vary continuously with input prices.

Returning to the case of input-regular production possibility sets
without added assumptions on structure, it is possible to generalize the
concept of a vector of partial derivatives of the cost function in a
mathematically meaningful way so that (1) this generalized derivative,
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called the sub-differential, always exists and is a set of N -dimensional
vectors, (2) the vectors in the sub-differential correspond to the cost
minimizing input bundles in a sense elaborated below, and (3) in the case
where there is a unique cost minimizing input bundle, the sub-differential
contains exactly the ordinary vector of partial derivatives. This concept
is developed formally in Appendix A.3, Sections 13.7-13.9. Expanding
informally on the conclusions of this construction, the sub-differential
will contain a single vector if and only if there is a unique cost
minimizing input bundle, in which case the definition of the sub-
differential reduces to the ordinary definition of a vector of partial
derivatives and the vector in the sub-differential coincides with the cost
minimizing input bundle. More generally, the sub-differential will contain
all the cost minimizing input bundles. If the input requirement sets
satisfy Assumption B of convexity from below, then the sub-differential
equals the set of cost minimizing bundies at any (y,r) argument. When
no convexity assumptions are imposed on the input requirement sets,
then the sub-differential may contain, in addition to the true cost
minimizing input bundles, some input bundles which lie outside the input
requirement set. However, all these latter bundles can be written as
weighted averages of a finite number of true cost minimizing input
vectors.

6. Duality

We have established that corresponding to every input-regular produc-
tion possibility set is a cost function with the properties summarized in
Lemma 1. We now pose the converse question: given a function with the
properties specified in Lemma 1, does there exist an input-regular
production possibility set such that this function is its minimum cost
function? A duality between input-conventional production possibility
sets and cost functions first proved by Shephard (1953) and Uzawa
(1962) provides an affirmative answer. This theoretical result is of
considerable practical importance. It allows the economist to write down
cost functions and their input demand systems and verify their con-
sistency with the cost minimization hypothesis without difficult con-
structive arguments. Further, it establishes that the cost function con-
tains all the information necessary to reconstruct the structure of
_production possibilities. It is in a sense a “sufficient statistic”” for the
technology. Thus, corresponding to every hypothesis the economist
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might impose on the structure of a conventional production possibility
set 1s a hypothesis on the form of the cost function.

We begin the discussion of duality with several definitions. An input-
conventional cost structure is defined by (1) a non-empty set of non-
negative M-dimensional vectors, denoted by Y* and interpreted as a
producible output set, and (2) a real-valued function ¢ = C(y,r), defined
on the domain consisting of y € Y* and strictly positive N-dimensional
price vectors r, this function being non-negative, non-decreasing, posi-
tively linear homogeneous, and concave in r for each fixed y € Y*, and
positive for non-zero y.

Consider an input-conventional cost structure C(y,r) defined foryin a
set Y*. For each y € Y*, define an implicit input requirement set

V¥(y)={vEE"|v=20,rv=C(y,r) for all strictly positive r}. (5)

The implicit input requirement sets will be shown to be non-empty,
allowing the definition of an implicit production possibility set

Y={y,v)EEM Ny Y* ve V¥(y)}. (6)

The first duality result establishes that each input-conventional cost
function determines an implicit production possibility set which is input-
conventional (i.e., is input-regular and satisfies Assumptions A and B).

Lemma 2. If C(y,r) is an input-conventional cost function defined
for y in a set Y*, then the implicit input requirement sets V*(y) are
non-empty for each y &€ Y*, and the implicit production possibility
set Y is input-conventionai.

Proof: The lemma will be proved in three steps. First, the implicit
input requirement sets are shown to be non-empty for each y € Y*. This
allows the implicit production possibility set (6) to be defined. Second,
this production possibility set is shown to be input-regular. Third,
Assumptions A and B are shown to hold.

Step 1. By hypothesis, Y* is non-empty. Consider any y € Y*. Let
r’=(1,1,..,1) be an N-vector of ones, and define an input bundle
Vo= cr® with ¢ = C(y,r%). Let jr| = 2 n_,|r.| denote the norm of an N-
vector. Since the function C(y.r) is non-decreasing and positively linear
homogeneous in r, we have for any strictly positive r the inequality

C(y.r) = C(y.xl|re)-Jrl = C(y,r%)-Jr} = Cly.r)rr’) =r-v’.

Then by (5), v° is contained in the implicit input requirement set, which
1s thus non-empty.
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Step 2. To show that the implicit production possibility set is input-
regular, we must show that each implicit input requirement set is closed
and does not contain the zero input bundle when the output bundle is
non-zero. Consider any y € Y*. To show that V*(y) is closed, consider
any sequence vf € V*(y) converging to a bundle v’. For any positive r,
the v* satisfy r-v* = C(y,r) by (5). Then this inequality must hold also in
the limit, r-v’= C(y,r). But (5) then implies v’ € V*(y). Hence, V¥(y) is
closed. If the zero input bundle is in V*(y), then by (5), 0= C(y.r),
implying y = 0 by hypothesis.

Step 3. We first establish that Y satisfies Assumption A, free disposal
of inputs. If a bundle v is in V*(y), and a second bundle v’ is at least as
large in every component, then for any positive r, r-v Zr-vz C(y,r),
implying v’ € V¥(y). Hence, Assumption A holds. We next establish
Assumption B, convexity from below of V*(y). If v, v' are input bundles
in V*(y) and for a scalar 6, 0<6 <1, v'=8v+(l- #v' is a weighted
combination of these bundles, then for any positive r the inequalities
rv=C(yr) and r-vZ C(yr) imply rv'= C(y,r). Hence, v' € V¥(y),
and V*(y) is convex. Q.E.D.

The next result, called the Shephard-Uzawa duality theorem [She-
phard (1970), Uzawa (1962)}, establishes a one-to-one relationship be-
tween input-conventional production possibility sets and input-con-
ventional cost structures. Let us call the procedure (1) which obtains a
minimum cost function from a production possibility set the cost map-
ping, and the procedure (5) which obtains an implicit production pos-
sibility set from a cost function the technology mapping. Lemma 1
establishes that the cost mapping is a function from the class of
input-conventional (actually, more generally, input-regular) production
possibility sets into the class of input-conventional cost structures.
Lemma 2 establishes that the technology mapping is a function from the
class of input-conventional cost structures into the class of input-
conventional production possibility sets. The duality theorem establishes
that on the two input-conventional classes above, the cost mapping and
technology mapping are mutual inverses; i.e., applying the cost mapping
to an input-conventional production possibility set yields a cost function,
and applying the technology mapping to this cost function yields the
initial production possibility set; and similarly, applying the tech-
nology mapping to an input-conventional cost structure yields a
production possibility set, and applying the cost mapping to this
production possibility set yields the initial cost function. Consequently,
all structural features of the production possibilities are embodied in the
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functional specification of the cost function and are recovered by the
technology mapping. As a corollary, distinct input-conventional tech-
nologies yield distinct input-conventional cost functions, and vice versa.

It should be noted that the one-to-one link between the input-con-
ventional classes described above does not hold between input-con-
ventional cost structures and input-regular production possibility sets.
Distinct input-regular production possibility sets may yield the same
input-conventional cost function. However, while going from the
production possibility set to the cost function can entail a real loss of
technological information in this case, the information lost is precisely
that which is superfluous to the determination of observed competitive
cost minimizing behavior. Figure 4 illustrates input-regular technologies
which vield the same cost structure. In this example, under cost mini-
mization the portions of the isoquant labeled ‘“‘alternative 1” and ‘“‘alter-
native 2 are never utilized, and hence cannot be distinguished on the
basis of the behavior of the firm.

Lemma 3. Application of the cost mapping (1) to an input-con-
ventional production possibility set yields an input-conventional
cost structure. Application of the technology mapping (5) to this
cost structure yields the initial production possibility set. Con-
versely, application of the technology mapping (5) to an input-

alternative technology /

envelope
rechinofogy

FIGURE 4
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conventional cost structure yields an input-conventional production
possibility set. Application of the cost mapping (1) to this produc-
tion possibility set yields the initial cost structure.

Proof: Consider an input-conventional production possibility set
defined by a producible output set Y* and input requirement sets V(y)
for y € Y*. The cost mapping yields a cost function C(y.r), and the
technology mapping applied to this cost function yields implicit input
requirement sets V*(y) for y € Y*. By Lemmas 1 and 2, the V*(y) are
input-conventional. We now show that V(y) = V*(y).

If y € Y* and v’ € V(y), then r-v" = C(y,r) for all positive r by (1), and
(5) then implies v’ € V*(y). Alternately, suppose y € Y* and v°& V(y).
We can apply a strict separating hyperplane theorem (Appendix A.3,
10.13) to establish the existence of a non-zero N-vector r and a positive
scalar @ such that r-v®+ 6 =r-v for all v € V(y). Since V(y) satisfies the
free disposal Assumption A, this inequality implies that r is non-
negative. Choose r° larger than r in every component and sufficiently
close to r to satisfy |r-v°— v’ < 6/2. Then, r>v’+ /2 =r-v=r’v for all
v E V(y), implying r’v*< C(y,r%. By (5), v’&V*(y). This establishes
V(y) = V¥(y).

To prove the second half of the lemma, consider an input-con-
ventional cost structure given by a function C(y,r) defined on a set
y € Y*. The technology mapping yields implicit input requirement sets
V*(y), and the cost mapping applied to these input requirement sets
yields a cost function C*(y,r) fory € Y*. By Lemmas 1 and 2, C*(y.r) is
input-conventional. We now show that C(y,r) = C*(y,r) foryEY*andr
positive.

Since v € V*(y) implies r-v= C(y,r), we have immediately the in-
equality C*(y,r)= C(y,r). The proof is completed by supposing that
C*(y,r’) > C(y.r’) for some y € Y* and positive r’, and showing a con-
tradiction results. Define the set B={r,&)EE""r positive, {=
—C(y,r)}. Since C is concave and positively linear homogeneous inr, the
set B is a non-empty, convex cone. The point (r’,¢°) with £° = —C*(y.r")
is by supposition not contained in B. Further, by the continuity of C
established in Lemma 1, (r%,£% is not contained in the closure of B.
Then, the strict separating hyperplane theorem (Appendix A.3, 10.13)
establishes the existence of a non-zero vector (v’,A) €E""' and a posi-
tive scalar 8 such that (v®A)- (%€ + 8 = (v°,2)-(r,§) for all (r,§)EB.
Since B satisfies “free disposal”, this inequality implies v’ and A non-
negative. If A were zero, then the inequality would be violated by a point
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(r’,¢) € B. Hence, we can assume without loss that A = 1. Since B is a
cone, the inequality can be written

v’ — C*(yr) + 0 = 0=r-v°— C(y,r), (7

for all positive r. By (5), r-v° = C(y,r) for all positive r implies v’ € V*(y),
and hence r’v®= C*(y,r%. But this contradicts (7). Hence, C(y.r) =
C*(y,r). Q.E.D.

7. Distance Functions and Economic Transformation Functions

Frequently economists characterize production possibility sets implicitly
using transformation functions or, in the one-output case, production
functions. We will now give a straightforward restatement of the basic
duality theorem of Section 6 in terms of the cost function and a form of
a transformation function known as the distance function. The concept
of a distance function comes from the mathematical theory of convex
sets, and was introduced into economics by Shephard (1970). While the
reformulation of duality in terms of distance functions is potentially
useful in applications, its primary appeal comes from the fact that it
allows us to establish a full, formal mathematical duality between
transformation and cost functions, in the sense that both can be thought
of as drawn from the same class of functions and having the same
properties. We can exploit this formal duality to get ‘‘double our money”
in further investigations of production and cost structures: if we can
prove that a property “P” on a transformation function implies a
property “Q” on a cost function, we can conclude by duality that
property “P” on a cost function implies property “Q” on a trans-
formation function. Hanoch’s Chapter 1.2 in this volume develops and
applies this formal duality to functional forms in production theory.

Consider an input-conventional production possibility set charac-
terized by a producible output set Y* and input requirement sets V(y) for
y € Y*. For this technology, define the distance function

F(y.v) = Max{)t >0 —/-\l-v c V(y)}, )

for y € Y* and v strictly positive. In Lemma 4 below, we show that this
formula defines a unique function which is finite valued for non-zero
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y € Y*. For y =0, the vector 0 may be in V(0), in which case F(y,v) is
defined to take the extended value +«. As illustrated in Figure 5, the
value of F(y,v) is given by the ratio of the length of the vector v to the
length of a vector v* defined by the intersection of the y-isoquant’ and
the ray through v.

For y € Y*, the strictly positive vectors v in the input requirement set
V(y) are exactly those satisfying F(y,v)= 1. From the definition of the
distance function, v/F(y,v) is contained in V(y), but no point southwest
of it is in V(y). If F(y,v)= 1, then v=v/F(y,v), and vE V(y) by free
disposal. If F(y,v) <1, then v <v/F(y,v) is not in V(y).

Suppose the technology has a single output, and is defined by a
production function y = f(v). Then, at any point (y,v), the distance
function F(y,v) takes on the value necessary to satisfy y = f(¥[F(y,v)).
This formula has a particularly simple form when the production func-
tion f is homothetic; i.e., f(v) = ¢(h(v)), where h(v) i1s a linear homo-
geneous function and ¢ is a strictly monotone increasing function with
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#(0) = 0. Then,

y=o [h(F(;,v))] - ¢[F(;,v) h(v)] or F(yv)= ?4>hf(‘(v;_)

where ¢ ' is the inverse function of ¢.

In the case of multiple outputs and a technology described by a
tranformation function G(y,v) =0, the distance function is defined for
(y,v) by the value necessary to make G(y, v/F(y,v)) = 0. The distance
function is then itself one representation of the transformation function
for the technology, F(y,v)=1.

A distance function F(y,v), defined for y € Y* and v positive, will be
termed input-conventional if for each yEY*, F as a function of v is
positive, non-decreasing, positively linear homogeneous, concave, and
continuous and if F(y,v) = +« implies y = 0. Generally, we expect a cost
function C(y,r) to be increasing in the output bundle y and a distance
function F(y,v) to be decreasing in the output bundle y. However,
input-conventional cost structures and distance functions are defined to
have identical mathematical properties with respect to their second
arguments, input prices or inputs respectively. It is this formal duality
that proves useful in obtaining further results. We first establish the
relation between input-conventional production possibilities and input-
conventional distance functions.

Lemma 4. Suppose a producible output set Y* and input require-
ment sets V(y) for y € Y* define an input-conventional technology.
Then, the distance function F(y,v) defined by (8) exists and is
input-conventional. Conversely, given a non-empty set Y* and an
input-conventional distance function F(y,v) defined for y € Y* and v
positive, the relation

V*(y) = Closure {v|v positive, F(y,v) = 1} %)

defines indirect input requirement sets for y € Y* which are input-
conventional. If F is the distance function of an input-conventional
technology with input requirement sets V(y), then V*(y) = V(y) for
yEYH*,

Proof: The first two steps of the proof verify that F exists and is
input-conventional. Step 3 verifies that V*(y) defined by (9) is input-
conventional. Step 4 verifies the last resuit of the lemma, V*(y) = V(y).

Step 1. We first show that F(y,v) exists. Since V(y) is non-empty for
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y € Y* and free disposal holds, there is for each positive v some positive
scalar A’ such that (1/A")v is at least as large in every component as some
fixed vector in V(y). Then, (1/A)vE V(y). If 0 € V(y) in the case y = 0,
then F(y,v) =+ by definition. Suppose 0 € V(y). Since V(y) is closed by
hypothesis, there is an upper bound on the set of A satisfying (1/A)vE
V(y), and the maximum in (8) is attained.

Step 2. That F is positive and positively linear homogeneous in
positive v for each y € Y* follows directly from (8). To show that F 1s
non-decreasing in v, note that if v°,v' are positive input bundles with
v! = v°, then v!/F(y,v") = v"/ F(y,v*) € V(y), implying v'/F(y,v°) € V(y) by
free disposal. Hence, F(y,v)/F(yv)Z1, and F (y,v')Z F(y,v") by the
positive linear homogeneity of F. To show F concave in v, it is sufficient
(because of linear homogeneity) to show for any positive v° and v' that
F(y,v’+v) = F(y,v") + F(y,v'). Since viiF(y,v')E V(y) for i=0,1, the
convexity of V(y) implies

vo Vl
o U T O Fya

for any a satisfying 0= a = 1. In particular, for a = F (y,V)/[F(y.v)+
F(y,v")], one obtains

a € V(y),

v(’+vl
F(y v+ F(y,v)

€ V(y),

implying

v+ v
F [”’ Fy.v) + F(y,v‘)] =1

By linear homogeneity, F(y,v’+v') = F(y,v’) + F(y,v"). The continuity of

F in positive v is an implication of concavity. This verifies that F is

input-conventional.

Step 3. Suppose F(y,v) defined for yEY* and v positive is input-
conventional. Consider the indirect input requirement sets V*(y) defined
by (9). If F(y,v) =+, then y=0 and V*(0} is the non-negative orthant.
Consider F(y,v) <+. From (9), the V*(y) are closed. By the positive
linear homogeneity of F, 0 & V*(y). Since F is concave, the contour set
V*(y) is convex. Since F is non-decreasing in v, the free disposal
condition is satisfied by V*(y). Hence, the indirectly defined technology
is input-conventional.

Step 4. By (9), if v is positive, then v € V(y) if and only if F(y,v)=1,
and hence if and only if v € V*(y). Since V(y) and V*(y) are closed and
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the convexity of V(y) implies that it equals the closure of its interior, the
equality V*(y) = V(y) follows. Q.E.D.

It is sometimes useful to extend the definition of the distance function
to all non-negative input bundles v by applying the formula (8) provided
v/A is in V(y) for some positive scalar A, and setting F(y,v) =0 other-
wise. Appealing to the arguments used to establish Lemma 1, one can
show that this extended distance function is a positively linear homo-
geneous, non-decreasing, concave, continuous function of non-negative
v for each y€ Y* when the hypotheses of Lemma 4 hold. In appli-
cations, it is sometimes useful to employ this extended definition of the
distance function. ‘

We can now restate the duality conditions of Lemmas 2 and 3 in terms
of the distance function. This form of the duality theorem is due to
Shephard (1970), who has made an exhaustive examination of the
implications of the resulting formal mathematical duality.

Lemma 5. Consider (a) the family of input-conventional cost
structures and (b) the family of input-conventional distance func-
tions. For a cost structure C(y,r), y € Y*, in family (a), define a
technology mapping

F(y,v) = Max{A > Ojr-v = AC(y,r) for all r positive}. (10)

For a distance function F(y,v), y € Y*, in the family (b), define a
cost mapping C(y,r) =0 if y =0, and for y # 0,

C(y,r) = Max{A > Ojr-v= AF(y,v) for all v positive}. an

Then, the function F(y,v) defined by (10) is in family (b), and the
function C(y,r) defined by (11) is in family (a). The technology
mapping (10) is equivalent to application of the mapping (5) to
obtain implicit input requirement sets, and application of the map-
ping (8) to these sets to obtain a distance function. The cost
mapping (11) is equivalent to application of the mapping (9) to
obtain indirect input requirement sets, and application of the map-
ping (1) to these sets to obtain a cost function. Hence, the tech-
nology and cost mappings (10) and (11) are mutual inverses on the
families (a) and (b).

Corollary. For all positive r and v,

FyvwCyr=rv,
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with equality if and only if v is a cost minimizing input vector for
the argument (y.r).

Proof: The first step of the proof shows that the mapping (10) is the
composition of the mappings (5) and (8). The second step shows that
mapping (11) is the composition of the mappings (9) and (1). Then,
Lemmas 2—4 will establish the implications of this lemma.

Step 1. Suppose an input-conventional cost structure Cyrxr), yEY*, is
given. The mapping (5) defines implicit input requirement sets V*(y) with
vE V¥*(y) if and only if r-v= C(y.r) for all positive r. The mapping (8)
defines an implicit distance function

F*(y,v) = Max{/\ >0 %v e V*(y)}

= Max {/\ >0 r(i— v) = C(y,r) forallr positive}.

But this is the technology mapping (10), and F*(y,v) = F(y,v).

Step 2. Given an input-conventional distance function F(y,v), yEY*,
the mapping (9) defines indirect input requirement sets V*(y), and the
mapping (1) defines a minimum cost function C*(y,r) for these indirect
input requirement sets. We need consider only y # 0.

C*(y,r) = Min{r-vlv € V*(y)}
= Max{A > 0|r-v= A for all vE V*(y)}
= Max{A > 0Jr-v= A for all v E V*(y), v positive}.

Now, for all positive v, v/F(y,v) € V*(y). Further, vE V*(y) implies
F(y,v) 2 1, and hence r-v=r-v/F(y,v). Therefore,

C*(y.r) = Max{A > Or-v/F(y,v) = A forallv positive}.
But this is the cost mapping (11), and C*(y,r) = C(y,r). Q.E.D.

8. Extensions of Duality

The duality theorem established in Section 6 provides a basis for relating
structural properties of production possibilities to structural properties
of the cost function. In applications, it is useful to have a large family of
duality relationships of the form: ‘“‘the production possibility set has
property ‘P’ if and only if the cost function has property ‘Q’.” Using the
formal duality of cost and distance functions derived in the preceding
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section, we will be able to establish also the validity of such propositions
with the properties “P” and “Q” interchanged. Through the remainder
of this section, we shall assume that production possibility sets are
described by distance functions, and that all cost structures and distance
functions are input-conventional. We begin with a series of definitions.
A positive input bundle v is efficient for an output bundle y and
distance function F if F(y,v) = 1 and any distinct positive input bundle v’
with v'=v has F(y,v)< 1. Alternately, define an input bundie v to be
efficient for an input requirement set V(y) if any distinct input bundle v’
with v'=v has v’ € V(y). The reader can verify that for positive input
bundles, these definitions of efficient input bundles are equivalent. In (a)
of Figure 3, the points v* and v’ are efficient, while v* and v* are not.
Recall that the distance function F is concave in v, by (12) and linear
homogeneity. Define F to be strictly quasi-concave from below if its
upper contour sets {v € EY|F(y,v) = 1} are strictly convex from below
(see Assumption B-2) for all y € Y*. This property can be restated as
requiring, for any positive, distinct points v’ and v' and output y € Y*,
that either (i) every plane which contains v*/F(y,v") and v'/F(y,v') and
bounds {v € E¥|F(y,v) = 1} from below is parallel to a coordinate axis, or
else (ii) for every weighted average v’ = 8v’+ (1 —@)v', with 0< 8 <1.

F(y,v))>Min{F(y,v), F(y,v)} (12)

Figure 3 illustrates the geometry of this condition, which guarantees that
the “‘efficient”” boundary of each input requirement set is rotund, con-
taining no ‘‘flat segments™.

A stronger version of strict quasi-concavity from below will also be
used. When the transformation function F(y,v) is differentiable in the
inputs, let F,(y,v) denote the vector of partial derivatives F,(y,v)=
dF|3v,, n = 1,...,N, evaluated at (y,v). This vector is termed the gradient
of F. Let F,,(y,v) denote the N-dimensional matrix of second partial
derivatives 32F/3v,9Vm, n,m = 1,...,N, evaluated at (y,v). This array is
termed the Hessian matrix of F. The transformation function F is
strictly differentiably quasi-concave from below in positive v if for any
positive efficient v°,v' and weighted average v’ = 8v’+ (1 - 6)v', 0< 6 <
1, it follows that the Hessian matrix F,,(v") is negative semi-definite of
rank N — 1.

A remark on the relation of these definitions is in order. The con-
ditions that F is concave and positively linear homogeneous in v imply
that when the Hessian of F exists, it is symmetric, negative semi-
definite, and singular, with a zero characteristic root corresponding to
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the characteristic vector v’. Hence, strict differential quasi-concavity
from below requires that the quadratic form,

N N
Q(v,F.,(v') = z: El OnUmF o0, (¥5V") (13)
be negative for any non-zero vector v not proportional to v”. It is shown
in Appendix A.3 that strict differential quasi-concavity from below
implies strict quasi-concavity from below. As a partial converse it is
shown that continuous second-order differentiability plus strict quasi-
concavity from below implies that the condition of strict differential
quasi-concavity from below holds on a subset of v which is open and
dense® relative to the set of efficient v.

The distance function F(y,v) is non-increasing in the output bundle y
if for any y°, y' € Y* with y’=y', it follows that F (y°,v) = F(y',v). This
property is equivalent to the condition on input requirement sets that y°,
y' € Y*, y°=y' implies that V(y') is contained in V(y". Similarly, the cost
function C(y,r) is non-decreasing in y if for any y°, y' € Y* with y=y,it
follows that C(y°,r) = C(y'.r).

The distance function F(y,v) is uniformly decreasing in the output
bundle y if for any distinct y°, y' € Y* with y’=y', there exists a small
positive scalar a such that F (v°.v)/F(y',v) = 1 + a for all positive v. In
terms of the input requirement sets, this condition is equivalent to the
property that distinct y°, y' € Y* with y’=y' implies V(y') a proper
subset of V(y°), with each input bundle in V(y') at least as large as a
(1 + @)-mulitiple of an input bundle in V(y®). When the set of efficient
input bundles in V(y") is bounded, this condition reduces to the
requirement that V(y') not contain the efficient bundles in v(i").

The cost function C(y,r) is uniformly increasing in the output bundle y
if for any distinct y°, y' € Y* with y’=y', there exists a small positive
scalar « such that C(y',r)/C(y°,r) > 1 + « for all positive r.

The distance function F(y,v) is strongly upper semicontinuous in (y,v)
if for any sequence (y',v') with y' € Y* and v’ positive which converges
to a point (y%v°), two properties hold: (a) If F(y'v*) is bounded away
from zero for some positive v*, then y°€ Y*. (b) If yY€ Y* and v’ is
positive, then F(y°,v®) = limsup,F(y’v’). The cost function C(y,x) is
strongly lower semicontinuous in (y,r) if for any sequence (y'r') with
y' €Y* and r' positive which converges to a point (y°.r%, two properties

A set is open if it contains a neighborhood of each point in the set, and is dense if every
neighborhood contains some point of the set.
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hold: (a) If C(y',r*) is bounded for some positive r*, then y° € Y*. (b) If
y’ € Y* and r° is positive, then C(¥°,r® = lim inf,C(y' r).

Figures 6 and 7 illustrate these concepts. In (a) of Figure 6 the cost of
producing y' exceeds the cost of producing y° at any strictly positive
prices. However, at v” one has F(y’v") = F(y',v") and F is not strictly
decreasing in y. In (b), F is again not strictly decreasing in y at (y°,v"). At
the price vector r” at which v” is optimal, C is not strictly increasing in y.
Both (a) and (b) of Figure 6 correspond to pathological technologies
which are unlikely to arise in practice. (c) illustrates the assumption of
uniform monotonicity. This condition requires that isoquants not con-
verge (when the distance between them is measured along rays). In
Figure 7, (a) illustrates upper semicontinuity of a function F. At the
argument y°, the function takes the largest of the limiting values. In this
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graph, F is bounded away from zero for y in the closed interval [0,y'];
hence strong upper semicontinuity implies Y* = [0,y7. In (b), F
approaches zero as y approaches y', implying Y* = [0,y 1. [In general,
Y* = {y|F(y,v) >0 for some v>0}] (c) of Figure 7 illustrates lower
semicontinuity of a function C. At the argument y°, C takes the smallest
of the limiting values. At y', C is bounded, implying by strong lower
semicontinuity that Y* = [0,y']. In (d), C is unbounded as y approaches
y', implying Y* =[0,y"). The next result relates the strong upper semi-
continuity of the distance function to a property of the production
possibility set.

Lemma 6. Consider an input-conventional production possibility
set Y, and let F(y,v) be its distance function, so that (8) and (9) hold.
Then, the set Y is closed if and only if F is strongly upper
semicontinuous in (y,v).
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Proof: First, suppose F is strongly upper semicontinuous in (y,v).
Consider a sequence (y,v))€Y with (y',v)—(’v". Choose v* strictly
larger than v°. Then, for i large, v' = v*, implying F(y',v*)= 1. This
implies Y€ Y*. Let w be an arbitrarily small positive vector. Then,
(y'\.v' + w) €Y and (y',v' + w)—=(y°,v* + w), implying, since F(y',v' +w) = |,
that F(y°,v*+w)= 1. Letting w—0, (9) implies v°€ V(y°), and hence
yvHey.

Next, suppose Y is closed. Consider a sequence (y\,v') with y' € Y*
and v' positive which converges to a point (y°,v%). Then, (y,v/F(y'v') €
Y. If F(y',v’) is unbounded, then the closedness of Y implies (y°0) €Y,
implying y*=0 and F(y°,¥°) = +o=lim;F(y\v'). Alternately, assume
F(y'v) bounded. Then F(y'v') has a subsequence (retain notation)
converging to a scalar a. If a is positive, it follows that (y°v’/e) €Y,
implying y°€Y* and, if v° is positive, F(y’v)Za. If a is zero, but
y'€Y* and v° positive, then F(y°,v")>0=IlimF(y'¥) for the sub-
sequence. In either case, the condition for strong upper semicontinuity
of F is met. Q.E.D.

The following result relates properties of the distance function and the
cost function.

Lemma 7. Consider (a) the family of input-conventional cost
structures C(y,r), y € Y*, and (b) the family of input-conventional
distance functions F(y,v), y € Y*. Suppose these families are related
by the mutually inverse technology and cost mappings (10) and (11).
Then, in Table 1, the distance function has property ‘P’ if and only
if the cost structure has the corresponding property “Q”.

Proof: A detailed proof of this lemma is tedious and of minimal
inherent interest. Hence, only outlines of proofs will be given, and
mathematically difficult points will be deferred to Appendix A.3. The
steps of this proof correspond to the eight results in Table 1. In each
step, we first show that “P” implies “Q”, and then show that “Q”
implies “P"".

Step 1. Suppose F is non-increasing in y, so that y’,y' € Y* and y’ = y'
imply F(y',v) = F(y°,v). By (11), for any positive price vector r and any
€ >0, there exists a positive vector v such that C(y'r)F(y.v}=
(r-v)/(1+ €). Further, CG°.n)FH’v)=rv. Hence, CH.INFF.Vv)=
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Property “P” holds for an input-conventional transformation function, F(y.v), if and only
if property **Q’" holds for its input-conventional cost function, C(y.r).*

uP” on F(y,V)

“Q” on C(y.r)

Non-increasing in y

Non-decreasing in y

2. Uniformly decreasing in y Uniformly increasing in y

3r Strongly upper semicontinuous in (y,v) Strongly lower semicontinuous in (y.r)
4° Strongly lower semicontinuous in (y.v) Strongly upper semicontinuous in (y.r)
5.4 Strongly continuous in (y.v) Strongly continuous in (y.r)

Continuocusly differentiable in positive r
Strictly quasi-concave from

below inr

Twice continuously differentiable

and strictly differentiably
quasi-concave from below inr

6.° Strictly quasi-concave from below in v
77 Continuously differentiable in

positive v
8# Twice continuously differentiable

and strictly differentiably
quasi-concave from below in v

 *By the formal duality of cost and transformation functions, the implications of this
table continue to hold when properties “P" and “Q” are reversed; 1.e., “P” holds for the
cost function and “Q’" holds for the transformation function.

bRecall that this property is equivalent to the condition that the production possibility set
be a closed set.

“Input requirement sets V(y) form a strongly lower hemicontinuous correspondence if
two properties hold: (a) If y' €Y*, y¥ >y’ Y* and A is any bounded set in E™, then
for sufficiently large i, V(y') does not meet A. (b) If yYEY*, v'EV(’), and yEY*
y—y°, then there exist v\ € V(y') such that v'—>v’. This condition implies that the cost
function is strongly upper semicontinuous in (v.r). To show this, note first that y' € Y*,
y'—y’ & Y* implies C(y'.r*)—+ for r* positive. Hence, C(y'.,r*) bounded implies y’ € Y*.
Next, note that if (y'.r')—(y%r’) with y,y°€ Y*, and r'x® positive, there exists v’ € viy")
such that C(y°r’)=r"+v" and there exist v' € V(y') such that v'—»v°. Then CyrH=
r vy implies lim sup:.C(y'r') = C(y*,r%. A more difficult argument, given in Appendix
A.3. 15.5, establishes the converse implication from C to V, and consequently the
equivalence of the condition that the distance function be strongly lower semicontinuous
and the condition that the input requirement sets define a strongly lower hemicontinuous
correspondence.

A function is strongly continuous if it is strongly upper and strongly lower semicon-
tinuous. This property is equivalent to a requirement that the input requirement sets V{(y)
define a strongly continuous correspondence (Appendix A.3, 13.2).

*This property guarantees that isoquants are rotund, with no flat segments.

"This property guarantees that isoquants have no “‘kinks™.

®An input-conventional transformation function with these properties is termed neo-
classical. This result then provides a formal duality theorem for neoclassical distance
functions and neoclassical cost functions.
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(1+e)CQ' r)F(y',v), or

0 1
COD 4 E0 <y (14)

Cy'r)~™ Fy'v) ™~

implying C(y*.r)= C(y',r).

Next suppose C is non-decreasing in y, so that y’y' € Y* and y’=y'
imply C(¥°,r)= C(y',r). Analogously to the preceding argument, (10)
implies, for any positive v and any €°>0, the existence of r such that
C(y°,)F(y°,v) = (r-v)/(1 + €). Since C(y' . r)F(y ,v)=rv,

Cer

con s + €, (15)

F(y',v)<
FGy°wv) ™ (1+e)

implying F(y°,v) = F(y',v).

Step 2. Suppose F is uniformly decreasing in y, so that distinct
Yy ' €EY* with y°=y! imply F(y’,v)/F(y',v)=1+a for some positive
scalar a, uniformly in v. In (14), this implies C(y'.r)/CH’rz1+a
uniformly in r. Conversely, suppose C is uniformly increasing in y.
Then, a similar argument applied to (15) yields the result that F is
uniformly decreasing in y.

Step 3. Suppose F is strongly upper semicontinuous. By Lemmas 4
and 6, the indirectly defined production possibility set Y is closed.
Consider a sequence (y',r') with y' € Y*, r' positive which converges to a
point (y°r%. Then there exist v' € V(y') such that C(y'x)=r'-v. If
C(y',r)) is bounded and r° is positive, this equality implies that v' is
bounded and has at least one limit point v’. The closedness of Y implies
(y°,v®) € Y. Hence, ¥° € Y* and C(3°.r%) = r’v". Since this inequality holds
for each limit point, C(y°r®) = lim inf,C(y'r'). This establishes condition
(a) for C to be lower semicontinuous, and condition (b) in the case that
C(y'r’) has a bounded subsequence. Finally, if C(y'r') has no bounded
subsequence, but yEY* and r° is positive, then obviously C(y’r’) =
lim inf,C(y°,r"). Hence, C is strongly lower semicontinuous.

Next, suppose C is strongly lower semicontinuous. By (5), we have
V(y)={vZ0r-v= C(y.,r) for all positive r} for yEY* and by (6) a
production possibility set Y. Consider a sequence (y',v')) €Y converging
to a point (y°,v°). For each positive r, r-v’ = lim; r-v' 2 lim; C(y'rr), imply-
ing yY€Y* and lim;C(y'r)= C(y’r) by strong lower semicontinuity.
This implies v° € V(y°), and hence (y°,v°) € Y. Therefore, Y is closed, and
Lemma 6 implies that F is strongly upper semicontinuous.
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Step 4. Utilizing the formal duality of F and C, properties “P”’ and
“Q™ in Step 3 can be reversed to yield result 4.

Step 5. This result is implied by the results 3 and 4.

Step 6. Note that a concave function which is differentiable on an
open set is continuously differentiable on that set, and that the negative
of a concave function is a convex function. Then, a lengthy argument
given in the Appendix A.3, 16.7(7) and 16.7(10), yields this result.

Step 7. This result is-implied by result 6 using the formal duality of C
and F.

Step 8. This result is established in the Appendix A.3, 16.7(11).

Q.E.D.

One implication of the duality theory developed above is that the
input requirement sets have image sets in the space of input prices,
defined for y € Y* by

R(y) = {r = O|r-v = F(y,v) for all positive v} (16)
= Closure {rjr positive, C(y,r) = 1}.

This set is termed the factor price requirement set, and its boundary is
termed the factor price frontier, for the output bundle y. This concept
has been employed in applications by Samuelson (1953-54), Bruno
(1968), and others.

The properties of the cost function - concavity, monotonicity, linear
homogeneity, and continuity —imply that the factor price requirement
set R(y) is closed, is non-empty for y # 0, and satisfies the free disposal
and convexity assumptions A and B. Therefore, there is a formal
mathematical duality between input requirement sets V(y) and factor
price requirement sets R(y); they are termed polar reciprocal sets, and
can be characterized directly by the relationship r-vz 1 for all r ER(y)
and v € V(y).

The factor price frontier is a solution r; = ¢(ry,....,"n¥)s of the equation
C(y,r)=1. The frontier ¢ is a convex, non-increasing function of
(F2....,12), and a non-increasing function of y. In the case of a single
output, the factor price frontier is usually defined for unit output,
ry= ¢(rs,...,r, 1). When the technology exhibits constant returns to scale,
it is completely determined once the input requirement set for unit
output is specified. Then duality implies that an input-conventional
constant returns technology is completely characterized by the factor
price frontier 7, = ¢(rz,....7a1).
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9. Cobb-Douglas and C.E.S. Cost Functions

In econometric applications of production theory, one normally works
with parametric families of transformation or distance functions. Cobb~
Douglas and C.E.S. (or, Arrow—Chenery—Minhas-Solow) production
functions are widely used cases. Cost functions are derived in this
section for these two families. Dual functions for other parametric
families are derived elsewhere in this volume (Diewert, Chapter II1.2;
Hanoch, Chapter I1.3; Lau, Chapter 1.3).

Consider a technology with N inputs, v = (2,,...,uy), producing a single
output y. The technology is of the Cobb-Douglas form if it has the
distance function

F(y,v)= Dol o /vy(y), (17)

where D is a positive efficiency parameter, the 6; are positive dis-
tribution parameters satisfying 6,+ 6.+ ---+ 6y = 1, and vy is a function
from a subset Y* of the non-negative real line onto the non-negative real
line. In case y(y) has the special form y(y)=y'"#, production possi-
bilities exhibit returns to scale of degree u. The cost function obtained
by applying (1) to the technology defined by (17) has the functional form

C(y.r)=D*y(y)rirg---ri, (18)
where D* = D7'¢7960;%---93, and is called the Cobb-Douglas cost
function.

The technology is of the C.E.S. form if it has the distance function

F(y.,v) = [(0J/ Di(y)) '™ + (o Do(y))'™"°
oo (UN/DN(y))l—l/c]ll(l—llcr), (19)
where o is a positive elasticity of substitution parameter, o+ 1, and the
D;(y) are positive (non-decreasing) functions of positive y. The cost
function obtained by applying (1) to the technology defined by (19) has
the functional form

C(y.x) = [(nDy)) ™7 + (nDy(y)'™7 + - + (WDn (y) 7177, (20)

and is called the C.E.S. cost function.
Two limiting cases of the C.E.S. transformation function are most
easily treated separately. In the limit o—0, one obtains the Leontief

transformation function
F(y,v) = Min{(v,/D\(y)), (v2/ D«y)),....(vn/ Dn (YD}, (21
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which has the corresponding cost function
C(y,x) = nDi(y)+ rnDoy) + -+ + rnDn(y)- (22)

Alternately, in the limit ¢—+®, one obtains the perfect substitute
transformation function

F(y,v) = (v:/Di(y)) + (02/ Do(y)) + -+ + (un/ Dn(¥)), (23)
which has the corresponding cost function
C(y,r) = Min{(r\Di(y)), (r2Ds(¥)),-..(rnDn (¥))}- (24)

These formulae can be verified by indirect methods (Lau, Chapter L.3),
or by direct computation of the minimizing input bundle. For the C.E.S.
case, the steps in the direct computation are the following: (1) obtain as
a first-order condition for cost minimization the expression 7/r;=
(v v;)) V(DY) Di(y)"~": (2) reverse this expression to obtain the
expression rjf riv; = (rDi(y)/nD; (y))'"7; (3) sum this expression over i to
obtain rp/C(y.r) = (nDy(y)) =I[(nD n(y))' T4+ (rnDn(y)'7%); (4) solve
this expression for v;, substitute the result into (19) with F(y,v) =1, and
simplify to obtain (20).

10. The Geometry of Two-Input Cost Functions

Dual distance and cost functions have a geometric structure which can
be used to establish qualitative relationships between these functions.
Consider the case of two inputs v = (v,,05), and suppose production
possibilities are defined by input-conventional input requirement sets
V(y), yYEY*. Let F(y,v) and C(yx) denote the transformation and
cost functions, respectively, for this technology, and let R(y)=
{r = 0|C(y.r) = 1} denote the factor price requirement set.

Figure 8 illustrates a typical input requirement set V(y) and cor-
responding factor price requirement set R(y). Hereafter, we shall refer to
the boundaries of these sets as the isoquant and the factor price frontier
respectively. Let v® denote an input bundle in the isoquant, and let r° be
a normal to a plane tangent to V(y) at v°. Choose the magnitude of r’ to
make r’v°= 1. Using Lemma 5 and the derivative property of the cost
function, one can conclude that r’ is in the factor price frontier, and that
v’ is a normal to a plane tangent to R(y) at r°. Furthermore this
geometric relationship is completely dual: starting from r’ in the factor
price frontier, one can proceed in the opposite direction to locate v’ in
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the isoquant. In Figure 8, the mapping between points in the isoquant
and factor price frontier is one to one, and as v’ moves from northwest
to southeast along the isoquant, its image r’ moves from southeast to
northwest along the factor price frontier.

These movements correspond to a rise in the relative intensity of use
of factor 1 and a rise in the marginal rate of substitution of factor 1 per
unit of factor 2 (i.e., a rise in the relative price of factor 2). Thus, the
value of a factor rises as its relative scarcity rises.

Employing this geometric mapping rule, we can establish a simple
inverse relationship between the degree of curvature of the isoquant and
the degree of curvature of the factor price frontier, as illustrated in
Figure 9. Curves A, B, C, D denote dual isoquants and factor price
frontiers. A straight line isoquant (A) maps into a rectangular factor
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price frontier, and a rectangular isoquant (D) maps into a linear factor
price frontier. Isoquant (C), with a sharper curvature than isoquant (B),
maps into the factor price frontier with less sharp curvature. Using the
elasticity of factor substitution as an index of curvature, this inverse
curvature relationship can be made quantitative. Assume the distance
function to be twice continuously differentiable and strictly differentia-
bly quasi-concave from below. Then, the cost function also has these
‘properties, by Lemma 7, and the dual points v°, r® in Figure 8 satisfy

rtl)lrg = F](ysvo)/ F2(yavo), (25)
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and
U?/vg = Cl(y’ro)lCZ(ysro)s (26)

where F(y.r’) denotes the partial derivative aF(y,v°)/dv, and Ci(y,v%)
denotes 3C(y,r’)/dr. Define the elasticity of input substitution at (y,v°),

d log (UI/UZ)

27
d lOg (rl/r2) y fixed and F(y_v0)=| ( )

o(y.v°) =

From (a) in Figure 8, (r9/r3) falls as (v$/v9) rises, at a rate which
increases in magnitude as the curvature of the isoquant rises. Then,
a(y,v°) is positive, is near zero if the isoquant has high curvature and is
nearly rectangular, and is near infinity if the isoquant has low curvature

and is nearly linear. A formula for the elasticity can be obtained by
logarithmic differentiation of (25):

dlnfi:[ﬁ_ﬂ]d ]+[F12 Fzz]d

[ &3 F] Fz F| Fz
_|_ UzFlz__E_z_l] [FIZ UlFlz]
_[ v F, F, do: + F, v, F, do,
_ Fy [F F ] FFy
= Fle do, - dvz F,del o

The second equation uses the homogeneity conditions v, Fy, + v,F; =0
and v, F\;+ v, F5 = 0, while the third uses the condition F = v, F, + v,F.
Substituting this formula in (27) yields

0y — F(y,v) Fy(y v°)
7O Ry Faly s

Alternately, logarithmic differentiation of (26) yields

dlnl’—‘=[Q—C2‘]d, [C'z sz]drz

U2 ¢, G C, G
= "2C12_ C21] [C12 rlCZI]
B [ I']C] Cz d + Cl r2C2 drz
_CCy
C G, dln

where the same homogeneity arguments are used as in the preceding
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derivation. Then,

o - COF)Crly.r)
TV = oty

where r° is the vector dual to v° [i.e., I’ = F,(y,v")/ F(y.,v9)].
Define a similar curvature index for the factor price frontier at (y.r%,

dlog (r}/r3) (28)

0y —
plyr) dlog (U?/Ug) y fixed and Clyr0)=1

pasymptote

B(o =I)

Ale>1)

Vi
@) Isoquants

Alag>1)

b) Factor price frontiers

FIGURE 10
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Then we obtain in the same manner as above the formula
p(y.r") = Cy(y.r) Caly r")/ C(y,r*) Cra(y r°).

Comparing the formulae for o(y,v’) and p(y.r’), we obtain the condition
p(y,r® = 1/a(y,v°). Thus, an isoquant with an elasticity of substitution
equal to one is dual to a factor price frontier with a curvature index
p(y,r’) equal to one, and an isoquant with an elasticity of substitution
less (greater) than one has a factor price frontier with a curvature index
greater (less) than one. Figure 10 illustrates this relationship for C.E.S.
isoquants in (a) with an elasticity greater than one (A) and an elasticity
less than one (C), and a Cobb-Douglas isoquant with an elasticity equal
to one (B). The corresponding factor price frontiers are given in (b) of
Figure 10.

Figure 11 illustrates the mapping of Figure 8 when there is a “‘kink” in
the isoquant at v’. The image of this point is a line segment in the factor
price frontier from r° to r'. Any vector r in this line segment is a normal
to a plane “‘supporting” the input requirement set at v°. Then, r® and r!
are normals to the extreme supporting planes, as iliustrated. Proceeding
in the opposite direction, we note that each r in the line segment r° to r'
in the factor price frontier has the same normal vector v°, and hence
maps into the “kink” v°. Since, by duality, we can interchange r and v in
this figure, we can show that flat segments in the isoquant map into
“kinks” in the factor price frontier. Thus, we can conclude generally
that ‘‘kinks’ (or, lack of differentiability) in one function map into
“flats™ (or, lack of strict quasi-concavity) in the dual function, and vice
versa. In the special case of an activity analysis model” of the tech-
nology, this duality is complete, with each “‘kink” (‘‘flat’’) in an isoquant
mapping into a “flat” (“kink”) in the factor price frontier.

Our discussion of the geometry of two-factor cost functions will be
concluded with an examination of the behavior of isoquants and factor
price frontiers near the boundaries of the non-negative orthant. Five
classes of boundary behavior can be distinguished:

A. The curve is asymptotic to an axis.

B. The curve is asymptotic to a line parallel to an axis.

C. The curve is tangent to an axis.

D. The curve meets an axis, but is not tangent to the axis.

"An input requirement set V(y) comes from an activity analysis model if it can be
obtained from a finite set of input vectors by forming convex combinations and/or using

free disposal of inputs.
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E. The curve meets and does not extend beyond a line parallel to an
axis.

Figures 12 and 13 illustrate these classes of behavior, and the following
geometric duality relationships between then:

1. A curve satisfies A on one axis if and only if the dual curve satisfies
A on the other axis.

2. A curve satisfies B on one axis if and only if the dual curve satisfies
C on the other axis.

3. A curve satisfies D on one axis if and only if the dual curve satisfies
E on the other axis.
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11. Comparative Statics for the Cost Minimizing Firm

The basic qualitative questions in the theory of the cost minimizing firm,
as formulated by Samuelson (1947, p. 59) are the effects on an input
demand of a change in its own price, in the price of another input, or in
the output bundle, and the effects on total cost and marginal costs of
changes in input prices or the output bundle.

We have noted in Section 5 on the derivative property of the cost
function that for an input-regular production possibility set, the cost
function has first and second derivatives with respect to input prices for
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almost all positive input prices. Since these first derivatives equal the
cost minimizing demands when they exist, concavity of the cost function
implies that an input demand function is non-increasing in its own price,
and that the matrix of partial derivatives of inputs with respect to input
prices is negative semi-definite and symmetric. It should be emphasized
that these results hold with only the weak input-regular conditions
imposed on production possibilities. In particular, some inputs may be
non-divisible, or “‘isoquants’ may fail to be convex, without altering this
conclusion. This observation was first noticed by Samuelson (1953, p.
359), and first deduced formally in an economic application by McKen-
zie (1957).

For further comparative statics results, we shall for the remainder of
this section impose classical assumptions on production possibilities: the
technology is input-conventional and can be represented by a dis-
tance function F(y,v), which is strongly continuous in (y,v), twice
continuously differentiable in (y,v), uniformly decreasing in y, and
strictly differentiably quasi-concave from below in v. (We term a tech-
nology satisfying these conditions input-classical.) Lemma 7 then im-
plies that the cost function C(y,r) is strongly continuous in (y,r), twice
continuously differentiable in r, uniformly increasing in y, and strictly
differentiably quasi-concave from below in r. A classical calculus
argument using the implicit function theorem establishes that C(y,r) is
continuously differentiable in y* Under these conditions the input
demands v; = D'(y,r) = Ci(y,r) are continuously differentiable in (y.r), with
a negative own price effect

dviar; = Dity,r)= Ci(y,r) <0, (29)
and symmetric cross-price effects

dvifar; = Cy(y,r) = Ci{y.r) = dviar. 30)

*The cost function satisfies C(y,r) = min, r-v subject to F(y,v)=1. For r such that the
minimum is achieved at strictly positive v, the first-order conditions for minimization are
AF.(ywv)=r and F(y.v) = 1, where A is 2 Lagrangian multiplier. From the assumptions on
F, these equations have a total differential which is continuous in y.

[/\Fm,(y,v) F,,(y,v)] [dv] _ [-—AF,,,] d
E.(y.v) o jlaai~l-Fr [

The left-hand-side matrix is non-singular by the assumption of strict differential quasi-
concavity of F in v. Therefore. dv/dy exists and is continuous in (y.r), implying C(y.r} =
r-v continuously differentiable in y.
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The matrix of price effects [dv/dr;] = [Cy(y,r)] is symmetric, negative
semi-definite, and of rank N — 1, with

rdvidr + rdviddry+ - + rydvfary = 0. 3D

Inputs i and j are termed substitutes if dv/ar;>0, and complements if
av,‘lar,‘ < Q.
The effect on input i of an increase in output k is given by

30/ 8y, = Ciy, (y,x) = C,;(y,x) = dm,/ar, (32)

where m, = M*(y,r) = C,,(y,r) is the marginal cost of producing output k.
Input | is termed normal for output k at (y,r) if dv/dy, is positive, and is
termed regressive for output k otherwise. Equation (32) shows that the
marginal cost of output k rises when the price of a normal input rises,
but falls when the price of a regressive input rises.

Since the cost function is uniformly increasing in y, the marginal cost
of output k, M*(y,r), is non-negative, and is positive for almost all y,,
given any values for the remaining arguments. The effect on total cost of
an increase in input price / is non-negative, and is positive when the
demand for input i is positive, since Ci(y,r) = v;.

Next, we examine the effects of output changes on marginal costs,
amildy = C,,,(y.r). Outputs k and [ are termed substitutes if dm/ay, >0
and complements if dm,/dy; <0. A production possibility set Y is said to
exhibit generally non-increasing returns if Y is a convex set. We say that
Y exhibits eventually diminishing returns to scale if (Ay,Av)EY for all
A >0 implies y = 0.

A cost function C(y,r) is said to exhibit generally non-decreasing costs
if C is a convex function of y for each positive r. We say C(y,r) exhibits
eventually increasing costs if lim,.. C(Ay,r)/A =+ for all positive r
and all y#0. [A competitive profit maximum exists for all strictly
positive output prices if and only if C(y,r) exhibits eventually increasing
costs.]

Lemma 8. Assume the production possibility set Y to be input-

conventional. Then the following implications hold:

(1) Y exhibits generally non-increasing returns if and only if C(y,r)
exhibits generally non-decreasing costs.

(1i) Y exhibits eventually diminishing returns to scale if and only if
C(y,r) exhibits eventually increasing costs.
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Proof: (i) If Y is convex, and costs are minimized for (y'r% at a
bundle v with (y'v)EY, then for 0<8<1 and (y°¥)=6(y'v)+
(1-6)y* V) EY, we have

CH)=r%v" = 0r'v' + (1 - O)r'-v’ = 8C (' 1) + (1 — )C(y*.r°).

Hence C is a convex function of y. '
Alternately, suppose C(y,r) convex in y for fixed r. Given yv)EY

and (y°,v°%) = 6(y'.v) + (1 — 8)y*.v?) for 0< 6 <1, we have for any posi-

tive r,

CHN=0CH'H+(1-0OCHD=0rv +(1-0rv =rv’,

implying by Lemma 3 that (y°,v*) €Y. Hence Y is convex.

(ii) Suppose that for some y =0 and positive r, C(Ay,r)/A fails to
converge to + ® as A—+ . Then there exists a sequence A;—>® such that
{C(A;y.r)/A;} is bounded. Let v' be such that C(A;y,r) =r-v'. Then {viir;}is
bounded, and we can choose v’ such that (vi/A;)=v’ for all i. Then,
(A:y,v') €Y implies (A;y,A;v)) €Y, and the production possibility set fails
to exhibit eventually diminishing returns to scale.

Alternately, suppose there exists (y,v)EY, y#0, and A, > + such
that (A;y,A:¥v) €Y. Then Cy.D)/Ai =r(ALv)A; =1V, and C fails to
exhibit eventually increasing cost. Q.E.D.

12. Composition of Distance and Cost Functions

For some simple parametric families of distance and cost functions,
such as the Cobb-Douglas and C.E.S. cases analyzed in Section 9, it 1s
possible to perform the cost and technology mappings constructively.
However, many applications require more complex parametric
specifications. One method of forming such functions is to build them up
from simple functions for which the duality mappings are known. The
primary result of this section gives a series of rules for the composition
of these functions and the implications for their duals.

Theorem 9. Consider a producible output set Y*, and input-con-
ventional input requirement sets Vi(y) C EY, defined for y € Y* and
i=1,.,J. Also, let V¥(y)C E! be an input-conventional input
requnrement set for y € Y*. Let F/(y,v) and F*(y,z) be the distance
functions, and C/(y,r) and C*(y.q) be the cost functions, for Viy)
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TABLE 2
Composition rules for distance functions (property P), cost functions (property Q). input
requirement sets (property S}, and factor price requirement sets (property T).

1. Neutral Scaling®
For an arbitrary positive real-valued function «a(y) defined in Y*,

P:  Fy,v) = F'(y,Wa(y) = F\(y.v/a(y))
C'y.r) = a(y)C'(y.r) = C'(y,a(y)r)
V(y) = a(y)V'(y) = {ay)vlv € V'(y)}
R°(y) = R'(yYa(y) = {r/a(y)lr € R'(y)}

390

2. Non-neutral Scaling®

For an arbitrary diagonal N -dimensional matrix A(y), where the diagonal elements of A(y)
are positive real-valued functions defined in Y*,

P: FYywv)=F'y.A®'v)
Cy.r) = C'(y.A(Y)1)
Vy) = {A@)vive V'(y)}
R'(y) = {A(y) 'rr ER'()}

e

3. Union of Input Requirement Sets -
P: F%y,v)=Sup {JZI' Fi(y,v¥ positive, 21:1 vi= v}
< =
Q: C%.r)=Min,;-,_sCi(yr)
S:  V°y)=Convex hull of O Vi(y)

i=1

J
T: RYy)= Q Ri(y)
.

4. Intersection of Input Requirement Sets
P: F’(y.v)=Min;=_sF'(yv)

J J
Q: C%y,r)=Sup {Z Ci(y. ) positive, Y ¢ = r}
= =
J
S: Viy={)Vi
i=1

J
T: R%y)= Convex hull of | Ri(y)
=

*The function a(y) may depend upon exogenous factors such as technical change, and
may be independent of y. It is convenient to include the value a(y)=0 in this rule by
defining V(y) = EY, Fy.v) = + », C%y,r) =0, and R%(y) = . Then Rule 1 holds in the limit
as a(y)— 0. Note that for V(y) to be input-conventional in this case, one must have y = 0.

*The matrix A(y) may depend upon exogenous variabies such as technical change.
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TABLE 2 (continued)

5. Summation of Input Requirement Sets®
J
P: Flywv)= Sup{Min}=,w_,F"(y,v")|v" positive, D, v = v}
i=i
J
Q: C'y.=D Cyrx)
=1
J
S: Viy) = Vi(y)
=1

T Rwym=UJ ﬁz,-k"(y)

50 j=1
g J
Zz=1
j=1!

6. Convolution of Input Requirement Sets®

J
P: Fyw= Fiiy.v)
=
J
Q: C'yr)= Sup{Min,»=._,__JC"(y,r‘)|l-" positive, >, ¢/ = r}
=

J
s vy = M2V

Tz=1

i=1

J
T: RYy)= 21 Ri(y)

7. General Concave Composition of Distance Functions®
P: Fyv)= F*y.F'G.v),..F' 3.v)
J
Q Cyr= Sup{C*(y,C'(y,r‘),...,C’(y,r’))Ir’ positive, 21 r= r}
e

J
S: V(y)=Closure |J () zVi®)
£V ) j=1

J
T: Ry= U 2 aR®

QER*(y) j=1

8. General Concave Composition of Cost Functions®
P: Fywv)= Sup{F*(y,F‘(y,v'),...,F’(y,v’ MV positive, Z vi= v}
Q: Cyx) = C*y,C'(y.r),....C'3)
S: V()= :EQJ(,,;EI ZVi()

J
T: R'y)=Closure |J [ qR(y)

qERy) j=1

‘By convention, for z; = 0 we define zZR/(y) =El, even if Ri(y) is empty.
“By convention, for z; = 0 we define zV/(y)=EY.
cAny of the functions F* or F' may, as a special case, be independent of y.
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and V*(y), respectively. Let Ri(y) and R*(y) be the factor price
requirement sets for V/(y) and V*(y), respectively. Then, the composi-
tion rules in Table 2 hold, defining dual input-conventional input
requirement sets V°(y), factor price requirement sets R%y), distance
functions F(y,v), and cost functions C%y,r).

Proof: Rules 1 and 2 - Given the positive diagonal matrix A(y), the set
V%y) = {A(y)v[v € V!(y)} is obviously input-conventional. From equation

(8),

F'y,v) = Max {A >0 I\lv € v"(y)} = Max {A >0 H—A(y)"v e V'(y)}

= F(y,A(y) 'v).
From equation (1),

C°(y,r) = Min{r-v|v € V(y)} = Min{rA(y)v|[v € V'(y)} = C'(y,rA(y)).
Finally,

R(y) ={r|C°Gy.r) = 1} = {r|C'(y.rAGNZ 1}
= {rA(y) '|C'(y, D) = 1} = {rA(y) 'Ir ER'(y)}.

Duality then implies that each of the composition rules P, Q, S, and T
holds for Rule 2. Taking all the diagonal elements of A(y) to be the
scalar function a(y) implies Rule 1.

Rules 3 and 4- Consider Rule 3, and suppose that S holds, defining
V°y) as the convex hull of the union of the V/(y). The minimum of a
linear function on a convex hull of a closed set can always be attained at
some point in the original set. Hence,

C°(y,r) = Min{r-v|v € V'(y)} = Min{r-v|v € Vi(y), some j}
= Min,—=|_,._JCf(y,r).

Using duality, this establishes the equivalence of Q and S.

For a positive v, one has v/F'y,v) € V)(y), implying the existence of
scalars z =0, =j.,z=1 and points v/Fy,v)E Vi(y) such that
E, 1 2iv/ =v. But this implies F’(y,v)>F°(y v), and hence, using the
linear homogeneity of F' in v, 2., Fi(y,z;v') = Fy,v).

Alternately, consider the relation Fy,v) = Max{Alr-v = AC%y,r) for
all positive r}. Take any positive w' with Ef yw/ =v. By Lemma 5,
C/(y.r)Fi(y,w) =< r-w'. For A =2, Fi(y,w'), one has
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. J « - .
AC(y,r)= A Min;-,_sC'(yr)= 21 Fi(y,w)Min,-,_,C'(y.,xr)
£

7 J
=3 Fiyw)Ci(yr)S 2 rw =rv.
=1 =1
Hence,
J
Fiyv)z A =, Fi(y,w'),
i=1
for all w with E,ﬁ, w/ =v. With the inequality in the preceding

paragraph, this establishes P. Then P and S are equivalent by duality.
Given F%(y,v) from P, note that

R%(y) = {rjr-v = F%y.v) for all positive v}
] . . . J -
= {r}r-v = > F'(y,v')for all positive v/, >vi= v}
j=1 j=1
J . J - - B
S r-vi 2 > Fi(y,v') for all positive v’}
=1 1

~fe:

={rjr-vi = Fi(y,v)), all j and all positive v'}

J
= ﬂ. R/(y).

Hence, P and T are equivalent. This establishes Rule 3.

Rule 4 can be deduced from Rule 3 using the formal duality of C and
F.

Rules 5 and 6 - Consider Rule 5: Given V(y) = 2,;, Vi(y), we see that
V‘;(y) is input-conventional, and that equation (1) implies C°(y,r)=
3.1 Ci(y,r). Then Q and S are equivalent by duality. Next consider

%vEV"(y)}= Max{)\ H—véé Vj(Y)}

F%y,v) = Max {)\

s
= Max {A %v’ € Vi(y) for some v/ with >, v/ = v}.
=

Given a small positive scalar a, there exist positive v/ with 2L, v/ =v
such that (V/(F%y.v)—a))E€ Vi(y), and hence Fi(y,v)z Fy,v)—a.
Conversely, for any positive w with ZL,w'=v and A=
Min;.,_,F(y,w') one has w/AEV/(y), implying Flyv)z A=
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Min,., _F’'(y,w). With the previously established inequality, this im-
plies F(y,v) = Sup{Min;, _,F/(y,v)|v' positive, 2L, v/ =v}. By duality,
P and S are then equivalent.

The factor price requirement set satisfies R°(y) = Closure {r|r positive,
2L, Ci(y,r) = 1}. Then positive r is contained in R%(y) if and only if there
exist non-negative scalars z; such that £,z =1 and Ci(yr)=z, or
r € M_,(z;R/(y)). Hence R%y) = Closure A, where

J
A= ) @RG).
2;&0 j=1

Now suppose r' €A and r'—>r’. Then there exist z; =0 such that
2/ 1z; = 1 and r' € z;R/(y) for each j. Choose a subsequence of (z;,. .., 25)
converging to (210,---.Z70)- Retain the index notation i for the subsequence. If
zjp> 0, then r/z; =%z, € R'(y), since Ri(y) is closed. If zj,=0, then
r° € z,Ri(y) = RY. Hence, 1" € M., (z;oR/(y)) C A. Therefore, A is a closed
set, and R%(y) = A. Duality then implies the equivalence of Q and T. This
establishes Rule 5. ‘

Rule 6 follows from Rule 5 by the formal duality of the distance and
cost functions and of the input and factor price requirement sets.

Rules 7 and 8-Consider Rule 7, and F°(y,v)= F*y.,\v),...,
F’(y,v)). Since F*(y,z) is non-decreasing, linear homogeneous, and
concave in positive z, and the F’(y,v) have the same properties in positive v,
it is immediate that F°(y,v) is non-decreasing and linear homogeneous in
positive v. Consider positive v,v'and 0 < 8 < 1. Then F'(y,0v+ (1 — 8)v) =

8F'(y,v)+ (1 - 8)F/(y,v), implying

F(y.0v +(1-0))

= F*(y,F\(y,0v+ (1 — 0)V),....F’(y,8v + (1 - 8)v")

= F*(y,0F (y,v)+ (1 — 0)F'(y,¥),....0F (y,v) + (1 — 0)F’ (y.v'))
= F*(y,F'(y,v),....F’ (y,v))+ (1 - O)F*(y,F'(y,v).....F’ (y ¥)),

with the second inequality following from the concavity property of F*.
The value F%y,v) = + = can occur only if F*(y,z) = + « for some positive
finite z, or F/(y,v) = + = for some j. Since F’ and F* are input-conventional,
either case implies y=0. This establishes that F%y,v) is input-con-
ventional.
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From equation (9),

V(y) = Closure {v> 0|F*(y,F'(y,v),....F'(y,v) 2 1}
= Closure {v> 0] there exists z> 0 such that F(y,v)
=z z; and F*(y,2) = 1}

J
= Closure |J [){v>0|F'(y,v) = z;}.

2EVHy) j=1
>0
Define
-~ J -
Vy = | ﬂ(Z;V’(y))-

ZEVHy) j=

Clearly V°(y)C Closure V°(y). If v€ Vy), then v€E zVi(y) for some
z € V¥(y). For a small positive scalar a, the vector v+ aey, where ey is

an N-vector of ones, is in the interior of z,V’(y) Hence, there exists a
small positive scalar 8 such that Fi(y,v+ aey)= z; + B. Since z+ fe; €
V*(y), this implies v+ aey € Vy). Hence, closure V%y) C V%(y). This
establishes V°(y) = Closure V%y). Duality implies the equivalence of P
and S.

Next consider the cost function defined by

C%y,r) = Min{r-vlv € V(y)} = inf {r-vlv € V(y)}

= inf inf{r-vlv € z;V/(y) for all j}.
ZEVH(y)

For fixed z € V¥(y),
] n ] - - » J «
inf{r-vlv € ﬂ(z,-V'(y))} = sup{_zlz,-C’(y,r’)Ir' = O,Er’ = r},
j=1 = i

by Rules 1 and 4. The function f(z, )y = E =1 z;C! i(y,r'), defined for
z € V*(y) and (r') in the set A = {(r))[r' =0, 2;' ,r’ =r}, is continuous on
V*(y) X A, concave in (r') for each z, and linear (and thus convex) in
z for each (r). Since A is bounded, the general minimax theorem
[Rockafellar (1970, Corollary 37.3.1)] implies

inf sup f(z, (r’),y)—sup mf f(z,(r’),y)

ZEVYy) (F)EA
But
. J . -
inf f(z,(d);y)= inf 3 zC'(y.r) = C*(y,C'(yx"),...C ('),
ZEVH(Y) ZEV*y) j=1



56 Daniel McFadden
by the definition of C*, implying

Cy.,r)= inf sup f('yy) = sup C*(y,C'(y.,r"),....C (y,r')).

ZEVHy) (¢

Using duality, this establishes the equivalence of Q and S.
The factor price requirement set satisfies

J

R =y n = 1= {3 FICr 6.0, Clrn 2 1)

j=1

J
= {ZH'C*(V"I) =1 and C'(y.r') z g;; for some g; ;0}
=

= UJ i{r"lC"(y,r")éqj}

qER*(y) j=1

J
2 iR (y).
qER*() j=1
With duality, this establishes the equivalence of Q and T. Hence, Rule 7

is established.
The formal duality of the distance and cost functions yields Rule 8

from Rule 7. Q.E.D.

A variety of implications for technological structure can be drawn
from these composition rules. First, using Rule 7 and the Cobb-Douglas
distance and cost functions given in equations (17) and (18), we obtain a
CobbwDouglas composition of d:stance functions: For ay,...,a; >0,
2_,1 1a; = ,

P: FY%y,w)=F'(yv)" - -F(yv)%,

Q: Cyr)=ai™ - -as¥

J
-sup{C‘(y,r')“'- - -C’(y.r))¥ ) positive, D 1 = r},
=

J
S: Viy=U (e¥ vy,

2230’ !

T: Ro(y) = U El aiez,‘laiRi(y)‘
s i=

Zzz0

i=1

Formal duality gives Cobb-Douglas composition of cost functions: For
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J
[/ STRRPTZ 4 4 >0, Ej:] a; = 1,

P: F%y,v)=ai™ - -aj”sup {F'(y,V')"‘- cee < F(y, vy

. ] .
-|v' positive, >, v/ = v},
j=1
Q C.n)=Clyn~....ClGy.rY,
J
S: vy =U ﬂl aje iVi(y),
F .,=

Z =0
=1 J

T: Ry =U .lezf""iR"(y).

2 zz0 =
1

Using Rule 7 and the C.E.S. distance and cost functions given in
equations (19) and (20), we obtain a C.E.S. composition of distance

functions:
(1= /o)

J
P: Fyw)= (E (F"(y,v)/D,-(y))"”") :

J
r=0, Zr’=r},
i=1

J ) ) 1/ti~o)
Q: C%y.r)=sup {(E (Cl(ye) D))"~ )

;o
S: Viy)= LQO Q(Z}ﬂ("'l)Df(Y)Vj(Y)),

§|zi=1

l J
T: R%y)= L—Jo ; (R'(y)q;"" "I Di(y)).

3 g=1

j=1

Again, application of formal duality gives a C.E.S. composition of cost
functions:

I . ) 1i(1=1to)
P: Figw=sup{(3 (Fily.v)/Diy)'" ™)
=1

ivf=v},

=1

vZ0,

J ' 1(1-o)
Q Cun=(3Caonen')
J
S: Vi) =UJ 3 (Viy)z/ "V Diy)),
z;=0 j=1
éz,-=!
i=1 7
T: R%y)= | () (gY"Ri(y) Dy(y))-
q=0 j=1
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A production possibility set is said to be input-homothetic® if there
exists a positive function a(A,y) of A EE, and y EEY, increasing in A,
with a(0,y) =0, such that for y =0, V(y) = a(lyl, y/ly) V(y/|y]), where |y|
is the norm of y and we assume y/|y| € Y*. In the case of a single output,
this reduces to the textbook definition V(y) = a(y,1)¥(1) of homotheti-
city. More generally, it satisfies the textbook definition for any fixed
output proportions, and allows the shape of the scaling of inputs versus
output to vary with the output proportions. A property of an input-
homothetic technology is that for fixed output proportions, the cost
minimizing input mix is determined solely by input prices, independent
of the scale of output. Rule 1 in Lemma 9 yields the following
conclusion, where |y} is the norm of y.

For an input-conventional production possibility set, the following
conditions are equivalent:

(a) The production possibility set is input-homothetic.

(b) The distance function has the form

F(y,v) = F@llyl.v)ie(yly/ly) for y=o0. (33)
(c) The cost function has the form
C(y.r) = a(lyl.¥y/lyDC(y/lylxr) for y=#o. (34)

A technology is input-output separable if it can be defined by a
condition of the form B(v)y(y)= 1. The distance function for this tech-
nology satisfies B(v/F(y,v))y(y)= 1, and hence can be written in the
form F(y,v) = f(y(y),v), with f linear homogeneous in v. Then, the cost
function can be written C(y(y),r), and the input requirement set V{y(y)),
with y(y) interpretable as the level of a single intermediate output. From
the preceding result, a technology is both input-homothetic and input-
output-separable if and only if the distance and cost functions can be
written in the separable forms F(y,v)= F'(v)Fy) and C(yr)=
C'(r)C*(y). Note also that these forms are related directly by composi-
tion Rule 1 (with F' and C' independent of y).

Composition Rule 2 can be used to deduce the implications of factor
augmenting technical change, or output change, on the distance and cost
functions. Composition Rules 3-6 allow the geometric or algebraic
construction of cost functions and factor price requirement sets. For
example, in (a) of Figure 14, suppose given a Cobb-Douglas input

*This definition is due to G. Hanoch.



Cost, Revenue, and Profit Functions 59

v4

v
vi

a) Isoguants

r

b) Factor price frontiers

FIGURE 14

requirement set V' and a Leontief input requirement set V2. The duals of
these sets are the Cobb—Douglas factor price requirement set R' and the
linear factor price requirement set RZ, respectively, illustrated in (b). The
(convex hull of the) union of V' and V? is the set V? in (a) of Figure 14.
By Rule 3, the dual of V* is the intersection R} of R' and R’ The
intersection V* of V! and V2 has by Rule 4 the dual R, given by the
convex hull of the union of R' and R®.

Composition Rules 7 and 8 yield a general result on separable distance
and cost functions. Suppose the input vector v can be partitioned into
sub-vectors, v = (¥qy,.--,¥(n), With a commensurate partition r = (Fqy,..-.X)
of the input price vector. Suppose a distance function F’ depends only
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on the sub-vector of inputs v;. Then, we can with a slight change of
notation write the distance function F'(y,v;,). The dual cost function C’
then depends only on the sub-vector of prices r, and can be written

C’(y,r(,',).

Lemma 10. Let F'(y,v;) and F*(y,(z,,...,z;)) be input-conventional
distance functions, and C/(y,r;) and C*(y,(g.,....qs)) their respective
cost functions. Then F°(y,v)= F*(y,F'(y.va).....F’ (y.vy) is an in-
put-conventional distance function with the dual cost function
Cy.r) = C*(y,C'(y,rop)....C* (y.,ry)); ie., the distance function is
separable if and only if the cost function is separable.

Proof: The general concave composition Rule 7 implies that Fy,v) is
input-conventional, and that its cost function is

J
Cy.r) = sup{c*(y,c‘(y,r:.,),...,c’(y,r{,>)>[§ v =r},

where ' = (r{y,.....r{j,....r{). Since the cost functions are non-decreasing
in prices, the supremum is achieved by r =(0....,0,r;,0,...,0) for j=
l""’J’ or Co(y,l') = C*(yaCl(yar(l))s-‘-’CJ(Ysr(I)))' QE'D

In the case of a single output and input-homotheticity, the separability
property of the distance function implies a corresponding separability of
the production function. However, in the absence of input-homotheti-
city, there is no simple relation between separability properties of the
production and distance functions.

Composition Rules 7 and 8 can provide rules for computing distance
or cost functions in cases of incomplete separability. For example, if the
distance function is separable except for one input common to each F/,
then the cost function dual to the composite distance function will be
given by a supremum involving the price of the one common input.

PART II. RESTRICTED PROFIT FUNCTIONS
13. The General Representation of Production Possibilities

In the previous sections of this chapter, the implications of input cost
minimization with fixed outputs have been explored. More generally,
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optimization by the firm over any set of variable inputs and outputs can
be analyzed. This approach leads to a general concept, the restricted
profit function, which in special cases reduces to the cost function, a
maximum revenue function, or an unrestricted maximum profit function.

Consider an environment for a firm in which N commodities, indexed
n=1.2,..,N, can be traded in competitive markets at a price vector
p = (P1.P2,....bn). The firm treats these commodities as possible variable
inputs or outputs. A production plan for the firm is an N-tuple of real
numbers x = (X;,X3,....Xn), Wwith x, interpreted as the quantity of net
output (or, for compactness, netput) of commodity n, negative if the
commodity is an input and positive if it is an output. The profit
associated with a production plan x is given by # =p-x, the inner
product of p and x."

The technological limits on the actions of the firm can be described by
a set T of possible production plans. Generally, the firm’s possibilities
are influenced by prior contracts to hire inputs or deliver outputs, and by
the physical and economic environment. It is convenient to suppose that
these effects can be summarized in an M-dimensional real vector
z=(21,Z2,...,2p) Which can vary within some allowable set Z. The
production possibility set T =T(z) then depends on the value of the
vector z.

Several examples will illustrate the generality of this formulation. If z
is an output bundle, and all the commodities in the netput bundle are
inputs, then T(z) is an input requirement set (with a negative sign) and
m = p-x is the negative of cost. Under the appropriate interpretation of
T(z), the problems of ex ante or ex post, or long or short run, cost
minimization can be treated in this model.

If a firm is maximizing profit with a fixed input, then this input can be
included in the parameter vector z, and maximization can be carried out
in terms of the variable commodities, yielding a maximum variable
profit, net of the cost of the fixed input. Alternately, the fixed input can
be included in the netput vector, with the production possibility set
specifying its level. Maximization in this case yields a maximum total
profit.

The commodity price vector p is defined so that the prices of most commodities are
non-negative. Then, output of a positively priced commodity contributes to revenue, and
input of such a commodity contributes to cost. However, we do not rule out the possibility
of negatively priced commodities. While this generalization is largely definitional, it proves
useful in dealing with commodities for which there is no free disposal and for which net
supply in an economy at zero price may be positive or negative. (Sawdust is an example.)
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If the parameter vector z contains all inputs to the firm and all
commodities in the netput bundle x are outputs, maximization leads to a
maximum revenue for fixed inputs. If all inputs and outputs of the firm
are in the netput bundle, then maximization leads to maximum un-
restricted profits. Components of the vector z may be environmental or
behavioral parameters other than commodity levels. The state of tech-
nical progress or the degree of learning by the firm may be included in z.
If the possibilities of the firm are influenced by ex ante decisions, then
design parameters or anticipated prices and quantities can be included in
z. The parameter vector may include, in the case that the firm is subject
to externalities, the production plans of other firms. Finally, z may
include parameters introduced by the economic analyst to characterize
the technology.

Three basic axioms on production possibilities, which involve little
loss of economic generality, will be imposed in further analysis.

Axiom 1. The set Z of possible production parameters is a non-
empty subset of an M-dimensional Euclidean space E™. For each
zEZ, the set T=T(z) of possible production plans is a closed
non-empty subset of an N-dimensional Euclidean space EN.

The next axiom requires several definitions. The normal cone (barrier
cone) of T(z), denoted by P(z), is the set of all price vectors p& E" such
that p-x is bounded above for x € T(z). Clearly, the normal cone will be
the largest set of prices on which we can hope to define a maximum
profit function. We denote the interior of the normal cone by P%z), and
its closure by P(z). The set T(z) is said to be semi-bounded if P°z) is
non-empty. An example will illustrate the restriction placed on the
structure of T(z) by a condition that it be semi-bounded: If T(z) contains
both #x and —8x for some x and all large positive scalars 6, then the
requirement that p-{fx) and p-(—0x) be bounded above for p € P(z)
implies that p must satisfy p-x = 0. But this implies that P(z) is contained
in a hyperplane, so that P%z) is empty and T(z) fails to be semi-bounded.
Thus, the condition that T(z) be semi-bounded requires that at
sufficiently large scale levels, production plans be irreversible in the
sense that starting from a possible production plan x, it is not feasible to
reverse the role of inputs and outputs and produce the plan —x. Most
technologies can be expected to satisfy irreversibility, and hence be
semi-bounded. This will be the case if labor cannot be produced, and all
non-zero production plans require some labor input. Alternately, this
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~will be the case if non-zero outputs in a production plan always require
chronologically prior inputs.

An alternative definition of the semi-boundedness property of a set
T(z), a condition that the asymptotic cone (recession cone) of T(z) be
pointed,” is discussed in Appendix A.3. Result 11.3 in this appendix
shows this definition to be equivalent to the requirement that P’%(z) be

non-empty.

Axiom 2. For each zE€ Z, the production possibility set T(z) is
semi-bounded.

In investigating the effects on profit levels of shifts in the parameter
vector z, it is useful to require that T(z) vary “regularly”” with z. We
define T(z) to be strongly continuous on Z if for each z°€Z and
sequence z* € Z converging to 2°, the following three conditions hold:

(i) If a sequence x* € T(z*) converges to x°, then x° € T(z°).

(i) If x*€E T(z), then there exists a sequence x* € T(z") which con-
verges to x'.

(iii) If a sequence x* € T(z") and a sequence of positive scalars 6, have
8, converging to zero and 6,x* converging to x°, then there exists a
sequence %* € T(z°) and a sequence of positive scalars é, with 6,
converging to zero and 6,5* converging to x°.

In mathematical terminology, T(z) is a correspondence, conditions (i) and
(ii) define upper and lower hemicontinuous correspondences, respec-
tively, and (iii) states that the asymptotic cone of T(z) is an upper
hemicontinuous correspondence.

Condition (i) requires that T(z) not “shrink” discontinuously as z
varies, while (i) requires that it not “expand” discontinuously. Condi-
tion (iii) requires that the set of directions in which T(z) is unbounded
not “shrink” discontinuously as z varies. When T(z) satisfies (i) and (ii)
alone, it is termed continuous. We shall show later that when the
production possibility set is convex, the upper and lower hemicontinuity
conditions (i) and (ii) imply condition (iii). Hence, a continuous convex
production possibility correspondence is strongly continuous.

Define the set Y = {(z,x) EEM XEV|z€Z, xET(2)}. Note that Y is a

"'The asymptotic cone (recession cone) of a set can be defined informally as the set of
directions in which the set is unbounded. A cone is pointed if it contains no lines.
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closed set if and only if the following two conditions hold: (i) T(z) is an
upper hemicontinuous correspondence, and (iv) (z*x*)EY and (zx")
converging to (z°x% with x° finite implies z° € Z. Then, strong continuity
of T(z) is neither necessary nor sufficient for the set Y to be closed.
However, (1) is common to both conditions.

Figure 15 illustrates the geometry of these continuity conditions. In
each case except (c), T(z) is an upper hemicontinuous correspondence. In
case (c), the point x°, obtained as a limit of points in T(z) for z approaching z°
from below, is not contained in T(z®) = {x|x = x'}. In cases (a), (b), (d), (¢) the
set Y is closed. Note that the set Z may or may not be closed [cases (a), (b),
respectively] even though Y is closed. In case (c), Y fails to be closed
because upper hemicontinuity of T(z) is absent. In case (f), Y fails to be
closed because property (iv) fails to hold.

Lower hemicontinuity holds in Figure 15 in every case except (d),
where it fails at the point (z°x® for z approaching z° from above. Finally,
case (e) gives an example in which condition (iii) on the upper hemicon-
tinuity of the asymptotic cone fails, since a sequence z* converging to z°
from above and x*€ T(z*) with xX*>—® has @,x*=-1 when 6,=
1/|x*|—0, whereas T(z%) is bounded, and any sequence ,&° with b,
converging to zero and %* € T(z®) must also converge to zero.

Insight into the economic restrictions imposed by strong continuity
can be gained by two interpretations of the examples in Figure 15. First,
suppose that T(z) determines the level of a single input (x) required to
produce a specified output level (z). The normally imposed condition
that the overall production possibility set Y be closed will imply upper
hemicontinuity. Strong upper hemicontinuity seems to rule out only
pathological cases such as (¢). Lower hemicontinuity rules out cases
such as (d) where there is a “‘plateau” at which additional input fails to
yield more output, and in a multiple-input case rules out ‘“thick”
isoquants. Intuitively then, lower hemicontinuity implies that some small
change in the input bundle must be productive.

For the second interpretation, suppose that T(z) specifies the level of a
single input (x) required to produce a unit of output at different levels of
technological knowledge (z) (with low z corresponding to advanced
technology). Strong continuity then requires a steady progression of the
state of the arts, without “‘breakthroughs” such as at z° in case (d).

Axiom 3. The production possibility set T(z) is strongly continu-
ous on Z.
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The basic Axioms 1-3 play the same role in the following analysis as
did the assumption of input-regularity in the development of the cost
function. The reader will recall that in the previous treatment, further
assumptions of free disposal and convexity were often used with the
argument that the economic behavior implied by cost minimization
would always be consistent with these conditions. The same argument
will be used to justify the following axiom.

Axiom 4. For each z€ Z, the technology T(z) is convex; Le., for
any netput bundles x° x'€T(z) and weighted average x*=
x°+ (1 - 8)x', 0< @ < 1, it follows that x* € T(z).

Lemma 13.3(2) in Appendix A.3 establishes that a technology satisfy-
ing Axioms 1, 2, and 4, plus the upper and lower hemicontinuity
conditions (i) and (ii) in the definition of strong continuity, must also
satisfy condition (i11), and hence Axiom 3.

The technology T(z) is said to exhibit free disposal of inputs and
outputs if x€ T(z) and x' = x imply x' € T(z). When T(z) satisfies this
condition, all price vectors p in the normal cone P(z) of T(z) must be
non-negative. Conversely, the existence of price vectors in P(z) with
negative components indicates a lack of free disposability of the cor-
responding commodities. Free disposal and related assumptions will be
discussed in the next section.

14. The General Restricted Profit Function

Consider a firm with a technology T(z), z € Z, satisfying Axioms 1-3.
Suppose that the firm faces a competitive price vector p € EV for the
commodities in its production plan, and desires to maximize its profit
7 = p-X over x € T(z). Recalling that P(z) is the set of price vectors p for
which # = p-x is bounded above over x € T(z), define the restricted profit
function of the firm by

7 =II(z,p) = sup{p-x|x ET(z)} for pEP@). (35)

The restricted profit function gives the least upper bound on the level of
profits that can be attained with a parameter vector z and a price vector

P-
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The restricted profit function II is convex in p for fixed z if for any p,
p’ € P(z) and weighted average p'=o0p+(1—-60)p° with 0<@<1, it
follows that p'E€P@z) and I(z,p)=6l(zp)+(1- ) I(zp®. This
function is positively linear homogeneous in p for fixed z if for any
p € P(z) and A >0, it follows that Ap & P(z) and II(z,Ap) = All(z,p). This
function is closed in p for fixed z if for any sequence p* € P(z) conver-
ging to p°, either (a) p’ €P(z) and II (2,p°) = lim epp pp® inf 11(z,p), o1 (b)
p’ € P(z) and limyepa)p—pe inf II(z,p) = +.'2 Restating the last condition
Jess formally, the set of prices for which profit is bounded above
contains a boundary point p° if and only if profits are uniformly bounded
above for some sequence of prices in P(z) approaching p°.

The next result establishes the basic properties of the restricted profit
function.

Lemma 11. Suppose a technology T(z), zE Z, satisfies Axioms 1

and 2. Then, the following conclusions hold:

(1) The set P(z) is a convex cone, and its interior P%z) is non-empty.

(2) For each z€Z, II(z,p) is a convex, positively linear homo-
geneous, closed function of p € P(z).

(3) For each z€ Z, IT(z,p) is a continuous function of p € P(z), and

satisfies
II(z,p) = Max{p-x|x € T(z)}, (36)
i.e., a profit maximizing netput bundle can be attained for each
p € P°(2).

(4) The closed convex hull of T(z) is equal to the set
T@z)={x€E"|p-x=II(z,p) forall p& P(z)}. 37

If Axiom 4 holds, then T(z) = T(z).

Proof: In the terminology of Appendix A.3, Sections 8 and 9, P(z) is
the normal cone of T(z) and II(z,p) is the support function of T(z). Axiom
2 implies P%z) non-empty, and the convexity of the normal cone is a
standard result (Appendix A.3, Section 10.18). Lemma 2.4 in the

2The notation limepu. ,p? inf I1(z.p) means the greatest lower bound of the set of all
limit points of 7I(z.p) for all sequences in P(z) converging to p°.
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appendix establishes results (2) and (4)." Appendix A.3, Lemma 13.5(1)
implies that a profit maximizing netput bundle can be attained for each
p € P°(z), and Appendix A.3, Lemma 12.1(1) implies that IT is continuous
in p€P(z). Q.E.D.

Figure 16 illustrates several simple technologies and the corresponding
profit functions. (a) gives a case in which the normal cone of the
technology fails to be closed. Note that the profit function for this case
is not continuous at p=0. [E.g., p,=p,+p3? and p,~0 implies IT—>
1/4 # I1(0)]. Hence, the conclusion of Lemma 11 that the profit function
is continuous for prices in the interior of the normal cone and lower
semicontinuous on all prices in the normal cone cannot be strengthened
without further hypotheses.

A netput bundle x € T(z) is exposed if there exists a price vector
p € P(z) such that p-x> p-x' for all distinct x' € T(z). The next result
gives conditions under which the profit function is continuous on P(z).

Lemma 12. If Axioms 1 and 2 hold, then any one of the following
conditions is sufficient to imply that for each z € Z, the restricted

profit function is continuous in p on P(z):
(1) P(z) is closed and can be represented as the convex cone

spanning a finite number of points.
(2) T(z) is bounded.
(3) The set of exposed points in T(z) is bounded.

Proof: Appendix A.3, Lemma 12.7 implies (1). If T(z) is bounded,
then its asymptotic cone is empty and thus P(z) = EV by result 10.16 in
this appendix, and (2) is implied by (1). Finally, we prove (3).

These proofs employ the fundamental mathematical theory of convex conjugate
functions, from which many other implications can be easily derived. Alternately, Result
(2) can be proved directly using the simple, pedagogically appealing arguments employed
in deriving the properties of cost functions: If p, pP"€P(z)and p' = p+ (1 - 8)p°, 0 <6 < 1,
and if x*E€T(z) is a sequence with p'x*—>II(z,p'), then p'x* = fp-x* +(1-9)p°x* =
6M(z,p)+ (1 — O)I1(z,p%, implying in the limit p'EP(z) and II(z.p")=0ll(z,p)+
(1— 0)II(z.p"). Positive linear homogeneity is immediate from the definition of the
profit function. Finally, a simple argument shows that IT is closed. Suppose p° is in the
boundary of P(x), and let x' € T(z) be a sequence such that p°-x’ = sup {p°-x|x € T(z)}. Then
for any sequence p* € P(z),~p*—p’, the inequality I(z,p")=p*-x’ implies in the limit
lim,_,, inf II(z,p*) = p®x/, and hence letting j - ¢, lim_.. inf I1(z,p*) = II(z,p%). Choosing the
sequence p*=k7'p'+(1 -k Hp° for some p'EP%z), one obtains from the convexity
condition the opposite inequality lim,_. II{z.p*) = I (z,p%). Hence, we conclude that either
" p* & P(z) and lim ep)p-p inf IT(z,p) = + 0, or p° € P(z) and limyepg). p-p° Inf [ (z,p) = (z,p°).
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Consider a sequence p* € P°(z) converging to p’. By results 12.1(2),
13.8(3), and 13.9 in Appendix A.3, there exists a vector p“ € PY2)
arbitrarily close to p* and an exposed bundle x* €T(z) such that
II(z,p*) = p*-x*. By continuity of II on P’(z), p* can be chosen so that
Ip* — p| < k™" and |H(z,p*)— (z,p*)| < k™'. Since the exposed points x*
are bounded, we can extract a subsequence converging to a point
x° € T(z) such that IT(z,p°) = p°x® = lim,_.. sup I1(z,p*). Since IT is lower
semicontinuous in p on P(z), we have established p’ € P(z) and Il (z,p") =
lim yepe)apsp? I (z,p). Finally, note that for any sequence p* € P(z) con-
verging to p’ € P(z), we have, by the result just proved, a sequence
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p* € P°(z) with |[p* — p*| < k™' and |[I(z,p*) — I(z,p*)| < k~'. Then, II(z,p") =
lim pepyy) & p-p¢ I1(z,p). Q.E.D.

We note from the proof of Lemma 12 that condition (3) implies P(z)
closed. This lemma has one immediate corollary: If N =2 and P(z) is
closed, then (1) is satisfied and II is continuous in p on P(z). Figure 16,
(b) and (c¢), illustrates cases in which P(z) is closed, and the resulting
profit functions are continuous in p on P(z) in accord with this corollary.

When the technology exhibits free disposal of inputs and outputs, it is
convenient to distinguish bundles x € T(z) which are efficient in that no
distinct bundle x'€ T(z) has x'=x. Since under this assumption any
exposed x must be efficient, (3) in Lemma 12 implies the following
corollary: If Axioms 1 and 2 hold, the technology exhibits free disposal
of inputs and outputs, and the set of efficient points is bounded, then the
profit function is continuous in p on P(z).

A technology T(z) is bounded above if there exists x° such that x=x°
for all x € T(z). In the case of cost minimization, in which the netput
bundles in T(z) are the negative of input bundles, T(z) is bounded above
by the origin. In the case of profit maximization with all inputs fixed, or
with some input fixed which is essential to production, the technology is
generally bounded above by some positive x°. For these cases, the
following corollary is useful: If Axioms 1 and 2 hold, and the technology
is bounded above and exhibits free disposal of inputs and outputs, then
the profit function is continuous in p on P(z). Under the hypotheses of
this corollary, the normal cone of the technology is the non-negative
orthant of EV, and (1) in Lemma 12 implies the conclusion.

For N > 2, P(z) closed is not in general sufficient to imply continuity of
the profit function over P(z). A counter-example of Gale, Klee, and
Rockafellar (1968, Lemma and proof of Theorem 2) gives a convex
function which is lower semicontinuous (closed), but not upper semi-
continuous. The domain of this function can be taken to be the set of
p EEY satisfying p-p=1 and Ei,p, = 1/2. Form the closed convex
semi-bounded cone spanned by this domain, and define a linear homo-
geneous extension of this function on the cone. Then, Lemma 12.5 in
Appendix A.3 implies that the resulting function is the profit function for
a technology satisfying Axioms 1 and 2.

Lemma 11(3) establishes that a profit maximizing netput bundle can be
attained for p in the interior of the normal cone of the technology. (b) in
Figure 16 illustrates a case in which a maximum cannot be achieved at
‘the boundary price vector p = (1,1), and (c} illustrates a case in which a



Cost, Revenue, and Profit Functions 71

maximum can be achieved at this boundary price vector. Let P(z)
denote the set of p € P(z) for which a profit maximizing netput bundle
can be attained. These examples show that P'(z) may be neither open
nor closed in general. A further example given in Appendix A.3, 13.6,
shows that P'(z) need not be convex, although its interior, equal to P°(z),
is convex. The following result gives one condition under which the
normal cone of the technology is closed and a profit maximizing bundle
can be achieved for each price vector in this cone.

Lemma 13. If Axioms 1 and 2 hold, and the set of exposed points
in T(z) is bounded, then P(z) is closed and P'(z) = P(z).

Proof: Let T' denote the closed convex hull of T(z), T? denote the
asymptotic cone of T', and T® denote the closed convex hull of the set of
exposed points in T(z). By hypothesis, T’ is closed and bounded. By
Appendix A.3, Lemma 143, T'=T*+ T3. For any p° in the closure of .
P(z), p°-x = 0 for any x € T2. Hence, the supremum of p°x for xET is
approached by x€ T°, and is therefore achieved at some XETCT.
But if a linear function achieves a maximum on the convex hull of a
closed set, then it achieves a maximum on the set. Hence, a profit
maximizing bundle for p° can be found in T(z), implying p° € P'(z) and
p’EP(z). Q.E.D.

Further conditions for the convexity and closedness of P'(z) have
been given by Winter (forthcoming). We next establish several additional
properties of profit maximizing netput bundles. For p € P'(z), let ®(z,p)
denote the set of netput bundles in T(z) which maximize profit.

Lemma 14. Suppose Axioms 1 and 2 hold. Then, ®(z.p) has the

following properties:

(1) For p € P’z), ®(z,p) is closed, and bounded.

(2) For any closed, bounded subset R of P%z), the set U ,er ®(z.p)
is bounded.

(3) ®(z.p)is an upper hemicontinuous correspondence in p € P°(z) for
eachzE Z: ie., if p* € P@), p* >p'EP(@), X" € ®(z,p"), x* > x°,
then x° € ®(z,p%).

(4) If Axiom 4 holds, then ®(z,p) is convex set.

(5) ®(z,p) is positively homogeneous of degree zero in p; i.e., for
A >0, ®(z,Ap) = P(z,p).
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Proof: Appendix A.3, Lemma 13.5 establishes results (1)-(4); the
proof of result (5) is trivial.

Now constider the behavior of the restricted profit function under joint
variation of the parameter vector z and the price vector p. The first
result establishes the behavior of the normal cone of the technology

under variations in z.

Lemma 15. Suppose Axioms 1-3 hold. Then, P(z) has the follow-
ing properties:
(1) P(z) is a lower hemicontinuous correspondence on Z; i.e., 2 € Z,
z“ >z’ € Z, p° € P(z°) implies the existence of p* € P(z*) such that
k 0
p —p.
(2) If z*€Z, z*>2°€Z, and R is a non-empty, closed, bounded
subset of P%z°%, then there exists a k, such that R C P%z*) for

k = ko and the set Uz, Uyer ®(z*, p) is bounded.

Proof: Appendix A.3, Lemma 15.2.

Figure 17 illustrates the resuits of Lemmas 14 and 15 for a simple case
in which Z is the non-negative real line and

T(z) = {(x;,x2) EE*|x; = ~ 6, x; = 6 — z6% for some 6 = 0}. (38)
X2
z=0
z=|
z=2
Vs v v,

Xy

FIGURE 17
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The normal cone of this technology is the non-negative orthant of E?
when z is positive, and is the set of (pi,p2) satisfying 0 = p, = p: when
- = (. Note that this cone is a continuous correspondence at any positive

z, but is only a lower hemicontinuous correspondence at z=0. The
restricted profit function for this example is

I(z,p) = (p2— p1)*fdzp, if z>0 and p:>p=0,

={ if 0=p,=p, and zZ0. (39)
The set of profit maximizing netput bundles for z >0 is
®(z,p) = {((p1— p2)/2zp1, (P3 - pI4zp3)} for p2>pi =0,
= {(0,0)} for 0<p.=p: (40a)
or 0=p.<py,
=T (z) for pi=p.=0.
The set of profit maximizing netput bundles for z =0 is
®(0,p) = {(0,0)} for 0=p,<p:
={(-6,0)0=6 <+»} for 0<p;=py (40b)
= T(0) for 0= Pr= P2

For each zE€Z, the set of maximands is seen to be bounded for
p € P%z), and to be upper semicontinuous on P(2). Note in this example
that for a point such as p = (1,2) € P(z) for z >0 with p € P(0), one has
lim,_o I1(z,p) = +=, while for a point such as p=(2,1)€ P°(z) for z=0,
one has lim,.o I1(z,;p) = II(0,p). This property that the profit function is
continuous in z and p jointly at a point with p& P%(z), and that IT(z,p)
approaches infinity as (z,p) approach a point at which the price vector is
not contained in the corresponding normal cone, is a general one, as the
following result shows.

Lemma 16. Suppose Axioms 1-3 hold. Then, the restricted profit
function II(z,p) is continuous jointly in z and p at each € Z and
p’ € P’(2%. Further, at any z’€Z and p’EP(E), lI(z,p) is lower
semicontinuous in (z,p); i.e., if Z €Z, z* >2°€Z, p"EP(Z°), then
T1(2°,p°) = lim jkepgt). ot it inf T (25,p*). Finally, if a sequence zt €
Z, p* € P(z*) converges to z° € Z, p° € P(z°), then lim, II(z* p*) = +eo,

Proof: Appendix A.3, Lemma 15.3.
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15. The Derivative Property of the Restricted Profit Function

In Section 5, the cost function was shown to have the useful property
that its partial derivatives with respect to input prices were equal, when
they existed, to the corresponding cost minimizing input demands. We
now establish a similar property for the restricted profit function: the
vector of partial derivatives of this function with respect to commodity
prices, when it exists, equals a unique profit maximizing netput bundle.
Further, the vector of partial derivatives is found to exist for almost all
commodity vectors. Finally, employing a generalization of the ordinary
concept of a derivative, the identification of the ‘‘derivative” with the set
of profit maximizing netput bundies can be shown to hold for all
commodity prices. The first result concerns the differentiability of the
restricted profit function.

Lemma 17. Suppose Axioms 1 and 2 hold. For fixed z€ Z, the
profit function II(z,p), considered as a function of p, possesses a
first and second differential on a set P*(z) C P°(z), where the set of
points in P’(z), but not in P*(z), has Lebesgue measure zero. The
vector of first order partial derivatives of II with respect to p,
denoted by II,(z,p) and termed the gradient, is continuous in P*(z).
At each p € PX(z), the matrix of second-order partial derivatives of
IT with respect to p, denoted by IT,,(z,p) and termed the Hessian, is
symmetric and non-negative definite.

Proof: Appendix A.3, Lemma 12.1.

From the derivative property of the cost function and its relation to
the curvature of the boundary of an input requirement set, as illustrated
in Figures 3 and 11; it is clear that the set of minimizing bundles
coincides with the set of normals to “tangent planes”, or supporting
planes, to the cost function, appropriately scaled. To generalize this
concept, we define the sub-differential of IT with respect to p at a point
z€E€ Z and p € P(z) as the set of points x € EY such that for all g€ EV, it
follows that

qgx= }21)1 inf(I1(z,p + 6q) — II(z,p))/6. (41)

When IT is differentiable in p at (z,p), then the limit of the right-hand
side of (41) exists and equals q-II,(z,p). Hence, the sub-differential
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equals {II,(z,p)} when the gradient II,(z.,p) exists. In Figure 11, the
sub-differential of a function with the illustrated contour at the “Kink” v°
is the closed line segment joining r’ and r'. The next result establishes
the properties of the sub-differential of IT with respect to p, which will
be denoted hereafter by I'(z,p).

Lemma 18. Suppose Axioms 1 and 2 hold. Then, the sub-differen-

tial I'(z,p) exists for all z€Z, pE P°(z), with the following proper-

ties:

(1) T'(z,p) is a non-empty, convex, closed, and bounded set, with
x E(z,p) if and only if I(z,p)=p-x and I(z.q)=qx for all
q € P(z).

(2) T'(z,p) is an upper hemicontinuous correspondence in p; i.e., if
pt € P2), x* € (z,p"), (p*x")—>(p°x") with p’ € P%(z), then x’E
I'(z,p°).

Proof: Appendix A.3, Lemma 13.8.

We can now state the basic derivative property of the restricted profit
function. Recall that ®(z,p) denotes the set of profit maximizing netput
bundles for z€ Z and p € P’(z).

Lemma 19. Suppose Axioms 1 and 2 hold. Then, for z€Z and
p € P°(z), the sub-differential I'(z,p) equals the convex hull of the set
of profit maximizing netput bundles ®(z,p). If, for any given (z,p),
the sub-gradient contains the unique vector II,(z,p) [i.e., IT is
differentiable at (z,p)], then there is a unique profit maximizing
netput vector equal to IT,(z,p). If Axiom 4 holds, then ®(z,p)=

I'(z,p).

Proof: Appendix A.3, Corollary 13.9, except the last statement, which
follows from Lemma 14(4) above.

Figure 18 illustrates the relation established in this result. For the
price vector p, the set of profit maximizing netput bundles for this
technology is ®(z,p) = {x',x’}, whereas the sub-differential is the set
I'(zp) = {xjx = 6x'+(1—6)x*, 0= 6 =1}. Hence, all extreme points in
I'(z,p) are also in ®(z,p), but I'(z,p) may contain additional non-extreme
points which are not possible to produce. However, if T(z) is convex by
Axiom 4, these sets coincide exactly.
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FIGURE 18

16. The Gauge Function for Production Possibilities

The introduction of a distance function to define input requirement sets
yielded a convenient symmetry in the treatment of cost functions. A
similar concept, the gauge function of the production possibility set,
plays the same role in analysis of the restricted profit function.

Consider a family of production possibility sets T'(z), z € Z, satisfying
Axioms 1-4. By Result 15.6 in Appendix A.3, there exists a continuous
function x*(z) from Z into E¥ with x*(z) € T'(z). [Further, x*(z) can be
chosen so that for each x’' € T'(z), it follows that 8x’' + (1 — 8)x*(z) € T'(z)
for any sufficiently small positive or negative scalar 6. Then x*(z) is said
to be in the relative interior of T'(z).] Suppose one now redefines
quantities of commodities by measuring them from x*(z), so that x=
x'—x*(z) becomes a ‘‘translated” commodity bundle and T(z)=
{x’ — x*(z){x’' € T'(z)} becomes the “translated” technology. The translated
technology continues to satisfy Axioms 1-4, and has the property that
0 € T(z) for all z€ Z. If, further, x*(z) is in the relative interior of T'(z),
then for any x&€ T(z), one has 0x&€ T(z) for any sufficiently small
positive or negative scalar 8, and 0 is in the relative interior of T(z). If
IT'(z,p), pE P'(z), is the restricted profit function of the original tech-
nology and II(z,p), p EP(z), is the restricted profit function of the
translated technology, for any translation x*(z), then these functions are
related by P(z) = P(z) and II'(z,p) = II(z,p) + p-x*(z).
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Consider a translated technology T(z), z € Z, satisfying Axioms 1-4,
and containing the origin. Define the set

W(z)= {x eE" Alx € T(z) for some A > 0}. (42)
Define the gauge function of the translated technology by
H(zx)=+» 1 if x& W(z), 43)
= inf {)\ >0 X € T(z)} i x&W(z).

Figure 19 illustrates the definition of this function. The following lemma
gives its basic properties.

Lemma 20. Suppose a translated technology T(z), zEZ, satisfies
Axioms 1, 2, and 4 and contains the origin. Then, the following
properties hold:

(1) W(z) is a convex cone in EV for each z€Z, and if Axiom 3
holds is a lower hemicontinuous correspondence [i.e., z*EZ,
F2'cZ. X*EW@I®) implies the existence of x* € W(z"),
x“—x"]. If the origin is in the relative interior of T(z), then W(z)
is a linear subspace.

X2

7
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(2) For each z€ Z, H(z,x) is a non-negative convex, closed," posi-
tively hinear homogeneous function of x € W(z).
(3) For eachz€ Z, T(z) = T'(z), where

T'(z)={xEW@)|H (z.x) = 1}, (44)

and T'(z) is semi-bounded; i.e., its asymptotic cone, given by the
set of x with H(z,x) =0, is semi-bounded.

(4) For each z€ Z, H(z,x) is continuous in x in the relative interior
of W(z).

(5) If Axiom 3 holds, then H (z.x) is lower semicontinuous jointly in
z and x at each 2° € Z, x* € W(z%); i.e., for each sequence z* € Z,
z* - 2°, one has H (z°x°) = lim gewph -0 inf H (Z°x5).

(6) If Axiom 3 holds, and if z*€Z, z¥->72°€Z, x* W), x* -
x° & W(z%, then lim, H (z",x*) = + .

Proof: By Lemma 16.2 in Appendix A.3, W(z) is a cone, and if 0 is in
the relative interior of T(z), W(z) is a linear subspace. The convexity of
W(z) is trivial. Hence (2), (3) hold. To show that W(z) is lower hemicon-
tinuous, note that x°€ W(z° implies x/A € T(z°) for some A >0. By
Axiom 3, there exist x‘ € T(z*) for z €Z, z*~2° such that x*—x"/A.
Since T(z*) C W(z*), this establishes lower hemicontinuity. Result (4) is
an implication of Appendix A.3, Lemma 12.1. To show (5), consider a
sequence of positive scalars A, satisfying A, > H(z*x*)> A, — k™', where
(z*x*) is a sequence with z* EZ, x* € W(z*) converging to z°E€Z,
x° € W(z%. Then, x*/A, € T(z*). By strong continuity, if limA, = 0, then x°
is in the asymptotic cone of T(z%), implying H (z°x%) = 0 by the definition
of H. If limg A, =+, then H(z°x" = lim, H(z*x*) trivially. Finally, if
limg Ay = Ao>0, then x%A,ET( by strong continuity, implying
H (2" x% = lim, H(z"x*). We next show that there exist {x*} for which
equality is achieved in this limit; this will prove lower hemicontinuity. If
H(z°x% = A >0, then x°/A € T(", and Axiom 3 implies the existence of
XA € T(z"), x*—x°. Then, lim, H(z* x*)= H("x%, implying with the
previously established inequality that equality is achieved. If H(z'x% =
0, then jx° € T(z°) for each integer j. By Axiom 3, there exists x* € T(z")
with x*—jx® Then, x*=x*/k has x*~»x* and H(E'x*)=k, and
H (2°x% = lim,; H (z*x5).

To show (6), note that x* € W(z*) implies the existence of A; > 0 such

“The function H(zx) is closed in x (for fixed z) if the set {(x,h) € E¥ x E}h =z H(z,x)} is
closed.
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_that xY/A, € T(z*) and A, < H(zZ'x*)+ k™' If A, is bounded, then-there
exists a subsequence (retain notation) converging to a scalar A. If A >0,
then x°/A € T(z") by continuity of T, implying x° € W(z°). If A =0, then x°
is contained in the asymptotic cone of T(z’) by the strong continuity of
T, implying x° € W(z°). Hence, x"& W(z%) implies A, unbounded, and
lim, H(z*x*)=+o. Q.E.D.

Figure 20 shows that conclusion (5) cannot in general be strengthened
to imply continuity. However, the foilowing corollary can be

established.

Corollary 21. Suppose a translated technology T(z), z€ Z, satisfies
Axioms 1-4 and contains the origin in its interior. Then W(z) = EY
for all z€Z, and H(z,x) is continuous jointly in z and x at each

zEZ, xEE".

Proof: Suppose z* €Z, z*—>2° € Z, and x*—x". For any A > H(Z*x%, it
follows from the continuity of H in x that A > H{(z’x") for k = k,, with
k, some large integer. The set R ={x%/A,x“/A,x“*"/A,.. } is then closed
and bounded, and is contained in the interior of T(z%). By Lemma 13.3(3)
in Appendix A.3, there then exists ko= k; such that R is contained in the
interior of T(z*) for k = k,. But this implies H(z*x*)=A, and hence,
taking A— H (z°x%), lim, H (z"'x*) = H(z’x"). Combined with lower semi-

T(2) for z>0
AN
}Z f
7 x0

T?O)

Z =[0.,1]. Define x'(z) = (1.z), x(z)=(—1,2), x(2) =(0,—2), and define T(z) to be the
convex hull of these three points. Then, for x°= (1,0), one has H (zx*) =2 for z>0 and
HOXxY)=1.

FIGURE 20
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continuity established in Lemma 20(S5), this establishes the result.
Q.E.D.

It should be noted that the gauge function has many of the same
mathematical properties as the restricted profit function (compare
Lemmas 11 and 15 versus 20). In particular, under the hypotheses of
Corollary 21, the gauge function has all the properties that were demon-
strated for the restricted profit function. The next result establishes that
all the implications that can be drawn for the gauge function from
Axioms 1-4 can also be drawn from the properties given by Lemma 20.

Lemma 22. Let Z be a non-empty subset of E¥, W(z) be a linear
subspace in EV which is a lower hemicontinuous correspondence,
and H(z,x) be a non-negative convex, closed, positively linear
homogeneous function of x € W(z) for each z€Z. Suppose that
H (z,x) satisfies properties (5) and (6) of Lemma 20, and that the set
of x satisfying H(z,x) = 0 is semi-bounded for each z&€ Z. Then, the
correspondence T(z) = {x € W(z)|H (z,x) = 1} satisfies Axioms 1-4.

Proof: It is immediate that T(z) satisfies Axioms 1, 2, and 4. To verify
that Axiom 3 holds, consider z€ Z, 2 >2°€Z. Suppose x* € T(z"),
x*>x° Then, H(z*x*)=1 implies by property (6) in Lemma 20
that x"€ W(z°%, and implies by property (5) in Lemma 20 that x°€
T(z%). Alternately, suppose x°€E T(z°). By property (5) of Lemma 20,
there exist y* € W(z*) such that y*—x° and lim; H(z"y")= H(z’x".
Choose A; > 0 such that A, — k™! < H(z* x*) < A. Then, lim A, = 1. Define
x* = y*/Max (A,1). Then, lim, ¥* = lim, x* = x° and x* € T(z"). Thus, T(z)
is continuous. Lemma 13.3(2) in Appendix A.3 then implies that T(z) is
strongly continuous. Q.E.D.

Using Lemmas 20 and 22, we can take the production possibility set
and the gauge function as interchangeable descriptions of the technology
when Axioms 1-4 hold. We conclude our analysis of the gauge function
by noting its rejation to the “‘gauge function” of the original technology
T'(z). Recalling that T(z) = {x'— x*(z) EE"|x' € T'(z)}, define the gauge
function relative to x*(z) of the original technology T'(z) by

H'(z,x) = H(z,x' — x*(z)), (45)

where H(z,x) is the gauge function of the translated technology T(z).
The reader can verify that H' is finite on an affine subspace of x €E"
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for each z€ Z, that T'(z) = {x €EEN|H'(z,x) = 1}, and that H' has the
same mathematical properties as H, with the exception of linear homo-
geneity.

17. Duality for the Restricted Profit Function

It has been established that a technology satisfying Axioms 1 and 2
yields a restricted profit function with the properties stated in Lemma
11, and that the technology can be completely recovered from a know-
ledge of the restricted profit function, provided in addition Axiom 4
holds, by use of the mapping (37). We will now show, conversely, that a
function with the properties of a restricted profit function will yield, via
the mapping (37), a technology satisfying Axioms 1, 2, and 4, and that
this technology returns the original function via the mapping (35). From
these results, we will have obtained a generalization of the Shephard-
Uzawa duality theorem to the case of the restricted profit function. This
generalization will allow the use of the duality principle in applications
for a broad range of environments of the competitive firm.

Lemma 23. Suppose Z is a non-empty subset of EY, and that for
each z€ Z, P(z) is a convex cone with a non-empty interior, and
I(z.,p) is a convex, positively linear homogeneous, closed function
of pEP(z). Then, T(z)= (xeE"|px=I(zp) for all pE P(z)}
satisfies Axioms 1, 2, and 4, and II(z,p) is the restricted profit
function of T(z) as defined by equation (35).

Proof: Appendix A.3, Lemma 12.5.

Note that the basic duality theorem expressed by Lemmas 11 and 23 is
an immediate consequence of the basic mathematical theory of convex
conjugate functions. As in the case of cost functions, the restricted
profit function will fail to distinguish between distinct technologies
which have the same convex hull, reflecting the fact that two competi-
tive firms with these respective technologies may exhibit identical
behavior.

Utilizing the concept of a gauge function introduced in the previous
section, we can summarize these duality relations in the following
formal duality theorem.
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Theorem 24. Suppose Z is a non-empty subset of EM and x*(z) is a
function from Z into EV.

(a)

(b)

()

(d)

(e)

(f)

(2)

(h)

Let I denote the class of sets T(z), z € Z, which satisfy Axioms
1, 2, and 4 and have x*(z) in the relative interior of T(z); i.e., for
each xE T(z), it follows that 6x+ (1 — 8)x*(z) € T(z) for small
positive or negative scalars 6.

Let & denote the class of pairs (H,X), where for each z € Z, the
set {x — x*(z)|x € X(z)} is a linear subspace of EV and H(z,x) is a
non-negative convex, closed function of x&X(z) with
H(zx*(z) + 6(x —x*(z))) = 6H(z,x) for xE€X(z), 8 >0, and with
the set of x € X(z) for which H(z,x) = 0 a semi-bounded set.
Let 2 denote the class of pairs (II,P), where for each z€ Z, the
set P(z) is a convex cone in EN with a non-empty interior and
II(z,p) is a conveXx, closed, positively linear homogeneous
function of p € P(z) such that if p € P(z) and either — p &€ P(z), or
—p € P(z) and II(z,p) # —II(z, — p), then II(z,p) > p-x*(z).

(Note that 7 is a class of production possibility sets, ¥ is a
class of non-translated gauge functions, and ? is a class of
restricted profit functions.)

Define a profit mapping from TE J to pairs {(II.P) satisfying
pEP(z) if and only if sup{px|xET(z)}<+», and [(z,p)=
sup{p-x|x € T(z)} for p &€ P(z). Then, the image of the profit
mapping is a unique element in .

Define an implicit technology mapping from (ILP)E P to sets
T(z) CEN satisfying T(z) = {x € E¥|p-x = II(z,p) for all p € P(z)}.
Then, the image of the implicit technology mapping is a unique
element in J. Further, the profit and implicit technology map-
pings are mutual inverses.

Define a gauge mapping from TE&€ T to pairs {(H,X) satisfying
x € X(z) if and only if éx+ (1 — 8)x*(z) € T(z) for small positive
6, and H(z.x)=inf{A > 0|x*(z) + (x — x*(z))/A €ET(z)} for x€
X(z). Then, the image of the gauge mapping is a unique element
in .

Define an inverse gauge mapping from (H,X) € ¥ to sets T(z) C
E" satisfying T(z) = {x € X(z)|H (x,z) = 1}. Then, the image of the
inverse gauge mapping is a unique element in 7. Further, the
gauge and inverse gauge mappings are mutual inverses.

Define an implicit profit mapping from (H,X) € 3 to pairs {II,P)
satisfying II(z,p) = p-x*(z) + inf {A > O|p-(x — x*(z)) = AH (z,x) for
all x € X(z)} for p € P(z), with P(z) defined as the set of p€ E"
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for which the set of A in the right-hand side of this expression is
non-empty. Then, the implicit profit mapping is the composition
of the inverse gauge mapping and the profit mapping, and its
image is a unique element in P.

(i) Define an implicit gauge mapping from (I1,P) € P to pairs (H,X)
satisfying H (z,x) = inf{A > O[p-(x —x*(z)) = A (IT{z,p) — p-x*@)) for
all p € P(z)} for x € X(z), with X(z) defined as the set of x € RY for
which the set of A in the right-hand side of this expression 1s
non-empty. Then, the implicit gauge mapping is the composition
of the implicit technology mapping and the gauge mapping, and
its image is a unique element in ¥. Further, the implicit profit
and implicit gauge mappings are mutual inverses.

Corollary. Suppose in Theorem 24, condition (a) is modified to
require only that x*(z) be contained in T(z) rather than in its relative
interior, condition (b) is modified to require that the set {x—
x*(z)|x € X(2)} be a convex cone rather than a linear subspace, and
condition (c¢) is modified to weaken the implication [1(z,p) > p-x*(z)
to I1(z,p) = p-x*(z). Then the conclusions of the theorem continue to

hold.

Proof: Consider statement (d). Lemma 11 establishes {II,P) to be a
unique element in 2, provided that IT satisfies the last property in (c). But
(a) implies that if the conclusion of this property is false, so that
II(z,p) = p-x*(z) for some p € P(z), then p-x*(z) = p'x for all x € T(z).
Then, II(z,p)=p-x*(z)=—I(z,—p), and the hypothesis for the last
property in (c) is also false.

Consider statement (). Lemma 23 and Lemma 11(4) imply all the
results, provided we show that x*(z) s in the relative interior of T(z). If
this conclusion failed to hold, then by Result 10.12 in Appendix A.3,
there would exist p € P(z) with p-x*(z) = II(z.p) > p-X for some x € T(z),
and the last condition defining the class ? would be contradicted.
Hence, x*(z) is in the relative interior of T(z).

Consider statements (f) and (g). Except for two propositions, Lemmas
20 and 22 imply the results directly. First, we need to show that the
composition of the mappings from # to J and from J to ¥ is the
identity mapping. If not, there exist distinct gauge functions H' and H?
such that H' maps into T'in § and T' maps into H?2. But Lemma 20(3)
implies that H> maps into T'. Hence H'(z,x) = 1 implies H*zx)=1, and
positive linear homogeneity in x implies H'= H 2, Second, we need to
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show that x*(z) is in the image of the inverse gauge mapping, and in its
relative interior when X(z) is an affine linear subspace. The definition of
H implies H(z,x*(z)) = 0, implying x*(z) is in T(z) = {x € X(z)|H (z.,x) = 1}.
Since H is convex and closed, it is continuous on X(z)}) when X(z) is an
affine linear subspace, implying x*(z) is in the relative interior of T(z).
Finally, consider statements (h) and (i). In (h), x € X(z) implies either
H(z,x)=0 and p-x = p-x*(z) for all p€ P(z), or H(z,x)>0 and x*(z) +
(x — x*(z))/H (z,x) € T(z), with T defined by the inverse gauge mapping.
Then, '
H(z,p) = p-x*(z) + sup {p-(x — x*(2))/ H (z,x)|x € X(z), H(z,x)> 0}
= p-x*(z) + inf {A > O[A > p-(x — x*(2))/ H (z,x) for all x € X(z)
such that H(z.x) > 0}
= p-x*(z) + inf {A > O|p-(x — x*(z)) = AH (z.x)for all x € X(z)}.

Hence, the implicit profit mapping is a composition of the inverse gauge
and profit mappings. In (1),

H(zx)=inf{A > 0x*(z) + (x —x*(z))/A € T(z)}
= inf {A > Olp-x*(z) + p-(x — x*(z))/A = II(z,p)for all p € P(z)}
= inf {A > 0]p-(x — x*(2)) = A(II(z,p) — p-x*(z))for all p €E P(z)}.

Hence, the implicit gauge mapping is a composition of the implicit
technology mapping and the gauge mapping. Q.E.D.

Note that the implicit profit mapping and the implicit gauge mapping
have similar formal structures, making the ‘duality” essentially
complete. If one takes x*(z) = 0 and considers a subclass of # for which
X(z) = EV and a subclass of 2 for which P(z) is semi-bounded, then the
duality is complete in the sense that the members of H and II have
symmetric properties, and the implicit profit and gauge mappings are
identical, except for the change of variables. For dual profit and gauge
functions IT(z,p) and H (z,x), the inequality

p-(x — x*(z)) = H(z,x)(II(z,p) — p-x*(z)) (46)

holds for all p and x in EV, with equality when x € ®(z,p).

For the classes of gauge and profit functions defined in Theorem 24,
we can establish further structural relations of the form ‘‘the gauge
function has property ‘P’ if and onty if the restricted profit function has
property ‘Q’,” in the way that Lemma 7 established structural relation-

>

ships for cost and distance functions. Hereafter, we shall assume the
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translation of production possibility sets described in Section 16 has
been carried out, so that x*(z)=0 in the hypothesis of Theorem 24, the
origin is contained in the relative interior of sets T € 7, X(z) is a linear
subspace of EV for each (HX)E #, and each IP)E P satisfies
H(zp)>0 for all pEP(z) such that either II(z,p) # —II(z,—p) or
—p&P(z). Let 7°, °, and P° denote the classes 7, &, P, respectively,
for this case of x*(z) = 0. The qualitative structural relationships derived
under this assumption continue to hold in the case of a general non-zero
x*(z), with an appropriate modification of the definition of the sub-
differential for the gauge function and of an exposed value of x for this
function (defined below). This last stage of generalization, which
considerably complicates notation without adding new results, will be
left to the reader.

Recalling that z€ Z is a vector in EM, let z = (z),Zo) denote a partition
of z into sub-vectors. The gauge function H(zx) is defined to be
non-increasing in z, if for any z'2" € Z with z() Z z( and zp = Zo), it
follows that H(z',x) = H(z"x), where H(zx) is allowed to assume the
value +« if x € X(z). The gauge function is defined to be uniformly
decreasing in z, if for any distinct z, 2z’ € Z with z, Z z() and 25 = 20,
it follows that there exists a positive scalar A such that (1 + A)H (z'.x) =
H(z",x), where again the value + is allowed for H(z,x) when x fails to
lie in X(z). Clearly, H is non-increasing in z, if and only if the
production possibility set T(z) satisfies T(z") C T(z'). This could be
expected to be the case, for example, if the components of z are fixed
inputs to the production process (measured with a positive sign) or are
indices of the level of technical progress. Analogous definitions can be
made for the gauge function non-decreasing or uniformly increasing in a
sub-vector z,, or for the restricted profit function weakly or uniformly
monotone in z,.

Theorem 25. Suppose Z is a non-empty subset of EY, and consider
the class of gauge functions #° and the class of restricted profit
functions ?°. Then, for gauge and restricted profit functions in
these classes which are dual under the implicit profit and implicit
gauge mappings of Theorem 24, the structural relationships given in
Table 3 hold: i.e., the gauge function has the property “P” if and
only if the restricted profit function has the property “Q”.

Proof: Result 1-1If X(z)=E¥, then for any p € P(z), p # 0, one has
H(z,p) <+, implying H(z,Ap) =1 for some A >0, and hence II(z,p) =
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TABLE 3
Property “P™ holds for a gauge function {(H. X} € ¥° if and only if property “‘Q" holds for
its restricted profit function (JIP) € $°.°

“P on the gauge function “Q" on the restricted profit function
H(z.x), x € X(z) II(z.p), pEPE)
1b X(z) = E M(z,p)>0 for all pEP(z), p#0
2.° H(zx)>0forall xeX(z)x=0 P(z) =EV
3. Non-increasing (non-decreasing) Non-decreasing (non-increasing)
in a subset of variables z, of z in a subset of variables z;, of z
4, Uniformly decreasing Uniformly increasing
(uniformly increasing) in a (uniformly decreasing) in a
subset of variables z;,, of z subset of variables z;, of z
5. {H X) has the joint {I1.P) has the joint
continuity property in (z.x) continuity property in (z,p)
defined by statements (1). defined by statement (1) in Lemma 15
(4), (5), and (6) in Lemma 20 and the conclusions of Lemma 16

\*By formal duality, the implications of this table continue to hold when properties “P”

and Q" are reversed.
®This condition is equivalent to requiring that the origin be an interior point of the

production possibility set T € 7.
“This condition is equivalent to requiring that the production possibility set T€ J° be

bounded.

Ap-p> 0. Alternately, if X(z) # E", then taking p #0 in the subspace
orthogonal to X(z) implies p € P(z) and I1(z,p) = 0.

Result 2 - This result follows from Result 1 by formal duality.

Result 3 - Consider z', 2’ € Z with z{,, = z{;, and z{; = z{. Since either
H non-increasing or II non-decreasing are equivalent to T(z")C T(z')
under the inverse gauge or implicit technology mappings, respectively,
the result follows.

Result 4 - Consider distinct z’, 2" € Z with z{;) = z{), and z{;) = z{3». As in
the previous result, each condition is equivalent to (1+ A)T(z") C T(z')
for some A > 0, and the result follows.

Result 5-We first establish that property “Q” on restricted profit
functions in ?° implies that dual T € J7° satisfy Axiom 3; the remaining
properties of T, Axioms 1, 2, and 4, are immediate from Lemmas 15 and
16 and Theorem 24. Suppose z'€Z, ¢t >2"€ Z, x* €T, x* ->x"
Consider any p° € P°(z%). The lower hemicontinuity of P(z) implies there
exist p* € P(zX) such that p* — p°. By definition of T(z), p*-x* = IT(z*,p").
Then, lim, p*-x* = p°x°=lim, I1(z,p*) by the continuity of II. The
condition p-x’ = II(z°,p) for p € P°(z°) and the lower semicontinuity of IT
on P(z) implies p-x"= I1(z°p) for all p € P(z), and hence x° € T(z").
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Next suppose z‘ € Z, 2* »2° € Z, x° € T(z"). Suppose there exists € >0
such that (1—ex’& T(z*) for k large. Then there exists p* € P(z"),
Ip=1 such that (1-e)p*-x">II(z",p*). Then p* has a subsequence
(retain notation) converging to p°. Then II(z'p") <(1—e)p*“x’-
(1—¢e)p®x® implies p° € P(z°) by the last continuity property of II(z,p)
given in the statement of Lemma 16. Hence, p’x’= I1(z°p%), implying
II(z*,p*) < (1 — e)II(z°p°. But this contradicts the lower semicontinuity
property of II. Hence there exist x* € T(z"), x* >x’. Therefore, T is
continuous and convex-valued, and hence (Appendix A.3, Lemma 13.3)
strongly continuous. Hence, T satisfies Axiom 3. Similarly, Lemmas 20
and 22 along with Theorem 24 imply that property “P” on gauge
functions in ¥° is equivalent to T € J° satisfying Axioms 1-4. Hence,
the result follows. Q.E.D.

The next result relates differentiability properties of the gauge
function to curvature properties of the restricted profit function, and
vice versa. We shall now add to the conditions determining the class of
gauge functions #° the assumption that X(z) = E" for each z€ Z. From
Result 1 in Table 3, this is equivalent to assuming that the origin of
corresponding production possibility sets is an interior point of these
sets, or that the restricted profit function is positive for all non-zero
pEP@). Let 7', #', ?' denote the subclasses of J°, #°, #°, respec-
tively, on which this added restriction is satisfied. '

By Lemma 19, the sub-differential I'(z,p) of II(z,p) with (IIP)€E &'
exists for p € P(z), and satisfies I'(z,p) = ®(z,p), where ®(z,p) is the set
of maximands of p-x for x € T(z). Further, x € ®(z,p) implies H(z,x) = 1.
Define X*(z) = {x € E"|x € ®(z,p) for some p € P’(2)}.

The gauge function H(zx), (HEN)E %', is exposed at x€EE" if
H(z,x') — H(z,x) > p-(x' — x) for all X € E", x' not proportional to x, and
all p in the relative interior of A(z,x), where A(z,x) is the sub-differential
of H(z.x). (a) in Figure 21 illustrates a case in which H is not exposed at
x°, since the point x' has H(z,x") = H(z,x", p"x'=p’x’, where p’ is the
price vector satisfying {p% = A(zx%. In (b), (c), (d), the point x° is
exposed. Note that in case (c), the set A(z,x°% is the closed line segment
connecting p' and p?, and the relative interior of A(z,x°) is the open line
segment connecting, but excluding, p' and p>. For any p° in this open line
segment, note that the strict inequality H(z.x)— H(zx")>p"(x' ~x")
holds for x’ not proportional to x°, but that for the end points p' and p’,
points such as x' and x* will result in equality holding. In case (d), the
strict inequality H (z,x')— H(z,x") > p’-(x'—x°) holds for x' not propor-
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tional to x and all points p° in A(z,x°), including the end points p' and p*
which are not in the relative interior of A(z,x%).

The gauge function H(zx), (HENYE %', is strictly quasiconvex at
x€EN if H(z,0x+ (1-0)x)<68H(zx)+(1-6)H(zx) for all x' not pro-
portional to x, 0 << 8 < 1.” (a) and (c) of Figure 21 illustrate cases in which
the gauge function fails to be strictly quasi-convex at x’, since in each case
an average of x° and x' has H(z,0x° + (1 — 6)x') = 6H (z.x%) + (1 — 8)H (z,x").
Cases (b) and (d) in this figure have H strictly quasi-convex at x’. Lemma
16.5 in Appendix A.3 establishes that H strictly quasi-convex atx implies H
exposed at x, and that the converse implication holds provided the strict
inequality required for H to be exposed at x holds for all points in the
sub-differential of H, and not just those points in its relative interior.

The gauge function H(z,x), (HEY) € %", is strictly differentially quasi-
convex at x°€EN if it has a first and second differential in x in a
neighborhood of x°, and its Hessian matrix of second partial derivatives
in x is non-negative definite and is of rank N —1L. Lemma 16.5 in
Appendix A.3 establishes that H strictly differentiably quasi-convex
implies H strictly quasi-convex, and also gives a partial converse. The
following result relates the structural properties of curvature and

differentiability.

Theorem 26. Suppose Z is a non-empty subset of E™, and consider
the class of gauge functions ' and the class of restricted profit
functions ?'. Then, for the gauge and restricted profit functions in
these classes which are dual under the implicit profit and implicit
gauge mappings of Theorem 24, the structural relationships given in
Table 4 hold: i.e., the gauge function has the property “P” if and
only if the restricted profit function has the property “Q".

Proof: Most of the results are established in Lemma 16.7 in Appendix
A.3,as follows: Result 1, “P’’ implies “Q”, is established by 16.7(3), and the
converse is trivial. Result 2, “Q” implies “P”, is established by 16.7(4),
and the converse is trivial. Result 3, “Q” implies “P”, is established by
16.7(6). The converse is established by the proof of 16.7(9), using
Appendix A.3, Lemma 16.5(1) rather than 16.5(2). Result 4 follows from
an argument dual to that for Result 3. Result 5, “P” implies “Q”, is

15Gince H is linear homogeneous in x, this definition is equivalent to the requirement that
an open line segment between x and any point x' in the lower contour set {xX|H@Ezx)=
H(zx)} be contained in the interior of this set. The condition that H be strictly quasi-
convex for all z€ EV is then equivalent to the usual definition of strict quasi-convexity.
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Property “P” holds for the gauge function (H.X)€ %' if and only if property “Q” holds
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for its restricted profit function ({IP)E 2".

“P” on the gauge function
H(z,x), xER"Y

“Q" on the restricted profit function
II(z.p), pE P(2)

H(zx) differentiable at
X € X*(z)

H (z.x) exposed at x, where
{x}=T(p),pEPR

H (z x) differentiable at all
x in the relative interior of
I'(z,p) where p € P(2)

H(z,x) exposed at x € X*(z)

H (z.x) strictly quasi-convex
at x € X*(z)

H (z x) differentiable at all
x € I'(z,p), where p € P°(z)

H(z.x) possesses a continuous
first and second differential

in x in a neighborhood of

x’ € X*(z), and is strictly
differentially quasi-convex

on this neighborhood

H (z,x) possesses a continuous
first and second differential

in x in a neighborhood of x°,
where {x% = I'(z,p°), and is

strictly differentially quasi-convex
on this neighborhood

II(z,p) exposed at p, where
{p} = A(z.Xx), xEX*(z)

H(z,p) differentiable at
pEP2)

I(z,p) exposed at p € P°(z)

II(z,p) differentiable at all
p in the relative interior of
Alz.x), where x € X*(z)

IT¢z.p) differentiable at all
p € A(z,x), where x € X*(z)

II(z.p) strictly quasi-convex
at p € P(z)

H(z,p) possesses a continuous
first and second differential

in p in a neighborhood of p’,
where {p° = A(z.x), and is
strictly differentially quasi-convex
on this neighborhood

II(z,p) possesses a continuous
first and second differential

in p in a neighborhood of
p’ € P’(z), and is strictly
differentially quasi-convex on
this neighborhood

established by 16.7(7), and the converse is established by 16.7(10). Result
6 follows from an argument dual to that for Result 5. Results 7 and 8
follow from 16.7(11) and 16.7(12), plus the observation that {p% = Az x%
and {x'} = I'(z,p") imply x' =x’. Q.E.D.

The geometry of the structural relationships in Theorem 26 is sum-
marized in Figure 22. As in the geometry of the two-input cost function,
“kinks” are mapped into “flats”, and vice versa. The linear segment x'x?
maps into the point p'. Note that the “price frontier” is not horizontal at
p', allowing this price frontier to be supported at p' by planes with
normals in the line segment through x'x’ (and extending indefinitely to
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FIGURE 22

the left). The kink x* maps into the linear segment p'p’, and the normal
to this linear segment is x°. The linear segment x’x’ maps into the point
p>. Note that the price frontier is linear to the left of p* and curved to the
right of p’, reflecting the fact that a kink occurred at the x* end of the
line segment x’x°, but the boundary of T is smooth at the x* end of the
line segment. The curve x’x* maps into the curve p’p’, and the kink x*
maps into the line segment p’p‘. Finally, the curve x*x’> maps into the
curve p‘p’, with the vertical tangent at p’ corresponding to the absence
of a “flat” above x°. Note that the boundary of T is differentiable at x',
x®, and x°, exposed at x°, and strictly quasi-convex at x*. Correspond-
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ingly, the price frontier is exposed at p' and p? and differentiable at p’,

p’, and p’.
The price possibility set used in Figure 22 can be introduced formally

as
R(z) = {p EP2)|II(z,p) = 1}

={p€E€E"|p-x= 1 for all x€E€ T(z)}. (47)

This set plays the same role as the factor price requirement set in the

analysis of cost functions, and can be viewed as the formal dual of the

set T(z). Figure 23 gives two further illustrations of this relationship. In

case (a), with commeodity 1 an input to production and commodity 2 an
output, a translation of the production frontier has been made so that the

X2 P2

T(z) R(z)

a)

\\\\
\\\\
N

.
T() »ba R(2)
4 X SIS L b

FIGURE 23

b)
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_origin is interior to the possibility set. Correspondingly, the restricted
profit function is positive for all non-zero p € P(z), and the price frontier
is bounded. Case (b) illustrates a constant returns technology [i.e., the
set T(z) is a convex cone] translated again so that the origin is an interior

point.

18. Examples of Restricted Profit Functions

Examples of restricted profit functions can be given for the Cobb-
Douglas and C.E.S. production functions introduced in Section 9, and
for a C.E.S. production frontier. Consider a homogeneous version of the
Cobb-Douglas transformation function (17), defined for some ’EZ,

XM = D(—x7)(—x3)% - (—xn)%, (48)

where X;,...xn =0, xva=0, 6,>0, and 2/,6,=1, and the scale
parameter w is less than one. The profit function when all inputs and
output are variable is

H(Zo,Pla---aP n+)=D"p 1'3'".0 2—02" Pl_vomp }ﬂ'h (49)
where n = p/(1—p) and D" =(1—- p)D g7 - oTen.
When inputs S+ 1,...,N are held fixed, and the remaining inputs and
output are variable, the restricted profit function is

1+’

H(zoyxs+ls---,xN’pl’-'-’pS’p N+l) = D*p 1-011' tee pg'asyp N+1 » (50)
where v =p/(l1—puv), v =276, and D*=(1- ur YD ey -
0Ps(— X 541) 70 - (= xn)N. Note that this function is defined for all

positive pn. provided up' <1 (n <1 is not required).
Consider a homogeneous version of the C.E.S. transformation func-
tion (19), defined for some 2’ € Z,

x i =[x/ DY) + o+ (= xnf D)), 1)
where x1,.... 8 =0, xn+1 =0, Dy,....,Dy >0, 0>0, 0# 1, and u <1. The
profit function when all inputs and output are variable 1s

I (Z°.pysesp ne)) = (1= ) p NP1 D) ™7 + -

+ (pnD) T (52)

When inputs S+ 1,..,N and output N +1 are held fixed and the
remaining inputs are variable, then the restricted profit function, equal to
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the negative of the cost function for the variable inputs, has been shown
by Knut Mork (1976) to have the form

N
) - -1/
% = IT*E° X gutyees X netsProonsDs)  if XRAETVO> D (—xi/Dy)' e,

i=S+1
N
=0 if x{HYok=s (-x/D:)'"™° and o>1, (52a)

i=S+1

N
=-ow if x3W*= > (-x/D)"" and 0<o<l,
iS5+

where the last alternative corresponds to a non-producible value of x .,
and where

I*= — [i (p‘D_)l—a]”(l“a){ (- llc)lu 5’: (_ x_/D_)l—llv}—w“—o)
i=1 o i U} .
(52b)

Suppose now that xy,; is made variable, so that the restricted profit
function becomes

17’ = H’(Zoaxs+l’--"xN’p19--',pS’p N+l) = MNa]X [p N+1X N+t + ﬂ*}’ (SZC)

with #=* given in (52a). For u =1, Mork shows this restricted profit
function to have the form

S
= H'(ZO,XSH,---,XN,Pb---,PsP N+ Of P;Jfl > 2_:1 (Dipi)l_o,
S
=0 if pNOh=D(Dp)'"™ and 0<eo<l, (52d)
i=1

s
=+ if pik éz (Dip)'™® and o>1,

where
S H(i~0o) N 1IM1-1/o)
m=[pka-3 0p| [ 3 xpyte] (52€)
For 1 # 1, the maximand of (52c¢) satisfies
N 1(l1-a)
KD N+ {x%+11’0)/“ ; . (- xi/Dr')l_lla}
S 1/(1-o)
e ICE Y iad B (526)

In general, (52f) does not have a closed form solution for xy.,, and
consequently (52c¢) fails to have a closed form.
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Consider a C.E.S. production frontier, defined for some z° € Z by
(—'XNH)“ = [(xl/Dl)Hlla 4ot (xN/DN)H]/o-] l!(l+l/o')’ (53)

where xp...xnv =0, xn+1=0, Dy,....Dv>0, o> 0, and p<1. The
revenue function when all outputs are variable and the input is fixed is

O@°xNs1P1se-sPN) = (—xNH)“[(plDl)Ha + -+ (pNDN)I+"]l/(I+a')'

(54)
The profit function when all outputs and input are variable is
@ pu.pr)=10- #)ﬂﬂ[(PlD‘l)Ha-&-
+ (pNDN)HU](Hﬂ)/(Ha)PJ—Vﬂ+1, (55)

where n = /(1 — p).

19. Composition Rules for Profit Functions

Composition rules of the sort established for cost functions can also be
derived for restricted profit functions. These rules allow the construction
of complex functions from simple known forms.

Throughout the remainder of this section, we consider a set of
parameters Z and a family of production possibility sets Ti(z), j= 1,....d,
each satisfying Axioms 1-4, containing the origin in its interior, and
having the free disposal property. Let P/(z) denote the normal cone,
IT'(z,p) the profit function, H'(z,x) the gauge function, and R/(z) the price
possibility set of T/(z). The first result is due to Fenchel (1949, Result
41), and is also proved by Karlin (1959, 7.6.1).

Lemma 27. If T'@)= M-, Ti(z), then T'(z) satisfies Axioms 1-4,
contains the origin in its interior, has the free disposal property, and
satisfies

(i) H'(z,x) = Max; H'(z.x).

(i) ==, Pl(z) CP'(z) C Closure (T P'(@).
(iii) For p € 2,2, P/(z), IT'(z,p) = inf {Z,LI II'(z,p)lp’ EP(2), 2};1 p’

= p}-

(iv) R'(z) = Convex Hull of U/-R/(z).

The next result gives one general-purpose composition rule. Let W'(z)
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denote a convex closed bounded subset of the non-negative orthant of
E’ which contains a strictly positive vector, and let W(z) denote the set
obtained from W<¥(z) by free disposal; ie., W@ ={weE'|w=
w' € W'(z)}. Then, the origin is in the interior of W(z). For qERJ,
q'w is bounded above on W(z) if and only if q is non-negative. De-
fine II*(z,q) to be the restricted profit function of W(z) for z€ Z,
q = 0. Define H*(z,w) to be the gauge function of W(z) (centered at the
origin of E’). Define R*(z) = {q € E’|IT*(z,q) = 1} to be the price possi-
bility set of W(z).

Theorem 28. If H'(z,x) = H*(z,H'(z,x),....H’ (z,x)), then
(i) H'(z,x) is the gauge function of a convex set in EV,
(ii) T'(z) = Closure U,ewo M- (w;T (z)).
(iif) =7, P'(z) CP'(z) C Closure (Z/-, P'(z)).
(iv) For pE€ZL,P(z), IT'(zp)=inf{l*zI'zp"....IT z.p ))lp
EP(2), Z{.1p =p}
(v) R'(z) = Closure Ugerva Zi-1 (gR(2)).

Proof: It is immediate that H'(z,x) is positively linear homogeneous in
x, with H'(z,0) = 0. By convexity, H*(z,w)= H*(z,w — w')+ H*(z,w'). If
w = w, then H*(z,w—w')=0 by the free disposal property of W(z).
Hence, H*(z,w) is non-decreasing in w. Now consider x’, x"€ R",
x*=0x'+(1—60)x" for some 0<@ <1 Then, H'(zx*)=60H'(zx)+
(1— 6)H’(z,x"). Hence,

H*(z,H \(z,x*),....H' (z.x*))
= H*(z,6H'@zx)+ (1 — 0)H ' (z.x",....06H’ zx)+ (1 — )H’ zx"))
= 9H*@z . H'@x"),...H @x )+ (1 - OH*z,H'(zx",...H (2,x"),

and H'(z,x) is convex in x. This establishes (1).

By definition, T'(z) = {x|H'(z,x)=1}. But H'(zx)=1 if and only if
there exists w € E/, w = 0, such that H*(z,w)= 1 and H'(z,x) = w;. Then,
we may without loss of generality choose w& W*(z). If w; =0, then
{x|H'(z,x) = 0} = AT'(z), the asymptotic cone of T'(z). If w;>0, then
{x|H(z,x)= w;}= w;T/(z), and w;T/(z) contains AT'(z). Since W(z)
contains a positive vector, every vector in W'(z) is a limit of strictly
positive vectors in W*(z). Hence,
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J .
T@= U ( &H zx=w}
wEW'(z) j=1

= ﬁ (w; T (z) + AT (z))

wEWT(2) j=1

J
=Closure U () (wT ().
wEW(z) j=1
This proves (ii).

To verify (iil), note first that the normal cone of wiTi(z)+ATf(z) 18
Pi(z) for every w;=0. Hence by Lemma 27, the normal cone of
M-, (w;T'(z) + AT!(z)) contains 2};, P/(z) and is contained in the closure
of this set. Now, the normal cone of the union of an arbitrary collection
of sets is contained in the intersection of the normal cones of its
members. Hence, the normal cone of T'(z) is contained in the closure of
EL] Pi(z). Finally, since W(z) is bounded, there exists a vector w=w
for all w € W*(z), implying T'(z) C ﬂ,-t, (w;T/(z)). The normal cone of this
last set contains ;- P/(z), and is contained in the normal cone of T'(z).
Hence, (iii) holds.

Consider p € 2 .-, P'(z). By Lemma 27,

J
sup {p-x\x e (ijj(z))} = inf {w,H‘(z,p') + .-
i=1
J
+ wilF z.p' )y EPI), D b/ = p}.
ji=1
Hence,

II'(z,p)

sup inf {w,II‘(z,p') + -
wEWH(z)

J
+ wil’ zp”lp' EPI(2), 2 ¢’ = p}

J=1
= inf{ sup (wil'(zp)+ -
wEW (D)
J
+ wil . p’ NP EP(2), 2 P = p}
i=1
J
= inf {” *2 112> [T @0’ NP EP'(2), 2 P = P},
=

with the first equality holding by the minimax theorem [Rockafellar
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(1970, Corollary 37.3.2)] since W™ (z) is bounded, and the second equality
holding by the definition of IT*. This proves (iv).

If p € Ugerrw 27-1 g;R' (z), then there exist g € R*(z) and p’ € R'(z) such
that p=2X{ gy, implying II'(z,p)=II*(z,q:I'@zp"),...q: I z,p")) =
IT*(z,q)=1, and hence pER'(z)={pER"|II'(zp)=1}. Alternately,
suppose p € R’(z). Then for any € >0, there exist p’ € P/(z) such that
I*@z,IT'(z,p"),... . - @p’)=1+€and p=2/_,p. Let q;= I'(z,p'). Then
II*z,q)=1+¢€¢ and IT'(z,p) = q;, implying )pf € q;R'(z). Hence, pE
> (q;Ri(2)), and therefore pE Ucqroprm 2i=1 (q;R(2)). Letting € >0
establishes

J
I 3
R'(z) C Closure qeLlJ_m ; (g;iR'(z)).
With the preceding inclusion, this proves (v). Q.E.D.

Using the formal duality of the gauge and profit functions, one obtains
the following corollary to Lemma 27 and Theorem 28.

Corollary 28a. Suppose the production possibility sets T/(z), price
possibility sets R/(z), gauge functions H'(z,x), and profit functions
IT (z,p) satisfy the assumptions preceding Lemma 27 for j=1,...,J.
Suppose the production possibility set W(z), price possibility set
R*(z), gauge function H*(z,w), and profit function IT*(z,q) satisfy
the assumptions preceding Theorem 28. Then composition Rules
1-3 in Table 5 hold. Under the additional assumption that the
interior of (-, P/(z) is non-empty, Rules 4-6 in this table hold. (In
Rules 2 and 4, A is the unit simplex.)

Proof: Rules 1 and 3 are restatements of Lemma 27 and Theorem 28,
while Rule 2 is a special case of Rule 3 when W' (z) = A. Rule 4 is a formal
dual of Rule 2, Rule 5 is a formal dual of Rule 1, and Rule 6 is a formal dual
of Rule 3, with the expression for P'(z) following in these rules from
application of Rockafellar (1970, Corollary 8.3.3 and Corollary 16.4.2) to
the dual asymptotic and normal cones of the T/(z). The assumption that
P'(z) has a non-empty interior in Rules 4, 5, 6 implies that the technologies
T'(z) are semi-bounded. Hence, they satisfy Axiom 1, and the set T'(z)
defined in Rules 4 and 5 is closed. Q.E.D.

An example illustrates the use of these composition rules to generate
new functional forms. Let A = (q;) denote a symmetric, positive definite,
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non-negative matrix of order J. Then,

I*(q) = (¢'AqQ)"* if q=0,

) (56)
= 4o otherwise,

is a profit function which is non-decreasing in q= 0. The dual gauge
function is

H*(w) = inf{(# A~ %)" 4 = w}. (57)

[The duality of the functions (g’Aq)'” and (w'A™'w)"? is established from
equation (46) using Schwartz’s inequality; see Rockafellar (1970, p. 136).
The modification in equations (56) and (57) can be obtained from
composition Rule 5.] For a sequence of non-negative profit functions
IT{(z,p) and dual gauge functions H'(z,w), the composites

J

1/2
I°@z,p) = [E a:jﬂ‘(z,p)ﬂ"(z,p)] , (58)

ij=1

and

J ) ) 172
Hzx) = [_21 b,-,-H‘(z,x)H’(z,x)] , (59)

Lj=

where the b; are elements of A™, define new profit and gauge functions.
Taking the coefficients a; to be non-negative parameters and the I’ to
be concrete functions (such as Cobb-Douglas profit functions in all
prices or subsets of prices), one obtains a broad parametric class of
profit functions with netput supply functions

1 < i 9
xk:ﬁ 2 a,-,-H %

HJ'
=1 ap*’
which are linear in the coefficients a;. Such linear-in-parameters forms
have obvious econometric applications; this topic is discussed further in
Chapter I1.2.

Composition rules can also be used to deduce results on the structure
of technology and separability properties of netputs. In Chapter 1.3, Lau
has several applications, including conditions for non-joint production
(Theorem II1.6) and for separability of inputs (Theorem I1.6). In Chapter
V.1, Denny establishes a condition for separability of inputs and out-

puts.
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20. Profit Saddle-Functions

Suppose a production possibility set Y contains production plans (z,x),
where z=(z,,....,24) and x=(x,....xy) are netput vectors which are
distinguished from each other in an application. For example, z may
denote netputs which are fixed in the short run and variable in the long
run, while x denotes short run variable netputs. Alternately, z may
represent netputs of primary goods (capital and labor), with x represent-
ing all other goods; or z may represent outputs and x inputs (expressed
as netputs). It is possible to define gauge and profit functions with

total production possibility set
Y

total gauge function

H*(z,x)
z-level x-level
gauge function gauge function
/H(z,x) Glz, x)

Z- level production x-level production
possibility set possibility set
T(2) U(x}
z-level price x-level price
possibility set possibiiity set
R(z} S(x)
z-ievel profit function x-level profit function
Tz,p) wig, x)
\,tofcl profit function

T#4q.p)

total price possibility set
R‘

FIGURE 24
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respect to either or both the netput vectors z and x. These functions and
the mappings between them provide a basis for the analysis of problems
such as the relation of short and long run profit maximizing behavior, or
the relation of value added to revenue and profit.

Figure 24 outlines the various possibility sets and gauge and profit
functions we shall consider. These sets and functions will be assumed to
lie in classes defined by the properties in Table 6. We shall establish that
for members of these classes, the mappings in Table 7 hold.

Theorem 29. The mappings of Table 7 hold for members of the
classes of functions and sets defined in Table 6, and for these
classes are one to one onto. That is, for each member of a class in
Table 6, the images of the mappings in Table 7 have the associated
properties in Table 6; each member of a class in Table 6 is the image
of a unique member of each of the remaining classes in Table 6
under the mappings of Table 7: and the mappings are invertible in the
sense that any composition of Table 7 mappings which leads from a
class in Table 6 back to the same class reduces to the identity

mapping.

TABLE 6
Properties of possibility sets and profit functions.

1. Domains and centering functions

Z = a non-empty convex subset of E (60)
X = a non-empty convex subset of EY (61)
(zX)=a point in ZxX (62)
x*:Z - X = a continuous function (63)

z*:X — Z = a continuous function (64)

2. The production possibility set Y CEY xEV

(i) Y is non-empty, convex, closed, and semi-bounded
(i) Z={z€EM|(zx)EY for some x EE"}
X = {x EE"|[(z.x) EY for some zEE¥}; (ZX)EY; zx*2)EY for zEZ;
(z*(x).X) €Y for x€X

3. The total gauge function H*:EM X E" - E [see equations (72} and {(65)]°

(i) H* is non-negative, convex, and closed

(ii) H* is finite on a non-empty convex cone with vertex at (z.X)
(iii) {(z.x) € E¥ x EY|H*(z.x) = 0} is semi-bounded
(iv) For A =0, H¥*@Z+ A(z— 1), X+ A(x— X)) = AH*(z,x)
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TABLE 6 (continued)

4. The z-level gauge function H:Z X EN > E [see equations (80) and (66)P®

(i) For each zEZ, H(z.x) is non-negative, convex, and closed in x
(i) For 8 =0, H(zx*(z) + 8(x - x*(z))) = 0H (z.x)
(i) {(zx)EZXE”|H@zx)=1}is semi-bounded
(iv) {(z.x) € Z X E¥|H(z.x) < 1} is convex and closed'
(v) Hzx)=1

5. The z-level production possibility set T(z) C EV [see equations (92) and (67)}°

() T(z) is non-empty, convex, closed, and semi-bounded for each z€Z
(i) ¥ 2*—2°, x* € T(z"), ¥ >x°, then 2’ EZ and X ETEY
(iii) {(z.x) € Z x E¥|x € T(2)} is convex and semi-bounded
(iv) X € T(Z) and x*(z) € T(z)

6. The z-levetl price possibility set R(z)C E™ [see equations (103) and 681
(i) R(z) is convex and closed, with a non-empty interior, for eachz€Z
(i) {(zx) € Z¥EN|(Vp €ER@)p-(x—x*(z)) = 1} is convex, closed, and semi-bounded
(iii) For all pER@), p-X—x*@N=1

7. The z-level profit function II:Z X EN > E [see equations (119) and (69)]*¢

(i) For each 2E€ Z, IT is convex, closed, and positively linear homogeneous inp
(i) P(z) = {p EEV|[I(z,p) < +} is a convex cone with a non-empty interior for each
z€Z
(iii) For each p € E™, T is concave and closed inz
(iv) {(z.x) EZXE"|(Vp EP@))p-x= II(z,p)} is convex, closed, and semi-bounded
(v) For all p € P(z),p-%x = II(z.p) and for pE P(z), p-x*(2) = II(z,p).

8. The total profit function I1*:EM x E¥ - E [see equations (126) and (70)]*

() IT* is convex, closed, and positively linear homogeneous
(i) {(q.p) EEY XEN|II*@.p)<+ e} is a convex cone with a non-empty interior

(iii) IT*(q.p) = q-%+ p-x for all (q.p)EM xEY

9. The total price possibility set R* [see equations (134) and (71)]
(i) R* is convex and closed, with a non-empty interior
(ii) (0,0)ER*

*E = [—, + ). _

The x-level gauge function G:EY xX—E also has these properties with z and x
interchanged.

“The x-level production possibility set Ux)C EM, x EX, also has these properties with z
and x interchanged.

dThe x-level price possibility set S(x}C EM, x€ X, also has these properties with z and x
interchanged. _ ‘

“The x-level profit function ¥.EM x X —» E also has these properties with zand x, p and q
interchanged.

fWhen x*(z) is constant, say x*(z) =X, condition (iv) can be replaced by the reguirement
that H{z,x) be quasi-convex, with {(z,x) € Z X E¥ |[H{(z.x) = 1} closed.
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TABLE 7
Duality mappings.

1. Mappings vielding the total production possibility set Y C E¥ x E¥

Y = {(zx) € E¥ xEN|H*(zx) = 1} (65)
={(zx)EZ X EN[H(z,x) = 1} (66)°
={(zx)EZXEN|x€T(z)} (67)°
= {(z,x) € Z x E¥|(Vp E R(2))p-(x — x*(z)) = 1} (68)°
= {(z,x) € Z X E¥|(Vp ER)p-x = [1(z,p)} (69)°
={(z,x) EEM xE¥|(Vp EEV)(Vq E E¥)qz+p'x = [T*(q.,p)}  (70)
= {(z,x) EEY xE"|(V(q.p) ER¥)q-(z—-2) +p-(x —X) = 1} (71)

2. Mappings vielding the total gauge function H*:E xE" - E*
H*@z,x) = inf {/\ > Ol(i,i) + Al (z—Z,x—X)E Y} (72)
= inf{,\ >0|i+-)lr(z—i)ez &
H(i+1(z—z),i+1(x—i))_s_1} 73y
A A
= inf{/\ >0|i+)%(z—i)EZ & i+/—1—(x—i)€
T (i+}%(z—i))} (74)°

= Inf {/\ >0z=z+ Xl- (z—2)EZ & (VpER(EZ))Pp-(x—X%)

= A[1+p-(x*@) - i)}} (75)°
= inf{z\ >O|(VpEEN)z’Ei+;\1—(z-—E)EZ & p-(x—X)

= AU p) - p-3)} (76)"
=inf{A > O}(VqEEY(VpEE N )p-(x—X)+q-(z—Z)

= AIT*(q,p) —q'Z— p-X]} (77)
=sup{q(z—2)+p-(x—X)|II*(q.p)—qz—px= 1} (78)
= sup{q-(z—Z) + p-(x — X)|(q,p) ER*} (79)

3. Mappings yielding the z-level gauge function H:Z X EY - E*®

H(zx) = inf {A > OI(z,x*(z) + /\l (x — x*(z))) = Y} (80)
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TABLE 7 (continued)

- inf{/\ > 0|H*(z,x*(z)+11-(x—x*(z))) < 1} @1)
= inf {,\ > Olx*(z) + % (x—x*@)) € T(z)} (82)
= sup {p-(x — x*(2))|p € R(z)} (83)
= inf {A > 0|(Vp € EM)p-(x —x*(2)) = AlII(z,p) — p-x*(2)])} (84)
= sup {p-(x — x*@))|1(z.p) — p-x*(z) = 1} (83)
=inf{A > 0|(VYp EE")VqE EM)p-(x — x*(2))
< A[[T*(q.p)— gz~ pX*@]} (86)
= inf {A > 0|(V(q.p) ER*)q-(z—2) + p-(x*(z)—X)
1 -7
wlpa-rensi) (87)
= inf {/\ > 0lx*(z) + -i— x—x*(zZ)EX &
G (z,x*(z) + % (x = x*(z))) < 1} (88)
= inf {A > 0)x*(z) + % x—x*2)EX &zZE
1 *
u(r@+ 1 -] (89)
= Inf {/\ > Ofx' =x*(z) + % (x —x*(z))
X & (VqESENg-(z—z* (X)) = I} (90)
= inf {A > 0|x*(z) + % x—-x*zneX & (Vq€E RM)qz=
1
v (q,X*(Z) +5 (x— X*(Z)))} (91)
4. Mappings yielding the z-level production possibility set T(z) EEN®
T(z) = {x € E"|(z,x) € Y} 92)
={x EEV|H*@zx)= 1} (93)
={x€EYH@zx) =1} (94)
= {x € E¥|(Yp ER@)p-(x —x* @) = 1} (95)
= {x € E¥|(Vp EEY)p-x = I1(z.p)} (96)
— {x € EV|(Vp EEN)VqE EM)px+qz= T*(q.p)} 67N

= {x €EN|(V(q.p) ER*P-x—X)+q-z-D =1} (98)
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TABLE 7 (continued)

={x € X|G(z.x) = 1} (99)

= {x € X|z € U(x)} (100).
= {x € X|(Vq E S(x))q-(z — z*(x)) = 1} (101)
= {x € X|(Vq € EM)q-z= ¥(q.x)} (102)

5. Mappings yielding the z-level price possibility set R(z)C EN®

R(z) = {p EE|(V(zx) EY)p-(x — x*(2)) = 1} (103)
={pEEV|(VxEEMH*zx)S 1> px—-x*@)= 1} (104)
= {p € EN|(Vx € EV)p-(x — x*(2)) = H(z.x)} (105)
={p €E"[(Vx € T@))p-(x — x*(2)) = 1} (106)
={pEE"|(z,p)—px*@)= 1} (107)
= {p € E"inf oz [[1*(q.p) — q'z— p-x*(2)] = 1} (108)
={pE ENIinquEM ian>03(q.p)/Aelt" A —q-(z—32)

-p(x*@) - D)= 1} (109)
={pEEN|(VxEX)GzX)= 1> p-(x—x*(z) = 1} (110)
={pEEV|(VxEX)ZEURX) > p-x—x*2) = 1} (111)
= {p €E"|(Vx € X)[(Vq € S(x))q*(z — z*(x))

=1l px—-x* @)= 1} (112)

= {p EEV|inf jeev SUPrex[V(q.X) + p-(x = x*@@))—qz]=1}  (113)

6. Mappings yielding the z-level profit function IT:Z x EN - E**

II(z,p) = sup {p-xi(z.,x) € Y} (114)
= sup {p-x|H*(z,x) = 1} (1195
=sup{p - x H(z,x) = 1} (116)
= p-x*(z) + inf {A > O}(Vx € EV)p-(x — x*(2)) = AH (z,x)} (117)
= sup {p-x|H(zx) = 1} (118)
= p-x*(z) + inf {/\ > OII\l pE R(z)} (119)
= inf {IT*(q.p) — q-zlg EE¥} (120)
= inf gegM [p-i —q-(z—17)+inf {/\ > OI-;— (q,p) € R*}] (121)
=sup{p-x|x€X & G@zx)=1} (122)
=sup{px|x € X & z€ U(x)} (123)
=sup{px|xEX & (VqESx))g-(z—z*(x)) = 1} (124)

= inf ;ceM SUPsex [¥(q,X) + p-x— q-Z] (125)
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TABLE 7 (continued)

7. Mappings yielding the total profit function II*:E¥ x E¥ - E

IT*(q,p) = sup{q-z+ p-x|(zx) E Y} (126)
= sup{q-z+p-x|H*zx)= 1} (127)
=qZ+p-x+inf{r >0(VzE EMYVxEEN)q-(z—2)

+p-(x—X)= AH*(z,x)} (128)
=sup{qz+pxlz€Z & H(zx)= 1} (129)°
=sup{q-z+pxlzEZ & xET(z)} (130)°
= SUP,ez [p-x*(z) + q-z+inf {/\ > Oli-p S R(z)}] (131)°
= sup,ez [[1(z,p) + q-Z] (132)°
=q-i+p-i+inf{z\ >O|-)1r(q,p)ER*} (133)

8. Mappings yielding the total price possibility set R*C EY xEY

R* = {(q.p) EEM XE"|(V(zXx) EY)q-z—Z) +p-(x—X) = 1} (134)
={(q,p) EEM xE"|(VzERY)(Vx E RY)q(z—-7)
+p-(x—X) = H*(zx)} (135)
—{(qp)EE" XEVz€EZ & Hzx)= 1> q(z—2)
+p(x—-%X)=1} (136)°
={(qp)EEY XEVzEZ & xET(2)> q- (2~ 2)
+p(x—X)=1} (137)°
= {(q,p) EEM xEN|(VzE Z)p-(x*(z)— %) +q-(z— 1)
+inf{A > 0|AlpER(z)}g 1} (138)°
={(q.p) EEM xEV|(VzE€Z)T(z,p) + q:(z—Z) —pX = 1} (139)°
={(q,p) EEM XxEV|(IT*(q,p) —q'Z—pX= 1} (140)

B =[x, + .
bA second class of mappings is obtained for x-level functions by making the substitu-

tions
Ze X peq
HeG ToelU
eV Re S

Proof: Many of the conclusions in this theorem summarize results
established earlier in the chapter, or can be deduced as simple corol-
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laries. We provide a broad outline of the argument, leaving details to the
interested reader.

Consider first the class of production possibility sets Y satisfying the
conditions of Table 6, and define the total gauge function H*, the total
profit function IT*, and the total price possibility set R* by equations
(72), (126), and (134), respectively. The remaining mappings between
these functions are given in equations (65), (70), (71), (77), (79), (128),
(133), (135), and (140). The properties of these mappings follow from
Theorem 24 and its corollary, using the following substitution of nota-
tion:

Theorem 24 —> Theorem 29
EY EY x EV

Z none

X (z.x)

T(z) Y

H H*

p (q,p)

II I+

R R*

The price possibility set is not treated explicitly in Theorem 24;
however, its properties are an immediate corollary of the definition
R* = {(q,p) € EM X E"|IT*(q.p) — q-Z— p-X = 1} and the properties of IT*.

Consider next the z-level production possibility set T(z), and the
z-level gauge function H(z,x), profit function II(z,p), and price possi-
bility set R'(z) defined by equations (82), (118), and (106), respectively.
The remaining mappings between the functions are given in equations
(83), (84), (94), (95), (96), (105), (107), (117), and (119). The properties of
these mappings are a direct restatement of Theorem 24 and its corollary.

The properties and relations of the x-level gauge function G(z.x),
production possibility set U(x), price possibility set S(x), and profit
function W(q,x) can be deduced from their formal duality to the
functions H, T, R, and IT:

Primal « —> Dual
X z

p q

T(z) U(x)
H(z.x) G(z,x)
H(z,p) ¥(q.x)

R(z) S(x)
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The mapping in equation (92) from Y to T(z) and conversely in (67)
from T(z) to Y can immediately be seen to be mutual inverses, and to be
one-to-one onto for the classes of Y and T(z) defined in Table 6. A dual
relation holds between the classes of Y and U(x).

The conclusions above provide a chain of mappings (via Y) between
any two classes in Table 6 which have the properties claimed in the
theorem. The remaining mappings in Table 7 are compositions of these
chains.

For example, property (iii) of the z-level profit function, concavity and
closure in z, can be deduced from the properties of the total profit
function IT* and the concave conjugate dual mapping (120); see Ap-
pendix A.3, Theorem 12.3. Verification of the formulae for these
composite mappings is tedious, but straightforward, and is left to the

reader. Q.E.D.

Several of the mappings in Table 7 deserve note. Equation (125)
establishes that the z-level and x-level profit functions are conjugate
saddle functions [see Rockafellar (1970, section 37)]. Equations (120)
and (132) give the relation between short and long run profit functions.
Equations (83) and (85) give simple dual mappings between the z-level
gauge function and the profit function and price possibility set.

This chapter has set out the basic theory of duality in production
economics, and developed the mathematical properties of dual
functions. The remaining chapters of this book demonstrate the use of
these methods in theoretical and empirical analysis.



Chapter 1.2

SYMMETRIC DUALITY AND POLAR PRODUCTION FUNCTIONS

GIORA HANOCH*

The Hebrew University of Jerusalem

1. Introduction

The Shephard-Uzawa-McFadden duality theorems' relating production
functions to cost and profit functions, may be utilized to generate new
valid functional forms for production functions and production frontiers,
or equivalently, new valid cost and profit functions. To any given
standard production relation, namely one which satisfies the conditions
for existence and uniqueness of the dual, there corresponds at least one
other standard production relation, which satisfies the same require-
ments, but may exhibit rather different specific patterns. This process of
getting “two for the price of one” in the search for useful functional
forms is made possible by reformulating the duality relations in a
perfectly symmetric way. The process has been applied before to
production as well as to consumer demand theory — although it seems to
have never been formalized and recognized as a generally valid pro-
cedure.

*This article constitutes a revision of a part of an earlier paper, “‘Generation of New
Production Functions Through Duality”, Discussion Paper No. 118, Harvard Institute of
Economic Research, April 1970. 1 am thankful to Zvi Griliches, who encouraged and
supported this research, and I have benefited from discussions with Kenneth Arrow, Erwin
Diewert, Melvyn Fuss, Dale Jorgenson, Lawrence Lau, Daniel McFadden, Michael Roth-
schild, and Christopher Sims. I am indebted to the National Science Foundation for
financial assistance (Grant No. 2762X), and to Harvard University, where I visited in
1969-70 and in 1973-74, while on leave from the Hebrew University, Jerusalem.

ISee Shephard (1953), Uzawa (1964), and McFadden (Chapter [.1). More detailed
presentations and modified proofs are in Diewert (1971, 1973a).
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As will be clarified below, the specific formulation used in the
established analysis of duality, self-duality, and related topics in utility
theory,? has unfortunately hindered the development of analogous
results in production. In particular, the choice of a utility-index
representation — which is arbitrary in the context of an ordinal utility
function — could not be carried over as it stood to cardinal production
functions, where output is measurable and non-negative.

Heuristically, given any standard production, cost, or profit function, a
standard polar cost, profit, or production function is obtained by a
transformation from the variable quantities (prices) space into the cor-
responding prices (quantities) space, using the functional form of the
dual relation for the new, polar, primal relation. Moreover, the fixed
quantity, such as output in cost minimization analysis, is transformed
into its reciprocal. In order to show this more rigorously, however, it is
necessary to modify the formulation of the duality relations, so as to get
a perfect symmetry between the primal and the dual — with exactly the
same type of restrictions on sets and on functions appearing on both
sides. This is done for cost functions in Section 2, and for profit
functions and joint-production frontiers in Section 4.

Section 3 establishes the existence and uniqueness of the polar
production and cost functions, as well as some special modifications for
homothetic production functions and for separable production frontiers.
In Section 5 similar results are stated and proved with respect to profit
functions and joint production frontiers. Section 6 discusses some
extensions and an application to various definitions of elasticities of
substitution. Examples of specific functional forms generated by this
approach are given in Chapter II.3.

2. A Symmetric Formulation of Cost and Production Functions

Suppose y = f(x) is a standard production function, satisfying the
following regularity conditions’ for existence of a unique dual cost
function C = G(y;p):

Condition I f(x) is defined for all x = {xy,...,.x,} =0 (x € £,,), and is
real, single-valued, right-continuous, non-decreasing in x, quasi-

?E.g.. in Houthakker (1965), Samuelson (1947, 1965a), and Lau (1969a).
3For a specification of these conditions and a proof, see Diewert (1971).
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concave, finite for finite x, and unbounded for at least some un-
bounded sequence {x"}, with f(0) = 0.

For any non-negative output y, the production possibilities set L(y)C
), is defined as

L(y) = {x:f(x) =y}, (1)

and satisfies the following:

Condition II* For y =0, L(y) is a non-empty, closed, convex set,
with free disposal:

X >xEL(Y)DX EL(y); y>y>L(y)CL(Y)

where for all x there exists a y’' >0 such that x€ L(y") [x is not in
L(y")]; and L(0) = Q,. If y >0, then 0 € L(y). The set {(y,x):x €EL(y)}
(the graph of L) is closed. '

Given a positive output y, it is always possible to represent uniquely
(for strictly positive vectors x > 0) the standard production set L(y), and
the production function equation f(x) =y, by a normalized equation of
the form: D(1/y:x)=1, such that the “distance function” D(1/y;x)
behaves with respect to its arguments (1/y;x) exactly in the same manner
as a standard cost function with respect to (y;p). This statement is now
formalized and proved. Define the distance function’ as follows (where
Q, is the positive orthant, £, = {x:x > 0}):

D(Q1/y:x) =sup{d:(1/d)x E L{y);x € Q,}
= sup{d:f((1/d)x) = y;x €E,}, (2)

by equation (1).

Theorem 1. If L(y) defined in equation (1) satisfies the conditions
on standard production possibilities sets (Condition II), the function
D(1/y:x) defined in equation (2) satisfies Condition III below. The
set L*(y) = {x:D(1/y;x) = 1;x € ,} coincides with the set L(y) for
x> 0:L*(y)=L(y) N,

“These are Condition I1(2.7) in Diewert (1971), with slight modifications. The notation
adopted here is: X' =x means x;=x; (all {); x’>x means X' =x and x’# x; x'>x means
x> x; (all i). x* ts the transpose of x.

SThe distance function was first used for isoquants and unit cost functions (for the
differentiable case) by Shephard (1953, p. 6). However, Shephard did not show the
symmetry with respect to y, 1/y, respectively, of the distance functions.
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Condition III® The function D(1/y;:x) is

(a) positive, real-valued, defined, and finite for all finite x>0, 1/y>
0;

(b) non-decreasing in 1/y and unbounded if 1/y is unbounded;

(¢) non-decreasing in x;

(d) positive linear homogeneous in x, for all finite 1/y > 0; i.e., if
A >0, 1/y > 0 and finite, and x> 0, then D(1/y;Ax) = AD(1/y;x);

(e) concave in x, for finite 1/y > 0.

(f) continuous from below (left-continuous) in 1/y.

Proof: (a) If x€ L(y) N,, y >0, then by definition [equation (2)] D
exists and D=1, since (x/1)EL(y). D is finite, since lim,.(1/d)x =
0 & L(y). If 0 <x & L(y), then since L(y) is not empty, there exists an x°,
such that 0 €x°EL(y). Let do= Min;{x;/x%>0; then (1/d¢)x=x" and
thus (1/dy)x € L{y), by the free disposal assumption. Thus D(1/y;x)
exists and D=d,>0. Also, D<]1; since if D=1, (1/(1—e€)x=
(1/(D — €))x € L(y), and by taking limits as € >0, the closedness of L(y)
implies that x € L(y), a contradiction. We have thus proved that D=
1< 0<x € L(y), which implies the last statement of Theorem 1:

L*(y)={x:D(1/yx)= 1;)xE€ Q,}=L(y) N,

This identity, in addition to equation (2), leads almost immediately to the
proof of Conditions ITI(b) - ITI(f):

(b) Since L(0)=Q,, and y'> y = L(y') C L(y), Condition III(b) follows
from equation (2).

(c) Follows from the free disposal assumption.

(d) D(1/y;x) is linear-homogeneous in x, since for A >0,
(1/Aad)(Ax) = (1/d)x.

(e) The convexity of L(y) implies that D(1/y;x) is quasi-concave in x.
Since D is linear-homogeneous in x, it is concave in X.

(f) The continuity from below in 1/y follows from the closedness of
the graph of L(y). Q.E.D.

It should be noted, that since L(y) is the closure of L*(y), one could
extend the definition of D(1/y;x) to all non-negative x, by assuming that
D =0if (1/d)x € L(y) for all d >0, y =0 [or lim,.o(1/d)x € L(y)]. In this
case,

‘See Diewert (1971, Condition III, 2.13) for specification of similar conditions with
respect to the cost function c(y;p). Cf. also Shephard (1953) and Uzawa (1964).
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L'(y) = {x:D(1/y;x) = 1;xx =2 0} = L(y).

We now analyze the dual relation, i.e., the cost function. The She-
phard duality theorem, as extended by Uzawa and McFadden, states

that the function
C = G(y;p) = Min{p’x:x € L(y)} (3)

(where p'x = 3 px;) is uniquely determined by L(y) and satisfies Condi-
tion I1I above, with (y ;p) substituted for (1/y;x). The set of p (for given y),
defined by the equation G(y;p) = 1, is the unit cost frontier. Define the unit

cost set as follows:
V(l/y)={p:G(y;p) = 1}. 4)

Since G satisfies Condition III, the previous discussion suffices to
establish that V(1/y) satisfies, in £1,, exactly the same condition as L(y)
(Condition II) with 1/y substituted for y, and that G(y;p) is the “‘distance
function” corresponding to V(1/y); that is,

G(y;p) = sup{g:(1/g)p € V(1/y);p € Q,)}. (5)

Due to the perfect symmetry established between the sets L(y) and
V(1/y), and the functions D(1/y;x) and G(y;p), it is now possible to
apply the duality theorem “in reverse”, without changing the proof, to
obtain the following theorem:

Theorem 2. D(1/y;x) = Min{x'p:p € V(1/y)}, (6)
where D and V, are defined by equations (2) and (4), respectively.

Proof: 1dentical with the proof of the duality theorem on costs, with
the dual variables (y;p) substituted for the primal variables (1/y;x), and
vice-versa.” Q.E.D.

In addition, the functions G and D satisfy Shephard’s Lemma ;% that
is, the first partial derivatives of G or D with respect to an input price or
quantity, respectively —whenever they exist —are equal to the cor-
responding dual variables; i.e., if the derivatives exist,

aG(y:p)ldp; = x%, aD(1/y:x)/ox; = p. (7

’E.g.. McFadden (Chapter 1) or Diewert (1971, Theorem 4).
fShephard (1953). Cf. also Diewert (1971).
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The right-hand sides of equations (7) are the input demand and inverse
demand functions, respectively (if existing), where p*% are the normal-
ized (to yield unit cost) shadow prices (p;/C):’

xt=x¥yp), pi=pillyx).
If the equation D(1/y;x) = 1 is solved explicitly for y in terms of x, the
result y = f(x) (for x€Q,) is the production function, satisfying the

required regularity condition (Condition I).
Formally,

y =fx)=sup{n:D(1/n;x)= 1}
= sup{n:x €L(n)} (8)

Similarly, the unit cost equation G(y;p)= 1 may be solved explicitly for
l/ly (0 <y <),

1/y = g(p) = sup{l/y:G(y,p) = 1}
= sup{l/y:p € V(1/y)} = l/inf {y:p € V(1/y)}. 9)

The function g(p) satisfies the same conditions with respect to p as f(x)
with respect to x (Condition I). In analogy to the accepted terminology
of consumer utility theory, the function h(p)= 1/g(p) may be denoted
the “indirect production function”, corresponding to the direct produc-
tion function y = f(x) and the function g(p) may be denoted the
“reciprocal indirect production function”. The equation g(p) = 1/y, for a
given y, is the “factor price frontier”. Any standard production relation
may be uniquely characterized by each of these functions g(p) or h(p).

In the discussion of duality and “seif-duality” in utility theory, the
accepted formulation' for the dual indirect form corresponding to utility
U(x) is — V(p) {rather than 1/ V(p)]. However, since utility is ordinal, one
could equally choose e’® and e™"® = 1/e"®, in analogy to the present
results, without affecting the corresponding direct and indirect demand
functions, or any real behavior. A similar monotone transformation is
not acceptable in production theory (unless output y is replaced by
log y), since y is a measurable, non-negative quantity. Equation (9)

>The notation p* implies both the optimality property of p (i.e., p* are shadow prices)
and the normalization to yield unit cost p* = (1/c¢)p.

E.g., Houthakker (1960, 1965), Samuelson (1947, 1965a), Lau (1969a} and Pollak (1972).
The indirect utility V(p) referred to here, is in terms of the n normalized prices (i.e., per
unit of expenditure) and not the alternative (homogeneous) indirect utility V(E,p) which is
homogeneous of degree zero in (r+ 1) arguments—the non-normalized prices p and
expenditure E.
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seems therefore to be a more natural definition of the indirect produc-
tion function, since it preserves the perfect symmetry between the
primal and the dual representations.

Finally, if h(y) is any strictly monotone function, such that h(0)=0
and k(=)= «, one may choose the pair of dual variables to be h(y} and
1/h(y) (rather than y and 1/y), without affecting the resulits, nor the
perfect symmetry of the dual relations. (The significance of this remark
is clarified below, in the discussions of homothetic functions and of
separable production frontiers.)

Table 1 summarizes these symmetric dual relations for the case of
production and cost functions with a singie output.

3. Polar Production and Cost Functions

Having demonstrated in the previous section the perfect symmetry
between production and cost relations, it is now evident that new valid
cost and production relations (namely the polar relations''), may be
obtained by exchanging the roles of the sets L(y) and V(l/y), or
equivalently the functions D(1/y;x) and G(y;p), through substitution of
the dual variables (1/y;p) for the primal variables (y;x), and vice-versa
(within the positive orthant £},,). The new cost and production
functions thus generated are necessarily standard, satisfying the
required conditions.

If the original production function is represented implicitly by an
identity F(y;x)=0 [where F satisfies the conditions of the implicit
function theorem'? for yielding a unique standard y = f(x)], then the
unit-cost frontier of the polar production function is given by F(1/y;p)=
0, and the polar total cost D(y;p) is defined implicitly by the identity
F(1/y;(1/D)p)=0. Conversely, if the original cost function G is given
implicitly by H(y;(1/G)p)=0 (G being linear homogeneous in p), the
polar production function is given implicitly by H (1/y;x) =0, provided H
satisfies the required conditions. Similar substitutions of variables would
appear if either the cost or the production function is represented by a

“The term polar was adopted in accordance with Shephard’s geometric interpretation
(1953), Ch.5), where the isoquant and the unit cost surfaces are shown to be polar reciprocal
to’each other with respect to the unit sphere 2 x} = 1.

2E g, in Hadley (1964), Courant (1936). The implicit function theorem for a single
function (identity) could be made somewhat stronger, to apply to non-differentiable cases
(with only strict monotonicity at 0) such as the general case discussed here.
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set of parametric equations. The polar relations are now stated formally:

Theorem 3. Given a standard production function y = f(x) which
may be represented uniquely by any one of the following equivalent

relations:

Satisfying
Primal Dual Conditions
() PF:  y=f(x) (a) InPF: 1/y = g(p) I
(2) ImPF: F(y;x)=0 (b) IIPF: H(/y;p)=0
(3) UDE: D(ljy;x)=1 (c¢) UCE: G(y;p)=1 Il
(4) FS: L(y) (d) UCS: V(1/y) | .

there exists a unique Polar Production Function y = g(x) which is
standard, and may be represented uniquely by any one of the
following equivalent relations:

Satisfying
Primal Dual Conditions
(1) PF:  y=g(x) (@) InPF: 1/y = f(p) I
(2) ImPF: H(y;x)=0 (b) IIPF: F(1/y;p)=0
(3) UDE: G(1/y;x)=1 (c') UCE: D(y;p)=1 111
(4 FS:  V(y) (d) UCS: L(1/y) II

Proof: By construction and by the results of Section 2, the Conditions
I, II, or III are satisfied with respect to g(x), V(y) or D(y;p), respec-
tively, for finite y > 0, x > 0 [that is, (y;x) and (1/y;p) in &,.]. In order
to extend these relations to all x=0, p=0, y=0, one should put
2(0) =0, and extend the definition of g(x) to the (right-hand) limits as x
approaches the boundaries of Q.. Equivalently, the sets V(y) are to be
replaced by their closures, i.e., include their boundary points in Q,.
Similar modifications apply to the other relations in Theorem 3.

I3PF = production function; ImPF = implicit production function; UDE = unit distance

equation; FS = feasible sets; InPF = indirect production function; IIPF = indirect implicit
production function; UCE = unit cost equation; UCS = unit cost sets.
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The uniqueness of the polar functions follows from their construction.
The minimum properttes appearing in Theorem 2 and in Table 1, assure
that D(y;p) is indeed the cost function corresponding to the production
distance function G(1/y;x) by the duality theorem; that is

D(y;p) = Min{p’x:G(1/y;x) = 1}, (10)
and also
Gl/y;x)=Mmn{x'p:D(y;p) = 1}. (11)

This completes our proof. A few additional remarks are in order. First,
differentiability of f(x) does not necessarily imply differentiability of the
polar function g(x), or vice-versa. This is best demonstrated by the fact
that non-differentiable standard production functions may have
differentiable dual cost functions, and therefore differentiable polar
production functions (such as the Leontief fixed-coefficient function,
with a linear differentiable cost function; see Chapter 11.3). A separate
duality theorem applies to the restricted class of smooth neo-classical
production and cost functions,' such that both the original and the polar
functions belong to this class, and yield everywhere continuously
differentiable demand functions. It may be shown, however, that the
polar transformation defined here for a more general class, transforms
each isoquant surface so that any smooth, strictly convex part is
transformed into a smooth counterpart; every planar section into a
vertex, and every vertex into a planar section [see Shephard (1953, p. 11)].

Let us now examine the special case of homothetic functions. If f(x) 1s
homothetic, it may be written in the form h(y)= f*(x), where f*(x) is
linear homogenous, and A(y) strictly increases with y from 0 to «. The
dual unit cost function is separable in this case into G(y;p)=
h(y)-g*(p)=1, or 1/h(y)= g*(p), where g*(p) is the cost of producing
the output y = h~'(1), and where the elasticity of total cost with respect
to output [see Hanoch (1975b)] is 0., = 4 log G/3 log y = yh'(y)/h(y), and
is independent of prices! Applying our polar transformation yields the
new production function given by 1/h(1/y) = g*(x), with a corresponding
unit cost equation, 1/h(1/y)-f*(p) = 1. The new output elasticity of cost
is & = (1/y)(h'(1/y)/h(1/y)), and the polar function is also homothetic.

*Cf. Lau (Chapter 1.3) for a presentation and a proof of this restricted duality theorem.
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However, if one wishes to impose on the polar function the same
behavior of cost with respect to output as in the original — transforming
only the form of any given isoquant-surface, but preserving the behavior
of output along any given ray (Ax)-one can modify the polar trans-
formation so as to make 1/h(y) the dual variable to h(y) (that is,
h*(y) = h~'[1/h(y)] dual to y), as explained in Section 2 above. In this
case, the homothetic-polar transformation yields the production
function h(y)= g*(x), with the corresponding cost function c¢*=
h(y)-f*(p). These two transformations are identical, if and only if f(x) is
homogeneous of some degree p >0. In this case it may be shown that
h(y) = y“*, hence h(1/y)=y~"* = 1/h(y), and thus h*(y) = 1/y.

A similar approach allows extension of the polar transformation
through cost functions to the case of joint production with multiple
outputs, if outputs are separable from inputs. That is, if the production
frontier is of the form F[h(y);x] =0, which may be solved for h(y) (y a
vector of order m),

h(y) = f(x), (12)

where f(x) is standard, and h(y) increasing in y, such that h(0)=0;
y' > y*>h(y)> h(y") [an increase in at least one output requires an
increase in f(x), and therefore of x, since f(x) is single-valued and
non-decreasing] and k(y") is unbounded if y" is unbounded. The cor-
responding cost function is G[h(y);p], and the unit cost frontier is
separable into 1/h(y) = g(p). Hence, the previous analysis is carried over
entirely, with h(y) substituted for y as the primal variable, and 1/h(y)
replacing 1/y as the dual variable. The cost-polar transformation now
yields a new separable production frontier, of the form h(y) = g(x), with
g(x) standard, satisfying Condition I, and a new separable unit cost
frontier 1/h(y) = f(p).

4. A Symmetric Formulation of Profit Functions and
Production Frontiers

The analysis of duality relations between profit functions and production
frontiers for the case of joint production with multiple outputs and
inputs, may be carried out along lines similar to the cost—production
analysis of Section 2, so as to yield a perfectly symmetric formulation
for the primal and the dual relations.
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Suppose z = (y;x) are non-negative'’ vectors of m outputs y (m =1),
and k inputs x (k=1;m + k=n). The corresponding price vector is
denoted by q = (p;w) € Q,. The set of feasible input-output combina-
tions for a given production process is denoted by T(C ©,). The condi-
tions for T being regular, namely for the existence of a unique non-
negative dual profit function,

x = Q(p;w)=sup {p'y —wx:(y;x) ETC Q.}, (13)
(y:x)
are as follows:'®

Condition B. T is a closed, convex set in {2,, with free disposal:

yx)=(yx)ET=(yx)ET,
O:x)=(¥x)=yxET>FXET.

(0;0) €T, and (¥°;x°) €T for some y°> 0.
Bounded inputs x imply bounded outputs y in T.

By McFadden’s duality theorem, the profit function defined in equa-
tion (13) exists uniquely and satisfies the following:

Condition A.

(1) Q(p;w) is a real, non-negative function of q=(p;w)=0.
Q(0;0) = 0 and Q(q°) > 0 for some q°> 0. [Q may be infinite for
finite q.]

(2) Q is non-increasing in w and non-decreasing in p.

(3) If w0, limg.o Q(p;(1/d)w)<p’a, where a>0 is a vector of
fixed, finite values.

(4) Q(q) is a convex, closed function for q=0.

(5) Q is positive linear homogeneous in q: ¢>0A>05Q(Aq) =
AQ(q).

Define the unit profit set V as follows:
V={q:Q(q)=1;q=0}; (14)

It is more convenient for our purposes to define the quantity vectors (y:x) with all the
arguments non-negative, rather than the “net outputs™ notation (y;—x). In our notation,
outputs are mathematically distinguished from inputs by the direction of change of the
frontier functions, rather than by their sign. Cf. McFadden (Chapter 1.1).

“These are the conditions in Diewert (1973a), modified to imply non-negative (but not
identically zero) profits.
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then the following theorem holds:

Theorem 4. If Q(p:w) satisfies Condition A, the unit profit set V
satisfies Condition B, where input prices w are to be substituted for
inputs x; output prices p for outputs y, and V for T.

Proof: By Condition A(4), V is convex and closed, since Q(q) is a
convex, closed function over the domain {q:0 =< Q(g) = 1).

By Condition A(2), the free disposal conditions follow immediately.

To show that (p%;w®) € V for some p° >0, note that by Condition A(3),
there exists a (p';w’) > 0 such that Q(p';w) = Qo< If Q=1, choose
(%w°) = (p';w) € V; and if Qo> 1 then 0 < (p%w®) = (1/Qo)p'5(1/ Q)W) €
V, by Condition A(5).

It remains to be shown that bounded w imply bounded p in V.
Suppose {w"}=B (B a finite vector), but {p™} unbounded in V. Since
there exists by Condition A(l) a strictly positive vector (p°;w") > 0 such
that Q(p®;w®) >0, we may choose a partial sequence {p" ;w"} such that
p" = Np%w" =B =Nw’ for all N =N, Hence we get by Conditions
A(2) and A(): limy-e Q(pY :w") = limy e Q(Np*;Nw’ =, and (p";w")
cannot be all in V, a contradiction. Q.E.D.

Theorem 4 establishes a complete symmetry between the regular
production set T and the regular corresponding unit profit set V, which is
the dual of T. Equipped with the duality theorem and this result, we may
now state without further proof all the other symmetric results which
follow by the transformation from the prices space into the quantities

space and conversely.
First, applying the transformation to the duality theorem we may

define the “gauge function” H(y:x), by the following maximum pro-
perty:

H(y:x)=sup {y'p—x'w:(p:w) €V C 0.}, (15)
(pw)

which is the dual counterpart of equation (13). The set T is then
derivable from H(y;x) by

T = {(y;x):H (y;x) = 15(y;x) = 0}, (16)

which is equivalent to equation (14). The function H defined here
satisfies Condition A, with the appropriate substitution of variables. In



124 Giora Hanoch

particular, H is linear homogeneous in (y;x) for any production frontier
which is regular (but not necessarily homogeneous).

Given a regular unit profit set V satisfying Condition B, the profit
function Q(p;w) is derivable from V by the following relation:

Q(p;W)=inf{ﬂ:(%p;%w)ev;0<0.<_co}. (17)

This is shown as follows:

inf{az(%q) eEVo<é sco}= inf{O:Q(%q)s 1;0<0$oo}
= inf{0:Q(q) < 8;0 < # < =} = Q(q).

Q is the ‘“‘gauge function” of the set V, representing the distance from
the origin of a point (p;w) =0, divided by the furthest distance from (0)
of points ((1/8)p;(1/6)w) which lie on the efficient boundary of the set
V."” In an exactly analogous derivation for the dual case, we have

H(y:x) = inf{h: (%y;%x) ET0<h sw}, (18)
where H <1 in the production set T, and H =1 on the production
frontier (when it exists). In general, if the frontier exists and is given by
an implicit function F(y;x) =0, where F satisfies the following:

Condition C. The set T={(y:x):F(y;x)=<0;(y;x)=0} satisfies
Condition B above:!*®

then this frontier could equally be represented by H(y;x) =1 where H is
linear homogeneous and satisfies Condition A. Symmetrically, maximum
profits = may be represented by an implicit equation in the variables
((1/m)p;(1/m)w) [since = is linear homogeneous]: R((1/7)p;(1/m)w)=0,
and the unit profit frontier by R(p*;w*)=0 (R is generally not linear
homogeneous; p*, w* are prices normalized to yield maximum profits equal
to unity).

When the partial derivatives of Q and H exist, they satisfy the
relations” aQ/op; = y¥(q); 3Q/dw; = —x¥(q), where y} and x} are the

"This includes Q =0 if (1/8)qE V for all > 0; and Q =, if (1/8)q & V for all §>0.

BFor specification of direct conditions on the function F (rather than the set T), see
Diewert {1973a). He assumes, however, that F is normalized, i.e., solved for one argument
as a dependent variable. More. general conditions on F could also be given, but are omitted

here.
E.g., in Diewert (1973a), Lau (Chapter 1.3), and others.
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output supply and factor demand functions, respectively. Similarly,
aH|dy; = p¥(z); 8H/3x; = —w*(z) (if existing), where p¥ and w} are the
optimal inverse supply and demand functions, determining the normal-
ized shadow price variables (1/a)p,(1/7)w.

The Table 2 summarizes these symmetric relations.

The foregoing analysis rests heavily on the assumption that zero
variable outputs and inputs are feasible; i.e., (0;0) € T, since in this case
maximum variable profits are non-negative, and the profit function is
completely determined by the unit profit set. If, however, some mini-
mum positive inputs are always required — either due to indivisibilities,
or because some outputs are fixed or are bounded below through
exogeneously determined restrictions —then (0,0) is not feasible, and
maximum variable profits assume negative values. The symmetric dual-
ity relations in terms of the original variables break down. However, as
shown by McFadden in Chapter 1.1, the variables may be translated to
be measured from a point (%,€) in T, and the symmetric duality applies
with respect to the translated variables (y — n,x — &) and with respect to
the corresponding modified profit and production functions. (Details and
proofs of these general statements are omitted here.)

5. The Polar Profit and Production Functions

In analogy to the derivation of cost polar production functions, the
perfect symmetry of the dual production-profit relations exhibited above
leads to the definition, for any regular production set T, of another
regular production set T*, which coincides with the original unit profit
set V, if prices are transformed to the respective quantities. That 1s,

T* = {(y;x):(y:x) = (p;w) € V}. (19)

The set T* is the profit polar production set, determined uniquely by T,
and satisfying the same conditions specified in Condition B. Similar
results apply to all equivalent representations of T*, as summarized by
the following theorem:

Theorem 5. Given a regular production set T, which may be
represented uniquely by any one of the following equivalent rela-
tions:*

2pS§ = production set; PFr=production frontier; GF=gauge function; UPS= unit
profit set; IPF = implicit profit function; PFn = profit function.
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Satisfying

Primal Dual Conditions
(LPS: T (a) UPS:V B
(2) PFr: F(y;x)=0 (b) IPF: R(%p;%w)so C
(3) GF: H(y;x) (c) PFn: Q(p;w) A

there exists a unique polar production set T*, defined by equation
(19), which is regular, and may be represented uniquely by any one
of the following equivalent relations:

Satisfying

Primal Dual Conditions
(1 PS: T*=V (a) UPS:V*=T B
(2 PFr: R(y:x)=0 (b') IPF: F(% p;%w)EO C
(3") GF: Q(y:x) (c') PFn: H(p;w) A

Proof: The proof is immediate, using McFadden’s Theorem 24 in
Chapter 1.1, Theorem 4 above, and the results of Section 4, summarized
in Table 2 above. Q.E.D.

The results cited in Table 2 with respect to the maximum properties of
the profit and gauge functions, as well as to partial derivatives of Q and
H (i.e., factor demand and output supply functions), are applicable to
the new polar production frontier, if proper substitutions are made
throughout. However, the specific behavior of the polar production
relation may be quite different from that of the original relation, as
indicated by some of the examples in Chapter II.3 and in Hanoch
(1975a).

Let us examine now a few special cases. For the case of a single
output with a concave production function y = f(x) (such that the profit
function exists), the profit polar production function defined here
generally vields a different production function from the cost polar
function defined in Section 3. However, if y = f(x) is homogeneous of
degree u (0 < < 1), the two functions coincide, except for a constant
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scale factor. The cost function dual to f(x) is separable in this case in the
form C = y"*G(w), where G(w) is linear homogeneous. Hence the cost
polar production function is given by y = g°(x) =[G(x))]*. The profit
function dual to f(x) is derived as follows (assuming 3C/dy exists):
3Cldy = Cluy = p, equating output price to marginal cost. The profit
maximizing costs ¢* then satisfies

c* = (&% up)™* Gw),

or
¢* = {up[G(w)] “}ra-w,

and profits are given by
w=py—c*¥=((1—- ww)e*=1- M)#ul(l—n){p[G(w)]—,L}uu_m'

The profit polar production frontier function y =g"(x) is derived by
substitution of (1,y,x) for (m,p,w), respectively, in the above expression,
and solving for y gives

g"(x)= A[GR)]* = A-g*(x),

where
A=[p*A—-p)'™]"'>1. (20)

Similarly, if y = f(x) is homothetic, its cost function is separable in the
form C = h{y)G(w), where (3 log h(y))/(d log y)> 1. Similar manipula-
tions give the regular cost polar production function as y = g“(x)=
H“[G(x)); the homothetic cost polar function of Section 3 is of the
form y = H*[G(x)]; and the profit polar function is y = H"{G(x)],
where the functions H, H" and H'™ are different functions of a
single variable. Therefore, the family of isoquant surfaces given by each
of the three polar transformations is the same, but their output-
denominations are different. (However, all three polar functions are also
homothetic.)

In the case of multiple outputs with separability of outputs from
inputs, the original production frontier is given by h(y) = f(x). The unit
profit frontier of the profit polar function is given by h(p) = f(w), and is
also separable. (The polar production frontier is generaily not separable,
however.) Hence “direct separability” implies “indirect separability’” of
the polar function.” Clearly, the converse is also true, due to the
uniqueness of the profit polar function. That is, (indirect) separability of

20p direct and indirect separability and related concepts, see Houthakker (1960, 1965),
Sameulson (19652, 1969b), Gorman (1968b), Goldman and Uzawa (1964), Pollak (1972), and
Lau (1969a and Chapter 1.3 in this volume).
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the original unit profit frontier, implies (direct) separability of the polar
production frontier.

The separable cost polar function defined in Section 3 [namely a
production frontier with costs ¢ = G[h{y);w], where c is implicitly given
by 1/h(y) = f((1/c)w)], is generally different from the profit polar frontier
in the direct separability case. An analysis similar to the foregoing shows
that these two polar transformations coincide, except for a scale factor,
if and only if both h(y) and f(x) are homogeneous. The analysis of
additional special cases may be carried out along similar lines.”?

6. Some Extensions and an Application

The process of polar transformation of single-output production
functions through cost functions, may be generalized further to joint-
production frontiers, under two cases of short-run profit maximization:

(i) If either a single output z, = ¥, or a single input zo = X, is fixed. The
polar transformation of the variable profits function Q(p;w;zo) yields
then a polar production frontier Q(y;x;1/zg)= 1, and conversely.

(i) If the production frontier is “separable as between the variable
elements (y;x) and the fixed elements z, (either inputs or outputs or
both). That is, F(y;x) = h(zo). The polar variable profit function 7 is
then given by F(p/#;w/%) = 1/h(20)-

The Factor Requirement Function™ defined for the case of a single
input, is an obvious special case of (i), and may yield a revenue polar
transformation, in complete analogy to the cost polar analysis. Proofs of
the above cursory statement are analogous to those given in Sections
2-5.

As a final example of an application of the polar transformation,
consider two alternative definitions of the elasticity of substitution
which are different from each other, and from the widely used Allen-
Uzawa elasticities of substitution,* if three or more variable factors are

present:
(1) The Direct Elasticity of Substitution D;, for a (twice continuously

2For additional results on relations between production and profit functions, see Lau
(Chapter 1.3). Modifications of such results, so as to apply to polar relattons, are

straightforward.
3Gee McFadden (Chapter 1.1) and Diewert (1974b) for duality theorems with respect to

the factor requirement function.
4gee McFadden (1963) for definitions of these concepts. The D; were defined by Hicks

(1946). See Hanoch (Chapter I1.3).
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differentiable) production function y = f(x), is defined by

D= (e +57)/ (3 1) @

where Dj is interpreted as dlog(x/x;)/dlog(p;ip:), for constant output
and other input quantities.

(2) McFadden’s Shadow Elasticity of Substitution S;, defined through
the cost function ¢ = G(y;p). If the unit cost function is given in the
“indirect reciprocal production function” form 1/y = g(p), it may be
shown that S;(p) is given by

s (43 4)/ G5 @

where S; is interpreted as d log(xi/x;)/d log(p;/p;), for other prices, output
and unit cost held constant. Thus,

dlog(Gi/Gi) _ dlog(gisi)
dlog(pip;) dlog(pip;y

Si=S;=

which is analogous to

1 _ dlog(fi/f)

—15,; d log(x,/xJ
Applying the cost polar transformation, the polar direct and indirect
production functions are y = g(x) and 1/y = f(p), respectively; hence the
elasticities Dy, S; of the polar function satisfy Dj;(x) = 1/S;(x); Si(p)=
1/D;(p), where S;( ) and Dy( ) are the functions defined by (22) and

(21), respectively.
For example, the D; for CRESH [Hanoch (1971)] are given by *

D,-j = a,-a,-/(s,-ag + s;a,—),
where s; = p,—{,-/E pix; are the cost shares.
Thus, the S; for the CDE polar function (Chapter 11.3) are given by
§ij = (s;a; + s;a;) aiq; = si(1/a;) + si(1/a;)

(since the cost shares s; are symmetric in x and p).

Similar applications may be used for the generalized elasticities of
transformation and the profit polar production frontier. Examples of a
number of particular polar pairs of functional forms are presented and

%See Hanoch (1971, p. 12, n. 2), and Hanoch (Chapter I1.3).
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discussed in Chapter I11.3. Other widely used polar pairs of production
function are: Diewert’s (1971) Generalized Linear and Generalized
Leontief Production Functions; the Transcendental-logarithmic (Trans-
log) models of Christensen, Jorgenson and Lau (1973, 1975), and the
polar pair of Quadratic functions [e.g., Lau (1974)]. The resuits of the
present analysis, however, imply the existence and validity of the polar
function generated by any functional form used previously, either in the
direct or in the indirect mode. Thus the available choice of functional
forms in production models is considerably enriched.



Chapter 1.3

APPLICATIONS OF PROFIT FUNCTIONS

LAWRENCE J. LAU*

Stanford University

1. The Profit Function — An Alternative Derivation

1.1. Introduction

In a pioneering attempt, McFadden (1966) extends the concept of cost
functions to revenue functions and profit functions and proves for the
first time the McFadden Duality Theorem —the profit function analog of
the Shephard (1953)- Uzawa (1964) Duality Theorem on cost and
production functions. The purpose of this chapter is to provide an
alternative derivation under conditions which guarantee twice differen-
tiability of both the production function and the corresponding dual
profit function, to characterize equivalent structural properties of the
production function and the profit function, and to propose a variety of
econometric applications of the profit function.

*This chapter is an extensively revised version of “Some Applications of Profit
Functions””, Memorandum 86A and 86B, Center for Research in Economic Growth,
Stanford University, November 1969. The author is indebted to Professor Daniel McFad-
den for his very penetrating comments and extremely helpful suggestions which improved
the chapter substantially. He has drawn heavily from his collaborative work with D.W.
Jorgenson and P.A. Yotopoulos. Thanks are also due to Professors L.R. Christensen,
W.E. Diewert. A.K. Dixit, W.M. Gorman, R.E. Hall, Z. Griliches, G. Hanoch, M. Nerlove
and R.W. Shephard for useful discussion at various stages of this work. Financial support
from the Labor Allocation Project of the Institute of International Studies, University of
California, Berkeley, and the National Science Foundation through research grants to the
Tnstitute for Mathematical Studies in the Social Sciences, Stanford University, is gratefully
acknowledged. Responsibility for remaining errors rests solely with the author.
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Let
Y = F(le-"va ;Zh--‘,Zn)

be the production function of a firm, where the X;’s and the Z;’s are the
variable and the fixed inputs respectively. Then short-run profit, defined
as revenue less variable costs, is given by

P =pF(X,2)- 2 qX;
i=1

-p|[Fx2)-3 4
=p(F(X,Z)-qX]
where

p = nominal (money) price of output,
q ¥ = nominal price of input i,
g: = q¥/p, normalized price of input i,

and X, Z and q are the vectors of X;’s, Z;’s and g,’s, respectively.

It is assumed that the objective of productive activity is the maxi-
mization of short-run profit and that the firm is a price-taker in the
output and variable inputs markets. Thus, the firm maximizes profit with
respect to X taking p, q* and Z as given. The profit function II is a
function of p, q* and Z which gives for each set of values p, q*, Z the
maximized value of profit

II(p.q*.Z)= p[F(X*,Z) - ¢'X*],

where the X *’s are the optimized quantities of the variable inputs.
Before proceeding further, one may observe that maximization of
profit is equivalent to the maximization of normalized profit, p*!

defined by
P*=Plp = F(X,Z) - q'X,

so that the X *’s are identical for the two problems. It is clear that the
corresponding normalized profit function is given by

n*= F(X*Z)—-qX*
= G{(q,Z).

The normalized profit function G(q,Z) is more convenient to work with

'This was referred to as the “Unit-Output-Price” or “UOQP" profit in Lau (1969c). The
terminology ‘‘normalized profit” is due to Jorgenson and Lau (1974a and 1974b).
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for the purposes at hand but the one-to-one correspondence between
M(p.q*.Z) and G(q,Z) should be obvious.

1.2. Properties of the Production Function

The production function is assumed to have certain properties. Let R:
and R™ denote the closed non-negative orthants of R" and R™, and RY
the interior of the non-negative orthant of R™. The assumptions on the
production function are as follows:

(F.1) Domain. F is a finite, nor_l*negative, real-valued function
defined on R™ x R". For each Z € R%, F(0,Z) = 0.

(F.2) Continuity. F is continuous on RT X R

(F.3) Smoothness. For each Z € R", F is continuously differen-
tiable on R”, and the Euclidean norm of the gradient of F with
respect to X is unbounded for any sequence of X in R7 converging
to a boundary point of R7T. For each X € R™, F is continuously
differentiable on R?%.

For each Z € R", the gradient of F with respect to X on RY will be
denoted VxF(X,Z).

(F.4) Monotonicity. F is non-decreasing in X and Z on R7?xR"
and strictly increasing in X and Z on RT X RZ.

(F.5) Concavity. For each ZE R}, F is concave on R™ and
locally strongly concave on RY.

Definition. A function is strongly concave on a convex set C if
there exists & > 0 such that®

F((1-0)X,+AX) = (1-AM)F X))+ AF(Xy)
+A(1-20)8X, - X)X, —Xy), 0=A=1,
vX, . X, e (.

Anexample of a strongly concave function is F(X) = — XZ. A functionis
locally strongly concave if there exists such a 8 for every proper convex
subset of C. An example of a locally strongly concave (but not strongly

2See Roberts and Varberg (1973, p. 268).
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concave) function on R. is F(X)=1-e7*.> Obviously local strong
concavity implies strict concavity.

(F.6) Twice Differentiability. ForeachZ e R7, F is twice continu-
ously differentiable on RY.

The concavity and twice differentiability assumptions together imply
that for each Z € R} the Hessian matrix of F with respect to X is
negative definite on R7.

(F.7) Boundedness. For each Z € R?,

limsz VX ER™

A =0 A

The boundedness assumption ensures that a bounded and attainable
solution exists for the normalized profit maximization problem for all
q € R7. This assumption is sufficient even if the production function is
not differentiable, that is, in the absence of (F.3) and (F.6). For the
purpose at hand, one may have adopted for (F.7) the alternative
assumption that for each Z € R", the range of VxF(X,Z) is all of R7.

An example of a function for which (F.7) fails is F(X)= X + X'2 For
this production function there does not exist a profit maximum if g = 1.
An example of a function which satisfies (F.7), but fails (F.3) is F(X) =
1-e X

Assumptions (F.1) through (F.6) are sufficient to ensure that, if a
solution X* to the normalized profit maximization problem exists for a
given q and Z, the solution will be unique and lies in RY. The additional
Assumption (F.7) is needed to ensure that such a solution exists for
arbitrary q € RT and Z € R}:. We therefore have the following two
lemmas:

Lemma I-1. Under Assumptions (F.1) through (F.6), for each
qERT,Ze€ R, if a vector X* exists such that

F(X*.Z) —; gX¥*z= F(X,2)- ; aX, VXERT,

then X* is unique and lies in RT.

3Under the additional assumption of twice differentiability, local strong concavity
implies negative definiteness of the Hessian matrix. Compare the concept of differential
strict quasi-concavity which implies that the Hessian matrix is negative semi-definite with
rank (m — 1). See Chapter [.1.
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Proof: The Kuhn-Tucker necessary condition for 2 maximum implies
that '

VxF(X*.Z) =4,

with equality in each component of VxF for which the corresponding
component of X* is positive. However, if any component of X* is zero,
by (F.3) and (F.4) VxF is unbounded and positive, thus violating the
Kuhn-Tucker condition. Hence X* must be positive and lies in RY.
Finally, by (F.5) X* must be unique. Q.E.D.

Lemma I-2. Under Assumptions (F.1) through (F.7), for each
q € RY, Z € RY, there exists a unique vector

X* = X*(q,Z) € R}
such that
F(X*Z)-qX*z F(X,Z)-¢X, VXE RT.

Further, the flmction X*(q.Z2):RT x R"—>RT is continuous on RY
for each Z € R" and continuous on R} for each q € RY. For each
Z € R™, X* is continuously differentiable on RT*

Proof: Under Assumptions (F.I) through (F.6), for each Z€ R,
normalized profit, P*=F(X,Z)—qX, is a closed, proper concave
function in X on R7T for all & R7.° For a given Z and q, a finite and
attainable maximum exists for this closed, proper, concave function if
and only if the function P* has no directions of recession in X. {See
Rockafellar (1970, Theorem 27.1, pp. 264-265; and also Theorem 13.3
and its corollaries, pp. 116-117).] The directions of recession of P* are
the vectors y # 0, y € dom P* (domain of P*), such that

lim P* (Ayaz)206
A — = U,

A -0

Thus, in order for P* to have no directions of recession one must have

i FAXZ)

A= A

qgX <0, vXedomF, X=0.

Since q € RY, dom F=R™, q'X>0. Thus, one concludes that

‘See Appendix A.3, Lemma 15.4.
5A concave extended-real-valued function is proper if it nowhere takes the value of =

and is finite for at least one value of its arguments.
sSee Rockafeliar (1970, pp. 66-67, and especially Theorem 8.5 and its corollaries).
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lim,.. F(AX,Z)/A =0 is necessary, But F(AX,Z)=0, by (F.1), thus

lim,.. F(AX,Z)/A =0 is necessary and sufficient to ensure that no direc-

tion of recession exists. Hence, with (F.7) a finite and attainable solution

exists. But this argument works for all ¢ € RY. Thus, for all g € R7, a
finite and attainable solution exists.” By Lemma I-1, the optimal solution

X* is positive and unique.

Continuity properties of X* follow from the continuity.of VxF on RY
for each Z € R" and on R’ for every X € R7.

Implicit differentiation using the implicit function theorem guarantees
the differentiability property of X*. The assumption of non-singularity of
the Jacobian matrix so crucial in the application of the implicit function
theorem is implied by the negative definiteness of the Hessian matrix of
F with respect to X. Q.E.D.

Corollary 2.1. The normalized profit function G(q,Z)=
F(X*(q,Z).Z)—q'X*(q,Z) is continuous on RT xR}, is twice
continuously differentiable on RY for each Z € R", and is continu-
ously differentiable on R} for each q € RY. Y*(q,Z) = F(X*(q.Z2),Z)
is continuous on R7” x R" and is continuously differentiable on R
for each Z € R%.

Proof: The proof follows from repeated application of the chain rule
for partial differentiation and the fact that

IF xx 7y _q =
ax(x ‘)Z) q—O Q,E.D.

1.3. Duality

The duality between production functions and normalized profit
functions has been established under rather general circumstances in
Chapter 1.1 and eisewhere.® Qur purpose here is to establish properties
of the class of normalized profit functions which correspond to the class
of production functions which satisfies our Assumptions (F.1) through
(F.7) and to demonstrate that there exists a one-to-one correspondence

"Note that this establishes the domain of G as all of RT. See Chapter 1.1.

8See also Cass (1974), Diewert (1973a and 1974a), Jorgenson and Lau (1974a and 1974b),
and Lau (1976a). Jorgenson and Lau base their duality results on the conjugacy cor-
respondence of closed, proper convex functions.
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between the members of the two classes. For every production function
which satisfies Assumptions (F.1) through (F.7) one can define a
normalized profit function G(q,Z) on RY X R}

G(q.Z) = sup {F(X.Z)—q'X}.

For each Z € R", G(q,Z) is also referred to as the conjugate of F(X,Z).
By Lemma I-2, a finite and attainable maximum always exists for

g € RY. Thus,
G(g.Z)= m;tx {F(X,Z) - ¢'X}.

It will be shown that the normalized profit function G(q,Z) correspond-
ing to a production function satisfying Assumptions (F.1) through (F.7)
possesses the following properties:

(G.1) Dclmain. G is a finite, positive, real-valued function defined
on RT X R}.

(G.2) Continuity. G is continuous on RY X R..

(G.3) Smoothness. For each Z€ R”, G is continuously differen-
tiable on R™, and the Euclidean norm of the gradient of G with
respect to q is unbounded for any sequence of q in RT converging
to a boundary point of RT. For each q€& RY, F is continuously

differentiable on R:.

(G.4) Monotonicity. G(q.Z) is non-increasing q and non-decreas-
ing in Z on RY xR} and strictly decreasing in q and strictly

increasing in Z on RT X RZ.

(G.5) Convexity. For each ZE€R", G(q,Z2) is locally strongly
convex on RT.

Definition. A function F is locally strongly convex if —F is locally
strongly concave.

(G.6) Twice Differentiability. For each ZE€RY, G(g.Z) is twice
continuously differentiable on RY.



140 Lawrence J. Lau

The convexity and twice differentiability assumptions together imply
that for each Z € R} the Hessian matrix of G with respect to q is
positive definite on RY.

(G.7) Boundedness. For each Z& R%,

Ao A

0, VgqER?.

Lemma I-3. Under Assumptions (F.1) through (F.7), the normalized
profit function satisfies Assumptions (G.1) through (G.7).

Proof:
(G.1) From Lemma I-2, G(q,Z) is a finite and real-valued function
defined on R7 x R" since a finite and attainable maximum exists. And
because for each ZE R", F(0,Z)=0, G(q,2)=0. If G(q.Z)=0 for any
g € R7, then a profit-maximizing vector X* is X*=0. However, this
contradicts Lemma I-2, which states that X* &€ RT. Thus G(q.Z) is
positive.

(G.2) Since G(q,Z) = maxx{F(X,Z)- q'X} it follows that for each q €
RT, G(q,Z) is continuous in Z on R? by (F.2). In addition, for each
ZE€R", G(q,Z) is convex on RT [proved under (G.5) below]. Thus, by a
theorem in Rockafellar (1970, Theorem 10.7, pp. 89-90), G(q,Z) is
continuous on R7 x R%.

(G.3) Smoothness in q is implied by (F.5) [see Rockafellar (1970,
Theorem 26.3, pp. 253-254)]. Differentiability in Z follows from the fact
that F(X,Z)— q'X is continuously differentiable in Z on R: and that
G(q,Z2) = maxx{F(X,Z) — q'X}.
(G.4) Let X¥ and X¥ € RY be the profit-maximizing inputs at q; and qa,
respectively. Then,

G(qi,Z) > F(X¥.,Z) - qiX¥,
Suppose q; is strictly greater than g, (in at least one component) then
F(X¥,2)-q:X¥> F(X¥,Z)— q'X{ = G(q:,Z). Hence G(qx,Z)> G(qi,2).
Monotonicity in Z follows from the fact that G(q,Z)=
maxx{F(X,Z)—q'X}.

(G.5) Local strong convexity is implied by (F.3) and (F.5).
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(G.6) Twice differentiability is implied by (F.5) and (F.6) through the
chain rule.

(G.7) Boundedness f_ollows from the fact that for each Z& R", the
domain of F(X,Z) is RT, the support function of which is given by

5*(X*|R7)=0, X*ERT,
=+4o, X*& RT.

But this is also the recession function of the conjugate of F(X,Z),
G(q,Z), with q identified with —X* [see Rockafellar (1970, Theorem 13.3,
p. 116)]. The recession function of G(q,Z) is given by

lim G(t\q,Z),

A —»0 A

qE RYT.

Thus, one has

i GRaZ)

A e l\

0, qERT. QED.

Given a normalized profit function G(q,Z) one may define its con-
jugate as

F*X.,Z)=inf{G(q,Z) + q'X}.

Under Assumptions (G.1) through (G.7), G(q,Z) is a closed proper
convex function on R7 X R}, hence its conjugate function is unique and
equal to F(X,Z) itself. [For the one-to-one correspondence between
closed proper convex functions and its conjugate, see Chapter 1.1 and
Rockafellar (1970, ch. 12).] Hence all one needs to do is to verify that
F*(X,Z) in fact satisfies Assumption (F.1) through (F.7). Thus one has:

Lemma I-4. Under Assumptions (G.1) through (G.7), the produc-
tion function satisfies Assumptions (F.1) through (F.7).

Proof: The proof parallels the proof of Lemma [-3. The only ex-
ception is that of continuity of F(X,Z) on the boundary of RT. This
follows from the fact that F(X,Z) = inf{G(q.Z) + q'X} is a closed proper
 concave function and bounded below on every bounded subset of RZ.
Hence, F(X,Z) may be uniquely extended to a continuous finite concave
function on R™. [See Rockafellar (1970, pp. 84-86) and also Lemma 12.7
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in Appendix A.3 of this volume.] It is then possible to set F(0,Z) =
0. QE.D.

We conclude this section by noting that it is possible to relax the
assumption that the domain of F(X,Z) is all of R™, or that the range of
Vi F is all of RT as is done in Chapter 1.1 and Jorgenson and Lau (1974a
and 1974b). It is also possible to relax the assumption that |VyF|
becomes unbounded as X approaches the boundary of its domain from
the interior, requiring only that the range of VxF on the domain of F has
a non-empty interior. Under these mild modifications, the properties of
continuity, differentiability, monotonicity, concavity and twice differen-
tiability still imply corresponding properties on the dual, only that the
domains of definition are now a pair of open convex sets C and C*, such
that C C int(dom F) and C* C int D where D is the range of VxF on C.

1.4. The Legendre Transformation

One way of obtaining the normalized profit function is to solve the
maximization problem first for the derived demand functions and then
substitute these back into the formula for normalized profit given by

P*=[F(X,Z)- q¢X].

The difficulty with this method is that only for relatively simple produc-
tion functions can one solve the profit-maximization problem explicitly
to obtain closed form solutions for the derived demand functions. An
alternative method for constructing the normalized profit function and
for studying the behavior of the normalized profit function (without
actually constructing it), based on the classical Legendre trans-
formation,' will be given below.

The Legendre transformation is a change of variables of a function
from point coordinates to plane coordinates. It is based partly on the
notion that a system of partial differential equations may be used to
define two or more sets of functions through transformation of vari-
ables. In the present case, it can be shown that the production function

*For further discussion of this point, see Rockafellar (1970, pp. 251-260).

A succinct exposition of the Legendre transformation may be found in Lanczos (1966,
Ch. VI). See also Courant and Hilbert (1953, Vol.Il, Ch. I, pp. 32-39). For a discussion from a
more modern point of view, see Rockafellar (1970).
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and the normalized profit function are connected by the Legendre

transformation.
Consider a given function of m variables Vi’s and n parameters p;’s,

f = (V],...,Vm ;pl"")pn),

new variable T’s may be introduced by means of the following trans-
formation:

1= i=1..m, d-1)

vy

which is called the Legendre transformation. The variables Vs are
replaced by the variables T’s. f is assumed to be locally strongly
concave in the V;’s so that the transformation is non-singular and hence
invertible. Thus equation (I-1) may be solved, expressing the V’s in
terms of the T;’s and p;’s,

Vi= hTpee0; T3P 1sesPn)s - = Losm.

A new function g may be defined as follows:
g(Tls"-mi ;plr"spn) = Zl hl(T,p)TI —.f(hI(Tap)a'-"hm(T,p);p)-

The function g is known as the Legendre’s dual transformation of the
primal function f.
Observe that _
ag L ah,‘ 4 af 3hi .
=N AT hi— ), = = 1,...,m.
aT; ,-Z:,aT,-T’ h ,Z,av,» oy L Lt

But by equation (I-1), T; = df/aV;. Thus,

o8 _
T h:(T,p)

=V, i=12....m. (1-2)

Equation (I-2) is the inverse Legendre transformation. The variables T;
are replaced by the variables Vi’s. In addition, we have

dg _ < 3k noaf oh;  f .
28 = TS LI 2L i=1,..n,
6p, ; apl ! 121 avj apl 317,

__of

again by equation (I-1).
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If we now compute the Legendre transformation of g, we have

g*( Vh---, Vm ;pl’"-’pn)= Zl Ti(vsp)' Vi - g(Tl(V,p),---,Tm(V,P);P)
:f_

The functions f and g are linked by the following set of dual relations:

F(Vi,Varot, Vip) + @(T1, Topeo, Tosp) = 2_:1 ViT,
af dg af  ag
—_ —_——= . — = ==
v T, T v ap ap 0
There is also a set of transformations relating the second derivatives
of f and the second derivatives of g. Starting from

of _

v b
one may differentiate this set of dual relations with respect to T
obtaining

B e B e e

One may also differentiate the set of dual relations with respect to p,
obtaining

[%] [angv'] - [as;fv,] =0,

s l[7vav]* [mav] ¢
L apaT JLavaV’ apav’

We note that this is also a symmetric relation because

%2 ]= [_t’__zf_]'
| dT3T’ avav'] -

In terms of our problem, the production function F(X,Z) may be
identified as f. The normalized profit function G(q,Z) may be identified

as —g. X may be identified as V. Z may be identified as p. The new
variables to be introduced - the plane coordinates — are set equal to

_oF
X’

or

T
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in accordance with the Legendre transformation. However, dF/dX = q
under the assumption of profit maximization. Thus

_9F _
T=7x"9

and q may be identified as T. The Legendre transformation may be
constructed as

¢ =3 TXAT.Z)~ FOGT L) Xn(T.2).2).
=

By recognizing that T = g, we have

g=2 aXi@Z) = F(Xi@ L) Xn(@D)L),

which is precisely equal to —G, the negative of the normalized profit
function. Moreover, from the inverse Legendre transformation

é&: a—g—=
aq dT X,
dg _ _9oF
aZ YA

Hence, one has

3G _

aq_ X,
2G _oF
Y AY A

This set of relations is sometimes referred to as Hotelling’s (1932)
Lemma and is of crucial importance in applications. We may then
summarize the Legendre transformation relationships between the
production function and the normalized restricted profit function:

Primal Dual
Function: Production Normalized
function function
F(X,2) Gq.Z)
Active variables: X q

Passive variables: Z Z
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And we get the following dual transformation relations:

(1) FXZ)-G@qZ)=qX

(2) AF/dX = q; 3Glaq= —X

(3) X= —aGlaq; q = dF3X

4) dF[8Z = 30G/3Z; dG|dZ = dF[3Z

(5) F =G -q'(8G/aq); G = F-X'(aF/8X)
(6) Z; y/

Under our assumptions on F(X,Z), a Legendre transformation always
exists. We introduce the Legendre transformation for a number of
reasons. First, its use leads to a system of partial differential equations
which may be used to either construct the normalized profit function
explicitly or to study its behavior, given the production function and the
first order necessary conditions for a maximum (and vice versa). Second,
the Legendre transformation may be used to deduce equivalent struc-
tures of the production function and the normalized profit function. If
the production function or the normalized profit function satisfies a
given partial differential equation defining a certain structural property,
then the same partial differential equation must also be satisfied by a
Legendre transformation of variables. This is because we have shown
that the production function and the normalized profit function are
Legendre transformations of each other, hence a partial differential
equation for F(X,Z) in X and Z becomes a partial differential equation
for G(q,Z) in q and Z. Thus, equivalent properties may be deduced
immediately. This technique is used extensively in Sections 2 and 3.
Third, the Legendre transformation may be useful in the solution of
certain partial differential equations which may prove intractable
otherwise. Suppose we wish to establish the class of production
functions such that, under profit maximization, X,/X> is constant. Start-
ing from the set of functions

oF aF

ox, - @ and ax, d»
Xi_ki
X5 ko

This may appear to be rather intractable. However, by using the Legen-
dre transformation, this problem becomes
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3Glaq, _ ki
3Glagq: ki

with the general solution

G(q) = glkig\ + k2q2),

which has a well-known dual

rov= (w2

Another example is furnished by the partial differential equation

_(9F oF
Xi=h (3X1, 3Xz)'

By the Legendre transformation, this equation becomes

aG

- .-aa = fl(qlqu)’

which may be integrated. This technique is used in Section S.

We emphasize, however, that the Legendre transformations are pro-
cedures for studying expressions that are known to exist; they are not
meant to be substitutes for the fundamental existence theorems for the
dual functions, which are proved in Chapter 1.1 for the general case, and
in Sections 1.2 and 1.3 for the locally strongly concave case€.

1.5. Comparative Statics

We present some comparative statics results that can be obtained
directly by making use of the properties of normalized profit functions.

1.5.1. Increase in nominal price of output
() The optimal output is given by

* — — ’a_c;_
Y*=G(q.,Z) qaq(q,z),

9Y* _ < 3G day 293G o 3'G 3q
ap T dq« dp dp dq e 1 dqaq’ dp
1 2
, 9 G’q>0,

~p *aqaq
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Ed
3qaq’
is positive definite. Thus the effect of output price on supply is positive.

() aX%_ 9 _9G(q.7)
ap  9p q;

since

which is not definite in sign.

1.5.2. Increase in nominal price of a variable input

@ av* [ m ]
JZ
3 plagX Zaq.aqk aq,(q )
_ LIS azG_ ]
- p [;::1 3qi0Gx A |-

which is again not definite in sign, but equal in magnitude but opposite in
sign to 4 X*%/ap.

(i) X% 13*°G
—_—— o — <
aq’ p 9q° 0,

since
]
aqaq’

is positive definite. Thus, the own price effect of input price on demand
is negative.

(i) aX%_ 1 3°G _aX7

aq’* p 3qidq; 3q%’

by the twice continuous differentiability of G{(q,Z). This is the well-
known symmetry condition on cross-price effects.

(iv) By collecting these comparative statics results, we may derive, in
addition, that
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o~ Y aY*
. t'= —_ . <0’
kzi c?q”,-‘ q ap p
and
moo X aY*
> g% = Py -p>0

These results summarize the basic Hicksian Laws of Production.

(v) It is important to note a relationship between the Hessian matrices
~ of the production function and the normalized profit function. By
differentiating

3F _
ax ¥

with respect to q, treating X as implicit functions of g, we have

[ ] -
dqllaxasx'| 7

but
X _ __[ 3*G ]
aq éqaq'l

3’G _ _[ 3’F ]“
3qaq’ X aX’

Also, by differentiating dF/dX = q with respect to Z, we have

B AR
dZ 1l 0XaoX' aZ3X’ ’

[ °G ]=[ a’F ][ 3*F ]“
324q' aZaX'H aXaX'| -

or

ISee Hicks (1946, App.).
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1.6. Econometric Implementation

Because of the derivative property of the normalized profit function,
sometimes known as Hotelling’s (1932) Lemma, namely,

the normalized profit function is especially useful for the purpose of
econometric specification of supply and demand functions. With the
normalized profit function, it is not necessary to actually solve a profit
maximization problem. As long as one starts out with a normalized profit
function which satisfies Assumptions (G.1) through (G.7), one is assured
that the supply and demand functions obtained through differentiation of
G are consistent with profit maximization subject to a production
function and given normalized prices. In particular, since one is free to
choose the functional form of G(q,Z), one may choose a parametric
form that is most convenient from the point of view of econometric
estimation.

There are two other points worth mentioning. First, as McFadden has
stressed, convexity of the profit function is a consequence of profit
maximization and does not depend at all on the concavity of the
production function, so long as a proper profit function exists and is
attainable for at least one set of prices. Hence, if one is willing to
maintain the assumption of profit maximization, it is not necessary to
insist that the production function is concave. Second, for the purpose
of estimating the normalized profit function parameters, one should use
all of the stochastically independent supply and demand functions for
maximum efficiency. This in general entails, because of symmetry of
cross-price effects, restrictions across equations.

Finally, one should also add at this point that for many empirical
applications in which the observed range of normalized prices is a
compact and convex set, it may not be necessary to require that the
normalized profit function should satisfy Assumptions (G.1) through
(G.7) globally, that is, for all possible prices. It is in many instances
sufficient to have the Assumptions (G.1) through (G.7) hold locally
within a compact and convex set. As long as interest is focused on this
convex set, a normalized profit function, although not globally valid,
may nevertheless provide an adequate local approximation. In parti-
cular, one can often modify such a function so that it satisfies globally
the weak regularity conditions for normalized profit functions given in
Chapter I.1.
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-

O a\q

FIGURE 1

We shall illustrate the modification technique with an example.
Suppose that the normalized profit function has the form shown in Figure
1 - sloping downward all the way. This function is decreasing and convex
in g, but it is not non-negative as a normalized profit function should be. Itis
also defined for negative prices. One may modify this function so that

IT* is not defined for ¢q <90,
II*=0 for g=g.

With this modification, the normalized profit function satisfies the usual
regularity conditions (such as, for instance, those given in Chapter 1.1).
As long as the domain of interest is contained in the open interval (0, §)
this normalized profit function will serve just as well as other normalized
profit functions which satisfy the regularity conditions globally without
modifications of the type considered here.

2. The Structure of Normalized Profit Functions

2.1. The Case of a Single Output

For purposes of applications, it is useful to know what are equivalent
properties for the production function and the corresponding normalized
profit function. To this end, we state and prove several theorems relating
equivalent structures of production functions and normalized profit
functions.

Theorem II-1. Under Assumptions (F.1) through (F.7), a produc-
tion function is homogeneous of degree k in X if and only if the
normalixed profit function is homogeneous of degree — (k/(1—k))
in q.
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Definition. A function is homogeneous of degree k in X if

F(AX,Z)=A*F(X,Z), for VA>0, VZER:, VX€ERT.

Proof: This follows directly from the dual transformation properties.
By Euler’s Theorem for homogeneous functions,

oF
z 2 X = kF. (I1-1)
Applying the dual transformation, equation (II-1) becomes
Saii=r(c-Fa)
Therefore,
k
2 4% = ~T=n

Hence, by Euler’s Theorem, G is homogeneous of degree —k/(1— k) in
q. The converse is proved similarly. Observe that the case k = 1 violates
the local strong concavity assumption. Q.E.D.

Corollary 1.1. Under Assumptions (F.1) through (F.7), and homo-
geneity of degree k of F(X,Z) in X,

Y*=(1-k)'G,
and

_ k
=Pan°

where C* is the profit-maximizing cost of the variable inputs.
Proof: By the dual transformation

Y*=( Em: q; aq,)
k

(l—k)

=(1-k)'G

PR oG k
C*—P;q‘( 3q.) P(l )G- Q.E.D.

=G +———=
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This corollary implies that for a homogeneous production function the
profit-maximizing output 1s proportional to normalized profit. In other
words, profit-maximizing revénue is proportional to profit-maximizing
profit. Likewise profit-maximizing cost 1s also proportional to profit-
maximizing profit. These are clearly testable consequences of the

homogeneity assumption.

Corollary 1.2. Under Assumptions (F.1) through (F.7), the derived
demand functions are homogeneous of degree — 1/(1— k) in q if the
production function is homogeneous of degree k in X.

Proof: This follows directly from the fact that the demand functions
are derivatives of the normalized profit function, which is homogeneous

of degree —(k/(1— k)). Q.E.D.

The concept of homogeneity has been generalized by Shephard (1953
and 1970) to that of homotheticity. We give a definition that is closely
related but slightly different from his.

Definition. A function is homothetic in X if it can be written in the
form

F(H(X,Z).Z),

where for each Z€ R", F is a positive, finite, continuous and
strictly monotonic function of one variable H with F(0,Z)=0, and
H is a homogeneous function of degree one in X.

An important property of homothetic functions is the following:

Lemma II-1. A function with strictly non-zero first partial deriva-
tives is homothetic in X if and only if the ratio of each possible pair
of first partial derivatives with respect to X is a homogeneous
function of degree zero in X.

This lemma is proved in Lau (196%9a) and will not be repeated here.
Based on Lemma II-1, we state and prove the following theorem:

Theorem II-2. Under Assumptions (F.1) through (F.7), a produc-
tion function is homothetic in X if and only if the normalized profit

function is homothetic in q.
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Proof: For a homothetic production function the first-order necessary
conditions for a maximum imply that

dF|9H 3H[aX: _ a;
dF|6H 8H[eX, q!

By homotheticity, the left-hand side of the equation is homogeneous of
degree zero in X. One may therefore rewrite the left-hand side as
functions only of Xi/X,. Our Assumptions (F.1) through (F.7) are
sufficient to ensure that the (X;//X,)’s may be solved uniquely as
continuously differentiable functions of (qi/q1)’s,

Xi _ 4 (qz 4 qm ) -
~ - Ji ﬂ’—a“-,—’z ’ V!,
X f qd: q q,

which by using the dual transformation yields

Vi

3Glaq ‘(qx’q|’"’q1’ )
Since the ratios of the first partial derivatives of G with respect to q are
homogeneous of degree zero in q, G is homothetic in g by Lemma II-1.
The converse is proved similarly starting from

5GIaH aH[dq; _ X,

Q.E.D.

The next theorem shows the effect of changing the scale of measure-
ment of output (or, as some authors prefer it, the level of technical

efficiency):

Theorem II-3. Let Y = F(X,Z) and IT* = G(q,Z) be a production
function satisfying Assumptions (F.1) through (F.7) and its con-
jugate normalized profit function, respectively. Then for any A >0,
if the production function is given by Y = A F(X,Z), the normalized
profit function is given by II* = AG (q/A,Z)."

Proof:
* = max{AF(X,Z) - q'X}
= A max{F(X,Z)— q'/AX}
= AG(q/A.Z). Q.E.D.

This theorem is proved in Fenchel (1953, pp. 93-94); see also Chapter L.1, Table 2,
composition ruie 1. This theorem is a special case of Theorem 28 in Chapter I.1.
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The next theorem shows the effect of a translation of the origin:

Theorem II-4. Let Y = F(X,Z) and IT* = G(q,Z) be a production
function satisfying Assumptions (F.1) through (F.7) and its con-
jugate normalized profit function, respectively. Then for any
constant Y > 0 and constant vector X > 0, if the production function is
givenby Y = Y + F(X + X,Z), the normalized profit function is given
by IT1*=Y + G(q,2)+q'X."”

Proof:
* = m)?x{? + FX+X,2)-¢X}
= ¥ + max{F (X*,2)~ q'X* - X)}
=Y +qX+ n;a}x{F(X*,Z) - q'X*}
=Y+G@gZ)+q¢X. QED.

Theorem II-5. Under Assumptions (F.1) through (F.7), let the sum
.of production elasticities be given as

S dln F
6—; alnX,-’

then

alnG= o1 dIn F
dIngq; (1-€)dInX;

Proof: By the dual transformation,

G_
—P,— = (1 é).
Strong concavity implies that € < 1. Thus,
dlnG _ q 3G
dlngi G aq,
_ aFlaX;
- (1 _e)F( Xi)v

UThis theorem is proved in Fenchei (1953, pp. 94-95).
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by the dual transformation. Thus,

dlngg, (1-e€)dlnX;

dlnG _ 1 lnF Q.ED.

Corollary 5.1. Under Assumptions (F.1) through (F.7), let the sum
of normalized profit elasticities be given as

_wdlnG
"_,Z.ralnq,-’
then
dIinF _ 1 4InG Q.ED.

alnX,-— _(1—7])6 lnq,-'
Proof: Identical to the theorem.
Corollary 5.2. Under Assumptions (F.1) through (F.7),

1elog
€ 7

Proof: By the theorem,

«dlnG_ 1 &dlnF
,anlnq,-‘ (1-—e),-zlalnx,-
(1-e)
=n.

Thus,
— €=M — 7€, T+ € = 7€

Dividing through by ne, we obtain
1 1
—+—=1. EB.D.

g 1 Q.ED
Theorem II-5 shows how estimates of production elasticities may be
derived given the estimates of the normalized profit elasticities and vice
versa.
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Theorem II-6. Under Assumptions (F.1) through (F.7), a homo-
geneous production function of degree k in X, 0<k <1, is separa-

ble with respect to a commodity-wise partition in X if and only if
the normalized profit function is also separable price-wise in q.

Proof: Homogeneity implies that F(X,Z)= H(X,Z), where H is a
homogeneous function of degree k in X. Separability implies that

3 ((BH|3X)(X,Z)\ _ .. .
% (GHOED) = Yk 12k
which in turn implies that (aH/9X;)/(dH/3X;) is a function of only Xj, X;
and Z. Homogeneity implies that this function is homogeneous of degree
zero. Thus, one has

qi _ 0H/3X;

= hr'j (Xl’*XJ’Z)

- no(Za2)

If this equation can be solved for X;/X; as a function of gi/q; and Z, then
it follows immediately by a dual transformation that (3G/dq;)/(8G/ag;) 1s
independent of g,k # i,j. But Assumptions (F.1) through (F.7) are sufficient
to guarantee that X,/X; are continuously differentiable functions of q.
Thus, the function (X;/X;) exists and we conclude that G is separable
price-wise.

The converse of this theorem may be proved in a similar manner by
observing that G is also homogeneous by Theorem II-1. This completes the

proof. Q.E.D.

Corollary 6.1. Under Assumptions (F.1) through (F.7}, a produc-
tion function homothetic in X is separable commodity-wise in X if
and only if the normalized profit function is separable price-wise

in q.

Proof: This follows directly from Theorems II-3 and 1I-6, and Lemma
II-1. Q.E.D.

We need the following lemma to prove a generalized version of
Theorem I1-6 which applied to production functions in which the inputs
may be grouped into several categories, such as capital and labor, each
of which may consist of capital and labor of many different kinds.
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Lemma II-2. A strongly separable function is homothetic if and
only if each category function (or quantity index) is homogeneous
of the same degree, or it is a function of products of homogeneous
category functions.

This lemma implies that if Y is strongly separable, that is, if
v=F(3 X' (Xitsr X))
i=1

then Y is homothetic if and only if either each X' is homogeneous of the
same degree or Y = F(II 2, X'(Xi....,Xi,Z)), where each X' is homo-
geneous (not necessarily of the same degree). This is proved in Lau
(1969a). We omit the proof.

Theorem H-7. Under Assumptions (F.1) through (F.7), a produc-
tion function is additively separable with respect to the commodity
categories if and only if the normalized profit function is additively
separable with respect to the corresponding price categories.

Proof: Additive separability implies
Y = 2 X Xityeees Xino L)
It is easy to see the maximization of
pP*= Y"g Z: q;; Xij

results in demand functions for X;’s which depend only on the normal-
ized prices of the commodities of the ith category and Z. Thus G(q.Z)
must also be additively separable in q. The converse is proved

similarly. Q.E.D.

Theorem IT-8. Under Assumptions (F.1) through (F.7), a produc-
tion function is homogeneous and strongly separable with respect to
the commodity categories if and only if the normalized profit
function is homogeneous and strongly separable with respect to the
corresponding price categories.

Proof: Homogeneity follows from Theorem II-1. The first-order
necessary conditions for a maximum require that
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aFaX, _8X'aX
aFIaX;, 3aX'aX;
N Xir(XiI’---inn,- L) L T
- Xi(le,---inn,-,Z)_-q_j;’ i#j Lj=1,....m,
_ X U Xl X e r Xind Xi1 o) 5= n
X1, Xl Xp2Z) e
by zero degree homogeneity. Note that there exists n;+n;—1 in-
dependent equations for each pair (ij) in the n;+n;—1 unknown
X/ X;'s and X;/X;’s. Moreover, from Lemma I-2, the optimal factor
proportions are continuously differentiable function of only g;/g;;’s and
ag;/aj’s. Hence one has

d ..
B'CE(X,‘JX”) = 0, k# L],
which implies also that

L (XX =0,  k#ij (11-2)
3G

On applying the dual transformation, equation (II-2) becomes

_a_(aG/aQIr) — k# i,.is i’jvk = lv--um’
dqi \0Gl3q;s ’ r=1,.,n, s=1l..,n t=1,.,m

Hence G is strongly separable. The converse is proved similarly.
Q.E.D.

Corollary 8.1. Under Assumptions (F.1) through (F.7), a produc-
tion function is homothetic and strongly separable if and only if the
normalized profit function is homothetic and strongly separable.

Proof: Homotheticity follows from Theorem II-2. Otherwise essen-
tially the same proof of the theorem suffices. Q.E.D.

Note the crucial role of the homogeneity of each category function.
Otherwise it will not be possible to express X;/X; as a function of only

{ql'tsqit }‘

Definition. A function is said to be homothetically separable if it is
weakly separable and each category function is homothetic. (Note
that the function itself need not be homothetic.)
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We now introduce Lemma II-3, which is also proved in Lau (1969a).

Lemma II-3. A homothetic and weakly separable function is
homothetically separable.

Theorem II-9. Under Assumptions (F.1) through (F.7), a produc-
tion function is homothetically separable if and only if the normal-
ized profit function is homothetically separable.

Proof: The first order necessary conditions are

axi/aXir _ Xi(la“'axin‘»/Xil,Z) _ .g_'L
aXoX; X{(l,---,XinI/Xn,z) qit

Thus by an argument similar to that in previous theorems one has

__3___ aG/aq") _ . .
EPR (aGlaq.-s =0, j#i, Vns.t

, r= 2,..-,",‘.

The converse is proved similarly. Q.E.D.

Corollary 9.1. Under Assumptions (F.1) through (F.7), a produc-
tion function is homothetic and weakly separable if and only if the
normalized profit function is homothetic and weakly separable.

Proof: This follows from Lemma II-3 and the Theorem 1I-9. Q.E.D.

Theorem II-10. Under Assumptions (F.1) through (F.7), a produc-
tion function and its normalized profit function are strongly sepa-
rable (but not additively separable) with respect to the commodity
categories and thé corresponding price categories respectively only
if they are homothetic.

Proof: Strong separability of both F and G implies
¥ = F (3 X X X))
=1
and

m*=G (2 Q'(@n-dinsD))



Applications of Profit Functions 161

Now

3FlaX, X U Xty s XinpZ) (11-3)
3F/3X,5 X'i(X“,...,Xjnivz)'

Applying the dual transformation to equation (II-3), we have

g _ X(~ 8Gl3qi,..., — 3G/9q i, L) (I1-4)
CIjs XJS(— aG/aql'ly'"s_ aG/aqm"Z).

Differentiating both sides of equation (II-4) by qu k+# i,j, and observing
that

°G
3Gird0qu:

= G"Q;Q1,
equation (II-4) becomes
XIS XiG'QiQk - Xi X XirG"QiQ: =0. (I1-5)
1=1 I=1

Now G" # 0, otherwise the production function is additive in the X‘'s by
Theorem II-7. which is ruled out by hypothesis. Moreover, observe that

G’Q} = — Aj.
Hence, equation (I1-5) becomes, after multiplication by G'|G"Qf,

o 0 (X, o (XD
12=! X (X's) Xi’+,§=:, 80X, (X{:) Xi=0.
By Euler’s Theorem, (X'/X}) is homogeneous of degree zero in X,

Vijrs. By Lemma 1I-1, F is homothetic, and by Theorem JI-1, G is also
homothetic. Q.E.D.

Note that by Lemma II-2 then, the X;’s are either homogeneous of the
same degree or are logarithms of homogeneous functions.

Theorem II-11. Under Assumptions (F.1) through (F.7), a produc-
tion function and its corresponding normalized profit function are
both weakly separable only if they are both homothetically sepa-
rable.

Proof: Let the production and normalized profit functions be

Y = F(XI(XIls'--lean)a---,Xm(Xm19---9anm,Z)yZ)’
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and
H* = G(Ql(q1Ir--sQIn,aZ),---,Qm(Qml,---,anm’Z)sZ)-
It is necessary to show that each X' and hence each G’ is homothetic.
The proof is strictly analogous to that of Theorem II-10. Applying the
dual transformation to the first-order necessary condition, one obtains
air _ X:(— 3G/5qis,-.., ~ 3G|3q i) (I1-6)
qis X(—3Glagu,...,— 8G/3q, L)
Differentiating both sides of equation (II-6) by g;, j# i, we have

P g 3’G PO 3°G \ _
X 121 Xﬂ( 3q,—,6,~,) X rlz:l Xﬂ( qu'laqi:) =0 (I11-7)

For a weakly separable normalized profit function
G 0i 3G _
34:0q; 19Q'9Q’

Hence, equation (II-7) becomes

Q{ = Qf'Gij'Qf-

> (xxh- XXX (2) 0 =0,

Now, Gi#0 and G;# 0, the latter because of weak (but not strong)
separability. Therefore,
o 3 (X! B
=1 0.Xa (Y's) Xa=0.
By Euler’s Theorem, (X;/X ) is homogeneous of degree zero, Vr.s. By
Lemma II-1 each X' is homothetic. By Theorem II-9, each Q' is
homothetic. Q.E.D.

These theorems are useful in specifying technologies with multiple
variable input categories. They also have application in aggregation, in
the construction of quantity and price indices and in the analysis of
organization and information structures.

It should be noted that homogeneity, separability and other similar
properties of the normalized profit function considered here may be
alternatively deduced through the cost function by utilizing the general
composition rules for cost functions in Theorem 9 in Chapter 1.1 along
with direct arguments on maximization of Y — C(Y,q,Z) where C is the
cost function. Here we have relied primarily on the Legendre trans-
formation because the proofs are more direct and immediate. Of course,
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the proofs only apply under conditions which allow the use of the
Legendre transformation, for example, under Assumptions (F.1) through
(F.7) on the production function.

2.2. Structures Involving Fixed Inputs

Thus far we have not examined structural properties which involve the
fixed inputs Z. Normalized profit functions with fixed inputs are some-
times referred to as normalized restricted profit functions [see Lau
(1976a)]. To analyze structures involving fixed inputs, we introduce the

concept of almost homogeneity.

Definition. A function F(X.Z) is almost homogeneous of degrees
k, and k, in X and Z, respectively, if

F(AXA%Z)=AF(X,Z), va>0." (11-8)

The economic interpretation of an almost homogeneous production
function is the following: if a set of inputs X is increased by the same
proportion and another set of inputs Z is increased by some power of
that proportion, then output Y will be increased by another power of
that proportion. In the special case that k; = k,=1, we have constant
returns to scale in all inputs.

It will be shown that an almost homogeneous function satisfies a

modified Euler’s Theorem.

Lemma II-4. A continuously differentiable function is almost
homogeneous of degree k; and k; if and only if
i oF - oF

2 ox; Xtk 257

Z, =k F(X,Z). 11-9)
Proof:
Necessity. If F(X,Z) is almost homogeneous it satisfies equation (II-8).
Differentiation of equation (II-8) with respect to A yields
i aF =~ dF

A 9 kL7 = k-1
Y ax Xtk 2 5z A Zi= kAN FRD).

1Qee Aczel (1966, Ch. 7) for a discussion of almost homogeneous functions. Lau (1972)
defines almost homogeneity in a slightly different manner.
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This must hold identically for all A > 0 and in particular for A = 1. Hence

oF oF
zax X + kzzaz -Z; = k,F(X,Z).

1

Sufficiency. Suppose F(X,Z) satisfies equation (II-9). We note that
6F aF 1 Z“kz

3Z; aZ‘ 2k, ’
one may therefore rewrite equation (II-9) in the form

3 S5 Xi+ 3 5o 2= kF (X.2).

Thus, by Euler’s Theorem, F must be homogeneous of degree k, in X
and Z"*2. In other words,

F(X.Z)= H(X,Z"),
where H is homogeneous of degree k;.

F(AX,A%Z) = H(AX,(A“Z)")
=HA\X,AZVk
=AMF(X,Z). Q.ED.

Theorem II-12. Under Assumptions (F.1) through (F.7), a produc-
tion function is homogeneous of degree k in all inputs, variable and
fixed, if and only if the normalized restricted profit function is
almost homogeneous of degrees —1/(1 — k)and —k/(1 - k)if k# 1,and
homogeneous of degree one in Z if k= 1.

Proof: By Euler’s Theorem,

2 X+2 Z; = kF.

By a dual transformation, one has

R ase 2z it (O Fats)

di I
which simplifies to
k

m 3G 1| &G, .
25" B2z %4= T-nd i k1




Applications of Profit Functions 165
or to
n G .
—Z; = if k=1.
35z
The converse is proved by retracing the steps. Q.E.D.

Note that k > 1 implies increasing returns to scale in all inputs. For the
purpose of this theorem k may be either greater than or less than one.

Corollary 12.1. Under Assumptions (F.1} through (F.7), a produc-
tion function is homogeneous of degree k in Z, k > 0, if and only if the
normalized restricted profit function is almost homogeneous of
degrees 1 and 1/k.

Proof: By Euler’s Theorem,

n9F
;-éz-z[—kF.

By a dual transformation, one has

m G 1 &G .,

Thus, G is almost homogeneous of degrees 1 and 1/k. The converse is
proved similarly. Q.E.D.

Corollary 12.2. Under Assumptions (F.1) through (F.2), and
homogeneity of degree k, k# 1 in all inputs, the derived demand
functions are almost homogeneous of degrees —1/(1—k) and
—kf(1 - k).

Proof: This follows from differentiating the next to the last equation
in the proof of the theorem. Q.E.D.

Next we wish to characterize the normalized restricted profit function
corresponding to a homothetic production function. A production
function is homothetic in X and Z if it can be written in the form

Y = F(H(X,Z)),

where F is a positive, finite, continuous and strictly monotonic function
of one variable with F(0)=0 and H is a homogeneous function of
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degree one in X and Z. Homogeneity of H implies that H(0,0)=0. If
F(-.,) is non-negative and strictly monotonically increasing on RY X R,
then one can always choose F and H such that F(-) and H(-,") are both
non-negative and strictly increasing on the non-negative real line and
R7T x R", respectively. Monotonicity of F(.,.) implies that F(-} and H(.,.)
must be monotonic in the same direction. Subject to the convention that
H(-.-) is strictly increasing on R7 X R%, Euler’s Theorem requires that
H(-.,”) be non-negative on RT x R". Thus both F(-) and H(-,-) can be
chosen to be non-negative and strictly increasing on R, and R xR",
rgspecuvely. Given F(0) = 0, this implies that F(-) will be non-negative on
R..
We introduce Lemma II-5:

Lemma II-5. Under Assumptions (F.1) through (F.7), a production
function is homothetic in X and Z if and only if

- dF 5 oF
2 ox Xi+ 257 Zi = f(FX.2),

where f is an arbitrary, finite, non-negative function of a single
variable with f(0) =0, continuous on R, and continuously differen-
tiable on R,.

A proof of a similar result is available in Lau (1969a). We omit the
proof.

Theorem II-13. Under Assumptions (F.1) through (F.7), a produc-
tion function is homothetic in X and Z if and only if the normalized
profit function satisfies the equation

: G,
Sate 2z e e-2ats) (-10)

where f is an arbitrary, finite, non-negative function of a single
variable with f(0) =0, continuous on R. and continuousty differen-

tiable on R,.

Proof: The proof is immediate using Lemma II-5 and the dual trans-
formation
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aF _ oF _ 3G

ax. I 8z 3z
G - G

X, ===, FXZ)=G- ;= .E.D.
aq; X.Z) Z: q aq; Q

There remains the question of a nomenclature for the class of
functions defined by equation (I1I-10). We know from Theorem II-12 that
homogeneous functions are dual to almost homogeneous functions. We
shall refer to functions satisfying equation (II-10) as partially homothetic
functions.

Theorem I1-14. Under Assumptions (F.1) through (F.7), a produc-
tion function is homothetically separable in X, that is,

Y = F(H(X),Z),

where H is a homogeneous function of degree one if and only if the
normalized restricted profit function is homothetically separable,

that is,
IT* = G(H*(q),Z),

where H* is a homogeneous function of degree one.

Proof: This follows from Theorem II-2. Q.E.D.
Corollary 14.1. Under Assumptions (F.1) through (F.7), a produc-
tion function has the form

Y = F(H(X).f(2))

where H is a homogeneous function of degree one if and only if the
normalized restricted profit function has the form

IT* = G(H*(q).f(Z)),

where H* is a homogeneous function of degree one.
Proof: Obvious. Q.E.D.

Coroliary 142 Under Assumptions (F.1) through (F.7), a produc-
tion function is homothetic in X and Z and weakly separable in X
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and Z if and only if the normalized restricted profit function is
partially homothetic in q and Z and weakly separable in q and Z.

Proof: By Lemma II-3, homotheticity and weak separability of
F(X.,Z) in X, Z implies that

Y = F(H(X),HAZ)),
where F(H,,H;) is homothetic in H, and H, and H, and H, are
homogeneous functions of degree one. By Corollary 14.1,

I1* = G(H #(X),Hx(2)).

Partial homotheticity follows from Theorem II-13. The converse is
proved similarly. Q.E.D.

Theorem II-15. Under Assumptions (F.1) through (F.7), a produc-
tion function and its corresponding normalized restricted profit
function are both separable in X and q respectively only if either
they are homothetically separable in X and q respectively or they
are additive.

Proof: The first-order necessary conditions for maximization imply
that

IF19X; _ 3flaXi(X,,-.. Xm) _ Qi
3FIaX; oflaXi(X,....Xm) G

By a dual transformation this becomes

fit—38G/3qy,...,— 3GI3G,) _
fi(-aGlaqi,....~3Glog.)  a;

Differentiating this equation with respect to Z,, we obtain

3’G 3°G \ _
Ji Z fu (_ afhazk) —fi Z i (_ BQzBZk) =0. (-11)

Since G is separable [IT* = G(g(q).Z)],

3’G_ _ 3G ag
3q0Z, 93898Z; 3q

We know X = —3G/ag-dg/aq. Thus, equation (II-11) becomes
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fi 21: fuXi—f; 2: fiXi =0,

or f(X) is homothetic.
An exceptional case arises if Gy =0, Vk. Then

G(q.Z) = g(q) + h(Z),
and then by Theorem 11-4,
F(X.Z)=fX)+h(Z). QE.D.

Additional results on the structure of normalized restricted profit
functions can be found in Lau (1976a).

Based on these theorems, one can specify G(q,Z) depending on the
assumptions one wishes to impose on the underlying technology. As
seen in Lau (1969c), it is generally difficult to obtain closed form
solutions for the normalized profit function for even simple technologies
when some inputs are fixed. With the device of the normalized restricted
profit function, this problem of specification is circumvented. Nonethe-
less, we are assured that the resulting system of conditional supply and
demand functions may be derived from an underlying neoclassical
technology and that all the empirically relevant assumptions have been
incorporated.

3. Extensions to Multiple Outputs
3.1. Introduction

A natural extension of the concept of profit functions is to the case of
multiple outputs. This has been accomplished by McFadden (1966). Here
we shall point out certain special properties of multiple output profit
functions as well as derive several theorems on the structure of such
functions. Our results may be further extended to include technologies
in which the same commodity may be used either as a net input or a net
output, depending on the market prices. Such technologies are not
infrequently found. An example is the purchase and sale of farm-
produced fertilizers by agricultural households. Further examples are
‘those of international trade. and the purchase and sale of new and used
equipment. The advantage of this approach is that there need be no
arbitrary partition of commodities into inputs and outputs.
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The theory of the multiproduct firm has been analyzed by Mundlak
(1964). The properties of profit functions have been studied by McFad-
den (1966), Diewert (1973a) and Jorgenson and Lau (1974a and 1974b).
Christensen, Jorgenson and Lau (1971 and 1973) have aiso made an
empirical application to the U.S. economy. In addition, Hall (1973) has
approached the problem from the point of view of joint cost functions,
using a generalization of the Generalized Leontief cost function due to
Diewert (1971). The basic duality concepts which underly all these
studies may be traced back to the pioneering work of Shephard (1953).

For a multiple-output, multiple-input firm, there is no natural
numeraire commodity, such as the single output, to define the produc-
tion function representation of the technology. Following Jorgenson and
Lau (1974a and 1974b), we shall adopt the convention of choosing as our
left-hand-side variable for the production function a variable input
which is non-producible. In addition, every commodity is measured as if
it were a net output. Thus, a net output is always non-negative. A net
input is always non-positive. For the purposes of this paper we maintain
the artificial distinction between a set of commodities which are net
outputs and the set of commodities which are net inputs.” A more
general treatment should allow a commodity to be either a net output or
a net input depending on the prices and fixed factors.'

Let X,.1 be the quantity of the left-hand-side variable and non-
producible net input, Y; the quantity of the ith net output, i = 1,...,n, and
X; the quantity of the ith net input, i =1,....m. By convention then
X,=0,X;,=0,Vi, and Y; =0, Vi The production function is given by

= - Xm+1 = F(Y’X)’

the minimum value of L for given values of Y and X such that the
production plan (Y, X,— L) is feasible.

It is assumed that F(Y,X) possesses certain properties, which paraliel
similar properties of the single-output case:

(F*.1) Domain. F is a finite, non-negative, real-valued function
defined on R} X R™-F(0,0) = 0.

(F*.2) Continuity. F is continuous on R%x R™.

“This actually involves little loss in generality since the functional consequence of an
output and an input being the same ‘“‘commodity™ is that they are two products whose
prices are in fixed proportions in the market.

“See Chapter 1.1 and Jorgenson and Lau (19742 and 1974b).



Applications of Profit Functions 171

(F*.3) Smoothness. F is continuously differentiable on R} X R”,
and the Euclidean norm of the gradient of F with respect to Y and
X is unbounded for any sequence of Y, X in R X R” converging to
a boundary point of R X R™.

(F*.4) Monotonicity. F is non-decreasing on R" x R™ and strictly
increasing on R X R”.

(F*.5) Convexity. F is convex on R x R™ and locally strongly
convex on RI X R”.

(F*.6) Twice Differentiability. F is twice continuously differenti-
able on R1 X RZ.

(F*.7) Boundedness.

lim FAY.AX)_

A =D A ’

We note that one consequence of our domain assumption is that for
any given vector of net inputs X, any vector of net outputs Y may be
produced with an appropriate choice of L. In other words, any one of
the net inputs X may be indefinitely substituted by L. This is admittedly
a restrictive assumption. For example, the technology represented by

VY XER"XR"YX#0.

- [ortre]
Yi+Y: X
violates our domain assumption, for if Yi+ Y3>~-X, L is negative.'’
However, as indicated in Section 1.3, it is a relatively straightforward
matter to introduce a more restrictive domain assumption and make
corresponding changes in the assumption on G. We therefore maintain
our domain assumption as it stands for the sake of simplicity of

exposition.
The normalized profit function is given by

G(p.q) = su)?{p’Y +¢'X - F(Y.X)IY.XE€ R xR},
Y.

where p and q are respectively the normalized prices of Y and X in
terms of L. The corresponding properties of the normalized profit

""This example is due to Daniel McFadden.
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function are:

(G*.1) Domain. G is a finite, positive, real-valued function
defined on R? X RY.

(G*.2) Continuity. G is continuous on R{ x RY.

m

(G*.3) Smoothness. G is continuously differentiable on R X RY,
and the Euclidean norm of the gradient of G with respect to p and q
is unbounded for any sequence of p, q in R7 X RY converging to a
boundary point of R7 x RT.

(G*.4) Monotonicity. G(p.q) is strictly increasing in p and strictly
decreasing in q on R7 X RY.

(G*.5) Convexity. G(p.q) is locally strongly convex on R{ X RY.

(G*.6) Twice Differentiability. G(p,q) is twice continuously
differentiable on R x RT.

(G*.7) Boundedness.

im GARAQ _ gy ae R xR

A= A ?

It can be proved that Assumptions (F*.1) through (F*.7) imply
Assumptions (G*.1) through (G*.7) and vice versa. The proof closely
parallels the arguments used earlier in the single output case. We omit
the proof. Properties of profit functions under more general conditions

are derived in Chapter I.1.
As in the single output case, the Legendre transformation also holds in

this case. with the following dual relationships:

oF _ aG _
Yo P op v
aF _ 3G _
X% 3q
F+G=pY+(dX
aF aF 3G aG
= W-Y + ﬁ-x; = p'a;‘i' -a—q-
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These dual relations may also be used in the study of relationships
between classes of production functions and normalized profit functions.

3.2. Homogeneity and Separability

In the case of a multiple output and multiple input production function,
the ordinary concept of homogeneity of the production function needs
to be modified. Intuitively, we want to say that a production function is
in some sense homogeneous of degree k if, when all net inputs are scaled
by the same proportion A, A >0, all net outputs are scaled by the same

proportion A* In other words, if
L = F(Y.X),

then
AL = F(A*Y.AX),

or
F(A*Y.AX) = AF(Y X).

This corresponds precisely to the concept of almost homogeneity
introduced in Section 2.2. The production function is almost homo-
geneous of degree 1 and k."

Theorem III-1. Under Assumptions (F*.1) through (F*.7), a
production function is almost homogeneous of degree 1 and Kk,
k <1, in outputs, if and only if the normalized profit function is
homogeneous of degree 1/(1— k) in the normalized output prices.

Proof: By Lemma II-4 almost homogeneity implies
& oF o dF o _
k Z. 3Y Y: + 2} aX‘_-X,- = F(Y.X).
By a dual transformation, this equation becomes

& G > 9G _ _ 029G 5 9G
k;piap;+EQi6qf_ G+.2=‘18p.-p‘+2 ;s

"Nothing requires that the scale effects be uniform. One may in fact have

FAMY, A2Y5,... AMY,:AX) = AF(Y X).

This is a straightforward generalization of almost homogeneity.
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or
] ap, (1 -k)

The converse may be proved by retracing the steps. Q.E.D.

Coroilary 1.1. Under Assumptions (F*.1) through (F*.7), and al-
most homogeneity of degrees 1 and k,

* =
R*=2 G
and

k
* =
C == °

where R* is the profit-maximizing normalized revenue and C* is the
profit-maximizing normalized cost.

Proof: This follows from the last equation in the proof of the
theorem. Q.E.D.

Corollary 1.2. Under Assumptions (F*.1) through (F*.7) and al-
most homogeneity of degrees 1 and k, the derived supply functions
of the outputs are homogeneous of degree 1/(1 — k) in p.

Proof: These follow from the properties of partial derivatives of
homogeneous functions. Q.E.D.

Lemma IIT-1. Under Assumptions (G*.1) and (G*.5), the profit
function,

II(p*.q*.w) = wG(p.q),
is homogeneous of degree k in p* if and only if it 1s homogeneous of

degree (1 — k) in q* and w.

Proof: It is well-known that II(p*,q*,w) is homogeneous of degree
one in all prices. Hence

all Il
Zp, ap, Zq?‘ 6q?‘+ wa—w—H.

=1
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By hypothesis, IT is homogeneous of degree k in p*. Thus

z all d all oIl
2 pi = k=1 29 5 Y

which simplifies to

The converse is proved similarly. Q.E.D.

Corollary 1.3. Under Assumptions (F*.1) through (F*.7), the
production function is almost homogeneous of degree 1 and k if and
only if the profit function is homogeneous of degree —k/(1—k) in

the input prices.

Proof: This follows directly from the theorem and Lemma III-1.
Q.E.D. .

With multiple outputs and inputs a technology is said to be separable
in outputs and inputs if there exist functions f(-) and g(-) such that

f(Y)-gX,L)=0.

In terms of our particular representation of the production function, it is
equivalent to

L = F({(Y).X).

We shall work with separability in this form. _
A profit function, IT(p*.q*,w) is said to be separable in outputs and
inputs if it can be written in the form

I(f(p*).g(q*,w)).

Lemma HI-2. Under Assumptions (F*.1) through (F*.7), a sepa-
rable production function is almost homogeneous of degree 1 and k
if and only if it can be written in the form

L = H\(HxY).X),

where H, is a homogeneous function of degree one in H> and X and
H, is a homogeneous function of degree 1/k.
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Proof . Almost homogeneity of F(f(Y),X) implies that

mn

2 L/ Y+§_:———X F

This 1mphes that

m

F(FX) - (aF6X)(fX)- X,
af Y - i=1
7y, 1 kKQ@FaN(X)

h

i

But the left-hand side is a function of Y only. Thus one must have

n af _
; 3Y, Yi - g(f)'
By Lemma II-5. f is homothetic. Without loss of generality, one may
assume that f is homogeneous of degree 1/k. making necessary accom-

modations in F(f.X). Thus

n af
,21 aY; Y=y f )
Substituting this into the original differential equation we obtain
- oF
af f i=1 aX X F

that is, F is homogeneous in f and X. [t may be verified immediately that
H(H A Y),AX) = AH(HY),X). Q.E.D.

Lemma III-3. Under Assumptions (G*.1) through (G*.7), a profit
function is weakly separable if and only if it can be written in the

form
I = H(H(p*),H:(q*,w)),

where H, H,, H, are all homogeneous functions of degree 1.

Proof: I(f(p*),g(q*,w)) is homogeneous of degree one in p*, q*, w.
Thus

or
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T ¥ (agloqt)at + (aglaw)w)
257l = (@TITaD) '

And II(f(p*),g(q*,w)) may be chosen so that it is a homogeneous
function of degree one of two homogeneous functions of degree

one. Q.E.D.

Corollary 3.1. Under Assumptions (G*.1) through (G*.7), a profit
function is weakly separable if and only if the normalized profit
function can be written in the form

G = H(H\(p).g(q)),

where H and H, are homogeneous functions of degree one.

Proof:
G - H(Hl(p*)’H2(q*9w))
w
- p(He) LECWR)
w w
= H(H,(p),H2(q.1))
= H(H(p).g(q))-

The converse is obvious. Q.E.D.
We refer to such a normalized profit function as separable.

Corollary 3.2. Under the Assumptions (G*.1) through (G*.7), a
profit function is separable in the input prices if and only if the
normalized profit function can be written in the form

G = H(p.f(@)),

where H is a homogeneous function of degree one in p and f.
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Proof: We apply Lemma III-3, treating the price of each output as a
separate group. Q.E.D.

Separability of the profit function implies that the optimal output
proportions are independent of input prices and vice versa.

Theorem III-2. Under Assumptions (F*.1) through (F*.7), a
production function is almost homogeneous of degree 1 and k and
separable if and only if the normalized profit function is homo-
geneous of degree 1/(1—k) in p and separable.

Proof: Almost homogeneity is equivalent to homogeneity by Theorem
III-1. By Lemma III-2,

aLIaY; _ (GH,aY)(Y) _p;
8L[3Y; (aHY/aY)(Y) p/

where H, is homogeneous of degree 1/k. Then by the now familiar
argument, (3G/ap;)/(3G/ap;) is independent of q;, Vk.
Also by Lemma III-2, *
BL _3H: o _
GX,- - 3)(, (HZ!X) = 4g;
But H, is homogeneous of degree one which implies that aH,/3X; is
homogeneous of degree zero. Thus,

(K K)o o
ax, \VH R, qi, N

Xi/H, may be solved as functions of g alone. Hence Xi/X; or
(8G/3q:)/(8G/aq;) is independent of p. Thus, we have shown that IT* =
G(f(p).g(q)), where G is in addition homogeneous of degree 1/(1—k) in
p- By Euler’s Theorem,

G <~ of 1
Zydp=-—r-q
f B P T a—n

By the usual argument, one can choose

"ﬁ . 1
2P =i ¢
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Therefore,
dilinG =1
3dInf ’
or

InG =1inf+ h(g).
Thus, one has
G = H](p)l/(l_k)g*(q)’

and hence G is separable.
To prove the converse, note that separability of the normalized profit

function implies, by Lemma III-3, that it has the form

G = H(H{p).g(q))-
Homogeneity of G of degree 1/(1—k) inp implies that

oG ., _ 1
‘b?I‘]‘Hl —_(l—k) G.

Hence

G(p.q) = Hi(p)""“g*(@).
It then follows from homogeneity of H(p) by the usual argument that
(aF/9Y)/(3F|3Y;) is independent of X. Almost homogeneity of F follows
from homogeneity of G(p,q) in p. Q.E.D.

Corollary 2.1. Under Assumptions (F*.1) through (F*.7), a
production function is almost homogeneous and separable if and
only if the profit function can be written in the form

(p*,q*,w) = Hi(p*)"" "V Ha(q*,w) """

Proof: This result is obtained by straightforward substitution.
Q.E.D.

Theorem III-3. Under Assumptions (F*.1) through (F*.7), a
production function is homothetically separable in outputs if and
only if the normalized profit function is homothetically separable in

output prices.
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Proof: By hypothesis, L = F(H(Y),X). Thus,

8H|3Y: _ pi

oH|3Y; p;
Hence the optimal output ratios, (8G/ap;)/(dG/dp;) may be solved in
terms of (pi/p;)’s alone. Moreover, they are homogeneous of degree zero

in p. The normalized profit function is therefore homothetically sepa-
rable in output prices. The converse is similarly proved. Q.E.D.

Theorem III-4. Under Assumptions (F*.1) through (F*.7), a
production function is homothetically separable in inputs if and only
if the normalized profit function is separable in input prices, that is,
has the form

G= g(q)g*( g?q))-

Proof: Homothetic separability in inputs implies that
L = F(Y,X) = H(f(Y),X),

where H is homogeneous of degree one in f(Y) and X. This can be
alternatively written as’

L=f(Y)g (%—))

The first-order necessary conditions for a maximum are

Lo ()oa 0=t
aXi gl (Y) ql’ 3=y hd

Thus, one may solve X/f(Y) as unique and continuously differentiable
functions of the q alone. This implies

Xi = gHq)f(Y).
Substituting this into the production function we have
*=max{p’Y + f(Y)g(q)}
= (P )
g(q)g ( 2(@)
By Theorem II-3. The converse is proved similarly. Q.E.D.
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Theorem III-5. Under Assumptions (F*.1) through (F*.7), a
production function is homothetically separable in both outputs and
inputs if and only if

G(p.q) = g(q)g* (%(%))”))'

where H is 2 homogeneous function of degree one.

Proof: This theorem follows directly from the two previous
theorems. Q.E.D.

Theorem III-6. Under Assumption (F*.1) through (F*.7), a
production function and its corresponding normalized profit
function are both separable in outputs only if either they are
homothetically separable in outputs or they are additive.

Proof:
F(Y X)= F(f(Y),X),
G(p.g9) = G(g(p)q)-

The first-order necessary conditions for a maximum imply

[ YY) _ pi
fj(Yh---vYn Pj.

By a dual transformation, this becomes

fi(aG/aplv":aG/apn) — E_J
f{(8G/ap,...,8Gldp,)  p;’

Differentiating these equations with respect to g, we obtain

fi Zn] fiGu — f; g faGu = 0.

But
Gu = Gugi, Gi=Gag =Y.

Hence
fi 121 fi¥Yi—fi gl faY; =0,

which means fiff; is homogeneods of degree zero in Y. Hence f is
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homothetic in Y by Lemma II-1. It follows from Theorem II-9 that g(p)

is also homothetic.
An exceptional case arises if G, =0, Vk. Then

G(p.q) = g(p) + h*(q).
And by Theorem II-7,
F(Y.,X) = f(Y)+ h(X). Q.E.D.

Extension to the case with fixed inputs is straightforward and will not be
repeated here.

3.3. Non-Jointness in Production

The problem of non-jointness has been investigated by Samuelson (1966)
who derives necessary and sufficient conditions for a production
function to represent a non-joint technology. Hall (1973) has approached
the problem using the joint cost function. It turns out that the assump-
tion of non-jointness of the technology implies very simple restrictions
on the matrix of second partial derivatives of the normalized profit
function. We shall present these results. First of all we give a definition.

Definition. A production function L = F(Y X) is said to be non-joint
in inputs if there exist individual production functions,

Li = fi(YbX]i;XZi,---’Xmi), i= 1,-..,"..
such that

F(Y,X) = min {z f,‘(Y,',X”,Xz,',...,Xm,')Iz X},‘ = X’j, ] = 1,...,m }
i=1 i=1

A production function is said to be non-joint in outputs if there exists
individual production functions,

L = go(Y105e-> Yno)»
Xi = gl( Yliv",Ym'), l = 15---9ma

such that
F(Y,X) = min {go( YlO,--'7Yn0)IXi = g.( Ylia---QYm')’ i= 1,....m,

z Yj,' = Y,’, j‘—_ 1,...," }.
i=0
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The minimum in these two definitions ensure that all the inputs (and
outputs) are allocated amongst the individual industries so that produc-
tion is efficient, that is, the output of no one industry may be increased
without decreasing the output of another industry. (And no one input
may be decreased without increasing another input.)

The normalized profit function of a technology characterized by
non-jointness in inputs has a very simple representation: it is the sum of
the individual normalized profit functions corresponding to the in-
dividual industry production functions. This is embodied in the following
theorem:

Theorem IIT-7. Under Assumptions (F*.1) through (F*.7), a
production function is non-joint in inputs if and only if its normal-
ized profit function is additive in p, that is,

H* = Zl Gi(Pia‘])-

Proof:
Necessity.

H*

I}/\%}l(x {2 piY;+ 21 q; 2] Xi— 21 fi(Yi,Xn,---,Xmi)}
X if = = i=

i=1
i=1
n

max {piY,- +3 4% —fimx”,...,xm.-)}
[Xat] =
= G

Sufficiency. Given IT* = X", Gi(p,q), one can find for each Gi(piq) a
unique production function L; = fi(Y,Xis... Xmi). Thus, the technology is
non-joint in inputs. Q.E.D.

Corollary 7.1. Under Assumptions (F*.1) through (F*.7), a
production function is non-joint in inputs if and only if
3*G
apidp;
where G is the normalized profit function and p is the vector of
normalized output prices."”

=0, i#j, Vij,

Proof: This follows directly from the theorem. Q.E.D.

This condition is also given by Diewert (1973a).
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Note that duality of .-, Gi(pi.q) to a non-joint in inputs technology is
an immediate consequence of the convolution theorem for profit
functions in Chapter L. 1.

Corollary 7.1 provides a very useful necessary and sufficient condition
for the characterization of a “non-joint in inputs” technology. In partic-
ular, it lends itself to straightforward empirical tests. In retrospect: it
turns out that our conditions here are completely equivalent to the
conditions stated by Samuelson (1966) on the Hessian of the production
function. One needs only recall from Section 1 that the Hessian matrix
of the normalized profit function G(p.q) is the inverse of the Hessian
matrix of F(Y,X). Hence singularity conditions on the minors of the
Hessian matrix of F are equivalent to zero conditions on the elements of
the Hessian of G(p.q).

On the other hand, in the case of non-jointness in outputs, it is easy to
see that the normalized profit function is given by

IT* = Go(p) + E_:l q.G; ('g')
Theorem III-8. Under Assumptions (F*.1) through (F*.7), a
production function is non-joint in outputs if and only if 1ts normal-
ized profit function can be written in the form

IT* = Go(p) + 2 4G (%)-

Proof: Obvious. Q.E.D.

3.4. Summary

We may summarize the results of Sections 3.2 and 3.3 by way of a table
which describes the restrictions on the normalized profit functions under
alternative combinations of assumptions on the technology. The alter-
natives considered are as follows:?

(1) almost homogeneity of the production function,
(2) direct separability,

OThis table is different from that of Lau (1972) in two respects: first, the forms are
specified in terms of the normalized profit function; second, some of the errors have been
corrected and “open’ questions have been closed.



TABLE 1
Functional forms of normalized profit functions under alternative assumptions.

(h Hpa@
) sup {H,(A,p)— G(Aq)}

@)

4) }_‘, Gi(pi@
m ] . 2
®)  Gopr+ 3, aG; ( q.~)
MH+Q2 H'PG@)
(D+(3)  H*P)Gla)
(1) +(4) El piGia)
M+65)  Hi@+3 q.—H:‘(a‘i)
i=1 il
(2)+(3)  Same as (3)

@D+@ FeSac (—‘3‘—)+ G@
=

...F (q)
@+5)  GHEN+3 4G, (”—;"—’
i=t i

3) G(q)G*(

)+ H*(p)

El a.-p?] G(qQ)'"™* + G(q)

(3)+ @) [
@+ [ar+ 3, eat| HE 4+ HE)
i=1
[a

3

[8)
il ) q‘.
,. ot Zeln (H(p))] Hp)
CRIONEDY [8.‘0(17:') +2 ag¥ (%)}
i= = u

MH+@+3) H'PMGW

M+2)+(4) Same as (3) + (4)

M+ @)+ (5) Same as (3)+ (5)
()+(3)+(@  Sameas 3)+4)
(H+3)+(3 Same as (3)+(5)
@rw+er 3 api| + ES g

*This implies that the production functions for all outputs are identical up to a
multiplicative constant. Both Denny (1972) and Hall (1973} have independently
discovered this result in the context of joint cost functions.

bLikewise, this implies that all the production functions are identical up to a multi-

plicative constant.
“This implies a fixed-coefficients type technology. Note that this violates our local strong

convexity assumption. In principle,

[ao‘*’g aiq}—k] [Z »3:'1»’1“]

is a possible solution. However, this solution cannot satisfy the monotonicity and con-
vexity conditions simultaneously.
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(3) indirect separability,
(4) non-jointness in inputs,
(5) non-jointness in outputs.

F(-) and G(-) are used to denote arbitrary functions: H(-), H*(-) and
H**(-) are used to denote arbitrary homogeneous functions; and H'(-) is
used to denote arbitrary homothetic functions. A subscript denotes the
set of variables in which the function is homogeneous or homothetic. A
superscript denotes the degree of homogeneity when it is different from

one.
Many of these combinations are obvious. We shall derive three of the

relatively less obvious ones.

3.4.1. Derivation of (2)+ (4 and (2)+(5)

Direct separability implies that the normalized cost function of produc-
ing f(Y) can be written as

C* = G(f(Y).q). (IT1-1)

Non-jointness in inputs implies that the normalized cost functions can
be written as

C*= 2 fi(Yi,q). (IT1-2)

We note that C* is characterized by (8°C*)/(3Y:dY;) =0, i# j. Differen-
tiating equation (III-1), we obtain

3’C* 3G 9 | 3°G of of

aYaY,  of aYaY,  aff ay, ey, O F)
which implies
O°Glof* _ _ (’PIGYeY) . 3G,
3G/ of (3flaYDl(aflaY;y afr
or
F*f . 9°G _
3Y,'3Y,-_-0’ if —672——0.

We note that in the first case the right-hand side of the equation is
independent of q. Hence the left-hand side is independent of q. Further
we observe that the left-hand side may be written as (8/3f) In (3G/3f)
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which is a function of f alone. Thus, by successive integration we obtain
G(f,.9) = g(Hhi(q) + hxAq),

which becomes, in order to satisfy equation (I11-2),
C*= Z} g.'(Y,-)hl(q)-F ha(q).

Note that this implies that the isoquants of each industry have the same
shape although the numberings may differ.
Now the normalized profit function is given by

11 = max (35 0¥ 3 sYon@- hz(Q)}

a3

EX {p:Y:— gi( Yo hi(q)} — hi(q)

- S Di
h(q) %, max {hl(q)

= hl(q)?;:l g% (R%l—)) - hyq).”

In the second case, we also have

Y — gi( Y;)} — hy(q)

C* = g f(YDh(@)+ haq).
The condition for (2) + (5) may be derived similarly.
3.4.2. Derivation of (3)+(4) and (3)+(5)

Indirect separability implies that the normalized profit function can be
written as

IT* = H(H*p).f@) = @G (’ft(;')”)

Non-jointness in inputs implies that the normalized profit function can
be written as

H* = Z] -F.i(pisq)-

NIThis is precisely the form suggested by Professor W. M. Gorman to the author in 1970.
At that time the author was unable to establish the necessity of this form. See Lau (1972.

p. 288. fn. 20).
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We note that IT* is characterized by (3%I1*)/(3pdp;)=0. i# j. This

implies that
"R *
ﬂ’f'—H-i+G'H;7=o. G"#0,
or
G"(H*If) HXH* "
G +H"§H’}"O‘ G"#0,
and -
H¥=0, i#] G"=0.

(II1-3)

The second term of equation (II1-3) is independent of f, which implies
that the first term is independent of f. But the first term being in-
dependent of f means it is independent of H*/f, since G(-) is a function
of a single variable H*/f only. Hence the first term must be constant,

that is

Gn B
E(H*/f) = K,

k a constant. This equation may be integrated to yield,

Zk+l
G(Z)=C1m+c;». k# —1,

=C1]HZ+C‘_>, k= -1.
For k# — 1, one must have

CIH*(P)RH
k+1

be additive and homogeneous of degree k + 1 in p. This means

C1H*(p)k+l - 2 a,'pfﬂ.
i=1

For k= — 1, one must have

Ciin H*(p)+ C,

be additive and homothetic, which implies

n

Ciln H¥(p)= 2, a;In p,.

=1
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Note. however, that this is inconsistent with the monotonicity and
convexity requirements of the normalized profit function. Thus. the only
possibility is that of

I* = f(q)[ao+§n‘, a;(}%)w].

i=1

If in addition we require that IT* = 0 if p; = 0,V then

m=[3 ap’ | 1@

Alternatively, if G” =0, H} =0, which implies that the normalized profit
function must have the form

ZI a;pi
flq)

= 2_‘,' a;p; + f(q)ay.

IT* = f(q) | ap+

The condition for (3) + (5) may be derived similarly.

3.4.3. Derivation of (4) +(5)

m = Z Gi(piq) (111-4)
i=1

= Go(®) + 2, 4G (-};—) (I1-5)

1

Since p; =0 implies G; =0 in equation (I1I-4), then (82I1*)/(3q:dg;) =0
implies that each G; must have the form

giolpi) + E:' gi(pi.g;)-
=

Substituting this into equation (I1I-4) leads to

n

m =3 [gio(Pi) + q,gff(&)]
i i=1 qi



190 Lawrence J. Lau

4. Examples of Normalized Profit Functions

4.1. Introduction

In this section we present a number of examples of normalized profit
functions. In particular, we demonstrate how the theorems derived in
Sections 2 and 3 and the Legendre transformation may be used in the
construction of the normalized profit function given the production
function (and vice versa).

4.2. Cobb-Douglas Production Function

Let

y =] X7
i=1

The first-order necessary conditions for a maximum are

a¥ _ o i=le.m (Iv-1)

Xi
By Theorem (II-1), ¥ = (1 — w)'G where p = >, a;(<1) because Y is
homogeneous of degree u in X. Hence. by a dual transformation,
equation (IV-1) becomes

ai(l—u)'G _
—~ 3G/ 3q;

I
—_
;

di. i el

which may be integrated as
m L
G(q) = A* [[] a%i,
where a* = —a;(1—p)"'. i = l.....m, and A* is a constant of integration.
A* may be determined from initial conditions. For instance, at g; = 1.

i = 1.....m, equation (IV-1) implies that X; = Y. i = L....m. Substituting
this into the production function we have

Y = ri:)(?i=:fﬁ:c!?i}’“t
i=1 =1

Therefore,
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y o ('lj a‘,-"") V(1—p)

=(1-u) G
=(1—p) A%
Thus,
A*=(1-p) ﬁ af
and |

G(@={(1-n) ,lj (_q_,) —ei(1-u)"!

a;

To extend this to the case with fixed inputs, we have

y =] x# [ 2%
i=1 i=1

Then. by applying Theorem (I11-3), one has immediately,

G(q.2)= fI Z¥(1—p) ﬁ g: —a;(1-u)!
. =1 o [T 22
i=1

m g —n:t,—(l--p«.)‘l n .
=(l—p) n (_,) l"[ ZBi-w)
i=1 \Q i=1
For this latter case, the supply function is, again by Theorem (II-1).

Y(qZ)=(1-u)"'G
lr_n_[ (q. —ai(l-p)"! _n Z'a.“_ i
- i=1 ai) ;IJ]: A ’

and the derived demand functions are

G
Xi= aq;
m —a(1-p)~! n
= gj—[ (i) Z‘-S"“"“’_l] i=1.....m.
q; :1:[! a; :];Il ' ' ==

We note also that for the Cobb-Douglas production function the
expenditure on each variable Input is a constant proportion of profits.
This follows from

q,-X,- _ d InG

qii (1) -
G 3Ing ai(1—p) . i=l....m
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4.3. The C.E.S. Production Function

We have

m )
Y= [2 a,-XE’] P'

i=1

where u <1 is a scale parameter.
The necessary conditions for a maximum are

m (n—p)lp
j i=1

= }LY(F_D)’“G;X?"' = q; j= 1,....m,
which may be rewritten as

-u”“’”’[(l—u)"G]"‘”"”"“’“’a}"’”’%gj= e j=1,..,m,
1

which becomes

Ho=l(] — g )~(B-oiee=D pip—1) G = (g’-) o
p(p—1) aq; a; ’

- n
which may be integrated as®

m ai pllp—1)
“P’(P—l)(l - “)p(l-u)lp:(p—l)_G—p(l—u)l.u(p—l) = 2 ai( 1) ]

a;

i=1
Hence
G(g)= u“”‘“’_'(l - p.)[

f

m g\ P ie= e
«(2)"] -

=1 ;

By Theorem (II-1) the supply function is immediately given by*

Y=>-p)'G@

e [ & ai =1 —(e(1—p)" (o~ 1Dlp
=I_Lu( ) [2 a',(._i) ] ,

i=1 a;

and the derived demand functions by*

N A\ Alp=-D =) Wp—plp s o \ oD
Xi=p' 1[2 a; (g") ] (%) , i=1,..
1)

i=1 Q;

.

BThere is no constant of integration because by Theorem (II-1), G{(q) is homogeneous.
BEquivalent expressions have been obtained by McFadden (1966) and Nerlove (1967).
#See the discussion in Lau (1969c, pp. 30-33).
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However, if some inputs are fixed, then the normalized profit function
corresponding to a C.E.S. production function may not have a closed
form solution. It is, however, still implicitly defined.

4.4. Combination C.E.S. - Cobb-Douglas Production Function
In view of the analytic intractability of the C.E.S. production function

with fixed input levels, functions which are hybrids of the C.E.S. and the
Cobb-Douglas functions may be used. Some examples are”

m  v=1I X[2 3,-2,-]""’,

with
= - w) '1'—;'11 (%)‘“-'“'*‘l"'[g Biz?](uztl—u,)-')/p’
where
B = 2 a; <1;
@ v=[gax] [
with

N\ Alp=17 —p(=-p)p-Dip [ T (I=p)~
«“(2)"] [{12¢]
1 a; i=1

3 Y= [i aixfl]n./p.[in szfz]uzlﬂz,

i=1

Ir* = y,“’“'“)(l _ “)[

with

m A\ Pl 1) = (1=pq)(p=1ipy

IT* = p 701 - m)[z a; (%) ]
i=1 i
n (ol 1 (A —py)
«[3 szt

Alternatively, one may specify the normalized restricted profit function
directly.

“The dual functions may be derived by using either Theorem II-3 or the composition
theorems given in Chapter 1.1.
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4.5. Quadratic Production Function

Thus far we have considered only those production functions which
satisfy our assumptions globally. However, we shall now consider some
production functions (and normalized restricted profit functions) which
satisfy our assumptions only over proper convex subsets of R™ (or
R™ X R" as the case may be). First we consider the quadratic function.
Adhering now to the conventions of the multiple-output, multiple-input
case, we define

L=€!o+i a; X +%2 2 BiXX;,
ey =1 =1

where X; is a net output which may be either positive or negative. If the
matrix B =[B;] is required to be positive definite, then L is strongly
convex on R™ and in particular on any convex subset of R™. Monotoni-
city requires that

a+BX=0.

This system of linear inequalities defines the convex set of X such that L
is monotonic and convex. The constant a; may then be adjusted so that
L is non-negative on this convex set. Alternatively, one may set ao= 0
and L is then non-negative, monotonic, and strongly convex on the
convex set such that

a’X+xfx§0,

a+BX=0.

The quadratic production function has the very convenient property
of being self-dual, that is, its convex conjugate, the normalized profit
function, is also a quadratic function,

IT*= —a,+3(p—a)B”'(p— a),

where p; may be the price of a net output or net input. The domain of
IT* is given by the support function of the domain of L, defined above.

The derived supply and demand functions for all commodities other
than L are linear functions
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and
L=ay—p-—a)B(p—a)+pB '(p—a)
= ap+i(p—a)yB (p—a)+a'B'(p—a)
The quadratic function may be further generalized as follows.
Suppose that the production function is given by
L= %(X'BX)"”, 1<@< +o,

Then the normalized profit function is.given by

IT* ='31'(p'B_'p)"lz, 1< n < + o,

Again, the domain of L and its conjugate IT* need to be appropriately
restricted. If the monotonicity assumption is maintained then BX=0
defines the domain of L.

4.6. The Exponential Production Function

Let
Yy=1-¢% X=z0.
Then
*=1-gq+qlng,
X=—-Ingq.
We note that for g > 1, there is no solution X such that Xz=0.

4.7. The “Addilog” Normalized Profit Function

We next consider normalized profit functions for which an explicit dual
production function does not exist. One such example is the indirect
addilog function introduced by Houthakker (1960). The normalized profit
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function is given by

IT* = i aiq;'ﬂ.'

i=1

The derived supply and demand functions are given by
Y= agqi®+2, aifiqi®
i=1 i=1

= Z a(l1+ Bgi™,
Xi=aq;®"  i=1..m.

The restrictions for monotonicity and convexity for the singie-output
case are

a,~B,~ > 0, ﬁ; > —

4.8. Reciprocal Quadratic Normalized Profit Function

=32 2 Bl

i=1 j=1

The derived supply and demand functions have a remarkably simple
form

NI-—'

KRLR L 1 -
_EEZBEIQJIQJI7

i=1j=1
m

2;} B, i=1,..m.
It may be verified directly that if 8; =0, Vij, then IT* is non-negative,
non-increasing, and convex. Also, by Theorem II-1, the production
function must be homogeneous of degree 3.
A generalization of this normalized profit function exists with the
exponent of g; equal to —u, w>0. In this latter case, the production
function must be homogeneous of degree 2u./(1+ 2x).

4.9. Transcendental Logarithmic Normalized Production Function

For the sake of completeness, one should also mention the transcen-
dental logarithmic normalized profit function introduced by Christensen,
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Jorgenson and Lau (1971 and 1973). The normalized profit function is
given by

m

InIT* = ap+ X, a;1n qa+%22 BiIn g In g;
i=1 i=1j=1

i=1}
The demand functions are given by

m
-qﬁ)—ii = — (a,— + ,2.1 BiiIn q,»), i=1,..,m.

Note the remarkably simple estimating form. This function is not a
globally valid normalized profit function as it may become non-mono-
tonic or non-convex at some prices. However, it is possible to verify
whether the function is monotonic and convex over some convex set of
normalized prices. In addition, it has the advantage that it provides a
second order approximation to an arbitrary normalized profit function
(and hence to an arbitrary concave technology). It can also attain any
value of the elasticity of substitution between any pair of inputs.

5. Applications of the Normalized Profit Function

5.1. Elasticities of Substitution

As is well-known, many different elasticities of substitution may be
defined in the case of a technology which involves more than two
inputs,”® depending on which variables are held constant. A natural
definition, however, in the spirit of the Allen-Uzawa definition of the
elasticities of substitution for the case of three or more inputs, is the
following:

1~

which, by the dual transformation, is equivalent to

- (F -3 (aF/aX,-)X,-) -
0-. — i=l _—l.i
! XiX; |F}’

‘where F} is the j,ith cofactor of the matrix F since [G;]1=—[F;]™', and
|F| is the determinant of the Hessian matrix of F.

%Gee, for instance, McFadden (1963), Nerlove (1967) and Uzawa (1962).
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In any event, when there are more than two inputs, the elasticities of
substitution are not necessarily the most convenient measures of substi-
tutibility.” An alternative is provided by own and cross-price elasticities
of demand. In what follows, we give characterization theorems for own
and cross-price elasticities of demand by solving systems of partial
differential equations for the normalized profit function.

Theorem V-1. A production function is Cobb-Douglas if and only
if all the own and cross-price elasticities of factor demands are

constants.

Proof: Suppose

dln X,‘ _ ..
7lng, = k;, a constant, Vij.

Integrating this system of partial differential equations, we obtain
In X,‘ = 2 k,‘( In q + k('Oa i= l,...,m
{

or

which upon integration yields the Cobb-Douglas normalized profit
function. The k; constants of the different equations may be shown to be
the same by making use of the fact that
axXi _ _ 3’G _4X;
aq;  9qdq;  9qi’

The converse is obvious. Q.E.D.

I# ]

Theorem V-2. A production function is homogeneous of degree k
up to an additive constant if and only if the sum of own and
cross-price elasticities of demand is constant for any one com-

modity.

Proof: Homogeneity of the production function up to an additive
constant implies homogeneity of the normalized profit function up to an

YBesides, they are insufficient as a description of the technology. See Lau (1976b).
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additive constant by Theorems II-1 and II-4. Hence, derived demand is
also homogeneous. Hence,

m 3X; g; _

zaq,x, ,ZG,,G k, Vi

The converse is proved similarly by retracing the steps and using Euler’s
Theorem. If G; is homogeneous then G must be a homogeneous function

plus a constant. Q.E.D.

Theorem V-3. A production function is of the Leontief type, that
is, the normalized profit function has the form

Im*=g (2 aiqi)a

if and only if

4 InX; In X; i=1,...m,
aln g ax = $d@); k=1,..,m.

In other words, this means that the elasticities of each of the
demand functions with respect to the kth normalized price are

identical.
Proof: Necessity is obvious. To prove sufficiency, we first integrate

alnX,-
6lnqk

= d’k(‘l),
to obtain
In X; = f bu@d In g + PHae), Vi

where q_; is q reduced by q:.
Now

In X; —In X = ®4(q-1) — i),
and

In X, —In X; = ®i(q-) — Piq-.)-
Moreover

In X; - In X = ®iq-)) — Pila-y)-
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But the left-hand side is the same expression, aside from a sign change,
and we have seen the right-hand side being independent of g;, g; and g;.
We conclude that it must be constant. Thus, In (X/X;) = 6/6,, a constant

or |
1 0G_ 146G

Y Y ik,

0% aq; 0% da.’

with the general solution

G@Q =g (5; 9?‘61.-). Q.E.D.

Corollary 3.1. If in addition Z;_, ¢x(q) is constant, then IT* is
homogeneous up to an additive constant and G has the form
G =2 ag]* + ao

Proof: This follows from this theorem and Theorem V-2. Q.E.D.

Theorem V-4. A normalized profit function has the form

H* =g (Zl gi(qi))9
if and only if

d1In X,' _ . Lo
m— é(q), ik, i,k=1,...,m.

Proof: Repeating the argument used in the previous theorem, one has
in X;—In X; = ®Xq)— Pig-e),  Vijk LjFk
Thus, for fixed i,j, one concludes that
In X; —In X; = ¢;(g:,9;),
and for fixed !/

In X; —In X; = ¥4(g5,q),
In X; —In X; = ¢u(g;a1)-

Combining the last two equations, one has

In X; —In X = ¢u(giq1) — ¥3(45-91),
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but the right-hand side must be independent of g for all values of g; and
g;j-
Hence

én = bi(g)) — dfaq), Vil

Thus from

In Xi/ X; = &i(qi) — ¢i(q))
we obtain

3Glaq; _ &i(ai)

aGlag; &i(q)

which may be integrated as
Gaw=2(3 a@) QED.

Corollary 4.1. If in addition, 2;-; (3 In X;)/(3 In q¢) is a constant,
then IT* is homogeneous up to an additive constant, and G has the

C.E.S. form
m uip
G= [2 a,-q?] + .
=1

Proof: This follows from Theorems V-2 and V-4, and the fact that
an additive function is homogeneous if and only if it has the C.E.S.

form. Q.E.D.

With these results then, one can examine directly the own and
cross-price elasticities of demand, that is, the comparative statics, and
obtain an idea of the degree of substitution. The aforementioned results
also apply, with appropriate modification, to subsets of the tnputs.

5.2. Technical Change

Technical change may be represented by a production function

Y = F(X,1), %20.
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This gives rise to a normalized profit function

oG
* = —_—=
IT* = G(q,t), o z0.
By duality, aF/at = 3G/at at the profit maximum. Hence for given q

normalized profit increases with time.

Definition. A production function is Hicks neutral if it can be
written in the form

Y = F(f(X),t).

Definition. A production function is Harrod neutral if it can be
written in the form

Y = F(f(L.1).X),

where L is labor, the primary factor of production.

Definition. A normalized profit function is indirectly Hicks neutral
if it can be written in the form

m* = G(f(g:!)

Definition. A normalized profit function is indirectly Harrod neu-
tral if it can be written in the form

II* = G(f(w,t).q).

The practical implication of Hicksian neutrality is that the ratio of the
margina! products of any two inputs is independent of time. The prac-
tical implication of indirect Hicksian neutrality is that the ratios of the
derived demands of any two inputs is independent of time.

It should be noted that in general direct Hicksian neutrality does not
imply indirect Hicksian neutrality or vice versa. A technology is both
directly and indirectly Hicksian neutral only if either it is homothetic or
it is additive in ¢. This follows immediately from Theorem II-15. Also,
under homotheticity, direct Hicksian neutrality implies and is implied by
indirect Hicksian neutrality.
~ The practical implication of Harrod neutrality is that the ratio of the
marginal productivity of labor to the rate of technical change measured
in terms of output is independent of X. The practical implication of
indirect Harrod neutrality is that the ratio of the demand for labor to the
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rate of technical change measured in terms of normalized profit is
independent of q. In general, direct Harrod neutrality does not imply
indirect Harrod neutrality or vice versa. A production function is both
directly and indirectly Harrod neutral only under one of the two follow-
ing conditions:
(1)  f(L,t) = f(A(1)L),
or

2) Y=FX)+f(L;}).

That these conditions are sufficient is obvious. That they are neces-

sary may be shown as follows:

Let Y = F(f(L,t).X). Let II* = G(f.q) be the normalized restricted
profit function corresponding to F with F(L,t)=f. The normalized
profit function with f unrestricted is then given by

o*= Sl}p{G(ﬁQ)_ wh(f,1)},

where h(f,t) is the inverse function of f(L,t) for each given t. The
necessary condition for a maximum is

3G 7 oh = . _
a- (f’q) Waf- (fJ)—O.

f
Differentiating IT* with respect to t and w we obtain
aIT* oh  aIlI* .z
FI War Taw h(f.0).
Hence

all*|at —w dlnh

aIT*{aw at ’

i(aﬂ*/a:)= .20k of _ o

g \aIl*/aw atof aq )

Thus, either (3°In h)/(at af ) = 0 which implies that
h=h*HA*@t)=L,

and hence
f=h*"(A@)L).

Or af/aq =0, which implies, by differentiating the first-order condition
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implicitly, that
G(fq) =g(H+ Gy,

and hence
F(f(L,t),X) = F(X)+ f(L.t).

We note that the first condition (1) corresponds precisely to that of
labor-augmenting technical change. One possible specialization of the
form of technical change is factor- or output-augmentation. Under factor
and output augmenting technical change the production function may be

written as
Y = AYF(A()X1,....An(t) Xp).

Thus A(t) represents “‘output-augmenting’’ technical change and A;(#)’s
represent “factor-augmenting” technical change. If Ai(t)= A*(?), Vi, and
F is a homothetic function, one can write

Y = A@Q)F(A*(t) 'H(X,,....X.)),

which is clearly Hicksian neutral. It reduces to Harrod neutral technical
change if and only if A(t) and A;(t)’s are all constants except for the
A;(t) associated with labor, the primary factor.

With ‘“commodity-augmenting” technical change, the normalized
profit function is given by Theorem II-3 as

* = _9 _Gm__

= At)G (A,(t) A(t)""’A,,.(t)A(t))’

where G(q) is the normalized profit function corresponding to F(X).

Thus, the production function is “‘commodity-augmenting” if and only if

the normalized profit function is ‘‘commodity-augmenting”. It is also

clear that factor-augmentation has the same effect as price-diminution.
A technical change process is “factor-1 augmenting” if the production

function may be written in the form

Y = F(A/(1)X,X3,....Xm).
A given technical change process is “‘factor-1 saving” if

aX,_ 9 _9G

at a  aq
= —G“ < 0.
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Under what conditions is a technical change process simuitaneously
“factor-1 augmenting” and “factor-1 saving”? We note that under
factor-1 augmentation the normalized profit function can be written as

H* - G(CIIIAI(t),CIZ’---,Qm)-

Thus
X, _9 3G
at a  Iq
o @A 1A
G]] A$A1+Gl AlAl-

In order for this to be less than zero, we need
q:
24 G, <0,
Gll AI 1

which implies by a dual transformation that

iz;%:—-q, + X, <0,
or a derived demand elasticity of X with respect to own price of greater
than —1. Thus in general one cannot identify “factor-augmenting’’ tech-
nical change with “‘factor-saving” technical change. We note that, even
with factor augmenting technical change occurring in only one factor,
the derived demands of the other inputs may also change over time as

d _ 3 4G
) j¥ 1,
A
= Gliquia
Y _ 8 5 3G
at ot (G ;.q" aq,-)

< A
= (; Gq P)

We note further that if G, were homogeneous of degree — k (necessarily
so because G, must be negative) then 2;;1 Gq; = —kG,, or if G were
additive, supply must be increasing. In general aY/at is indeterminate in

sign.
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5.3. Relative Efficiency®

There are two dimensions to the problem of efficiency: technical
efficiency and price efficiency. A firm is technically more efficient than
another firm, if, and only if, it consistently produces a higher output
given identical inputs for both firms. A firm is price-efficient, if, and only
if, the value of the marginal product of each input is equated to its price.
Any departure from this equality implies price inefficiency. It is some-
times desirable to compare the relative degree of technical efficiency and
also the relative degree of price-inefficiency across two firms. If a firm is
price-efficient, its profit is at a maximum for a given level of technical
efficiency. Thus, a natural measure of relative price efficiency is the
relative level of actual profits. A firm is considered to be more price-
efficient, if, given the same prices of inputs and outputs and the same
degree of technical efficiency, it is more profitable than another firm.
Based on this definition, the technically more efficient firm which is also
price-efficient will always be more profitable than another firm which is
only price-efficient. It is important to note that relative technical
efficiency need not imply relative price efficiency and vice versa.

Straightforward tests of relative technical and price efficiency between
two firms (or groups of firms) may be devised on the basis of the
normalized profit function. It is clear that given comparable endow-
ments, identical technology, and normalized input prices, the actual
normalized profits of the two firms should be identical if they both have
maximized profits. To the extent that one is more price efficient, or
technically more efficient, than the other, the normalized profits will
differ even for the same normalized input prices and endowments of
fixed inputs. The actual normalized profit functions will hence be
different for the two firms.

Let us represent the situation as follows: For each firm, the marginal
conditions are given by

0AF(X,,Z)) A F(X3,Z) i
_——6X| = Kiq, X, = K, (V-1)
k, = diag[K,] = 0, k, = diag[K,} = 0,

where K; is a diagonal matrix, X, Z,, q; and k; are vectors, A; is a scalar,
and the subscript refers to the firm. If both firms are equally efficient in

%This section draws heavily on my joint work with P.A. Yotopoulos. See Lau and
Yotopoulos (1971), Yotopoulos and Lau (1973), and Yotopoulos, Lau and Lin (1976).
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optimizing with respect to all variable inputs, then k; = k,. If both firms
are equally efficient technically, then A, = A.. Equation (V-1) reduced to
the usual first-order conditions for profit maximization if and only if
k, =k, =[1], a unit vector. Otherwise, they must be interpreted as
decision rules for the individual firms. k, and k, may assume any
non-negative values, and in particular, the special values of [0] and [1}.

That the decision rules for the firm consist of equating the marginal
product to a constant times the normalized price of each input may be
rationalized as follows: (1) consistent over and under-valuation of the
opportunity costs of the resources by the firms; (2) satisficing behavior;
(3) divergence of expected and actual normalized prices; (4) divergence
of the subjective probability distribution of the normalized prices from
the objective distribution of normalized prices; (5) the elements of k;
may be interpreted as the first-order coefficients of a Taylor’s series
expansion of arbitrary decision rules of the type

dF, _
X, fi(ay),
where f;(0)=0. A wide class of decision rules may be encompassed

under (3).

Let G(q,Z) be the normalized profit function corresponding to F(X,Z).
The firms then may be regarded to behave as if they maximize normal-
ized profit subject to price vectors K.q:/A; and K>qy/A,, respectively.
Their behavior thus may be represented by the “behavioral” normalized

profit functions
Hll, = AIG(kIIqI/AIv---sklmq"t/Al;les---vzln)v

and
H? = AZG(kZIqI/A2a---skZMQm/A2;ZZI,---9Z2n)-

A test of equal relative efficiency implies a test of the hypothesis A, = A;
and k, =k,. The derived demand functions are given by

3G (Kig/AiZi)

Xﬁ - _A' akUQJ ’ 1= 1727 1= l,...,m,

and the supply functions by

3G(K:'Q/Ai;zi)]}-

Y.‘"-'Ai{G Kiq/AiZ) - 3 ki [
(Kiq ; idj ak;q;



208 Lawrence J. Lau
The actual normalized profit functions are given by

I = Yi"_zl q;'/\,ij
i=

= . 7 S — L\ aG(Kiq/Ai;Zf)] .
= A,—{G(K,q/A,,Z,)+,_=EI(l k,,)q,[ FHsd, } i=1,2.

Observe (1) 8II°/dA = 0; (2) when k; = [1], the actual and “behavioral”
normalized profit functions coincide; and (3) if and only if A, = A, and
k; = k,, the actual as well as the behavioral normalized profit functions
and supply and demand functions of the two firms coincide with each
other. This last result is the basis of the null hypothesis for no difference
in relative efficiency. When appropriate functional forms are specified
for G, the joint hypothesis that A, = A, and k, =k, may be tested by
comparing the coefficient estimates from either the actual profit function
or the supply and demand functions, or both.

An additional test becomes relevant if we reject the joint hypothesis
that (A.k;) = (A;kz). In this case an overall indication of the relative
efficiency between the two firms within a specified range of normalized
prices for variable inputs may be obtained by comparing the actual
values of the normalized profit functions within this range. If

ny = Iis,

for all normalized prices within a specified range, then clearly, the first
firm is relatively more efficient within the price range. If some know-
ledge on the probability distribution of the future prices is available, a
choice may be made as to the relative efficiency of the two firms.

One can also test the hypothesis that the fixed inputs command equal
rent on the two firms by computing the first derivatives of the actual
normalized profit functions with respect to the fixed inputs and testing
for their equality. This may have important implications on the optimal
form of organization.

Finally the above analysis can be easily extended to three or more
firms (or groups of firms). We conclude this subsection with an example.

Example

The normalized restricted profit function corresponding to a Cobb-
Douglas production function with m variable inputs and » fixed inputs
ts, from Section 4.2,
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m q —*A:'-(l—y.)"l n -
me=a-wfT (&)™ ][ 220

i=1 \O; i=1

m
,lL:Z a,—<l.
=

By direct computation, the actual normalized profit functions and the
demand functions are

H?=A§-“""’(1— =

ij

x I:JI;Il qj—a,-(l—u)“’][l-[ Zf"“—“)_l], i=12,

[LESN TR

j=t

j=1

Xif = A‘i,l'#)'l(_aj_‘)[ﬁ kaﬂj(l—#)"][f‘[‘ a}:j(l—u)"‘]
i=

kig; /L=

% [l']l: q;aj(l—#)":l[l‘l Z?j(l-u)—i], i= 1,2’ ]_= 1,...,m.
}=

j=

From these two equations, one may derive

qli‘i = al{"ku Py i = 132, j= 1"“7m'
R
i=1 kii

These actual profit share equations may be combined with the natural
logarithm of the actual normalized profit functions to obtain estimates of
A;, k; and the technological parameters.

5.4. Monopolistic Profit Functions
A monopolist faces a downward sloping demand curve. Let the inverse
demand function be given as
p = D(Y),
where
D(Y)<O0.
Then the profit maximization problem becomes
max P = D(F(X,Z))F(X,Z) - q*'X,

where g* is the vector of nominal prices of the variable inputs.
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Let S(X.Z)=D(F(X,Z))F(X,Z) be the revenue function” If it is
assumed that S(X,Z) satisfies Assumptions (F.1) through (F.7), then the
profit maximization problem is isomorphic to the normalized profit
maximization problem in Section 1. Thus, the profit function G(q*,Z), is

given by
G(g*,Z) = max{S(X,Z)— (@*'X)},
X

which satisfies Assumptions (G.1) through (G.7). Moreover, there is a
one-to-one correspondence between S(X,Z2) and G(q*,Z).

All the dual relationships which hold between F and G hold between
S and G. As before, the demand functions for the variable inputs are

given by
aG
* = T ok
X aq* (q 7Z)7
and the optimal revenue function is given by

;’; (q*.2)-
We note that G depends on nominal prices of the inputs only and hence
X* and S* depend on only the nominal prices of the inputs.

For the purpose of econometric applications, one may just as well
start with a function G(q*,Z) which satisfies Assumptions (G.1) through
(G.7) without worrying about the properties of S(X,Z) since as McFad-
den has emphasized in Chapter 1.1, one cannot in fact observe those
input vectors for which S(X,Z) fails to satisfy the Assumptions (F.1)
through (F.7).

§* = G(q*,Z)—q*

Example

Let
p=Y"S 1>e>0,

m

Y =[] X%, ia;=u<].
i=1

Then

¥Note that the revenue function as used here is different from the revenue function
R{(p,Z) which gives the maximized value of revenue for given p and Z.
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= M a;(l1—€)
S 1:['x :

The monopolistic profit function is hence

m q* —CXT“‘—]L')-I,
m=a-u9 I (%)

P a

i=1

where

a®=a;(l—é¢), i=1,..m,
*

i:: a¥=(1-¢€)p.

i=1

o

The derived demand functions are given by

« %1 1Y (4] —et(-pty!
Xi=aiq; H (;’s&) ’ i=1,..m
i

i=1

Revenue is given by

m q* —a‘,(!-y.")“
r=s=11(%)

Finally, we note that while given the profit function alone one can
construct an S(X,Z) through the conjugacy operation, one cannot iden-
tify F(X,Z) without additional information. We should also emphasize
that the assumption of concavity of S(X,Z) neither implies nor is implied
by the concavity of F(X,Z). In fact, if there is indeed a monopoly, it is

likely that F(X,Z) is non-concave in X.

5.5. Dynamic Behavior

Dynamic models have been introduced into econometric research via
two principal hypotheses — the “adaptive expectations” hypothesis and
the “lagged adjustment” hypothesis. These hypotheses can be readily
incorporated into the normalized profit function approach.

5.5.1. Adaptive Expectations Hypothesis

The firm is assumed to maximize profit for given expected normalized
prices. Then, for a given technology, there is a normalized profit
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function of expected normalized prices which are in turn functions of
current and past normalized prices. Let the price expectation formation

process be
q?(t) = w!(L)(I!(‘t)s l = 1,...,m,

where q¥%t) is the expected normalized price of the ith input, and w;(L)
the rational distributed lag operator for the ith price.*
The expected normalized profit function is then given by

II*° = G(q\,-...qm)-
Supply and demand as functions of expected normalized prices are
given by
< G
Y°=G(q%,..am) — 2, WCI?,
i=1 0q;

oG .
X'= _Ea?’ i=1,....m.
In general, both Y° and X?¥s are functions of both current and past
prices, with the time structure of the effect of different input prices
given by the coefficients of w;(L). Actual normalized profit, on the other

hand, is given by

- G
P*= Yo_zléa*q,'.

-

5.5.2. Lagged Adjustment Hypothesis

Lagged adjustment models are in general based on an adjustment
equation,
Xi = X1 = o(L)XT— X -1l (V-2)

where X* is the desired quantity in period ¢ and the subscripts i are
suppressed. Equation (V-2) may be rewritten as

(1-L)X, = o(L)X*~-w(L)LX,
(1-L+w(L)L)X, = w(L)X*,

_ w(L)
X T (1-L+ (L)L) X
= u(L)XT,

®For an exposition of rational distributed lag functions and rational distributed lag
operators, see Jorgenson (1966a).
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where

- w(L)
s =TT (DL

Let G be the normalized profit function for the technology in period ¢; then

- G
Y*= G - bl H
:§=:1 aqi @,
xt=-9  i-1.m
0qi
However, the actual supply and demand equations are given by
aG _
‘Yi— IJ'I(L) aqia l"’l’--am,

and

aG oG
Y= F (plD) S tin(L) )

Both the ““adaptive expectations” and the “‘lagged adjustment” models
represent attempts to introduce dynamic elements into a basically static
concept and are not completely satisfactory. There is, in principle, no
reason why truly dynamic “profit” functions cannot be constructed.
These will be functions which give the maximized value of the net worth
(or equivalently the present value) of the firm for specified current and
future expected prices and initial endowments.

The net worth function, or functional, may be written as

NW = G(p.,q,t),

where p and q are possibly infinite dimensional vectors. The profit in
period ¢; is given by :

H* = G(p9q,tl) - G(pvqstl' - 1)

The supply and demand functions in period ¢ may be obtained by the
usual duality relationships.

Before such a dynamic “‘profit” function can be constructed, however,
one must have a weli-developed theory of intertemporal production. The
dual to the dynamic profit function is the production function that links
output and input possibilities of all periods, with due recognition given
to the fact that future inputs cannot contribute to present output.

Given a dynamic ‘‘profit” function, the complete optimal production
and investment plan for the future may be calculated based on the
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expectations of future price movements. These dynamic profit functions
must satisfy certain structural characteristics, e.g., at each point ¢ in
time different from the point of planning, the profit function must be
expressible as a function of endowments at time ¢ and the price at time ¢
and in the future. The supply and demand functions at time ¢ will be
expressible as functions independent of the past prices. One may also
want to impose the requirement of stationarity, a concept introduced by
Koopmans et al. (1964), with regard to dynamic profit functions.

In Chapter II.4 of this volume Fuss and McFadden also analyze the
problem of intertemporal production using duality concepts.

5.6. Profit Functions and Uncertainty

Using the normalized profit function, one can obtain an immediate proof
of a well-known result that randomness in prices results in higher
expected profits if the firm is able to adjust instantaneously than if the
prices are constant and equal to their expected values.’’ Expected
normalized profits are given by

E[G(q)).

Normalized profits at expected normalized prices are given by

G(Elq])).
By Jensen’s (1906) inequality on convex functions, one obtains im-
mediately that

E[G(@)]= G(E[q)).

Note that this result holds true for fluctuations in all prices and not only
in the output prices as the problem is customarily posed.
The effect of randomness on expected output, on the other hand, is

not clear cut,

&S aG
Y=G"§1 anis

E[Y]= ElG@]- 3 E[32 4]
= G(Elq)) ‘i Elg] %g (Elq))
= Y (E[q]).

YGee, for example, Oi (1961).



Applications of Profit Functions 215

However, if it is assumed that the production function is homo-
geneous of degree k, then by Theorem II-1,

Y=(1-k7G.
Hence

E[Y]=(1-k)E[G(g]
= (1-k)"'G(Ela])
= Y(Elq))-

Expected output is also increased by randomness in both output and
input prices.

6. Summary and Conclusions

In the preceding sections, the potential usefulness of the concept of the
normalized profit function in both theoretical and empirical applications
has been demonstrated. In particular, the normalized profit function
provides a convenient and logical link, by virtue of its duality properties,
between theoretical specification of a model and empirical implemen-
tation. By deriving a system of supply and demand functions from a
normalized profit function, rather than attempting to solve the profit
maximization problem itself, one avoids the potential difficulties (some-
times impossibility) of obtaining closed form solutions. Nevertheless,
one is assured that the supply and demand functions thus derived do
correspond to those that are obtained through the maximization of
profits subject to some production function with the usual regularity
properties. Many additional factors, such as imperfection of markets and
technical change, may also be conveniently introduced in a straightfor-
ward way. Alternatively, given an arbitrary system of supply and
demand functions, one can verify their consistency with profit maxi-
mization subject to a production function constraint by checking
whether the system is integrable into a normalized profit function.

In addition, it should be emphasized that the normalized profit
function contains all the empirically relevant information. Supply and
demand functions derived from a normalized profit function satisfy all
the a priori restrictions imposed by the production function. Hence
there is no loss in generality, but a gain in elegance and analytical
convenience, if one starts out with a normalized profit function.

Finally, through the examples provided, it may be seen that a large
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number of complete systems that (1) approximate any arbitrary normal-
ized profit (and hence production) function, (2) can attain any value of
elasticity of substitution between any pairs of commodities, and (3) are
econometrically convenient to estimate — meaning in most cases linear in
parameters — are available. They offer greater flexibility than the supply
and demand systems traditionally used in the literature. This greater
flexibility may result in more realistic modeling of the economy or the
firm by making indispensable restrictive assumptions introduced for the
sake of obtaining closed form solutions.

The potentials for profit function (and revenue and cost functions) are
by no means exhausted here. Directions for future research include (1)
dynamic models, (2) incorporation of adjustment costs, (3) non-classical
technologies, (4) profit maximization under uncertainty, and (5) depar-
tures from profit-maximizing behavior.
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The Hebrew University of Jerusalem

1. The Context and Objectives of Production Analysis

1.1. Introduction

Empirical analysis of technology is carried out in many contexts, for
many purposes. Each situation raises specific conditions and objectives
which must be met in the specification of an econometric production
model. This chapter surveys a variety of functional forms for production
processes, and their cost and profit duals, and discusses some of the
applications for which they are suited.

The diversity and extent of the subject of applied production theory
makes a comprehensive survey impossible. We emphasize the structure
of alternative functional forms, and the relationship between “exact”
models of technology and econometric models incorporating stochastic
specifications. However, we have not attempted to provide either a full
catalog of properties of functional forms or a general procedure for
introducing stochastic elements in production models. We focus on
several basic issues of technology - scale, separability, and substitu-
tability. We have not attempted to treat a number of other major issues,

*The financial support through NSF grant no. SOC-73-05374-A01 is gratefully ac-
knowledged by Y. Mundlak.
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such as technical change and aggregation, which are equally important in
many applications.

The uses of production models can be classified in two ways. The first
is the distinction between analytic studies of the production process (for
example, a test of the constancy of returns to scale), versus estimation
to provide predictions for specific applications (for example, a prediction
of industrial demand for energy). The former alternative requires close
attention to the structure and parameterization of the production model,
while the latter is more concerned with the robustness of the model and
its extrapolative plausibility.

The second division is between macroeconomic analysis of aggre-
gative production relationships and microeconomic treatment of in-
dustry, firm, and establishment technologies. Issues of aggregation over
commodities, economic units, and technologies, and questions of proper
parameterization of distribution, technical change, and growth effects
have dominated the literature on aggregate production functions. Ques-
tions of compatibility with physical production processes and firm
behavior have been important in the analysis of microeconomic produc-
tion relations. Statistical issues in the estimation of technological rela-
tionships have concentrated on the stochastic nature of aggregate quan-
tity and price indices, as determined by their definition and measure-
ment, and on the stochastic specification of microeconomic firm
behavior.

In a survey of functional forms, it is important to keep in mind the fact
that these forms have been constructed for a variety of applications.
One cannot expect to find a single “best” parametric production
function for all purposes; to the contrary, many of these functional
forms are well-suited for specific applications but poorly-suited for use
as general purpose characterizations of technology.

1.2. Objectives of Production Analysis

Historically, emphasis has been placed on a number of different aspects
of technology, depending on the objectives of analysis. We list below
some of the major objectives of production studies which have
motivated the development of functional forms:

(1) Distribution (the income shares of factors of production): Most
attention has centered on the aggregate shares of capital and labor.
Distribution issues also arise at the microeconomic level in problems
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such as the incidence of tax and subsidy programs. Distribution
parameters are of great importance in evaluating the growth process.

(2) Scale (the existence of constant returns to scale, or the presence of
decreasing or increasing returns): Scale has aggregate implications for
long-run growth, and for the structure of industry, which is also related
to the question of the logical consistency of the neoclassical assumption
of profit maximization. Microeconomic issues which focus on the supply
and financing of public services often center on the technological ques-
tion of the existence of increasing returns to scale.

(3) Substitution (the degree of substitutability of factors of produc-
tion);: Substitutability is a critical issue in the behavior of distributive
shares when factors proportions change. It plays an important role in
determining the incidence of taxes; and also the behavior of relative
factor prices, and therefore product prices, in the process of growth.

(4) Separability (decomposition of production relationships into
nested or additive components): Separability is an extremely important
structural property in a production model which often permits
econometric analysis to be carried out in terms of subsets of the total set
of possible variables, in stages, or with consistent aggregates of vari-
ables. Separability is of direct economic interest, implying uniform or
invariant behavior of certain economic quantities, and allowing decen-
tralization in decision-making. It is also of critical interest in the
specification of functional forms, influencing generality and simplicity,
and becomes an important subject for empirical tests. (Because of its
pivotal role in functional form specification, separability is discussed in
detail in Section 6 of this survey.)

(5) Technical change (modification of the technological structure over
time): Of interest are disembodied technical change (innovations which
require no specific capital); technical change embodied in factors of
production (usually capital, but potentially other factors such as skilled
labor); factor-augmenting change which increases the effective quality of
inputs; augmentation of other technological characteristics such as
scale-augmenting change (increasing the scale level at which decreasing
returns set in) or substitution-augmenting change (increasing the substi-
tutability of inputs); and endogenous technical change (learning-by-
doing; innovation and induced technical change).

In addition, a number of auxiliary topics have been the subject of
econometric investigation, with attendant problems of functional
specification.

1. Technological flexibility (the robustness of the technology in adapt-
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ing to changing environments): Of interest is the degree to which
flexibility is incorporated in the adopted technology, and its tradeoff
against static efficiency.

2. Efficiency (operation on or inside the technology frontier): Relative
efficiency of different economic units (firms, industries, nations) is of
interest, as is the efficiency of the same unit in alternative economic
environments.

3. Homotheticity (the presence of expansion paths with scale which
are rays through the origin): Homothetic production functions will
display unchanging distributive shares with changes in scale, ceteris
paribus. In contrast, heterotheticity will yield changing factor intensities
with changes in scale.

4. Consistent aggregation (the problem of specifying technological
structures that are invariant with respect to aggregation over com-
modities or economic units): This problem is most critical in studies
which want to ensure microeconomic compatibility of aggregate analy-
sis, or want to obtain simple aggregate forecasts from microeconomic
estimates.

In surveying various forms, one should keep in mind the alternative
objectives listed above.

2. Criteria for the Design of Functional Forms

2.1. Maintained Hypotheses

In addition to the obvious criterion that a functional form should relate
to the objectives of an analysis, there are a few general principles which
should be adopted in modelling production. The first concerns the role of
maintained hypotheses.

Any study in production economics (and, for that matter, in
economietrics in general) takes place against the background of a series
of maintained hypotheses which are not themselves tested as part of the
analysis, but are assumed true. The most fundamental of these main-
tained hypotheses are basic axioms on the nature of technology (e.g.,
“the production possibility set is closed”), which are widely accepted
because they are believed to be true, or at least irrefutable with existing
data. Second come technological and behavioral assumptions which are
not widely held to be universal truths, but may be widely accepted as
plausible for the problem at hand (e.g., “convex technology™ or “cost
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minimizing behavior”). Next come assumptions made to facilitate the
analysis (e.g., “independent normal errors”, “intermediate inputs sepa-
rable from primary inputs”), which are believed to be harmless ap-
proximations to reality. Finally, there may be maintained hypotheses,
such as the assumption of a specific parametric functional form, or of
the constancy of some unobserved prices or quantities, which are
accepted only for convenience or tractability. The analyst may then
argue that his results are robust or insensitive with respect to these
hypotheses, justifying their imposition on grounds of usefulness and
lack of negative consequence rather than on grounds of plausibility.
The outcome of a specific test of hypothesis depends in general on
both the validity of the hypothesis under examination and the validity
of the maintained hypotheses. Consequently, a test performed in the
presence of an implausible maintained hypothesis may not be convinc-
ing; the result may be a consequence of the validity of the maintained
hypothesis rather than of the primary hypothesis in which one is
interested. This suggests the general principle that one should not
attempt to test a hypothesis in the presence of maintained hypotheses
that have less commonly accepted validity. For example, it would be
inappropriate to test a basic assumption such as convexity of the
technology by examining the sign of the estimated elasticity of substitu-
tion when a C.E.S. production function is imposed as a maintained
hypothesis, since a rejection is more likely to be interpreted as a failure
of the C.E.S. specification than of convexity. An implication of this
principle is the need for general, flexible functional forms, embodying
few maintained hypotheses, to be used in tests of the fundamental
hypotheses of production theory. Given the qualitative, non-parametric
nature of the fundamental axioms, this suggests further that the more
relevant tests will be non-parametric, rather than based on parametric
functional forms, even very general ones. While non-parametric ap-
proaches to the study of production relationships have received some
attention in economics [Farrell (1957), Hanoch and Rothschild (19721,
these methods have been exploited less systematically for tests of basic
hypotheses than have parametric forms [e.g. Berndt-Christensen
(1973a)]. Analyses of the latter type inevitably are subject to the criti-
cism that a rejection of a hypothesis may be a result of the parametric
specification rather than falseness of the hypothesis. This criticism must
be balanced, however, against the observation that non-parametric tests
have not yet been developed for some multivariate production hypo-

theses.
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For most analyses, the econometrician has a choice of several starting
points for the specification of functional forms. This book emphasizes
the equivalence of production. cost, and profit functions as charac-
terizations of technology under appropriate conditions (including
competitive markets). It is also possible to specify a production model
directly in terms of demand and supply functions, expressed either in
prices or quantities, or even in terms of differential or difference
equations for these demand and supply functions. Under appropriate
integrability conditions, these systems can then be solved to obtain the
implied production, cost, or profit functions. This survey will emphasize
functional forms for production, cost, and profit functions, but will not
attempt to survey specifications of technology which are formulated
directly in terms of demand and supply functions or their derivatives.

2.2. Criteria for Choosing Functional Forms

Within the framework of the maintained hypotheses imposed on a
particular problem or class of problems, a wide variety of compatible
functional forms will usually be available. We list some of the criteria
which may be used to select among them:

1. Parsimony in parameters: The functional form should contain no
more parameters than are necessary for consistency with the maintained
hypotheses. Excess parameters exacerbate problems of muiti-
collinearity, which tend to be severe in any case in many applications
due to market substitution which causes prices, and hence quantities, to
be highly correlated. Further, when the sample is small, excess
parameters mean a loss of degrees of freedom, a particular problem in
aggregate analysis.

2. Ease of interpretation: Excessively complex or parameter-rich
functional forms may contain implausible implications which are hidden
from easy detection. Further. complex transformations may make it
cumbersome to compute and assess economic effects of interest: for
example, elasticities of substitution. Thus, ceteris paribus, it is better to
choose functional forms in which the parameters have an intrinsic and
intuitive economic interpretation, and in which functional structure is
clear.

3. Computational ease: Historically, systematic multivariate empirical
analysis has been confined to linear (in parameters) statistical models for
computational reasons. While current computational technology makes
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direct estimation of non-linear forms feasible, it remains the case that
linear-in-parameters systems have a computation cost advantage, and
have. in addition. the advantage of a more fully-developed statistical
theory. The tradeoff between the computational requirements of a
functional form and the thoroughness of empirical analysis should be
weighed carefully in the choice of a model.

4. Interpolative robustness: Within the range of observed data, the
chosen functional form should be well-behaved, displaying consistency
with maintained hypotheses such as positive marginal products or con-
vexity. If these properties must be checked numerically, then the form
should admit convenient computational procedures for this purpose.

5. Extrapolative robustness: The functional form should be compati-
ble with maintained hypotheses outside the range of observed data. This
is a particularly important criterion for forecasting applications.

3. Dual Transformation, Cost, and Profit Functions - Maintained
Hypotheses on the Technology and Its Representations'

In this section, we summarize the commonly imposed maintained hypo-
theses for production, cost, and profit functions. Much of the develop-
ment of specific functional forms has concentrated on questions of
consistency with these hypotheses. More detailed discussions of the
relationships among these properties are given in Part I of this volume.

3.1. Production Possibility and Input Requirement Sets

The basic notion to be introduced is that of a technology. Let vy be
vectors of inputs and outputs, respectively. The production possibility
set Y is the set of all feasible input—output combinations, i.e.. Y = {v.y:v
can yield y}. For each y occurring in some input-output vector in Y we
can define the input requirement set V(y), containing all the input
bundles which can produce y, i.e.. V(y) = {v:(v.y) € Y}. It is convenient to
describe the maintained hypotheses on the technology in terms of the
properties of V(y).

IThis section is intended as a summary in order to make the chapter self-contained. A
more detailed description of the characteristics of the representations of technology can be
found in Chapter .1 of this volume.
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The properties of V(y) are assumed to be:

1.1 Location. V(y) is a non-empty subset of the non-negative orthant
R", denoted by £,. It is possible that some factors will not be utilized.
However, the only output that can be obtained with no inputs at all is
the zero output. It is therefore required that V(0) =}, and y >0 imply

0Z V(y).

1.2 Closure. The analysis is greatly simplified when V(y) is assumed
to be closed. That is, if a sequence of points {v"} in V(y) converges, the
limiting point also belongs to V(y). This means that V(y) contains all its -
limit points, and assures that the efficiency frontier of V(y) belongs to

V(y).

1.3 Monotonicity. If a given output can be produced by the input-mix
v it can also be produced by a larger input: if vE€ V(y) and v'=v then
v € V(y). Similarly, the inputs required to produce a given output can
certainly produce a smaller output. If y=y' then V(y) C V(y). These
conditions imply that, unless Y is bounded and the boundary belongs to
Y, there is no input-mix that can produce every y in Y.

1.4 Convexity. V(y) is convex.

3.2. Production and Distance Functions

Suppose we restrict y to a single element y. Then, using the notion of the
input requirement set, the production function for y can be defined by

f(v) = max{y:v € V(y)}.

When V(y) has properties (1.1) through (1.4), f(v) has the following
properties (Diewert (1971)):

2.1 Domain. f(v) is a real-valued function of v defined for every
vE £, and it is finite if v is finite; f(0) = 0.

2.2 Monotonicity. An increase in inputs cannot decrease production:

V=V f(v)=f(v).
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2.3  Continuity. f is continuous from above: every sequence {v'}cQ,
such that f(v")=y° y°=f(v") and v" =’ implies lim,.f(v") = y?. Of
course, this is a weaker property than continuity, which is almost
universally imposed on the production function in empirical work.

2.4 Concavity. f is quasi-concave over {1,: the set {v:if(v)= yvE Q,}
is convex for every y =0. This property insures diminishing marginal
rates of substitution.

In addition, twice differentiability of f is commonly imposed in
empirical work.

When y contains more than one element, efficient production of y can
be described in terms of the distance® function

D(y,v) = max {A >0 i— vE V(y)},

for (v,y) €Y and v strictly positive; the frontier satisfies D(y,v) = 1.
Alternatively we can define the transformation function as the maxi-
mum amount of y, which can be produced given the amounts of the

other commodities ¥ = (¥2,....¥a) and v = (vy,....a), ie.,
F@.v) = max{y;:(y.§.v) E Y}.
¥y

The transformation function is assumed to have the following properties
[Diewert (1974a)]:

71.1 Domain. F is an extended real-valued function defined and
bounded from above for every (§.v) € psp-1- Also,

F(0,0)=0.
212 Monotonicity. F is non-increasing in § and non-decreasing in v.

2.1.3 Continuity. F is continuous from above.

2.1.4 Concavity. F is a concave function.

?For a detailed description of distance functions, see Chapter I.1.
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The distance function and transformation function have a simple
relationship:

D(y,v) = max {A > 0|y, = F(3.v/A)},
and y, = F(y.,v) is the solution to the equation

D(y|,$',V) = 1-
Then, D(F(¥,v),y,v) =1 is an identity, as is y, = F(y,v/D(y,v)). Using the
properties of distance functions derived in Chapters I.1 and 1.3, the
reader can use these identities to deduce the properties of the trans-
formation function.

3.3. The Cost Function

In general, economic models involving production need, in addition to
the production function or transformation function, rules of behavior.
The selection of the optimal input mix for some yE€ Y and some set of
exogenous input prices r normally assumes cost minimizing behavior.
Cost minimization for all r € Q*, where Q% is the strictly positive orthant,
and y €Y is described by the cost function

C(y,r) = min{r-v:veE V(y)}.

If the input markets are not competitive, a cost function can still be
defined by this formula, with the prices r interpreted as shadow or

imputed prices.
If V(y) possesses Properties (1.1) through (1.4) then C(y,r) has Prop-
erties (3.1)—(3.5) listed below:

3.1 Domain. C(y,r) i5 a positive real-valued function defined for all
positive prices r and all positive producible outputs; C(0.r) = 0.

3.2 Monotonicity. C(y,r) is a non-decreasing function in output and
tends to infinity as output tends to infinity. It is also non-decreasing in

prices.

3.3 Continuity. C(y.r) is continuous from below in y and continuous
inr.

3.4 Concavity. C(y,r) is a concave function in r.
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3.5 Homogeneity. C(yr) is linear homogeneous inr.
Empirical work usually assumes in addition:

3.6 Differentiability. In most empirical applications, C(y,r) is to be

twice differentiable in r.
Under 3.6, the cost function possesses the important derivative prop-

erty

(a) %(;_ = p; (Shephard’s Lemma};

from which it follows that

_— ovi _ 9y
ar,-ar,- ar’-ari o ar’_ ar, (Symmetry).

(b)

Property (a) can be used to generate systems of factor demand
functions. Property (b) is of use in reducing the number of parameters to
be estimated, thus conserving degrees of freedom and possibly elimina-
ting multicollinearity problems.

3.4. The Profit Function

Cost minimization can be construed as the first stage of a two-stage
procedure. The second stage, given an exogenous output price vector s,
is the selection of y to maximize profit. Profit maximization for all

r€ Q*, s 0 is described by the profit function
H(s,r) = max{s-'y—rv:(v.y) EY)},

or
H(p) = max{p-x:xEY},

where x is a net output vector (>0 for outputs, and <0 for inputs) and

p = (l',S) e ﬂ;‘:h#n-
If F(§.v) possesses Properties (2.1.1) through (2.1.4) then II(p) has
Properties (4.1)—(4.5):

4.1 Domain. I(p) is a non-negative extended real-valued function
defined for all positive prices p.
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42 Monotonicity. II(p) is a non-decreasing function of output prices
and non-increasing function of input prices.

4.3 Continuity. II(p) is continuous in p.

4.4 Convexity. II(p)is a convex function in p.

4.5 Homogeneity. II(p) is linear homogeneous in p.

Again, empirical analysis normally assumes, in addition,

4.6 Differentiability. Most empirical applications assume II(p) is
twice differentiable. As was the case with the cost function, the profit
function possesses two important corresponding derivative properties
(a) — = i=1,..m+n (Hotelling’s Lemma),

2 2
o7l _ 97T , oxi_ 3x;

= Symmetry).
Gpop,  apap  op; api  oymmewy

(b)

4. A General Approach - Forms Linear-in-Parameters
4.1. Parameterization of Economic Effects

The main body of econometric and statistical technique requires models
whose form is specified up to a finite vector of unknown parameters.
This leads to the consideration of specific parametric production models
which allow identification of particular economic effects, such as dis-
tribution and scale, while imposing no more maintained hypotheses than
necessary on other aspects of technology. To a large extent we will be
concerned with flexible representations of technologies, since flexibility
is the issue which has led econometricians to seek alternatives to the
first parametric production function, the Cobb-Douglas form (see
Douglas and Cobb (1928)].

The objective of flexibility can be used to classify functional forms.
Following Hanoch (1975a), we can specify the number of parameters
required for representation of the economic effects discussed in Section
1. Consider an n input, one output production function y = f(vy,...,0.),
with partial derivatives f; = df/dv; and f; = 8°f/dvdv; Economic effects
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such as scale, distribution, and substitutability can in general be
quantified in terms of the production function and its first and second
derivatives. Consider the following classification of these effects:

Number of
distinct
Economic effect Formula effects
Output level vy = f(v) : 1
Returns to scale w = (z v,—f})/f i
i=1 :
Distributive share si = vif; / > of; n-1
j=1
Own “‘price” elasticity € = v,fi/f; n
Elasticity of o = — ful 34 205l fif) — fil £ n(n—1)
substitution Y oif: + Uyf; 2

This table contains (r + 1)}(n +2)/2 distinct economic effects. These
effects characterize the usual comparative statics properties of a
production function at a point.> These formulae can be inverted to
determine the function value and the first and second partial derivatives
at a point in terms of economic effects,

=y
fi = nysilvi,
fi= M)’S:'G.'/U%,

_ﬁj = [0’,‘,‘(5,' + Sj) + €5; + e,-s,-]uylZv,-v,-, I# ]

Hence, a necessary and sufficient condition for a functional form to
reproduce comparative statics effects at a point without imposing
restrictions across these effects is that it have (n + 1)(n + 2)/2 distinct
parameters, such as would be provided by a Taylor’s expansion to
second-order.

*Exogenous technical change could be included by adding a variable ¢ to the exogenous
variables included in f. Then, n + 2 economic effects would be added: the rate of technical
change, T = f/f. the acceleration of technical change. T = (f,/f) — (f/f)°. and the rates of
change of marginal products, m;/m; = f,/f. There would then be a total of (n+2)n + 3)/2
effects.
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The development above in terms of a production function could
equally well have been carried out in terms of a cost or profit function.
Since the latter functions have n + 1 arguments, compared to the n
arguments of the production function, they may appear to permit a
larger number of distinct effects involving first and second partial
derivatives. However, the homogeneity properties of these functions
reduce the number of independent parameters to (n+ 1)(n+2)/2, as
before. For example, consider the cost function C = C(y,r). Since C is
homogeneous of degree one in r, Euler’s Theorem implies

> rCi(yr) = C(yrx),

2 rCi(yr) =0, j=1,..n,
=

and
Zx r.C,i(y,r) = C,(y.r),

where C;=aClar, C;= 3>Clordr, C,=aCldy, and C, = 3°C/aydr.
These provide n + 2 restrictions, known as the adding-up condition, the
Cournot aggregation conditions, and the Engel aggregation condition,
respectively. The number of distinct derivative conditions is therefore
(n+2)(n+3)2—(n+2)=(n+1)(n+2)/2, as in the case of the produc-
tion function.*

4.2. Linear-in-Parameters Approximations

Most of the flexible functional forms developed in the econometric
literature can be viewed as linear-in-parameters expansions which ap-
proximate an arbitrary function. In general, such an expansion can be
written in the form

N
ffx) = f(x)= Zl a;h'(x), (1

where f* is the true function, f is the approximating functional form, the

“This argument can be applied to an r-input linear homogeneous production function to
show that it has n(n + 1)/2 distinct economic effects.
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a; are parameters, the hi are known functions, and x is a vector of
independent variables. In production applications, x may be input quan-
tities or prices, or transformations of these variables (e.g., a log trans-
formation). If N=(n+D(n+2)/2 and a determinental condition (a
non-singular Wronskian)® is satisfied at a point x*, then parameter values
a; can be found for which this expansion approximates the value of f(x)
and its first and second partial derivatives in a neighborhood of x*. We
term an expansion with this property a parsimonious flexible form.

A common method of generating parsimonious flexible forms is by use
of a Taylor’s series expansion to second-order about a point x*. In this
case, the known functions and corresponding parameters have the
values

ho(x) = lv aO = f*(X*)’
hi(x) = x;— x7, a; = fHx*), i=1l,..n,
Ri(x) = (1/2)(x; — x5)(x; — x%), a;=fyx*), Lj= 1,....n.

[For notational simplicity, the second-order terms in (1) have been
reindexed in terms of [ and j.]

A problem which arises when we consider parsimonious flexible
functional forms as approximations to true functions is the accuracy of
the approximation. If a flexible form is calibrated to provide a second-
order approximation at a point, then the approximation is of this order
only in a small neighborhood of this point. In other regions of interest,
the form may be a poor approximation to the true function, and may
even fail to satisfy basic properties of the true function such as mono-

5The Wronskian is the determinant

h°(x*) h'(x*) AN (x*)

AR (x*) dx, 3h'(x*)dx, ah™ (x*) ax,
ahO(x*) ax, ) ah™ (x*)] 8,
3Th%(x*)lax} 3 RN (x*)ax}
T (x*)] 6x,0x2 ) 32hN (x*)/ 6x,0x,
R (x) ax? . RN (x*) ax3

When this determinant is non-zero, the coefficients a4, in (1) can be chosen so that the
approximation to f has first- and second-order derivatives at x* equal to those of f at x*.
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tonicity or convexity.® Further, the qualitative implications of the cali-
brated approximation may depend on the point of approximation; this is
true, for example, of separability, which involves properties of the true
function beyond second-order (see Section 6). The economic effects of
interest in comparative statics, while unrestricted at the point of ap-
proximation, can be strongly and perhaps implausibly related at different
points in the domain of the expansion.

If a parsimonious flexible form is fitted to observations over an
extensive domain, as is normally the case in econometric production
analysis, then the fitted form will not in general be a second-order
approximation to the true function at any chosen point. As a result, the
comparative statics effects deduced from the approximation will bear a
complex and perhaps misleading relationship to the corresponding
effects for the true function. In particular, multivariate fits to the
approximate function and its derivatives may fail to satisfy restrictions
on parameters across equations, even when the true function satisfies
properties implying these restrictions. This could lead the analyst to
conclude incorrectly that the true function fails to satisfy the properties
in question. For example, tests of ‘“‘profit-maximizing behavior” based
on symmetry restrictions across equations may be rejected in the system
of fitted functions even if the property holds in the true system. Note
that this conclusion depends critically on the assumption that the
expansion is being fitted to data over a large domain; a second-order
approximation at a point will satisfy symmetry restrictions across equa-
tions when the true system does.

A simple example may help to clarify the issues raised in the preced-
ing paragraphs. Suppose a true one-input production function is y = e’,
exhibiting increasing returns at an increasing rate (for v>1), u = v, and
a positive own-price elasticity, € = v. Suppose we approximate this
production function with an expansion in logarithms, logy =
a,+ a,log v + as(log v)>. The estimated returns to scale and own-price
elasticity from the expansion are g =a,+2a3logv and é=
(2as/ @)+ fi — 1, respectively. Suppose log v is normally distributed with
mean log m and variance o°. Then, an ordinary least-squares fit of the
parameters in the expansion converges in probability to a;=

Some expansions, such as the Translog function discussed below, can never except in
trivial cases satisfy monotonicity or convexity conditions over the entire positive orthant.
Hence, it is important in using these expansions to test for the satisfaction of maintained
hypotheses in regions of interest. In Appendix A.4 of this volume, Lau provides compu-
tational methods for verifying convexity.
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me®[1—logm +ilogmyP—0%}, ar=me®*(1—logm), and as3=
(m/2)e®’”. Alternatively, a second-order approximation to the true
function at a point v = m satisfies these formulae with o> =0.) Let ¥, 4,
and € denote the economic effects measured from the fitted expansion.

Then, for example,

E_ e”2’2(1 + log —U-)/i,

I m// m
which attains a maximum of e°”? at v =m. Hence, a second-order
expansion at a point will underestimate the returns to scale effect except
at the point. A fit to data for which log v is normal with mean log m and
variance o yields an overestimate of returns to scale at the data mean.
Table 1 indicates the accuracy of the approximation to y, u, and € for
three alternative expansions. In each case, the approximation is good
(say, within 10 percent) only in a narrow range, and is particularly poor
for small v where the expansions fail to satisfy monotonicity. The effect
of fitting the expansion to log normal data with m =10, o’=1 is a

TABLE 1
Second-order fit Second-order fit Data fit when log v has
m=1 m=10 mean log m = log 10,
varo?=1

gy & & logy @ & g & é

v log v I € log y m € log ¥ 13 €
03 1.74 —068 -2036 121.38 —83.55 -88.22 172.64 -137.75 —1i42.42
04 126 021 2757 7404 -5547 -59.10 101.47 —91.46 -95.08
0.5 1.09 06l 5.13 4983 -3991 -4292 65.67 —65.81 —68.81
09 100 099 1.12 16,57 -15.64 -17.54 18.16 —25.79 —27.6%
1.0 100 1.00 1.00 . 1348 —13.03 -14.79 13.99 —21.48 -23.24
1.1 1.00 100 092 11.17 —-1098 —~12.64 10.92 —18.10 -19.76
20 097 085 064 343 -3.05 —4.37 1.53 -5.02 -6.34
3.0 09 0.7 0.53 1.74 -068 —2.65 0.11 -1.12 -3.09
40 084 0.60 0.45 1.26 0.21 2.95 0.01 0.35 3.08
50 078 0.2 0.40 1.09 Q.61 1.07 0.16 1.01 1.46
90 062 036 0.28 1.00 0.9 1.01 0.73 1.64 1.65
100 060 033 0.26 1.00 1.00 1.00 0.82 1.65 1.65
1.0 057 0.31 0.24 1.00 1.00 0.99 0.90 1.64 1.63
200 042 020 0.16 097 0.85 0.83 1.18 1.40 1.38
300 034 015 0.12 090 0.70 0.68 1.21 1.15 1.14
400 029 0.12 0.10 084 0.60 0.58 1.17 0.98 0.97
500 025 0.10 008 0.78 0.52 0.51 1.12 0.86 0.85

90.0 0: 17 0.06 0.05 062 0.36 0.35 094 0.59 0.58
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substantial overestimate of u and € in the range 3.68 = v = 27.18, which
contains 68 percent of the data. This example suggests that fitted
expansions can be relatively non-robust with respect to the point of
approximation or range of data available, and that considerable caution
should be used in utilizing the models for extrapolative prediction or the
testing of basic hypotheses on production structure.

In principle, the difficulty in obtaining accurate approximations in the
large can be overcome by introducing additional parameters. On a closed
bounded domain, the Bernstein—Weierstrauss approximation theorem
shows that a continuous function can be approximated uniformly by
polynomials.” In practice, the number of parameters required in these
theorems to guarantee a specified level of accuracy is too large for
empirical purposes. A theory of approximation in the large for produc-
tion functions which incorporates the qualitative properties of the true
functions such as monotonicity and convexity might produce tighter
bounds on the number of parameters required; however, this topic is
beyond the scope of this survey.

’Suppose the domain of interest is defined — by translation, normalization, and extension if
necessary - to be the closed bounded set 8 = {(v,,...,v,) Z0Jv, + --- + v, = 1}. Consider the
class of functions f which are uniformly Lipschitzian on § with constant M; ie.,
[f(v) = f(v)| = M}v — v|. Define a multivariate Bernstein polynomial

By(v)= 2 Fky N,k N)by(ViKy,... K, ),
(k1. kn YEK

where K is the set of integer vectors (k,,...,k,) with (k,/N,....k./N) €S, and
B (¥ikiyeorkn) = (N UGk ok AN = Kymeem k) Db = oy =m0 ¥ 077

Given € >0, if N = nM?/€*, then [f(v) — By (v)| = € uniformly on the cube. To establish this
result, define K, = {k €K||lv— k/N| = (n/4N)'?} and K, =K\K,. Then

—Buw)= — {2 by I-kINI, .
f)-Buils 3, - ()| e+ 3 M =L bk

= (n/4N)"M >, by(vik) + M(n/4N)™'? Z‘k v — /NPy (vik)
LeEK kE

= M(n/dN)" + M(n/4N)"n 3, 2= 1)

= N
n
= _")' <
_M(N =e,

where the second and third inequalities follow from properties of the multinomial dis-
tribution.
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4.3. Common Linear-in-Parameters Forms

Table 2 provides, in summary form, a list of the most commonly used
linear-in-parameters functional forms and their approximation charac-
teristics. The historic Cobb-Douglas function, while not originally pro-
posed as an approximation, can be viewed as a first-order expansion in
log v; about v; = 1. This form allows free assignment of the output level,
returns to scale, and distributive shares effects at a point of ap-
proximation, but allows no flexibility with respect to the substitution and
own-price elasticity effects. The CES function adds one substitution
parameter to the (linear homogeneous) Cobb-Douglas case. We have
included this functional form in the table, even though it is not linear-in-
parameters unless the substitution parameter p is known, because it is
the basis for several linear-in-parameter expansions.

The concept of linear-in-parameters functional forms and the property
of second-order approximation at a point are due to Diewert (1971), who
introduced the generalized linear and generalized Leontief systems. This
development was followed by the introduction of the translog functional
form by Christensen, Jorgenson, and Lau (1971). A direct generalization
of the Cobb-Douglas function, the translog form has been widely used
as a framework for analysis of structural properties of production.

All the forms in Table 2 with the exception of the Quadratic have
restrictions implying linear homogeneity, and under this restriction have
n(n + 1)/2 parameters, as required for a parsimonious flexible linear
homogeneous function. In the absence of homogeneity restrictions, the
forms having (n+ 1)(n+2)/2 parameters are Generalized Leontief,
Translog, and Quadratic. With the exception of Generalized Cobb-
Douglas and Generalized Concave forms, the functions in Table 2 can be
interpreted as Taylor’s expansions about a point. In this interpretation,
first proposed explicitly by Lau (1974), Cobb-Douglas is a first-order
expansion of log y in powers of log x;, and Translog is a second-order
expansion. CES is a first-order expansion of y° in powers of x!.
Generalized Leontief and Quadratic are second-order expansions of y in
powers of v/x; and x;, respectively.

Generally, the forms in Table 2, or analogous forms that could be
obtained using other series of functions as a basis for expansions, will
provide equally satisfactory representations of an arbitrary production
function at a point. Choice between them should be based on their
quality as approximations to the true functions over the full domain of
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interest, to the extent that this can be assessed a priori, and on the ease
with which hypotheses of interest can be stated as restrictions on
parameters.

5. Special Non-Linear Forms
5.1. Elasticities of Substitution

The flexible forms discussed in Section 4 can be viewed as extensions of
simple functional forms where the extensions are constrained to remain
linear-in-parameters. For example, Diewert’s Generalized Leontief cost
function is just such an extension of the cost function dual to a Leontief
fixed coefficient production function. The Translog extends the Cobb-
Douglas function and the Quadratic extends a linear function under the
same linear-in-parameters constraint. While linearity is retained, it is at
the cost of introducing a large number of parameters into the analysis.
The variants of simple functional forms surveyed in this section are
characterized by non-linearity in parameters. This fact makes them less
useful in general for econometric estimation than those forms surveyed
in Section 4. However, in some cases, non-linearity is compensated for
by parsimony in parameters. An example discussed in this section Is
Hanoch’s CRESH-CDE form for use in the study of factor substitution.

Most of the forms surveyed in this section were devised to generalize,
using as a few additional parameters as possible, two restrictive features
of the maintained hypotheses concerning substitution effects of the
original ACMS function. First, in the two-factor case, the elasticity of
substitution is constrained to be constant, and there is no apparent
technological justification for this restriction. Second, extension of the
CES function to more than two factors requires, with unimportant
exceptions, the imposition of the maintained hypothesis that all partial
AES are equal and constant [Uzawa (1962)]. In the multiple factor case,
it is not clear that the AES will be the desired concept of the elasticity of
substitution (ES). The attempts to apply this concept to the case of more
than two inputs have produced various definitions [McFadden (1963)].
As indicated by Mundlak (1968b), those definitions differ in two major
respects: (1) the variables which are held constant in the underlying
economic experiment and (2) the number of variables which are in-
volved in the operation. If we denote § =dIn v, and assume that all
derivatives are evaluated at an equilibrium point, we can distinguish
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between one-factor one-price ES (OOES), #,/7. (the AES is of this form),
two-factor one-price ES (TOES), (#; — #;)/7;, and two-factor two-price
ES (TTES), (3;— 0:)/(f; = #). The last is the “usual” definition of ES.
Each of these concepts can be evaluated at constant output, cost, or
marginal cost. Each of these alternatives corresponds to a different
factor demand curve, where the prices not involved in the operation are
held constant. However, it is also possible to hold constant the quan-
tities of the factors which are not involved in the operation. In one
extreme “short-run’ case we have the direct ES (DES), which is a TTES
with all factors other than those involved in the operation held constant.
In the extreme “‘long-run” case, we have the shadow ES (SES), in which
all quantities are allowed to vary. We can also have mixed situations in
which the quantities of some factors and the prices of other factors are
held constant. Detailed discussions of various definitions of the ES are
given in McFadden (1963), Hanoch (Chapter 11.3), and Lau (Chapter 1.3).
All these forms collapse to a common definition in a two-factor linear
homogeneous production function. This is due to the singularity of the
Hessian matrix, and therefore it cannot be used as an indication that any
of the above expressions is a generalization of the two-factor measure
[Mundlak (1968b, p. 231)].

In summary, once we depart from the two-input case we confront the
following problems in attempting to develop production functions from
the point of view of the elasticity of substitution:

(a) There is no unique natural generalization of the two factor
definition of the ES. The different definitions involve different combina-
tions of the elements of the underlying Hessian matrix. It is therefore
reasonable to deal with the Hessian elements directly. The AES comes
close to this approach. Other than that, it has no particular advantage
over the others and perhaps the reference to it as an elasticity of
substitution is misleading. It is simply proportional to the cross elasticity
in the constant output factor demand function. We conclude that the
selection of a particular definition should depend on the question asked.

(b) The choice of an ES does not imply constancy of the elasticity;
this is an added hypothesis which may not hold in reality. As a result,
there is no direct relationship between the concept of the ES to be used
and the algebraic form of the production function.

Non-linear forms have been analyzed primarily in terms of the AES,
and in the pages which follow we will maintain the classification in terms
of the AES. However, we note that for the reasons above, it might also
be useful to pursue a classification similar to that in Section 4.



242 Melvyn Fuss, Daniel McFadden, Yair Mundlak
5.2. Variants of the Cobb-Douglas Function

(1) Variable elasticity of substitution (VES) production function
[Revankar (1971)]. This function was devised to relax the assumption of
constant AES in the two-factor case. It takes the form

y = apvi'(v2+ v1v)%,
and has an AES = 1+ B(v,/v,) where 8 is a function of the production

function parameters. It is considered a variant of the CD form since the
AES varies around one for 87 0 and. variations in relative inputs.

(2) Constant marginal share (CMS) function [Bruno (1968)]. This
function is explicitly a generalization of the CD form. It can be ex-
pressed as

Yy = aoU'v3 =~ Yoy,

and has an AES = 1 — (ya/a2)(v4f y)-

(3) Transcendental production function [Halter, Carter, and Hocking
(1957)}. This function has the form

y = aovi “05enT,

and has an AES =(1—a + y;v))(a + y:0)/((1 — a)(a + v +a(l —a +
v1v1)?) which reduces to unity when v, =y, = 0.

5.3. Variants of the CES Function

Most of the variants of the CES function can be seen as the result of
attempting to eliminate the assumption contained in the multifactor CES
formulation, namely, equality of all partial AES [Uzawa (1962),
McFadden (1963)]. One extension which relaxes this restriction is the
nested CES function [Sato (1967), see also McFadden (Chapter IV.1)].
This form has not been used extensively in empirical work due to its
complex nature when extended to more than three factors [however, see
Mundlak and Razin (1969, 1971)]. Another avenue for CES-like exten-
sions is the class of implicitly additive forms introduced by Hanoch
(1975a). The direct form is

F(v.y) = 2 Fi(u,y)=1, @)
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where F' are functions with properties imposed to insure that the
implied explicit production function satisfies the maintained hypotheses
of Sections 3.1 and 3.2. The dual, or indirect form, is

Girle,y)=2, Gi(rle,yy=1; (4)

where G' are functions with properties imposed to insure that the
implied cost function c satisfies the maintained hypotheses of Section
3.3. This class of functions contains as special cases the direct forms
which have constant ratios of AES; such as the one derived by Mukerji
(1963) and Gorman (1965) [and used by Dhrymes and Kurz (1964)] and
the CRESH form developed by Hanoch (1971). The indirect form
contains as special cases functions which exhibit constant differences in
AES such as the CDE form of Hanoch (1971). The Mukerji form uses
the transformation Fi(v,y) = D:{(v%/y"), while the CRESH form uses the
transformation Fi(viy) = Di(v/y")%. The CDE form uses the trans-
formation G(rfc,y)= Di(y"ric)® In these transformations, D, d;, and h
are parameters. Detailed discussion of these transformations and ex-
tensions can be found in Hanoch (1975a).

Estimating equations for the indirectly additive class contain a small
number of parameters when compared with the general linear expan-
sions of Section 4. For example, consider the CRES (constant ratio
elasticity of substitution - non-homothetic) form introduced by Hanoch
(1975a),

2 Diy—eldiv,_di = . (5)
where D, d;, and ¢; are parameters. Using the first-order conditions for
profit maximization, one obtains the set of equations

log v; = A; — a; log (r/r) + h; log y + (afa\} log vy, i=1,..,n,

where
a;=1(-d), A =log (DdfDid)%,  hi = ai(ed, — ed)),

and
AES.‘,IJAESM = ai/a,-.

. 8For extensions of the indirectly additive class to the multiple output case see, Hanoch
(Chapter 11.3).
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The above set of equations is non-linear in a; and simultaneous in v
but could be estimated using non-linear simultaneous equations pro-
cedures currently available. Note that there are 3n —2 parameters to
estimate in the system of equations (5) as compared with (n + 2)(n + 1)/2
for the second order linear-in-parameters approximations. The cost (in
addition to the non-linearity) is the maintained hypothesis of implicit
separability which is reflected in the fact that only two input prices
appear as exogeneous variables in each demand equation. This is an
example of the importance of separability assumptions for functional
specification. It is to this 1ssue that we now turn.

6. Separability: Functional Implications and Tests

6.1. Basic Concepts

Separability has various implications. It allows decentralization in
decision-making or equivalently, optimization by stages. This opens up
the possibility of consistent multi-stage estimation which may be the
only feasible procedure when large numbers of inputs and outputs are
involved; specifically, when applying the relatively simple concept of a
production function to complex organizations. Historically, separability
has played an important role in the specification of functional forms.
The Cobb-Douglas and CES functions are explicitly strongly separable.
Hanoch’s (1971) CRESH-CDE class of functions is implicitly strongly
separable. Sato’s (1967) nested CES specification is strongly separable
with respect to the highest level partition and then strongly separable
within each sub-aggregate.

To define separability, we first denote the set of n inputs by N=
{1,...n}. A partition § of N is given by {N,..Ns} where N=
N, UN,---UNg, and N, NN, is empty for r# t. Separability is charac-
terized by the independence of the marginal rate of substitution between
a pair of inputs from changes in the level of another input, i.e.,

LTI

or fifu — fifu = 0. We say that f is strongly separable (SS) with respect to
the partition S if (6) holds for all iEN,, jEN,, and k&N, UN,. The
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function is weakly separable (WS) with respect to the partition S if (6)
holds for all i,j €N,, and k& N,. Note that these properties may hold at a
point or globally.

Goldman and Uzawa (1964) showed that a function f(x) is giobally SS
with respect to the partition S (S > 2) if and only if f(x)= F{Ei. fi(x"H}
where F is monotone increasing and f'(x') is some function of x". The
function is globally WS with respect to the partition S if and only if it is
of the form

fx) = G{g'x"),....g*(x*)} )

Berndt and Christensen (1973b) related separability to AES and
obtained the result that any strictly quasi-concave homothetic produc-
tion function f(v) is WS with respect to the partition S at a point if and
only if AES; = AES; at that point for all i,j EN, k& N,. Similarly, the
function is SS at a point if and only if AES; = AES; for all i€N,
i EN,, k€N, UN,. Furthermore, if n =S, then all AES;, i# k, are equal.
If this function is globally SS for any input combination then f(v)=
F(E 7., aiv?), a homothetic transformation of a CES function.

Finally, Berndt and Christensen showed that if f(v) is homothetically
separable then the dual cost function C(y.r) is weakly separable so that

C,'C,‘k e C_:C,'k =0 (8)

holds as well as (6). _

In proving these theorems Berndt and Christensen use a result obtained
by Lau (Chapter 1.3) to the effect that the cost function is WS(SS)
with respect to the partition S in input prices if and only if f(v) is
homothetically WS(SS) with respect to the partition S in input quantities.

The role of homogeneity of f in the Berndt-Christensen results is
analyzed by Russell (1975), who extends the results to the case of
non-homothetic production functions.

Separability results comparable to those obtained by Berndt and
Christensen are developed in terms of cost and profit functions by
McFadden (Chapters 1.1 and 1V.1) and Lau (Chapter 1.3).

One important application of separability is in the derivation of
value-added functions. If the gross output production function is weakly
separable in primary inputs then a net output or value-added function
can be defined and used for analysis. This issue is pursued by Bruno
(Chapter II1.1) and Denny and May (Chapter HI1.3).
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6.2. Separability in Forms Linear-in-Parameters

Since the separability constraints (6) and (8) depend on second-order
partial derivatives, functional forms linear-in-parameters must be at
least of the second-order in the variables to contain separability as
a testable implication. For example, the Cobb-Douglas function, which
is of the first-order in logarithms, maintains separability since
(82 log )/(3 log v:)(d log v;) = 0 for all i,j, thus satisfying (6). The class of
second-order approximation functions then will be the linear in
parameters class necessary in general to test separability. Separability
tests of production structures using the translog specification can be
found in Berndt and Christensen (1973a, 1974), Berndt and Wood (1975),
Denny and Fuss (1977), and Denny and May (Chapter II1.3). Similar
testing of the structure of utility functions appears in Christensen,
Jorgenson, and Lau (1975) and Jorgenson and Lau (1975a). An alter-
native approach to testing separability, in the framework of the muiti-
stage Sato function, appears in Mundlak and Razin (1971).

The above tests fall into two categories. The first category is that of
“exact” tests. These tests result from the imposition of the null hypo-
thesis of separability for all possible values of the exogenous variables.
The second category consists of ‘“‘approximate” tests, where the null
hypothesis is imposed only at a point of approximation, utilizing the
notion of the function as a second-order Taylor series expansion.
Berndt-Christensen and Berndt-Wood use the exact tests, Denny-Fuss
and Denny-May use the approximate ones, while Christensen et al., and
Jorgenson and Lau use both (under the terminology “intrinsic” and
“explicit’). Exact tests would seem to be preferable if no additional
constraints are imposed, since a single reject/non-reject decision is
globally applicable. Unfortunately, with second-order expansions this is
not the case. Blackorby et al. (1977a) and Denny-Fuss (1977) have shown
that the restriction of global weak separability implies either strong
separability within the partitioned sub-aggregates, or strong separability
between aggregates. For example, suppose G in (7) is translog. Then
either each g'(x') is Cobb-Douglas in x' or G is Cobb-Douglas in g'.
These resuilts can also be found in Jorgenson and Lau (1975) for the case
of utility functions. We are left with a tradeoff between tests which
impose extraneous restrictions and those which depend on the data point
chosen as the point of approximation. While the issue remains un-
resolved, one possible procedure is to explore higher-order expansions
[Lau (1977)], which unfortunately requires the introduction of a large
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number of additional parameters. Another approach is to explore forms
non-linear-in-parameters, to which we now turn.

6.3. Separability in Forms Non-Linear-in-Parameters

We begin by illustrating a procedure suggested by Mundlak (1973a) for
generating non-separable functions which contain less than the (n +1)
X (n + 2)/2 independent parameters of the second-order approximations.
To sketch the approach to this problem, let

y = f(v)= (g * h)(v), 9

where f(v) is the production function, g and h are two arbitrary
functions. and # is an arbitrary operator; i.e., addition, multiplication,
exponentiation, or composition. ° It can be shown that g and h can both

be separable while f(v) itself is not separable.
To illustrate the use of this approach, let * be addition so that (9)

becomes

f(v)=g(v)+ h(v). (10)
Then to evaluate (6) we can write

fifu = fifa = (g + h)(gu + hi)— (g + h)(gix + hix)

= (hihyg — hihy) + (28 — 8i8ix)
+ (higix — higa) + (gihjx — gihiv)- (11

We now note that h and g can both be separable so that the first two
terms on the r.h.s. of (11) vanish. Furthermore, we can select one of the

functions to be linear. For instance, let g;# 0 for at least one i and g, =0
for all i and r. Thus, if g is linear and h is separable we get

fifu — fifi = gihix - gk (12)

For f to be non-separable with respect to i and j it is sufficient that
(12) differs from zero. For instance, we can assume h to be a CD with a;
being the output elasticity with respect to the jth factor, so that h; =
a;a;(hivv). Then (7) becomes

gy — g,hik=—h(g.—1—g, ) (13)

By composition g* h, we shall mean that h becomes an argument of g:ie..(g*xh)v)=
glv.h(v)).
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(13) is equal to 0 for all i and j if and only if

& _ 5’.‘_’_1" (14)
U U;

which is impossible except at a point.

Note that (14) could be used as an approximate test of separability at a
point. In contrast to the translog function, the maintained hypotheses
involve only 2n parameters.

We can further illustrate the above procedure by using it to generate
a second-order approximation form which can be used to test separabil-
ity among outputs within the class of exact tests.

Let C(y,r) be a cost function dual to the distance function f(y,v) =0
where y, v, r are output, input, and input price vectors, respectively.
Suppose

C(y.xr) = (g * h)(y.r)= g(y,h(r)), (15)

where * is a “‘composite function’ operator and k(r) is a vector consis-
ting of elements h;(r), i,j = 1,...,n. Let

hi) =3 Y agu(nr)'™ and  g(y,.h) =2, 2 hi(yiy)'™"™. (16)
r 5 f ]
The resultant function is

Cyn=22 ;Z aiju(yiyinr)'”?, (17)

which was analyzed by Hall (1973) and implemented empirically by
Burgess (1976). Separability of the form f'(y) = f3(v) can be tested by
imposing the restrictions a;u = a;ay [Hall (1973)] which results in an
exact test. We arrived at the above form by combining two generalized
Leontief specifications. Of course (17) still contains a large number of
parameters, limiting its usefulness empirically. Nevertheless, this
method of combining functions may prove useful for achieving a par-
ticular property with an efficient use of parameters.'

“The two-stage nested functional form developed in Fuss (1970) [see also Fuss (1977b)
and Fuss and McFadden (Chapter I1.4)] combines two generalized Leontief cost functions
using a composite function rule much like that employed by Hall. This construction
provides exact tests (in the sense used in the text) of the flexibility of the underlying

technology.
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7. Econometric Estimation of Production Parameters

The functional forms set out in Sections 4 and 5 characterize systematic
relationships between economic variables, but take no account of the
random effects which enter the determination of measurement of these
variables. In application the stochastic specification is an intrinsic part of
the specification of the production model. It should be emphasized that a
specification of the model should be guided by the visualization of the
true process and this is determined by nature and not by the
econometrician. Hence the object is not to choose a specification that
justifies a particular statistical procedure but on the contrary, to provide
a general framework which allows for discrimination between various
alternatives, as well as to examine the “robustness” of procedures
dictated by the various alternatives.

Relations between measured production variables will in general
contain stochastic components introduced at four levels: (1) the tech-
nology of the production unit, (2) the environment of each firm, partic-
ularly the market environment, (3) the behavior of the production unit,
and (4) the process of observation, which often involves aggregation
over commodities, production units, and time; direct errors in
measurement; and incomplete observation. We discuss in turn each
source of error.

Variations in technology from one production unit to the next may
arise from specific or unit effects known to the production unit but not
to the econometrician; such as management efficiency, availability and
quatity of specific factor inputs, and the presence of non-market inputs.
They may also arise from effects which are unknown to the production
unit at the time decisions are made. Examples are effects due to
breakdown, weather, random variations in factor efficiency, and varia-
tions in quality control. The importance of the distinction between these
two sources of variation [Mundlak and Hoch (1965)] is that effects
known to the production unit enter the process of optimization and will
be transmitted to the chosen input levels, whereas these chosen levels
cannot depend on the realized values of random effects which are
unknown at the time input decisions are made.'" The statistical im-
plications of this distinction are that observed factor inputs will be

I'This is to some extent an oversimplification, because if production is performed by
stages the error of one stage becomes a known error of higher stages [Mundlak (1963)].
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endogenous if random effects are known to the production unit, and
potentially exogenous if they are not.

The environment of a production unit includes a description of the
markets in which input purchases and output sales must be made; the
information available to the production unit at the time it makes
decisions on market conditions; levels of non-market inputs; and the
degree of organizational pressure or slack; as well as more general
information on societal pressures on production unit decisions. For
example, firms may face competitive input markets, and may purchase
inputs of unknown quality in these markets at known prices, with the
result that prices per efficiency unit of input are uncertain. Alternately,
firms may find it necessary to contract for purchases or sales in some
markets before other markets open, making relative prices uncertain.
For instance, the purchase of durable inputs precedes the knowledge of
all future prices of outputs and related inputs. If some markets are
non-competitive, then stochastic components in demand or supply for
non-competitive commodities will influence firm decisions and the
resulting prevailing prices and quantities. In some cases it may be
important to distinguish between stochastic effects on market equili-
brium which are known to the firm, and thus part of its decision
function, and those which are unknown to the firm. The knowledge need
not be perfect for the argument to hold. The former will make observed
prices endogenous; the latter makes them potentially exogenous.

Production unit behavior introduces stochastic components via devia-
tions from idealized behavior patterns, as for example, failure in profit
maximization to achieve exactly the desired marginal products of inputs.
Such errors may arise from the finite computational ability of firms,
from explicit calculations of computation costs versus expected gains,
from satisficing behavior, or from firm objective functions which differ
from those postulated in a maintained hypothesis by the econometrician.
We note that some of these effects may introduce systematic biases into
behavioral responses, and into the resuiting observation. For example,
Mundlak and Vulcani (1973) consider firm utility maximization,-with
utility depending not only on profit, but also on other variables like
uncertainty and the leisure component in a production plan. It then
follows that classical first-order conditions for profit maximization mis-
specify the true behavioral conditions, and therefore going from direct
estimation of the production function to estimation of a system contain-
ing erroneous first-order conditions can be expected to worsen the
quality of estimates [Mundlak (1973b)]. This caveat applies quite
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generally to the use of indirect forms or behavioral equations in estima-
ting technological parameters; these forms require maintained hypo-
theses, such as profit maximization, in addition to those required by the
basic specification of the technology. If these hypotheses prove to be
false, then inferences on technology conditional on such hypotheses will
be negated unless the estimation procedures can be shown to be robust.
One such robust procedure, a direct estimation of the production
function with prices serving as instrumental variables, is examined
below. The robustness follows from the fact that even under a broader
formulation, profit is considered to be an important argument in the
utility function of the firm, and, ceteris paribus, prices have the same
effect on quantities as in the neoclassical theory.

Broadening the framework of the analysis by allowing the utility
function to include other variables in addition to profit leads to a duality
relationship between technology and what may be referred to as a
profit-like function-that is, a function which behaves like a profit
function but whose arguments are some combination of actual prices
and “prices” of the other variables that enter into the utility function.
We can refer to the outcome of such combinations as pseudo prices. The
profit-like function is the dual of the true production function. The use
of profit rather than a profit-like function in empirical analysis can be
considered as an approximation, the quality of which is to a large extent
an empirical question. If however, it turns out that in a particular
situation the approximation cannot be justified, the question is what
information can be derived by working under the assumption that the
system behaves as if the first-order conditions for profit maximization
were met. Basically, this is a question of tracing the consequences of
specification error in some equations on the model as a whole. If the
technology is more stable than behavior, it may still be identified through
the use of the first-order conditions for profit maximization. If on the
other hand behavior is more stable, we derive behavioral equations
which behave like reduced-form equations of a structure that is not fully
identified.

In addition to stochastic components introduced in the technology and
behavior of the production unit, there are observation errors introduced
in the process of measurement of variables by the econometrician. First,
classical measurement errors may occur in the process of soliciting,
recording, and processing data. Second, a variety of sources of error,
which can be lumped under the term aggregation errors, occur because
of an inexact or ambiguous correspondence between ideal and practical
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definitions of variables. Further, ‘“‘ideal” aggregation is determined by
the true functional form, which is itself to be determined in the analysis.
Thus, any given practical procedure of aggregation may lead to different
kinds of aggregation error for alternative “‘true” production functions.
Consequently, other things being equal, the aggregation error may
influence the selection of a functional form in favor of the form for
which the error is minimal. The aggregation problem occurs in various
phases of the analysis. Aggregation over detailed commodity
classifications (e.g., labor services distinguished by individual) to
relatively homogeneous categories (e.g., labor services of stenogra-
phers) introduces errors. In the case of broad commodity classes,
such as “capital” and ‘“labor”, these errors may be sufficiently
major to influence the interpretation of the “technology’”. Aggregation
over production units or through time may be dictated by the feasibility
of data collection, or in the case of macroeconomic relationships, may
be an objective of the analysis. Third, errors may arise because
variables which are difficult or impossible to measure exactly are
replaced by proxies, as for example the use of an average mortgage
interest rate for a firm as a proxy for the actual interest rates on
mortgages on specific structures.

In view of the complexity of the stochastic structure of production
systems it should be clear that there is no simple universal estimation
procedure. There are several alternatives whose merits depend on the
relative strength of the various error components. In order to charac-
terize these alternatives we note that the production function and the set
of equations describing the first-order conditions for profit maximization
constitute a complete system. The reduced-form of the system gives the
product supply and factor demand equations. The profit function is an
identity in the reduced-form equations.”

The main approaches to estimation are:

(1) direct estimation of the production function,
(2) estimation of the first-order equations,

(3) estimation of the reduced-form equations,
(4) estimation of the dual functions.

The selection of a particular approach depends not only on the
stochastic specification but also on the functional form. However, in

In this general discussion, we assume that all the variables are determined without any
constraint on the maximization. Thus, the reduced form equations are long-run behavioral
equations. If some variables are fixed, the reduced-form equations will include such
constraints and thus result in short-run equations [Mundlak (1963)].
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order to review the main points which have appeared in the literature
dealing with the stochastic part of the model, we follow an example
which assumes a very simple functional form -a Cobb-Douglas with one
input only. We carefully specify and allow for the main sources of
variations that have been discussed above and trace their effects on the
various estimators considered. The discussion is oriented toward a
cross-section analysis of firms. Some comments are also made on the
possibilities which exist when there are repeated observations on firms.
The specifications are listed as maintained hypotheses, and are not
necessarily intended to represent an order of plausibility.

Example. An econometrician observes data on labor input (L), out-
put (Y), and wage rate measured in output units (w) for a cross-section
of firms, indexed i=1,....T. He wishes to estimate the elasticity of
output with respect to labor input. The following maintained hypotheses

are imposed.

7.1. Technology
7.1.1. Variables

Maintained Hypothesis 1. The technological possibilities of each firm are
completely defined by two variables, the single variable input labor and a
single output. There are no other variables such as capital, raw materi-
als, knowledge, secondary outputs, etc., which vary systematically
across the sample and enter the determination of technological possi-

bilities.
7.1.2. Functional Form

Maintained Hypothesis 2. Each firm has the same technological possi-
bilities, except for random effects due to (1) specific environment,
management efficiency, and local labor quality, which will be referred to
as the firm effect, and (2) breakdowns, weather, random variations in
worker efficiency, which will be referred to as the non-systematic error.
The technological possibilities have the Cobb-Douglas functional form

Y,=ALfe™, (18)

where A and B are parameters, Y, and L, are the “true” values of
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output and labor input, € is the firm effect and A is the non-systematic
error. These errors are normalized so that Fe = EA = 0.

[Note: Alternative specifications might be: (1) a production function
other than Cobb-Douglas, or (2) firm-to-firm variation in parameters,
such as B, or a more general variation in production possibilities across

firms.]

7.2. Environment
7.2.1. Market Structure

Maintained Hypothesis 3. The firm faces competitive input and output
markets. The relative price in these markets varies across firms, and is
non-stochastic and fixed in repeated samples.

{Note: An alternative specification might be a non-competitive input
or output market with relative prices endogenous and depending on firm
behavior.]

7.2.2. Information Available to the Firm

Maintained Hypothesis 4. At the time the firm must choose its labor
input, it knows the true production function, except for the non-sys-
tematic error A about which the firm forms expectations. The firm
measures its ‘“‘true’” input and output levels without error. In particular,
the firm has no ambiguity about the “‘quality” of input or output. The
firm measures the relative price of labor in terms of output with a
random error, w = w e, where w, is the ““true” real wage, £ is the error,
and w is the relative price of labor seen by the firm. The source of the
random error £ may be uncertainty about price at the time the relative
price is measured; e.g., the firm may measure the money wage without
error and forecast the output price with error, so that the ratio of the
money wage to the output price, or real wage, is measured with error. As
a first approximation it is convenient to assume that E(£) =0. In the
present context this is a very restrictive assumption for it indicates that
the log forecast price is on the average equal to the log true price.
Therefore, eventually we shall trace the consequences of the elimination
of this assumption.

[Note: Alternative and supplementary specifications might be: (1) that
the firm is uncertain about its true production function, (2) that the firm
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makes errors in measuring the amount of “true” labor in the labor
quantity it observes because of an unknown “quality” factor, or (3) that
the firm exhibits some systematic bias in measuring the relative price of
labor.]

7.3. Firm Behavior
7.3.1. Market Posture of the Firm

Maintained Hypothesis 5. The firm attempts to maximize competitive
profit, given the information available to it and the point expectation
that A =0, by a choice of the labor input. The quantity sold and actual
profit are determined by the actual value of A.

Analysis: With the point expectation A =0, the firm ‘‘sees” the

production function

Y, = Ae‘L%, (19)
and relative input price w. It then “sees” the profit (measured in output
units)

m = Ae‘LE — wL,. (20)
The firm chooses L, to maximize (20), setting the marginal product of
labor equal to the real wage that it “sees’”,

Y /3L, = BAe'LE ' =w. (21)

Errors in optimization can be subsumed in the random error £ in
forecasting the real wage. In this case, ¢£ may be subject to a firm effect,
but this in turn makes the assumption of E(£¢) =0 even more restrictive.
As indicated, we return to this question later. From (21),

L, = (W/BAe’) A, (22)
Y* — Aee-}-/\Lg = (Aee)”(l-B)BB/(I_B)W—H(l_ﬁ)CA, (23)

where L, is the “true” input, Y, is the “true” output. The firm’s
“expected” output is given by (23) with A =0. The profit which the firm
would receive from the “‘true” input-output combination if w were the
“true’ relative price is

IT=Y,— wL,={Ae(BIw)F}"""H(e* - B). (24)
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“Expected” profit for the firm is given by (24) with A = 0. Finally, the
profit the firm actually receives from the ‘‘true” input—output combina-

tion with the true relative price w, = we™* is
H* = Y* -w,L,= {Aez(ﬂ/w)ﬂ}ll(l-ﬂ)(e'\ - Be—f)- (25)

As a consequence of the forementioned hypotheses, true input, output,
and profit satisfy (22), (23), and (25).

[Note: Alternative specifications of firm behavior are: (1) non-
competitive behavior rules (even in the face of competitive markets), (2)
objectives other than profit maximization (e.g., sales maximization,
managerial tastes), (3) alternative models of expectation formation,
particularly where the firm has some prior beliefs on the likelihood of
various A and £ and (4) treatment of risk aversion and a ‘‘utility”
function of profits.]

7.4. Observed Data
7.4.1. Relation of Observed and *‘True’ Series

Maintained Hypothesis 6. The econometrician observes the “true’ rela-
tive wage, labor input, and output with error (but without systematic
bias); specifically w = w,e”, Y = Y, e", and L = L,e”, where w, Y, and L
are the observed quantities and 7, B, » are random measurement errors
with E(t)= E(n) = E(v)=0.

7.4.2. Relation Between Observations

Maintained Hypothesis 7. Errors are statistically independent in
different firms.

[Note: an alternative specification might be: (1) that € follows some
geographical pattern and therefore is not distributed independently over
firms, (2) that the non-systematic error A is correlated between firms, or
(3) that the error in forecasting output price ¢ is correlated between
firms because of common output demand fluctuations.]

‘Maintained Hypothesis 8. Errors are homoscedastic; 1.e., €A,£,7,v have

variances which do not vary across firms.
It will be necessary to make several further technical specifications in
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order to reach conclusions on the properties of estimators. These will be

introduced as they are needed.
Taking equations (19), (22), (23), (25), plus the definitions w = wef™",
Y = Y,e" and L = L,e", we can summarize the relations holding among

the observed variables,

Y = ALPe<* 7, (26)
L.= (Wef”’f—tlBA)—ll(l—B)ev, (27)
Y = (Aei)”(l—B)(wef—f)—B’(l_B)eA+ﬂBﬂ(l—ﬁ), (28)
I=Y-wL= (Aee)II(l—B)(wef—'r/B)-B«‘(l—B){e:Hn — Bev-—&?}_ (29)
Taking logs, (26)-(29) become
u
y=a+ﬁl+{e+,\+n—ﬁv}=a+Bl+u,, 3o
U,
5L e+r—¢& 1 _s_ 1
= 1_Bw+{ =B +v} é 1_3w+u2, (31)
Us
Uy
LB ctA+n—By__B T _BU+AT
7=0 1“3‘”{ g (-B12 (1—6)36}
=9—*1'§'Ew+ll4, (33)

where y =log Y, =logL, w =logIl, w =log w, a = log A, 8 =(1/(1-8))
log (BA), y=(1/(1—B))log A+ (B/(1—BNlog B, and §=1vy+ log (1-B),
and where we have approximated the non-linear error in (33) by a
Taylor’s expansion,

Atmy v—§+T
log [ B} = T (0 — B+ B Br)

2 1 3
- _33)212__.(31( -+BI)33)16_+ O A8,

The system of equations then contains the production function (30)
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and the first-order conditions (31). Since we deal with one input only
equation (31) is also a reduced-form equation and as such it is referred
to as the labor demand equation. The second reduced-form equation
(32), is the supply function. Equation (33) is an approximation of the
profit function.

The direct estimation of the production elasticities from the first-order
conditions, termed by Klein (1953) the factor share estimate, is derived
from the following relation:

Us

wL _

- wrl—y=logB+(r—E£+v—A—mn) (34)

log

The first-order conditions are widely used in estimating the parameters
of more complex production functions. In this case the right-hand side of

TABLE 3
Error structure
. No. Name Expression € A+7) v (t—§)
(30) Production y=a+Bl+u 1 1 -B 0
(31)  First-order or labor [=6—cw+ 1, c 0 1 c

demand
(32)  Supply y=v-cBw+u; ¢
{33) Profit'-approximation T=0~cBw+tuy c
(34) Factor share ot+l—-y=logB+us 0 -1 i
(35) First-order transformed = (1/c)(& 1)+ us 1

where

c=1(1-8)

€ = firm effect in the production function

A = non-systematic error in the production function
7 = measurement error of output

v = measurement error of input

T = measurement error of real wages

£ = forecasting error of real wages

Since A and n have the same coefficients in the various equations, the two are combined
‘here; T and — £ are similarly combined. The question of identifying these components is of
no major concern to us and will therefore be disregarded.

*Add c;r?+ c;7° to error term - see discussion above for details.
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the equation consists of either quantities or prices. It is therefore of interest
to compare these two alternatives in the present simple formulation. Sucha
comparison is also useful when wage is measured with an error. If such an

error is more serious than the error of measuring inputs, then it may be
desirable to estimate 8 not from (31), but rather from

Ug

©=(-B)—(—B)l+{e+r—£+(1— B} (35)

We refer to this as the transformed or inverted first-order condition.

In what follows it might be convenient te refer to the summary
table, Table 3. The panel on the right-hand side titled “‘Error structure”
should be read as follows: u; = e + (A + 1) — Br +0(r — £),2nd similarly for

the other terms.
In order to evaluate the estimators we have to further specify the

moments of the random errors. It is reasonable to assume that most of
the error components are independent. The analysis begins by allowing
for some non-zero covariances, as described in:

Maintained Hypothesis 9. Let (e.A,n,%,7.§) = (), then
E()=0

V(=0 ga O 0 O [
ol 0 0o O 0

o2 0 0 O

ol o, 0

ol 0

o

For some parts of the analysis it is also required that the first five
moments of (+) exist.

Finally it is assumed that 0 < plim(w — &)* < .

The problems involved in estimation are related to the fact that the
right-hand-side variables in (30)—(32) are stochastic and correlated with
residuals, implying that estimates obtained by least squares (LS) will be
inconsistent. We look at this more closely, and ask under what stochas-
tic structures each estimate will be consistent. Define the sample mo-

ment about means

Syt "'—';1;2] (yi— L= 1),
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with corresponding notation for other moments. Table 4 presents the
various estimators to be considered and their errors.

Melvyn Fuss, Daniel McFadden, Yair Mundlak

TABLE 4
Alternative estimators of B.
Estimator Source Error: by, — B
=5 ; Su
by = PF direct-by LS
Su Su
- — 2
by = Seet Sie RF-ILS from labor demand B S
Siw Sow — (] - ﬂ)sw2
— - 2
by, = s—s‘“ﬂs-—' RF - ILS from product supply S—(—l(—l%‘f—
o T Swe wa - wl
b, = —Sau Dual - ILS from approximated —(1-B) 5.4
B e ™ Sow profit function Suw — (1= B)Sus
bu=exp(@+1—7) - Factor share exp(is)
bis= —E“%s" FOC - w as “dependent variable™ fﬁ’
H U
b = S PF direct - w as instrumental (1= B)S.:
%7 Sw variable - (1= B)Su2 = Suww

LS = Least Squares
ILS = Indirect LS

PF = Production Function

RF = Reduced Form

FOC = First-Order Condition

S.; = cov{wiu;)

¥ = sample arithmetic average of y, and similarly for other variables

Under Hypothesis 9, the probability limits of the errors of the various

estimators are

plim(bs— B) =

plim(b;; — B) =

phm(b;; - ﬁ) =
plim(bs/B) = 1,

2
——--——;2(IB E73+~—-~——BZ(I+B)E1-“+---)/0§,,

- B) 6(1 - B)°
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plim(by— B) = Z—294 95, o 4 (1- B)o?,

1-B
plim(bs— B) = (1 — B)Bo.. .

Using these expressions we can now review the reiative merits of the
various estimators.

(1) Direct estimation of the production function by LS: by is a consis-
tent estimator if the labor input is measured without error (c>=0) and
there are no firm effects (o2 =0). The specific or firm effect was first
introduced in the classical paper by Marschak and Andrews (1944). As
we have seen, this effect is taken into account in maximization, and
conseguently the input cannot be considered as exogeneous. Solutions
to this problem in the framework of direct estimation of the PF were
discussed by Hoch (1958, 1962), Mundlak (1961, 1963), and Mundlak and
Hoch (1965). In essence, there are two basic solutions. These can be
stated in a more general form that will also apply to a mulitiple-input
technology: (i) Impose enough restrictions on the covariances of the
various error terms so as to identify the production elasticities. The
resultant estimate can be considered as an instrumental variable estima-
tor where y—! is the instrument; y —! varies with @ and the errors
which appear in line (34) of Table 3. That is, y—! is obtained as a
difference of the reduced-form equations, (31) minus (32). However, if A,
v, and n are present, then the estimate obtained with y—! as an
instrumental variable will not be consistent. In the terminology of
Mundlak and Hoch (1965), this estimator overcomes the transmitted
error (€) but it is susceptible to the non-transmitted errors (A, 7, and v in
our case). At this point, we digress briefly to the case of more than one
input, and consider a suggestion made by Cavallo (1976). For each of the
inputs there will be a first-order equation of the form of (31).
Consequently, a difference between two inputs provides an instrumental
variable whose systematic part consists of the price difference of the
two variables and whose error part consists of the difference in
measurement and forecasting errors of the two inputs, a term which
does not appear in the error of the production function. Thus, the
performance of such instrumental variables is independent of the rela-
tive strength of the transmitted versus non-transmitted errors. If there
are k inputs, there are k — 1 such instrumental variables and there will be
a need for one more such variable. It should be noted that if there are
serious errors in the measurement of inputs, such instrumental variables
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will not yield a consistent estimator. (ii) The foregoing discussion is
pertinent primarily to a strictly cross-section analysis. When repeated
observations in time are available for each firm, covariance analysis can
be applied to eliminate the firm effect, so that for the within firm
variations, o2=0. Such an estimator is susceptible only to error in
measurement of the input. Further, if the measurement error is also
subject to a firm effect, then covariance analysis will solve this problem
as well.

(2) Reduced-form estimates: The reduced-form estimates, b3, and by,
require some wage rate variations among firms. Such estimates are
consistent if the wage rates are measured without error. If this condition
is not met, the degree of inconsistency depends on B and on the ratio
oilal.

(3) Profit function: Since this equation approXimates an identity in the
reduced-form equations, the estimator, by;, requires similar but some-
what weaker conditions for consistency than the reduced form estima-
tors, namely that moments of third- and higher-orders be zero.

(4) Direct estimation of the production function with wages as in-
strumental variables: Under the present assumptions this estimator is
consistent, provided measurement errors in wages and inputs are in-
dependent.

(5) Factor share: by, provides a consistent estimator of B, and if the
errors are log normally distributed, it is possible also to adjust the
estimator so as to obtain a minimum variance unbiased estimate [Bradu
and Mundlak (1970)].

(6) First-order conditions with price as a dependent variable: The
consistency of this estimator requires that the input be measured
without error, o2 =0, that there are no firm effects in the production
function (o2=0) and no error in optimization and price forecasting
(% =0). These are strong assumptions indeed.

" Under the assumption of profit maximization the factor share estima-
tor seems to be the simplest and easiest to compute and at the same time
its consistency depends on fewer assumptions than some of the aiter-
native estimators. This result is a direct consequence of the simplifying
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assumptions that the error components us have zero expectations. At the
purely technical level, the importance of this assumption stems from the
fact that there is no other coefficient beside B to absorb deviations from
such an assumption.

In the discussion of the specification of the model we have cast doubt
on the general validity of the assumption E(£)=0. Indeed, the early
studies of Cobb and Douglas were largely motivated by the desire to test
the hypothesis that factors are paid according to their marginal produc-
tivity. It is therefore inadequate to impose such a hypothesis as a
constraint as is done in the factor share estimator [Mundlak (1963)]. This
point holds equally well for more complex functional forms, the
coefficients of which are estimated from the first-order conditions.

The relaxation of the assumption E(£)=0 also has an effect on the
reduced-form estimators. In evaluating the probability limit of these
estimators there will be another term, plim(Z w*&/n), and this term need
not vanish even if the two components o* and ¢ are independent. The
only estimators that are not affected by this term are the direct estimates
of the production function as discussed under (1) above or by using
prices as instrumental variables.

We can now summarize the discussion by listing the consequences of
the various error components on the alternative estimators:

(1) Firm effect in the production function (e) results in inconsistency
of the direct LS fit of the production function and of the transformed
first-order condition estimator, bss.

(2) Non-systematic error in the production function (A) does not lead
to inconsistency.

(3) Measurement €ITOTS, as is weli-known, lead to inconsistency only if
they occur in the independent variables of the regression. Measurement
errors of the real wage, o2# 0, lead to inconsistency of the reduced-
form estimates, b3, b3, and possibly bs. If this error is serious, it can be
avoided by estimating the transformed first-order condition, bss. The
latter is sensitive to measurement error in input, o2 #0, as is also the
case with direct LS fit of the production function.

(4) Non-systematic errors of optimization effect only the transformed
first-order condition equation.

(5) Systematic errors of optimization, which also include errors in
wage forecasting, result in inconsistency of the reduced-form equations
as well as the factor share estimate.

The estimator which seems to be most robust with respect to avoiding
bias due to the various stochastic components is the direct estimate of
the production function with real wages as an instrumental variable.
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Consider now the case where there is variation in ! and o, so all the
estimators by, to by are defined. Suppose labor inputs and wages are
measured without error (o2 = o2 = 0). Which of the estimators is ‘“best”?
A partial answer for large samples can be obtained by comparing
asymptotic variances. A tiresome computation for the case of normally

distributed errors yields

plim n(bs — plim by)’ = (1 — BY{ol+ 0 + 0% + 20602/ (dl + o
+ 0'% - 20’;{)2}4' (1 - 3)2{(0'§ - 20’5{
+ oo+ o)+ (Boi—60l0s + 00k
+ Za'if}l(az, + o+ a‘ﬁ - 20’,5)2, (37)
plim n(by; — B)* = (1 - B){oi+ 03— 2040,
plim n(by— B)* = (1 - B){o’+ B’o’— 2o
+(1-B)Y(oi +a)}ol,
plim n(bs;;— B) = (1 — B){o’+ o+ o+ 20} 0%,
plim n(by,— B)* = Boi+ o5 + o3},
plim n(bss— plim b35)’ = (2 + o} — 20002+ 2(0l +
of—20)}(1~ BYor,
(1= BY(o?+ ol +20,) +38(1 - Bloy + 4802
ol+oi+oi-20, .

plim n(byx— B)’ =

When o? =0, so that by is consistent, (37) reduces to
plim n(by— B) = (1 - B)oi + a))l(oi+ o}).

In this case, the relative efficiency of the estimators depends on relative
variances. For example, if optimization errors (a) are large, then b;, and
by, are undesirable and b3 will tend to be most efficient. If o is low,
then b;, will tend to be most efficient and b5, will be more efficient than
bs;. When o2 is low relative to o, by will be most efficient. For 8 near
one, the estimators bj, to bs; will be relatively efficient, while B near
zero will make bs, most efficient. When o? is large, by, will tend to be
most efficient. All these conclusions, it should be noted, are shown only
for large samples. While it is dangerous to over-generalize from spe-
cialized small-sample results, there seems to be a tendency for direct
ordinary least-squares estimators such as bz to be the best estimators in
small samples more often than one would guess from the extrapolation
of asymptotic results; i.e., direct LS estimators seem to be somewhat
more robust than their competitors in small samples. The exact small
sample distributions of the estimators b3 to b3; can be derived for the
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example above, and are found to have tails that behave like Cauchy
distributions. Consequently, the mean and variance of bs; to b3 are not
defined in finite samples, and the probability of estimates of B which are
far from the true value are rather large. Thus, the estimators in this
example tend to confirm the generalization regarding the relative small
sample robustness of direct ordinary least-squares estimators.

Before concluding the discussion it should be pointed out that we
have made repeated reference to the instrumental variable estimator.
Such an estimator overcomes difficulties caused by measurement errors
and lack of independence between the explanatory variables and the
error terms. In general there are several difficulties with the use of this
method of which the user should be aware. First, instrumental variable
estimates are not as efficient (have larger variance) as the direct LS
estimator. This problem can be reduced by a proper selection of in-
strumental variables, which leads us to the second problem —that of
finding such variables. Instrumental variables should be uncorrelated
with the error terms in the equation and at the same time be correlated
with the explanatory variables. The larger is the latter correlation
(properly defined when there are more than one variable) — the smaller is
the variance of the estimator. Third, in small samples, instrumental
variables estimators usually have distributions with “fat” tails, tending
to produce extreme values. Thus, one may buy consistency at the cost
of a less accurate estimator in a small sample.

In the foregoing discussion we considered the use of the real wage as
an instrumental variable. This generalizes to the use of real factor prices
in the case of more than one input and the use of product price ratios in
the case of a multiproduct production function. We have also mentioned
the use of some linear combinations of the quantities as instrumental
variables which can eliminate some of the errors. All these are variables
which come from the model. It is also possible to use variables which
come from outside the model [Berndt and Christensen (1973a)}.

We have discussed in the context of the example above the difficulties
encountered when there is insufficient variation in the independent
variables in a direct or indirect estimation of production parameters. In
the case of multiple inputs, this problem reappears as that of multi-
collinearity, or high correlation among the independent variables so that
there is insufficient cross-variation to allocate with precision the contri-
bution of separate variables to the determination of the dependent
variable. This problem is particularly acute for time series analysis, and
in functional forms where the independent variables appear as “substi-
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tutes”. Considerable success in dealing with multicollinearity has been
achieved in production applications by considering the production
function as part of a complete economic model. In the example above,
one may view (30)-(33) as equations in a simultaneous system. When
non-redundant sets of equations are estimated jointly, they can provide
more efficient estimates than any one equation considered above. The
effectiveness of the analysis of complete systems to reduce multi-
collinearity and increase precision is most evident in estimation of
general linear-in-parameters forms such as the Diewert or translog
systems [e.g., Burgess (1975) and Woodland (1975)].

We can summarize our conclusions including the inferences that can
be drawn from the example. The relative desirability of estimation of the
production function, its dual profit or cost function, factor demand or
supply equations, or their inverse first-order conditions, depends pri-
marily on the stochastic structure of the data. In the general case, these
equations together constitute a simultaneous system, and the most
efficient estimators are obtained by estimation of the complete system.
When the source of stochastic errors is confined to technological effects
not observed by production units, then direct estimation of the produc-
tion function is a good procedure, although multicollinearity will be a
problem for many data sets. In principle, estimation of factor demand
equations in which the independent variables are prices is a good
procedure, being consistent in the presence of stochastic components
which make direct estimation of the production function inconsistent.

However, if muiticollinearity constitutes a problem in the direct
estimation, it is likely to remain so in the estimation of the factor
demand equations. This problem is overcome in part by estimation of
the first-order conditions, which under the separability conditions
frequently imposed in empirical analysis have fewer variables than the
demand functions. The use of the first-order equations represents, like
the direct estimation of the production function, a limited information
approach which does not use all the constraints of the system.

It should be noted that several caveats apply in the use of dual profit
or cost functions and their derivative demand and supply functions, as
well as first-order conditions. First, the construction of these functions
require maintained hypotheses on market environment and behavior
which may not be necessary for direct estimation of the production
function. Failure of one of these maintained hypotheses may result in a
model which does not have the postulated structural relationship to the
underlying technological parameters. For example, if markets are not
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competitive, or if firms fail to maximize profits, non-technological
factors are introduced into the “as if” technology reconstructed under a
competitive profit maximization assumption. Second, there may be
insufficient variation in factor prices to allow accurate estimation of
production parameters. Mundlak (1968a) has noted that variation in
production quantities in many data sets is much greater than variation in
prices. This is presumably due to random effects on technology, en-
vironment, or firm behavior. In some cases, this may mean that more
accurate estimates can be obtained by direct estimation, even in the
likelihood of an introduction of bias. On the other hand, McFadden
(Chapter IV.1) has found in a data set on establishments substantial price
variation at the plant level in inputs which have “national’ markets, due
to transportation costs, timing of purchase, volume of contracts, and
local conditions. This suggests that indirect methods may be quite
satisfactory when accurate establishment price data are available, but
may perform poorly when more general market price indices are used.
Third, in the analysis of firms facing non-competitive markets, or of
industry or macroeconomic production aggregates, prices are not exo-
genous. Valid estimation requires information of the remainder of the
system, with simultaneous estimation; or the use of instrumental vari-
ables methods. As noted in the example, the small sample advantages of
ordinary least-squares regression estimates over instrumental methods
may suggest use of instrumental estimators only for large data sets.

8. Overview of Empirical Analysis

The empirical literature which utilizes Cobb-Douglas and CES produc-
tion functions has been surveyed by Walters (1963), Nerlove (1967), and
Bridge (1971). The outstanding example of the use of the Cobb-Douglas
cost function is Nerlove’s (1963) study of electricity supply. The Cobb-
Douglas profit function has been used by Lau and Y otopoulos (1971) to
analyze efficiency in Indian agriculture. An example of the use of a CES
cost function can be found in Chapter 1V.1 of this volume by McFad-
den. Recent estimates of Cobb-Douglas and CES production functions
can be found in Griliches and Ringstad (1971).

In the past several years most of the empirical literature has been
‘devoted to attempts to implement the flexible functional forms discussed
in Section 4. Generalized Leontief cost functions have been estimated
for Sweden by Parks (1971), for Canada by Woodland (1975), and for
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Norway by Frenger in Chapter V.2 of this volume. Fuss, Chapter IV 4,
estimated a two-stage nested variant of this function for the U.S.
steam-electric generation industry. Translog production functions have
been applied to U.S. manufacturing by Berndt and Christensen (1973a,
1974) and to aggregate U.S. activity by Christensen, Jorgenson, and Lau
(1973) and Burgess (1975). Examples of the estimation of translog cost
functions are papers by Burgess (1975), Denny and Pinto (Chapter V.1),
Berndt and Wood (1975), and Fuss (1977a). Translog profit functions
have been utilized by Christensen, Jorgenson, and Lau (1973), and
Hudson and Jorgenson (1974). Finally, the quadratic profit function is
the functional form used in Cowing’s study of the regulatory constraint,
Chapter IV.5 of this volume.

9. Conclusion

This chapter has stressed the importance of economic and statistical
criteria for the choice of functional forms in the estimation of produc-
tion relationships. We have pointed out that linear-in-parameters forms
provide a flexible, general purpose approach to functional specification,
and that the linear-in-parameters approach can be utilized to tailor
functional forms to specific applications. However, we have also
emphasized the use of non-linear functional forms in applications where
economy and ease of interpretation of parameters is important, as in
studies of elasticities of substitution. The critical role of separability as
an economic assumption, and as a tool in the construction of functional
forms, has been stressed. Finally, we have used a simple example to
illustrate the implications of alternative sources of stochastic error for
the choice of functional form and estimation method.

We emphasize in conclusion that the primary interest in specific
functional forms lies in their empirical application, and that the choice of
a functional form should be based on an integrated consideration of the
economic problem and likely stochastic structure of the observed data.



Chapter 11.2

THE GENERAL LINEAR PROFIT FUNCTION

Daniel McFADDEN*

University of California, Berkeley

1. Introduction

The classical competitive firm is assumed to face exogenously deter-
mined technological possibilities and choose variable inputs and outputs
to maximize profits at exogenous competitive market prices. This
behavior can be summarized in a restricted profit function specifying
maximum profit as a function of the exogenous variables, market prices
and parameters specifying technological possibilities. By varying the
interpretation of commodities and parameters, one can formulate as
special cases of this general model the problems of cost minimization,
revenue maximization, intertemporal operation of the firm and operation
of the firm under uncertainty. In Chapter LI, the author has given a
detailed discussion of properties and possible applications of the
restricted profit function.

The practical advantage of formulating a model of the competitive
firm in terms of a restricted profit function lies in the computationally
simple relationship between this function and the derived demand and
supply functions which form the basis for comparative analysis or
econometric estimation; namely, the net supply functions can be
computed as partial derivatives of the restricted profit function with
respect to market prices. Judicious choice of a functional form for the

*The concepts of a linear-in-parameters cost function and the second-order ap-
proximation property are due to E. Diewert, and I am indebted to him and to M. Fuss for
many useful discussions. This research was supported by NSF Grant GS-2345.
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restricted profit function can yield net supplyssystems which embody
economic phenomena of interest and which are convenient for statistical
analysis. This chapter introduces a class of general linear profit functions
which should provide useful functional forms from the standpoint of
both these criteria. These functional forms have the properties:

(a) They are linear in the underlying parameters of the production
process, making it possible to estimate the net supply system by
multivariate linear regression techniques and formulate economic
hypotheses as linear restrictions. on this system.

(b) They satisfy globally (i.e., for all positive market prices) the criteria
for a function to be the restricted profit function associated with
some technology.

(c) They can approximate a large class of restricted profit functions
(e.g., those satisfying a gross substitutes property') up to the second
order at any specified argument, thus agreeing on net supply quan-
tities and price elasticities at this argument.

An additional advantage of these functional forms is that aggregation
over firms with common technologies ‘‘carries past” the unknown
parameters, permitting a simple theory of aggregation and estimation
from aggregate data. The general linear profit function is an extension of
the generalized Leontief cost function introduced by Diewert (1971), and
can reduce to his cost function in the case of cost minimization for fixed

output.

2. The Basic Model

Consider a firm facing competitive markets in N commodities, indexed
n =1,.,N, with a commodity price vector p = (p1,...,Pn)- A production
plan for the firm is a vector x = (x,,...,xy) With x, interpreted as the net
supply (or, for compactness, netput) of commodity n, negative if the
commodity is an input and positive if it is an output. The profit
associated with a production plan x is # =p-x=p;x,+ -+ p.X,. The
technological possibilities of the firm can be described by a set T of
possible production plans. This set will in general depend on variables

'A technology has the gross substitutes property if the optimal net supply of each
commodity is non-increasing in the price of every other commodity.
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exogenous to the firm, as for example the state of technical progress,
fixed outputs in the case of cost minimization, and fixed capital inputs in
the case of short-run profit maximization. To simplify notation, we leave
to the reader the task of introducing this dependence explicitly in the
formulae below.

Define the production possibility set T to be regular if it is non-empty -
and closed and satisfies the free disposal property that x€T and x' =x
implies x' €T. Define T to be asymptotically irreversible (or semi-
bounded) if there is a bound on the vectors of production plans
x°x.,...x" €T satisfying ZX,x' = 0. This condition excludes the possi-
bility of a ‘“‘perpetual motion™ production process of unbounded ‘‘am-
plitude”, and will hold if there are some non-producible commodities
which are essential inputs to production.

The restricted profit function of the firm with technology T is

m = II(p) = sup p'x, ¢))
xeT

and gives the least upper bound (possibly +) on the level of profits
attainable at price vector p. Let (dom II) denote the set of price vectors
for which II(p) is finite.

An extended real-valued function Q:E" —[—,+x] is said to be of
type RP if it satisfies

(1) the set (dom Q) on which Q is finite is a convex cone with a
non-empty interior which is contained in the non-negative orthant of
E"; and

(2) Q is a convex conical closed® function on (dom Q).

A basic duality between production possibility sets and restricted profit
functions is established in the following theorem, proved in Chapter I.1,
Lemmas 11, 23.

Theorem 1. If T is a regular asymptotically irreversible production
possibility set, then the restricted profit function IT defined by (1) is
of type RP. Alternatively, if IT is a function of type RP, then the set

T*={x€ENjpx=M(p) for pEE"} )
is a regular asymptotically irreversible convex production possibility

2A function Q is convex if Q(p), Q)<+w, 0<<1 implies Q(bp +(1-0)p)s
0Q(p) + (1 - 8)Q(p’); conical if Q(Ap)=AQ(p) for A >0; and closed if the set (epi Q)=
{(p.q)lg = Q(p)} is closed.
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set. In particular, if the function IT in (2) is the restricted profit
function of a regular asymptotically irreversible production possi-
bility set T, then T* is the closed convex hull of T. The mappings (1)
and (2) are mutually inverse between the family of regular asymp-
totically irreversible convex production possibility sets and the
family of functions of type RP; e.g., applying the mapping (2) to a
function IT of type RP and then applying the mapping (1) to the
resulting set T* returns the function II.

A second basic property of the restricted profit function is the derivative
property, proved in Chapter 1.1, Lemmas 17-19.

Theorem 2. Consider a function IT of type RP. IT is differentiable
at p’ in the interior of dom IT if and only if in the technology T*
given by (2), there exists a unique vector x' € T* at which p’-x is
maximized on T¥*, in which case II,(p") = x'.

In analyzing the general linear profit function below, we shall use on a
function Q:E" > [—w,+=] of type RP the condition C2 that Q be twice
continuously differentiable with a Hessian of rank n — 1 on the interior
of (dom Q), and the condition FP that (dom Q) contain the positive
orthant. Condition C2 implies the dual technology of Q given by
equation (2) is strictly convex (as viewed from the positive orthant of
E") with a “specific curvature” which is bounded positive. Condition FP
implies that as the scale of production becomes large, the set of possible
activities in the dual technology shrinks to the set of disposal activities,
i.e., the asymptotic cone of the dual technology is the non-positive
orthant. These duality implications are discussed in detail in Chapter 1.1,
Lemma 12, Theorem 26.

3. General Linear Profit Functions

A function I1(p;a) which is linear in a vector of underlying parameters
a = (ay,...,a,) can be written in the form

M
(p;e)= 3, anQ"(®)- (3)

where Q™ is a numerical function. Further, we can always standardize
the parameter specification so that « is restricted to be non-negative
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(i.e., we can first write each bivalent parameter as the difference of its
positive and negative parts, and then re-define the Q function associated
with each negative parameter to absorb its sign). This convention will be
imposed hereafter in discussion of equation (3) unless explicitly assumed
otherwise.

If the function II(p;a) in equation (3) 1s of type RP for all
non-negative a, then clearly each function Q™ is of type RP and
MN¥_,(dom Q™)has a non-empty interior.} Conversely, it is an elementary
property of convex functions that if each function Q™ is of type RP and
if N™_, (dom Q™) has a non-empty interior, then I given by equation (3)
for any non-negative vector a is of type RP.

A function IT in equation (3) which is of type RP for all non-negative
a will be termed a general linear profit form. This form can be speci-
alized for econometric purposes by choosing specific numerical
functions Q™. To aid computation and interpretation it is convenient to
take each function Q™ to depend on a small subset of the commodity
prices. If each Q™ depends on a single price, then it is linear and the
resulting linear profit function in equation (3) is dual to a pure fixed
coefficients Leontief technology. The next case with the Q™ depending
on pairs of commodity prices yields a variety of useful functional forms
corresponding to a fairly broad class of technologies. Rewrite equation
(3) by indexing over pairs of commodity prices as

N N
I(p;a) = 52‘,' 2::. a;piQ (pilpi), 4)

where the a; are non-negative parameters for i# j with a; = a;, the Q"
are closed convex functions of a positive real variable (implying
p:Q¥(pip;) is of type RP and satisfies condition FP), and the diagonal
parameters a; are unrestricted in sign. One case of equation (4) is a
version of Diewert’s (1971) generalized Leontief form,

. N

N
N(pser) = 2 3, i~ (pp)"™); ()

i=1j= .
others can be obtained by substituting for Q7 in equation (4) some
combination of the standard numerical forms for convex functions of
one variable given in the first column of Table 1. When the functions Q"
in (4) are differentiable, Theorem 2 implies the existence of an optimal

*Taking am >0, a; =0 for 1# m implies [I(p;a)= Q™(p), so that Q™ is of type RP.
Taking a strictly positive implies dom IT(-;a) = N, (dom Q™).
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production plan x(p) for positive p satisfying

o) =200 = 3 o [ 07 (2) - 20t (B2) + 0 (2)]
== 1 - r + rt1 "} 6
£p) =7 ; S0 % o e 2 Q > (6)
and
% (p) _ [Pr K (Pl) Pk ik (Pk)]
= = rl— )+ ryv ) ] 7
ap; p.ap; Y IT{ Q P« E Q P/l @

for k# 1, where Q¥ and QY denote the first and second derivatives,
respectively, of the function QY. Since the expressions in brackets in
equations (6) and (7) are numerical functions, these formulae allow
application of multivariate regression analysis to estimate the net supply
system.

A technology is said to have the gross substitutes (GS) property if the
optimal net supply of each commodity k is non-increasing in the price of
every other commodity. This property corresponds to the “normal” case
where all outputs are substitutes (e.g., the quantity of one falls when the
price and quantity of a second rises), all inputs are non-regressive in the
production of outputs (e.g., each input quantity rises when the price and
quantity of an output rise), and all inputs are strong substitutes (e.g., an
increase in the price of one input leads to substitution of a second input
which is sufficient to offset the tendency of an input price increase to
reduce output quantity, and thus input quantities®). When the restricted
profit function IT of the technology has the differentiability property C2,
the gross substitutes property can be defined as the condition

- 9*I1/3pidp, = 0 for ks . A profit function of two prices must satisfy GS,
and a sum of functions satisfying GS must again have this property.
Thus, the linear profit form (4) has property GS; this is also clear from
the sign of the cross-price effects in equation (7).

Consider an arbitrary function @(p) of type RP with property C2 at a
price vector p* in the interior of (dom @). A general linear profit form
II(p;e) from equation (3) is said to have the second-order approximation
property to @ at p* if there exists a non-negative parameter vector a*
such that the first and second derivatives of IT and ¢ agree at p* [i.e.,
H(p*;a*) = ®¢(p*), H(p*;a*)= P (p*), and Ily(p*;a*)= Pu(p*)]. The
following result establishes that the general linear profit form (4) is

‘Consider for example a technology T satisfying x,.x;=0 and x =
{(—=x9)'7% 4 (= x;) ' Hepe0-Yo) for ¢>0, o#1, and 0<pu <1 (ie, a CES production
function with an elasticity of substitution o, homogeneous of degree u). Its restricted
profit function is IT = (1 — w)u " #p /0~#)(p}~ + pj~7)~Wwli-uMWi-a JT has the property

GS for o= 1/(1 — ).
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robust in the sense that locally it can mimic the net supply system of any
restricted profit function with the gross substitutes property.

Lemma 1. Consider a general linear profit function I satisfying
equation (4) such that Q¥ has property C2 and Q7 positive. If @(p)
is any function of type RP, p* is a vector in the interior of dom &,
and @ satisfies conditions C2 and GS at p*, then II has the
second-order approximation property to ¢ at p*

Proof: From equation (7), one can choose af; for k# 1 such that
I, (p*,a*) = @,(p*). Then from equation (6), one can choose af; such
that IT.(p*,a*) = @,(p*). Since both ¢ and IT are conical, it follows that
Iy (p*,@*) = ®u(p*) and II(p*,a*) = ¢(p*). Q.E.D.

Note that the general linear profit form (4) has N(N +1)/2 in-
dependent parameters. This equals the number of independent condi-
tions which must be met to obtain the second-order approximation
property. In this sense, (4) is a “‘parameter- -efficient” form among those
with the approximation property.

It is clear that linear profit forms with Q-functions of more than two
prices can be introduced which need not have the GS property; one
possible form for econometric purposes will be introduced later.
However, the following result shows that it is fruitless to seek a linear
profit form which has the second-order approximation property to each
function of type RP and which is itself of type RP over its entire domain

of definition.

Lemma 2. Given any linear profit form II in equation (3) with
specified M and Q™, there exists a function @ of type RP satisfying
C2 at p* in the interior of (dom @) such that II does not have the
second-order approximation property to ¢ at p* for N > 2.

Proof: Let H* denote the N —1 matrix of derivatives @;(p*) for
i.j =2,...,N, and let H" denote the corresponding matrix for Q™. For the
second-order approximation property to hold, H* must lie in the convex
cone spanned by the H”. Now H* can be any positive semidefinite
matrix [e.g., the function

N
P(p) = 2= pip;H
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is of type RP and returns this matrix]. Representing an (N — 1)-square
symmetric matrix as a point in EY® "2 the cone of positive semidefinite

matrices is not polyhedral (e.g., the 2 X 2 submatrix

o &)

is positive semidefinite on the set 8 = a’ bounded by a parabola). Hence,
H* can be chosen to lie in an extreme ray of the cone which does not

contain an H™. Q.E.D.

In view of this result, we must either restrict the class of profit
functions we wish to approximate by a linear profit form, or else relax
the conditions we have imposed on the linear profit form. We next give a
very general result of the first type. Unfortunately, the argument is not
constructive and thus does not provide a way of generating linear forms
for econometric purposes.

If a function @ of type RP has property C2 and the matrix H(p) =
(®;(p)) for i,j = 2,...,N is non-singular, then the dual technology at X(p) is
bounded by a surface which can be described by a twice continuously
differentiable concave function x; = f(x«) of x4 = (x3,...,X,) With a non-
singular Hessian matrix fo(X«(p))=[- pH(p)]™' (Chapter 1.1, Theorem
26). Define an index p(p)= (minimum root of H(p))/(maximum root of
H(p)). Then p(p) is a measure of the ‘“relative definiteness” of the matrix
H, or equivalently of the relative curvature of the surface of the

technology .’

Lemma 3. Given €>0, there exists a linear profit form II in
equation (3) with specified M and Q™ (depending in general on ¢)
such that if @ is any function of type RP satisfying C2 at p* in the
interior of (dom @) and if p(p*) = e for this function, then I7 has the
second-order approximation property to @ at p*.

Proof: As in Lemma 2, denote symmetric (N — 1) matrices H as points
in ENY"U2 Define the set

N
Ay = {H € E”‘”"’”'E H; = 1 and Min (q'Hq)/q'q = e}.
i=2 q=0

SNote that p(p) = (minimum root of — fo(X«(p)))/(maximum root of — f.(X«(p))), where
X4 = (Xa,....Xxn ). Let G be a matrix with G’ = G~ such that G'HG is diagonal. Define a set of
“composite” commodities y4 = G'x4« and corresponding prices g4 = G'p«. Then p is the ratio
of the smallest to the largest own price effects of the composite commodities.
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Then A, is non-empty, closed, bounded, and convex for 0=6<
1/(N — 1), and for 8 >0, A, is contained in the relative interior of A,
Hence, for 8 = (Min (¢,.5))/(N — 1), there exists a convex polytope with
vertices H',....H’ which contains A, and is contained in A,. Define Q™ =
(12pyp,H™p, for m = 1,....J, where p, = (P2--sPN); Q" = pm-; for m=
J+1,..J+N; and Q" =—Pppy-n for m=J+ N +1,...,J+2N, with
M =7J +2N. Given @ and H(p*), one has

N
€ = p(p*) = [Min (@H(p")a/q'®)] / [2:2 Ha(p*)I(N - 1)].

Hence, H(p*) is contained in the convex cone spanned by H',..,H’
Choosing (ay,...,as) to equate the second partials of IT and @, and then
choosing (ayi,...,an) to equate the first partials, yields the desired

conclusion. Q.E.D.

A function @ of type RP with property C2 at a vector p is said to have
a dominant own price effect with numeraire commodity 1 if

N
pi®i(p) = D, pil®Psp)] for i=2,...N.

Tt
From homogeneity, satisfaction of this condition requires that com-
modity 1 be a gross substitute for every other commodity. However,
some patterns of gross complements among the remaining commodities
are possible. If @ has property GS, then it has the dominant own-price
effect property. The next result provides a constructive proof that the
class of profit functions with the dominant own-price effect property can
be approximated to second order by a linear profit form:*

Lemma 4. Suppose good 1 is a specified numeraire commodity
and p* is a specified positive vector, and consider the linear profit

form

N 1 ; N2 .' N2
IH(p;a.B.y) = 21 a;pi +§EZZ 12:2 [Bij (p%;"'fj;) + i (f‘;—ffg) ],
(8)

with B; and vy; non-negative and symmetric in ij,yi = 0, and B;vi =

The restricted profit function given in footnote 4 has the dominant own-price effect
property if o=1/2(1—p), or if o<if2(1-p) and (1-20(1-— w) ' Z(palp)) =
1—=20(1 — u). In particular, this property holds for all positive prices in the limiting case
o=1.
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0. If & is any function of type RP satisfying C2 and the dominant
own price effect property at p* in the interior of (dom @), then (8)
has the second-order approximation property to @ at p*.

Proof: Differentiating (8), we obtain

IL; = 2(Bu — vu)ipwpipt for k#l, 9)
N

Iy =2Bulppt +2 _22 (B + va)p1p% - (10
=

Condition (9) with IT, = ®,(p*) and By-yw =0 determines Bu,yu for
k+ I. Substituting these values in (10) yields

2 N

N
= p ¥ Dulp*) —22 pHP(p*)| =0,

Bulpip¥ =ptPulp®) -

by the dominant own price effect property. Choose the a; to equate the
first partials of IT and @ (p*). This establishes the desired result. Q.E.D.

By weakening the requirement that a general linear profit form be
finite for all positive prices, one can obtain the second-order ap-
proximation property to a broad class of restricted profit functions, as
shown in the following result. This is in effect an unrestricted local
approximation theorem.

Lemma 5. Consider the linear profit form (4) with specified twice
continuously differentiable Q“ having Q¥ non-zero. Suppose & is of
type RP, has property C2 at p* in the interior of dom &, and has
H(p) = (9;(p)), i,j = 2,....N non-singular at p*. Then there exists a
parameter vector a* in (4), not necessarily non-negative, and a
closed cone P* containing p* in its interior such that the function
IT*(p), defined to equal +c for p & P* and to equal (4) for @* and
pEP*, is of type RP and has the second-order approximation
property to @ at p*.

Proof: From the proof of Lemma 1, a* can be chosen so that II(p;a™)
has the second-order approximation property to & at p*. Since H(p*) is
positive definite, it follows from continuity that II(p;a*) is convex for p
in a convex neighborhood of p*; let P* be the smallest closed convex
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cone containing this neighborhood. It is then immediate that IT*(p) is of
type RP. Q.E.D.

Note that this result does not require the Q-functions to be convex.
Thus for the purposes of this type of approximation, one could take
equation (4) to have a wide variety of functional forms, such as (5) with
unrestricted signs, or the Christensen-Jorgenson-Lau (1973) “translog”
function. The difficulty with using Lemma 5 as a justification for choice
of simple functional forms for econometric analysis without regard for
global properties of the Q-functions is that the domain P* cannot be
determined a priori and may not include all observations. Use of a fitted
equation (4) without restriction of domain may be inconsistent even
locally with competitive profit maximization. An ex post consistency
check for this inclusion is typically highly non-linear and computation-
ally forbidding. However, Appendix A.4 by Lau has established feasible
methods of testing the convexity of a function at each data point.

4. The Dual Technology of the General Linear Profit Function

The lemmas above giving second-order approximation properties of the
general linear profit function to an arbitrary function of type RP can be
interpreted dually as establishing that an arbitrary convex technology
can be mimicked locally by the dual technology of the linear profit form.
Beyond this conclusion, it is useful to establish some of the global
properties of the dual linear technology.

We noted earlier that when the linear profit form is linear in prices, it
is dual to a Leontief fixed coefficients technology. All the forms we
consider yield this technology as a special case. More generally, we can
from Theorem 2 express the dual technology of the general linear profit
form (3) as a sum (see Chapter 1.1, Table 3),

M
T= > a,T", (11)
m=1

where
T™ = {x|p-x = Q" (p) for all p}. (12)

When the Q-functions are simple forms, the sets T™ can often be
characterized explicitly. The last column of Table 1 lists the dual
technologies corresponding to a variety of two-price Q-functions. The
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three-price functional form (8) has the Q-function (pdp* + pilp%)12p,
dual to a technology T¥ with x, =0 for k# ij, and Max[p¥x,pfx]=
V/(~2x,); and the Q-function (p/p* — p/p¥)*/2p, dual to a technology TX
with x, =0 for k# i,j, p*x;+ p*x =0, and Max[p*x,p*x]=V(—2x)).
The structure (11) of the dual technology has a direct economic inter-
pretation of non-jointness of the component technologies T™, implying
that one can ‘decentralize” the optimization decisions in these
components. In Chapter I1.4, several examples are given in which this
structure arises naturally for a multiple production unit firm.

The technological structure of equations (11) and (i2) can also be
characterized by ‘“transformation” or gauge functions for the tech-
nologies. Let e denote a vector of ones, and for functions Q™ in the
general linear profit form (3), define x*" = Q;'(e) —e, where Qy' is the
vector of partial derivatives of Q™, or more generally any optimal net
supply vector for Q™ at the price vector e. Then x*” 1s an interior point
of T™. Define

F™(x) = Inf{A > Ojp-x = A(Q"(p) — p-x*") for all p}. (13)

Then x €ET” if and only if F™"(x—x*")=1 (Chapter 1.1, Theorem 24).
Assume a strictly positive and define

M
> anx" = x}. (14)
m=1

F(x)= Inf{M’gx Ezl_ Fm™(x™)

Then x € T if and only if F(x—zle a,x*")= 1 (Chapter 1.1, Corollary
29). In the special case where the Q™ functions are separable, depending
on disjoint subsets of commodity prices, the transformation function
(14) has a corresponding separable structure. Linear profit forms chosen
for econometric purposes usually contain this structure as a special case
that can be tested as a linear hypothesis.

For the special two-price linear form (5) with Qi(p)=—(p:p))"”?, an
ingenious argument of Diewert (1971) provides an analytic charac-
terization of the dual technology. Define x7 = max(0,—a;), let A denote
the matrix of parameters a;;, and for a vector x let X denote a diagonal
matrix constructed from the components of x. For x < x*, define f(x) to
be the reciprocal of the Frobenius root of the non-negative matrix

AN\ AN ",

(£* —x)"PEF + A)E*F—X)”

)112
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Then f is a concave function, and x€T if and only if fx)=1’
Unfortunately this type construction does not seem (o carry OVer to
other two-price functional forms.

Finally, in the case of two commodities, the linear profit form (4) has a
simple geometric interpretation: The function Q'(p./p)) is dual to a
“one input-one output” production function or an ‘“‘isoquant” in the
negative quadrant. The technology (11) is defined by shifting this surface
by a scale factor and then shifting the axes. In Diewert’s form (5) the
surface is a translated rectangular hyperbola.

5. Applications of the Linear Profit Function

Our interest in the general linear profit function is based on its linear-in-
parameters form, which allows estimation of the net supply system by
linear regression methods. We now suggest several ways in which this
structure can be exploited. The first comment concerns constant returns
technologies.

(1) Use of the derivative property to obtain the net supply system
under the assumption that the restricted profit function is differentiable
with a Hessian of full rank implies that the dual technology is strictly
convex. This condition is inconsistent with the assumption of a constant
returns technology, and more fundamentally the specification of a
constant returns technology and competitive profit maximization 1is
insufficient to determine a net supply function describing the behavior of
the firm. An obvious and reasonable way to obtain a definite net supply
is to assume that the firm at each point in time treats as fixed some
durable inputs which are essential to production and maximizes profit in
variable goods, and then adjusts durable inputs over time subject to, say,
equity constraints. The “per durable input unit” technology can then be
strictly convex, and the formulae (3) and (6) specify a ‘‘per unit” net

"The argument is based on equation (2), which implies x € T if and only if

fxy'= sup{(E piPp|a;+ p-x*)/z pilx’ - x;)} =1
3] i
Defining g; = p /*(x* — x;)™'%, and % = diag(x;), this formula becomes
£(x)" = suplq G —%)""H&* + A)F ~x)"g/g'qh,

and the result follows from the theory of non-negative matrices.
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supply system, with the value of II interpreted as the implicit rate of
return on the durable input.

(2) Our second comment concerns aggregation over firms f=1,... . F
which have a common technology characterized by a parameter vector
a, but face differing price vectors p;, and II(ps;a) denotes the restricted
profit function of firm f. Then aggregate profit equals > =1 1T (pf,a), and
aggregate net supply is given by the corresponding sum of price deriva-
tives. In the linear-in-parameter form (3) for the profit function, this
aggregation ‘‘carries past” the parameters, preserving the linear struc-

ture, N
F M F
S Hppe)=3 an|3, Q@] (15)
= m=1 =

The parameters of this problem could then be estimated from aggregate
net supply data and disaggregated price data. The system has an obvious
application when detailed price data is available but disclosure rules
prevent the release of detailed quantity data. In practice, something less
than completely disaggregate price data may be sufficient to compute the
expressions [Ef 1 Q™(p;)]. For example, with the Diewert specification
(5) of the linear profit form involving terms p;:Q% = —(p.p;)'?, if the mean
u; of p and covariance o; of pspy; across firms are reported, and if one
can make the maintained hypothesis that p,; is multivariate log-normally
distributed and the number of firms in the aggregate is large, then one
has

)ll4

(1 + oyl pips;

1F_ N e (e M2
'F'!ZI:] [ (pflpfl) 1= (nu'nﬂq) (l+0'iill-hz)l/8(1+0'”/p.,)178r (16)

Then a series of observations on aggregate net supply and means and
covariances of prices within each aggregate observation would be
sufficient to estimate the model.

Another interpretation of the system (15) and (16) can be given for a
single firm facing uncertainty, with f denoting the state of nature. The
corresponding net supply system expresses expected net supplies as
linear-in-parameters functions of the means and covariances of prices.

A second class of aggregation problems occurs when firms f =1,....F
face common commodity prices, but have different technologies with
non-measured ““local’” factors. If the restricted profit function of each
firm is of the general linear form, with the parameter vector ay differing
across firms, but the Q-functions common to all firms, then aggregate
net supplies can be interpreted as coming from a ‘‘representative”
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technology of the same form with a parameter vector a = (1/F) Zfil ay.
[See Klein (1952-53).]

(3) Our third comment concerns tests of restrictions on the tech-
nology. In a number of cases, these can be formulated as linear restric-
tions on the parameter vector a, and thus tested using standard linear
statistical theory. For example, suppose goods 1 and 2 are outputs, the
remaining commodities are inputs and we wish to test the non-jointness
of production of the two commodities. This hypothesis implies that the
net supply of good 1 cannot be affected by the price of good 2, ie.,
a»= 0 in the two-price linear profit form (4).

(4) Our fourth comment concerns the introduction of exogenous
variables from the technology into the restricted profit function when it
is assumed to have the linear profit form. Important cases include cost
minimization for fixed output and profit maximization in a subset of
commodities with the remaining commodity levels fixed. These variabies
will typically enter in a non-linear way (except in the case of constant
returns). However, one can introduce a linear-in-parameter form jointly
over the variable commodity prices and exogenous variables, and es-
tablish second-order approximation properties for this form in both sets
of variables. For example, if the profit function has arguments p=
(P1s....pn) and z = (Zna+15...,21), and the underlying technology is convex
in (x,z), then the profit function is concave in z and one might consider a
linear form,

N N L
II(p,z) = E a;(—(pip))™) + Z: =§ Bipizi

Li=1

L
+p D vi(zz)" + i 2 8(~ z1), (17)
1,1-‘7-:?—1 i=N

in L(L+1)/2+ (L — N) parameters with a; and v; non-negative and
symmetric, & non-negative. This form has the second-order ap-
proximation to any function @ (p,z) which is of type RP in p, is concave
in z, is twice continuously differentiable jointly in (p.z), has the property
GS in p, and has a dual GS property in z (i.e., the marginal product
811/ 3z; is non-decreasing in all other z;).

Our last comment concerns the construction of ‘“nested” functional
forms for the restricted profit function which can be interpreted as
arising from a two-stage decision process (ex ante and ex post) of the
firm. Suppose the linear profit form (3) summarizes the result of ex post
optimization, with the a, which are fixed ex post being the ex ante
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decision variables. Suppose these ex ante decision variables are
described parametrically by a second linear profit form,

L
d’(QIa---me).: ’Zt BR'(q1,--1qm)>

with 8 non-negative, R' non-decreasing in q, and
am = Yl 3G . (18)

Then, the optimal ex ante profit maximum is found to equal
P (Q'(p).....Q™(p)) = ®(p), which is of type RP, and the optimal net
supply vector resulting from the two-stage optimization is found to
satisfy

L M
%)= 2 B 2 Rn(Q'®)..Q"@)QT(P), (19)
and
L
Gm(p) = ; BR.(Q'(P),-...QM (p). (20)

This structure is linear in the underlying production parameters ;. A
detailed discussion of ex ante-ex post production structures and their
estimation by nested linear profit forms is given in Chapter I1.4.



Chapter 11.3

POLAR FUNCTIONS WITH CONSTANT TWO FACTORS - ONE
PRICE ELASTICITIES*

GIORA HANOCH

The Hebrew University of Jerusalem

1. Introduction

If more than two variable factors are involved in a production process,
the degree of substitutability between factors, measured by the Elasti-
city of Substitution (ES), may de defined in a variety of ways. Mundlak
(1968b) has shown that the different concepts of ES are different
combinations (constrained or unconstrained) of elements of the under-
lying Hessian matrix. Following his classification, we distinguish be-
tween one factor-one price ES concepts (such as Allen-Uzawa partial
ES, denoted here by A;), two factors—one price ES (TOES), and two
factors—two prices ES (TTES) (such as Hicks’ Direct ES) (DES;;), or
McFadden’s Shadow ES (SES;).!

*This article comprises a revision of parts of two earlier papers: Section 6 of “Genera-
tion of New Production Functions Through Duality” and “Production with Constant Two
Factors-One Price Elasticities of Substitution”, Discussion Papers nos. 118 and 117,
respectively, Harvard Institute of Economic Research, April 1970. It also draws from a
more recent article in Econometrica [Hanoch (1975a)). I am thankful to Zvi Griliches, who
encouraged and supported this research. [ have benefited from discussions with Kenneth
Arrow, Erwin Diewert, Melvyn Fuss, Dale Jorgenson, Lawrence Lau, Daniel McFadden,
Michael Rothschild, and Christopher Sims. I am indebted to the National Science Foun-
dation for financial assistance (Grant No. 2762X), and to Harvard University, where 1
visited in 196970 and in 1973-74, while on leave from the Hebrew University, Jerusalem.

1See Allen (1938), Hicks (1963), McFadden (1963), and Mundlak (1968b).
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Mundlak argued correctly, that the choice of the relevant ES measure
is independent of assumptions regarding constancy of any particular
measure, and generally of the choice of functional forms and methods of
estimation of the production relation. However, traditionally the search
for econometrically convenient functional forms with a limited set of
parameters was attempted by imposing constancy on some ES concept.
This yielded disappointing results for both the one factor-one price and
the TTES concepts for more than two variable factors. Uzawa (1962)
and McFadden (1963) have shown, that constant A;, DES;, or SES;
yield functional forms which are too restrictive, and generally unac-
ceptable, for more than two or three factors. For example, constant A;
implies that all A; are equal for pairs of factors within the same group,
and A; = 1 for factors belonging to different groups. (For two factors, all
ES concepts coincide, and constant A; vield the well-known two-factor
CES model.%)

This chapter presents and analyzes several useful polar pairs of
functional forms for production functions and joint production frontiers,
the common feature of which is the constancy of some TOES concept.’
All these functions are true generalizations of the CES model, which
yield, in many cases, less restrictive but manageable estimation equa-
tions for factor-demand and output—supply relations under competitive
markets.

As shown below, the two TOES concepts held constant in these
models are simply related to the more basic ES concepts A;. The first,
R, equals the ratio A/ Ay, the constancy of which yields the family of
Constant-Ratio-ES (CRES) functions defined by Gorman (1965), and the
specific subfamily analyzed in Hanoch (1975a). Two noted special cases
of CRES are: (1) the homothetic case of CRESH, defined and analyzed
in Hanoch (1971); and (2) the non-homothetic Mukerji (1963) function,
used also by Dhrymes and Kurz (1964).

The second TOES concept, Df, equals the difference Ay — Ax. The
major focus of the present analysis are functional forms with constant
R;;, and their polar functions, which turn out to yield constant D;;, and to
have some additional desirable properties.

The family of implicitly additive models with a single output, given in

2Gee Arrow et al. (1961). The statement refers to ES defined for constant output. See
Mundlak (1968b, p. 231).

30n polar functions, see Chapter 1.2. Another common feature of these models is their
Implicit Additivity, as defined in Hanoch (1975a), where constancy of TOES concepts is
shown to be equivalent to implicit additivity.
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Hanoch (1975a), yields many well-known special cases of polar pairs of
production functions, when equality of certain parameters is imposed.

In joint production situations with multiple outputs, the ES between
outputs is defined in an analogous manner to A, R %, and Dj}, substitut-
ing maximum revenue {(at fixed inputs) for minimum costs (at fixed
outputs). To each constant TOES production function model, there
corresponds a similar constant TOES factor requirement function (with
modified parameter restrictions to assure convexity instead of
concavity). Equating two such functions to each other, clearly yields a
frontier which exhibits separability of outputs from inputs, and constant
R% or D} for both outputs and inputs.

The concept of Elasticity of Transformation® (T;) is defined as a
generalization of A; to the situation of competitive profit maximization
with multiple variable outputs and inputs. Again, we define two quan-
tities—one price ET (TOET),

RTY=Ty/Tx and DTj= Ty~ Ty

Finally, polar pairs of production relations with constant TOET are
presented, generalizing the single-output non-homothetic CRES and
CDE models, through the profit-polar transformation suggested in
Hanoch (1975a).

Section 2 below defines and interprets various ES and ET concepts
used here. Section 3 summarizes, in the most part, previous results
concerning CRES and CDE models, for production functions with a
single output, and their corresponding various special cases. Finally,
Section 4 includes generalizations of both the CDE and the CRES
models to joint production relations with many outputs, under constant
ratios or differences of elasticities of substitution or transformation.

2. Elasticities of Substitution and Transformation

Let y; and x; denote output and input guantities, respectively, with p;
and w; the corresponding prices. Assume first that a firm produces
efficiently a single output y, minimizing costs 2 x;w;, under competitive
factor markets (exogenous w;). The production function y=
f(X1.X2,00%z) = f(x) is assumed to be a strictly increasing, twice
continuously differentiable, quasi-concave function, possessing a unique

*For the definition of Tj;, see Diewert (1973a).
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dual cost function C(w;y), which is twice continuously differentiable,

concave and linear-homogeneous in w, and increasing with y from 0 to
5

o o]

Following the notation in Mundlak (1968b), let
. N
Zi=dlogz = z dz;.

The elasticity of demand for factor x; with respect to w;, at constant
output, is

E; =X =

-

Wily X;

K = sjAj, (1)

where Kj; is the element of the inverse bordered Hessian matrix,

[0 f...fa |
[K] — ,:fl .:fll---_:fln ,
| fn fnl-"fnn_

and s; is the optimal share of factor x; in total variable costs, or the
elasticity of C with respect to w;,

WiX; ¢ . aC
s = == I since —=x;®

C w;ly aw;

! F)

A useful interpretation of Allen’s A; is as follows:

i = _E'L = &l_‘&i = i

s Clw; C
namely, A; is the elasticity of x; with respect to C, for a change in
another price w; (output and all w; constant). It is also the demand

cross-elasticity Ej;, “normalized’ by the relative change in C. Also,

) (2)

@dw))

X
Aj=A;=+4 )

dw;)

due to the symmetry of [K].
Generalizing this particular interpretation to two factors—one price

’See Chapter 1.2 for specifications of the conditions for the general (non-differentiable)
case, and for references with respect to this particular case.
*See Shephard (1953, p. 11).
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elasticities,” we get

Df}=(—'t/i—l,}ﬁ =2 -4 = A — Aj> (3)
C (dwy) c (dwy) C (dwy)

that is, D} is the elasticity of the factors ratio x;/x; with respect to costs
C, for a change in another price w;. It is also the cross-elasticity of
relative demand,
N
(Xi/ X;)
Wi

y
normalized by Cli = sk
Another TOES concept is defined as follows:
_%C
P Te
hence RY is the elasticity of x; with respect to x;, for a change in another

factor’s price w;, output and other prices w; (i# k) constant. Also, by
equation (1), '

K _ Xi
Rij == »
@wo Ak

A

X;

K E.!it| - Eu
"%y T B

Thus, both D% and R defined in equations (3) and (4) are subject to
relatively simple and intuitive economic interpretations. In addition
these TOES concepts are free from a basic flaw common to all TTES
concepts, as pointed out by Mundlak; namely, that the relative magni-
tude of two price changes, w; and Ww;, has to be restricted. Any particular
such restriction (equivalent to picking a particular directional change in
the prices space) is essentially arbitrary, and yields a different TTES
concept.?

The polar pairs of CDE and CRES models presented here, have
constant D% and Rf, respectively — with the additional (necessary) pro-
perty, that both are independent of k, for any i,j (i# k# ).

For the case of multiple outputs y = (¥1,....ym), assume the joint
production frontier to be given by F(y;x) =0, where F is increasing in y,
decreasing in x, continuously twice differentiable and convex in (y;x),

"The “pure” TOES concept defined by Mundlak (1968b, p. 229) is H f}=(f;f3‘cj)lﬁk|,.
hence H% = s, D%, analogous to E; = 54
8See Mundiak (1968b, Sect. 3.3).
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with F(0:0)=0.> A competitive firm maximizes profits (Z y;p; — 2 x;w:),
under exogenous (positive) prices (p;w). The unique dual profit function
ar(p;w), is increasing in p and decreasing in w, and is also twice
continuously differentiable; = is non-negative, positive linear homo-
geneous in (p;w), and convex over the domain where = is finite.'” The
partial derivatives of m(p;w) yield the factor-demands and output-
supplies, as follows:"
dmr _ * om _
3—W,'_ - X and Ep—i—y i
The ES between