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EDITOR’S INTRODUCTION

For years many teachers of economics, as well as other professional
economists, have felt the need for a series of books on economic subjects—
a need which is not filled by the usual textbook or by the highly technical
treatise.

This series, published under the general title Economics Handbook
Sertes, was planned with these needs in mind. Designed first of all for
students, the volumes are useful in the ever-growing field of adult educa-
tion and also are of interest to the informed general reader.

The volumes are not long—they give the essentials of the subject
matter within the limits of a few hundred pages; they present a distillate
of accepted theory and practice without the detailed approach of the
technical treatise. Each volume is a unit, standing on its own.

In the classroom the books included in the Economics Handbook Series
will, it is hoped, serve as brief surveys in one-semester courses and as sup-
plementary reading in introductory courses, as well as in other courses in
which the subject is pertinent.

In the current volume of the Economics Handbook Series, Professors
Henderson and Quandt discuss microeconomics with the help of mathe-
matics. The amount of mathematics required for understanding the
text is not great, and an appendix helps the reader refresh his memory on
theindispensable mathematical techniques. With economistsincreasingly
in command of the mathematics essential for professional work in their
field, this book should contribute greatly to an understanding of micro-
economics. This volume suggests the many clarifications and advances
made possible by the use of mathematics.

It is our hope that undergraduates at the better colleges, graduate
students, and professional economists will find this well-organized, clearly
and logically presented work helpful. From the case of a single con-
sumer and a single producer, the authors move on to that of exchange
among producers and consumers in a single market and then to the
general case in which all markets are shown in their interrelations with
one another. The book deals with competitive markets, as well as
imperfect markets, and also with problems of welfare.

One author took the primary responsibility for four chapters, and the
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vi EDITOR’S INTRODUCTION

other for three chapters and the Appendix. But each author also con-
tributed to the final preparation of his coauthor’s chapters. In this sense
the book is a joint product.

From San Diego State College, James M. Henderson moved on to
Harvard, where he received his Ph.D. and won the Wells Prize for The
Efficiency of the Coal Industry, which is slated for publication in 1958.
At present, Professor Henderson is on the Harvard teaching staff and
is a member of the senior research staff of the Harvard University
Economic Research Project.

After an early education in Europe, Richard Quandt migrated to this
country and received his A.B. at Princeton, summa cum laude. He
obtained his Ph.D. at Harvard and, while on the teaching staff there,
began the collaboration which produced the current volume. Quandt,
now an assistant professor at Princeton, has written articles for several
scientific journals.

The editor welcomes this volume to the series. Its quality indicates
that many other important contributions are to be expected from these
first-class economists.

Seymour E. Harris



PREFACE

The last two decades have witnessed an increasing application of mathe-
matical methods to nearly every branch of economics. The theories of
individual optimizing units and market equilibrium which are included
within the microeconomics branch are no exception. Traditional theory
has been formulated in mathematical terms, and the classical results
proved or disproved. The use of mathematics has also allowed the
derivation of many new results. Mathematical methods are particularly
useful in this field since the underlying premises of utility and profit
maximization are basically mathematical in character.

In the early stages of this development economists were rather sharply
divided into two groups: the mathematical economists and the literary, or
nonmathematical, economists. Fortunately, thissharp division is break-
ing down with the passage of time. More and more economists and
students of economics are becoming acquainted with at least elementary
mathematics and are learning to appreciate the advantages of its use in
economics. On the other side, many mathematically inclined economists
are becoming more aware of the limitations of mathematics. It seems a
safe prediction that before too many more years have passed the question
of the use of mathematics in microeconomic theory will be only a matter
of degree. '

As the number of economists and students of economics with mathe-
matical training increases, the basic problem shifts from that of teaching
mathematics to economists to that of teaching them economics in mathe-
matical terms. The present volume is intended for economists and
students of economics who have some mathematical training but do not
possess a high degree of mathematical sophistication. It is not intended
as a textbook on mathematics for economists. The basic concepts of
microeconomic theory are developed with the aid of intermediate mathe-
matics. The selection of topics and the order of presentation are indi-
cated by economic, rather than mathematical, content.

This volume is intended for readers who possess some knowledge,
though not necessarily a great deal, of both economics and mathematics.
The audience at which it is aimed includes advanced undergraduate and
graduate students in economics and professional economists who desire to
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viii PREFACE

see how intermediate mathematics contributes to the understanding of
some familiar concepts. Advanced knowledge in one of these fields can

“partially compensate for a lack of training in the other. The reader with
a weak background in microeconomics will not fully appreciate its prob-
lems or the limitations of the mathematical methods unless he consults
some of the purely literary works in this area. A limited number of
these are contained in the lists of selected references at the end of each
chapter.

A one-year college course in calculus, or its equivalent, is sufficient
mathematical preparation for the present volume.! A review of the
mathematical concepts employed in the text is contained in the Appendix.
The Appendix is not adequate for a reader who has never been exposed to
calculus, but it should serve the dual purpose of refreshing the reader’s
memory on topics with which he has some familiarity and of introducing
him to the few concepts that are employed in the text but are not usually
covered in a first ¢course in calculus—specifically, Cramer’s rule, Lagrange
multipliers, and simple difference equations. The reader interested in
extending his knowledge of specific mathematical concepts will find a list
of references at the end of the Appendix.

In order to simplify the reader’s introduction to the use of mathematical
methods in microeconomic theory, two- and three-variable cases are
emphasized in Chapters2 and 3. The more general cases are emphasized
in the later chapters. The analysis is frequently accompanied by dia-
grams, in order to provide a geometric interpretation of the formal results.
The formal analysis is also illustrated with specific numerical examples.
The reader may test his comprehension by working through the examples
and working out the proofs and extensions of the analysis that are occa-
sionally left as exercises.

The authors have both served as senior partners in the preparation of
this volume, with each contributing approximately one-half of the mate-
rial. Henderson is primarily responsible for Chapters 3, 5, 6, and 8, and
Quandt is primarily responsible for Chapters 2, 4, 7, and the Appendix.
However, the manuscript was prepared in very close collaboration, and
each author helped plan, review, and revise the work of the other.
Therefore, all errors and defects are the responsibility of both.

The authors are indebted to many of their teachers, colleagues, and
students for direct and indirect aid in the production of this volume.
Their greatest debt is to their former teacher, Wassily W. Leontief. His
general outlook is in evidence throughout the volume, and he is responsi-
ble for much of the authors’ affection for microeconomic theory. The
authors gratefully acknowledge the advice and criticism of William J.

1 The reader without this background is referred to the first fifteen chapters of
R. G. D. Allen, Mathematical Analysis for Economists (London: Macmillan, 1938).
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Baumol, who read the entire manuscript in an intermediate stage and
offered numerous suggestions for its improvement. Others who deserve
specific mention are Robert Dorfman, W. Eric Gustafson, Franklin M.
Fisher, Carl Kaysen, and Seymour E. Harris. The marginal productiv-
ities of the inputs of the authors’ above-mentioned friends are strictly
positive in all cases.

The authors also owe a very significant debt to the economists who
pioneered the application of mathematical methods to microeconomic
theory. Their written works provide the framework for this book. The
outstanding pioneers are J. R. Hicks and Paul A. Samuelson, but there
are many others. The names and works of many of the pioneers can be
found in the lists of selected references at the end of each chapter.

James M. Henderson
Richard E. Quandi
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CHAPTER 1

INTRODUCTION

Economics is not a clearly defined discipline. Its frontiers are con-
stantly changing, and their definition is frequently a subject of contro-
versy. A commonly used definition characterizes economics as the study
of the use of limited resources for the achievement of alternative ends.
This definition is adequate if interpreted broadly enough to include the
study of unemployed resources and to cover situations in which the ends
are selected hy economists themselves. More specifically, economics may
be defined as a social science which covers the actions of individuals and
groups of individuals in the processes of producing, exchanging, and con-
suming goods and services.

1-1. The Role of Theory

Explanation and prediction are the goals of economics as well as most
other sciences. Both theoretical analyses and ewmnpirical investigations
are necessary for the achievement of these goals. The two are usually
inextricably intertwined in concrete examples of research; yet there is a
real distinction between them. Theories employ abstract deductive
reasoning whereby conclusions are drawn from sets -of initial assump-
tions. - Purely empirical studies are inductive in nature. The two
approaches.are complementary, since theories provide guides for empiri-
cal studies and empirical studies provide tests of the assumptions and
conclusions of theories.

Basically, a theory contains three sets of elements: (1) data which play
the role of parameters and are assumed to be given from outside the
analytical framework; (2) variables, the magnitudes of which are deter-
mined within the theory; and (3) behavior assumptions or postulates
which define the set of operations by which the values of the variables
are determined. The conclusions of a theoretical argument are always
of a what would happen if nature. They state what the results of eco-
nomic processes would be if the initial assumptions were satisfied, i.e., if
the data were in fact given and the behavior assumptions justified.

Empirical investigations allow comparisons of the assumptions and
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2 MICROECONOMIC THEORY: A MATHEMATICAL APPROACH

conclusions of theories with observed facts. However, the requirement
of a strict conformity between theory and fact would defeat the very
purpose of theory. Theoriesrepresent simplifications and generalizations
of reality and therefore do not completely describe particular situations.
The data-variable distinctions and behavior assumptions of the theories
presented in subsequent chapters are satisfied by few, if any, actual
market situations. A stricter conformity to facts would require a sepa-
rate, highly detailed theory for each individual market situation, since
each possesses its own distinctive characteristics. Applied theories of
this nature, however valuable for specific research projects, are of little
general value. The more general theories are fruitful because they con-
tain statements which abstract from particulars and find elements which
many situations have in common. Increased understanding is realized
at the cost of the sacrificed detail. It is then possible to go from the
general to the specific. The cases described by pure theories provide
insight into economic processes and serve as a backgrouud and starting
point for applied theories and specific empirical studies.

1-2. Microeconomics

Like most other disciplines, economics is divided into branches and sub-
branches. In recent years two major branches have been distinguished:
macroeconomics, which is the study of the economic actions of individuals
and well-defined groups of individuals, and macroeconomics, which is the
study of broad aggregates such as total employment and national income.
This dichotomy is in a sense artificial, since aggregates are merely sums
of individual figures. However, it is justified by the basic differences in
the objectives and methods of the two branches.

The microscopic versus the macroscopic view of the economy is the
fundamental, but not tke only, difference between these two branches of
economics. Before the micro-macro distinction came into vogue, the
fundamental distinction was between price and income analyses. This
distinction can be carried over into the micro and macro branches.
Prices play a major role in microeconomic theories, and their goal is
generally the analysis of price determination and the allocation of specific
resources to particular uses. On the other hand, the goals of macro-
economic theories generally are the determination of the levels of national
income and aggregate resource employment.

One cannot say that income concepts are ignored in micro theories or
that prices are nonexistent in macro theories. However, in micro theories
the determination of the incomes of individuals is encompassed within
the general pricing process: individuals earn their incomes by selling
factors of production, the prices of which are determined in the same



INTRODUCTION 3

manner as all other prices. On the other hand, prices are relevant in
macro theories, but macro theorists usually abstract from the problems
of determining individual prices and their relations to one another and
deal with aggregate price indices as determined by the level of aggregate
spending.

Since the problems of individual price determination are assumed
away in macro theory, the relationship between individual units and the
aggregates is not clear. If it were, the analysis would be classified as
micro theory. The simplifications introduced by aggregation are not
without reward, since they make it possible to describe the position and
progress of the economy as a whole in terms of a few simple aggregates.
This would be impossible if the micro emphasis on individual behavior
and relative prices were maintained.

Following this established separation of subject matter, the present
volume is limited to a systematic exposition of traditional microeconomic
theory. The theories of individual behavior and price determination
for a perfectly competitive economy are developed in three stages of
increasing generality in Chapters 2 through 5. The behavior of indi-
vidual consumers (Chapter 2) and producers {Chapter 3) is the focal
point of the first stage. Fach individual is assumed to consider the
prices of the goods that he buys and sells as given parameters, the magni-
tudes of which he is unable to influence. The quantities of his purchases
and sales are the variables determined in these theories. The market
for a single commodity is the focal point of the second stage (Chapter 4).
The prices of all other commodities are assumed to be given parameters,
and the price of the commodity in question, as well as the volume of its
purchases and sales, is shown to be determined by the independent actions
of all its buyers and sellers. Finally, in the third stage (Chapter 5) the
interrelations between the various markets in the system are explicitly
taken into account, and all prices are determined simultaneously.

Microeconomic theories are sufficiently flexible to permit many vari-
ations in their underlying assumptions. For example, the assumption
that no single individual is able to infl*zence prices or the actions of other
individuals is modified in Chapter 8. Despite the variation of this basic
premise, the family resemblance between the analyses of Chapter 6 and
those of earlier chapters is quite evident. The assumption of a static
world in which consumers and producers do not plan for the future is
relaxed in Chapter 8.  Again the logical connection with the earlier
chapters is easily discernible. The possibility of relaxing these and
other assumptions increases the flexibility and generality of the basic
theories. .

Another important use of theory is to serve as a guide to whai ought
to be. The subbranch of microeconomics which covers these problems is
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known as welfare economics and is the subject of Chapter 7. The degree
of conformity between theory and fact is of great importance in welfare
economics. If one were interested in pure description, a divergence
between theory and fact would suggest that the theory is faulty for that
particular purpose. When the theory becomes a welfare ideal, such a
divergence leads to the conclusion that the actual situation is faulty and
should be remedied.

1-3. The Role of Mathematics

The theories of the present volume are cast in mathematical terms.
The mathematics is not an end in itself, but rather a set of tools
which facilitates the derivation and exposition of the economic theories.
Mathematics is useful for translating verbal arguments into concise and
consistent forms. However, it does more than this. Mathematics pro-
vides the economist with a set of tools often more powerful than ordinary
speech in that it possesses concepts and allows operations for which no
manageable verbal equivalents exist. The use of mathematics enlarges
the economist’s tool kit and widens the range of possible inferences from
initial assumptions.

Purely verbal analysis was the first stage in the historical development
of economic theory. However, as quantitative relationships were formu-
lated in increasing numbers and as theories became increasingly complex,
purely verbal analyses became more tedious and more difficult to formu-
late consistently. Mathematical functions underlay most of these early
theories, though they were seldom made explicit. The recognition that
more rigorous formulations were often necessary led to the acceptance of
geometry as an important tool of analysis. Geometry was and is highly
useful, but possesses many limitations. One of the most serious of these
is the limitation of theoretical arguments to two, or at most three, varia~
bles. The increasing use of mathematics in recent years reflects the belief
that geometry is not adequate for rigorous economic reasoning in many
cases.

When an economic theory is put into mathematicsl terms, one must
make some assumptions about the mathematical properties of the phe-~
nomena under investigation. These assumptions, like the strictly eco-
nomic assumptions, represent simplifications of reality. However, it is
fruitful to abstract from reality if increased understanding results from
the sacrifice of some detail.

The use of mathematics in the present volume does not mean that the
authors believe that all verbal and geometric analyses should be dis-
carded. All three approaches are of value. Verbal analyses serve to
fill in many details, and geometry is adequate, even preferable, for many



INTRODUCTION 5

problems. In order to highlight the similarities between the geometric
and mathematical approaches, the two are used side by side in the
development of many propositions in the present volume.

The mathematical concepts used in the text are reviewed in the
Appendix. All except mathematically sophisticated readers should read,
or at least skim, the Appendix before beginning Chapter 2.



CHAPTER 2

THE THEORY OF CONSUMER BEHAVIOR

The postulate of rationality is the customary point of departure in the
theory of the consumer’s behavior. The consumer is assumed to choose
among the alternatives available to him in such a manner that the satis-
faction derived from consuming commodities (in the broadest sense) is as
large as possible. This implies that he is aware of the alternatives facing
him and is capable of evaluating them. All information pertaining to
the satisfaction that the consumer derives from various quantities of
commodities is contained in his utility function.

The concepts of utility and its maximization are void of any sensuous
connotation. The assertion that a consumer derives more satisfaction or
utility from an automobile than from a suit of clothes means that if he
were presented with the alternatives of receiving as a gift either an
automobile or a suit of clothes, he would choose the former. Things
that are necessary for survival—such as vaccine when a smallpox epi-
demic threatens—may give the consumer the most utility, although the
act of consuming such a commodity has no pleasurable sensations con-
nected with it.

The nineteenth-century economists W. Stanley Jevons, Léon Walras,
and Alfred Marshall considered utility measurable, just as the weight of
objects is measurable. The consumer was assumed to possess a cardinal
measure of utility, i.e., he was assumed to be capable of assigning to
every commodity or combination of commodities a number representing
the amount or degree of utility associated with it. The numbers repre-
senting amounts of utility could be manipulated in the same fashion as
weights. Assume, for example, that the utility of A is 15 units and the
utility of B 45 units. The consumer would “like” B three times as
strongly as A. The differences between utility numbers could be com-
pared, and the comparison could lead to a statement such as “A is
preferred to B twice as much as C is preferred to D.” It was also
assumed by the nineteenth-century economists that the additions to a
consumer’s total utility resulting from consuming additional units of a
commodity decrease as he consumes more of it. The consumer’s behavior
can be deduced from the above assumptions. Imagine that a certain

6



THE THEORY OF CONSUMER BEHAVIOR 7

price, say 2 dollars, is charged for coconuts. The consumer, confronted
with coconuts, will not buy any if the amount of utility he surrenders

. by paying the price of a coconut (i.e., by parting with purchasing power)
is greater than the utility he gains by consuming it. Assume that the
utility of a dollar is 5 utils and remains approximately constant for small
variations in income and that the consumer derives the following incre-
ments of utility by consuming an additional coconut:

Unit Additional uiility
Coconut 1............ 20
Coconut 2............ 9
Coconut 3............ 7

He will buy at ieast one coconut, because he surrenders 10 utils in
exchange for 20 utils and thus increases his total utility.! He will not
buy a second coconut, because the utility loss exceeds the gain. In
general, the consumer will not add to his consumption ui a commodity
if an additional unit involves a net, utility loss. He will increase his con-
sumption only if he realizes a net gain of utility from: it. For example,
assume that the price of coconuts falls to 1.6 dollars. Two coconuts will
now be bought. A fall in the price has increased the quantity bought.
This is the sense in which the theory predicts the consumer’s behavior.

The assumptions on which the theory of cardinal utility is built are
very restrictive. Equivalent conclusions can be deduced from much
weaker assumptions. Therefore it will not be assumed in the remainder
of this chapter that the consumer possesses a cardinal measure of utility
or that the additional utility derived from increasing his consumption
of a commodity diminishes.

If the consumer derives more utility from alternative A than from
alternative B, he is said to prefer A to B.f The postulate of rationality
is equivalent to the foliowing statements: (1) for all possible pairs of
alternatives A and B the consumer knows whether he prefers A to B or
B to A, or whether he is indifferent between them; (2) only one of the
three possibilities is true for any pair of alternatives; (3) if the consumer
prefers A to B and B to C, he will prefer A to C. The last statement
ensures that the consumer’s preferences are consistent or transitive: if he
prefers an automobile to a suit of clothes and a suit of clothes to a bowl
of soup, he must prefer an automobile to a bowl of soup.

The postulate of rationality, as stated above, merely requires that the

1 The price is 2 dollars; the consumer loses 5 utils per dollar surrendered. There-
fore the gross loss is 10 utils, and the gross gain is 20 utils.

T A chain of definitions must eventually come to an end. The word ‘“‘prefer’’
could be defined t o mean “would rather have than,”” but then this expression must be
left undefined. The term ‘“prefer’” is also void of any connotation of sensuous
pleasure. ’
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consumer be able to rank commodities in order of preference. The con-
sumer possesses an ordinal utility measure, i.e., he need not be able to
assign numbers that represent (in arbitrary units) the degree or amount
of utility that he derives from commodities. His ranking of commodities
is expressed mathematically by his utility function. It associates certain
numbers with various quantities of commodities consumed, but these
numbers provide only a ranking or ordering of preferences. If the utility
of alternative A is 15 and the utility of B is 45 (i.e., if the utility function
associates the number 15 with alternative or commodity A and the num-
ber 45 with alternative B), one can only say that B is preferred to A,
but it is meaningless to say that B is liked three times as strongly as A.
This reformulation of the postulates of the theory of consumer behavior
was effected only around the turn of the last century. It is remarkable
that the consumer’s behavior can be explained just as well in terms of an
ordinal utility function as in terms of a cardinal one. Intuitively one
can see that the consumer’s choices are completely determinate if he
possesses a ranking (and only a ranking) of commodities according to
his preferences. One could visualize the consumer as possessing a list of
commodities in decreasing order of desirability; when the consumer
receives his income he starts purchasing commodities from the top of
the list and descends as far as his income allows.! Therefore it is not
necessary to assume that he possesses a cardinal measure of utility.
The much weaker assumption that he possesses a consistent ranking of
preferences is sufficient.

The basic tools of analysis and the nature of the utility function are
discussed in Sec. 2-1. Two alternative but equivalent methods are
employed for the determination of the individual consumer’s optimum
consumption level in Sec. 2-2. It is shown in Sec. 2-3 that the solution
of the consumer’s maximum problem is invariant with respect to mono-
tonic transformations of his utility function. Demand curves are derived
in Sec. 24, and the analysis is extended to the problem of choice between
income and leisure in Sec. 2-5. The effect of price and income variations
on consumption levels is examined in Sec. 2-6. The theory is generalized
to an arbitrary number of commodities in Sec. 2-7 and is reformulated in
terms of an alternative approach, the theory of revealed preference, in
Sec. 2-8. Finally, the problem of choice is analyzed with respect to
situations with uncertain outcomes in Sec. 2-9.

2-1. Basic Concepts

The Nature of the Udility Function. Consider the simple case in which
the consumer’s purchases are limited to two commodities. His ordinal

1 How much a particular item on the list is liked is irrelevant; an item which is
higher up on the list will always be chosen before one which comes later.
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utility function is
U = flq1,02) (2-1)

where ¢: and ¢, are the quantities of the two commodities Q; and Q.
which he consumes. It is assumed that f(q;,g2) is continuous and has
continuous first- and second-order partial derivatives. The consumer’s
utility function is mot unique (see Sec. 2-3). In general, any single-
valued increasing function of ¢; and g: can serve as a utility function.
The utility number U? assigned to any particular commodity combi-
nation indicates that it is preferable or superior to all combinations with
lower numbers and inferior to those with higher numbers.

The utility function is defined with reference to consumption during
a specified period of time. The level of satisfaction that the consumer
derives from a particular commodity combination depends upon the
length of the period during which he consumes it. Different levels of
satisfaction are derived from consuming ten portions of ice cream within
one hour and within one month. There is no unique time period for
which the utility function should be defined. However, there are restric-
tions upon the possible length of the period. The consumer usually
derives utility from variety in his diet and diversification among the
commodities he consumes. Therefore, the utility function must not be
defined for a period so short that the desire for variety cannot be satisfied.
On the other hand, tastes (the shape of the function) may change if it is
defined for too long a period. Any intermediate period is satisfactory
for the static theory of consumer behavior.! The present theory is static
in the sense that the utility function is defined with reference to a single
time period, and the consumer’s optimal expenditure pattern is analyzed
only with respect to this period. No account is taken of the possibility
of transferring consumption expenditures from one period to another.?

Indifference Curves. A particular level of utility or satisfaction can
be derived from many different combinations of @; and Q,.f For a

1The theory would break down if it were impossible to define a period that is
neither too short from the first point of view nor too long from the second.

2 The present analysis is static in that it does not consider what happens after the
current income period. The consumer makes his calculations for only one such
period at a time. At the end of the period herepeatshis calculations for the next one.
If he were capable of borrowing, one would consider his total liquid resources avail-
able in any time period instead of his income proper. Conversely, he may save, i.e.,
not spend all his income on consumption goods. Provision can be made for both
possibilities without changing the essential points of the analysis (see Sec. 8-2).

1 By definition, a commodity is an item of which the consumer would rather have
more than less. Otherwise he is dealing with a discommodity. In reality a com-
modity may become a discommodity if its quantity is sufficiently large. For exam-
ple, if the consumer partakes of too many portions of ice cream, it may become a
discommodity for him. It is assumed in the remainder of the chapter that such a
point of saturation has not been reached. .



10 MICROECONOMIC THEORY: A MATHEMATICAL APPROACH
given level of utility U° Eq. (2-1) becomes _
U° = f(q1,92) (2-2)

where U? is a constant. Since the utility function is continuous, (2-2) is
satisfied by an infinite number of combinations of @; and .. Imagine
that the consumer derives a given level of satisfaction U° from 5 units of
Q. and 3 units of Q.. If his consumption of @, were decreased from 5
to 4 without an increase in his consumption of @2, his satisfaction would
certainly decrease. In general, it is possible to compensate him for the
loss of 1 unit of @, by allowing an increase in his consumption of Q..

% 9

N
Ry

o 7 o ‘ %
F1GURE 2-1 F1GURE 2-2

Imagine that an increase of 3 units in his consumption of @, makes him
indiffereni between the two alternative combinations. Other commodity
combinations which yield the consumer the same level of satisfaction
can be discovered in a similar manner. The locus of all commodity
combinations from which the consumer derives the same level of satis-
faction forms an indifference curve. An indifference map is a collection
of indifference curves corresponding to different levels of satisfaction.
The quantities g1 and ¢. are measured along the axes of Fig. 2-1. One
indifference curve passes through every point in the positive quadrant
of the ¢.¢: plane. Indifference curves correspond to kigher and higher
levels of satisfaction as one moves in a northeasterly direction in Fig. 2-1.
A movement from point A to point B would increase the consumption
of both @, and ;. Therefore B must correspond to a higher level of
satisfaction than A.}

Indifference curves cannot intersect as shown in Fig. 2-2. Consider

t The term “‘level of satisfaction’ should not mislead the reader to think in terms
of a cardinal measure of utility. The term is relevant only in that a particular level
of satisfaction is higher or lower than some other level. Only the ordinal properties
of levels of satisfaction are relevant.
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the points A;, A2, and As. Let the consumer derive the satisfaction Us
from the batch of commodities represented by A; and similarly U, and
U; from A, and A;. The consumer has more of both commodities at
Az than at A;, and therefore Us > Ui Since A; and A, are on the same
indifference curve, U; = U,. The points A; and A; are also on the same
indifference curve, and therefore U, = Uj;. This implies U; = Us.
Therefore, A; and A; are on the same indifference curve contrary to
assumption.
The Rate of Commodity Substitution. The total differential of the
utility function is
dU = fidg: + fadg. (2-3)

where f, and f; are the partial derivatives of U with respect to ¢; and ga-.
‘The total change in utility (compared to an initial situation) caused by
variations in ¢; and g¢. is approximately the change in ¢, multiplied by
the change in utility resulting from a unit change of ¢, plus the change in
g2 multiplied by the change in utility resulting from a unit change in g..
‘Let the consumer move along one of his indifference curves by giving up
some Q; in exchange for Q.. If his consumption of @, decreases by dg.
(therefore, dg; < 0), the resulting loss of utility is approximately fi dgi.
The gain of utility caused by acquiring some Q. is approximately fz: dg.
for similar reasons. Taking arbitrarily small increments, the sum of
these two terms must equal zero in the limit, since the total change in
utility along an indifference curve is zero by definition.! Since. the
analysis runs in terms of ordinal utility functions, the magnitudes of
f1dqi1 and f, dg; are not known. However, it must still be true that the
sum of these two terms is zero. Setting dU = 0,

fidgr + fadge =0
yields

d9'1 fz (2-4)

The slope of an indifference curve, dg./dq,, is the rate at which a con-
sumer would be willing to substitute ; for Q: or Q. for @, in order to
maintain a given level of utility. - The negative of the slope, —dgs/dg,
is the rate of commodity substitution (RCS) of @: for Q. or Q. for @i,
and it equals the ratio of the partial derivatives of the utility function.?

1Tmagine the utility function as a surface in three-dimensional space. Then the
total differential (2-3) is the equation of the tangent plane to this surface at some
point. This justifies the use of the word approximate in the above argument (see
Sec. A-3).

2 The rate of commodity substitution is frequently referred to in the literature of
economics as the marginal rate of substitution, although the term marginal is redun-
dant. Cf. J. R. Hicks, Value and Capital (2d ed.; Oxford: Clarendon Press, 1946),
part I
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The RCS at a point on an indifference curve is the same for movements
in either direction. It is immaterial whether the verbal definition is in
terms of substituting @, for Q. or vice versa.

In a cardinal analysis the partial derivatives fi; and f. are defined as
the marginal utilities of the commodities Q; and Q..t This definition is
retained in the present ordinal analysis. However, the partial derivative
of an ordinal utility function cannot be given a cardinal interpretation.
Therefore, the numerical magnitudes of individual marginal utilities are
without meaning. The consumer is not assumed to be aware of the
existence of marginal utilities, and only the economist need know that
the consumer’s RCS equals the ratio of marginal utilities. The signs
as well as the ratios of marginal utilities are meaningful in an ordinal
analysis. A positive value for f; signifies that an increase in ¢; will
increase the consumer’s satisfaction level and move him to a higher
indifference curve.

2-2. The Maximization of Utility

The rational consumer desires to purchase that combination of @; and
Q: from which he derives the highest level of satisfaction. His problem
is one of maximization. However, his income is limited, and he is not
able to purchase unlimited amounts of the commodities. The consumer’s
budget constraint can be written as

¥ = ;s + Page (2-5)

where y° is his (fixed) income and p, and p; are the prices of Q; and Q
respectively. The amount he spends on the first commodity (pi¢:1) plus
the amount he spends on the second (p29z) equals his income (y?).

Method 1. In order to maximize the utility function subject to the
budget constraint the consumer must find a combination of commodities
that satisfies (2-5) and also maximizes the utility function (2-1). Trans-
posing p1q: to the left in (2-5) and dividing through by p,;, the budget
constraint becomes

Y — pa

P2 =

Substituting this value of ¢, into (2-1), the utility function becomes a

function of g; alone:

Pz

1 The marginal utility of a commodity is often loosely defined as the inerease in
utility resulting from a unit increase in its consumption.

U=flg, y_o_’_'_i"l!_l) (2-6)
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Because of the fixed relationship between ¢; and g2 via the budget con-
straint, it is sufficient to maximize (2-6) with respect to ¢q;. Sufficient
conditions are satisfied if dU/dg, = 0 (first-order condition) and d2U/
dq? < 0 (second-order condition).

Setting the first derivative of (2-6) equal to zero,}

dU - . Y4 - g
a0 ~—f1+fz( 7 =0 (2-7)
Transposing the second term of (2-7) to the right and dividing by f. yields

h_m
i (2-8)

The ratio of the marginal utilities must equal the ratio of prices for a
maximum. Since fi/f, is the RCS, the first-order condition for a maxi-
mum is expressed by the equality of the RCS and the price ratio. Equa-
tion (2-8) can be rewritten as

L b ' (2-9)
T Pz
Marginal utility divided by price must be the same for all commodities.
This ratio gives the rate at which satisfaction would increase if an addi-
tional dollar were spent on a particular commodity. If more satisfaction
could be gained by spending an additional dollar on @, rather than @,
the consumer would not be maximizing utility. He could increase his
satisfaction by shifting some of his expenditure from @, to €@,. Equa-
tion (2-9) is necessary for a maximum, but,it does not ensure that a
maximum is actually reached.
Denoting the second direct partial derivatives of (2-1) by fi: and f22
and the second cross partial derivatives by f1. and f21, the second-order
condition for a maximum requires that

da:Uu P 2
m=fu+2f12 (— 5::).+f22 (— %) <0
Multiplying by p.? (a positive number),

Fup2? — 2f1apips + foapi® < 0 (2-10)

A maximum is obtained if (2-10) holds in addition to (2-8) and (2-9).
By further differentiation of (2-4) the rate of change of the slope of

1 The composite-function rule and the function of a function rule have been used
(see Secs. A-2 and A-3).
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the indifference curve ist

d? 1 , ‘
3&% =7 (fufe® = 2fufifs + faofi®) @2-11)
Substituting fi = pi1fe/p: from (2-8) into (2-11),
a2 1
aq_z; = - W(fllp22 — 2f1sp1p2 + fa2p1?) (2-12)

Inequality (2-10) ensures that the bracketed term on the right~hand side
of (2-12) is negative. Hence d2qa/dgq,? is positive, and the indifference
curves are convex from below. Equations (2-4) and (2-8) together imply
that indifference curves are negatively sloped, since prices are positive.
If maxima exist, indifference curves are of the general shape presented in
Fig. 2-1.

Assume that the utility function is U = ¢i¢;, that p; = 2 dollars,
p: = 5 dollars, and that the consumer’s income for the period is 100

dollars. The budget constraint is

2z
50 100 — 2¢1 — 5¢2 = 40.
Expressing ¢, as a function of ¢; from
40 the budget constraint,
— o0 — 20
30 72 =20 — -
20 Substituting into the utility function,
) 90,2
10 U = 20g — -
| : B aU 4q,
0 10 20 30 40 50 g Therefore ;o 20 5

FI1GURE 2-3

Setting dU/dg: equal to zero and
solving for ¢, gives 1 = 25. Substituting this into the budget constraint
gives g2 = 10. The second derivative of the utility function is negative
for these values of ¢; and g, as the reader may verify by performing the
necessary differentiation. The consumer maximizes utility by consum-
ing ‘this combination.

Figure 2-3 contains a graphic presentation of this example. The price
line AB is the geometric counterpart of the budget constraint and shows
all possible combinations of @, and Q. that the consumer can purchase.
Its equation is 100 — 2¢; — 5¢2 = 0. The consumer can purchase 50
units of @, if he buys no Q,, 20 units of Q. if he buys no @,, etec. A

t Note that (2-11) is obtained by taking the total derivative of the slope of the
indifference curve instead of the partial derivative.
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different price line corresponds to each possible level of inc()'me; if the
consumer’s income were 60 dollars, the relevant price line would be CD.
The indifference curves in this example are a family of rectangular hyper-
bolas.! The consumer desires to reach the highest indifference curve that
has at least one point in common with AB. His equilibrium is at point
E, at which AB is tangent to an indifference curve. Movements in
either direction from point E result in a diminished level of utility. The
constant slope of the price line, —p:1/p: or —24 in the present example,
must equal the slope of the indifference curve. Forming the ratio of the

ay i .7
o ’ qy 0 dy
{a) 0]
- Ficure 2-4

partial derivatives of the utility function, the slope of the indifference
curves in the present example is —¢2/¢1, and hence the RCS equals
o:/01 = 1%, which equals the ratio of prices 24 as required. The indif-
ference curves are convex from below because d?qs/dg,? = 2¢2/q:% > 0.
The first-order condition (2-8) or (2-9) is not necessary for a maximum
in two special cases: (1) if the indifference curves are concave from below,
and (2) if the indifference curves are convex from below but are every-
where steeper (or less steep) than the price line. The consumer’s opti-
mum position is given by a corner solution in both cases. In case (1) the
first-order condition for a maximum is satisfied at the point of tangency
between the price line and an indifference curve, but the second-order
condition is not (see Fig. 2-4a). Therefore this point represents a situ-
ation of minimum utility, and the consumer can increase his utility by
moving from the point of tangency toward either axis. He consumes
only one commodity at the optimum. If he spends all his income on
one commodity, he can buy y°/p: units of @, or °/p. units of @;. There-
fore he will buy only @ or only Q,, depending upon whether f(y°/p1, 0) 2

1 Hyperbolas the asymptotes of which coincide with the coordinate axes.
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(0, ¥°/p2). 1In case (2) tangency cannot be achieved (the first-order con-
dition cannot be fulfilled) although the second-order condition could be
satisfied (see Fig. 2-4b). The methods of calculus cannot be applied
because of the restrictions g; = 0, ¢2 = 0. As before, the consumer
purchases only one commodity at the optimum.

Method 2. The same conclusions can be obtained by using the tech-
nique of Lagrange multipliers. From the utility function (2-1) and the

budget constraint (2-5) form the function

V = f(g1,92) + M¥° — p1g1 — P2q2) (2-13)

where ) is the as yet undetermined Lagrange multiplier (see Sec. A-3).
V is a function of ¢i, g;, and . Moreover, V is identically equal to U
for those values of ¢; and ¢ which satisfy the budget constraint, since
theny® — p1g1 — P22 = 0. To maximize V, calculate the partial deriva-
tives of V with respect to the three variables and set them equal to zero:

A4

— = — A =
aql fl ?1 0
aV

v

=Y TP — P =0

The first-order condition (2-8) is immediately obtained from (2-14) by
transposing the second terms in the first two equations of (2-14) to the
right-hand side and dividing the first equation by the second. The
second-order condition for a coustrained maximum is that the relevant
bordered Hessian determinant be positive:

fu  fiz —ps )
Jao  fa2 —p2|>0 : (2-15)
—-p1 —p2: O :

Expanding (2-15),

2f12p1P2 — foep1? — fupe2 > 0
which is the same as (2-10).}

2-3. The Choice of a Utility Index

The numbers which the utility function assigns to the alternative
commodity combinations need not have cardinal significance; they need
only serve as an ndex of the consumer’s satisfaction. Imagine that one
wishes to compare the satisfaction a consumer derives from one hat and

t See Sec. A-1 on expanding a determinant and Sec. A-3 on constrained maxima.
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two shirts and from two hats and five shirts. The consumer is known
to prefer the latter to the former combination. The numbers that are
assigned to these combinations for the purpose of showing the strength
of his preferences are arbitrary in the sense that the difference between
them has no meaning. Since the second batch is preferred to the first
batch, the number 3 could be assigned to the first, and the number 4
to the second. However, any other set of numbers would serve as well,
as long as the number assigned to the second batch exceeded that assigned
to the first. Thus 3 for the first batch and 400 for the second would
providean equally satisfactory utility index. If a particular set of num-
bers associated with various combinations of ¢, and Q: is a utility index,
any monotonic transformation of it is also a utility index.? Assume that
the original utility function is U = f(q1,¢2). Now form a new utility
index W = F(U) = F[f(¢q1,92)] by applying a monotonic transformation
to the original utility index. The function F(U) is then a monotonic

_ (increasing) function of U.1 It can be demonstrated that maximizing W
subject to the budget constraint is equivalent to maximizing U subject
to the budget constraint. - Form the function -

Z = F(f(g1,92)] + A" — p1q1 — D2q2)
and set the partial derivatives with respect to 1, g2, and X squal to zero:
0Z

— =Ffi—Apy=0

aq: f1 y 4!

oZ ., _ _
55 = Ffr—2p2=0 (2-16)
0Z

§=y°-—p1q1—szz=0

where F’ is the derivative of F with respect to its argument.? Trans-
posing the second terms of the first two equations of (2-16) and dividing
the first equation by the second,

h_m

- = = 2-17

f2 P2 ( )
This proves that the first-order conditions are invariant with respect to

the particular choice of the utility index.? The ratio of the marginal
utilities must equal the ratio of the corresponding prices, irrespective of

1 A function F(U) is a monotonic transformation of U if F(U,) > F(Uo) whenever
U: > U,

t Examples are provided by the transformations W = aU + b, provided that a is
positive, and by W = U2, provided that all utility numbers are nonnegative.

2 The arguments of a function are the variables of which it is a function. Note that
the function of a function rule is applied (see Sec. A-2).

3 'The assumption that ¥ is a monotonic transformation guarantees that F/ »< 0.
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the choice of a utility index. The marginal utilities for different indices
may be quite different, but they are not important for the maximization
of utility; the ratio of the marginal utilities is the same, irrespective of
the utility index. )

The second-order partial derivatives of Z are

a8z
0q:®
XA
g2
3%z
92
A
aq; 9q2
3?Z
9g2 0qu
8z
dgon . P
A%z
gz A

= F”flz + F'fu
= F“fzz + F’fzz

=0

= F"f1fe + F'f1a

= F"flfz -+ F'le

= —Ps

The second-order condition for a maximum states that

F'f2 + F'fuu F'fifs + F'fiz —p1
A= F'f\fa + F'fsy FUf?+F'fs —p2| >0 (2-18)
—P1 ‘ — D2 0

This determinant can be shown to be the same as (2-15). The valueof a
determinant does not change if a multiple of one row is added to some
other row or if a multiple of a column is added to some other column.
Multiplying a row or & column of the array by a given number is equiva-
lent to multiplying the value of the determinant by that number (see
Sec. A-1). From the first two equations of (2-16)

F'fy

P 5
_Ff

D2 = ~

Substituting these values of p; and p; into (2-18),

F”f12+F,f11 F”flf2+Flf12 —F’fl/x’
A =|F'fifo+ Fifn F'f2+ Ffy —Ff/A[>0  (2-19)
—F'fy/\ —F'fa/\ 0
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Multiplying the last row and the last column of (2-19) by A\/F,
\? P'f2+ F'fn F'fifs+ Pfe —fi
A= ( ) Ffifs + F'fu F'fo2 + F'fs, —f2| >0
: —fi —f2 0

Now add F”’f, times the last row to the first row and F”’f, times the
last row to the second row. This leaves A unchanged:

A

A= F'fos Ffaa —f2| >0

_fl —fz 0

Substitute —Apy/F’ for —f, and —Ap:/F’ for —f; from the first two
equations of (2-16) and then multiply the last row and the last column
by F'/\:

(I;’)z F'fu F'fiz —f

F’fn F'flz — D
A= |Ffa Flfaa —p2|>0
—pr —p: 0 |

Now multiply the last column by F’ and divide the first two rows by F’:

fu fz —m;m
A=|fa S —p2| (F') >0 (2-20)

—DP1 —D:2 0

F is a monotonic transformation by hypothesis; hence F’ is positive, and
the sign of A is the same as the sign of the determinant on the right-
hand side of (2-20). However, the determinant on the right-hand side of
(2-20) is identical with that given by (2-15). This proves that the
second-order condition is invariant with respect to the choice of the
utility index. It follows from the invariance of the first- and second-
order conditions that if the utility index U is maximized, so will be the
utility index W. It can be concluded that if the consumer maximizes
his utility subject to the budget constraint for one given utility index,
he will behave in identical fashion irrespective of the utility index chosen,
as long as the index selected is a monotonic transformation of the original
one. If a utility function is maximized by a particular batch of com-
modities, the same batch will maximize all other utility functions that
are monotonic transformations of it. The consumer’s utility function is
unique except for a monotonic transformation.?

Choose the utility index U* = ¢,%,?, which is a monotonic transfor-

1 This proposition can be proved intuitively as follows. Any single-valued func-
tion U can serve as a utility function if it is order-preserving, i.e., U(4A) > U(B) if
and only if A is preferred to B. If F(U) is a monotonic transformation, F[U(A4)] >
F[U(B)], and the function F(U) is itself order-preserving.
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mation of U = ¢1g2.1 Form the function
V* = ¢’ + M@y° — 2q1 — 5¢2)

and set its partial derivatives equal to zero:

*

a;; =201q2> — 22 =0
*

86122 = ZQ12QQ — 5 =0

av*

an =V T 20— 5¢: =

Substituting y° = 100 and solving for ¢: and ¢., the same values are
obtained as before: ¢; = 25 and ¢. = 10.

2-4. Demand Curves

The consumer’s demand curve for a commodity gives the quantity
he will buy as a function of its price. Demand curves can be derived
from the analysis of utility maximization. The first-order conditions for
maximization (2-14) consist of three equations in the three unknowns:
g1, q2, and A.I The demand curves are obtzined by solving this system
for the unknowns. The solutions for ¢; and ¢ are in terms of the parame-
ters p1, P2, and y°. The quantity of @, (or @.) that the consumer pur-
chases in the general case depends upon the prices of all commodities and
his income.

As above, assume that the utility function is U = ¢1¢. and the budget
constraint y° — pig1 — p2g2 = 0. Form the expression

V = q1g2 + My® — p1h — Pp2q2)

and set its partial derivatives equal to zero:

aql
o, U TP
3

an = Y0 T P P = 0

t The new utility function is obtained by squaring the original one. Squaring is
not a monetonic transformation if negative numbers are admissible. However,"
squaring is proper for the present purposes, since the possibility of negative purchases
by the consumer is not admitted.

1 Assume that the second-order conditions are fulfilled.
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Solving for ¢; and ¢; gives the demand functions:?
y° _ ¥

g1 = 2—:0; 2 2:0
The demand functions derived in this fashion are contingent on continued
optimizing behavior by the consumer. Given the consumer’s income
and prices of commodities, the quantities demanded by him can be deter-
mined from his demand functions. Of course, these quantities are the
same as those obtained directly from the utility function. Substituting
y =100, py = 2, p2 = 5 in the demand functions gives ¢; = 25 and
g: = 10, as in Sec. 2-2.

Two important properties of demand functions can be deduced: (1) the
demand for any commodity is a single-valued function of prices and
income, and (2) demand functions are homogeneous of zeroth degree in
prices and income; i.e., if all prices and income change in the same pro-
portion, the quantity demanded remains unchanged.

The first property follows from the convexity of the indifference curves:
a single maximum, and therefore a single commodity combination, corre-
spouds to a given set of prices and income. To prove the second property
assume that all prices and income change in the same proportion. The
budget constraint becomes

ky® — kpigr — kp2g2 = 0
where k is the factor of proportionality. Expression (2-13) becomes
V = f(a1,92) + Aky® — ks — kpogs)
and the first-order conditions are
f1 - )\k}h =0
fa— Mep, =0 (2-21)
ky® — kpig: — kpag: =

The last equation of (2-21) is the partial derivative of ¥V with respect to
the Lagrange multiplier and can be written as

E@® — pig1 — p2ge) = 0
Since k 5 0,

Y° — P1g1 — P2qz = 0
Eliminating k& from the first two equations of (2-21) by moving the
second terms to the right-hand side and dividing the first equation by
the second,
h_mp
f 2 D2
! Notice that these demand curves are a special case in which the demand for each
commodity depends only upon its own price and income.
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The last two equations are the same as (2-5) and (2-8). Therefore the
demand curve for the price-income set (kpi,kp2,ky®) is derived from the
same equations as for the price-income set (pi1,p2,4°). It is equally easy
to demonstrate that the second-order conditions are unaffected. This
proves that the demand functions are homogeneous of degree zero in
prices and income. If all prices and the consumer’s income are increased
in the same proportion, the quantities demanded by the consumer do not
change. This implies a relevant and empirically testable restriction upon
the consumer’s behavior; it means that he will not behave as if he were
richer (or poorer) in terms of real income if his income and prices rise
in the same proportion. A rise in money income is desirable for the
consumer, ceterss parzbus, but its benefits are illusory if prices change
proportionately. If such proportionate changes leave his behavior
unaltered, there is an absence of ‘‘money illusion.”?

In general, the consumer’s demend curve for commodity @, is written as

91 = ¢(p1,p2y") (2-22)
or, assuming that p, and y are given parameters,}
01 = D(p) (2-23)

The shape of the demand function depends upon the properties of the
consumer’s utility function. It is generally assumed that demand curves
are negatively sloped: the lower the price, the greater the quantity
demanded. In exceptional cases the opposite relationship may hold.
An example is provided by ostentatious consumption: if the consumer
derives utility from a high price, the demand function may have a positive
slope. The nature of price-induced changes in the quantity demandec
is_analyzed in detail in Sec. 2-6. Elsewhere in this volume it is assumec
that the demand function is negatively sloped.

1If the consumer possesses a hoard of cash, he may feel richer in spite of a propor
tional fall in commodity prices and income, since the purchasing power of his hoarc
increases. He may consequently increase his demand for commodities. This i
the Pigou effect.

t In general, the demand curve can also be written as p, = y¥(q1). If the price is p§
and the consumer purchases g} units, his total expenditure on the commodity is pg
dollars. It has been argued that the area under the demand curve up to the poin
q1 = g? represents the sum of money that the consumer would be willing to pay for ¢
units rather than not have the commodity at all. The difference between what h

e
would be willing to pay and what he actually pays, -/; @ ¥(gy) dg1 — g3, is the “cor

sumer surplus,”’ i.e., a measure of the net benefit he derives from buying @:. The:
are several alternative definitions of consumer surplus, and the concept has bee
refined considerably, but it has failed to result in notable advances, since it depenc
upon the assumption of cardinality.
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2-6. Income and Leisure

If the consumer’s income is payment for work performed by him, the
optimum amount of work that he performs can be derived from the analy-
sis of utility maximization. One can also derive the consumer’s demand
curve for income from this analysis. Assume that the consumer’s satis-
faction depends on income and leisure. His utility function is

U = g(L,y) (2-24)

where L denotes leisure. Both income and leisure are desirable. In the
preceding sections it is assumed that the consumer derives utility from
the commodities he purchases with his income. In the construction of
(2-24) it is assumed that he buys the various commodities in fixed pro-
portions at constant prices, and income is thereby treated as generalized
purchasing power.

The rate of substitution of income for leisure is

Denote the amount of work performed.by the consumer by W and the
wage rate by r. By definition,

L=T-W (2-25)
where T is the total amount of available time.! The budget constraint is
y=rw (2-26)

Substituting (2-25) and (2-26) into (2-24),
U=g(T - WyW) (2-27)

To maximize utility set the derivative of (2-27) with respect to W equal
to zero:?

_%y_g_
and therefore i T (2-28)

which states that the rate of substitution of income for leisure equals the
wage rate. The second-order condition states

da:Uu
awz = 9u — 2q10r + g22 < 0

1 For example, if the period for which the utility function is defined is one day,
T = 24 hours.
2 The composite-function rule is employed.
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Equation (2-28) is a relation in terms of W and r and is based on the indi-
vidual consumer’s optimizing behavior. It is therefore the consumer’s
offer curve for work and states how much he will work at various wage
rates. Since the offer of work is equivalent to the demand for income,
(2-28) indirectly provides the consumer’s demand curve for income.

Assume that the utility function is of the same form as in previous
sections: U = Ly. Then

U= (T - W)Wr

and setting the derivative equal to zero,

au
ET’V =Tr — 2W7‘ = (
Therefore W = 12,-
and substituting this in (2-26),
_rT
T2

One can infer that the consumer will work 12 hours per day irrespective
of the wage level. The second-order condition is fulfilled:

%Vgi =-2r<0
An alternative example is provided by the utility function
U=Ly—01L2 - 0.1y2 = (T — W)Wr — 0.1(T — W)z — 0.1W?2
Then 27 — — Wr+ (T — Wyr 4+ 0.AT — W) — 0.2Wr2 =

aw
: T +02)
and W= s0i+r 019

The amount of work performed now depends upon the wage rate. If
r = 1 dollar, the individual will work 12 hours per day. The second-
order condition is fulfilled:
awu
T = —2014r+4+0.172) <0

2-6. Substitution and Income Effects

The Slutsky Equation. The quantities purchased by a rational con-
sumer will always satisfy Eqs. (2-14). Changes in prices and income
will normally alter his expenditure pattern, but the new quantities (and
prices and income) will still satisfy (2-14). In order to find the magni-
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tude of the effect of price and income changes on the consumer’s pur-
chases, allow all variables to vary simultaneously. This is accomplished
by total differentiation of Eqgs. (2-14):

fudg + fr2dgs — p1 d\ = X dpy
fu dgy + fa2 dge — p2 A\ = X dp. (2-29)
—p1dg1 — P2 dge = —dy + ¢ dp1 + ¢ dp;

In order to solve this system of three equations for the three unknowns,
dqi, dgs, and d\, the terms on the right must be regarded as constants.
The array of coefficients formed by (2-29) contains the same elements
as the bordered Hessian determinant (2-15). Denoting this determinant
by D and the cofactor of the element in the first row and the first column
by D1, the cofactor of the element in the first row and second column by
D,2, ete., the solution of (2-29) by Cramer’s rule (see Sec. A-1) is

dg, = ADy; @py + AD2y dpe + DI;I(_dy + ¢ dp1 + q2dp») (2-30)

dgs = ADi2 dp1 + ADa22 dpz -+ D}:;z(—dy + q1 dp1 + ¢z dp2) (2-31)

Dividing both sides of (2-30) by dp; and assuming that », and y do not
change (dp, = dy = 0),
%_ _ D

- Da
ap1 D

1 (2-32)

+4q

The partial derivative on the left-hand side of (2-32) is the rate of change
of the consumer’s purchases of @, with respect to changesin p,, all other
things being equal. Ceteris paribus, the rate of change with respect to
income is

01 _ _ Du

5 5 (2-33)

Changes in commodity prices change the consumer’s level of satisfaction,
~ since a new equilibrium is established which lies on a different indifference

curve. Imagine now that a price change is accompanied by an income
change that compensates for the effect of the price change such that the
consumer remains neither better off nor worse off. He is thereby forced
to stay on the same indifference curve. A decrease in the price of 3 com-
modity is accompanied by a corresponding decrease in his income such
that dU = 0 and f1dgq: + fadg. = 0 by (2-3). Since fi/f: = p1/ps, it
is also true that p; dg; + p2dg: = 0. Hence, from the last equation of
(2-29), —dy + q1dp1 + q2dp2 = 0, and -

aq 1 D 11)\
941 = 2-34
(6’13 I)Uneomt D ( )
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Equation (2-32) can now be rewritten as

o1 (3? 1) (‘39 1
9 _ (4 —q (% 2-35
apl ap 1/ Us=consat @ 3%‘ prices=aconst ( )

Equation (2-35) is known as the Slutsky equation.

Substitution and Income Effects. The first term on the right-hand
side of (2-35) is the substitution effect, or the rate at which the consumer
substitutes Q; for other commodities when the price of @, changes and
he moves along a given indifference curve.! The second term on the
right is the income effect, which states
the consumer’s reaction with respect
to purchases of @; to changes in his
income, prices remaining constant.
The sum of the two terms gives the
total effect on the consumer’s pur-
chases of @ as p; changes. Imag-
ine that the price of @, falls. The
consumer may wish to substitute @
for Q2 because (1) @, has become
cheaper and (2) the fall in the price
of @, is equivalent to an increase in

o) B E c g;  theconsumer’sincome. The substi-
F1GURE 2-5 tution effect describes the realloca-
tion that will take place among the
consumer’s purchases if a price change is compensated by a simultaneous
income change which forces him to remain on the same indifference
curve. The discrepancy between this point and the final point of equi-
librium is accounted for by the income effect. These concepts are illus-
trated in Fig. 2-5. The original price line is AB, and the correspond-
ing point of equilibrium is at B. After the change in p, the price line
is represented by AC, and the final equilibrium is at T. The movement
from R to T can be decomposed into the steps from R to S and from
S to T. The point S is the tangency point between the original indif-
ference curve and a price line DE which has the same slope (and therefore
represents the same price ratio) as AC. The movement from R to S is
accounted for by the substitution and the movement from S to 7 by the
income effect.? V

L

1Slutsky called this the residual variability of the commodity in question.

2 Figure 2-5 is not an exact representation of the foregoing mathematical discussion.
The Slutsky equation involves rates of change which cannot be represented directly
in an indifference-curve diagram. In Fig. 2-5 the sum of two discrete changes (rather
than of two rates) is the total discrete change (rather than the total rate of change).
These two discrete changes correspend to (rather than are) the substitution effect and
the income effect. '
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The extra utility gained by consuming an additional unit of any com-
modity divided by its price equals \. The utility gained from the last
dollar spent is the marginal utility of income. Alternatively, the mar-
ginal utility of income can be determined from (2-13). Since aV /9y = A,
the Lagrange multiplier A is the marginal utility of income which is
positive. The direction of the substitution effect is then easily ascer-
- tained. By (2-34) the substitution effect is D;;A/D. Expanding the
determinant D,

D = 2f19p1p2 — p12f11 — P2¥fae
which is known to be positive by (2-10). Expanding Dy,
Dy = —pst

which is clearly negative. This proves that the sign of the substitution
effect is always negative. If the price of @, rises and the consumer’s
income is so adjusted that his final equilibrium point is on the same
indifference curve, his purchases of @; will decrease.

A change in real income may cause a reallocation of the consumer’s
resources even if prices do not change or if they change in the same pro-
portion. The income effect is —¢1(8g1/9Y)prices—conse annd may be of either
sign. The final effect of 'a price change on the purchases of the com-
‘modity is thus unknown. However, an important conclusion can still be
derived: the smaller the quantity of @i, the less significant is the income
effect. If the income effect is positive and its absolute value is large
enough to make 9d¢./dp, positive, @ is said to be an inferior good.! This
means that as the price of @, falls, the consumer’s purchases of @ will
also fall. This may occur if a consumer is sufficiently poor so that a
considerable portion of his income is spent on a commodity such as
potatoes which he needs for his subsistence. Assume now that the price
of potatoes falls. The consumer who is not very fond of potatoes may
suddenly discover that his real income has increased as a result of the
price fall. He will then buy fewer potatoes and purchase a more pal-
atable diet with the remainder of his income.

The Slutsky equation can be derived for the specific utility function
assumed in the previous examples. State the budget constraint in the
general form ¥y — p1g1 — P22 = 0, and form the function

V =qg + My — mga — p2qs)

1 An alternative definition of inferior goods may be given by the following state-
ment: a commodity @, is an inferior good if 3¢,/3y is negative, i.e., if the consumer’s
purchases of @, decrease when his income rises. This is a weaker definition in the
senge that it does not imply the definition given in the text above, whereas the defini-
tion in the text does imply this one.
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Setting the partial derivatives equal to zero,

@2— 1 =0
@1 —Ap2 =0
Yy —P1q1 — P2q2 =0

The total differentials of these equations are

dg: — pr A\ = N dpy
dQ1—pzd)\=7\dpz
—Dp1dgy — p2dgs = —dy + q1dp1 + ¢2dp;

Denote the determinant of the coefficients of these equations by D and
the cofactor of the element in the th row and jth column by D,;. Simple
calculations show that .

D = 2pip.
Dy = —p,?
Di = pip:
Dy = —p2

Solving for d¢; by Cramer’s rule gives

dgy = —P2"A dpy + P1ps) dp: — po(—dy + g1dpr + g2 dps)
- 2p1p2

Assuming that only the price of the first commodity varies,

81 _ _pA_ @1

6p1 2})1 2})1

The value of A can be obtained by substituting the values of ¢, and ¢,
from the first two equations of (2-14) into the third one and solving for
A in terms of the parameters pi, p,, and y. Thus X = y/2p;p,. Substi-
tuting this value into the above equation snd then introducing into it
the values of the parameters (y = 100, p; = 2, p. = 5) and also the equi-
librium value of ¢; (25), a numerical answer is obtained:

I
— = =125
Im

The meaning of this answer is the following: if, starting from the initial
equiiibrium situation, p, were to change, ceteris paribus, the consumer’s
purchases would change at the rate of 12.5 units of @, per dollar of
change in the price of Q,; furthermore the direction of the change in the
consumer’s purchases is opposite to the direction of the price change.
The expression —p2h/2p,; is the substitution effect, and its value in the
present example is —254. The expression —q,/2p, is the income effect,
also with a value of —254.
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Cross Effects. The analysis can be extended to account for the change
in the demand for one commodity resulting from a change in the prlce
of some other commodity. From Egs. (2-30) and (2-31)

991 _ DaA Dy

apz' = + q: D (2-36)
o, _Dir , D _
and a_pl =D + @ D (2 37)

Since D is a symmetric determinant,t D), = Dj;. The first terms on
the right-hand sides of (2-36) and (2-37) are the substitution effects for
each commodity with respect to a change in the price of the other.
The sign of the substitution effect is unknown in the present case.
Denote the substitution effect when the quantity of the :th commodity
is adjusted as a result of a variation in the jth price by S;;. It follows
from the symmetry of D that the substitution effect on the Zth com-
modity resulting from a change in the jth price is the same as the substi-
tution effect on the jth commodity resulting from a change in the ¢th
price: S,'J" = Sj{.

This is a remarkable conclusion. Imagine that the consumer’s demand
for tea increases at the rate of 2 cups of tea per 1-cent increase in the
price of coffee. One can infer from this that his purchases of coffee
~ would increase at the rate of 2 cups of coffee per 1-cent increase in the
price of tea.

Substitutes and Complements. Two commodities are substitutes if
both can satisfy the same need of the consumer; they are complements
if they are consumed jointly in order to satisfy some particular need.
These are loose definitions, but everyday experience may suggest some
plausible examples. Coffee and tea are most likely substitutes, whereas
coffee and sugar are complements. A more rigorous definition of substi-
tutability and complementarity is provided by the substitution term of
the Slutsky equations (2-36) and (2-37). Accordingly, @, and Q. are
substitutes if the substitution effect D\/D is positive; they are comple-
ments if it is negative. If Q; and Q. are substitutes (in the everyday
sense) and if compensating variations in income keep the consumer on
the same indifference curve, an increase in the price of @, will induce the
" consumer to substitute @, for Q;. Then (gg—2>u > 0. For analo-

Co =oonst

D1

gous reasons, (%) < 0 in the case of complements.?
Um=gonst

8?1 ‘

t A determinant is symmetric if its array is symmetric around the principal diagonal.
1 This provides a rationale for the definitions. When (692)0 =0 Q: and Q.
. =GOonse

ap 1
are independent.
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All commodities cannot be complements for each other. Hence only
substitutability can occur in the present two-variable case. This theorem
is easily proved. Multiply (2-32) by p1, (2-33) by y, and (2-36) by p,
and add:

DuA D DaiA D
SRS e LS RS

1
= 5 PP+ Dok p2 — Das(y — Prg1 — Pago)]
== % [D1r p1»+ D p2 — Dau(0)] = 0 (2-38)

The expression (2-38) equals zero since it is an expansion of the determi-
nant of (2-31) in terms of alien cofactors; i.e., the cofactors of the ele-
ments in the first column are multiplied by the elements in the last
column. Substituting D;, = D;; and S;; = D;;A/D, :

Supr + Swpe = 0 (2-39)

Equation (2-39) can be verified for the utility function used in the previ-
ous examples. Substituting the values of D, Dy,, and Dy, obtained by
assuming the utility function U = 192,

P1p2*N | Pab’A -
— = 2"40
2p1p2 271D 0 ( )

Since the left-hand side of (2-40) equals zero, Eq. (2-39) has been
verified. But 8,1, the substitution effect for @, resulting from changes
in p,, is known to be negative. Hence (2-39) implies that S, must be
positive, and in terms of the definitions of substitutability and comple-
mentarity this means that @, and @, are necessarily substitutes. ’

2-7. Generalization to n Variables

The foregoing analysis of the consumer is now generalized to the case
of » commodities. The generalization is not carried out in detail, but
the first few steps are indicated. If there are n commodities, the utility
function is

U = f(gugs - - + 2a) (2-41)

and the budget constraint is given by

y ~ ; pigi = 0 (2-42)
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Forming the function as above,

V= f(qx,éz, oo @) T (:t/ = 5: piqf) (2-43)

T1=1

Setting the partial derivatives equal to zero,

ngi=f‘-—)\p,-=0 G=1,...,n) (2-44)
Conditions (2-44) can be modified to state the equality for all commodi-
ties of marginal utility divided by price. The partial derivative of V
with respect to A is again the budget constraint. There are a total of
(n + 1) equationsin (n + 1) variables (n gs and\). The demand curves
for the » commodities can be obtained by solving for the ¢s. Conditions
(2-44) can be stated alternatively as

0% _ P -

3~ p (2-45)
for all z and 7; i.e., the rate of commodity substitution of commodity 7 for
commodity 7 must equal the price ratio p;/p;. Second-order conditions
must be fulfilled in order to ensure that a batch of commodities that
satisfies (2-44) is optimal. The bordered Hessian determinants must
alternate in sign:

fu  fu —-m fu  fiz fiu —m
le fzz — D2 > 0, f 21 f 22 f 23 — P2 < 0,
—p1 —p2 0 f31 faz faa —Ps3

. —p1 —p2 —ps O

fu fiz i —m
f21 fzz et f215 — P2

Other theorems can also be generalized in straightforward fashion. For
example, the Slutsky equation becomes

d¢: (895) (89,-) ~
9 _ (%% ~ % 2-46
apj 3173 Uwaconst, 4 3y prices==oonst ( )

The generalization of (2-39) is

Zﬂ Sipi =0 ‘ (247)

o
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Tt still follows that all commodities cannot be complements for each’ other.

2-8. The Theory of Revealed Preference

It was assumed in the previous sections that the consumer possesses a
utility function. If his behavior conforms to certain simple axioms, the
existence and nature of his indifference map can be inferred from his
actions.

Assume that there are n commodities. A particular set of prices p?,
D3, . . ., D} is denoted by [p°], and the corresponding quantities bought
by the consumer by [¢°). The consumer’s total expenditures are given
by Zp%"°.

Consider an alternative batch of commodities [¢!] that could have been
purchased by the consumer but was not. = The total cost of the batch [q‘]
at prices [p°], must be no greater than the total cost of [¢°]:

Zp%' £ Zp%¢® (2-48)

Since [¢°] is at least as expensive a combination of commodities as [¢],and
since the consurier refused to choose combination [¢!], [¢°] is “‘ revealed ”
to be preferred to [¢Y]. '

Asiom 1. If [¢°] is revealed to be preferred to [¢'], the latter must
never be revealed to be preferred to [¢°].

The only way in which [¢!] can be revealed to be preferred to [¢°] is to
have the consumer purchase the combination [¢!] in some price situation
in which he could also afford to.buy [¢°]. In other words. [¢!] is revealed
to be preferred if

Zpl¢® = Zp'g? : r (2-49)

The axiom states that (2-49) can never hold if (248) does. Conse-
'quently (2-48) implies the opposite of (2-49) or

2p’¢' < Zp%°  implies  2p'¢® > Zp'g!

Asiom 2. If [¢%] is revealed to be preferred to [¢'], which is revealed
to be preferred to [¢%], . . . , which is revealed to be preferred to [¢*],
[¢"] must never be revealed to be preferred to [¢°].f This axiom ensures
the transitivity of revealed preferences, but is stronger than the usual
transitivity condition.

At the beginning of this chapter the cardinal approach to utility theory
was rejected on the grounds that there is no reason to assume that the
consumer possesses a cardinal measure of utility. By the same token
one could question whether he even possesses an indifference map. It

t The two axioms can be collapsed into a single one, but have been kept separate
for the sake of clarity.
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can fortunately be proved that a consumer who always conforms to the
above axioms must possess an indifference map. His indifference map
could be reconstructed with a high degree of accuracy (the *“true” indif-
ference map could be approximated as closely as is desired) by confronting
him with various appropriately chosen price sets and observing his pur-
chases.! If the consumer does not conform to the axioms, he is irrational
by the definition of the earlier sections. If he is irrational and acts incon-
sistently, he does not possess an indifference map, and the shape of his
utility function cannot be determined by observing his behavior.

The Substitution Effect. It can be proved from revealed-preference
theory that the substitution effect is negative.? Assume that the con-
sumer is forced to move along a given indifference curve. When prices
are given by [p°], he purchases the batch [¢°] rather than the batch [¢]
which lies on the same indifference hypersurface. Since he is indifferent
between [¢°] and [¢] and yet purchases [¢°], the latter combination must
not be more expensive than the former:

Zp°® = Zp'g? (2-51)

| _The combination [¢Y] is purchased at prices [p!]. This implies that the
combination [¢°] must not be cheaper at the [p!] prices than [¢']:

Splg! < Zp'g (2-52)
- Moving the right-hand terms in (2-51) and (2-52) to the left,

Zp%® — 2p°%* = Zp°(¢° — ¢") = 2(—p)(¢' — ¢) =0 (2-53)
Zplg* — 2p'¢® = Zp(¢* — ¢") =0 (2-54)

Adding together (2-53) and (2-54),
2(—p9(¢' — ¢°) + 2pU(¢* — ¢°) = Z(p* — p)(¢' — ¢) =0 (2-55)
This inequality asserts that the sum of all quantity changes multipiied
by the corresponding price changes is nonpositive if the consumer moves
along a given indifference curve. Assume now that only the price of
the first commodity changes, all other prices remaining constant. Then
(2-55) reduces to ‘

| (1! — PD(@:t — ) <O (2-56)

1The proof of this theorem is somewhat difficult and is not reproduced here. See
H. S. Houthakker, ‘“Revealed Preference and the Utility Function,”’” Ecornomica, n.s.,
vol. 17 (May, 1950), pp. 159-174.

1 This is only one of several theorems that can be deduced from the theory. Others
are (1) the homogeneity of the demand functions of zeroth degree in prices and incomes
(Sec. 2-4), and (2) the equality of the cross-substitution effects (Sec. 2-6). See P. A.
Samuelson, Foundations of Economic Analysis (Cambridge, Mass.: Harvard Univer-

sity Press, 1948), pp. 111-112; and J. R. Hicks, A Revision of Demand Theory (Oxzford:
‘Clarendon Press, 1956), p. 127.
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The strict inequality must hold in (2-56) by the assumption that the
price change is nonzero and that ¢! and ¢f are distinct, i.e., that demand
is a single-valued function of price. If the price increases, the quantity
bought must decrease and vice versa. This again proves that the substi-
tution effect is negative.

2-9. The Problem of Choice in Situations Involving Risk

The traditional theory of consumer behavior does not include an analy-
sis of uncertain situations. Von Neumann and Morgenstern showed that
under certain circumstances it is possible to construct a set of numbers
for a particular consumer that can be used to predict his choices in uncer-
tain situations. Great controversy has centered around the question of
whether the resulting utility index is ordinal or cardinal. It will be
shown that von Neumann-Mecrgenstern utilities possess at least some
cardinal properties.

The previous analysis is unrealistic in the sense that it assumes that
particular actions on the part of the consumer are followed by particular,
determinate consequences which are knowable in advance. All auto-
mobiles of the same model and produced in the same factory do not’
always have the same performance characteristics. As a result of ran-
dom accidents in the production process some substandard automobiles
are occasionally produced and sold. The consumer has no way of know-
ing shead of time whether the particular automobile which he purchases
is of standard quality or nct. Let A represent the situation in which
the consumer possesses a satisfactory automobile, B a situation in which
he possesses no automobile, and C one in which he possesses a substandard
automobile. Assume that the consumer prefers A to B and B to C.T
Present him with a choice between two alternatives: (1) He can main-
tain the status quo and have no car at all. This is a choice with certain
outcome, i.e., the probability of the outcome equals unity. (2) He can
obtain a lottery ticket with a chance of winning either a satisfactory
automobile (alternative A) or an unsatisfactory one (alternative C).
The consumer may prefer to retain his income (or money) with certainty,
or he may prefer the lottery ticket with dubious outcome, or he may be
indifferent between them. His decision will depend upon the chances
of winning or losing in this particular lottery. If the probability of a
loss is very high, he might prefer to retain his money with certainty;
if the probability of a win is very high, he might prefer the lottery ticket.

The Axioms. It is possible to makean ordinal utility index which can
also be used to predict choice in uncertain situations if the consumer con-
forms to five axioms:

T Not having a car is assumed preferable to owning a substandard one because of
the nuisance and expense involved in its upkeep.
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_Complete-ordering axiom. TFor the two alternatives A and B one of
the following must be true: the consumer prefers A to B, he prefers B
"to A, or he is indifferent between them. The consumer’s evaluation of
alternatives is transitive: if he prefers A to B and B to C, he prefers
A to C.

Continuity axtom. Assume that A is preferred to B and B to C. The
axiom asserts that there exists some probability P, 0 < P < 1, such that
the consumer is indifferent between outcome B with certainty and a
lottery ticket offering the outcomes A and C with probabilities P and
1 — P respectively.

Independence axiom. Assume that the consumer is indifferent between
A and B and that C is any outcome whatever. If one lottery ticket
offers outcomes A and C with probabilities P and 1 — P respectively
and another the outcomes B and C with the same probabilities P and
1 — P, the consumer i3 indifferent between the two lottery tickets.

Unequal-probability axiom. Assume that the consumer prefers A to B.
If two lottery tickets, L; and L., both offer the same outcomes, A and B,
the consumer prefers the lottery ticket L. if and only if the probability
of winning A is greater for L. than for L.

Aziom of complexity. Assume that a person engages in the following
game of chance: he throws a die, and if a one or two comes up, his oppo-
nent pays him 9 doilars. He pays his opponent 3 dollars in every other
~ case. The probability of a win is 14, and the probability of a loss 23.
The player can expect to win, on the average,

"(24)9) + (25)(—3) = 1 dollar per game

If A and B are the money values of two outcomes with probabilities P
and 1 — P, the mathematical expectation of the game, or the expected
win, is PA + (1 — P)B. Assume now that the consumer is offered a
choice between two lottery tickets. The first one, L,, offers the out-
comes A and B with given probabilities. The other, L, is a complex
one in the sense that the prizes themselvas are lottery tickets: if the con-
sumer chooses L and wins, he gets a lottery ticket Ls (offering A and B
with some given probabilities); if he loses he is given another lottery
ticket L4 (also offering A and B with some given probabilities). Assume
finally that the probabilities of winning on each ticket happen to be such
that the consumer’s expectation of winning (as defined above) is the same
whether he chooses L; or L.. The axiom asserts that the consumer is
then indifferent between L; and L..

These axioms are very general, and it may be difficult to object to
them on the grounds that they place unreasonable restrictions upon the
consumer’s behavior. However, they rule out some types of plausible
behavior. Consider a person who derives satisfaction from the sheer act
of gambling. It is conceivable that there exists no P other than P = 1
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or P = 0 for such a person, so that he is indifferent between outcome B
with certainty and the uncertain prospect consisting of A and C: he will
always prefer the gamble. If he has a fear of gambling, he may always
prefer the ‘‘sure thing’’ to the dubious prospect. This type of behavior
is ruled out by the continuity axiom and the axiom of complexity.

Construction of the Utility Numbers. Imagine that the consumer
derives the satisfaction U, from outcome A and U¢ from outcome C.
Given that these outcomes have the probabilities P and 1 — P, the con-
sumer’s expected utility is PU4s — (1 — P)Ue. It can be proved that
a consumer who conforms to the axioms will maximize expected utility.
If he faces a set of uncertain prospects (i.e., he has to decide which lottery
ticket to select), he will choose the one with the highest expected utility.
The consumer’s prospects can be arranged in order of decreasing expected
utility or desirability. In the special case in which a prospect has a
certain (rather than uncertain or dubious) outcome, the expected utility
of the prospect equals the utility number associated with the (single)
outcome. Thus the utility numbers associated with various outcomes
are an ordinal utility index and provide a correct ranking.

Consider the earlier example in which the outcomes A, B, and Crepre-
sented the possession of a satisfactory automobile, no automobile, or a
substandard one. The consumer prefers A to B and B to C. In order
to derive a utility index, an origin and a unit have to be chosen. This
can be accomplished.by assigning numbers to represent the utilities of
any two outcomes. These numbers are completely arbitrary, except for
the fact that a higher number must be assigned to the preferred outcome.
The utility index U4 = 100 and U¢ = 10 can be used, since A is pre-
ferred to C. The continuity axiom ernsures that there exists some prob-
ability P for which the consumer is indifferent between B and a chance
between A and C. Since the consumer is an expected-utility maximizer,
the utility of B with certainty must equal, for some value of P, the
expected utility of the prospect (or lottery ticket) involving A and C, or

Up=PUs+ (1 — P)Uc (2-57)

He could be asked to reveal the value of P for which he is indifferent
between B with certainty and a chance between A and C. Assume that
this valueis P = 0.1. Then

Uz = (0.1)(100) 4+ (0.9)(10) = 19 (2-58)
Proceeding in this fashion one can find utility numbers U,, Up, Ug,
Up, . . ., ete., for all possible quantities and combinations of all com-

modities; hence a complete utility index can be derived by taking two
arbitrary starting points and successively confronting the consumer with
various choice situations involving probabilities or risk. For example,

7
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if the consumer is indifferent between a satisfactory automobile with
certainty and a 0.8 chance of winning a yacht (outcome D) or a 0.2
chance of winning a substandard car, the application of the previous
technique gives 122.5 as the utility of a yacht. The consumer’s choice
between more complicated alternatives can be predicted on the basis of
these utility numbers. The rational consumer would prefer a 40:60
chance of D and B to a 50:50 chance of A and C, since

- (0.5)(100) 4+ (0.5)(10) < (0.4)(122.5) + (0.6)(19)

The Uniqueness of the Utility Index. Imagine that a set of utility
numbers satisfying the above axioms has been found for a particular con-
sumer. Ordinal utility functions have been demonstrated to be unique
except for a monotonic transformation. The results obtained from the
present (cardinal) utility index might change under some monotonic
transformations. This can be illustrated with reference to the example
used above. As hefore,

Us =100 Usg =19
Ue =10 Up = 122.5

The consumer prefers a 40:60 chance of D and B to a 50:50 chance of
A and C. Perform a monotonic transformation on these numbers such
that they become?

Ui
Ue

120 Us =20
18 Up = 125

The consumer will now prefer the 50:50 chance of A and C. It is no
longer trie that any monotonic transformation of a utility index in the
present sense can also serve as a utility index. However, monotonic
linear transformations of utility functions are also utility functions.?
Us = PUs+ (1 — P)Uc for some P. Transform the utility function
so that U* = aU +b,a > 0. ThenU = (U* — b)/aor U = cU*+ d
(wherec¢ = 1/a and d = —b/a), and ‘

cUs +d = P(cUf +d) + (1 — P)(cU¢ + d)

' ) = PcUf + (1= P)Ug+d
Hence cU% = PcU% + c(1 — P)U§
and therefore U =PUs+ (1 — P)U¢

This proves that a monotonic linear transformation of the original utility
function is itself a utility function giving the same results.
1 The exact form of the transformation is not indicated. The reader may check

that the transformation is monotonic.
2 Y is a monotonic linear transformation of X if ¥ = aX 4+ band a > 0.
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The utilities in the von Neumann—-Morgenstern analysis are cardinal
in a restricted sense. They are derived from the consumer’s risk behavior
and are valid for predicting his choices as long as he maximizes expected
utility. They are derived by presenting him with mutually exclusive
choices; therefore, it is meaningless to attempt to infer from the utility
of event A and the utility of event B the utility of the joint event A and B.
Von Neumann—-Morgenstern utilities possess some, but not all, the proper-
ties of cardinal measures. Let the utilities of three alternatives be
Us =10, Ug = 30, and U¢ = 70. It is not meaningful to assert that
the consumer prefers C “seven times as much’ as A, since the choice
of the origin is arbitrary: the same preferences are described by U4 = 1,
Up = 21,and Ue = 61. TUtility numbers differ from measures of weight,
distance, or volume. It can be meaningfully asserted that one object
weighs seven times as much as another. However, differences between
utility numbers are meaningful. This follows from the fact that the
relative magnitudes of differences between utility numbers are invariant
with respect to linear transformations. In the above example

Uec— Us> Up— Uas

Choose a linear transformation U = ¢U* 4 d, ¢ > 0, and substitute in
the above inequality:

cUt+d—cUs —d>cUi+d—cUf—d
and Ut —-Ur>U3—-Ux

In contrast to the traditional theory of the consumer, the sign of the rate
of change of marginal utility (the second derivative of the utility function)
is relevant, since it is invariant with respect to linear transformations.
Such comparisons do not imply, however, that the consumer would prefer
to have C over B to B over A, since the chosen alternative must have the
highest utility number.

Interpersonal comparisons of utility are still impossible. However,
the construction of von Neumann—Morgenstern utilities does permit
(1) the complete ranking of alternatives in situations characterized by
certainty, (2) the comparison of utility differences by virtue of the above
cardinal property, and (3) the calculation of expected utilities, thus mak-
ing it possible to deal with the consumer’s behavior under conditions of
uncertainty.

2-10. Summary

Nineteenth-century economic theorists explained the consumer’s
behavior on the assumption that utility is measurable. This restrictive
assumption was abandoned around the turn of the last century, and the
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consumer was assumed to be capable only of ranking commmodity combi-
nations consistently in order of preference. This ranking is described
mathematically by the consumer’s ordinal utility function, which always
assigns a higher number to a more desirable combination of commodities.
The basic postulate of the theory of consumer behavior is that the con-
sumer maximizes utility. Since his income is limited, he maximizes the
utility function subject to the budget constraint, which expresses the
income limitation in mathematical form. The ratio of the marginal
utilities must equal the price ratio for a maximum. In diagrammatic
terms, the optimum commodity combination is given by the point at
which the price line is tangent to an indifference curve. The second-
order condition for a maximum requires the indifference curves to be
convex from below.

The consumer’s utility function is not unique. If a particular function
describes appropriately the consumer’s preferences, so does any other
which is a monotonic transformation of the first. Other kinds of trans-
formations do not preserve the correct ranking, and the utility function is
unique up to a monotonic transformation.

The consumer’s demand curve for a commodity can be derived from
his first-order conditions for utility maximization. A demand curve
states the quantity demanded as a function of all prices and the con-
sumer’s income. Demand curves are single-valued and homogeneous of
degree zero in prices and income: a proportionate change in all prices
and the consumer’s income leaves the quantity demanded unchanged.

In general, the amount of labor performed by a consumer affects his
level of utility. The amount of labor performed by the consumer can be
determined on the basis of the rational-decision criterion of utility maxi-
mization. The equilibrium conditions are similar to those which hold
for the selection of an optimal commodity combination.

The consumer’s reaction to price and income changes can be analyzed
in terms of substitution and income effects. The effect of a given price
change can be analytically decomposed into a substitution effect, which
measures the rate at which he would substitute commodities for each
other by moving along the same indifference curve, and an income effect
as a residual category. If the price of a commodity changes, the quantity
demanded changes in the opposite direction if the consumer is forced to
move along the same indifference curve: the substitution effect is negative.
If the income effect is positive and exceeds the substitution effect in abso-
lute value, the commodity is an inferior good. Substitutes and comple-
ments are defined in terms of the sign of the substitution effect for one
commodity when the price of another changes: a positive cross-substi-
tution effect means substitutability, and a negative one, complémentarity.

The theory can be generalized to an arbitrary number of commodities.
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It can also be restated in terms of the theory of revealed preference,
which makes no use of differential calculus and arrives at essentially the
same conclusions as the preceding analysis. The results are obtained by
presenting the consumer with hypothetical price-income situations and
observing his choices. His indifference curves can be derived, and future
choices can be predicted on the basis of past choices if his behavior sat-
isfies the fundamental axioms of revealed preference.

The approach of von Neumann and Morgenstern is concerned with
the consumer’s behavior in situations characterized by uncertainty. If
the consumer’s behavior satisfies certain crucial axioms, his utility func-
tion can be derived by presenting him with a series of choices between a
certain outcome on the one hand and a probabilistic combination of two
uncertain outcomes on the other. The utility function thus derived is
unique up to a linear transformation and provides a ranking of alterna-
tives in situations that do not involve risk. Consumers maximize
expected utility, and von Neumann—-Morgenstern utilities are cardinal
in the sense that they can be combined to calculate expected utilities
and can be used to compare differences in utilities. The expected utility
calculation can be used to determine the consumer’s choices in situations
involving risk.
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CHAPTER 3

THE THEORY OF THE FIRM

A firm is a technical unit in which commodities are produced. Its
entrepreneur (owner and manager) decides how much of and how one or
more commodities will be produced, and gains the profit or bears the loss
which results from his decision. An entrepreneur transforms inputs into
outputs, subject to the technical rules specified by his production func~
tion. The difference between his revenue from the sale of outputs and
the cost of his inputs is his profit, if positive, or his loss, if negative.

The entrepreneur’s production function gives mathematical expression
to the relationship between the quantities of inputs he employs and the
quantity of output he produces. The concept is perfcctly general. A
specific production function may be given by a single point, a single
continuous or discontinuous function, or a system of equations. The
first six sections of this chapter are limited to production functions given
by a single continuous function with continuous first- and second-order
partial derivatives. The analysis is first developed for the relatively
simple case in which two inputs are combined for the production of a
single output, and then extended to more general cases. The seventh
section is devoted to the case in which the production function is given
by a system of linear equations.

An input is any good or service which contributes to the production
of an output. An entrepreneur will usually use many different inputs
for the production of a single output. Generally, some of his inputs are
the outputs of other firms. For example, steel is an input for an auto-
mobile producer and an output for a steel producer. Other inputs—
such as laber, land, and mineral resources—are not produced. For a
given period of production, inputs are classified as either fixed or variable.
A fixed input is necessary for production, but its quantity is invariant
with respect to the quantity of output produced. Its costs are incurred
by the entrepreneur regardless of his shorf-rum maximizing decisions.
The necessary quantity of a variable input depends upon the quantity
of output produced. The distinction between fixed and variable inputs
is temporal. Inputs which are fixed for one period of time are variable
for a longer period. The entrepreneur of a machine shop may require a
period of three months in order to buy new machinery or dispose of
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existing machinery. He will consider machinery as a fixed input in
planning production for a one-month period, and as a variable input in
planning production for a one-year period. All inputs are variable,
given a sufficiently long period of time.

The formal analysis of the firm is similar to the formal analysis of the
consumer in a number of respects. The consumer purchases commodities
with which he ‘‘produces’ satisfaction; the entrepreneur purchasesinputs
with which he produces commodities. The consumer possesses a utility
function; the firm, a production function. The consumer’s budget equa-
tion is a linear function of the amounts of commodities he purchases;
the competitive firm’s cost equation is a linear function of the amounts
of inputs it purchases. The postulate of rational maximizing behavior
also has a counterpart in the theory of the firm. The rational consumer
desires to maximize the utility he obtains from the consumption of com-
modities; the rational entrepreneur desires to maximize the profit he
obtains from the production and sale of commodities.

The differences between the analyses of the consumer and firm are not
quite as obvious as the similarities. A utility function is subjective, and
utility does not possess an unambiguous cardinal measure; a production
function is objective, and the output of a firm is easily measured. A
single firm may produce more than ome output. The maximization
process of the entrepreneur usually goes one step beyond that of the
consumer. The rational consumer maximizes utility for a given income.
The analogous action for the entrepreneur is to maximize the quantity
of his output for a given cost level, but generally his cost is variable,
and he desires to maximize his profit.

The problems of an entrepreneur who uses two inputs for the pro-
duction of a single output are discussed in the first two sections of this
chapter. The first covers the nature of his production function and the
derivation of productivity curves and isoquants, and the second covers
alternative modes of optimizing behavior. In Sec. 3-3 cost functions
are derived from the production relations. Returns to scale and the
special case of homogeneous production functions are considered in Sec.
3-4. The problems of an entrepreneur who uses one input for the pro-
duction of two outputs are covered in Sec. 3-5, and the analysis is gener-
alized for arbitrary numbers of inputs and outputs in Sec. 3-6. The
entrepreneur’s optimization problem is considered within the linear-
programming framework in Sec. 3-7.

3-1. Basic Concepts

The Production Function. Consider a simple production process in
which an entrepreneur utilizes two variable inputs (X; and X;) and one
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or more fixed inputs in order to produce a single output (Q). His pro-
duction function states the quantity of his output (¢) as a function of
the quantities of his variable inputs (z; and z,):

¢ = f(z1,2) (3-1)

where (3-1) is assumed to be a single-valued continuous function with
continuous first- and second-order partial derivatives. The production
function is defined only for nonnegative values of the input and output
levels. Negative values are meaningless within the present context.
The production function is constructed with the assumption that the
quantities of the fixed inputs are at predetermined levels which the entre-
preneur is unable to alter during the time period under consideration.

The entrepreneur is able to use many different combinations of X,
and X, for the production of a given level of output. In fact, since (3-1)
is continuous, the number of possible combinationsisinfinite. The entre-~
preneur’s technology is all the technical information about the combi-
nation of inputs necessary for the production of his output. It includes
all physical possibilities. The technology may state that a single combi-
nation of X; and X, can be utilized in a number of different ways and
therefore can yield a number of different output levels. The production
function differs from the technology in that it presupposes technical
efficiency and states the mazimum output obtainable from every possible
input combination. The best utilization of any particular input combi-
nation is a technical, not an economic, problem. The selection of the
best input combination for the production of a particular output level
depends upon input and output prices and is the subject of economic
analysis.

Input and output levels are rates of flow per unit of time. The period
of time for which these flows, and hence the short-run production func-
tion, are defined is subject to three general restrictions: it must be (1)
sufficiently short so that the entrepreneur is unable to alter the levels of
his fixed inputs, (2) sufficiently short so that the shape of the production
function is not altered through technological improvements, and (3) suf-
ficiently long to allow the completion of the necessary technical processes.
The selection of a particular time period within the specified limits is
arbitrary. The analysis can be shifted to a long-run basis by relaxing
condition (1) and defining the production function for a period long
enough to allow variation of the heretofore fixed inputs. The major
difference between a short-run and long-run analysis is the number of
variable inputs. Nearly all the results for a short-run period will follow
in a slightly altered form for a long-run period.

Productivity Curves. The total productivity of X; in the production
of @ is defined as the quantity of @ that can be secured from the input
of X, if X, is assigned the fixed value z3:



THE THEORY OF THE FIRM 45
g = f(z1,23) (32

The input level 27 is treated as a parameter, and ¢ becomes a function of
z; alone. The relation between ¢ and z; may be altered by changing z3.
A representative family of total productivity curves is presented in Fig.
3-1. Each curve gives the relationship between ¢ and z: for a different
value of 2. Normally, an increase of 22 will result in a reduction of the
quantity of X; necessary to produce each output level within the feasible

q MP,
AP
o xg}
NG
xg) AP
MP
(0] % (0] xy
FiGure 3-1 FiGUre 3-2

range. If one total productivity curve lies to the left of another, it corre-
sponds to a higher value for z3: 2P > z{®» > z{®.

Average and marginal productivities for X; are defined in an analo-
gous manner for particular values of z5. The average productivity (AP)
of X is its total productivity divided by its quantity:

0

The marginal productivity (MP) of X, is the rate of change of its total
productivity with respect to variations of its quantity, i.e., the partial
derivative of (3-1) with respect to z1:

0
MP = 5%— = fu(z1,29) (3-4)

Families of AP and MP curves can be constructed by assigning different
values to z3.

The AP and MP curves corresponding to one of the total productivity
curves in Fig. 3-1 are presented in Fig. 3-2. Both AP and MP increase
and then decline as the application of X, is expanded. The MP curve
reaches a maximum at a lower input level than the AP curve and inter-
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sects the AP curve at its maximum point.! The input level at which
MP equals zero is the same as the input level at which the corresponding
total productivity curve is at a maximum, i.e., the point at which the
slope of its tangent equals zero. The input level at which MP reaches a
maximum is the same as the input level at the point of inflection on the
corresponding total productivity curve, i.e., the point at which the slope
of its tangent is at a maximum (see point H on curve z5” in Fig. 3-1).
The input level at which the AP curve reaches a maximum is the same
as the input level at which the slope of a vector drawn from the origin
to the total productivity curve reaches a maximum (see point / on curve
3P in Fig. 3-1).

The productivity curves given in Figs. 3-1 and 3-2 satisfy the almost
universal law of diminishing marginal productivity: The MP of X, will
eventually decline as z; is increased with z remaining unchanged.z This
law does not rule out the initial phase of increasing MP exhibited in the
present example. Consider a production process in which labor and land
are combined for the production of wheat and compute the quantity of
wheat produced as more and more labor is applied to a fixed amount of
land. Initially an increase in the number of laborers employed may
allow specialization and result in an increasing MP of labor. However,
after these initial economies have been realized, increasing applications
of labor will result in smaller and smaller increases in the output of wheat.
The quantity of labor becomes greater and greater relative to the fixed
quantity of land. The law of diminishing marginal productivity con-
cerns the relative quantities of the inputs and is not applicable if both
inputs are inereased. The entire productivity analysxs may be applied
to variations of z» with z, as the parameter.

For a specific example, consider the production function glven by the
sixth-degree equation

qg = A$12$22 - Bx13:1:23 ‘ (3—5)

1To determine the maximum va,lue of AP, set its partial derivative with respect to
21 equal to zero:
8AP  zify(ziyzy) — flziz))

=0
8z 12

If a fraction equals zero, its numerator must equal zero:
z1f1(21,23) — f(@n23) =0
Moving the second term to the right, and dividing through by z,,
£21

fl(xl)xg) =

MP and AP are equal at the point of maximum AP if such a point exists.

2 This law has been stated in a number of alternative forms. See K. Menger, “The
Laws of Return,”” O. Morgenstern (ed.), Economic Activity Analysis (New York:
Wiley, 1954), pp. 419-482.
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where A, B > 0. The corresponding productivity curves are depicted in
Figs. 3-1 and 3-2.1 Letting Az,? = k;, and Bz,® = k., the family of total
productivity curves for X, is given by the cubic equation

q = k1$12 -_— k2$13

where k, and k. depend upon the fixed value assigned to .. The AP and
MP curves are given by the quadratic equations

AP = kﬂ}l —_ kz.’l};z MP = 2]51321 - 3;521612

AP reaches a maximum at z; = k,/2k,, and MP reaches a maximum at
%y = ki/3k,. Since z,, ki, k. > 0, MP reaches its maximum at a
smaller input of X; than AP. The reader may verify that AP = MP at
Ty, = ]Cl/ 2]02.

Isoquants. An isoquant is the firm’s counterpart of the consumer’s
indifference curve. It is the locus of all combinations of z; and z, which

yield a specified output level. For %

¢° = f(z1,22) (3-6)

where ¢° is a parameter. The locus
of all the combinations of z; and z.
which satisfy (3-6) forms anisoquant.
Since the production function is con-
tinuous, an infinite number of input
combinations lie on each isoquant.
Three curves from a family of iso- A
quants are shown in Fig. 3-3. All
the input combinations which lieon ¢ A 1
an isoquant will result in the output FioURE 3-3
indicated for that curve. Within
the relevant range of operation an increase of both inputs will result
in an increased output. The further an isoquant lies from the origin,
the greater the output level which it represents: ¢® > ¢@ > ¢,
The slope of the tangent to a point on an isoquant is the rate at which
X; must be substituted for X; (or X for X;) in order to maintain the
corresponding output level. The negative of the slope is defined as the
rade of technical substitution (RTS):

®

¢@

dz,

da:l

The RTS for the firm is analogous to the RCS for the consumer. The
RTS at any point is the same for movements in either direction.

RTS = — 3-7)

t The values A = 0.09 and B = 0.0001 were used for the construction of the curves
in Figs. 3-1 and 3-2.
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The total differential of the production function is
dg = fidz + frdz, (3-8)

where f; and f. are the partial derivatives of ¢ with respect to z, and z.
(the MPs of X, and X,). Since dgq = 0 for movements along an isoquant,

0= fldxl +f2 dz,
and RTS = — % _ & (3-9)

The RTS at a point equals the ratio of the MP of X, to the MP of X,
at that point.

Isoquants of the shape presented in Fig. 3-3 (rectangular hyperbolas
which are negatively sloped throughout) can be derived for the production
function given by (3-5). Let z = z1z,, and rewrite (3-5) as

q° = Az? — B2?
Form the cubic equation

Bz? — Az* + ¢° =

which can be solved for z. Treat the smallest positive real root as the
- solution for z. The value of z depends upon the parameter ¢°:

z = ¥(q% or Tyxs = Y(g%

which defines the isoquants as a family of rectangular hyperbolas, since
¥(q°) is constant for any fixed value
of ¢°
The MP of X; may become nega-
tive if the application of X, is suf-
ficiently large. One can imagine a
situation in which the quantity of
labor employed relative to the quan-
tities of the other inputs is so large
that an increase of labor would result
in congestion and inefficiency. The
definition of the production function
as giving the maximum output for
o % every possible input combination
F1GURE 3-4 does not rule out this possibility. If
the MP of X, is negative and the
MP of X, positive,* the RTS is negative, as at point A in Fig. 3-4.
A movement along the isoquant from A to B would result in a reduc-

x2

1 This situation will never srise for the production function given by (3-5). If the
MP of one of its inputs is negative, the MP of the other must also be negative.
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~ tion of both zy and z,. Clearly, point B is preferable to A if the entre-
preneur must pay positive prices for the inputs. A rational entrepreneur
will never operate on a positively sloped section of an isoquant; i.e., he
will never use a factor combination which results in a negative MP for
one of the inputs. The ridge lines OC and OD enclose the area of
rational -operation.

3-2. Optimizing Behavior

The present analysis is limited to the case in which the entrepreneur
purchases X; and X, in perfectly competitive markets at constant unit
prices. His total cost of production (C) is given by the linear equation

C = rZ; + rote -+ b (3-10)

where r, and r, are the respective prices of X; and X, and b is the cost
of the fixed inputs. An isocost line is defined as the locus of input
combinations that may be purchased for a specified total cost:

CO = "I + Tolls + b (3-11)
where C° is a parameter.
Solving (3-11) for z,,

o= Ty 71
The slopes of the isocost lines equal the negative of the input price ratio.
The intercept of an isocost line on
the @ axis [(C°— b)/ri] is the “2/¢%}
- amount of X, that could be pur-
chased if the entire outlay, exclusive
of the cost of the fixed inputs, were @)
expended upon X,, and the inter- E
cept on the %, axis [(C° — b)/rj] is o
the amount of X, that could be pur- 7@
chased if this amount were expended
upon X;. Three of a family of iso- @
. . . . g

cost lines are given in Fig. 3-5. iy
The greater the total outlay to
which an isocost line corresponds,
the greater the intercepts on the z; FIGURE 3-5
and z axes,and therefore the further
it lies from the origin: C® > C® > ¢, The family of isocost lines
completely fills the positive quadrant of the z1z, plane.

Constrained Output Maximization. The consumer maximizes utility
subject to his budget constraint. The analogous problem for the firm is

£1
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the maximization of output (3-1) subject to a cost constraint (3-11). The
entrepreneur would desire to obtain the greatest possible output for a
given cost outlay. Form the function

V = f(zy,z2) + w(C® — m11z1 — 722 — b) (3-12)

where p % 0 is an undetermined Lagrange multiplier, and set the partial
derivatives of V' with respect to z1, z;, and ux equal to zero:

\6V .
a—xl—fx—ur:—O
oV _ -
a—fz—ﬂfz—
ﬂ/'=(:’0—'7'11121—'7'21172'—Z)=0
ou :

Moving the price terms to the right of the first two equations and dividing
- the first by the second,

f 1 T1
11 -1
H (3-13)
First-order conditions state that the ratio of the MPs of X; and X: must
be equated with the ratio of their prices.
The first-order conditions may be stated in a number of equivalent
forms. Solving the first two equations for g,

RS (3-14)

r T

The contribution to output of the last dollar expended upon each input
must equal x. The Lagrange multiplier 1 is the total derivative of out-
put with respect to cost.!

Finally, substituting RTS = fi/fs from (3-9) into (3-13),

RTS = 2 ' (3-15)
T2

1 Assuming that cost is variable, the total differential of the cost equation (3-10) is
dC = r1dz; + r2 dz2 ]
Substituting 7; = fi/u and r, = f2/u from the first-order conditions,

dc = % (f1dz: + f2 dx)

Dividing this expression into the total differential of the production function (3-8),
the total derivative of output with respect to cost is

dg =#f1dx1 +fadzs _ M
dac fidzy + fades
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The first-order conditions may also be expressed as the equality of the
RTS and the input price ratio. The three formulations of the first-order
conditions given by (3-13), (3-14), and (3-15) are equivalent alternatives.
If one is satisfied, all three are satisfied.

The formulation given by (3-15) has a clear geometric interpretation.
The optimum input combination is given by the point of tangency
between an isoquant and the relevant isocost line. If C® (see Fig. 3-5)
is the predetermined level of cost, the maximum output is ¢'. The out-
puts corresponding to all other isoquants which have points in common
with the given isocost line, such as ¢'® and ¢‘®, are less than ¢®,

Second-order conditions require that the relevant bordered Hessian
determinant be positive:

fu  fre —n ;
S fao —72| >0 (3-16)
- —72 O

The second-order conditions may be utilized to demonstrate that the
rate of change of the slope of the tangent to an isoquant must be positive
(d%cs/dx:2 > 0) at the point of tangency with an isocost line.! This
means that the isoquants must be convex from below as shown in Fig. 3-5.

Constrained Cost Minimization. The entrepreneur may desire to
minimize the cost of producing a prescribed level of output. In this case
(3-10) is minimized subject to (3-2). Form the function

Z = rz + roxe + b + Mg® — Flz1,29)] - (3-17)

and set the partial derivatives of Z with respect to zi, z2, and X equal to
Zero:
VA

55:—-—?'1-“Rf1—~0

A

(T-xz—?g—kfgwo

YA

o =9~ flayz) =0

Since r1 and f, are both positive, A is also positive. Moving the price
terms of the first two equations to the rlght and d1v1d1ng the first by the
second,

f_lzﬁ or .]L..':z!.:é or RTS_...
fa 7 Ny Ty T2

1 The formal derivation is identical with that used to demonstrate that the rate of
change of the slope of the indifference curve must be positive at the point of maximum
utility (see Sec. 2-2).
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The first-order conditions for the minimization of cost subject to an
output constraint are similar to those for the maximization of output
subject .to a cost constraint. The multiplier X is the reciprocal of the
multiplier g, or the total derivative of cost with respect to output (defined
as marginal cost in Sec. 3-3). In the present case, the entrepreneur finds
the lowest isocost line which has-at least one point in common with a
selected isoquant. He could produce ¢V (see Fig. 3-5) at a cost of C®
or €@, but OO is lower than either of these. His minimum cost is given
by the isocost line which is tangent to the selected isoquant.

Second-order conditions require that the relevant bordered Hessian
determinant be negative:

—Mu M —hH
—Mu —An —f|<0
~f1 —f2 0

Substituting —f; = —r1/A and —f; = —ry/)\, multiplying the first two
columns of the array by —1/a, and then multiplying the third row by
—A? and the third column by A,§

—Mu  —Mo ‘*%1' fu fi —%1'
—Ma =M —% = A% |far fo —?%
T T2 Ty T2
x ~x 0 x xu 0
1 fu  fiz —n
= - X fa feo —72| <0
- —7rs 0
Since A > 0,
fu  fiz —n
fa  fao —1r2|>0
-ry T2 0

The second-order conditions are the same as those given by (3-16).

If the second-order conditions are satisfied, every point of tangency
between an isoquant and an isocost line is the solution of both a con-
strained-maximum and a constrained-minimum problem. If ¢® (see
Fig. 3-5) is the maximum output which can be obtained from an outlay
of C® dollars, C dollars is the minimum cost for which the output ¢

+ The multiplication of the first column by —1/A increases the value of the determi-
nant by the same multiple. The multiplication of both the first and second columns
by —1/\increases the value of determinant by 1/A% Its value is left unchanged if
the entire array is now multiplied by A* (see Sec. A-1).
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can be produced. The locus of tangency points (OF in Fig. 3-5) gives
the expansion path of the firm. The rational entrepreneur will select
only input combinations which lie on his expansion path. Formally,
the expansion path is an implicit function of z: and z.:

g(@1,x2) = 0 (3-18)

for which the first- and second-order conditions for constrained maxima
and minima are fulfilled.

If the isoquants are convex from below, the second-order conditions
will always be satisfied, and the expansion path can be derived from the
first-order conditions. Consider the production function given by (3-5)
as an example. Compute the ratio of the MPs of X; and X,:

f1 _ 24mz.* — 3Bzi’z? _ z2(2Az122 — 3Bz,%z5%) _ T
fa 24z:%z: — 3Bz 11(247172 — 3Bx:21s%) T

and set it equal to the ratio of the input prices

Putting this first-order condition in the form of an implicit function, the
expansion path is given by the linear equation

121 — Texe = 0

This corresponds to the expansion path OF in Fig. 3-5.

Profit Maximization. The entrepreneur is usually free to vary the
levels of both cost and output, and his ultimate aim is the maximization
of profit rather than the solution of constrained maximum and minimum
problems. The total revenue of an entrepreneur who sells his output in
a perfectly competitive market js given by the number of units he sells
multiplied by the fixed unit price (p) he receives. His profit (x) is the
difference between his total revenue and his total cost:

r=pqg—C

or substituting ¢ = f(a1,22) from (3-1) and C = riz; + r2:2; + b from
(3-10),

T = pf(®1,%2) — 11T — 1272 — b (3-19)

Profit is a function of z; and z; and is maximized with respect to these
variables.
Setting the partial derivatives of (3-19) with respect to z1 and 2. equal
to zero,
Or

or ‘
%—Pfxz*h—() §¥2=pf2—r2=0 (3-20)
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Moving the input-price terms to the right,
ph=n pfe=r (3-21)

The partial derivatives of the production function with respect to the
inputs are the MPs of the inputs. The value of the MP of X1 (pfy) is
the rate at which the entrepreneur’s revenue would increase with further
application of X,. The first-order conditions for profit maximization
(3-21) require that each input be utilized up to a point at which the
value of its MP equals its price. The entrepreneur can increase his
profit as long as the addition to his revenue from the employment of
an additional unit of X; exceeds its cost. The maximum profit-input
combination lies on the expansion path, since (3-21) is a special case of
(8-13). A

Second-order conditions require that the principal minors of the
relevant Hessian determinant alternate in sign: '

9%r r
*r . W 9%y 90X
a2 <0; P 0 (3-22)
d0x2 021 0122
Expanding the second determinant of (3-22),
r 9w 2 \
(Zr 2m) - (22) >0 (3-23)
since 9%r/dx; 0x: = 8%r/3x20z1. Since dir/dz,% < 0and (8%/dx,929)2 > 0,
% '
327 <0 (3-24)

and the numbering of the inputs is immaterial. Profit must be decreas-
ing with respect to further applications of either X; or X,. Condition
(3-23) ensures that profit is decreasing with respect to further applications
of both X, and X,.

The second-order conditions require that the MPs of both inputs
be decreasing. - Using the second-order partial derivatives of (3-20) to
evaluate (3-22) and (3-24),

% 'z

W=pfn<0 w=]3f22<0

Since p > 0, ‘ )
u<0 fi<O0 (3-25)

If the MP of one of the inputs were increasing, a small movement from
the point at which the first-order conditions are satisfied would result in
an increase in the value of its MP, Since its price is constant, the entre-
preneur could increase his profit by increasing its quantity.
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3-3. Cost Functions

The economist frequently assumes that the problem of optimum input
combinations has been solved and conducts his analysis of the firm in
terms of its revenues and costs expressed as functions of output. The
problem of the entrepreneur is then to select that output at which his
profits are maximized.

Short-run Cost Functions. Cost functions can be derived from the
informdtion contained in Secs. 3-1 and 3-2.1 Consider the system of
equations consisting of the production function (3-1), the cost equation
(3-10), and the expansion path function (3-18):

q = f(z1,2)
C=razi+rxz2+0b
0= g(xl:x'b’)

This system of three equations in four variables can be reduced to a
single equation in which cost is stated as an explicit function of the level
of output plus the cost of the fixed inputs:

C=¢(g +0b (3-26)

The cost of the fixed inputs, the fized cost, must be paid regardless of
how much the firm produces, or whether it produces at all. The cost
function gives the minimum cost of producing each output and is derived
on the assumption that the entrepreneur acts rationally. A cost-output
combination for (3-26) can be obtained as follows: (1) select a point on
the expansion path, (2) substitute the corresponding values of the input
levels into the production function to obtain the corresponding output
level, (3) multiply the input levels by the fixed input prices to obtain the
total variable cost for this output level, and (4) add the fixed cost.

A number of special cost relations which are also functions of the level
of output can be derived from (3-26). Average total (ATC), average
variable (AVC), and average fixed (AFC) costs are defined as the respec-
tive total, variable, and fixed costs divided by the level of output:

ATC = ,¢(q)q+ b
ave = 2@
q
AFC =2
q

ATC is the sum of AVC and AFC. Marginal cost (MC) is the deriva-

1 The term cost function is used to denote cost expressed as a function of output.
The term’ cost equation is used to denote cost expressed in terms of input levels and
input prices,
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tive of total cost with respect to output:

_4¢_

The derivatives of total and total variable cost are identical since the
fixed-cost term vanishes upon differentiation.

Specific cost functions may assume many different shapes. One possi-
bility which exhibits the properties usually assumed by economists is
depicted in Figs. 3-6 and 3-7. Total cost is a cubic function of output.

c $
MC
C=
dlg) ATC
AVC
AFC
(0] q (0] q
FI1GURE 3-6 FI1GURE 3-7

ATC, AVC, and MC are all second-degree curves which first decline and
then increase as output is expanded. MC reaches its minimum before
ATC and AVC, and AVC reaches its minimum before ATC. The reader -
may verify that the MC curve passes through the minimum points of
both the AVC and ATC curves.! The AFC curve is a rectangular hyper-
bola regardless of the shapes of the other cost curves; the fixed cost is
spread over a larger number of units as output is expanded, and therefore
declines monotonically. The vertical distance between the ATC and
‘AVC curves equals AFC, and hence decreases as output is increased.

The revenue of an entrepreneur who sells his output at a fixed price
is also a function of the level of his output. Therefore, his profit is a
function of the level of his output:

r=pg— ¢(@ — b (3-27)

To maximize profit, set the derivative of (3-27) with respect to ¢ equal to
Zero:

d
G =P @ =0

1 Set the derivative of ATC (or AVC) equal to zero, and put the equation in a form
which states the equality between ATC (or AVC) and MC (see Sec. A-2).
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Moving the MC to the right,
P = ¢'(g) (3-28)

The entrepreneur must equate his MC with the constant selling price
of his output. He can increase his profit by expanding his output if the
addition to his revenue (p) of selling another unit exceeds the addition
to his cost (MC). «

The second-order condition for profit maximization requires that

d*r axwc
d* ~ " dg”
or multiplying by —1 and reversing the inequality,

azC
ar >

<0

MC must be increasing at the profit-maximizing output. If MC were
decreasing, the equality of price and MC would give a point of minimum
profit.

The level of the entrepreneur’s fixed cost (b) generally has no effect
upon his optimizing decisions during a short-run period. It must be
paid regardless of the level of his output and merely adds a constant term
to his profit equation. The fixed-cost term vanishes upon differentiation,
and MC is independent of its level. Since the first- and second-order
conditions for profit maximization are expressed in terms of MC, the
equilibrium output level is unaffected by the level of fixed cost. The
mathematical analyses of optimization in the present section and in Sec.
3-2 can generally be carried out on the basis of variable cost alone.

The level of fixed cost has significance for the analysis of short-run
profit maximization in one special case. The entrepreneur has an option
not recognized by the calculus. He can discontinue production and
accept a loss equal to his fixed cost. This option is optimal if his maxi-
mum profit from the production of a positive output level is a negative
amount (a loss) with a greater absolute value than the level of his fixed
cost. The entrepreneur need never lose more than the amount of his
fixed cost. He will produce at a loss in the short run if his loss is less
than the amount of his fixed cost, i.e., if revenue exceeds total variable
cost, and he is able to recover a portion of his outlay on the fixed inputs.

A geometric description of profit maximization is contained in Fig. 3-8.
The optimum output (¢°) is given by the intersection of a horizontal line
drawn at the level of the going price (p°) and the rising portion of the
MC curve. The entrepreneur’s revenue is given by the area of the rec-
tangle Op*Bg°, total cost by 04 Dq® and profit by Ap°BD.

As an example consider the cubic total-cost function

C = 0.04¢* — 09¢2 4+ 10 + 5 (3-29)



58 MICROECONOMIC THEORY: A MATHEMATICAL APPROACH

Assume that the price of g is 4 dollars per unit. Equating MC and price,
0.12¢? — 1.8¢ + 10 = 4

which yields the quadratic equation

¢*— 15¢ +50 =0

the roots of which are ¢ = 5 and ¢ = 10. Two different outputs satisfy
the first-order condition for profit maximization, and the rate of change
of MC must be calculated for both.

¥ The rate of change of MC:
d*C
MC ATC 22 = —
/ i 0.24¢ — 1.8
B

p° . . oys
f is negative for ¢ = 5 and positive
: for ¢ = 10. An output of 10 units
Ap=————— =F-17 yields a maximum profit, and an
: output of 5 a minimum. Profit at
: 10 units, however, is negative:
!
I
) |
i

7 = 4q — (0.04¢® — 0.9¢%2 + 10¢ + 5)
=40 —-55=—15

The entrepreneur’s ATC curve lies
above-the price line for every output,
and his maximum profit is a loss of 15 dollars. He should discontinue
production, sicece his fixed cost (5 dollars) is less than the smallest loss
which he can incur from a positive output level.

Long-run Cost Functions. Let the levels of the entrepreneur’s fixed
inputs be represented by a parameter k, which gives the ‘‘size of his
plant’’—the greater the value of &, the greater the size of his plant. The
entrepreneur’s short-run problems concern the optimal utilization of a
plant of given size. In the long run he is free to vary % and select 4
plant of optimum size. The shapes of the entrepreneur’s production and
cost functions depend upon his plant size. These are uniquely deter-
mined in the short run. In the long run he can choose between cost and
production functions with different shapes. The number of his alterna-
tives equals the number of different values which ¥ may assume. Once
he has selected the shapes of these functions, i.e., selected a value for k,
he is faced with the conventional short-run optimization problems.

As an illustration, consider the case of an entrepreneur operating a
grocery store. The ‘‘size of his plant” is given by the number of square
feet of selling space which he possesses. Assume that the only possible
alternatives are 5,000, 10,000, and 20,000 square feet and that he cur-
rently possesses 10,000. His present plant size is the result of a long-

FI1GURE 3-8
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run decision made in the past. When the time comes for the replacement
of his store, he will be able to select his plant size anew. If conditions
have not changed since his last decision, he will again select 10,000 square
feet. If the store has been crowded and he anticipates a long-run
increase in sales, he will build 20,000 square feet. Under other con-
ditions he may build a store with 5,000 square feet. Once he has built
a new store, his problems concern the optimal utilization of a selling area
of given size.

Assume that k is continuously variable and introduce it explicitly into
the production function, cost equation, and expansion path function:

q= f(xl,x%k)
C = riz1 + roxs + (k)
0 = g(x1,%2,k)

Fixed cost is an increasing function of plant size: ¢'(k) > 0. The shapes
of the families of isoquants and iso-

cost lines and the shape of the expan- €
sion path depend upon the value as-
signed to theparameterk. Generally,
two of the above relations may be
utilized to eliminate z, and z., and
total cost may be expressed as a func-
tion of output level and plant size:

C = ¢(g,k) +y(k) (3-30)

which desecribes a family of total cost
curves generated by assigning differ-
ent values to the parameter k. As
soon as plant size is assigned a par- FIGGRE 3-9

ticular value & = k°, (3-30) is equiva- o

lent to the particular total cost function given by (3-26), and the short-
run analysis is applicable.

The entrepreneur’s long-run total cost function gives the minimum
cost of producing each output level if he is free to vary the size of his
plant. For a given output level he computes the total cost for each
possible plant size and selects the plant size for which total cost is a
minimum. Figure 3-9 contains the total cost curves corresponding to
three different plant sizes. The entrepreneur can produce the output
OR in any of the plants. His total cost would be RS for plant size kv,
RT for k», and RU for k®. The plant size k¥ gives the minimum
production cost for the output OR. Therefore, the point S lies on the
long-run total cost curve. This process is repeated for every output
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level, and the long-run total cost curve is defined as the locus of the
minimum-cost points.

The long-run cost curve is the envelope of the short-run curves; it
touches each and intersects none. Write the equation for the family of
short-run cost functions (3-30) in implicit form:

C — ¢(g,k) — (k) = G(C,q,k) =0 (3-31)
and set the partial derivative of (3-31) with respect to k equal to zero:
Gk(C:Q)k) =0 (3-32)

The equation of the envelope curve (the long-run cost curve) is obtained
by eliminating & from (3-31) and (3-32) and solving for C as a function of
q (see Sec. A-3):

C = &(q) (3-33)

Long-run total cost is a function of output level, given the condition that
each output level is produced in a plant of optimum size. The long-run
cost curve is not something apart from the short-run cost curves. It is
constructed from points on the short-run curves. Since ¥ is assumed
continuously variable, the long-run cost curve (see Fig. 3-9) has one and
only one point in common with each of the infinite number of short-run
cost curves.

Since AC equals total cost divided by output level, the minimum AC of
producing a particular output level is attained at the same plant size as
the minimum total cost of producing that output level. The long-run
AC curve can be derived by dividing long-run total cost by output level,
or by constructing the envelope of the short-run AC curves. The two
constructions are equivalent.

The long-run MC curve can be constructed by plotting the derivative
of long-run total cost with respect to output level, or can be derived from
the short-run MC curves. However, the long-run MC curve is not the
envelope of the short-run MC curves. Short-run MC equals the rate of
change of short-run variable cost with respect to output level; long-run
MC is the rate of change of total cost assuming that all costs are variable.
Therefore, portions of short-run MC curves may lie below the long-run
MC curve. The long-run MC curve may be defined as the locus of those
points on the short-run MC curves which correspond to the optimum
plant size for each output.! The equivalence of the two methods of
deriving the long-run MC curve is obvious in Fig. 3-9. The long-run
total cost curve is tangent to each short-run curve at the output for which

1Tt 28 not correct to construct the long-run MC curve by selecting the points on the
short-run MC curves which correspond to the optimum output (i.e., point of minimum
AC) for each plant size.
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the short-run curve in question represents optimum plant size. Since
the MCs are defined as theslopes of the tangents of these curves, the long-
run and short-run MCs are equal at such points.

Assume that the entrepreneur desires to construct a plant for use during
a number of short-run periods and that he expects to receive the same
price for his product during each of the short-run periods. Since con-
ditions remain unchanged from one period to the next, he will produce the
same level of output in each period. His profit during one of the periods
is the difference between his revenue and cost with plant size variable:

7 = pg — 2(q) (3-34)
Set the derivative of = equal to zero:
dr _ ar _
g P ®'(9 =0
or p = ¥(q) (3-35)

Profits are maximized by equating long-run MC to price, if long-run MC
is increasing (second-order condition). Once the optimum output is
determined, the optimum value for k£ can be determined from (3-31) and
(3-32).

Consider the family of short-run cost curves generated by

C = 0.04¢° — 0.9¢> + (11 — k)q + 5k* (3-36)

For the plant size £k = 1, the short-run cost curve is the one given by
(3-29). Setting the partial derivative of the implicit form of (3-36) with
respect to k equal to zero,

(Cyg,k) = —q+ 10k =0

which has the solution k = 0.1g. Substituting into (3-36) gives the long-
run cost function:

C = 0.04¢° — 0.9¢* + (11 — 0.1¢)g + 5(0.1g)?
= 0.04¢° — 0.95¢2 + 11q

Long-run fixed cost equals zero.
Let the price of the entrepreneur’s product be 4 dollars, as in the exam-
ple for a short-run cost function. Setting price equal to long-run MC,

4 =0.12¢> — 1.9¢ + 11
which yields the quadratic equation
0.12¢* - 199 +7 =0

with the roots ¢ = 5.83 and ¢ = 10. Profit is maximized at an output
of 10 units. Utilizing the relation £ = 0.1g, the optimum-size plant is
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given by k¥ = 1. The entrepreneur’s profit per short-run period is
7 = pg — (0.04¢3 — 0.95¢> + 11g) = 40 — 55 = —15

As in the last example, the maximum operating profit is a loss of 15 dol-
lars. In the long run the entrepreneur is unable to earn a positive profit
and will not construct a plant of any size.

The situation is quite different if price is increased to 6 dollars. Setting
long-run MC equal to price yields the quadratic equation

012> — 1.9¢9 + 5 =0

with the roots ¢ = 3.3 and ¢ = 12.5. Profit is maximized at an output of
12.5 units. Profit is positive for this plant size:

w = 75 — 67.1875 = 7.8125

and the entrepreneur will construct a plant of the optimum size (k = 1.25).

3-4. Homogeneous Production Functions

“Returns to scale’’ describes the output response to a proportionate
increase of sll inputs. If output increases by the same proportion,
returns to scale are constant for the range of input combinations under
consideration. They are increasing if output increases by a greater pro-
portion and decreasing if it increases by a smaller proportion. A single
production function may exhibit all three types of returns. Some
economists assume that production functions exhibit increasing returns
for small amounts of the inputs, then pass through a stage of constant
returns, and finally exhibit decreasing returns to scale as the quantities
of the inputs become greater and greater. '

Properties. Returns to scale are easily defined for homogeneous pro-
duction functions. A production function is homogeneous of degree k if

F@zy,tze) = t5f(x1,22) (3-37)

where k is a constant and ¢ is any positive real number. If both inputs
areincreased by the factor ¢, output is increased by thefactor*. Returns
to scale are increasing if k¥ > 1, constant if k¥ = 1, and decreasing if
k < 1. Degrees of homogeneity other than one are seldom assumed for
production functions.?

The partial derivatives of a function homogeneous of degree k are
homogeneous of degree (k — 1). Differentiate (3-37) partially with
respect to z; using the function of a function rule (see Sec. A-2) on the left:

1 A function which is homogeneous of degree one is said to be linearly homogeneous.
This, of course, does not imply that the production function is linear.
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) trtoy,tee) = tf1(21,22)
Dividing through by ¢,
fi(txytze) = = 1(21,22)

which is the definition of homogeneity of degree k¥ — 1. If a production
function is homogeneous of degree one, the marginal productivities of
X, and X, are homogeneous of degree zero, i.e., they remain unchanged
for proportionate changes of both inputs:

Fi(z1,%0) = fi(twtze)
fz(xl,x:) = f:(t.’c;,t:cz) (3-38)

The MPs depend only upon the proportion in which X; and X; are used.

A straight line from the origin in the isoquant plane is defined by (0,0)
and any arbitrary point (z},23). Such a line is the locus of all points
(tzltz3) for t = 0. The RTS at any arbitrarily selected point on the line
equals the ratio of the marginal productivities for the input combination
corresponding to that poirt:

Lttt _ EThEa) _ fiahad)
Tt = ey e

The RTS at (xdtx)) equals the RTS at (z),z3). The expansion path
which is the locus of points with RTS equal to the fixed-input-price ratio
is a straight line if the production function is homogeneous of any degree.
A straight-line expansion path, however, does not necessarily imply a
homogeneous production function. The production function given by
(3-5) possesses a straight-line expansion path, but it is not homogeneous.

One of the most widely used homogeneous production functions is the
Cobb-Douglas function for the economy as a whole:

g = Axoxst (3-39)

where ¢ is an index of aggregate output, z: and z, are the aggregate inputs
of labor and capital respectively, and 0 < a < 1. Increasing the levels
of both labor and capital by the factor ¢,

f(t:cl,t:cz) = A(t:v;)“(t:z:z) I—a = tAzl":czl—“

The Cobb-Douglas function is homogeneous of degree one. The MPs of
labor and capital are homogeneous of degree zero:

fi(zy,22) = a(Azo~iz,2)

Ja(zy,x2) = (1 — o)(Az1"25:70)
fitzs,tzs) = a(Ate— 1z ll-agyl—e) = o Az lx,1?)
fe(tzytze) = (1 — a)(Atezt—z,™) = (1 — o) (Az,*z279)

The expansion path generated by the Cobb-Douglas function is linear.
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The first-order conditions for a constrained optimum require that

1 _ f1 _ a(A:L'l‘"—lle‘“) QLs

2 J2 (- a)Azrez®) (1 — a)n

Therefore, the expansion path is given by the implicit function
A — a)rizy — arsx2 = 0

which describes a straight line emanating from the origin in the isoquant

plane.
Euler’s Theorem and Distribution. Euler’s theorem states that the

following condition is satisfied by a homogeneous function:?
T1f1 + 2of 2 = kf(z1,2,) (3-40)

Assuming that the production function is homogeneous of degree one, and
substituting ¢ = f(z1,22).
zifr + 2ofe = ¢ (3-41)

Total output equals the MP of X; multiplied by its quantity plus the MP
of X, multiplied by its quantity. If the firm were to pay the suppliers of
an input its marginal physical product, total output would be just
exhausted. Total output would exceed payments if the degree of homo-
geneity were greater than one and would be less than payments if it were
less than one.

Euler’s theorem played a major role in the development of the mar-
ginal-productivity theory of distribution. The basic postulates of this
theory are: (1) each input is paid the value of its marginal product, and
(2) total output is just exhausted. Since these conditions are satisfied
by production functions homogeneous of degree one, it was generally
assumed that all production functions are of this type.

The Cobb-Douglas function was utilized to attempt an empirical veri-
fication of the marginal-productivity theory of distribution. It satisfies
Euler’s theorem:

q = r1(@dz:* 1229 + z,[(1 — a)Axl"‘xz"'“]
= adz:%x,17 + (1 — a)Az,%z,2¢
Substituting from (3-39),
g=oag+ (1 —a)
If each factor is paid its marginal product, total output is distributed

! Differentiating (3-37) partially with respect to ¢ using the composite-function rule
on the left,
Z1f1(t21,822) + of o(t1,022) = ktd (21,%2)

Equation (3-40) is obtained by substituting ¢ = 1,
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between labor and capital in the respective proportions ¢ and (1 — «).
Paul Douglas estimated « from aggregate time-series data and compared
his estimates with labor’s share of total output.

The condition of product exhaustion is equivalent to the condition that
maximum long-run profit equal zero. Multiplying (3-41) through by
the price of the product

z1(pf1) + z(pf2) = pg

Substituting r; = pfi and 7, = pfs from the first-order conditions for

profit maximization,
71T + T2 = Pg (3-42)

Long-run total outlay equals long-run total revenue. Following the
assumptions of the marginal-productivity theory, Eq. (3-42) leads to
the startling conclusion that long-run profit equals zero regardless of the
level of the product price.

The analysis of the marginal-productivity theory of distribution is
misleading, if not erroneous. The conventional analysis of profit maxi-
mization breaks down if the entrepreneur sells his output at a constant
price and possesses a production function which is homogcneous of degree
one. The reader can verify that in this case his profit function is also
homogeneous of degree one:

tr = pf(txytre) — mixy — refze.

Three outcomes are possible. If the prices are such that some factor
combination yields a positive profit, profit can be increased to any level
by selecting a sufficiently large value for ¢. In this case the profit func-
tion has no finite masimum. If the prices are such that every factor
combination yields a negative profit, the entrepreneur will go out of
business.

The third possibility, to which the marginal-productivity theorists
generally limited their analysis, is the most interesting. In this case
there is no factor combination which will yield a positive profit, but the
combination (z},z3) yields a zero profit. From the homogeneity of the
profit function it follows that the factor combination (¢x)¢z) will also
yield a zero profit. Maximum long-run profit equals zero, but the size
of the firm is indeterminate. If the entrepreneur can earn a zero profit
for a particular factor combination, his profit remains unchanged if he
doubles or halves his scale of operations. If an arbitrary scale of opera-
tions is imposed upon the entrepreneur, Euler’s theorem holds, and his
product is just exhausted.

The assumption of a homogeneous production function is not necessary
for the fulfillment of the postulates of the marginal-productivity theory.

18ee the references listed at the end of this chapter,
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The postulates are fulfilled if (1) the production function is not homo-
geneous, (2) the first- and second-order conditions for profit maximization
are fulfilled, and (3) the entrepreneur’s maximum profit equals zero.
Conditions (1) and (2) have been assumed throughout the development
of the theory of the firm in Secs. 3-1 and 3-2. In Chapter 4 it will be
demonstrated that the free entry and exit of competing firms will result
in the satisfaction of condition (3). Condition (3) requires that

w o= pg = %~ Teky = 0

Substituting 7, = pfiand r. = pf, (the first-order conditions), and solving
for gq,

q = z1fy + zaf>

Here the result of (3-41) is attained without the use of Euler’s theorem.
Furthermore, since the production function is not homogeneous, the
entrepreneur’s optimum factor combination is generally determinate.

Long-run Cost Functions. A production function homogeneous of
" degree one generates a linear long-run total cost function. Let (z%z3) be
the optiraum input combination for the production of 1 unit of . The
corresponding production cost is 723 + roz). Since the production
function is homogeneous and the expansion path linear, (qz%,gz3) is the
optimum input combination for the production of ¢ units of @. The cor-
responding production cost is

C = aq

where a = 2% + roxr). Marginal and average cost are both equal to the
constant a.

The total cost function for the Cobb-Douglas production function can
be derived more easily in the conventional manner. Writing out the
production function, cost equation, and expansion path function,

q -_— Axldx21—!3
C =z + 7972
1 = a)rizy — arwx; =0

Solving the second and third equations for z, and z,,

aC - al
= Ty == e,
™ T2

and substituting these values into the production function,

-GS
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Solving for € in terms of ¢ and the parameters, the total cost function is

C=a
where
?‘1417'21_“

= Aar(l — @)=

a

The breakdown of the profit-maximization analysis for homogeneous
production functions can be illustrated with the aid of cost and revenue
functions. Expressing profit as a function of output

T =pq — aq
and setting its derivative equal to zero
p—a=20

The first-order condition requires that the entrepreneur equate two con-
stants. Thisis an impossible task unless price and marginal cost happen
to be equal by chance. He is unable to affect either price or marginal cost
through variations of his output. If price exceeds marginal cost, the
entrepreneur will expand his output without limit; if p = a, the level of
his output is indeterminate; and if p < a, he will go out of business.

3-6. Joint Products

Some production processes will yield more than one output. Sheep
raising is the classic example of such a process. Two outputs, wocl and
mutton, can be produced in varying proportions by a single production
process.! The case of joint products is distinguished on technical rather
than organizational grounds and exists whenever the quantities of two or
more outputs are technically interdependent. Cases in which a single
firm produces two or more technically independent products are excluded
by this definition.

Basic Concepts. Consider the simplest case in which an entrepreneur
uses a single input (X) for the production of two outputs (@ and Q).
In implicit form his production function is

H(gq1,q2,2) = 0 (3-43)
where ¢,, g2, and z are the respective quantities of @;, @2, and X. Assume

1 The production of joint products does not require an extended analysis unless
they can be produced in varying proportions. If two products are always produced
in a fixed proportion: ¢;/g. = k where k& is a constant, the analysis for a single output
can be applied. Define a compound unit of output as % units of @, and 1 unit of Q.
with a price of (kp, + p2) and treat it as a single output.
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that (3-43) can be solved explicitly for z:
z = h(thIz) (3"44)

The cost of production zn terms of X is a function of the quantities of the
two outputs.

A product transformation curve is defined as the locus of output com-
a binations that can be secured from
2NE® a given input of X:

z° = h(guq2) (3-45)

Three of a family of product trans-

formation curves are presented in
E Fig. 3-10. The further a curve lies

from the origin, the greater the input
B of X to which it corresponds:

B

x(3) > x(g) > x(l)

) o \x(s) ‘ The slope of the tangent to a point

o , g, on a product transformation curve

F1GURE 3-10 is the rate at which @, must be sacri-

ficed to obtain more Q; (or @ sacri-

ficed to obtain more Q;) without varying the input of X. The negative of
the slope is defined as the rate of product transformation (RPT):

_ _dg .
RPT 20, '(3 46)

Taking the total differential of (3-44),
dx = hydg, + hedq.

Since dxz = 0 for movements along a product transfprmation curve,
RPT = — 282 _Ja | (3-47)

The RPT at a point on a product transformation curve equals the ratio
of the marginal cost of @, in terms of X to the marginal cost of Qz in
terms of X at that point.
Alternatively, the RPT can be expressed in terms of the MPs. The
inverse-function rule applies:
qu 1

o _ 2 9
dr M oz

1
7 (3-48)
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Substituting (3-48) into (3-47),

dg: ~ 3q./9% (3-49)
The RPT equals the ratio of the MP of X in the production of @, to the
MP of X in the production of @,. If both MPs are positive, as rational
operation requires, the slopes of the product transformation curves are
negative, and the RPT positive.

The system of product transformation curves in Fig. 3-10 is generated
by the implicit production function '

W+ @i—z=0
The product transformation curves are concentric circles:
2° = g, + ¢.?

with RPT = ¢;/¢.. Since qi, g2 > 0, the slopes of the product transfor-

mation curves are negative, and the RPT positive throughout.
Constrained Revenue Maximization. If the entrepreneur sells his

outputs at fixed prices, his revenue is given by the linear equation

R = p1g1 + poge (3‘50)

where p; and p. are the prices of @ and @, respectively. An isorevenue
line is the revenue counterpart of an isocost line and is defined as the locus
of output combinations that will earn a specified revenue. Three of a
system of isorevenue lines are presented in Fig. 3-10. They are parallel
straight lines with slopes equal to the negative of the ratio of the output
prices (—py/pa).

To solve the constrained-maximization problem of an entrepreneur
who desires to maximize revenue for a specified input of X, form the
function

W = piqy + poge + plz® — h(g1,42)] (3-51)

where g is an undetermined Lagrange multiplier, and set its partial
-derivatives equal to zero: :

14

Tl = — =0
g1 D1 uha
aw

s P2 — phe = 0
oW

Frle 2° — h(g1,q2) = 0
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Moving the second terms of the first two equations to the right and divid-
ing the first by the second,

Pr_h_ ppr 5
o T R (3-52)
or substituting from (3-48),
P _ 8g2/0z _ -
e = 3q,/0% RPT (3-53)

The RPT must be equated with the fixed price ratio. In geometric
terms, the specified product transformation curve must be tangent to an
isorevenue line.

The first-order conditions may also be stated as

N:

F
I
FE

or substituting from (3-48),

- 0 g
B=D15, = Py,

The value of the MP of X in the production of each output must equal g,
the total derivative of B with respect to z.t

The second-order condition requires that the relevant bordered Hessian
determinant be positive:

—~phiy  —phiz —h ,
—pher  —phee _h2, >0
—h —ha 0
Expanding,
p(harhe® — 2hishihe + heohi?) > 0
Since z > 0,
(hrha? — 2h1hihs + heohi?) > 0 (3-54)

1 The total differential of (3-50) is
d.R = p1dq: + pz2dq:
or substituting p1 = uhy and p: = phs,
dR = p(hi dg: + ke dge)

Dividing this by the total differential of (3-44), the total derivative of R with respect
to x is
dr - #(h1 dgy + hs dg2) -
dz hidqi + h2dg:

and is called the marginal-revenue productivity of X.
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Taking the total derivative of the negative of (3-47), the rate of change of
the slope of a product transformation curve is

gz _ L b — 2haghahs + hashe?)

dg:? hg Ve 127102 2201 (3-55)
If condition (3-54) is satisfied, the bracketed term of (3-55) is positive.
Since h; > 0, the rate of change of the slope of the product transforma-
tion curve (3-55) must be negative. If constrained maxima exist, the
product transformation curves are concave from below as shown in Fig.
3-10.

An entrepreneur might desire to minimize the amount of X necessary
to obtain a specified revenue. In this case he would minimize (3-44)
- subject to a revenue constraint. Geometrically, he desires to reach the
lowest product transformation curve that has a common point with a
specified isorevenue line. For a coustrained revenue maximization he
desires to reach the highest isorevenue line possessing a common point
with a specified product transformation curve. If the product transfor-
mation curves are concave from below, every point of tangency between
an isorevenue line and a product transformation curve represents the
solution of both a constrained-revenue-maximization and a constrained-
input-minimization problem. The locus of all points of tangency (see
OF in Fig. 3-10) is an output expansion path similar in interpretation to
the input expansion path of the single-product firm.

Profit Maximization. Express profit as a function of ¢: and g,:

AT = D11 + P2ge — 7h(g1,q2) (3-56)

and set its partial derivatives equal to zero:

or
a—ql—]-"l—?h1=0
or
a—qz—pz—Arhz—O

Moving the price terms to the right and dividing by the marginal costs
in terms of X,

=P1_ P2
r = h1 h2 (3-57)
or substituting from (3-48),
d d
r=pigs =P (3-58)

The value of the MP of X for the production of each output must be
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equated to the price of X.t The entrepreneur could increase his profit
by increasing his employment of X if its return in the production of either
product exceeded its cost.

Second-order conditions require that

- Thu —Th1z

- Thzl —Thzz >0

—rh1; <0

Expanding the second determinant,
r[h1ahae — (R12)?] > 0
Since r > 0, the second-order conditions can be stated as
hyy >0 hithes — (hi2)2 > 0 (3-59)

Both together imply that h;2 > 0. The marginal cost of each output in
terms of X must be increasing.

Consider profit maximization by an entrepreneur whose product trans-
formation curves are given by a system of concentric circles. His profit is

T = pig1 + pg2 — (@2 + ¢F)
Setting the partial derivatives equal to zero

or Ir
g1 P rq1 g, P2 Tq2

The first-order conditions can be stated as

T=‘&=!L2_
21 2q.

Second-order conditions (3-59) are satisfied:
2>0 4 ~-0=24>0

3-6. Generalization to m Variables

The analysis of the firm is easily generalized to cover a production
process with » inputs and s outputs. The production function is stated
in implicit form as :
H(g, ... g%, . .. 20 =0 (3-60a)

where (3-60a) is assumed to possess continuous first- and second-order
partial derivatives which are different from zero for all its solutions. To

t Following the derivations of (3-53) and note 1, p. 50, it is not surprising to learn
that profit maximization requires that r = dR/dz. Therate at which the application
of an additional unit of X would increase the entrepreneur’s revenue must equal its
price.
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simplify notation,letg,,; = —z; (7 = 1, . . . , n), and rewrite (3-60a) as
F(g,, . .. \gm) =0 (3-60b)

where m = (n + s). Input and output levels are distinguished by sign.
Input levels are negative, and output levels positive.

Profit Maximization. Profit is the difference between the total revenue
from the sale of all outputs and the expenditure upon all inputs:

m

T = 2 PG (3-61)

i=1

where p,45 =173 (4 =1, . .., n), outputs contribute positive terms to
(3-61), and inputs contribute negative terms. The entrepreneur desires
to maximize profit subject to the technical rules given by his production
function. Form the function

J =) pagi+\Play, - . - g) (3-62)
i1=1
and set each of its (m + 1) partial derivatives equal to zero:
O ik AFi=0 G=1, ...,m)
aq,-
aJ (3-63)
= =Flq, . - . ,gw) =0
)N b oEm

where F; is the partial derivative of (3-60b) with respect to g..
Select any two of the first m equations of (3-63), move the second terms
to the right, and divide one by the other:!

%=Fﬂz=—g—% Gok=1,...,m (3-64)
If both variables are outputs, (3-64) states the RPT for every pair of out-
puts—holding the levels of all other outputs and all inputs constant-—
must equal the ratio of their prices. Assume that the jth variable is an
input and the kth an output. Substituting p; = r;_, and dg;/dz;—, = —1
into (3-64), :

Ties _ Ok g k=1 ., 8)

0gi e O , .
Pe 9%, or Tims = Dk 0% G=s+1...,m)

The values of the marginal productivities of an input with respect to
every output must be equated to its price. Finally, assume that both

1The implicit-function rule F;/F; = —aq;/dg: is utilized in (3-64) (see Sec. A-3).
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variables are inputs. The first-order conditions become

Tims _ _ 0% k= 1
e 8:05_. (.77 s+ 3 v e 0y m)

The RTS for every pair of inputs—holding the levels of all outputs and all
other inputs constant—must equal the ratio of their prices.

The second-order conditions for the maximization of profit require that
the relevant bordered Hessian determinants alternate in sign:

ANy -+ AN Fu

NP N Fy
Mn Ma Fi|>0 ... (=D o000 n >0
Fl F2 0 F]_ F O
(3-65)

Multiplying the first two columns of the first array and the first m of the
last by 1/, and multiplying the last row of both arrays by A,

Fu Fu F Fu oo fin 1
A ivzx f;zz F(')z >0; ... ; (1™ Foi -+ Fpn F, >0
‘1 2 F1 et Fm 0
Since A < 0 from (3-63), the second-order conditions require that
Fun Fi, Fy .Fl.l ..... Flm . Fl
Fyy Fop Fi| < 0; .« e ey F F <0 (3—66)

F]_ Fz 0 ml mm m
F, F, 0

Substitution Effects. The profit-maximizing entrepreneur will respond
to changes in his input and output prices by varying his input and output
levels in order to continue to satisfy the first-order conditions (3-63).
By total differentation of (3-63)

NFundgy 4+ - - - + AFindgn + Frd\ = — dps
Mrmidgs + * * * + \Pumdgm + Fndh = —dpn 5D
Fidgs + -+ Fndgn + 0 = 0

Assume that the price changes are given and treat (3-67) as a system of
(m + 1) equations in (m 4 1) variables: dg; (7 =1, . . . , m) and aA.
Using Cramer’s rule (see Sec. A-1) to solve (3-67) for dg;,
e )

(3-68)
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where D is the determinant of the coefficients of (3-67) and Dy; is the
cofactor of the element in the 7th row and jth column of the array. The
determinant D is the same as the highest-order determinant of (3-65).

The rate of change of ¢; with respect to px is determined by dividing
both sides of (3-68) by dp, and letting dp; = O for 7 = k:

99; _ _ Dy g
apk— D (4, k=1 ...,m) (3-69)

Since D is a symmetric determinant, the partial derivatives (3-69) are also
symmetric:

9g; _ 9 C g

apk—ap’ (J)k 1)"')m)
There is no counterpart of the consumer’s nonsymmetric income effect
in the theory of the firm. The total effect for the firm is a symmetric
substitution effect.

3-7. Linear Programming

Linear programming, as well as the calculus, is applicable to problems
that require the determination of maxima and minima. The calculus
encompasses problems in which the quantity to be maximized (or mini-
mized) is stated as a continuous function of the independent variables
with continuous -first- and second-order partial derivatives. Linear
programming encompasses problems in which the quantity to be maxi-
mized (or minimized) is stated as a linear function of the independent
variables and is subject to a system of linearinequalities stated in terms of
these variables. Both sets of mathematical tools have found wide
applicability for the problems of the firm. A complete description of
linear programming would require mathematics beyond the limits of the
present volume. The present description merely outlines the general
nature of linear programming with respect to applications for the firm.

Applications for the Firm. Linear programming replaces the continu-
ous production function with a collection of #» independent linear activi-
ties. In the present context an activity can be regarded as a particular
way of combining inputs for the production of an output. The jth
activity level (g;), then, is the quantity of output that is produced using
the jth activity. Activities are linear in the sense that the quantity of
the 7th input required to support the jth activity (z:;) is a linear function
of the level of the jth activity:

I
[a—

) N
Ty = QiiQ; 8 =1 n)) (3"70)
y o e ey
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The coefficient a;; is the quantity of X; required to produce 1 unit of @,
The jth activity is completely described by its coefficients for the m
inputs: (@1j,@2, . . . ,ami). The definition of an activity may vary from
one problem to another. The various activities may represent different
methods for the production of a single commodity, the production of
distinct commodities, or some combination of the two. The assumption
of distinct commodities is used here. The alternative definitions follow
easily from this assumption.

The concept of the marginal productivity of an input is meaningless
within the linear-programming framework. It is not possible to increase
an activity level by increasing the quantity of a single input. All inputs
must be increased proportionately.

Consider the problem of an entrepreneur who possesses fixed quantities
of the m inputs which he desires to allocate among the n activities in such
a way as to maximize his revenue. An example might be provided by a
farmer who possessesfixed quantities of land, managerial labor, and tractor
hours and desires to determine optimal plantings of a number of alterna-
tive crops. The entrepreneur’s revenue (R) is a linear function of his
activity (output) levels:

R =p1+ D292 -1- * * * + Dan (3-71)

where p; is the fixed price that he receives for a unit of Q.1 The entre-
preneur will select particular activity levels such that R is as large as
possible. He is not entirely free in his selection of activity levels. The
sum of the amounts of the 7th input that he uses to support the n activities
cannot exceed his fixed endowment (z?):

auqs + @12q2 + - ¢ ¢ + Gaugn S 7Y
20q1 + @22q2 + © - + Gzaqn S 7Y (3-72)

.....................

am1Qs F Gm2q2 + *  * + Amagn S 7T,

The constraints are expressed as weak inequalities, since the entrepreneur
is free to use less than his endowments. Furthermore, the activity
levels must be nonnegative:

=0 G=1...,m) (3-73)

1 The analysis is easily extended to the case in which the entrepreneur uses (s — m)
variable inputs which he purchases in the open market. Define the net revenue from
the production of a unit of @; as

8

2 =DPi— z (@475
f=m<+1

where r; is the market price of the Zth variable input. Now redefine R as the net
revenue attributable to the fixed inputs and replace p; with 2; in (3-71).
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Some, or all, may be zero. A negative activity level is mathematically
possible, but meaningless in the economic context. The entrepreneur’s
linear-programming problem is to maximize (3-71) subject to the con-
straints given by (3-72) and (3-73).

A Method of Solution. Define m new variables w; ( =1, . . . , m)
which give the quantities of the m inputs not used for productive activi-
ties. The definition of these variables allows the transformation of
(3-72) to a system of m equations in (n + m) variables:

anq1 + a2z + c ¢ 0+ a1@n + W =z
anq1 + ag: + ¢ - -+ Q:gn + u, = 73 (3-74)
@m1 + Gmoge + ¢ ¢+ Gmaln + = i,

The nonuse of an input is interpreted as an activity. Its coefficients are
+1 for the relevant input and zero for all others. The levels of these
activities are also restricted to nonnegative values. If u; = 0, the equal-
ity of the ¢th relation of (3-72) holds. If u; > 0, the inequality holds.
The act of not using an input is assumed costless. Therefore, (3-71) is
unaffected.

A set of nonnegative values for the activity levels that satisfies (3-74) is
a feasible solution for the programming problem. There are an infinite
number of feasible solutions for this system of m equations in (m + n)
variables. The system can be reduced to m equations in m variables by
setting n of the activity levels equal to zero. The reduced system can
generally be solved and forms a basic feastble solution for the program-
ming problem if the values of all its variables are nonnegative. For-
mally, a basic feasible solution for (3-74) is a feasible solution with not
more than m positive activity levels. Less than m may be positive since
the solution value for one or more of the m included variables may equal
zero. A basic theorem of linear programming states that for every
feasible solution there exists a basic feasible solution that yields at least
as great a value for B. The programming problem can be solved by
finding a basic feasible solution for (3-74) that maximizes R. The
importance of this theorem is indicated by the fact that the number of
basic feasible solutions is finite.

One method of solving the programming problem is to find all the
basic feasible solutions and select the one (it may not be unique) that
yields the highest value for R. However, a much easier method is avail-
able. Begin by selecting any basic feasible solution. It is not difficult to
find one. One possibility istolet ¢ =0 (=1, ... ,n)and % = z?
(Z=1,..., m). Renumber the activity levels » (¢ =1, ...,
m + n) where the subscripts (1, . . . ,m) denote the activities included
in the initial basic feasible solution and the subscripts (m + 1, . . .,
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m + n) denote the activities excluded from the solution with levels set
equal to zero. Renumber the j indices of the a;; coefficients in the same
manner. Using Cramer’s rule (see Sec. A-1), the solution values for the
included variables can be expressed as linear functions of the m input
endowments: .

X D,
2-5 : —1,...,m (3-75)
am ]

where D is the determinant of the array of the coefficients of the included
activities and Dy; is the cofactor of a;; Total revenue can be written as

R = z P (3-76)

i=1

where the prices have been renumbered in the same manner as the other
variables, and p; = 0 if »; is the level of a nonuse activity.

The next step is to determine the changes in the levels of the included
activities and the corresponding change of total revenue that would result
from the diversion of inputs to one of the excluded activities. Let
vms1 = 1 and deduct the necessary input requirements from the fixed
factor endowments. The altered levels of the included activities are
given by -

k&l
Dy; .
Fo Y W) G b ,m)

fe=]1

Some activity levels will be reduced. Others may be increased. The
value of total revenue for the altered solution is

B* = ) o} + Do
=1
The change of total revenue with respect to the introduction of the
(m + 1)th activity at the unit level is

ARnyy = R*— R = Z p](vj - v.)) + Pt

i=1

The change of total revenue with respect to the introduction of each of
the other excluded activities is computed in a similar manner.
If AR, £ 0 for all of the excluded activities, the programming problem
is solved. If AR, > O for at least one, the value of total revenue can be
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increased. Select one of -the excluded activities for which AR; > 0.
The increase of total revenue from the introduction of the 4kth excluded
activity i8 ARy The maximum increase is obtained by making »; as
large as possible. The value of v, is restricted by the requirement that
all activity levels be nonnegative. The levels of the included activities
for which (v — v;) < 0 are reduced with the introduction of the kth
excluded activity. For each of these compute the value of v, at which
v; becomes zero:
b= Y
f — ;)

The smallest of these is the maximum permissible value for ». The
level of one of the included activities is reduced to zero, and the levels of
the others remain positive.

A new basic feasible solution is formed by including the kth activity
and excluding the one that becomes zero as a result of its introduction.
The values of the activity levels for this solution can be expressed in the
form of (3-75), and revenue changes computed for the introduction of each
of the variables excliuded from it. If AR; > O for at least one of the
excluded activities, a third basic feasible solution is formed by the intro-
duction of an excluded activity. The computational process is repeated
until a basic feasible solution is reached with AR, = 0 for all of the
excluded activities. The optimum solution will be reached with a finite
number of iterations.

As an example, consider the problem of an entrepreneur who can use
two inputs for the production of three distinct commodities. He desires
to maximize

R = 2¢; + 392 + 5¢s
subject to
1g: + ZQz + 4g; + . 1us + Oup = 22
4q: + 292 + 2g5 + Ouy + 1uz = 16

and qi, @2, 93, w3, u2 = 0. Let g2, g5 and %2 equal zero, and begin with a
basic feasible solution containing ¢; and %;. The relevant determinant is

|1 1f{_ _
p=|} 0‘_ "
and g1 = 0(22) 4+ 0.25(16) = 4

u; = 1(22) — 0.25(16) = 18
R = 2(4) + 3(0) + 5(0) = 8
Now let g2 = 1:

g* = 0(22 — 2) + 0.25(16 — 2) = 3.5

u¥ = 1(22 — 2) — 0.25(16 — 2) = 16.5
R* = 2(3.5) + 3(1) + 5(0) = 10
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The introduction of a unit of Q. will increase total revenue by 2 dollars.
The introduction of a unit of @, reduces ¢ by 0.5, and %; by 1.5 units.
The activity level g1 becomes zero at ¢ = 8 (4/0.5), and u; becomes zero
at g2 = 12 (18/1.5). The maximum permissible value for ¢: is 8 units,
and g¢; is dropped from the basic feasible solution.

The second basic feasible solution contams g2 and %;. The relevant
determinant is

2 1
D = |2 0’ = -2
and g2 = 0(22) + 0.5(16) = 8

u = 1(22) — 1(16) = 6
2(0) + 3(8) + 5(0) =

o)
I

Now let ¢; = 1:
gy =022 —4) +05(16 —2) =7
uy =122 —4) —1(16 — 2) =4
2(0) + 3(7) +5(1) =

=y
*
I

The introduction of a unit of Q; increases total revenue by 2 dollars. The
activity level g becomes zero at ¢: = 8 (8/1), and u, becomes zero at
gs = 3 (6/2). The maximum permissible value for ¢s is 3 units, and u. is
dropped from the basic feasible solution.

The third basic feasible solutlon contains g2 and gs. The relevant
determinant is

2 4
D=)2 2‘='4
and g2 = —0.5(22) + 1(16) = 5

gs = 0.5(22) — 0.5(16) = 3
R =2(0) + 3(5) + 5(3) = 30

Total revenue would be reduced by 1 if ¢; or u; were set equal to 1, and
by 0.5 if u, were set equal to 1. The third basic feasible solution is the
optimal solution. The entrepreneur will produce 5 units of Q. and 3
units of @; and will earn a maximum total revenue of 30 dollars.

The Dual Problem. Linear-programming problems always come in
pairs. The original problem is to find a nonnegative set of values for
g; (7 =1,...,n) that maximizes

R =pigs +Dp2q2+ * * * + Pngn
subject to
angs + a1qz + ¢ * * + awgs S 2 ,
ang: + Ga2qz + * * * + Qzgn S 29 (3-77)

.....................

Am@1 + Gm2qz + * 0 Gungn S 2,
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The associated, or dual, problem is to find a nonnegative set of values for

r;(¢=1,. .. ,m) that minimizes

Z=rz}+rzd+ o+ razd

subject to
anry +aunrz + 0+ Gmtm
aer1 + aer: + ¢ 0 0+ Qo D2 (3-78)

.....................

The original problem contains »n variables and m relations; the dual
problem contains m variables and n relations. Both systems of relations
contain the same coefficients, though the columns and rows are inter-
changed in the dual problem.

A basic duality theorem states that if a finite maximum exists for R,
a finite minimum exists for Z, and

max B = min Z

If the original problem is meaningful, the dual problem always exists,
but its interpretation varies from one application to another. In the
present example the variables of the dual problem are interpreted as the
imputed prices of the m inputs. The value Z is the imputed value of the
entrepreneur’s input endowment, and the relations of the dual system
state that the input costs of producing each output cannot be less than its
price. The dual problem does not have an independently meaningful
interpretation for the present example. The optimum values of its
variables, however, are of interest.

The optimum solution for the dual problem follows easily from the
optimum solution of the original problem. Each relation of the dual
problem is associated with a variable of the original problem. A basic
duality theorem states that the equality holds for the jth relation of the
dual system if the jth variable of the original system is included in the
maximum solution, and the inequality holds if it is excluded. The maxi-
mum basic feasible solution of the original system contains (m — s)
production activities and s nonuse activities. Assume that the relations
of the dual system are numbered so that the first (m — s) correspond to
the productive activities included in the maximum basic feasible solution
and are therefore equations: '

ey +anr:s + ¢ ¢ 0+ Guitm = D1
aizr1 + anr: + ¢ 0+ Gnotwm = D2 (3-79)

....................

Q1,m—sT1 + a2,m—sT2 + -+ Om,msTm = Dms

This is a system of (m — s) equations in m variables. The number of
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variables can be reduced with the use of another duality theorem, which
states that the ¢th variable in the dual problem vanishes if the inequality
holds for the ¢th relation in the original system. Since the maximum
basic feasible solution includes s nonuse activities, the inequality holds
for s of the relations of (3-77). Therefore, s of the variables of (3-79)
equal zero. The system of (m — s) equations can be solved for the
remaining (m — s) variables.
The relevant equations for the example are

21‘1 + 27’2 =3
2ry + 4r, =

with the solution r; = 1 and r, = 0.5. The minimum value of Z:
Z = 1(22) + 0.5(16) = 30

equals the maximum value of R.

3-8. Summary

The production function for the one-output—two-variable-inputs case
gives -the maximum output level that can be secured from each possible
input combination. Productivity curves are obtained by treating the
quantity of one of the variable inputs as a parameter and expressing out-
put-as a function of the quantity of the other. An isoquant is the locus
of all input combinations that yield a specified output level.

The entrepreneur may desire to maximize his output level for a given
cost, or he may desire to minimize the cost of producing a given output
level. The first-order conditions for both problems require that the rate
of technical substitution between the inputs be equated to their price
ratio. In diagrammatic terms, both require tangency between an iso-
quant and an isocost line. The locus of such tangency points is the
expansion path of the firm. The entrepreneur may allow both output
level and cost to vary and maximize his profit. First-order conditions
require that the value of the marginal physical productivity of each input
be equated to its price. Second-order conditions require that the
marginal productivities of both inputs be decreasing,.

Given the entrepreneur’s production function, cost equation, and
expansion path function, his total cost can be expressed as a function of
his output level. In the short run, the cost of his fixed inputs must be
paid, regardless of his output level. The first-order condition for profit
maximization requires the entrepreneur to equate his marginal cost to
the selling price of his output. The second-order condition requires that
marginal cost be increasing. The entrepreneur is able to vary the levels
of his fixed inputs in the long run and therefore is able to select a particular
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short-run cost function. His long-run total cost function is the envelope
of his alternative short-run total cost functions. Long-run profit maxi-
mization requires that long-run marginal cost be equated to selling price
and that long-run marginal cost be increasing.

A number of interesting results arise if the entrepreneur’s production
function is homogeneous of degree one. A proportionate variation of all
input levels results in a proportionate change of output level and leaves
the marginal productivities of the inputs unchanged. Euler’s theorem .-
has been utilized to demonstrate that total output is just exhausted if
each input is paid its marginal physical productivity. However, the
assumptions of competitive profit maximization break down if the entre-
preneur’s long-run production function is homogeneous of degree one.

Two or more outputs are often produced jointly in a single production
process. In the simplest case the quantities of two outputs can be
expressed as a function of the quantity of a single input. A product
transformation curve is the locus of all output combinations that can be
secured from a given input level. The entrepreneur may desire to
maximize the revenue he obtains from a given input level. First-order
conditions require that he equate the rate of product transformation to
the ratio of his output prices. In diagrammatic terms he will operate at a
point at which an isorevenue line is tangent to a particular product trans-
formation curve. If he desires to maximize profit, he must equate.the
value of the marginal productivity of the input with respect to each out-
put to its price.

In the general case » inputs are used for the production of s outputs,
and the production function is stated in implicit form. The first-order
conditions for profit maximization require that: (1) the rate of product
transformation between every pair of outputs equal their price ratio,
(2) the value of the marginal productivity of each input with respect to
each output equal the input price, and (3) the rate of technical substitu-
tion between every pair of inputs equal their price ratio. Substitution
effects with respect to price variations can be computed, but there is no
counterpart of the consumer’s nonsymmetric income effect.

Linear programming encompasses problems in which a linear function is
maximized (or minimized) subject to a system of linear inequalities.
Many production problems may be placed within this format. An exam-
ple is provided by the entrepreneur who possesses fixed endowments of
inputs and desires to maximize revenue. His production possibilities are
described by a number of independent linear activities. The inequality
restraints state that he cannot use more than his endowment of any input
and that his output levels must be nonnegative. An iterative solution
method allows the determination of optimum output levels in a finite
number of steps. A dual problem exists for every meaningful linear-
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programming problém. In the present example the optimum values for
the variables of the dual are the imputed prices of the entrepreneur’s
inputs.
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CHAPTER 4

MARKET EQUILIBRIUM

The behavior of consumers and entrepreneurs has been analyzed on
the assumption that they are unable to affect the prices at which they
buy and sell. The isolated consumer is confronted with given prices,
and he purchases the commodity combination that maximizes his utility.
The entrepreneur faces given output and input prices and decides to
produce the output level for which his profit is maximized. Each must
solve a maximum problem. The individual actions of all consumers and
entrepreneurs together determine the prices which are considered param-
eters by each one alone. Prices are determined in the market where
consumers and entrepreneurs meet and exchange commodities. The
consumer is the buyer and the entrepreneur the seller in the market for a
final good. Their roles are reversed in a market for a primary input such
as labor. Some inputs are outputs of other firms. Wheat is an input for
the milling industry, but an output of agriculture. - Both buyers and
sellers are entrepreneurs in the markets for such intermediate goods.
The analysis of market equilibrium seeks to describe the determination of
the market price and the quantity bought and sold. The present chapter
is limited to behavior in a single market.

The basic assumptions and characteristics of a perfectly competitive
market are outlined in Sec. 4-1. Aggregate demand functions are derived
in Sec. 4-2. Aggregate supply functions are derived for the very short,
short-run, and long-run periods in Sec. 4-3. This section also contains
a discussion of external economies and diseconomies. Demand and
supply functions are used for the determination of product-market
equilibria in Sec. 4-4. The analysis is applied to the case of spatially
separated firms and a problem in taxation in Sec. 4-5. The static market
equilibrium analysis is extended to factor marketsin Sec. 4-6. The static
and dynamic stability of equilibrium is considered in Sec. 4-7, and finally,
the properties of equilibrium in markets with lagged supply reactions are
discussed in Sec. 4-8. Throughout this chapter it is assumed that the
market under consideration is perfectly competltlve and that prices remain
unchanged in all other markets.

85
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4-1. The Assumptions of Perfect Competition

A perfectly competitive commodity market satisfies the following
conditions: (1) firms produce a homogeneous commodity, and consumers
are identical from the sellers’ point of view, in that there are no advan-
tages or disadvantages associated with selling to a particular consumer;
(2) both firms and consumers are numerous, and the sales or purchases of
each individual unit are small in relation to the aggregate volume of trans-
actions; (3) both firms and consumers possess perfect information about
the prevailing price and current bids, and they take advantage of every
opportunity to increase profits and utility respectively; (4) entry into
and exit from the market is free for both firms and consumers.

Condition (1) ensures the anonymity of firms and consumers. With
regard to the firm, it is equivalent to the statement that the product of
the firm is indistinguishable from products of others: trade-marks,
patents, special brand labels, etc., do not exist. Consumers have no
reason to prefer the product of one firm to that of another. The uni-
formity of consumers ensures that an entrepreneur will sell to the highest
bidder. Custom and other institutional rules of the thumb (such as the
“first-come-first-served’’ rule) for distributing output among consumers
are nonexistent.

Condition (2) ensures that many sellers face many buyers. If firms
are numerous, an individual entrepreneur can increase or reduce his out-
put level without noticeably altering the market price. An individual
consumer’s demand for the commodity may risc or fall without any per-
ceptible influence on the price. The individual buyer or seller acts as if
he had no influence on price and merely adjusts to what he considers a
given market situation.

Condition (3) guarantees perfect inforrnation on both sides of the
market. Buyers and sellers possess complete information with respect to
the quality and nature of the product and the prevailing price. Since
there are no uninformed buyers, entrepreneurs cannot attempt to charge
more than the prevailing price. Consumers cannot buy from some entre-
preneurs at less than the prevailing price for analogous reasons. Since
the product is homogeneous and everybody possesses perfect information,
a single price must prevail in a perfectly competitive market. This can
be proved by assuming on the contrary that the commodity is sold at two
different prices. By hypothesis, consumers are aware of the facts that
(1) the commodity can be bought at two different prices, (2) one unit of
the commodity is exactly the same as any other. Since consumers are .
utility maximizers, they will not buy the commodity at the higher price.
Therefore a single price must prevail.

The last condition ensures the unimpeded flow of resources between
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alternative occupations in the long run. It assumes that resources are
mobile and always move into occupations from which they derive the
greatest advantage. Firms move into markets in which they can make
profits and leave those in which they incur losses. Resources such as
labor tend to be attracted to industries the products of which are in great
demand. Inefficient firms are eliminated from the market and are
replaced by efficient ones.

Perfect competition among sellers prevails if an individual seller has
only an imperceptible influence on the market price and on the actions of
others. Each seller acts as if he had no influence. Analogous conditions
must hold for perfect competition among buyers. A market is perfectly
competitive if perfect competition prevails on both the sellers’ and the
buyers’ sides of the market. The market price which was considered a
parameter in previous chapters is now a variable, and its magnitude is
determined jointly by the actions of buyers and sellers.

4-2. Demand Functions

In general, the 7th consumer’s demand for @; depends upon the price
of Qj, the prices of all other commodities, and his income:

Di; = Dij(py,p2, - -+ PmYs) (4-1)

His demand for Q; may vary as a result of a change in p, (¥ £ j), even
though p; remains unchanged, or in response to changes in his income, all
prices remaining constant. All other prices and the consumer’s income
are assumed constant in order to isolate behavior in the jth market. His
demand for Q; is then a function of p; alone:

D;; = Di(p)) (4-2)
The quantity demanded still depends upon the prices of other com-

modities and the consumer’s income, but these variables are now treated
as parameters. Omitting the commodity subscript 7 in (4-2),

Di=Dfp) (i=12...,n) (4-3)

The aggregate demand for @ at any price is the sum of the quantities
demanded by the n individual consumers at that price:

D= ; Di(p) = D(p) (4-4)

where D i3 the aggregate demand. The form of (4-4) is the result of the
assumptions that all other prices and the incomes of all n consumers are
constant. Since the demand functions of the individual consumers are
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monotonically decreasing, the aggregate demand function is also mono-
tonically decreasing (see Sec. 2-4). The shape and position of the aggre-
gate demand curve may change with the distribution of income, without
any variation in aggregate income. If one consumer’s income is reduced
and another’s increased by exactly the same amount, the corresponding
individual demand curves are likely to shift, and the aggregate demand
curve will be affected unless the shifts compensate each other.

In terms of the conventional diagrams the aggregate demand curve is
the horizontal sum of the individual demand curves. Parts (a) and
(b) of Fig. 4-1represent the demand curves of the only two consumers in a
hypothetical market. Part (¢) is their aggregate demand curve which is
constructed by letting the distance OL equal the sum of the distances OM
and ON.

p r P

{a) {b) (c}
Ficure 4-1

The aggregate or market demand function confronts the aggregate of
all sellers. The individual entrepreneur considers himself incapable of
influencing market price. A change in his output results in an imper-
ceptible movement along the market demand curve, and he believes that
he can sell any quantity that he is able to produce at the prevailing price.
The demand curve for the output of anindividual entrepreneur appears to
him as a horizontal line given by

p = constant (4-5)

The market demand curve is not the horizontal sum of the demand curves
faced by individual firms.
The firm’s total revenue is

R = pq

Marginal revenue is the rate at which total revenue increases as a result
of a small increase in sales. In mathematical terms,
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since p is a constant. The marginal revenue curve faced by the indi-
vidual firm is identical with its demand curve.

4-3. The Derivation of Supply Functions

The cost functions of individual firms can be defined for (1) a very short
period during which output level cannot vary, (2) a short run during
which output level can be varied but plant size cannot, and (3) a long run
in which all factors are variable.

The Very Short Period. Assume that the entrepreneur decides every
morning how much to produce that day. His output decision is instantly
implemented, and he spends the rest of the day trying to sell his output at
the highest possible price. He cannot increase his output during the day
and sells a given stock of the commodity.! Since an output ¢° has
already been produced, the marginal cost of any output less than ¢° is
zero. Output cannot be increased beyond this point in the very short
period, and the marginal cost of higher outputs may be considered infinite.
The marginal cost curve is represented by s vertical line at this point.

The firm maximizes profit by selling a quantity for which MC = p.
Since the MC of any output less than ¢° is zero and the MC of any output
greater than ¢° is infinite, the equality MC = p cannot be satisfied, and
the firm will expand sales to the point at which price ceases to exceed MC.
Therefore, it will sell its entire output (i.e., its entire stock of the com-
modity) at the prevailing price.? This maximizes profit, because the
prevailing price is the highest price at which the output can be sold.
Quantity sold does not respond to price changes. In general, the
aggregate supply function states the quantity that will be supplied by all
- producers as a function of the price. Since the output of each firm is
fixed, the aggregate supply of the commodity is also given and does not
depend upon the price. The supply curve is a vertical line, and its
distance from the price axis is equal to the sum of the outputs of the
individual firms. '

The Short Run. The supply function of a perfectly competitive firm
states the quantity that it will produce as a function of market price
and can be derived from the first-order condition for profit maximization.
The horizontal coordinate of a point on the rising portion of the MC curve
corresponding to a given price measures the quantity that the firm would

1 The present analysis is simplified by assuming that production and all other
adjustments occur instantaneously. It may be more realistic to assume that output
is produced as a continuous and steady stream. If production is a time-consuming
process, a change in the level of output cannot be realized immediately. The very
short period is then any length of time shorter than the period which elapses between

the change in the level of inputs and the corresponding change in the output level.
2 Since the present analysis is static, the costs of holding inventories are neglected.
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supply at that price. The firm’s short-run supply curve is identical with
that portion of the short-run MC curve which lies above the AVC curve.
D Its supply function is not defined for
outputs less than the abscissa of the
intersection of the MC and AVC
Mc curves. Quantitysupplied would be
zero at all prices less than the ordi-
nateof this point. Thefirm’ssupply
Ave curve consists of the shaded seg-
ments OA and BC in Fig. 4-2.
A The <th firm’s short-run MC is a
function of its output:

MC: = ®i(gs) (4-6)
o ¢  The supply function of the zth firm
- FIGURE 4-2 is obtained from its first-order con-

dition for profit maximization by letting p = MC and solving (4-6) for
qi = S;: ’

4]

S: = Sip) for p = minimum AVC

S:i=0 for p < minimum AVC (4-7)

The aggregate supply function for Q is obtained by summing the n
individual supply functions. The aggregate supply is

n
S =) Sp) = S(p) (4-8)
i1=1
The aggregate supply curve is the horizontal sum of the individual supply
curves.

The second-order condition for maximum profit requires the MC
curve to ke rising. The firm’s supply function is therefcre monotonically
increasing.! The horizontal sum of morotonically increasing functions is
itself monotonically increasing, and the short-run aggregate supply
function has a positive slope.

Let the total cost curve be

C; = 0.1¢g:* — 2¢# + 15¢; + 10
Then MC,' = 0.3q,-2 - 4q,— + 15

Setting MC; = p and solving for ¢;, T

1The MC curves of individual firms may have ncgatively sloped portions in the
relevant range whéere MC > AVC. The individual firm’s supply function will then
be discontinuous. In exceptional cases the aggregate supply function need not be
monotonically increasing.

1 The mathematical solution (4-9) describes a curve with two branches correspond-
ing to the 4 and — signs before the square root. The branch corresponding to the
— sign has a negative slope and can be disregarded, since the second-order condition
requires MC to be rising,.
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4+ +12p =2 (4.9)

0.6

=28 =

The individual supply function is relevant for all prices greater than, or
equal to, minimum AVC. The AVC function is

AVC; = 0.1¢;*> — 2¢. + 15

The minimum point on the AVC function is located by setting the deriva-
tive with respect to g; equal to zero and solving for ¢;:f

d(AVC)
dg;

Substituting ¢; = 10 in the AVC function gives the value 5. When the
price is less than 5 dollars, the firm will find it most profitable to produce
no output. The firm’s supply function is

Sf=4+\/01é2;0—2 ifp=5

S:=10 ifp <5

=0.2q,'-'2=0 q,=10

Assuming that the industry consists of one hundred identical firms, the
aggregate supply function is

S = 1004+ voléZp—2 i

8S=0 ifp<5

pz5

At a price of 22.50 dollars the aggregate supply will be 1500 units.

The Long Run. The firm’s long-run optimal output is determined by
the equality of price and long-run MC. Zero output is produced at
prices less than AC and the firm’s iong-run supply function consists of that
portion of its long-run MC function for which MC exceeds AC. The
mathematical derivation of the long-run aggregate supply function is
similar to the derivation of the short-run supply function. The MC
function of the 7th firm is

MC:=&{g) (G=1,...,n (4-10)
Setting p = MC; and solving for ¢; = S;
S; = S;(p) ('L = 1, s e ey n) (4-11)

The aggregate supply function is then obtained by adding the » indi-
vidual supply functions in (4-11). The long-run supply function is
positively sloped for the same reason as the short-run supply function.

t The reader may verify that the second-order condition for a minimum is satisfied.
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External Economies and Diseconomies. The individual firm’s total
costs have been assumed to be a function of only its output level. How-
ever, the firm’s total costs may frequently depend upon the output levels
of other firms as well. External economies are realized if an expansion
of the jth firm’s output lowers the total cost curve of the 7zth firm.
External diseconomies are realized if an expansion of the jth firm’s
output raises the total cost curve of the 7th firm.! External economies
or diseconomies may be caused by many factors. An expansion of the
industry’s output may lead to the discovery of new and cheaper sources
of raw materials and to the diffusion of new technical knowledge. These
phenomena will generally reduce the costs of the zth firm without any
diminution of its own output. Conversely, an increase in the industry’s
output as a whole may drive up the prices of raw materials and thus
increase the total costs of the 7th firm.

Assume in general that the long-run costs of the zth firm depend upon
the output levels of all n firms:

Ci=(quas, - - - @) G=12...,n (412

where ¢; is the output of the 7th firm. Each entrepreneur maximizes
profit with respect to his own output. The profit functions are

™y = Rg b C; (2 = 1, 2, .« e ey n) (4-13)

where R; = pg;. Differentiate =, with respect to g1 (considering all
other variables constant), =, with respect to ¢, etc., and set the resulting
partial derivatives equal to zero:

aﬂ'l od l(ql: . .o ’qn)
o p— =0
o p o ]
a_“ =p— 0Py(q, - - - 7qﬂ) =0
GQQ 6q2 (4-14:)
% aq)"(qu yqﬂ) — 0
0qn oqn
The second-order conditions require that d®;(q1, . . . ,x)/9¢g:2 > O for
all(z = 1,2, ...,n). Solving the system of »equations given by (4-14)
for qi, g2, . . ., g¢n, and writing S; for ¢;,
81 = Si(p)
S = 5) (4-15)
S = 8a(p)

1 Alternative definitions could be stated in terms of the effect of an increase in
aggregate output upon the ¢th firm’s (1) marginal cost, its own output level remaining
constant, or (2) output level, its use of inputs remaining constant.
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Each entrepreneur bases his behavior on his own MC function. The
first entrepreneur observes the outputs of all other firms (g3,¢3, . . .,
¢3) and selects that value of ¢: for his output for which

— aq’l(qllqu s :qg) =0
6‘q1

is satisfied. The corresponding optimal value of ¢; may require the other
entrepreneurs to adjust their outputs in accordance with their MC func-
tions. This in turn will change the first entrepreneur’s optimal output.

p

b Mc® M 1 p Mc® mc®
1 1 MC(I) 2 2

1
MC(g)

o°

FiGURrE 4-3

The supply functions (4-15) state each firm’s optimal supply as a function
of the price after all these adjustments have taken place. The aggregate
supply function is obtained as before by adding the individual supply
functions (4-15):

" ,
§= ) 8 = 8@ (4-16)
i=1

The aggregate supply function may have positive or negative slope
in the presence of external economies or diseconomies. The second-order
conditions require that the individual MC curves be rising when the out-
puts of other firms are assumed to be given parameters. However, an
expansion of the industry’s output not only changes the total costs of
individual firms, but may shift the individual MC functions as well.
Whether firms in the industry realize external economies or diseconomies,
the relevant (positively sloped) portions of their MC curves may shift up
or down as a result of an expansion in the industry’s output. Figure 4-3
represents the MC curves of two typical firms in the industry. If the
price is p‘?, the firms’ relevant MC functions are MC{’ and MC", and
their outputs are 04, and OB;. Assume that the price rises to p°. Firm
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I (Fig. 4-3a) will want to produce OA, and firm II (Fig. 4-3b), OB..
However, the rise of I’s output by A4,A4; units shifts II's MC curve to
MC®, and the rise in II’s output shifts I's MC curve to MC{®. The
two firms would seem to produce OA; and OB; respectively. The
diminution of their outputs as compared to their initial output levels will
tend to lower their MC curves. The shifting of the MC curves comes to
a stop, and the industry’s equilibrium output is determined if MC{® is
the relevant MC curve for I when II produces OB units and if simul-
taneously MC{? is II’s relevant MC curve for an output of OA, units by
I. The final result shows a smaller aggregate output at a higher price.
Therefore the aggregate supply curve is negatively sloped in this case.

The fact that the firms are realizing external economies is not sufficient
to allow the inference that the slope of the aggregate supply function is
negative. Assume that the cost functions of the n firms are

Cy = auqi? + @12¢2* + © * © + @1ngn?
Ce = 021Q12 + 022Qz2 + -+ QZnan

Cn = an1912 + an2q22 + -+ annqn2

and that the coefficients @, @2, . . . , @nn are all positive. If external
economies prevail throughout the industry, all a;; ( # 7) must be nega-
tive. Forming the profit functions (4-13) and setting the appropriate
partial derivatives equal to zero,

P — 201q; =0

P — 2&22Q2 =0
p - 2agnqn = O
Solving these equations for the ¢s and setting ¢; = §;,
=_F_
S 2ay,
=2
S 4
P

Sﬂ 2ann

Therefore the aggregate supply function is

- _pf(1 1,1
8—281—2(a11+a22+ +ann)

This function has a positive slope in spite of external economies.
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4-4. The Equilibrium of a Commodity Market

Short-run Equilibrium. The market forces which determine the price
and the quantity sold can be regarded as manifesting themselves through
the aggregate demand and supply functions. The slope of the demand
function [D’(p)] is always negative. The slope of the supply function
[S'(p)] is always positive in the absence of external economies. S’(p)
will be assumed to be positive, unless otherwise specified.

Imagine that buyers and sellers arrive in the market without any
foreknowledge as to what will become the going price. Since the com-
modity is homogeneous, a single price must prevail. The quantity
demanded must equal the quantity supplied at the equilibrium price:

D(p) — S8(p) =0 (4-17)

If the equality does not hold for some p = p° buyers’ and sellers’ desires
are inconsistent: either buyers want te purchase more than sellers are
supplying, or sellers are supplying more than buyers wish to purchase.
The equality in (4-17) i¢ necessary and sufficient for the buyers’ and
sellers’ desires to be consistent.

Assume that production is instantaneous and producers arrive in the
market without any actual output. When the market is open for trad-
ing, buyers and sellers begin to bid and attempt to enter into contracts
that are favorable to them. Whenever a buyer and seller enter into a
contract, they both reserve themselves the right to recontract with any
person who makes a more favorable offer. It is thus permitted to break
existing contracts. Assume that some consumer makes an initial bid
and offers a price of p? dollars for the commodity. This price is recorded
and made public by an auctioneer who is an impartial observer of the
trading process. Imagine that the initial price is lower than the equi-
librium price. Buyers and sellers will attempt to enter into contracts
with each other at the price p°. Consumers who are willing to buy at
this price find that the quantity offered is not sufficient to satisfy their
desires, i.e., sellers are not willing to contract for as large a quantity as
buyers desire. Some of the consumers who have not been able to satisfy
their demand will be induced to raise their bids in the hope of tempting
sellers away from other consumers. As soon as this higher price p® is
recorded and made public by the auctioneer, sellers break their old con-
tracts and recontract at the higher price. As higher prices are offered,
the quantity demanded declines, since marginal consumers are driven out
of the market and each consumer demands less. Simultaneously the
quantity offered by sellers increases. The process of recontracting con-
tinues as long as the price announced by the auctioneer is below the
equilibrium price, i.e., as long as -the quantity demanded exceeds the
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quantity supplied. When the equilibrium price is reached, neither con-
sumers nor producers have an incentive to recontract any further.
Recontracting is discontinued, entrepreneurs instantaneously produce
and deliver the output for which they have contracted, and the exchange
is completed. If the arbitrary initial
price p°® happens to exceed p* (equi-
librium price), some producers will be
unable tosell the quantity which is the
optimal quantity for them at that
price. They cannot find consumers
who want to enter into contracts with
them. In order to avoid such an out-
come, the sellers who have been unable
to find buyers at the initial price will
reduce the price. Consumers who
have contracted at the higher price
0 5‘0 100 ,1;30 200 250 2 will find it advantageous 1‘;0 reconfiract‘
FIGURE 4-4 The process of recontracting continues
until the equilibrium price is reached.
When' p¢ is established, both buyers’ and sellers’ desires are satisfied,
and no one can beneiit from further recontracting.

The equilibrium price-quantity combination must satisfy both the
demand and supply functions. This is the only price-quantity combina-
tion for which the desires of buyers and sellers are consistent with each
other. The equilibrium price is deiermined by solving the eguilibrium
condition (4-17) for p. The equilibrium quantity is determined by sub-
stituting the equilibrium price in either the demand or the supply func-
tion. Since the equilibrium price-quantity combination satisfies both
the demand curve and the supply curve, the above operation is equivalent
to finding the coordinates of the intersection point of the demand and
supply curves.

Assume that the demand and supply curves are

D = —50p + 250 S = 25p + 25
Setting D — S = 0,

—50p + 250 — 25p — 25 =0
and therefore p=3 D=8 =100

|
]
|
]
I
I
|
!
!

These functions are illustrated in Fig. 4-4.

Long-run Equilibrium,. If plant size is variable, the equilibrium of the
existing firms in the market is given by the intersection of the long-run
supply curve with the corresponding demand curve. The long-run
cost and supply curves include “normal profit,” i.e., the minimum remu-
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neration necessary for the firm toremain in existence. Itisthe profit that
accrues to the entrepreneur as payment for managerial services, for pro-
viding organization, for risk-bearing, etc. If the intersection of the
demand curve and the long-run supply curve occurs at a price at which
firms in the industry earn more than normal profit, new entrepreneurs
will be induced to enter. The assumption of free entry guarantees that
they are able to enter the industry, produce the same homogeneous prod-
uct, and possess the same complete information as the old firms. The
new producers will add their supplies to the already existing supply,
and as a result the long-run supply curve will shift to the right. New
producers will continue to enter as long as positive profits are made, and
the supply curve will continue to shift to the right until its intersection
with the demand curve determines a price for which profits are zero.

The converse argument can be made for the case in which existing
firms make losses. Some firms will withdraw from the industry, and the
ageregate supply will diminish; the supply curve will shift to the left.
Firms will continue to leave the industry until the intersection of the
demand curve with the supply curve determines a price for which losses
(and therefore profits) are zero.

Demand must equal supply, and profits must equal zero for long-run
equilibrium. The supply function of the sth firmis S; = S;(p). Letn be
the number of firmsin the industry. Assuming that all firms are identical
with respect to their cost functions, the aggregate supply function is

S = nSi(p) = S(p) (4-18)
As before, the aggregate demand function is
D = D(p) (4-19)

In addition to the equality of demand and supply, long-run equilibrium
requires that total profit equal zero:

* = pS — nd; (%) =0 (4-20)

where ®(S/n) is the long-run total cost of the 7th firm for an output
g = 8; = 8/n. The equations (4-17) to (4-20) can generally be solved
for the four variables (D, S, p, n). In the long run the forces of perfect
competition determine not only the price and the quantity, but the num-
ber of firms within the industry as well.

The argument is illustrated in Fig. 4-5. The left-hand side of the
diagram shows the cost curves of a typical or ‘representative’ firm.
The right-hand side shows the market demand and supply curves with the
horizontal scale compressed. The final equilibrium from the industry’s
point of view is at the intersection of the demand and supply curves,
provided that profits are zero. From the entrepreneur’s point of view,
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equilibrium is attained when price equals MC and AC. Optimality is
ensured by p = MC, and zero profits by p = AC. Every firm operates
at the minimum point of its AC curve in long-run equilibrium, since
MC = AC at the minimum point of the AC curve.

The long-run supply curve S is defined to include the supplies offered
by firms already in the market, but not the supplies of potential pro-
ducers. Firms are making positive profits in the situation characterized
by the supply curve S (Fig. 4-5). New firms enter, and the supply curve
shifts to S’. If the supply curve had been defined to include all supplies
(by actual and potential producers, as in S*), the intersection of the
demand and supply curves would have determined the final equilibrium

p p

FIGURE 4-5

without any shifting. The supply curve S is given for fixed n in (4-18).
S* is obtained by solving (4-20) for n, substituting this value of n in
(4-18), and then solving for S. It is horizontal in the present example,
but may be upward sloping if firms do not possess identical cost functions.
Since profits are zero for any point on S*, the ordinate of any point on
S* (the price) is the average cost of producing the output to which it
corresponds. S* is therefore the industry’s AC curve.

~ Differential Cost Conditions and Rent. The symmetry assumption is
convenient for purposes of exposition, but is not necessary for the attain-
ment of equilibrium. - Firms may choose their own technology, entre-
preneurs may differ with respect to organizing ability, and they may have
built plants of different size as a result of divergent price expectations.
Some entrepreneurs may possess scarce factors such as fertile land that
are not available to others. Under any of these conditions the cost func-
tions of all firms will not be identical. ' '
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Assume that there are two distinct type of firms. Their long-run
AC and MC curves are shown in parts (a) and (b) of Fig. 4-6. Part (c)
shows the industry supply curve and five hypothetical demand curves.
The supply curve is based on the assumption that there are fifty firms in
each category. Assume that the number of firms in each category can-
not be increased. For example, the number of low-cost producers (cate-
gory I) may be unalterably given by the quantity of some scarce resource
such as fertile land. New firms are unable to enter category I even
though the firms in this category are maling profits.

p P r
MC
25 S
20
15 Snihieaity AN
D4
i .
10 ! D3
5 i N Do
! e D
0 5 10 15 q; 0 5 10 15 a5 0 500 1000 1500 q
(a) (b) {e)
FIGURE 4-6

Consider the demand curve D;. Each low-cost firm produces an out-
put of 16 units, and each of the other firms produces an output of 10 units.
The latter operate at the minimum peint of their AC curves and earn
normal profits. Each low-cost firm earrs a unit profit of NM above
normsgl. If the demand curve shifted to D,, all high-cost firms (category
II) would leave the industry, but each low-cost firm would still earn the
same positive profit. They would earn positive profits even if the
demand curve were D;. With D; some, but not all, of the high-cost firms
would leave the industry. Those remaining would earn a normal profit.
If the demand curve were D;, all firms in the industry would earn profits
in excess of normal, and a third group of firms (not shown in Fig. 4-6)
might find it profitable to enter the industry. The low-cost firms would
still be in the more favorable position.

Assume that the total cost functions of representative firms in the two
categories are- '

Cy; = 0.04¢q:% — 0.8¢12 + 10qy; Cy = 0.042° — 0.8¢2:% -+ 20q2
The corresponding average and marginal cost functions are

MC]{ = 0.12Q1¢2 ot 1.6q1,- + 10 MCzi = 0.1292,-2 - I.GQ2.' + 20
ACy; = 0.04¢1? — 0.8¢s; + 10 ACy = 0.04¢22 — 0.8¢ + 20
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The minimum points of the respective average cost curves are at the
points g1; = 10, p = 6 and ¢x = 10, p = 16. The supply curve of an
individual low-cost firm is derived by setting MCx = p:

p = 0.12¢,2 — 1.6g: + 10
Solving this quadratic equation for gi;,

1.6 + 1/2.56 — 0.48(10 — p)
9u = 0.24

The minus sign preceding the square root must be disregarded because. it
corresponds to the situation in which the individual firm’s second-order
condition for maximization is not fulfilled. Substituting Sy; for ¢, the
supply curve is
Su = 0 if y4 < 6
1.6 + +/2.56 — 0.48(10 — p)

;o= 1 =

By analogous reasoning the supply curve of the representative high-cost
firm is

S =0 -ifp <16
S, = 1.6 +'\/2.56O;40.48(20 — D) ifp =16

Maintaining the assumption that there are fifty firms in each category,
the aggregate supply function is described by the following set of three

equations:
S — 50 1:8 + +/2.56 — 0.48(10 — p) f6<p<16
0.24
160 50
S = 054 + 094 [V/2.56 — 0.48(10 — p)

+ 4/2.56 — 0.48(20 — p)] ifp =16
Assume that the relevant demand curve is D, which has the equation
D = —100p + 2050
The relevant segment of the supply curve is given by .

1.6 + /256 — 0.48(10 — p)
0.24

Setting D = S and solving for p and S gives p = 13, S = 750.t If

1 If it is not obvious by inspection which supply-curve segment is the relevant one,
let D = 8 for each of the three supply-curve segments separately and solve for the
price. Only one of the three prices calculated will be in the range that is appropriate
for the particular supply-curve segment used. This segment is the relevant one,

S =50
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p = 13, each low-cost firm will produce 15 units at an average cost of 7
dollars. The high-cost firms produce nothing. The total quantity is, as
determined by solving the demand and supply relations, (50)(15) = 750
units. Each low-cost firm earns a 90-dollar profit. .

Low-cost firms can produce at a lower AC than the others because they
possess some scarce factor, such as fertile land, which is not available to
the latter. If the demand curve intersects the supply curve at a point
at which some firms earn more than normal profit, a considerable profit
advantage is enjoyed by those who possess the scarce resource. Some
(potential) producers, seeing the large profits made by the low-cost firms,
would want to persuade the owners of the fertile land (landlords) to hire
it out to them rather than to the firms currently employing it. They
would try to accomplish this by offering to pay more for the use of the
land than existing firms are paying. The present users would match
these offers until competition drove up the amount paid for the use of
fertile land to the point where no differential profit advantage could be
derived from employing it. The owners will thus be able to exact from
the firms using the scarce resource their entire profit in excess of normal.
The sums thus exacted are the rent paid by the entrepreneur for the use
of the scarce resource. One may conclude that no advantage can be
derived from being a more efficient (low-cost) producer: the differential
profit advantage is wiped out by the extra rent that the low-cost pro-
ducer must pay. In the present example, the scarce resources employed
by each low-cost firm earn a rent of 90 dollars. If an entreprencur
happened to own the scarce resource himself, no actual payment would
take place, and the rent would accrue to him. Otherwise the entre-
preneur would have to pay 90 dollars for renting the land. Rent is thus
defined to be that part of a person’s or firm’s income which is above the
minimum amount necessary to keep that person or firm in its given occu-
pation. Whether it is actually paid to the owner of the scarce resource is
immaterial. Distributive shares are distinguished by function, and not
by the individual to whom they accrue.

4-5. Applications of the Analysis

The theory of perfect competition can be applied to numerous special
cases. Two examples are considered in the present section. The first
is an extension of the analysis to the case of spatially distributed firms.
The second contains an analysis of the effects of taxation on perfectly
competitive output.

Spatially Distributed Firms. Production and consumption are gener-
ally assumed to take place at a single point in space. In reality there are
many markets in which producers and consumers are spatially separated.
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Geographic locations and transport costs are frequently factors of con-
siderable importance. It is illustrated below how the theory of perfectly
competitive markets can be extended to the case in which producers are
spatially separated.

Many central markets are supplied by a number of firms located at
some distancefrom them. Examples
are provided by city milk markets.
Farmers from the surrounding area
supply a central market at varying
unit transport costs. If anentrepre-

MC+B; ‘ neur produces at any distance from
g AVC+B; his market, his total cost consists of
a (] . .
z production and transportation costs:

PP — —p
~ Ac
SA/VC C; = ¢i(q) + b + By (4-21)

where S; is the cost of transporting
1 unit of his product to the central
market. His profit is the difference
between his total revenue and his
total cost of production and transportation:

7 = pgi — $i(q:) — b — Bigs (4-22)
Setting the derivative of (4-22) equal to zero,

P

(o] q? q;
Ficure 4-7

d1r,-_ — ) — R =
d P $i(gs) — B:i=0

or P = $i(g) + B (4-23)

The first-order condition for profit maximization requires that the entre-
preneur equate his marginal cost of production plus his unit transport cost
to the market price of his product. The second-order condition, as
before, requires that his marginal cost of production be increasing.

The entrepreneur’s MC and AVC curves are raised vertically by a
distance equal to the amount of his unit transport cost (see Fig. 4-7).
His output is determined by the intersection of the rising portion of his
MC + B; curve and the horizontal demand curve. Since the entre-
preneur will not supply at prices less than AVC + 8,, his supply curve
coincides with the rising portion of his MC + 8; curve which lies above
his AVC + B; curve. An entrepreneur who is not located at the market
will supply less at every price (at which he supplies a nonzero amount)
than one who is.

The aggregate supply function for the central market i§ the horizontal
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sum of the supply curves of the n individual producers:

n
S =) 8(p) = S@)
i=1
where S;(p) is the supply function of the ¢th producer. Market equi-
librium is attained when supply equals demand.

Assume that fifty of the one hundred firms supplying commodity @
are at location I and the other fifty at location II. It costs 6 dollars to
transport to the market a unit of @ from I and 10 dollars from II. All
firms possess the same production cost functions, and the total costs of
representative firms are

01 = 0.5Q12 + 6\21 Cz = 0.59’22 + 1092

where the subscripts 1 and 2 denote firms at locations I and II respec-
tively. The first-order conditions for profit maximization are p = ¢; + 6
andp = ¢» + 10. Supply functions are obtained by substituting ¢; = Si
and g; = S; into the first-order conditions and invoking the condition
that S; = 0 unless p = AYC + 8;:

S, =0 if0<p<10 (4-24)

S;=p—10 ifl10 = p

An entrepreneur at I will supply no output if the market price is less
than 6 dollars, and an entrepreneur at I1I will not supply if the market
price is less than 10 dollars. The MC + 8; curve for an entrepreneur
at I is given by ¢: + 6, and his AVC + B; by 0.5¢: + 6. His supply
curve coincides with his MC 4 B; curve for prices of 6 dollars or more.

The aggregate supply for the central market is given by the following
three equations:

S=0 fo=p<6
S = 50(p — 6) = 50p — 300 if6<p<10 (4-25)
S = 50(p — 6) + 50(p — 10) = 100p — 800 if10 = p

Aggregate supply is zero if price is less than 6 dollars. The fifty entre-
preneurs at I will supply-a positive amount if the price exceeds 6 dollars,
and the fifty entrepreneurs at II will supply if it exceeds 10.

Assume that the aggregate demand function is

= —20p + 1600

The appropriate segment of the supply function is given by the third



104 MICROECONOMIC THEORY: A MATHEMATICAL APPROACH
equation of (4-25). Setting D = S, ‘

—20p + 1600 = 100p — 800
p=20 S=D=1200

From (4-24), each entrepreneur at I supplies 14 units and earns a 98-
dollar profit, and each entrepreneur at II supplies 10 units and earns a
50-dollar profit. In general, if all entrepreneurs produce under the same
cost conditions, output and profit are inversely related to the level of unit
transport cost.

The existence of more favorable locations may give rise in the long run
to rent payments if sites are scarce in the more favorable locations.
Competition for the more favorable sites will enable the owners of these
sites to charge entrepreneurs a rent which exceeds the rent in the less
advantageous location by an amount equal to the profit difference
between the two locations, i.e., by 48 dollars.t

Taxation and Perfectly Competitive Output. A sales tax generally
changes the individual entrepreneur’s optimum output level. It shifts
the individual supply curve and therefore also the aggregate supply curve.
This alters the equilibrium price-quantity combination. Salss taxes are
either specific or ad valorem. A specific tax is stated in terms of the num-
ber of dollars which the entrepreneur has to pay per unit sold. An ad
valorem tax is stated in terms of a percentage of the sales price.

Assume that the sales tax is a specific tax of ¢ dollars per unit. The
total costs of the representative entrepreneur are

Ci = ¢(gs) + b: + tg: (4-26)

The first-order condition for profit maximization requires him to produce
the output level for which MC = p:

¢'(¢) +t=p
or (@) =p—¢ (4-27)
The entrepreneur equates the marginal cost of production plus the unit
tax to the price. The second-order condition requires that the MC curve
be rising. The entrepreneur’s supply function is obtained by solving
(4-27) for g; and setting g; = S; for all prices greater than, or equal to,

minimum AVC:
S; = 8Si(p —?) (4-28)

The aggregate supply function is obtained by summing the individual
supply functions:

n
§=) 8p—0=80p-19 - (a29)
i=1
t The analysis can be easily extended to the case in which consumers are spatially
distributed.
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The aggregate supply is a function of the net price (p — t) received by

sellers. If, in the absence of a sales tax, aggregate supply is S° units at

the price of p° dollars, entrepreneurs will supply the same quantity S°

with a sales tax of 1 dollar if the price paid by consumers is p°® 4 1 dollars.

This is equivalent to a vertical upward shift of the supply curve by

1 dollar. Entrepreneurs are willing to supply less than before at every

price. In order to determine the equilibrium price-quantity combina-
tion, set demand equal to supply,

D(p)—8(p—28 =0
and solve for p.

Let the ad valorem tax rate be » per cent of the sales price. Total

costs are
C:= &) + b+ vpg; (4-30)

Setting MC equal to price,

(@) +vp=0p
or ¢'(g:) = p(1 — ) (4-31)

Therefore the individual supply function is
Si = Si{p(1 — )]
and the aggregate supply function is

%

8= ) 8ipl — )] = SlpQt — v)] (4-32)

i=1

Aggregate supply is a function of the net price, and the sales tax involves
an upward shift of the supply curve which is proportional to the height
of the original supply curve above the quantity axis. The equilibrium
price-quantity combination is again determined by setting demand equal
to supply.

Let the industry consist of 100 firms with identical cost functions

C: =0.1¢g%* + ¢: + 10
Setting MC equal to price, solving for g;, and setting ¢; = S;,

S;=0 ifp<l1
S;=56p—5 ifp=1

The aggregate supply function is

S=0 ‘ if p <
if p2

1
S = 500p — 500 1
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Assume that the demand function is
D = —400p + 4,000

Setting demand equal to supply, the equilibrium price-quantity com-
bination is
p=25 D = 8 = 2,000

Assume now that a specific tax of ¢ dollars is imposed. The repre-
sentative total cost function becomes

Setting MC equal to price and solving for ¢; = S;,

S:i=0 fp<14t
Si=5(p—1t —5 fpz1+t

Hence the aggregate supply function is

S=0 ifp<l14t
S =500p —1% —500 ifp=1+4+¢

Setting demand equal to supply and solving for p,

" p=5+3%1

If the tax rate is 90 cents per unit of sales, the equilibrium price-quantity
combination is

p=550 D=38=1800

The price rises and the quantity
sold diminishes as a result of the tax.
The pricerise is less than the amount
of the unit tax. The 50-cent in-
crease in the price represents that
portion of the unit tax that is passed
on to the consumer; the remainder -
of 40 cents is the burden on the
entrepreneur. The example is pic-
1000 2000 3000 4000 g tured in Fig. 4-8. The supply curve
is S before and S’ after the tax isim-
. posed. The tax is 90 cents, the ver-
tical distance between S and S’. The price paid rises from 5 dollars to
5.50, and the price received by entrepreneurs falls to 4.60. The reader
may verify that the proportion of the unit tax passed on to the consumer
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is the greater, the smaller are the slopes (algebraically) of the demand and
supply curves. Ceteris paribus, the price varies directly, and the quan-
tity inversely with the tax rate.!

4-6. Factor-market Equilibrium

The foregoing sections are limited to perfectly competitive commodity
markets. Analogous conclusions can be reached with respect to markets
for inputs (factors of production). A factor market is perfectly com-
petitive if (1) the input is homogeneous and the buyers are uniform from
the sellers’ point of view, (2) buyers and sellers are numerous, (3) both
buyers and sellers possess perfect information, (4) both buyers and sellers
are free to enter or leave the market. Consumers purchase commodities
because they derive satisfaction from them. Inputs are purchased for
the sake of the contribution they make to production. The demand
curves for final products are derived from the consumers’ utility functions
on the assumption of utility niaximization. The demand curves for
inputs are derived from »nroduction functions on the assumption of profit
maximization.

The Demand Function. A rational entrepreneur’s optimum input
combination satisfies the condition that the price of each input equals the
value of its marginal product. Assume that the ¢th firm’s production
function is

g = f(@1,x9) (4-33)
Its profit function is

7 = Pf(21,T2) — T1T1 — TaT2 (4-34)
Setting the partial derivatives of (4-34) equal to zero,

pfi(x1,22) — 711 =0
pfe(z1,22) — 712 =0 (4-35)

Solving system (4-35) for z; and z, and setting ; = D;; and 2, = D;
gives the demand functions of the sth firm for the two inputs:?

Dy = Du(?'l,?'z,’p)
Dy = Diz(h,rz,p) (4 36)

The demand for an input generally depends upon its price, the prices of

1 The analysis can be used to show the effects of subsidies by treating a subsidy as
a negative tax.

2A solution exists if the Jacobian of (4-35) is nonvanishing. The reader may verify
that the Jacobian is nonzero if the second-order conditions for a maximum are fulfilled.
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all other inputs, and the price of the output. The demand for an input is
a dertved demand, since it depends upon the price of the product and is
thus derived indirectly from the demand for the product. Assuming that
all other prices are constant, and neglecting the factor subscripts, the zth
firm’s demand function for a particular factor is

D; = Di(r) ‘ (4-37)

where r is the price of the factor. The aggregate demand function is
obtained by summing the individual demand functions. If there are m
firms demanding the input,

D= i; Dr) = D(r) (4-38)

The Supply Function. Inputs are either primary or produced. Pro-
duced inputs are the outputs of some other firms. The supply function
of a produced input is the aggregate supply function of the firms which
produce it. Such functions have been derived in Sec. 4-3. A different
procedure is employed in the case of primary inputs such as labor. It
was assumed in Sec. 2-5 that utility is a function of leisure and income:

U=9(T—-W,uy)

where T is the total amount of available time (the length of the period for
which the utility function is defined) and W the amount of work per-
formed in terms of hours. It was shown that the utility-maximizing
individual allocates his time between work and leisure in such fashion
that

g1 _ -
o= (4-39)

where r is the wage rate and g; is the partial derivative of the utility func-
tion with respect to its 7th argument. The g,’s depend upon income and
the amount of work performed. Sincey = rW, (4-39) contains only the
variables r and W. Solving (4-39) for W and setting W = S;, the labor
supply function of the 7th individual is

S,' = §; (7‘) (4'40)

The supply function states the amounts of work that the individual is
willing to perform as a function of the wage rate. The aggregate supply
function is obtained by summing the individual supply functions. If
there are n individuals who are willing to supply labor at some wage rate,
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the aggregate supply function is
S =) S =80 (4-41)
i=1
The supply function may have either negative or positive slope. If
individuals value leisure highly and are more concerned with increasing
their time for leisure than raising their incomes, the supply curve of labor
may be negatively sloped: the higher the wage, the less work is performed.

Market Equilibrium. Given the demand and supply functions for an
input the equilibrium price-quantity combination is determined by invok-
ing the equilibrium condition D = S. Market forces similar to those dis-
cussed in Sec. 4-4 will change the existing situation whenever the actual
price differs from the equilibrium price. Equilibrium is reached only
when the quantity demanded equals the quantity supplied. As in prod-
uct markets, no participant can improve his position by recontracting
after equilibrium has been reached.

Since the equilibrium price-quantity combination must lie on the
demand curve, it must also satisfy conditions (4-35) from which the
demand curve is derived. The equilibrium price of an input is always
equal to the value of its marginal product, i.e., the value of the marginal
dollar spent c¢n inputs is the same in every use.! This equality is a neces-
sary condition for profit maximization, and every entrepreneur can reach
his optimum point in a perfectly competitive market if his second-order
conditions for maximization are fulfilled.

4-7, The Stability of Equilibrium

Equilibrium price and quantity are determined by the equality of
demand and supply. Equilibrium is characterized by the acquiescence
of buyers and sellers in the status guo: no participant in the market has an
incentive to modify his behavior. However, the existence of an equi-
librium point does not guarantee that it will be attained. There is no
guarantee that the equilibrium price will be established if the market is
not in equilibrium when the contracting begins. There is also no reason
to assume that the initial price will happen to be the equilibrium price.
Moreover, changes in consumer preferences will generally shift the
demand curve, and innovations will shift the supply curve. Both factors
tend to disturb an established equilibrium situation. The change defines

1 This has an analogue in the theory of consumer behavior. Recall that fi = \p;is
one of the equilibrium conditions for the consumer, where f, is the marginal utility
of the first good and X is the marginal utility of money. Then f;(1/\) = p, or the

price of the commodity must equal its marginal utility multiplied by the additional
amount of money that has to be paid per unit of additional utility (1/X).
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a new equilibrium, but there is again no guarantee that it will be attained.

In general, a disturbance denotes a situation in which the actual price is
different from the equilibrium price. An equilibrium is stable if a dis-
turbance results in a return to equilibrium and unstable if it does not.!
It was implicitly assumed in the discussion of equilibrium in Sec. 4-4
that the market equilibrium was stable.

Static Stability. A disturbance usually creates an adjustment process
in the market. For example, if the actual price is less than the equilib-
rium price, the adjustment may consist of some buyers raising their bids
for the commodity. Static analysis abstracts from the time path of the
adjustment process and considers
only the nature of the change, i.e.,
whether it is toward, or away from,
equilibrium.

Define

E(p) = D(p) — S(p) (442)

as the excess demand at price p.
In Fig. 4-9 excess demand is posi-
tive at the price p% negative at
the price p‘V. Stability conditions
| are derived fromassumptions about
0 " g° gD g the market behavior of buyers
FIGURE 4-9 andsellers. The Walrasian stability
condition is based on the assump-
tion that buyers tend to raise their bids if excess demand is positive and
sellers tend to lower their prices if it is negative. If this behavior assump-
tion is correct, a market is stable if a price rise diminishes excess
demand, i.e., if

d%}’-’- - E'() = D'(p) — S'(p) < 0 (4-43)

Writing p; for the price at which a given quantity is demanded, p, for
the price at which that same quantity issupplied, and setting D = S = g,
the demand and supply functions can be solved for the demand price
pa and the supply price p,:

pa = D7(q)
P, = S7Y(g)

1This is not a rigorous definition of stability and is only one of several alternative
definitions. See P. A. Samuelson, Foundations of Economic Analysis (Cambridge,
Mass,: Harvard University Press, 1948), pp. 260-262.
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where D! and S-! are the inverses of the functions D and S.f The
excess demand price is defined as

F(g) = D™ (q) — S~%(g) (4-44)

It is the difference between the price that buyers are willing to pay and
the price that sellers are charging for a given quantity. In Fig. 4-9
there is a positive excess demand price at ¢° and a negative excess demand
price at ¢®. The behavior assumption underlying the Marshallian
stability condition for a market states that producers will tend to raise
their output when the excess demand price is positive and lower it when
it is negative. If excess demand price is positive, the producer realizes
that consumers are offering a higher price than he is charging and con-
cludes that he can profitably increase the quantity supplied. Analogous
reasoning holds for the converse case. Equilibrium is stable in the
Marshallian sense if an increase in quantity reduces the excess demand
price, i.e., if

9 — Pig) = D¥g) ~ 57(@) <0 (4-45)

Since the demand curve is negatively sloped, (4-43) and (4-45) are
both satisfied if the supply curve has positive slope.! The ordinary
supply-demand situation is therefore stable according to both the
Walrasian and Marshallian definitions.

If the supply curve is negatively sloped, an equilibrium_cannot be
stable according to both definitions.? Dividing both sides of (4-45) by
DY (q) - 8~¥(g),

11 <
S~¥(@ D (g9
In the usual diagram in which quantity is plotted along the horizontal

axis, D~Y(q) and S~'/(q) are the slopes of the demand and supply curves.
By the inverse-function rule, '

0 (4-46)

b = D® g = S®
Substituting these values into (4-46),
S'(p) — D'(p) <O (4-47)
Conditions (4-43) and (4-47) cannot be fulfilled six;;uitaneously. If an

tIf y = f(z) can be solved for z, the solution is written as z = f~I(y). The func-
tion denoted by f~1is the snverse of the function f(z).

1 The sign of D’(p) is the same as the sign of D~V (g); the sign of S’(p) is the same
as that of 8~(¢). See the inverse-function rule, Sec. A-2,

2 The supply curves which may have negative slope are the supply curve for primary
inputs such as labor and product supply curves in the presence of external economies
or diseconomies, Unstable equilibria may occur only in these cases.
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equilibrium is stable in the Walrasian sense, (4-43) holds, and the equi-
librium is unstable in the Marshallian sense. The converse statement
holds if (4-47) is fulfilled.* '

It follows from (4-43) and (4-47) that equilibrium is stable in the
‘Walrasian sense if the supply curve is steeper than the demand curve
[8-(¢) > D~*(g) or D'(p) > S'(p)]
and unstable in the opposite case.
Equilibrium is stable in the Marshal-
lian sense if the supply curve is less
steep than the demand curve and un-
stable in the opposite case. These
concepts are illustrated in Fig. 4-10.
At the price p° the excess demand
is M N; therefore competition among
consumers will tend to raise the
price, and excess demand diminishes.
However, the nuantity supplied at
the price of p°is ¢°; the corresponding

F1GURE 4-10 excess demand price RM is positive.

The quantity produced will tend to

increase, but the excess demand price increases too. The actual price
and quantity move farther away from equilibrium.

A negatively sloped supply curve may.intersect the demand curve at
several points. Such a case is depicted in Fig. 4-11a. Each intersection
defines an equilibriura. The successive equilibrium points 4, B, C are
alternately stable and unstable.? The supply curve is steeper than the
demand curve at 4, and the equilibrium is stable at this point. Another
intersection B can exist only if the supply curve becomes less steep than
the demand curve; B is therefore unstable. By similar reasonirg, C is
again stable.

The stability condition (4-43) is no longer sufficient in unusual cases
such as the equilibrium point B in Fig. 4-11b. Excess demand is positive
at prices less than p° and also at prices higher than p°. The price will
tend to rise for downward or upward deviations from equilibrium.
Point B is therefore stable for downward and unstable for upward price
deviations. Point A is stable, B semistable, and C' unstable.

Assertions about the stability of equilibrium depend upon the assump-

P

1 No contradiction exists between the two conditions if the supply curve has posi-
tive slope. When (4-45) is divided by D~V (g) + S~ (¢) the direction of the inequal-
ity in (4-46) and (4-47) is reversed because of the division by a negative number,
Inequality (4-47) becomes S'(p) — D’(p) > 0, which is the same as (4-43).

2The argument is based on the Walrasian behavior assumption. An analogous
argument can be made in terms of the Marshallian assumption.
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tions made concerning the mechanism of the market and the behavior of
the participants. One cannot say a priori whether the Walrasian or
Marshallian condition is more plausible in reality. In any concrete situ-
ation stability of equilibrium can be assessed only after empirical informa-
tion has beeh gathered concerning the behavior patterns of the participants
in the market.

p ' p

{a) 15}
Ficure 4-11

Dynamic Stability. The static stability conditions are stated in terms
of the rate of change of excess demand with respect to price or the rate of
change of excess demand price with respect to quantity. The static
analysis of stability makes no attempt to investigate the time path of the
adjustment process. One would not expect instantaneous adjustments in
the present model. If the initial price is not equal to the equilibrium
price, it changes, and recontracting takes place. If the new price is still
different from the equilibrium price, it is again forced to change. The
dynamic nature of the recontracting model may be formally stated as
follows. When the market opens some consumer makes an initial bid.
This bid is recorded and made public by the auctioneer. After this price
is announced, the participants have a specified amount of time (say, one
hour) to enter into favorable contracts with each other at this price.
After one hour new bids are permitted. The first new bids are recorded
and made public by the auctioneer, and a one-hour period of recontract-
ing begins. This process continues until equilibrium is reached. A
price is observed in each one-hour period, and the analysis of dynamic
stability investigates the course of price over time, i.e., from period to
period.! Equilibrium is stable in the dynamic sense if the price con-

1 The pri‘ées which are recorded from period to period are potential, rather than

realized, prices until equilibrium is reached. Aslong as D 7 8, none of the contracts
is executed, and recontracting continues.
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verges to (or approaches) the equilibrium price over time; it is unstable
if the price change is away from equilibrium. Dynamic stability can
also be defined in terms of the convergence of the quantity supplied to
the equilibrium quantity. The former definition corresponds to the
Walrasian and the latter to the Marshallian definition of stability.

Assuming the Walrasian mechanism to operate in the market, a positive
excess demand tends to raise the price. This is expressed mathematically
as

Pt — D1 = kE(pe—) (4-48)

where p; is the price in period £ and ¥ a positive constant. Equation
(4-48) expresses one possible type of behavior for buyers and sellers.
Assuming that there is a positive excess demand E(p.—,) in period (¢ — 1),
it expresses the assumption that an excess demand of E(p¢_1) induces
buyers to bid a price p; = p;1 + kE(pe—1) > pe—y in the following period.
Assume that the demand and supply functions are

Dz = apg + b (4'49)

S = Ap:. + B (4-50)
Excess demand in period (¢ — 1) is

E®.) = (@ — A)ptn +b— B
Substituting this into (4-48),
Pt — Pe1 = kl(a — A)pe—1 + b — B] :

or pe= [ + k(a — A)pes + k(b — B) (4-51)
The first-order difference equation (4-51) describes the time path of price
on the basis of the behavior assumption contained in (4-48). Given the
initial condition p = po when { = 0, its solution is

b—-B ‘ b—B
P¢=(P0—A —a) [1 +k(a‘A)]'+A—E (4-52)

Excess demand is zero in equilibrium. The equilibrium price p* can be
found from (4-49) and (4-50) by setting D¢ — S¢ == 0. Solving for
P = P,

_b—B

T A-—a

Therefore the constant term in (4-52) is the equilibrium price. The
equilibrium is stable if the actual price level approaches the equilibrium
level as ¢ increases. The price level converges to p¢ without oscillations
if 0 <1+ k(a — A) < 1. The right-hand side of this inequality holds
if

]

a< A (4-53)
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The left-hand side holds if

1
- k<A—a

(4-54)

Condition (4-53) is automatically fulfilled if the supply curve has posi-
tive slope (A > 0). The price level movesupward over time if the initial
price is less than the equilibrium price: [py — (b — B)/(4A — a) < 0],
and downward if it is greater. If the slope of the supply curve is negative,
stability requires that the slope of the demand curve (1/a) be algebraically
greater than the slope of the supply curve (1/A4); i.e., the supply curve
must cut the demand curve from above.! Equilibrium is unstable if
the supply curve cuts the demand curve from below, and any deviation
from equilibrium is followed by increasing deviations from it. If k is
sufficiently large and a — A is negative, 1 + k(a — A) is also negative,
and the price level must oscillate over time.?

Both static and dynamic stability depend upon the slopes of the
demand and supply curves. Dynamic stability depends in addition on
the magnitude of the parameter £ which indicates the extent to which the
market adjusts to a discrepancy between the quantities demanded and
supplied per urit of time. A large k indicates that buyers and sellers tend
to “over-adjust’’: if excess demand is positive, bidding by buyers is suf-
ficiently active to raise the price above the equilibrium level. For exam-
ple, assume that the equilibrium price is 5 dollars and the actual price bid
by buyers is 3 dollars in a given period. Buyers realize that there is an
excess demand, but overestimate the adjustment necessary to equilibrate
the market and bid 6 dollars in the following period. Sellers become
aware of the excess supply and lower their price, but also overestimate the
extent of the required adjustment: the price falls to 4 dollars. Each
adjustment is in the right direction, but is exaggerated in magnitude.
Dynamic analysis thus takes into account the strength of reactions to
disturbances.

The dynamic stability of equilibrium can be analyzed diagrammatically
in the following fashion. Plotting price along the horizontal axis, the
dotted line in Fig. 4-12a represents the excess demand function. Assum-
ing that £ < 1, the solid line represents kE(p;—1). The 45-degree line in
Fig. 4-12b represents the locus of points defined by p. = p,—;. The

1 Equations (4-49) and (4-50) state the demand and supply functions with price as
the independent variable. Quantity is measured along the horizontal axis and price
along the vertical in the customary diagram. Thus the slope of the demand curve is
1/a, and the slope of the supply curve, 1/A4.

2If 1 4+ k(a — A) is greater than —1 (but less than zero), the amplitude of the
oscillations decreases over time, and the time path approaches the equilibrium level.
If it is less than —1, the market is subject to increasing price fluctuations.
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function
Pt = Py + kE(pe) = f(pear) (4-55)

is obtained by adding the ordinates (corresponding to the same abscissa)
of the solid lines in Figs. 4-12a¢ and 4-12b. The result is shown in Fig.
4-12¢. Assume that the initial price is pe. The price in the following
period, pi, is given by the ordinate of the point on f(p.1) directly above
Po. In order to calculate the price in the following period, p; is trans-
ferred to the horizontal axis by drawing a horizontal line from K to L.

pt Pt
45°
\\\
.
.,
O -
< Py N Py1 + REp;_1)
\\\kEtp;_ll M
\Efpg...ﬂ § 21 ffz ;
45° %
0 P_1 9po b1 P2 Py
{x) (b lc)
FIGURE 4-12

L lies on a 45-degree line, and the abscissa of each point on it equals its
ordinate. The price p; is found by moving vertically to M on f(pi).
All subsequent prices are found in this manner. The price level con-
verges in the present example to the equilibrium price given by the inter-
section of f(p:-1) and the 45-degree line.! The stability of equilibrium
depends upon the slope of the excess demand function and the magnitude
of k. If the excess demand function in Fig. 4-12a were positively sloped,
the function f(ps—1) would cut the 45-degree line from below, and the
equilibrium would be unstable. If the excess demand function had nega-
tive slope, as in Fig. 4-12a, but k were very large, f(p;—;) would have nega~
tive slope, and the price level would oscillate.

A dynamic statement of the Marshallian stability condition can be
formulated in similar fashion. The conclusions of the static analysis of
stability are maintained: equilibrium is dynamically stable in both the
Marshallian and Walrasian schses if the supply function has positive
slope; equilibrium is stable according to one and unstable according to
the other definition if the supply function has negative slope.

The static and dynamic approaches to stability are fundamentally

11t can be easily verified that point N is the equilibrium point. At N, p; = pea
(for the 45-degree line) and p¢ = pe—1 + kE(p:-1). Substituting p:.—. for py,
Pem1 = Pe—1 + kE(pt—l)
or kE(p:—;) = 0. Excess demand equals zero at point N.
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different. Static stability need not imply dynamie stability, but dynamic
stability implies static stability. The reason for this diserepancy is that
dynamic analysis is a more inclusive tool for investigating the properties
of equilibrium. Static analysis concerns itself only with the direction of
the adjustment and neglects the magnitude of the adjustment from period
to period.
Let
D, = —0.5p; + 100
S: = —0.12); + 50

and let k¥ = 6.f The equilibrium is stable in the static Walrasian sense

if D’(p) — S’(p) < 0. Substituting from the demand and supply funec-

tions, —0.5 — (—0.1) = —0.4 < 0. Dynamic stability requires —1 < 1
+ k(a — A) < 1. Substituting the appropriate values gives

14+k(@— A) = —14

and the required left-hand inequality does not hold. The market will
exhibit explosive oscillations.

4.8. Dynamic Equilibrium with Lagged Adjustment

Producers’ supply functions show how they adjust their outputs to the
prevailing price. Since production takes time, the adjustment may unot
be instantaneous, but may become perceptible in the market only after a
period of time. Agricultural commodities often provide good examples of
lagged supply. An individual farmer may base his production plans on
the market price in the fall; the output materializes only during the
following summer.

Lagged Adjustment in a Single Market. Consider the market for
winter wheat as an exampie of a market with lagged supply reaction.
Production plans are made after the harvest. The output corresponding
to these production plans appears on the market a year later. Assume
that the demand and supply functions are

D:=ap.+b (4-56)
S: = Ap.1 + B (4-57)

The quantity demanded in any period depends upon the price in that
period, but the quantity supplied depends upon the price in the previous
period. It is assumed that the quantity supplied in period ¢ is always
equal to the quantity demanded in that period; i.e., p; adjusts to bring
about the equality of D; and S: as soon as S; appears on the market.

t The high value for k indicates that buyers and sellers react violently to disturb-
ances,
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This implies that no producer is left with unsold stocks and no consumer
with an unsatisfied demand. Therefore

Dg - S; = 0
Substituting from (4-56) and (4-57),

ap:+b— Ap.n — B =0
Solving for p,,
B—-b

D = %Ih—-! + (4-58)

Assuming that the initial condition is given by p = po when ¢ = 0, the
solution of the first-order difference equation (4-58) is

B — A, B—b
?t"(?o“‘a_A) (-a) +a—A (4-59)
The solution (4-59) describes the path of the price as a function of time.
Some of the possible time paths are illustrated in Figs. 4-13a and 4-13b.
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Ficure 4-13

Assume that the initial supply does not equal the equilibrium amount
as a result of a disturbance such as a drought. Let the initial supply
equal o in Fig. 4-13a. The corresponding initial price is ps. Consumers
demand poM,, and this quantity equals the initial supply. The price po
induces entrepreneurs to supply the quantity po/N; in the next period.
The price falls instantaneously to p;.. The quantity demanded is then
p1M: (which equals poN;, the quantity supplied in that period). In
the following period the price py induces a supply of p1Ns. This process
continues indefinitely, producing a cobweb pattern. The price level
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fluctuates, but converges to the equilibrium level indicated by the inter-
section of the demand and supply curves. The same mechanism operates
in Fig. 4-13b, but the price fluctuations tend to become larger and larger:
the market is subject to explosive oscillations.

The conditions for convergence to an equilibrium price can be ascer-
tained from (4-59). The Market is in dynamic equilibrium if the price is
stable from period to period, i.e., if p; = pi—i. The constant term
(B —0b)/(a — A) in (4-59) is the equilibrium price.! The slope of the
demand curve (1/a) is always negative. If the supply curve is positively
sloped, A/a is negative, and the price level will fluctuate. The oscil-
lations will decrease in amplitude, have constant amplitude, or increase
in amplitude according to whether |A/a| £ 1. Therefore the oscillations

will increase in amplitude if |A| > |a| or if %I > TIIII- The oscillations

will increase if the slope of the demand curve has greater absolute value
than the slope of the supply curve.
The oscillations decrease in the oppo- P \
site case and are of constant magnitude

if the absolute values of the slopes are
equal. Inthespecial caseinwhich the
supply curve is negatively sloped, A/a
is positive, and the price level will not
oscillate, but will either increase or de-
crease continually.? The same condi-
tions hold as above: the price will con- | ' D
verge to its equilibrium value if the
supply curve is steeper than the de- s

mand curve (Fig. 4-14), and it will be Py : p
explosive upward or downward if it is FIGURE 4-14

less steep.

The conditions for dynamic stability are not the same as in the simpie
dynamic case where stability depends on the parameter k in addition to
the slopes of the demand and supply curves. Buyers and sellers react
to excess demand in the simple dynamic case. Excess demand is zero in
cobweb situations. Buyers react to given supplies in terms of the prices
they offer. Sellers respond to given prices in terms of the quantities they
supply in the following period.

Lagged Adjustment in Two Interrelated Markets. Interesting oscilla-
tory behavior can be obtained in the case of two interrelated markets. A
case in point is the noted ‘‘corn—hog’’ cycle. A simplified versionof this

1 8et Dy = S¢ and p:1 = p: in (4-56) and (4-57) and solve for p..
2 The price may remain constant if the demand and supply curves coincide. No
unique equilibrium is defined in this case.

™,
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type of market is discussed below. The complete solution is not derived,
and the discussion is confined to developing the conditions under which
the two markets are stable or unstable.

Let the subscripts ¢ and h refer to corn and hogs respectively. The
demand and supply functions for corn are

D, = a1p. + by (4-60)
S: = anPei—1 + b2 (4-61)

The corn market possesses the same characteristics which were assumed
for the winter wheat market. The demand for corn in any period
depends upon the price of corn in the same period, and the corn supply is
lagged and depends upon the corn price in the previous period. The
demand and supply functions for hogs are

Dy = anpn + b3 (4-62)
Skt = @uPre—1 + @42Pct—1 + bs (4-63)

The demand for hogs is a function of the price of hogs in the same period.
The supply of hogs depends both upon the price of hogs and the price of
corn in the previous period. Equation (4-63) contains two assumptions
concerning the behavior of hog producers: their production plans for any
period ¢ depend upon (1) the price of their output at time (¢ — 1), and
(2) the price of corn at time (¢t — 1). The second assumption reflects the
fact that corn is an important input in producing hogs. The price of
corn thus tends to affect the hog producers’ production plans. A change
of p..—1 results in a shift of the conventional hog supply function.

Equations (4-60) to (4-63) are a system of four simultaneous difference
equations which must be solved in order to derive the conditions under
which p.; and px: approach their equilibrium values. Equating aggregate
supply and demand in each market,

Dct - Sct =
Dy — Spe =0
Su_bstituting from (4-60) — (4-63),
@11Dct — Q21Pep—1 = b2 — 1 (4-64)
@31Ph — Ga1Dhi—1 — Qa2Dot—1 = by — bs (4-65)

Equations (4-64) and (4-65) describe the behavior of prices in the corn
and hog markets respectively. The behavior of the corn price is inde-
pendent of the hog price, since the latter does not enter (4-64). The corn
cycle is self-contained and independent of whatever fluctuations may exist
in the movement of the hog price. However, the hog price in period ¢
depends upon the corn price in period ({ — 1). The hog cycle is not inde-
pendent of the corn cycle. In order to find a solution for ps, one must
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derive an equation which does not contain the price of corn. Solving
(4-65) fOl‘ DPe,i—1,

Poss = @s1Pn — GarDhi—1 — Da + bs (4-66)

A4z

Equation (4-66) holds for any value of ¢; thus,

a3 Ph,e1 — As1Pre — by + by (4-67)

Pa = Q42

Substituting (4-66) and (4-67) into (4-64),

pae — (94‘—‘ + “”1) Phis + 0 P = K (4-68)
31 a1y

where K = [(bz — b1)as2 + (bs — b;3)(ann — ag,)]/auasl. The behavior

of price in the hog market is described by a second-order difference equa-

tion, and two initial conditions are necessary to obtain a general solution.

The general solution of (4-68) is of the form

Pre = cityt + cazg® + @ (4-69)

where ¢, and ¢, are constants determined in accordance with the initial
conditions and where & is the particular solution (see Sec. A-5). Whether
the time path is explosive or convergent depends upon the magnitudes of
71 and 72 which are the roots of the quadratic equation derived from (4-68)
by neglecting the constant term on the right-hand side. The homyo-
geneous equation corresponding to (4-68) is ‘

Pt — (&11 + am) Phi—1 +

Ph iz = 0 (4-70)
31

Assume that the solution is of the form z* Setting pue = z* in (4-70)
and dividing through by z*-2,

Qs 123 aza
2 — (__1 4 2 g 4 222 _ (4-71)
as1 an 11031

The solution of the quadratic equation (4-71) is

2
a a a a a2104
._4}._*._2_1.}_.\/._534_.33 — 422104
. 93 an a3 @11 11031
- 2
aa s @n _ On
Q1 Gy \Gn  au

2

Therefore
as ag1
L= == g = —=

12 S Q11
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The time path of the hog price will converge if both roots are less than
unity in absolute value. This requirement isfulfilled if the demand curve
is less steep than the supply curve in both markets. Consequently the
time paths of prices in the two markets laken separately must converge.
The assertion that |z;| < 1 is a necessary condition for dynamic stability
in the corn market. The assertion that |z, < 1 is a necessary condition
for dynamic stability in the hog market, considering corn prices to be
constant. The two assertions together are necessary for stability in the
hog market if the effect of changes in corn prices is considered. Stability

P, b
¢ h Sro Sp2 Sp1
E
Se Pyo [-=-> F /
L M
Pol~~—~——-
T G H
R N ) J I
I/
/ D, Dy

Y 90 % 0 %o /A

{a) : {b)
FiGUre 4-15

in the two interrelated markets taken together implies stability in each of
them separately, but stability in the corn market alone does not imply
stability in both.

A diagrammatic representation may clarify the analysis. Let Fig.
4-15a represent the corn market and Fig. 4-15b the hog market. A
change in the price of corn shifts the supply curve for hogs according to
(4-63). Denote the initial quantities in the corn and hog markets by
gco and gno and the initial prices by pco and pso respectively. Assume that
the relevant supply curve for hogs is Sy if the price of corn is p,. The
movement in the corn market is traced out by the lines LM and MN in
TFig. 4-15a. The corresponding movement in the hog market is EF, FG.
But the price of corn has fallen by the amount M/ N. The supply curve
for hogs is therefore shifted to the position Sy, and the subsequent move-
ment in the hog market is from G to H and from H to I. During the
same time, the supply of corn is reduced by RN, and the corn price is
raised by RT. This increase in the price of corn shifts the hog supply
curve in the reverse direction to position S;;, and the hog supply is
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reduced by the amount IJ. These results are based on the assumption
that as2 in (4-63) is negative, i.e., the higher the price of corn in period
(t — 1), the lower the supply of hogs in period {. The conclusion that
over-all stability requires bothmarkets to be stable separately is now clear:
if the corn market were unstable, fluctuations in the price of corn would
tend to become larger and larger, and the hog supply curve would also
shift by larger and larger amounts in subsequent periods. The hog
market could not be stable. Even if the corn market were stable, and
consequently the successive shifts in the supply curve for hogs were of
decreasing magnitude, the price of hogs would still exhibit increasing
oscillations if the demand curve for hogs were steeper than the supply
curve.

If hog producers purchased a sizeable portion of the total corn supply, it
might be reasonable to assume that the demand for corn depended upon
the prices of both corn and hogs. This assumption would increase the
complexity of the model, but would not alter the basic tools of analysis.?

4-9. Summary

The theory of perfect competition analyzes the factors that determine
price and quantity in markets in which (1) the product is homogeneous
and buyers are uniform, (2) buyers and sellers are numerous, (3) buyers
and sellers possess perfect information, (4) there are free entry and exit
for both buyers and sellers. The participants in the market act as if
they had no influence on the price, and each individual regards it as a
given parameter.

The price and the quantity bought and sold are determined by supply
and demand. The aggregate demand function is derived irom the
demand functions of individual consumers, which, in turn, are derived
from the individual consumers’ first-order conditions for utility maximi-
zation. The aggregate supply function is derived from individual supply
functions which are based on the individual firms’ first-order conditions
for profit maximization. Equilibrium is attained when demand equals
supply.  The equality of demand and supply guarantees that buyers’
and sellers’ desires are consistent. The analysis of a perfectly competi-
tive market is extended to spatially distributed firms and some problems
of taxation.

The analysis of perfectly competitive factor markets is similar to the

1 The results of Sec. 4-8 are based on the assumption that the demand and supply
functions are linear. If this assumption is relaxed, the variety of possible results
increases considerably. The analytical techniques necessary to handle nonlinear
cases are correspondingly more difficult and cannot be discussed within the confines
of this chapter.
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analysis of commodity markets. The equilibrium price-quantity combi-
nation is determined by demand and supply, and the equality of demand
and supply ensures the consistency of buyers’ and sellers’ desires. The
demand function for a factor is derived from the individual firms’ first-
order conditions for profit maximization. The supply function for a
primary input such as labor is derived from the individual laborers’
first-order conditions for utility maximization. Equilibrium in a factor
market ensures that the price of a factor equals the value of its marginal
product.

The existence of an equilibrium point does not guarantee its attain-
ment. The analysis of the stability of equilibrium is concerned with the
effects of disturbances. Equilibrium is stable if a disturbance is followed
by a return to equilibrium and unstable if it is not. The static analysis
of stability considers merely the direction of the adjustment which follows
the disturbance; dynamic analysis considers the degree or strength of the
adjustments as well. The conclusions of static and dynamic analysis
differ to the extent that a market which is stable according to static
analysis may be dynamically unstable. Both analyses make assump-
tions about the behavior of buyers and sellers. According to the assump-
tion of the Walrasian stability condition buyers and sellers react to excess
demand. According to the Marshallian assumption, sellers react to
excess demand price. These assumptions are not generally equivalent,
and their plausibility must be verified empirically. Special dynamic
problems arise in markets in which supply reactions are lagged. In
markets of this type both buyers and sellers are assumed to react to price.
The time path of the market price oscillates and produces a cobweblike
pattern if the supply function has positive slope; an equilibrium is stable
if the supply curve is more nearly vertical than the demand curve. The
analysis can also be extended to special cases in which two markets are
interrelated, and stability conditions can be derived in analogous fashion.
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CHAPTER 5

MULTIMARKET EQUILIBRIUM

The analysis of price determination and allocation can be performed on
three levels of increasing generality: (1) the equilibrium of an individual
consumer or producer, (2) the equilibrium of a single market, and (3)
the simultaneous equilibrium of all markets. The first type of analysis is
the subject of Chapters 2 and 3, and the second is thesubject of Chapter 4.
The present chapter is devoted to the third. '

A theoretical analysis contains data, variables, and behavior assump-
tions that allow the determination of specific values for the variables once
the data are known. Consider the ansalysis of an individual consumer.
The data are his utility function, his income, and the prices cf all com-
modities and factors. The variables are the quantities of the commodi-
ties he purchases and consumes, and the basic behavior assumption is his
desire to maximize utility. The analysis of an individual producer is
similar. The data are his production function and the prices of all com-
modities and factors. The variables are the quantities of the inputs he
purchases and the quantity of the output he produces and sells. The
behavior assumption is his desire to maximize profit. The analysis of an
individual unit sheds no light upon the determination of perfectly com-
petitive prices, however, since all prices are considered parameters.

The analysis of equilibrium in a single market is somewhat more gen—
eral. A single price is determined as the result of optimizing behavior on
the part of a large number of consumers and a large number of producers.
The data for the analysis of equilibrium in a commodity market are the
utility and production functions of all consumers and producers, the
incomes of all consumers, the prices of all factors, and the prices of all
commodities other than the one under consideration. The explicit
variables are the price of the commodity and the purchases and sales of
each consumer and producer. The condition that the market must be
cleared, i.e., aggregate demand must equal aggregate supply, is added to
the assumptions of utility and profit maximization. The analysis of a
single factor market is similar except that the consumers’ incomes are
determined by their factor sales.

A consumer’s demand functions are derived from his equilibrium con-
ditions for utility maximization. If he purchases and consumes two

126



MULTIMARKET EQUILIBRIUM 127

commodities, his demand for each is a function of both prices and his
income:

D, = Dl(plrp%’:y) D, = D2(p1)p2}y)
In a single-market equilibrium analysis for €., P and y become param-
eters, and D; becomes a function of p; alone:

D; = Dx(pl,pg,y") D, = DZ(phpgyyo)

As a result of these assumptions D, also becomes a function of p, alone,
though this relation is seldom explicit. If the consumer increases his
expenditure on @,, he must reduce his expenditure on @, by virtue of his
budget constraint. The quantities that the consumer purchases of all
commodities other than the one under consideration are implicit variables
for the equilibrium analysis of a single market. Similar considerations
apply to producers. The quantities of the inputs a producer employs
become functions of his output price alone.

Every factor and commodity price is a variable for the analysis of its
own market and z parameter for the analysis of all other markets.
There is no assurance that a consistent set of prices will result from a
piecemeal solution, taking one market at a time. It is only by chance
that the price assumed for @; in the analysis of the market for @, will be
the same as the price determined in the analysis of the market for @; in
isolation.

All markets are interrelated. Consumers spend their incomes for all
commodities, and the demand for each commodity dependsuponall prices.
If the goods @: and Q. are gross substitutes, an increase in the price of @,
will induce consuiners as a whole to substitute @ for @;. If they are
complements, an increase in the price of @1 will induce consumers to
restrict their consumption of both goods (see Sec. 2-6). Pairs of inputs
may also be defined as substitutes or complements. Furthermore, pro-
duction and consumption are not independent. Consumers earn their
incomes from the sale of labor services and other productive factors to
producers. As a result of these interrelationships, equilibria for all
product and factor markets must be determined simultaneously in order
to secure a consistent set of prices.

The data for the determination of a general multimarket equilibrium
are the utility and production functions of all producers and consumers
and their initial endowments of factors and/or commodities. The
variables are the prices of all factors and commodities and the quantities
purchased and sold by each consumer and producer. The behavior
assumptions require utility and profit maximization together with the
condition that every market be cleared.

A multimarket equilibrium analysis is developed for a pure-exchange
system in Sec. 5-1 and then extended to include production in Sec. 5-2.
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The problems of absolute price determination and the choice of a stand-
ard of value are considered in Sec. 5-3. Static and dynamic stability
conditions are extended to the multimarket system in Sec. 5-4. Sec. 5-5
contains a brief discussion of the existence and uniqueness of equilibrium
solutions, and the empirically oriented input-output system is described in
Sec. 5-6.

b-1. Pure Exchange

Pure exchange deals with the pricing and allocation problems of a
society in which » individuals exchange and consume fixed quantities of
m commodities. Each individual possesses an initial endowment of one
or more of the commodities and is free to buy and sell at the prevailing
market prices. Purchases and sales may be interpreted as barter trans-
actions. Imagine a consumer whose initial endowment consists of twenty
pears and three apples and assume that there are no other commodities.
The prevailing market prices determine the terms on which he can barter
pears for apples or apples for pears. If the prices are 5 cents for pears and
10 cents for apples, he can obtain one apple by selling two pears or two
pears by selling one apple. Given market prices and initial endowments,
each consumer’s trading will be determined by his ordinal utility function.
It would be a rare case if none of the consumers was able to increase
his satisfaction level through exchange. A consumer will desire to
sell a portion of his initial endowment of some commodities and add to
his stocks of others aslong as he is able to incressse his utility index.

Equilibrium of the ¢th Consumer. The excess demand of the 7th con-
sumer for the jth commodity (Z;;) is defined as the difference between the
quantity he consumes (g;;) and his initial endowment (gf}):

Es=qi—g¢; G=1,...,m (5-1)
If his consumption of @; exceeds his initial endowment, his excess demand
is positive; he purchases Q; in the market. If his consumption is less
than his initial endowment, his excess demand is negative; he sells Q;
in the market. It is not possible to determine the signs of his excess
demands a priori. He may either sell or buy ;. The sharp distinction
between buyers and sellers used throughout Chapter 4 is no longer
possible. '

The consumer’s’'income equals the value of his initial endowment:

i = z il (5-2)

i=1 :
This is the amount of purchasing power that he would obtain if he sold
his entire endowment. In order to relate the present analysis to that of
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Chapter 2, assume for the moment that he sells his entire endowment,
and uses the proceeds to purchase commodities at the prevailing market
prices. The value of the commodities that he purchases and consumes
equals his income as given by (5-2):

m

Yi = z Digii (5-3)

i=1
His purchases will most likely include some of the commodities that he
sold, but this does not matter since the acts of buying and selling are
assumed costless. The self-canceling transactions can be omitted with-
out affecting the analysis. Therefore, it is henceforth assumed that the
consumer does not both buy and sell the same commodity. His budget
constraint can be expressed in terms of his excess demands. Subtracting
(6-2) from (5-3) and substituting from (5-1),

m

z Pi(gis — qf) = 2 pil =0 (5-4)
j=1 i=1

The net value of the consumer’s excess demands must equal zero. His

budget constraint in this form states that the value of the commodities

he buys must equal the value of the commodities he sells.

The equilibrium analysis of the consumer as developed in Chapter
2 needs slight modification to be applicable to a consumer in a pure-
exchange economy. The consumer’s utility index is a function of
the quantities of the commodities he consumes, but can be stated as a

function of his excess deiands and initial endowments by substituting
g = By + ¢ from (5-1):

Us =Ui(ga, . . . Qim) = UEar + q?,, B q?m) (5-5)

The consumer desires to maximize the value of hisutility index subject to
a budget constraint. Using the form of the utility function given by (5-5)
and the budget constraint (5-4), form the function

Vi=UiBa+gqh, .- ., Bm+gds) — A (z P:'E'ﬁ) (5-6)
) &

and set the partial derivatives of V; with respect to the excess demands
and X equal to zero:

aV: _ aU;
3E,; _ oE,

__ (2 ) =0 ‘_5‘”

—My=0 (G=1...,m
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Since dE;;/dg;; = 1, the first set of equations of (5-7) can be expressed in
terms of the utility-index increments:

OBy _, _ 3U.
aE,',' dq{j Pi = aq ;

The first-order conditions for the individual consumer are the familiar
ones developed in Chapter 2. He buys and sells commodities until the
rate of commodity substitution for every pair of commodities (the ratio
of their utility-index increments) equals their price ratio. Second-order
conditions require that the relevant bordered Hessian determinants
alternate in sign (see Sec. 2-7).

If the second-order conditions are satisfied, the 7th consumer’s excess
demand functions can be derived from the first-order conditions. Use
one equation of (5-7) to eliminate X and solve the remaining m for the
excess demands as functions of commodity prices:

E; = Ey(py, . . . ,Dm) (G=1,...,m) (5-8)

The consume:’s excess demands depend upon the prices of all com-
modities. If his endowment of Q; is not zero, his excess demand may be
positive for some sets of prices and negative for others.

It was proved in Sec. 2-4 that consumer demand functions are homo-
geneous of degree zero in income and prices. A similar theorem can
be proved for the pure-exchange barter economy: the consumer’s excess
demand functions are homogeneous of degree zero in prices, i.e., the
excess demands will remain unchanged if all prices are increased or
decreased by the same proportion.! A doublingof all prices would double
both the value of the consumer’s initial endowment and the cost of the
commodities he purchases. If the consumer’s endowment consisted of
pears and apples and their prices increased from 5 and 10 cents to 10
and 20 respectively, he could still obtain one apple for two pears or two
pears for one apple. In a barter economy of this type the consumer is
interested in market exchange ratios rather than absolute price levels.

A graphic description of an individual consumer’s equilibrium is con-
tained in Fig. 5-1. His initial endowment is given by the coordinates of
R. His income line is the locus of all quantity combinations with the
same market value as his initial endowment. If y{* is his income line, he
will maximize utility by moving to T. He will sell RS units of @, and
purchase ST units of @, in moving from R to 7. His excess demand for
& is positive, and his excess demand for Q. negative.

—Mi=0 @G=1...,m)

1The proof is similar to that used in Sec. 2-4. Substitute £p; into the budget con-
straint in (5-6), set its partial derivates equal to zero to obtain a system similar to
(5-7), divide the first (m — 1) equations by the mth to eliminate A and k, and factor &
out of the (m + 1)th.
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Assume that the price of §; increases relative to the price of @; and
that the consumer’s new income line is 3. Point L is the position of
maximum utility on this income line. The consumer will sell MR units
of ¢, and purchase ML units of Q.
in moving from R to L. A price
change has resulted in a change of
the signs of hisexcess demands. His
excess demand for @, is now nega-
tive, and his excess demand for Qs
positive.

The irrelevance of absolute price
levels is obviousin the graphic analy-
sis. The consumer’s initial endow-
ment is given by a point representing
physical quantities. Hisincome line
is drawn through this point witha
slope equal to thenegativeof theratio
of commodity prices. A propor-
tionate change of both prices will leave their ratio unaffected, and nelther
the slope nor the position of the income line will change.

Market Equilibrium. An aggregate excess demand function for Q,-' is
constructed by summing the individual excess demand functions of the
7 consumers:

9

i1

FI1GURE 5-1

n i
E; = z E’,;,-(pl, c e e 3Diy - e . ,pm) = E,-(pl, Y < TR ,pm)g
i=1: -

Aggregate excess demand is also a function of the m commodity prices.
Partial equilibrium is attained in the jth market if the excess demand for
Q; equals zero when the remaining (m — 1) prices are assigned fixed
values:

Ej(p?, o v e 3Piy o . . )p?n) =0 (5'9)

Condition (5-9) is equivalent to the condition that supply equal demand.
The equilibrium price for @;is obtained by solving (5-9) for p; and depends
upon the prices assigned to the other (m — 1) commodities. The
purchases and sales of the individual consumers are determined by substi-
tuting the equilibrium price into the individual excess demand functions.

Multimarket Equilibrium. Now treat all prices as variables and con-
sider the simultaneous equilibrium of all m markets. Aggregate excess
demand must equal zero in every market:

Eip, ... pn)=0 (G=1,...,m) (5-10)
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The equilibrium conditions form a system of m equations in m variables.
However, (5-10) contains only (m — 1) independent equations and can-
not be solved for the absolute values of the m prices.

The budget constraints of each of the n consumers are not equilibrium
conditions, but are identities satisfied for any set of prices. Summing
the budget constraints given by (5-4) for all consumers:

) il = y pill; = 0 (5-11)
=1 i i=1

since E; = z E;;. The aggregate form of the budget constraint is also
i=1 :

an identity satisfied for any set of prices. The equilibrium conditions

require that every aggregate excess demand equal zero. Clearly if

E; = 0, the value of the excess demand for Q; (;E;) must also equal zero.

If the first (m — 1) markets are in equilibrium, the aggregate value of

their excess demands equals zero:

m—1
Z »E; =0 (5-12)

=1

Subtracting (5-12) from (5-11),
m m—1
Z p}'EJ' - 2 pJ'EJ' = mem =0
i=1 i=1

It follows that E,. = 0, since pn. # 0. If equilibrium is attained in
(m — 1) markets, it is automatically attained in the mth.

Multimarket equilibrium is completely described by any (m — 1)
equations of (5-10). The addition of an mth equation which is depend-
ent upon the other (m — 1) adds no new information. The absolute
values of the m commodity prices cannot be determined frcm the (m — 1)
independent equations. The inability to determine absolute price levels
should not be a surprising result if it is remembered that consumers are
interested only in exchange ratios in a barter-type economy.

Since the excess demand functions are homogeneous of degree zero in
prices, the number of variables can be reduced to (m — 1) by dividing the
m absolute prices by the price of an arbitrarily selected commodity.
If Q, is selected, (5-10) may be rewritten as

E,=E,(1,£—f;;g—:ﬁ) (]=1,,m) (5—13)

The variables of (5-13) are the prices of @; (j # 1) relative to the price of
@i, i.e., the exchange ratios relative to @;. This system of (m — 1)



MULTIMARKET EQUILIBRIUM 133

independent equations can generally be solved for the (m —.1) exchange
ratios relative to any arbitrarily selected commodity.! In Sec. 5-3 it is
demonstrated that these (m — 1) exchange ratios are sufficient to deter-
mine the barter terms of trade between every pair of commodities.

Once the equilibrium exchange ratios are determined from (5-13),
the purchases and sales of each individual can be determined by substitut-
ing into the individual excess demand functions. However, a multi-
market equilibrium can be determined directly without recourse to aggre-
gate excess demand functions. The individual excess demand functions
are homogeneous of degree zero in prices and can be written in the same
form as (5-13):

=1 n)
E; = E,-.(l,l’z, o ,E"-‘) =1 ’ 5-14
AN ! 21 G=1...,m (5-14)

Now add the condition that every market must be cleared:

EE,-,-=O G=1...,m (5-15)
i=1

The system formed by (5-14) and (5-15) contains (mn + m) equations
with the mn individual excess demands and the (m — 1) exchange ratios
as variables. Again one of the squations is functionally dependent upon
the others, and the system cannot be soived for absolute price levels.
Two-commodity Exchange. The analysis of pure exchange can be
illustrated through an example in which two commodities are exchanged
by two individuals. Assume that individual I is endowed with 78 units

" of @, and no @2, and that his utility function is

Ui = qugqaz + 2qu + 512

Substitute ¢.1 = E.1 + 78 and ¢;2 = Ei2 into his utility function and
form. the function

Vi = (Bu + 78)Ew + 2(Eu + 78) + 5E12 — A(p1E11 + p2Ero)

Set the partiai derivatives of V; equal to zero:

av, _ _ _
3, E24+2—2p1 =0
oV,

= E — =
ey n+ 83 AD2 0
vy
_;_)\1_ = —(plEu + szlz) =0

The reader can verify that the second-order condition presented in Sec.
2-2 is satisfied. o
1 This is not always true (s.ee‘Sec. 5-5 below).
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Eliminating A and solving the first-order conditions for By and Ei,,
I’s excess demand functions are

En=2_45 E.,=4a152_1
251 P2

His excess demands are functions of the commodity price ratio and are

homogeneous of degree zeroin prices. I’s budget constraintissatisfied for

any set of prices:

P2 F22!
- = 41.5 ) —_  — =
D1 <p1 > + P2 (41 5 P 1) 0

The excess demand functions possess the usual properties. An increase
of p; relative to p, will decrease E;; and increase E12.  An increase of p.
relative to p; will increase E,; and decrease E1.

Assume that II’s utility function is

U: = ¢uq22 + 4921 + 2¢2.

and that his endowment consists of 164 units of @;andno @:. A deriva-
tion similar to that employed for I yields the excess demand functions

En=8422_1 E,=-P2_g
21 D 22 D2

II’s budget constraint is always fulfilled, and his excess demands are
homogeneous of degree zero in prices.
Invoking the condition that each market must be cleared

Ei=Ey+ By =822 —425=0

D1

E2=E12+E2‘z=42.5%-—85=0
2

Either equation is sufficient for the determination of the equilibrium
exchange ratio. Solving the first equation, pz/p; = 0.5. Solving the
second, p1/p: = 2. The solutions are identical. In equilibrium 1 unit
of @: can be exchanged for 2 units of Q.

Substituting the equilibrium price ratio into the individual excess
demsand functions,

Ey = —41 Ewn=82 En=41 Eyp = —82
I gives 41 units of Q, to II in exchange for 82 units of Q..

b-2. Production and Exchange

The multimarket equilibrium analysis is now extended to an economy
in which goods are both produced and exchanged. The consumers’
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initial endowments consist of primary factors such as land and labor
power. A consumer generally sells factors and uses the proceeds to pur-
chase produced commodities, but may withhold a portion of his initial
endowment for direct consumption without further processing. Labor
power provides an example. The consumer will seldom supply the full
amount of his labor power, but will generally reserve a portion for final
consumption in the form of leisure. If a consumer possesses a factor
from which he derives no utility, he will supply his entire endowment of
that factor regardless of commodity and factor prices. Some consumers
may sell one factor and purchase another. An example is provided by a
landlord who employs domestic servants. Entrepreneurs use both fac-
tors and produced goods for the production of commodities. The pro-
duced commodities are useful both as inputs and final consumption
goods.!

Equilibrium of the ¢th Consumer. Each of the # consumers is endowed
with initial stocks of one or more of s primary goods. The initial endow-
ment of the 7th consumer is denoted by (¢%,9%, - - - ,¢%). He may sell
(and buy) at the prevailing market prices, (p1,p2, . . . ,p:). The con-

-sumer derives utility from the quantities of the primary factors he retains
and the quantities of the (m — s) produced commodities he purchases:

Ui = Uigi,giz, - - - Qim) (5-16)

where the produced commodities are numbered from (s + 1) through m.-

The consumer’s excess demand for a factor equals the quantity he”
consumes less his initial stock, and his excess demand for a commodity
equals the quantity he consumes:

By = ¢ — ¢ (G=1...,9)
. 5-17
Ej = g5 G=s+1...,m (>-17)

The excess demand for a factor may be positive, negative, or zero, but
will most often be negative, since the consumer generally sells factors in
order to buy commodities. His excess demands for commodities must be
positive or zero. ,

The consumer’s income equals the value of his stock of factors:

vi=) il (5-18)
i=1

He is free to sell from this stock in order to purchase commodities and
factors. The value of thefactors and commodities he consumes must also

1Tt is sometimes necessary to distinguish pure intermediate goods which are not
desired by consumers. They are produced by entrepreneurs and used as inputs.
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equal his income:
m

i = 2 Pigis (5-19)
j=

The consumer’s budget constraint is obtained by subtracting (5-18) from
(5-19) and substituting from (5-17):
z piEi; = 0 (5-20)
=1
The net value of his excess demands for factors and commodities must
equal zero.
The consumer again desires to maximize his utility level subject to his
budget constraint. Form the function

Zi=UEa+ g, ... yEz'a + @ Eist, -+ -y Bim) — #( i PiEii)

j=1
and set the partial derivatives of Z; equal to zero:

3Z; _ aU; :
3B, 3B, =0 G=L...,m
oz n (5-21)
a#"= - 22’:‘Eg=0 ,
i=1

First-order conditions require that the consumer equate the RCS for
every pair of goods to their price ratio.

If second-order conditions are satisfied, the consumer’s excess demand
functions are obtained by solving (5-21) for the m excess demands as
functions of the m prices:

Eff = Eii(pl) soe e ,?m) (J = 1) L m) (5'22)

His excess demands for factors and commodities depend upon the prices
of all factors and commodities and are homogeneous of degree zero with
respect. to the prices of all factors and commodities.

Equilibrium of the hth Firm in the jth Indus«ry. Each firm combines
inputs for the production of a single commodity according to the technical
rules specified in its production function:!

G = P @ - -+ Qhjm) (5-23)
where @; is the output level of the Ath firm in the jth industry and

g#¥z is the quantity of the kth good which the entrepreneur uses as an
input. Both the s factors and (m — s) commodities serve as inputs.

* Production is sometimes introduced with the alternative assumption that each
firm jointly produces all commodities.
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The entrepreneur’s profit is his competitive revenue less the costs of
his inputs:

m
ma = Difwi(ai, - - - Thim) — 2 Pegi (5-24)
k=1

Setting the partial derivatives of profit with respect to each of the inputs
equal to zero,

Smi _ p, 9%
O 7 Oqnu

~=0  (k=1,...,m) (6-25)

The entrepreneur will utilize each input up to a point at which the value
of its marginal physical productivity equals its price. The second-order
conditions require that the principal minors of the relevant Hessian
determinant alternate in sign (see Sec. 3-2) and imply that the marginal
physical productivity of every input is decreasing,

Conditions (5-25) imply that dgs/d¢f; = 1. If the entrepreneur
utilizes his own output as an input—as a wheat farmer utilizes wheat for
seed—he will utilize it up to a point at which its marginal physical pro-
ductivity equals unity.

The entrepreneur’s excess demand functions for his inputs are obtained
by solving the m equations of (5-25) for g = Efy:

Bly= By, - o) (k=1,...,m) (526

The quantity of each input he purchases is a function of all prices. Since
the entrepreneur never supplies (sells) inputs, his excess demands are
always nonnegative. o -

If the jth industry contains N; identical firms, its aggregate excess
demand for the kth input equals the excess demand of a representative
firm multiplied by the number of firms within the industry:

E;-',: = NJ‘EITjk(pls [ ,pm) = E,"‘;;(Pl, L ,?m,Nj) (5'27)

An industry’s excess demand for an input is a function of all prices and
the number of firms within the industry.

The entrepreneur’s excess demand for (supply of) his own output is
determined by substituting the excess demand functions for his inputs
(5-26) into his production function (5-23) and letting Ey; = —s;:t

By = ~fulBiu(ps, -« - o), - o o Efiaos, - - o D))

t Separate excess demand functions are defined for @; as an output and as an input.
The two could be combined into a single net excess demand without affecting the
analysis.
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or more simply
B = Ehj(p!, e ,Pm)

. The excess demand for the industry as a whole equals the excess demand
of a representative firm multiplied by the number of firms:

E'f = NJ'E-hJ'(ply L :p”l) = Ei(pb LI rp;";Ni) (5’28)

The industry’s excess demand depends upon the prices of all goods and
the number of firms within the industry.

The entrepreneur’s excess demand functions for his output and inputs
are homogeneous of degree zero in all prices. If all prices are changed by
the factor ¢t > 0, (5-24) becomes

Thj = (tpi)fhi(q;rilr v tq;:;'m) - z (tpk)q;:‘jk
k=1

Setting the partial derivatives equal to zero,

i Gn;
= — = 0 Ek=1,...,m
ang?: pf agg;‘k tp}‘ ( M )
or t(pquij—ph)=0 k=1 ...,m)
F¥
Since ¢ # o,

§§£;—pk=0 =1, ...,m)

The first-order conditions from which the excess demands are obtained
can be stated in a form identical with (5-25). Since the second-order
conditions also remain unchanged, the excess demands are unaffected
by a proportionate change of all prices.

Market Equilibrium. The excess demand functions of the consumers
and entrepreneurs can be aggregated for both types of goods. The
aggregate excess demand for a factor is the sum of the excess demands of
the n consumers (5-22) and the (m — s) industries on input account (5-27):

n

. E; = z Eij(py, . - . ,Dm)

i=1

Pi

+ ) Eipy .. .pNy)  G=1...,8 (529
k=g+41
The aggregate excess demand for a commodity is the sum of the excess
demands by the n consumers (5-22), the (m — s) industries on input
account (5-27), and its producers (5-28):

E; = z Ejpy, - - . ;pm) + z Ei(py - -« ;pmNK)
=1 k=g41

+ Ei(py, . . . ,Pm,N)) (j=s+1,...,m) (5-30)
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The aggregate excess demands given by (5-29) and (5-30) can be stated
simply as

E; = Ei(p1, « -« sPmy Nowy, -« - ,Nw) G=1,...,m (531

The excess demand for each good is a function of the m prices and the
numbers of firms within the (m — s) producing industries.

Short-run and long-run partial equilibria can be determined for any
of the m markets considered in isolation from the other (m — 1). A
short-run equilibrium price is determined by setting the aggregate excess
demand for the good under consideration equal to zero. The prices of
the other (m — 1) goods and the numbers of firms within the (m — s) pro-
ducing industries are treated as parameters. The only difference between
a short-run and long-run equilibrium analysis for a factor market is the
period of time for which the excess demand function is defined. The -
number of firms within the industry becomes a variable in the determina-
tion of a long-run equilibrium for a commodity market.

Multimarket Equilibrium. A long-run multimarket equilibrium re-
quires that every market be cleared and that profit equal zero in every
industry :1.2

E@, .. PmNut, ... Na)=0 (G=1,...,m)
(P, - - - ,Pm) =0 G=s+1...,m)

where ; is the profit of a representative firm in the 7th industry. Again
one of the market-clearing equations can be expressed as a linear function
of the others. The (2m — s) equilibrium conditions given by (5-32)
represent only (2m — s — 1) independent equations.

-

(5-32)

1 The numbers of firms within the producing industries cannot change during a
short-run period. Since the entrepreneurs are also consumers, their profits and losses
must be included in their budget constraints. Once this is done, short-run multi-
market equilibrium is attained by 1equiring that every market be cleared.

2 The market-clearing equations of (5-32) are formulated on the assumption that
every good is scarce in relation to the demand for it. The system can be extended
to allow for the possibility of free goods by stating the market-clearing equations for
the primary factors as weak inequalities:

Ei(ph-~-;pﬂuNl+1:--o,Nm)§0 (j=1,...,8)

Following the Walrasian behavior assumption, if excess demand is negative, competi-

tion among sellers will lower price. Generally, price cannot fall below zero since con-

sumers will refuse to supply a factor at a negative price. If E; < 0 when p; =0,

Q; is a free good, i.e., sellers will offer a larger quantity than buyers desire to purchase .
at a zero price. The price of a free good equals zero, and the inequality holds for its

market-clearing equation. A zero price situation is stable in the sense that the market

will return to it following a disturbance. If price increases above zero, competition

among sellers will force it down. If it should fall below zero, supply would equal

zero. The inequality formulation allows the pricing mechanism to determine which

goods are free and which are scarce.
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Equilibrium again depends upon relative, rather than absolute, prices,
Since the excess demands of every consumer and entrepreneur are homo-
geneous of degree zero in prices, the aggregate excess demands are homo-
geneous of degree zero in prices. The profit functions [see (5-24)] are
homogeneous of degree one in prices. If all prices are doubled, the entre-
preneur’s input and output levels will remain unchanged, but his total
revenue and total cost, and hence his profit, will be doubled. However,
if a long-run equilibrium is established for one set of prices, the system
will remain in equilibrium if all prices are changed by the same propor-
tion. A doubling of all prices will leave the excess demands equal to zero.
The representative firms’ revenues and costs will be doubled, but profit
levels will remain equal to zero, and no new firms will be induced to enter
any industry.

The number of variables in (5-32) can be reduced by one by dividing the
. m absolute prices by the price of an arbitrarily selected commodity. If
@1 is selected, (5-32) can be rewritten as

E,'(l,-&:'-°722: ,+1,...,Nm)=0 (j=1,...,m)
y 4! y 4! .
(5-33)

D2 PnY) _ -
Tj(l,a}"‘)a)—o (]-—-8+1,...,m)
This system of (2m — s — 1) independent equations can generally be
solved for the equilibrium values of the (m — 1) exchange ratios relative
to €1 and the (m — s) firm numbers. -

Once the equilibrium exchange ratios and firm numbers are determined,
the excess demands of every consumer and entrepreneur can be computed
by substituting their values into the individual excess demand functions.
A long-run equilibrium solution satisfies the following conditions: (1)
every consumer maximizes utility, (2) every entrepreneur maximizes
profit, (3) every market is cleared, and (4) every entrepreneur earns a
zero profit.

6-3. The Numéraire, Money, and Say’s Law

General equilibrium has been established in Sees. 5-1 and 5-2 for barter-
type economies in which circulating money is nonexistent. Commodities
and factors are exchanged for other commodities and factors, and the
conditions of exchange are completely described by exchange ratios.
These systems have been solved for the (m — 1) exchange ratios relative
to an arbitrarily selected good, generally called the numéraire. Any
set of absolute prices that yields the equilibrium exchange ratios is an
equilibrium solution. If there is one such solution, there is an infinite
number.
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A number of different kinds of money can be introduced into a gen-
eral equilibrium system. One good may be selected as a standard of
value and serve as money in the sense that all prices are expressed in
terms of its units. Money can be established as an abstract unit of
account which serves as a standard of value but does not circulate.
Under some circumstances circulating paper money can be introduced.
Under different circumstances an attempt to introduce paper money
leads to a contradiction.

The Numéraire. For m goods there are m? exchange ratios taking two
commodities at a time: p;/px (j, k=1, ..., m). Of these m are
identities which state that the exchange ratio of a good for itself equals
unity: p;j/pr = 1 for j = k. These m? exchange ratios are not inde-
pendent. Consider the identity and the (m — 1) exchange ratios with
Q1 as numéraire. The other m(m — 1) exchange ratios and identities
can be derived from these:

Di _ DPi.Dk -

17,‘--’2—)-;-1—)-1‘ (],k—l,...,m) (5—34)
Imagine that @ is pears, @; oranges, and @; apples, and that two oranges
exchangeforonepear (p;/p: = 0.5) and oneapplefor twopears (p3/p, = 2).
Utilizing (5-34), four oranges will exchange for one apple: ps/p, = 4.
The complete set of exchange ratios is given either directly or indirectly
by the (m — 1) exchange ratios and the identity for the numéraire.

The numéraire can be changed from Q; to @ by dividing the exchange -

ratios and identity for @, by p:/p1:

1 P . D " Pm) _ (P P2 Pn)
1,: A Rout A = ::"-)1,...,
Dr/ D1 2 1 o : Dk Dk

The exchange ratios are unaffected by this transformation, and the selec-
tion of the numéraire is truly arbitrary.

The numéraire can also serve as a standard of value. Setting its
price identically equal to unity, the exchange ratios become p;/p; = ;.
The equilibrium exchange ratios are unaffected by this transformation.
The equilibrium price of each good is expressed as thenumber of tinits of the

- numéraire which must be exchanged to obtain 1 unit of that good. The

price of oranges becomes 0.5 pears per orange, and the price of apples
2 pears per apple. The price of apples is four times as great as the price
of oranges, and one apple still exchanges for four oranges in equilibrium.
The numéraire has become money in the sense that its units serve as a
standard of value. However, it does not serve as a store of value, since
it is desired only as a productive factor or consumable commodity on the
same basis as all other goods. Any good may serve as a standard of
value in this sense. '
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The expression of prices in terms of a good such as pears is not common
practice. Prices are generally expressed in terms of a monetary unit
such as dollars. An accounting moneyis easilyintroduced into the frame-
work of a general equilibrium system. There is no reason why the price
of the numéraire should equal unity. It could be set equal to 2, /2,
25, or 200 million. The equilibrium exchange ratios would be unaffected.
Accounting money can be introduced by setting the price of the numérazre
(or any other good) equal to a specified number of monetary units.
Money prices can then be derived for all other goods. If @ is numéraire
and p; is set equal to 8 dollars, the dollar price of Qx (g1) is

py,=ﬁ%: (k=2,...,m)

If the price of a pear is set equal to 2 dollars, the price of an orange is
1 dollar and the price of an apple 4 dollars. In this case money only
serves as an abstract unit of account. It does not exist in a physical
sense. (Coods still exchange for goods. No one holds money, and no one
desires to hold money. Accounting money serves as a standard, but not a
store, of value.!

Monetary Equilibrium. Commodity money and accounting money are
quite different from circulating money which serves as a store of value.
The classical economists of the nineteenth century frequently divided the
economy into two sectors with regard to equilibrium price determination:
the real sector in which exchange ratios are determined, and the monetary
sector in which absolute money prices are determined by the quantity of
mocney in existence. The real sector is described in Sees. 5-1 and 5-2.
The present task is to add the monetary sector to this analysis. For
simplicity the analysis is developed for the case of pure exchange though
it is easily extended to cover production and exchange.

Assume that the n consumers also possess initial stocks of paper
money denoted by the subseript (m + 1): (¢3,41, - - - 9om41)- Paper
money serves as a store of value, but does not enter the consumers’
utility functions. The ¢th consumer’s excess demand for paper money is
defined as the stock he desires to hold less his initial stock:

Eimit = Qimagr — Q‘?,M1 B (5-35)

His excess demand is positive if he adds to his initial stock of money
and negative if he reduces it. The consumer’s budget constraint (5-4)

1 The assumption that money is only a unit of account is implicit throughout the
analyses of the consumer and entrepreneur. The consumer’sincome may be expressed
in monetary units, but he spends his entire income and does not desire to hold money.
The entrepreneur maximizes hismoney profit, but he also ha® no desire to hold money.
If he earns a positive profit, he will spend it in his role as a consumer.
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must be redefined to include money:
m+1
Y piEy =0 (5-36)

i=1

where p; is the price of the jth commodity. The price of money p,.1
equals unity by definition. The consumer may exchange money for
commodities or commodities for money. If his excess demand for money
is positive, the value of the commodities he sells is greater than the value
of those he buys, and he is exchanging commodities for money.

Since money does not enter the consumer’s utility function, his excess
demand for money cannot be determined by the principles of utility
maximization. It is usually assumed that the consumer finds it con-
venient to hold money in order to facilitate commodity transactions.
Assume that the sth consumer desires to hold a quantity of money which
is a fixed proportion of the monetary value of his initial endowment of
commodities:

m
Qimer = & ). Pigh (5-37)

j=1

where «; is a constant. Substituting (5-37) into (5-35),

m
Eimir = ay 2 Pty — Wmir (5-38)

Jj=1 .
The aggregate excess demand for money is obtained by summing (5;38)
for all n consumers:

n m n
By = az z PigG — 2 Bmtr = Empa(py, -+ - ,Pm)  (5-39)
i=1j=1 i=1
No essentials are lost by assuming that a; = afor ¢t =1,. .. ,n). If
the initial endowments of commodities and money are fixed, the excess
demand for money is a function of the m commodity prices.

The excess demand functions for the m commodities are determined by
maximizing utility for each consumer subject to his budget constraint,
including money, solving the first-order conditions in order to obtain
individual excess demand functions, and then summing for all consumers.
A general equilibrium is established if the excess demand for each com-~
modity and money equals zero:

Epy, . . . ;pm) =0 (j=14,...,m+1) (5-40)

This gives a system of (m + 1) equations in the m variable commodity
prices. Since the aggregate budget constraint including money is always
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satisfied, only m of these equations are independent. Therefore, if the
m commodity markets are in equilibrium, the money market is also in
equilibrium, i.e., consumers as a whole do not desire to exchange com-
modities for money or money for commodities. The quantity of money
that consumers desire to hold equals the quantity in existence. The m
independent equations of (5-40) can generally be solved for the money
prices of the m commodities.

The excess demands for commodities and money are not homogeneous
of degree zero in commodity prices. If all commodity prices are increased
by the factor ¢ > 0, the excess demand for money (5-39) becomes

n

Bnpr=a ) S (oat - zq..m (5-41)

1=1j5=1

The partial derivative of (5-41) with respect to ¢ is

n m

IE,,

=1 j=1

A proportionate increase of all commodity prices will increase the excess
demand for money. If the system is in equilibrium before the price
increase, consumers will desire to exchange commodities for money in
order to bring their monetary stocks into the desired relation with the
monetary values of their initial endowments of commodities. However,
there will not be a corresponding negative excess demand for commodities.
Any proportioratz change of the equilibrium commodity prices will throw
the system out of equilibrium.

The excess demands for commodities and money are homogeneous of
degree zero in commodity prices and initial money stocks. The excess
demand for money becomes

n

Bnpi=a ) 2 oy = Y, Caburd)

=1 ,1==1 $=1

SE
and a’?l =« Z z Pidl — z i1

t=1 j5=1 t=1

which equals zero if the money market wasin equilibrium before the price
change. Each consumer’s money stock retains the desired relation to the
value of his commodity endowment, and he will not desire to exchange
commodities for money or money for commodities.

It can also be demonstrated that a change of the money stock of each
consumer by the factor ¢ will result in a change of the money price of each
commodity by the same factor, but will leave the real sector unaffected.
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If equilibrium has been established and then each money stock is increased
by the factor ¢, each consumer will desire to exchange money for com-
modities, but no one will desire to exchange commodities for money. As
a result commodity prices will increase until the existing stocks of money
no longer exceed the stocks that consumers desire to hold.

Monetary equilibrium will be reestablished when the values of all com-
modity stocks are increased by the factor ¢

n

m n m
D Y oeah=t) ) pal (5-42)

g=] je=1 §==] f=a]

where p; is the price of the jth commodity after equilibrium has been
reestablished. Proportionate increases of all commodity prices: p; = ip;
(7=1,. .. ,m),will satisfy (5-42), but so will many other price constel-
lations. Consider a nonproportionate set of price changes which satisfies
(5-42). It follows that pr = ups and px = vpr where # > ¢ > » for some
hand k. The exchange ratio between Qs and Q: is now up,/vpx > Pa/Ds.
The price of Qs has increased relative to the price of Q&, and consumers
will desire to exchange @ for Q«. If the system was in equilibrium at the
initial exchange ratio, the new exchange ratio will result in a positive
aggregate excess demand for @ and a negative aggregate excess demand
for Q.. The aggregate excess demands for all commodities will equal
zero if and only if pa/px = Pa/pe for (h, k =1, . .., m). Thisis con-
sistent with monetary equilibrium if and only if p; =tp; =1, . . .,
m). The dichotomization of equilibrium price determination is complete.
Equilibrium exchange ratios are determined by the consumers’ utility
functions and the real values of their initial endowments. Money prices
are determined by the quantity of money.

The introduction of circulating paper money into a static general
equilibrium system is possible, but rather artificial. Equation (5-37)
postulates a mode of behavior that is logically, though not mathe-
matically, inconsistent with utility maximization: the consumer desires to
hold a stock of money from which he derives no utility rather than spend
it on commodities from which he does. It is difficult to find motives for
holding money in a static system that is in no way connected with pre-
ceding or succeeding points in time. The interesting problems of money
only arisein a dynamic analysis where behavioris considered over time.

Say’s Law. The classical economists frequently denied the possibility
of a positive excess demand for all commodities. In terms of the present
analysis this can be interpreted as the statement that

fp,-E'; =0 . ’ (5-43)

i=1
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where the excess demand for all commodities is measured in monetary
terms. This proposition has becomes known as Say’s law in honor of
its promulgator, the nineteenth-century French economist Jean Baptiste
Say. Unfortunately, Say did not use mathematics and was vague
regarding the conditions under which his law applies. Some twentieth-
century economists have interpreted it as an equilibrium condition, and
others as an identity that holds regardless of whether or not the sys-
tem is in equilibrium. The quantity of money will determine the absolute
price level if (5-43) is an equilibrium condition, but will not if it is an
identity.

Monetary equilibrium has been established for the case in which the
budget constraints are defined to include money. The relevant identity
(5-36) holds for all commodities and money, and (5-43) is an equilibrium
condition. In equilibrium, consumers do not desire to exchange money
for commodities or commodities for money.

If (5-43) is an identity, consumers will never desire to exchange money
for commodities or commodities for money. Thisimplies that the excess
demand for money is identically equal to zero:

E myl = 0 (5—44)

Regardless of commodity prices consumers will never desire to increase or
decrease their money stocks. This implied behavior is inconsistent with
the introduction of quantity equations, such as (5-37), which state that
the consumers’ excess demands for money depend upon commodity prices.
Therefore, the quantity of money cannot serve to determine absolute
price levels. Since (5-43) is an identity, if (m — 1) of the commodity
markets are in equilibrium, the mth must also be in equilibrium. The
general equilibrium system contains (m — 1) independent equations
which can be solved for (m — 1) exchange ratios. The statement that
the money market is always in equilibrium adds no useful information,
and absolute prices are indeterminate. The crucial point in considering
Say’s law and money is whether or not money is included in the con-
sumers’ budget constraints. If it is, (5-43) is an equilibrium condition.
If it is not, (5-43) is an identity.

5-4. Multimarket Stability

The effects of a disturbance in one market upon the equilibria in other
markets are ignored in Sec. 4-6 in accordance with the assumptions of
partial equilibrium analysis. A general equilibrium analysis involves an
explicit recognition of the interrelated nature of all markets. The
excess demand for each good is a function of the prices of all goods. A
- disturbance in one market will throw other markets out of equilibrium.
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The stability of a single market depends upon the adjustments following
the induced disturbances in other markets. Both the static and dynamic
conditions for stability in a single market are extended to a multimarket
system in the present section. The static conditions are often called the
Hicksian conditions in honor of their formulator, J. R. Hicks. The
Walrasian behavior assumptions (see Sec. 4-6) are employed throughout
the present section.

Static Stability. Return to the assumption that the multimarket sys-
tem does not contain money. Let Qi serve as numéraire and set its price
identically equal to unity.

The stability condition for a two-market system is the same as the
condition for a single market. There is only one independent equation
and only one variable price: E; = Ei(p2) and E; = Ex(p;). The aggre-
gate budget constraint, E1 + p.E. = 0, is always satisfied. A relaxation
of the equilibrium condition for @, so that E: > 0 necessarily implies a
relaxation of the equilibrium condition for @, such that dE1 + p.dE, = 0.
The differentials dE1 and dE: and therefore the derivatives dE,/dp. and
dE,/dp, must be of opposite sign except for the trivial case in which both
equal zero. Equilibrium is stable according to the static Walrasian
assumption if dE,/dp: < 0 (or equivalently if dE,/dp. > 0). If equilib-
rium is restored in the market for @, equilibrium is sutomatically restored
in the market for the numéraire, i.e., if E» equals zero, E; must also equal
zero. The unique problems of multimarket stability arise only for sys-
tems with three or more interrelated markets.

If 0E,/dp; # 0, a displacement of equilibrium in the market for Q,
will cause a displacement of equilibrium in the market for Q. Walrasian
stability for an isolated market requires that dE;/dp; < 0 where dE,;/dp; is
a partial derivative and all other prices are assumed to remain unchanged.
The total derivative dE;/dp; must be utilized for a multimarket analysis.
Its value may be computed under a number of alternative assumptions
regarding the adjustment of other markets. One possibility is to assume
that equilibrium is restored in all markets other than those for @; and
the numéraire.! There are many possible price-adjustment patterns
other than the case of complete inflexibility, in which none of the other
(m — 2) markets adjusts, and the case of complete flexibility, in which
they all adjust. In general, one can imagine a system with M ‘rigid
prices’’ which will not change from their initial equilibrium values during
the period under consideration where J// may be any number from one
through (m — 1). The price of the numéraire is always rigid as a result
of its definition.

1 Since the aggregate budget constraint is always satisfied, p;B; + B:-= 0 if Q, is

numéraire. The violation of the equilibrium condition for the numéraire provides the
slack necessary to allow the excess demand for §; to take on a nonzero value.
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The most stringent stability conditions for the market for Q; (7 = 1)
require that the total derivative dE;/dp; be negative for all possible com-
binations of rigid and flexible prices. The market for @; is perfectly
stable by the Hicksian definition if dE;/dp; < 0 under the following con-
ditions: (1) if all the (m — 1) prices other than p; are rigid, (2) if (m — 2)
of the prices are rigid but p; is flexible and adjusts so-that Ex = 0, (3)
if (m — 3) of the prices are rigid but ps and px are flexible and adjust so
that E;, = 0 and E; = 0, and so on up to the final case in.which the prices
of all goods other than the numéraire are flexible. The system as a
whole is perfectly stable if the (m — 1) markets for the goods other
than the numéraire are perfectly stable.

‘The excess demand functions for a system with m goods are

E; = Eps, - . . pm)  (G=2...,m) (5-45)

The excess demand function for the numéraire may be omitted, since it
can be derived from the other (m — 1). The effects of price changes
upon the excess demands are computed by total differentiation of (5-45),

dE, = by dps + b2z dps + - -+ + boem dpm
dE; = bsa dp2 + bss dps + -+ - + bsm dpm (5-46)
dEm = bm2 dpz + bm3 dps + M + bmm dpm

where by = 9E;/dpr. Since by may be assumed constant in a small
neighborhood about the equilibrium point, (5-46) forms a system of
(m — 1) simultaneous linear equations in the (m — 1) variables (dp.,
.« . ,dpm). The coefficients of (5-46) form the Jacobian (see Sec. A-3)
of (Ey . . . ,En) with respect to (pz, - . - ,Pm)-

Consider the case in which equilibrium is displaced in the market for
Q; and all other prices are rigid. Substituting dp. = 0 for (k = 2,

., m) and (5 # k) into (5-46) the (j — 1)th equation becomes!

dE; = bj; dp;

Dividing through by dp;, the first condition for the perfect stability of the
market for Q; is
dE;

1 A displacement of equilibrium in the market for Q; will cause displacements of the
equilibria in the other markets. The other equations of (5-46) become

dE)‘ = bk,' dp,'

Since the other prices are assumed rigid, these displacements will not react back upon
the excess demand for Q;, and nonzero excess demands will continue to exist in the
other markets.



MULTIMARKET EQUILIBRIUM 149

Condition (5-47) is identical with the stability requirement for an iso-
lated market. Perfect stability for the system as a whole requires that
(5-47) hold for (j = 2,. . . , m), and thus the first condition for perfect
stability implies the isolated stability of every market in the system.
Now consider the case in which equilibrium is displaced in the market
for Qj;, p» adjusts, and all other prices are rigid. Substituting dE, = 0
and dp; = O for (k = 7, h) into (5-46), the equations for @; and @, become

dE; = bj; dp; + bjn dps
0= bh,' dp,- + bu. dp;.

Using Cramer’s rule to solve for dp;,

, dE; b,;.
bun
|9 Oml_ g Om
ap; = bji b,;. bii b
bhj bhh th bhh

Dividing through by the constant term on the right and by dp;, the second
condition for the perfect stability of the market for Q; is

l b;., bm.
dP:' b

Perfect stability of the market for @, requires that the denominator of
(548) be negative. Therefore, perfect stability for the system as a whole
requires that the numerator of (5-48) be positive.

Finally, consider the case in which equilibrium is displaced in the mar-
ket for Q;, p» and p; adjust, and the other (» — 4) prices are rigid. Sub-
stituting dE, = dE; = 0 and dpi = O for the other (m — 4) prices into
(5-46), the relevant equations become

dE; = b;; dp; + bjn dpn + by dp:
0 = bn;dp; 4 ban dpn + bus dp;
0 = b;; dp; + by dpy + bi dp:

Using Cramer’s rule to solve for dp;,

<0 (5-48)

dE; b bu| |by ba by
d 0 bh}l bln bh’ bhh bhi
' 0 ban bi| [by bu by

Expanding the numerator by its first column and solving for dE;/dp;, the
third condition for the perfect stability of the market for Q; is

ag, |bi ba bs
ap; | b bm bu
T |y ba b

ban  bu
b by

<0 (5-49)
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Letting j = b and A = 7 in requirement (5-48), perfect stability of the
market for @ requires that the denominator of (5-49) be positive.
Therefore, perfect stability for the system as a whole requires that the
numerator of (5-49) be negative.

Perfect stability for the system as a whole requires that the Jacobian

determinants of order [1,2,3, . . . ,(m — 1)]:
bs; bs bii  bin by

bJ'J': bJ . bJ ) th' bhh bhi y s e (5-50)
hi hh b{' b{ b,"

be alternatively negative and positive for all values of 5, A, 7, . . . .
The conditions for perfect stability are stronger than necessary for the
consideration of many multimarket systems. If the system contains no
rigid prices, the only relevant value for dE;/dp; is the one computed on
the assumption that the other (m — 2) markets adjust. Following the
computational procedure outlined above, the market for @, is stable if

dE: B

dps = Ba <0 (6-51)
where B is the Jacobian determinant of the complete system given by
(5-46) and B, is the cofactor of b;;. In the Hicksian terminology the
system as a whole is imperfectly stable if a condition similar to (5-51) holds
for all goods other than the numéraire. It is interesting to note that
imperfect stability does not necessarily imply the isuvlated stability of
each market.

Consider the following excess demand functions for three-commodity

systems:

(1) E2= —2p, +3ps — 5 E; = 4p, — 8ps + 16
(2) E2 = 2p, — 3ps + 5 E;= —4p, +4p;s — 4
(3) Ez = 2})2 + 3p3 - 13 Es = 4:pz - 8})3 _I._ 16

The equilibrium prices are p, = 2 and p; = 3 for all three examples.
System (1) satisfies all the conditions for perfect stability:

-2 3

dB: _ 9B, _ _ d_E'z_’ 4 —_8’__

o =g = T2<0  gi=——g— = —05<0
s s

B 0B _ _gco _1 4 8l 5.9

dps  ops dps -2
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ASystem (2) fails to satisfy the conditions for perfect stability, but satisfies
the conditions for imperfect stability:

dE, _ —4 4‘ @»_1—4 4!__
=T -1<0 . =—-2<0

The markets for both @; and @; are unstable when considered in isola-
tion, but the system as a whole is stable if both prices adjust. System
(8) fails to satisfy the conditions for either perfect or imperfect stability.
Dynamic Stability. The conditions for the dynamic stability of a
multimarket system represent a generalization of the condition for the
dynamic stability of a single market. An explicit statement of the laws
of price change is introduced, and the time paths of the prices following a
disturbance are investigated. Many different types of dynamic adjust-
ment processes may be introduced to describe the behavior of the partici-
pants in particular systems. In general, a multimarket equilibrium is
dynamically stable if every price approaches its equilibrium level over
time following a slight displacement from equilibrium, i.e., if
iig: pe=pf (G=2...,m ° (5-52)
where pj; is the price of Q; at time ¢ and p; is the equilibrium price of Q;.
Much of the mathematics necessary for a full development of dynamic
stability is beyond the scope of the present volume, but the general nature
of the analysis can be indicated Wlth the aid of a linear example for a
three-commodity system:

Ey = @opa + @23D3c + @20
Ea = a3apa + a33P3e + aso

Equilibrium prices can be computed by setting E‘zg and Ej equal to zero
and solving for pz: and pa::

(5-53)

e . O23030 — (3320 s — Gaxlag — Gaallgp
’ Q20az — Q23la2 Q22033 — Q23032

Assume that the dynamic laws of price adjustment are given by the
linear equations ‘

(5-54)

D2e+1 — Dot = kEy
Daer1 — D3t = kEy

where k > 0 is the “speed of adjustment,” i.e., the amount that price will
increase (or decrease) per unit of excess demand. The price-adjustment
process which is described by (5-55) follows the Walrasian behavior
assumptions. A positive excess demand means that buyers desire to
purchase more than is being offered at the current price. Competition
among buyers will then lead to an increase of price. A negative excess

(5-55)
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demand means that sellers offer more than buyers desire to purchase at
the current price. Competition among sellers will then lead to a decrease
of price. Neither price will change if both markets are in equilibrium,
i.e., if the excess demand for each good equals zero. The “speed of
adjustment’’ need not be the same for both markets, but no generality is
lost by assuming that it is, since the units in which the goods are measured
are arbitrary.

Substitute the values of the excess demands from (5-53) into (5-55)
and write the equations in implicit form:

Do — (1 + kas)pa — kasspse — kazo = 0 (5-56)
Paerr — (1 + kass)pae — kasapa — kazo = 0

Solve the second equation of (5-56) for pa:

1 1+ kass aszo
P2 = Ktz P34 “kas, P a—”

(5-57)
Now substitute the values of ps: and P41 given by (5-57) into the first
equation of (5-56):

Pat+z + asPseyr + Bspse + v3 = 0 (5-58)

where a; = — (2 + kass + kas)

Bs = 1 + kass + kase + k2azasz — k2az3asz

vs = k?az2a30 — k2asaz0
The time path of the price of Q; is descrlbed by a second- order non-
homogeneous difference equation with constant coefficients. The solu-
tion of (5-58) (see Sec. A-6) is

s Q3zq20 — G22030

Pa = Asoar’ + Baogt + P ———— (5-59)

where 031 and o3, are the roots of the homogeneous part of (5-58), and

A; and B; are constants determined by the initial conditions. The

constant term of (5-59) is the equilibrium price of @; as given by (5-54).1

The time path of px can be described by an equation similar to (5-59).

Substituting p;® for the constant term in (5-59) and writing a similar
equation for the price of Q,,

= A0 + Baoadt + Dot
Pt = Asoait + Bioat + Ps°

The system is dynamically stable and p,: and p; will approach their
equilibrium values over time if —1 < ¢;; <1 (z =2, 3) and (j = 1, 2).

(5-60)

t The reader can verify this by substituting ps: = K into (6-58) and solving

K+ oK+ 6K+v=0
for K.
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The absolute values of the roots of the homogeneous parts of (5-58) and
the corresponding equation for @, must be less than unity.

The roots o;;, and therefore dynamic stability, depend upon the “speed
of adjustment” as well as the coefficients of the excess demand equations.
Hicksian stability depends only upon the values of the coefficients. A
system which satisfies the Hicksian conditions for perfect stability will
prove dynamically unstable for some values of k. Consider the system
given by

E, = —2p,+ 3p; — 5
E; = 4p, — 8p; + 16

which was demonstrated to satisfy the Hicksian conditions for perfect
stability. Assume the dynamic adjustment process is described by
(6-55). For this example (5-58) becomes

P3.t+2 + (10]9 - 2)p3,t+l + (4k2 — 10% + 1)p3t - 12k2 =0
T he roots of the homogeneous part are
ca1 = —0.41k 4+ 1 o3z = —9.08k + 1

Since k > 0, 031 and 032 < 1 for all admissible speeds of adjustment, and
the market for Qs is dynamically stable if the value of k is such that both
roots are greater than —1. Since o3, < 033, dynamic stability requires
that 32 > —1, or equivalently that ¥ < 0.21. If k£ were greater than
0.21, the market for @; would be characterized by overadjustment on the
part of buyers and sellers, and p;: would exhibit ever-increasing fluctu-
ations about ps°.

6-b. Solutions

The mere formulation of a multimarket system gives no assurance of
the existence of an equilibrium solution. Some systems have no mathe-
matical solution; others have many. The existence of a mathematical
solution may not be adequate. Economics places bounds upon the
admissible values for the variables. Prices must be given by nonnega-
tive,! real numbers. Furthermore, the consumption levels of each con-

1If the price of a commodity were negative, purchasing power would be transferred
from sellers to buyers rather than from buyers to sellers. Negative prices are not
always nonsensical. The possession of discommodities such as garbage will reduce a
consumer’s utility level, and he will generally be willing to pay for their removal.
The possibility of meaningful negative prices is eliminated by centering attention
upon the commodity counterparts of discommodities. The consumer may be con-
sidered to buy garbage-removal service rather than sell garbage, and the garbage col-
lector may be considered to sell garbage-removal service rather than buy garbage.
The price of garbage-removal service is positive and equal in absolute value to the
negative price of garbage.
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sumer and the input and output levels of each firm must be nonnegative.
A mathematical solution which contains, for example, negative consump-
tion levels is meaningless.

The question of the existence of an admissible solution may be con-
sidered on two different levels. One may desire to determine whether
or not a particular numerically implemented multimarket system pos-
sesses an admissible solution. On a more general level one may desire to
prove an existence theorem which states that admissible solutions exist
for all multimarket systems that satisfy a number of general conditions.

Solutions for Particular Systems. In general, a solution for N equa-
tions in N variables exists if its Jacobian does not vanish in a small
neighborhood (see Sec. A-3). The system of m equations obtained by
setting the excess demands equal to zero cannot be solved for the absolute
values of the m prices. Since the aggregate budget constraint is always
satisfied, the excess demands are functionally dependent, and their
Jacobian vanishes identically. The nonexistence of a solution for abso-
lute prices is meaningful from the economic viewpoint, since the excess
demands are homogeneous of degree zero in all prices.

By letting p; = 1 and omitting the excess demand equation for @, the
system is reduced to (m — 1) equations in (m — 1) variable prices.
Thus far, it has been assumed that these equations are irdependent and
a solution exists for the reduced system. This assumption is not neces-
sarily true. Consider the three-commodity reduced system given by

E,=—2p, —4p;+10=0
E3=—3p2_6p3+15=0

The Jacobian of this system vanishes identically, and it cannot be solved
for p, and p;. The excess demand functions for @, and @; are not inde-
pendent. Thefunctional dependencein this caseis E3 = 1.5E,. Society
as a whole always demands and supplies ¢ and @3 in a fixed proportion.
Any set of values for p, and ps which satisfies p, = 5 — 2p; will result in
multimarket equilibrium. Examples are (p; = 1, ps = 2) and (p: = 3,
pa =1).

Each numerical multimarket system may be treated individually.
First apply the nonvanishing Jacobian condition to determine whether a
mathematical solution exists. If one does, solve the system and examine
its solution(s) from the viewpoint of admissibility.

Existence Theorems. The individual-solution method is not helpful
if one wishes to consider the existence problem for abstract multimarket
systems which are not numerically implemented. One must prove a
general existence theorem. Existence theorems have been proved for a
number of types of multimarket systems, including systems in which the
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sroduction functions are formulated as combinations of linear activities!
wnd the input-output system.?

Arrow and Debreu have considered the problem of existence for abstract
nultimarket systems similar to the one presented in Sec. 5-2.% Their
wmalysis differs from that of Sec. 5-2 in that they employ set-theoretical
;echniques rather than differential calculus. Their assumptions for the
irst of the two cases which they consider are approximately as follows:
‘1) no firm realizes increasing returns to scale, (2) at least one primary
‘actor is necessary for the production of each commodity, (3) the quantity
f a primary factor supplied by a consumer cannot exceed his initial
mdowment, (4) each consumer’s ordinal utility function is continuous,
'5) consumers’ wants cannot be saturated, (6) indifference surfaces are
sonvex with respect to the origin, and (7) each consumer is capable of
supplying all primary factors. Arrow and Debreu have proved that
sompetitive equilibrium solutions
ixist forall systems that satisfy these
issumptions. Theyweakenassump-
don (7) in the second of their
ixistence proofs.

"Anexistencetheoremis based upon
v sufficiency rather than a necessity
wgument. All systems that satisfy
‘hese conditions possess equilibrium
solutions, but one could construct ex-
umples of systems that do not satisfy
;hese conditions and yet possess
squilibrium solutions. 0 2

Multiple Solutions. An existence FIGUBE 59
;heorem does not prove uniqueness.

A multimarket system may possess more than one admissible solution.
Some of the consequences of multiple solutions can be illustrated by a
second-degree excess demand function for a two-commodity system.
Second-degree functions may arise under a variety of circumstances.
The supply curve for a factor such as labor may be backward-bending, as
lustrated in Fig. 5-2. At low wage rates the supply curve for labor is
sositively sloped. An increase of the wage rate would induce consumers
;0 increase their offering of labor and thereby increase their incomes in

Py D
S

1 See R. Dorfman, P. Samuelson, and R. Solow, Linear Programming and Economic
Analysis (New York: McGraw-Hill, 1958), chap. XIII. '

2 An input-output existence theorem is proved for the two-commodity case in
3ec. 5-6 below.

8 Kenneth J. Arrow and Gerard Debreu, “Existence of an Equilibrium for a
Competitive Economy,”’ Econometrica, vol. 22 (July, 1954), pp. 266-290.
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terms of commodities. At higher wage rates the supply curve will turn
back and become negatively sloped. A high wage rate and correspond-
ingly high income in terms of commodities will induce consumers to
decrease their offering of labor and increase their consumption of leisure.
The demand and supply curves pictured in Fig. 5-2 yield the excess .
demand curve for labor pictured in Fig. 5-3a.

by by Py

/

/
\
(0] Es E; o E,

(@) (b) (c}
Ficure 5-3

Consider a two-commodity system in which a consumption good, @,
serves as numéraire and Q: is labor. The excess demand function for
labor corresponding to Fig. 5-3a is

D2? — 14p2+ 40 =0

with the roots p: = 4 and p; = 10. Both roots are real, positive num-
bers which satisfy the requirements for a competitive equilibrium. As
is generally true, stable and unstable equilibria alternate (see Sec. 4-6).
The solution p, = 4 is stable and p; = 10 unstable: E;(4) = —6 and
E5(10) = 6.

The excess demand function for labor corresponding to Fig. 5-3b is

pzz - 14p22 + 49 =0

with the identical roots p, = 7. There is a unique multimarket equilib-
rium point. The excess demand curve is tangent to the vertical axis at
p2 = 7 and lies to the right for all other values of p,. The stability of
this unique solution is in question since Ey(7) = 0. The graphic pre-
sentation suggests that it is stable for downward and unstable for upward
price disturbances.

Finally, the excess demand function for labor corresponding to Fig.
5-3c is

p2? — 14p: +53 =0

The roots of this function are the Complex conjugatesp, = 7 + 4 4/ —1.
Prices with imaginary components are meaningless, and there is no admis-
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sible solution for the system. The excess demand curve for labor lies to
the right of the vertical axis. The quantity of labor that consumers offer
is less than the quantity that entrepreneurs demand at every wage rate.
Equilibrium cannot be achieved in such a market.

The problems of multiple solutions are similar for systems containing
more than two commodities. Consider the three-commodity system
given by

E, = 2p,2 + 22p, — 13p,ps — 64ps + 20ps? + 48 =0
E3=p2—2p3—|-2=0

This system has two solutions: (p. = 4, ps = 3) and (p. = 2, ps = 2).
The rule of alternating stable and unstable equilibria applies. Equilib-
rium in the market for Q. considered in isolation is stable for p, = 4 and
unstable for p, = 2. The solution (p. = 4, p; = 3) satisfies the con-
ditions for Hicksian perfect stability. The solution (p, = 2, p; = 2) fails
to satisfy the conditions for either perfect or imperfect stability.
Empirical Applications. A multimarket equilibrium analysis presents
a very general picture of the interrelationships of markets throughout
the economy, but it is so general as to be of little use for empirical studies
in its pure form. A simple system with 2 factors, 50 commodities, 10,000
consumers, and 2,000 firms involves more than 200,000 individual excess
demand functions. Numerical solutions are out. of the question for
systems of this size even if the necessary data could be obtained. If the
economist desires to make empirical applications, he must deal with a
somewhat simplified version of the partial equilibrium analysis or a
greatly simplified version of the general equilibrium analysis. '

5-6. The Input-Output System

The input-output system as developed by Wassily W. Leontief is an
empirically oriented multimarket analysis. Its assumptions represent a
considerable simplification of the general multimarket equilibrium
analysis. TUtility functions are omitted, and consumer demands are
stated on the basis of outside information without regard to the equi-
librium of individual consumers. The industry, rather than the firm,
is the unit of production. The production function for each industry is
of the constant-coeflicient type, and there are no optimization problemsin
the productive sphere. In general, input-output analysis assumes away
the problems of equilibrium. However, its simplifying assumptions are
not without reward. The very general, but empirically sterile, multi-
market equilibrium analysis is transformed into a model capable of
empirical implementation. The input-output system provides numerical
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answers for a number of interesting problems which involve the economy
as a whole.

Interindusey Flows. The first step for input-output analysis is to
obtain a detailed statement of the flows of goods and services during some
base year. Economic activity is classified into endogenous and exog-
enous sectors. The endogenous sectors are the m producing industries
which use primary factors and their own outputs as inputs. The exog-
enous sectors supply primary factors and consume the outputsof the pro-
ducing industries. It is sometimes convenient to lump all the exogenous
sectors together into a single final demand sector for an analysis of their
consumption. The final demand sector is not uniquely defined. It
generally includes households, government, and foreign trade. Since
the model is static, investment and inventory change are also included.
One or more of these sectors might be considered endogenous for specific
applications.!

The gross output (g;) of the produced good Q; equals the sum of the
flows of @; to the producing industries and to final demand:

G=¢+ " +gmt+a t=1...,m) (5-61)

where ¢;; is the flow of Q; to the jth industry and «; is the flow to final
demand. Each industry is assumed to produce a single homogeneous
output, and the flows can be measured in either physical units or base-
year values. Leontief’s practice of defining a physical unit as a dollar’s
worth in the base year is employed throughout the present discussion.

The r primary factors are also used as inputs. The total quantity of
the zth primary factor used during the base year is the sum of the quan-
tities used by each of the m industries:

G=gqg1+ - + Gn f=m4+1...,m+r) (562)

Factor quantities are also measured in base-year values.

The base-year flows for a hypothetical system containing two endog-
enous industries and one factor are presented in Table 5-1. An indus-
try’s output distribution is deseribed by its row, and its input purchases
by its column. Reading across the first row, industry 1 used 2,000 dol-
lars worth of its output as an intraindustry input, delivered 6,400 to
industry 2 and 1,600 to final demand. Reading down the first ¢clumn,
the inputs of industry 1 consisted of 2,000 dollars worth of its own output,

1An “open” input-output system contains one or more exogenous sectors. All
sectors are endogenous in a “closed’” system. Nearly all current analysis is for
“open”’ systems, and the description in the text is limited to these. The reader inter-
ested in the properties of a closed system is referred to Wassily W. Leontief, The
Structure of American Economy, 1919-1939 (2d ed.; New York: Oxford University
Press, 1951),
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6,000 of the output of industry 2, and 2,000 of the factor. The economy
is assumed to be in long-run equilibrium, and the costs of each industry
including normal profits equal its revenues. Therefore, the gross output
of an industry can also be obtained by summing the values of its inputs,
including the primary factor, entrepreneurship.

TABLE 5-1. BasE-YEAR Frows

Industry 1 2 Final demands | Gross outputs
1 $2,000 $6,400 $1,600 $10,000
2 6,000 4,800 5,200 16,000
3 2,000 4,800

Analytical Aspects. Inputs are assumed to be combined in fixed pro-
portions for the production of each of the m endogenous outputs:

‘ t=1,...,m+r)
S g 5-63

q} aug: (_7=1,.’-,m) ( )
where a;;is the quantity of Q; necessary for the production of a unit of Q,.
The production coefficients can be obtained from the base-year-flow table
by dividing the components of each column for an endogenous industry .
by the industry’s gross output. Table 5-2 contains the coefficients for

TaBLE 5-2. INPUT-OUTPUT COEFFICIENTS

Industry 1 2

1
2
3

(=Nl
N O N
oS OO
W W

the hypothetical system. If the assumption of constant coefficients is
correct, 0.2 units (2,000/10,000) of @i, 0.6 of @z, and 0.2 of Q; are needed
to produce 1 unit of Q,. '

Substituting the production relations of (5-63) into the flow equations
(5-61),

G Qg1 — T T s Gimm T O (z=1,...,m)
Collecting terms,

—tagy — - -+ (L= au)gi — © °  — GimGm
—a; (G=1,...,m) (5-64)

which gives a system of m nonhomogeneous linear equations with the m
gross outputs as variables and the m final demands as constants.



160 MICROECONOMIC THEORY: A MATHEMATICAL APPROACH

Using Cramer’s rule to solve (5-64) for g;,

(1 - au) — Q2 .. — Q1

—az (1 — az) —Qgm
where A=|-vee.n R,
— O —Qm2 (1 — amm)

and Aj is A with the jth column replaced by the final demands. The
solution of the input-output system can be generalized by expanding A; by
its jth column:

A Amj

ha1+—32+ ’I"Tam (j=1:“”m) (5-65)

where A;; is the cofactor of the element in the 7th row and jth column of A.
The system can be solved for the gross outputs corresponding to any set
of final demands if A # 0, i.e., if the equations of (5-64) are independent.
The quantities of the r factors necessary to support a particular set of
final demands are easily computed from (5-62) and (5-63) once the gross
outputs have been determined.

The system for the two-industry example is

(1 - a11)Q1 — Q1292 = a1
—anq; + (1 — az)q2 = o,

or substituting the values of the coefficients from Table 5-2,

0.8q1 - 04q2 =
—0.6¢1 + 0.7¢q2 = a2

Evaluating the determinant of the coefficients,
A=(1—an)d — az) — a1262; = 0.56 — 0.24 = 0.32

Solving by Cramer’s rule,

Q= (;)3:72 o + (;)3;42 az = 2.1875a; + 1.2500a,
0.6

q: = 0.32 o + 0 32 a2 = 1.8750a; + 2.5000a,
The solution states that 2.1875 units of @; and 1.8750 units of Q. are
necessary to support the delivery of 1 unit of @, to final demand.

Since the final demands are restricted to nonnegative values, the gross
outputs will be nonnegative for all admissible sets of final demands if
and only if all the coefficients of (5-65) are nonnegative. It is easily
proved that the coefficients of (5-65) are nonnegative in the two-industry
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case if at least one factor is required for the production of each com-
modity. By the definition of dollar’s worth units

au +aan+an=1 and Gyz + Q22 a3 =1
Since as1, as2 # 0,

l—ay;—an>0 and l1—ay;;—ax>0
and 1—an> a21 and 1-— Qg2 > Qg2

Taken together these inequalities imply
A=(1—-an)(l — ay) — aizan >0
All the cofactors of A are nonnegative:

A11=(1—az2)§0 A12=a21_>_0

Ayy=a1220 Ap=(1—-an) =0

The coefficients of (5-65) are ratios of nonnegative and positive numbers
and are therefore nonnegative. This existence theorem can be proved by
advanced methods for systems containing more than two industries.

6-7. Summary

A multimarket equilibrium analysis allows the determination of a con-
sistent set of prices for all goods. In a pure-exchange system individuals
are endowed with commodity stocks. Each is free to buy and sell com-
modities at prevailing prices subject to his budget constraint, which states
that the value of his sales must equal the value of his purchases. Indi-
vidual excess demand functions are derived from the first-order conditions
for utility maximization. Aggregate functions are obtained by summing
the individual functions for each commodity. All the individual, and
therefore the aggregate, functions are homogeneous of degree zero in
prices. Consumer behavior is determined by exchange ratios rather than
absolute prices. Multimarket equilibrium requires that .the -excess
demand for every commodity equal zero. Only (m — 1) of the m
market-clearing equations are independent, and the system is solved for
the exchange ratio of each commodity relative to an arbitrarily selected
numéraire. ‘

Production is introduced in the second stage of the analysis. The
consumers’ endowments are assumed to consist of primary factors which
they generally sell to entrepreneurs in order to be able to purchase pro-
duced commodities. The consumer’s excess demand functions for factors
and commodities are derived from his first-order conditions for utility
maximization. Each entrepreneur uses both factors and commodities as
inputs for the production of a single commodity. An entrepreneur’s
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excess demand functions for his inputs are derived from his first-order
conditions for profit maximization. The excess demand for his output is
obtained by substituting the input values into his production function.
The entrepreneur’s excess demands are also homogeneous of degree zero
in prices. Aggregate excess demand functions for each factor and com-
modity are obtained by summing the functions of the individual con-
sumers and entrepreneurs. The symmetry assumption is introduced,
and the aggregate excess demands become functions of prices and the
number of firms in each industry. Long-run equilibrium requires that
every market be cleared and that the profit of the representative firm in
each industry equal zero. Again, one of the market-clearing equations is
redundant, and the system is solved for exchange ratios and the number
of firms in each industry.

The exchange ratios between every pair of commodities can be deter-
mined from the exchange ratios relative to the numéraire. The numéraire
can serve as money in the standard-of-value sense. Its price can be set
equal to unity, and all prices expressed in terms of its units. Abstract
accounting money can serve as a standard of value. Circulating paper
money can be introduced, and its quantity will determine the level of
absolute prices if Say’s law is interpreted as an equilibrium condition and
money is included in the budget constraints. The quantity of money
cannot determine the level of absolute prices if Say’s law is interpreted
as an identity and money is excluded from the budget constraints.

The static and dynamic conditions for multimarket stability represent
a generalization of the Walrasian condition for a single market. Perfect
stability in the static Hicksian sense requires that the total derivatives
dE;/dp; (j = 2, . . . , m) be negative for all possible combinations of
rigid and flexible prices. Imperfect stability requires that the total
derivatives be negative, given the assumption that all prices are flexible.
An analysis of dynamic stability requires an explicit statement of the laws
of price adjustment over time. A multimarket system is dynamically
stable if all prices approach their equilibrium values over time following
a disturbance.

The mere formulation of a multimarket system gives no assurance
that an equilibrium solution exists. Particular numerical systems may
be examined individually to determine existence. An existence theorem
states that systems which satisfy a number of general conditions pos-
sess equilibrium solutions. A multimarket system may possess more
than one equilibrium solution. The multimarket equilibrium analysis
in its pure form is far too complicated to be a useful tool for empirical
applications.

The input-output system represents an empirical application of multi-
market analysis. The equilibrium aspects are omitted. The economy
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isdivided into producing and final demand sectors. Constant-coefficient-
type production functions are postulated for the producing sectors. The
values of the production coefficients are computed from a numerical flow
table for some base year. The system is solved for the outputs of the
producing sectors in terms of their deliveries to the final demand sectors,
and it is possible to determine the output levels necessary to support any
set of deliveries to final demand.
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CHAPTER 6

MONOPOLISTIC COMPETITION

Thus far, conditions of perfect competition have been assumed to pre-
vail in all markets. A perfectly competitive industry contains a large
number of firms selling a homogeneous product. Input and output prices
are unaffected by the actions of any individual firm. Each firm faces a
horizontal demand curve and maximizes profit by selecting an output
level at which marginal cost equals market price.

A market is monopolistically competitive if the aclions of one or more
buyers or sellers have a perceptible influence on price. This broad
definition of monopolistic competition encompasses markets of many
different types, which can be distinguished by further classification.
Product and input markets are frequently classified according to the
numbers of sellers and buyers which they contain. A market with a
single seller is a monopoly, one with two a duopoly, and one with a small
number greater than two an oligopoly. A market with a single buyer is a
monopsony, one with two a duopsony, and one with a small number greater
than two an oligopsony. Any combination of buyer and seller relation-
ships is possible. A firm might be a perfect competitor in the markets for
its inputs and a monopolist in the market for its output. Another firm
might be a duopsonist in the markets for its inputs and an oligopolist in
the market for its output. In fact, a single firm might purchase its
various inputs in markets of quite different organization.

Product markets can be further classified with regard to differentiation.
The theory of perfect competition is based upon the assumption that all
firms within an industry produce a single homogeneous product and that
buyers do not distinguish between the outputs of the varicus firms.
However, the reader need not look far to discover industries in which the
products of the various firms are close substitutes but differentiated in
the eyes of the buyers. The cigarette industry provides a good example.
Camels and Chesterfields are not the same product, though they satisfy
the same need, and the demand for one depends upon the price of the
other. The cigarette industry is an oligopoly with product differentiation.

Monopolistic competition is not limited to markets with small numbers
of buyers and sellers. Product differentiation alone is sufficient for its
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existence. An industry with a large number of firms selling closely
related, but differentiated, products is monopolistically comﬁétitive,
since each firm, though small in relation to the market as a whole, pos-
sesses some.control over the price at which it sells.

The market demand curve for a commodity gives consumers’ purchases
as a function of price on the assumption that the prices of all other com-
modities remain unchanged. The relation between price and sales for
an individual seller depends upon the organization of the market in which
he sells. A monopolist’s demand curve is the same as the corresponding
market demand curve. A perfect competitor’s demand curve is not
directly related to the market demand curve for his output, since he is
unable to influence price. His price-sales relationship is represented by
a horizontal line at the going market price. His sales would fall off to
zero if he attempted to charge more than the going price. He is able to
sell his entire output at this price and would not be acting rationally if
he lowered it. As a result, the individual seller’s demand curve is con-
structed on the assumption that all sellers charge the same price.

The construction of individual demand curves for duopolists and
oligopolists . presents a number of new problems. First, consider the
market for a homogeneous product. Competition among buyers will
result in a single price for all sellers, but each seller is sufficiently large in
relation to the market so that his actions will have noticeable effects
upon his rivals. An output change on the part of one seller will affect
the price received by all. The consequences of attempted price variations
on the part of an individual seller are uncertain. His rivals may follow
his change, or they may not, but he can no longer assume that they will
not notice it. The results of any move on the part of a duopolist or
oligopolist depend upon the reactions of his rivals. Since, in general,
reaction patterns are uncertain, general price-sales relationships cannot
be defined for an individual firm.

The scope for individual action is greater if the product is differentiated.
An individual seller will not lose all his sales if he charges a higher price
than his competitors. Some former buyers will switch to his competitors,
but some of his more loyal customers will continue to purchase his differ-
entiated product at a higher price because of their relatively strong prefer-
ence for it. A market demand curve covering the entire industry cannot
be defined, since each member of the market produces a commodity
which is distinct in the eyes of consumers. Each producer faces a sepa~
rate demand curve. The quantity sold by an individual producer is a
function of his price and the prices of all his competitors. His actions
are generally governed by the actions and reactions of his competitors.

A profit-maximizing monopolist operates unfettered by the competition
of closerivals. An individual producer in a large group selling a differenti-



166 MICROECONOMIC THEORY: A MATHEMATICAL APPROACH

ated product knows that his actions will have a negligible effect upon each
of his competitors, and he is able to maximize his profit in a manner
similar to that of an individual producer under conditions of perfect
competition. The actions of individual sellers (or buyers) are highly
interdependent in all other forms of monopolistic competition. - The
actions of one firm have significant effects upon the quantities, prices,
and profits of the others. Unqualified profit maximization is not possible,
since an individual firm does not have control over all the variables which
affect its profit. If an entrepreneur desires to maximize profit, he must
take account of the reactions of his rivals to his decisions. There is a
very large number of possible reaction patterns for duopolistic and
oligopolistic markets, and as a result there is a very large number of
theories of duopoly and oligopoly. Only a few of the many possible
reaction patterns can be presented within the confines of the present
chapter. ‘

The traditional theory of monopoly, the cne-firm industry, is developed
in Sec. 6-1. Turning to the problems of industries containing a small
number of firms, product differentiation and six different theories of
duopoly and oligopoly are discussed in Sec. 6-2. The many-sellers case
of monopolistic competition is described in Sec. 6-3, and monopsonistic
behavior is briefly outlined in Sec. 6-4.

6-1. Monopoly

There is no distinction between the industry and the firm in a monopo-
listic market. The monopolistic firm is the industry; it has no com-
petitors.! A monopolist’s individual demand curve possesses the same
general properties as the industry demand curve for a perfectly com-
petitive market. It is an aggregate of the demand curves of individual
consumers and is therefore negatively sloped. The quantity of his sales
is a single-valued function of the price which he charges:

¢ = f(p) (6-1)

where dg/dp < 0. The demand curve has a unique inverse, and price
may be expressed as a single-valued function of quantity:

p = F(q) (6-2)

1 In a broad sense all products compete for the limited incomes of consumers. The
term monopoly defines a situation in which a single firm produces a commodity for
which there are no close substitutes. The prices of all other commodities are assumed
constant, as is always the case for the analysis of a single market, and the competition .
of other commodities for the consumer’s income is reflected in the position and shape
of the monopolist’s demand curve.
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where dp/dg < 0. A major difference between a monopolist and a per-
fect competitor is that the monopolist’s price decreases as he increases his
sales. A perfect competitor accepts price as a parameter and maximizes
profit with respect to variations of his output level; a monopolist may
maximize profit with respect to variations of either output or price. Of
course, he cannot set both independently since his price (output level) is .
uniquely determined by his demand curve once he has selected his output
level (price). The price-quantity combination which maximizes profit is
invariant with respect to the choice of the independent variable.

The monopolist’s total revenue (R) is price multiplied by quantity
sold:

R = pq (6-3)

His marginal revenue (MR) is the derivative of his total revenue with
respect to his output level. Differentiating (6-3) with respect to g,
_ 9B _ dp .

MR = 7 +q a (6-4)
Since dp/dq < 0, MR is less than price. The MR of a perfect competitor
is also defined by (64). His MR
equals price since dp/dg = 0. The j 3
monopolist’s MR equals price less
the rate of change of price with re-
spect to quantity multiplied by
quantity. If the perfect competitor
expands his sales by 1 unit, his rev-
enue will increase by the market
value of the additional unit. The
monopolist must decrease the price
he receives for every unit in order
to sell an additional unit.

Linear demand and MR curves
are pictured in Fig. 6-1. Demand
is monotonically decreasing, and
MR is less than price for every output greater than zero. The rate of de-
cline of MR is twice the rate of decline of price:
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Figure 6-1

p=a—bg R = ag — bg? MR=%?=a—2bp

Since dp/dg = —b is a constant, the distance between the two curves
(q dp = bq) is a linear function of output. Total revenue for the price-

dg
quantity combination (p%¢°) equals the area of the rectangle Op®Tq°.
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The area O ASq® which lies under the MR curve also equals total revenue:
JJ (@ — 2bg) dg = ag — bg* = R

This result is applicable to demand curves which are not linear. In

general
q d}‘})
—_— d — ==
fo (p teg )da=r=R

since the integration constant always equals zero. Total revenue is
always given by the area lying under the MR curve.

The elasticity of demand (e) at a point on a demand curve is defined as
the absolute value of the rate of percentage change of output divided by
the rate of percentage change of price:

d(log ¢) p dgq
= — = - £ = 6-5
d(log p) g dp (6-5)
MR as given by (64) can be expressed in terms of price and demand
elasticity:
MR=p(1—i—g§£ =p(1—1) (6-6)
p dg e

MR is positive if e > 1, zero if ¢ = 1, and negative if ¢ < 1. The
difference between MR and price de-
R creasesasdemand elasticityincreases,
! and MR approaches price as demand
i elasticity approaches infinity.
: A parabolic total revenue curve
, ; which corresponds to the linear de-
R=aq~bg? : mand curve of Fig. 6-1 is presented
: in Fig. 6-2. The first derivative
i of total revenue (MR) is monotoni-
: cally decreasing and reaches zero at
: the output level ¢°. Total revenue
| is increasing and e > 1 for ¢ < ¢°,
;0 is at a maximum and e =1 for
g = ¢°% and is declining and e < 1
for ¢ > ¢°
The monopolist’s total revenue and total cost can both be expressed
as functions of output:

FiGure 6-2

R=R(@ C=0@9
His profit is the difference between his total revenue and total cost:
T = R(q) — C(9) (6-7)
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To maximize profit set the derivative of (6-7) with respect to ¢ equal to
Zero:
dr , ,
a0 =R'(g) — C'(g) =0
q

or R(g) = C'(@) (6-8)

MR must equal MC for profit maximization. The monopolist can
increase his profit by expanding (or contracting) his output, aslong as the
addition to his revenue (MR) exceeds (or is less than) the addition to his
cost (MC).

The second-order condition for profit maximization requires that

d*r ’? —_
gé-—R (@ —-C"(9<0

or adding C”’(q9) to both sides of the inequality,
R"{g) < C"(g) (6-9)

The rate of increase of MR must be less than the rate of increase of MC.
The second-order condition is a fortior: satisfied if MR is decreasing and
MC increasing, as is generally assumed. If MC is decreasing, (6-9)
requires that MR be decreasing at a more rapid rate. If both conditions
for profit maximization are satisfied for more than one output level, the
one which yields the greatest profit can be selected by inspection.

p P

MC

MR Me MR

)] {e)
Figure 6-3

The ﬁrst—order condition can be satisfied i in each of the three cases pre-
sented in Fig. 6-3. The equalization of MR and MC for (a) determines a
quantity of ¢° and a price of p°. The monopolist can set the price p° and
allow the consumers to purchase ¢° or he can offer ¢° for sale and allow
the consumers to determine a price of p°. The second-order condition
requires that the algebraic value of the slope of the MC curve exceed that
of the MR curve, i.e., the MC curve must cut the MR curve from below.
This condition is satisfied at the intersection points in (a) and (b). There
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is no point of maximum profit in (c¢) since the MC curve cuts the MR
curve from above at their only point of intersection. The first-order
condition can be satisfied, but the second-order condition cannot.

If a monopolist followed the rule of a perfect competitor and equated
MC to price, he would produce a greater output and charge a lower price.
This is obvious by Fig. 6-3a. The coordinates of the intersection point
of the MC and demand curves give a price less than p° and a quantity
greater than ¢ "

Consider a monopolist who faces a linear demand curve:

p=100 —4g R =pg=100¢ — 4¢> -  (6-10)

and produces at a constant MC of 20 dollars. His total cost is a linear
function of his output level:

C = 50 + 20q (6-11)
His profit is :
x = (100g — 4¢?) — (50 + 20q)

Setting MR equal to MC,

100 — 8¢ = 20
g =10 p = 60 = = 350

The second-order condition is satisfied: the rate of change of MC (zero)
exceeds the rate of change of MR (—8). If the monopolist were to follow
the rule of the perfect competitor and set price equal to MC:

100 — 4g = 20
g =20 =20 7=-50

he would sell a larger quantity at a lower price and earn a smaller profit.
In this example the monopolist’s 350 dollar profit would be reduced to a
50 dollar loss.

The Discriminating Monopolist. The monopolist need not always sell
his entire output in a single market for a uniform price. In some situa-
tions he is able to sell in two or more distinct markets at different prices
and thereby increase his profit. Price discrimination is feasible only if
buyers are unable to purchase the product in one market and resell it in
another. Otherwise, speculators would buy in a low-price market and
resell in a high-price market at a profit, and thereby equalize price in all
markets. Personal services are seldom transferable, and their sale fre-
quently provides an opportunity for price discrimination. The resale of
such commodities as electricity, gas, and water, which require physical
connections between the facilities of the producer and consumer, is
extremely difficult, and price discrimination is widely followed in setting
utility rates. Price discrimination is often possible in spatially separated
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markets such as the ‘“home’” and ‘‘foreign” markets of a monopolist who
sells abroad; resale can be prevented by a sufficiently high tariff.

If a monopolist practices price discrimination in two distinct markets,
his profit is the difference between his total revenue from both markets
and his total cost of production:

7 = Ri(q:) + Ra(gs) — Clgr + ¢2) (6-12)

- where ¢; and g2 are the quantities which he sells in the two markets,

R,(q1) and R:(g:) are his revenue functions, and C(q: + ¢2) is his cost
function. Setting the partial derivatives of (6-12) equal to zero,

O D?
Er Ri(q) —C'(@1+¢2) =0
2T = Rilgd) — C'(q1 + @) = 0
q2
or Ri(q:) = Ry(g2) = C'(q1 + ¢2) (6-13)

The M R in each market must equal the MC of the output as a whole. If the
MRs were not equal, the monopolist cculd increase total revenue without
affecting total cost by shifting sales from the low MR market to the high
one. The equality of the MRs does not necessarily imply the equality of
prices in the two markets. Denoting the prices and the demand elastic-
ities in the two markets by p,, p,, e1 and e; and utilizing (6-6), the equahty
of the MRs implies

and

Price will be lower in the market with the greater demand elasticity.

The prices will be equal if and only if the demand elasticities are equal.
Second-order conditions require that the principal minors of the rele—
vant Hessian determinant

R;’ - Q" . _CII
_ C// R’z’_ - C"
alternate in sign beginning with the negative sign. Expanding the prin-
cipal minors,
B/ —C"<0 (R{ - C")(B —C") = (C")2>0
These imply that (R, — C”) < 0. The MR in each market must be
increasing less rapidly than the MC for the output as a whole.
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Assume that the monopolist whose demand and cost functions are
given by (6-10) and (6-11) is able to separate his consumers into two
distinct markets:!

P11 = 80 — 5q1 R1 = SOQ1 d 5q12
P2 = 180 — 2OQ2 R, = 1SOQQ - 2OQ22
C = 50 + 20(¢g: + ¢2)

Setting the MR in each market equal to the MC of the output as a whole,
80 — 10g; = 20 180 — 40g, = 20

Solving for ¢ and ¢; and substituting into the demand, profit, and elas-
ticity equations,

g1 =6 p1 = 50 e = 1.67
g2 = P2 = 100 ey = 1.25
x = 450
Second-order corditions are satisfied:
~10 0
—10 < 0; 0 _40’—-400>0

The monopolist has increased his profit from 350 to 450 dollars through
discrimination. Price is lower in the market with the greater demand
elasticity. Further discrimination would be profitable if the monopolist
were able to subdivide his consumers into a larger numbecr of groups with
different demand elasticities.

The Multiple-plant Monopolist. Consider a monopolist selling in a
single market, who can produce his output in two separate plants. His
profit is the difference between his total revenue and his total production
costs for both plants:

= R(g: + g2) — Ci(q)) — Calga) (6-14)

where ¢, and ¢. are the quantities which he produces in the two plants,
R(q: + ¢2) is his revenue function, and Ci(g:) and Cx(g:) are his cost
1 His aggregate demand curve remains unchanged. Solving the demand 'equations

for g1 and g, )
= 16 — 0.2791 gz == 9 — 0.051)2

The total demand at any price (p) is the sum of the demands in the two markets:

¢4=q +g2=16 —02p 4 9 — 0.05p =25 — 0.25p
Solving for p,
= 100 — 4¢q

which is the demand function (6-10).
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functions. Setting the partial derivatives of (6-14) equal to zero,

o , ’

Er @1+ q) — Ci(q)) =0
T _ R'(gy+g) — Cl(gn) = 0
3 @ +qe 2(q2) =

or R'(g: + g2) = Ci(ar) = Ci(g2) (6-15)

The MC in each plant must equal the MR of the output as a whole.
Second-order conditions require that the principal minors of the relevant
Hessian determinant

7 ’ 14
R B Cy R,,I_i_ ¢ (6-16)
alternate in sign beginning with the negative sign. The reader can
verify that (6-16) requires that the MC in each plant must be increasing
more rapidly than the MR of the output as a whole.

Taxation and Monopoly Output. A lump-sum or a profit tax (with a
marginal rate less than 100 per cent) will reduce the profit after taxes of a
profit-maximizing monopolist, but will not affect his optimum price-
quantity combination. A sales tax, whether based upon quantity sold
or value of sales, will reduce his profit and output level and increase his
price.

The monopolist cannot avoid a lump-sum tax. It must be paid regard-
less of the physical quantity or value of his sales or the amount. of his
profit. His profit becomes

s =R@ - Clg) = T (6-17)

where T is the amount of the lump-sum tax and = is his profit after the
tax payment. Setting the derivative of (6-17) equal to zero,

T-R@-C@=0 R@=CQ

Since T is a constant, it vanishes upon differentiation, and the monopo-
list’s output level and price are determined by the equality of MR and
MC as would be the case if no tax were imposed.!

A profit tax requires that the monopolist pay the government a specified
proportion of the difference between his total revenue and total cost. If
the tax is a flat rate (constant proportion), his profit after tax paymentis

7 = R(g) — C(9) — {R(g) — C(9)] = (1 — 1)[R(q) — C(9)] (6-18)

1 Second-order conditions are henceforth assumed to be satisfied unless otherwise
stated.
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where 0 < ¢ < 1. Setting the derivative of (6-18) equal to zero,

Z—’q’ - @ - HR(Q) - C'(g)] = 0

Since (1 — ?) =0,

R'(q) —C'(9 =0  R'(g =C(g)
Since the first-order condition is the same as (6-8), output level and price
are unaffected. The only way a monopolist can avoid a profit tax is to
reduce his profit before taxes. If he is able to keep a fraction of an
increase of profit before taxes, he will maximize his profit after taxes by

equating MR and MC.
If a specific sales tax of a dollars per unit of output is imposed,

T = R(g) — C(g) — ag (6-19)
and —=R(q) —C(@) —a=0 R'(q) =C(g) + « (6-20)

The monopolist maximizes profit after tax payment by equating MR with
MC plus the unit tax. Taking the total differential of (6-20),

R"(q) dg = C"(q) dq¢ + da
dg _ 1

and da = B — C(@)
Since R'’(¢) — C'"(9) < 0 by the assumption that the second-order
condition is fulfilled, dg/da < 0, and the optimum output level declines
as the tax rate increases. The imposition of a specific sales tax results in
a smaller quantity sold and a higher price. ‘

Return to the example given by (6-10) and (6-11) and assume that the
government imposes a tax of 8 dollars per unit upon the monopolist’s
output:

(6-21)

7 = (100g — 4¢%) — (50 + 20q) — 8¢
g’—q’=72—8q=o g=9 p=64 =274

Sales diminish by 1 unit, price increases by 4 dollars, and the monopolist’s
profit diminishes by 76 dollars as a result of the imposition of the tax.
Price increases by less than the unit tax, but the monopolist’s profit
decreases by more than the 72 dollar tax revenue. If the government
imposed a 72 dollar limp-sum tax upon the monopolist, it would receive
the same revenue, the monopolist’s profit would be decreased by 4 dollars
less, and the consumers would not have to pay a higher price for the prod-
uct. As a result it is frequently argued that a lump-sum tax is preferable
to a sales tax.

The results are similar if the sales tax is a proportion of the value of
sales (total revenue),
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= R(g) — C(g) — sR(g) = (1 — 9)R(g) — C(g)
%=(1—QE@—%H®=O (1 — 9)R(g) = C'() (6-22)

where 0 < s < 1. Profits are maximized by equating MC to the portion
of the MR that the monopolist is allowed to retain. Taking the total
differential of (6-22),

(1 — s)R"(q) dg — R'(q) ds = C"(q) dg
dg _ R'(q)
and &~ T=9R" (@) = ") (6-28)
Since the first-order condition requires that MR be positive and the
second-order condition requires that the denominator of (6-23) be nega-
tive, dg/ds < 0. The imposition of an ad valorem sales tax also results
in a reduced output level and an increased price.

6-2. Duopoly and Oligopoly.

A duopolistic industry contains two sellers. An oligopolistic industry
contains a number sufficientiy small so that the actions of any individual
seller have a perceptible influence upon his rivals. It is not sufficient to
distinguish oligopoly irom perfect competition for a homogeneous prod-
uct or from the many-sellers case of monopolistic competition for a differ-
entiated product on the basis of the number of sellers alone. The essen-
tial distinguishing feature is the interdependence of the various sellers’
actions. If the influence of one seller’s quantity decision upon the profit
of another, dm;/dg;, is imperceptible, the industry satisfies the basic
requirement for either perfect competition or the many-sellers case of
monopolistic competition. If dr;/dg; is of a noticeable order of magni-
tude, it is duopolistic or oligopolistic.?

1 Market symmetry is assumed throughout the present chapter, in the sense that
the partial derivatives dr;/3g; are assumed to be of the same order of magnitude for
all 7 and j except ¢ = j. Many asymmetric market situations can be analyzed by
modifying and combining the analyses for symmetric markets. Consider the case
of partial monopoly, i.e., a market containing cne large seller and a large number of
small ones. The partial derivatives 8x;/8¢; are of an imperceptible order of magni-
tudefor(z=1,...,n),({ =2 ...,n),and ¢ > j, and dr;/3q: is of a noticeable
order of magnitude for all ¢ where the subscript 1 denotes the large seller.

A theory of partial monopoly can be formulated by combining the theories of pure
monopoly and perfect competition. The small firms will accept the going price and
adjust their output levels to maximize profit in the same manner as a perfect com-
petitor. The partial monopolist’s effective demand function is obtained by sub-
tracting the supply of the small firms, a function of price, from the market demand
curve, also a function of price. Using this demand function, the partial monopolist
maximizes profit by selecting either a price or output level in the same manner as a
pure monopolist.
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The price-quantity combination and profit of a duopolist or oligopolist
depend upon the actions of all members of his market. He can control
his own output level (or price, if his product is differentiated), but he has
no direct control over the other variables which affect his profit. The
profit of each seller is the result of the interaction of the decisions of all
market members. There are no generally accepted behavior assumptions
for oligopolists and duopolists as there are for perfect competitors and
monopolists. There are many different solutions for duopolistic and
oligopolistic markets. Each solution is based upon a different set of
behavior assumptions. Six of the more interesting solutions are described
in the present section. Each is developed for a duopolistic market, but
all except the Stackelberg and theory-of-games solutions are easily
generalized for oligopolistic markets. The Cournot, collusion, and
Stackelberg solutions are developed for markets with homogeneous
products, but are easily extended to cover markets with differentiated
products. The market shares and kinked-demand-curve solutions are
developed for differentiated products, but can be modified to cover
homogeneous products. The theory-of-games solution is developed for
application to either type of market.

The Cournot Solution. The classical solution of the duopoly (and
oligopoly) problem is associated with the name of Augustin Cournot,
an early-nineteenth-century French economist. Two firms are assumed
to prodiice a homogeneous product. The inverse demand function states
price as a function of the aggregate quantity sold:

p=F(q + q) (6-24)

where ¢, and ¢; are the levels of the duopolists’ outputs. The total
revenue of each duopolist depends upon his own output level and that
of his rival:
By = ¢iF (1 + ¢2) = Ba(qu,q2) (6-25)
Ry = ¢2F(q1 + ¢2) = Ra(q1,92)

The profit of each equals his total revenue less his cost, which depends
upon his output level alone:

™ = Rl(Ql:q2) - C'x(qx) "
72 = Ra(ug) — Co(gs) (6-26)

The basic behavior assumption of the Cournot solution is that each duopo-
list maximizes his profit on the assumption that the quantity produced by
his rival is invariant with respect to his own quantity decision. The first
duopolist (I for short) maximizes r, with respect to qi, treating ¢ as a
parameter, and the second (II for short) maximizes 7, with respect to

q2, treating ¢, as a parameter.
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Setting the appropriate partial derivates of (6-26) equal to zero,

om _ 9By _dCi_ o 9Ry _ dCy
91 O dq 01  dq (6-27)
omy _0Ry _dCy, . oR,_ dC,
g2  dg:  dge g  dg,

First-order conditions require that each duopolist equate his MC to his
MR. The MRs of the duopolists are not necessarily equal. Let
¢ = q1+ q2 and 89/9q1 = 3q/3q, = 1. The MRs of the duopolists are
aaI;":p'i'Qi% (7'=1)2)

The duopolist with the greater output will have the smaller MR. An
increase of output by either duopolist acting alone will result in a reduc-
tion of price, i.e., a movement down the market demand curve, and the
total revenues of both will be affected. The rates of change of the total
revenues depend upon the output levels. Imagine that price decreases
at the rate of 1 dollar per unit increase of aggregate sales, and that
g1 = 100 and ¢, = 200. If I increases his output to 101 units, he will
receive 100 dollars less for the 100 units he had previously sold at a higher
price. If II’s output remains unchanged, he will lose 200 dollars of
revenue as a result of I’s action, but this is of no concern to I within the
framework of the Cournot assumptions. If II increases his output
by 1 unit, with I’s output level unchanged, he will receive 200 dollars
less for the units he had previously sold. ,

The second-order condition for each duopolist requires that

?*r; IR, d°C;

ag? ~ g7~ dgs? <0 €=12
OR; _d:C; . . .
or W < dq.‘2 ('I, = 1, “ (6-28)

Each duopolist’s MR must be increasing less rapidly than his MC. The
maximization process for the Cournot solution is not the same as in the
case of the two-plant monopolist, where a single individual controls the
values of both output levels. Here each duopolist maximizes his profit
with respect to the single variable under his control.

The duopolistic market is in equilibrium if the values of ¢; and g are
such that each duopolist maximizes his profit, given the output of the
other, and neither desires to alter his output. The equilibrium solution
can be obtained by solving (6-27) for ¢, and ¢ if (6-28) is satisfied. The
market process can be described more fully by introducing an additional
step before solving for the equilibrium output levels. Reaction functions
which express the output of each duopolist as a function of his rival’s
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output are determined by solving the first equation of (6-27) for ¢: and
the second for g,:
1 = ¥i(g2)
6-29
92 = ¥2(q1) (6-29)
I’s reaction function gives a relationship between ¢; and ¢; with the
property that for any specified value of g, the corresponding value of
¢ maximizes w;. II’s reaction function gives the value of ¢, which maxi-
mizes =2 for any specified value of ¢;. An equilibrium solution is a pair
of values for ¢; and ¢, which satisfy both reaction functions.
If the demand and cost functions are

p = 100 — 0.5(q1 + ¢2) Ci1 = bgs Cy = 0.5¢:*  (6-30)
the profits of the duopolists are

m = 100g, — 0.5¢:2 — 0.5¢1g2 — 51 (6-31)
- 72 = 100g; — 0.5¢2* — 0.5¢:g2 — 0.592?

Setting the appropriate partial derivates equal to zero,

‘%‘=95—q1 —0.5¢2 = 0
‘;—;‘;’ = 100 — 0.5 — 2¢; = 0
The correspondir_ig reaction functions are
=9 —05¢: g2 =50 — 0.250: (6-32)

A rise of either duopolist’s output level will cause a reduction of the other’s
optimum output. The reaction functions are of the shapes pictured in
Fig. 64. The equilibrium solution is given by their point of intersection.
Solving (6-32) for ¢; and ¢, and substituting in the demand and profit
functions, )

q1 = 80 g: = 30 p =45

m = 3,200 m2 = 900 . (6_33)

The second-order conditions are satisfied for this solution:

¥ _1<0 ¥m_o o<

8942 agqs?

The basic behavior assumption of the Cournot solution is rather weak.
Each duopolist acts as if his rival’s output were fixed. =~ However, this is
not the case. Equilibrium is reached through a sequence of instan-
taneous adjustments. One sets an output; this induces the other to
adjust his output, which in turn induces the first to adjust his, and so on.
It is rather unlikely that each will assume that his quantity decisions do
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not affect his rival’s quantity decision if each of his adjustments is
immediately followed by a reaction on the part of hisrival. Others have
assumed that each maximizes his profit on the assumption that his rival’s
price remains unchanged, but this is an even more unrealistic assumption
if the product is homogeneous. Duopolists and oligopolists generally
recognize the mutual interdepend-
ence of their decisions and those of
their rivals.

The Cournot. solution is easily ex-
tended to markets containing more
than two sellers. As the number of
sellers is increased, the output of each
represents a progressively smaller
proportion of the industry total,
and theeffects of an individual seller’s
actions upon his rivals become
less and less noticeable. In the limit
the Cournot solution approaches o
the perfectly competitiveresult. An
individual seller will be unable to
influence price, his MR will equal the markst price, and his actions will
not induce reactions on the part of his rivals.

The Collusion Solution. Duopolists (or oligopolists) may recognize
their mutual interdependence and agree to act in unison in order to maxi-
mize the total profit of the industry. Both variables are then under a
single control, and the industry is, in effect, a monopoly. Maximization
proceeds in the same manner as for the two-plant monopolist.

Returning to the example given by (6-30), industry profit is

* = m + w2 = 100(¢1 + g2) — 0.5(¢q1 + ¢2)2 — 5¢1 — 0.5¢2®
Setting the partial derivatives of = equal to zero,
or or
— =95 —-q1—¢=0 — =100 — ¢, — =0
30 Q1 — Q2 _ 3gs 91 — 2¢2
Solvix_lg for ¢; and g2 and substituting in the profit and demand equations,

¢ =9 =5 7=452 p=525

9

QI ='\3f1 (Q2)

g2="aiq)

5
Ficure €-4

Comparison with (6-33) shows that the colluding duopolists produce a
smaller total output at a higher price for a larger total profit than in the
Cournot case. From the viewpoint of the industry as a whole, it is
advantageous for the firm with the less rapidly increasing MC (I in this
example) to increase its relative share of total output. The equilibrium
MCs of the two firms are equal for the collusion solution. '
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Industry profit is increased from 4,100 to 4,525 dollars. I’s profit is
increased from 3,200 to 4,275 dollars, and II’s reduced from 900 to 250
dollars. I’sincrease exceeds II’s reduction, and collusion is profitable to
both if I compensates II by a payment which is greater than II’s reduction
(650 dollars) but less than I’s increase (1,075 dollars).- '

The Stackelberg Solution. Generally, the profit of each duopolist is
a function of the ouput levels of both:

7= ha(gy,q2) | 72 = ha(q1,qe) (6-34)

The Cournot solution is obtained by maximizing = with respect to ¢
and =, with respect to ¢g.. The collusion solution is obtained by maxi-
mizing (w1 + m2) with respect to both ¢; and ¢. Many other modes of
maximizing behavior are possible for the duopolists whose profit functions
are given by (6-34). One of the more interesting is the analysis of leader-
ship and followership formulated by the German economist Heinrich
von Stackelberg.

A follower observes his reaction function (6-29) and adjusts his output
level to maximize his profit, given the quantity decision of his rival, whom
he assumes to be a leader. A leader does not observe his reaction func-
tion. He assumes that his rival acts as a follower, and maximizes his
profit, given his rival’s reaction function. If I desires to play the role of
a leader, he assumes that II’s reaction functlon is valid and substitutes
this relation into his profit function: :

w1 = hafg1, % (q1)]

I’s profit is now a function of ¢, alone and can be maximized with respect
to this single variable. II can also determine his maximum profit from
leadership on the assumption that I observes his reaction function and
acts as a follower. I’s maximum profit from: followership is determined
by substituting II’s optimum leadership output level in I’s reaction func-
tion, and II’s maximum profit from followership is determined by sub-
stituting I’s optimum leadership output level in II’s reaction function.
Each duopolist determines his maximum profit levels from both leader-
ship and followership and desires to play the role which yields the larger
maximum. Four outcomes are possible: (1) I desires to be a leader, and
II a follower; (2) II desires to be a leader, and I a follower; (3) both desire
to be leaders; or (4) both desire to be followers. Outcome (1) results in
consistent behavior patterns and therefore a determinate equilibrium.!
I assumes that II will act as a follower, and he does; IT assumes that I will
act as a leader, and he does. Likewise (2) results in a determinate equi-

! The first- and second-order conditions for maxima are assumed to be fulfilled in
all cases.
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librium. If both desire to be followers, their expectations are not real-
ized, since each assumes that the other will act as a leader. The duopo-
lists must revise their expectations. Under the Stackelberg assumptions,
the Cournot solution is achieved if each desires to act as a follower,
knowing that the other will also act as a follower. Otherwise, one must
change his behavior pattern and act as a leader before equilibrium can
be achieved.

If both desire to be leaders, each assumes that the other’s behavior is
governed by his reaction function, but, in fact, neither of the reaction
functions is observed, and a Stackelberg disequilibrium is encountered.

- Stackelberg believed that this disequilibrium is the most frequent out-

come. The final result of a Stackelberg disequilibrium cannot be pre-
dicted a priori. If Stackelberg was correct, this situation will result in
economic warfare, and equilibrium will not be achieved until one has
succumbed to the leadership of the other or a collusive agreement has
been reached.

Return again to the example given by (6-30). The maximum leader-
ship profit of I is obtained by substituting II’s reaction function (6-32)
into I’s profit equation (6-31):

w1 = 100q; — 0.5¢:2 — 0.5¢1(50 — 0.25¢1) — 5¢1
= 70ql - 0.375Q12

Maximizing with respect to g,

((i;qu 0 —0.75¢; =0 g = 9314 m1 = 3,26624
1
Likewise for II,
w2 = ].OOQ2 — 0. 5Q22 — 0. 5QQ(95 - 0 5QQ) - 0. 5QQ
= 52. 5Q2 0. 75Q2
Z’” 525 —15¢: =0 ¢:=235 m = 918.75
q2

To determine I’s maximum followership profit, first determine his out-
put by substituting the leadership output of II (35 units) into his reac-
tion function (6-32), and then compute his profit from the first equation
of (6-31):

@1 = 95 — 0.5¢: = 77.5 71 = 3,003.125

Likewise substitute 9314 into II's reaction function and then compute his
profit from the second equation of (6-31):

g2 = 50 — 0.25¢; = 26%4  m» = 15534

Each duopolist receives a greater profit from leadership, and both desire
to act as leaders. An example in which the Cournot solution is easily
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determined has become a Stackelberg disequilibrium as the result of an
alteration of the basic. behavior assumptions.

Product Differentiation. The individual producer of a differentiated
product in an oligopolistic market faces his own distinct demand curve.
The quantity which he can sell depends upon the price decisions of all
members of the industry:

Ul =fi(p1:p2$ L ,?}n) ('L = 1: L 1") (6'35)

where 3¢;/dp; < 0 and d¢;/dp; > O for all 7 # 5. An increase of price on
the part of the 7th seller with all other prices remaining unchanged results
in a reduction of his output level. Some of his customers will turn to his
competitors. If some other seller should increase his price, the 7th seller
can sell a larger quantity at a fixed price. Some of his competitor’s
customers will tura to him. . '

Individual producers can set either price or quantity. Demand func-
tions may be expressed in inverse form with output levels as independent
variables:!

P=Figngs, - - . g2 (G=1,...,n) -~ (6-36)

All partial derivatives of (6-36) are negative. If the sth seller increases
his output level, with all other output levels constant, ‘p; will decline,
since a larger quantity always brings a lower price. If some other seller
increases his output level, his price will decline, and the price of the 7th
firm must also decline in order to maintain ¢; at a constant level. Other-
wise some of his customers would turn to the firm with the lowered price.

The Cournot, collusion, and Stackelberg solutions are easily modified
for product differentiation by replacing p = F(q: + ¢2) with individual
demand functions:

D1 = F1(q1,q2) P2 = Fa(g1,q2)

The analysis can also be extended to cases in which prices are the inde-
pendent variables: '

¢ = f1(p1,p2) 72 = fo(p1,02)

Profits were expressed as functions of quantities:

Ty = h1(¢11,§*2) wy == hz(@’hg?)

1The demand functions may be constructed to describe a situation in which price
is the independent variable for some sellers and quantity for others. The dependent
variable of each seller is then expressed as a function of the independent variables of
all sellers. '
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By substitution,

71 = Ml fi(p1,p2); fo(p1,p2)] = H1(p1,p2)
T2 = Rl fi(D1,D2), f2(P1,02)] = Ha(py,p2)

The profit of each duopolist is a function of both prices, and maximization
may proceed with respect to prices.

In the case of differentiated products the duopolists’ profits may also
depend upon the amounts of their advertising expenditures. If advertis-
ing is effective, it allows the firm to sell a larger quantity at a given price
or a given quantity at a higher price. The demand curves are

p1 = Fi(q1,q2,41,42) P2 = F2(q1,92,41,45)

where A and 4. are the amounts of advertising expenditure by I and II
respectively. The profit functions become

m = @1F1(q1,92,41,42) — Ci(q1) — 4
w2 = q2F'2(q1,92,A1,42) — C2(q2) — A,

Each duopolist must now maximize his profit with respect to his adver-
tising expenditure as well as his output level.

The Market-shares Solution. Assume that II desires to maintain a
fixed share of the total sales of a differentiated product, regardless of the
effects of his actions on his short-run profits. His major concern is with
the long-run advantages that are derived from maintaining a given mar-
ket share. A quantity change on the part of I will be immediately fol-
lowed by a proportionate change on the part of II. The relation

k
R esi o

where k is II’s desired market share, will always hold. I is a market
leader in the sense that his actions will always be followed by II in a pre-
determined manner. :

I’s demand function is p1-= Fi(q1,92), and his profit function is

m = iF1(qu,q2) — Ci(qy)

Substituting from (6-37) for g,

k
1 = @iFfy (91, i‘%ﬁ) — Ci(qr)

I's profit is a function of g, alone and may be maximized with respect
to this single variable as long as II reacts to maintain his market share.
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Let I's demand and cost functions be
P = 100 — 2¢;, — ¢2 C, = 2.5¢,% (6-38)
Let £ = 34, and therefore g2 = 0.5¢1. I’s profit is '
w1 = ¢1(100 — 2¢1 — 0.5¢1) — 2.5¢:* = 100¢; — 5¢:® (6-39)

Setting the first derivative of (6-39) equal to zero, solving for ¢, and sub-
stituting in the above relations,

dir1
— = 100 — 10q; ==
T 1 10¢; = 0

QI":'].O Q'z=5 p1=75 7r1=500

(6-40)

I maximizes his profit at an output of 10 units, and II reacts by producing
5 units.

The Kinked-demand-curve Solution. Duopolistic and oligopolistic
markets are characterized by infrequent price changes. Firms usually
do not change their price-quantity combinations in response to small
shifts of their cost curves as the foregoing market analyses would suggest.
The kinked-demand-curve solution presents a theoretical analysis which
is consistent with this observed behavior. Starting from predetermined
price-quantity combinations, if one of the duopolists lowers his price
(increases his quantity), the other is assumed to react by lowering his
price (increasing his quantity) in order to maintain his market share.
If one of the duopolists raises his price, his rival is assumed to leave his
own price unchanged and thereby increase his market share. Price
decreases will be followed, but price increases will not. ‘

Assume that the demand and cost functions of the duopolists are

P11 = 100 — 2¢q1 — ¢q2 C1 = 2.5¢q:2

p2 =95 — q1 — 3¢ C. = 25¢q, (6-41)

and that the currently established prices and quantities are p, = 70,
g1 = 10, p; = 55, and ¢. = 10.t If I increased his price, II would
leave his own price unchanged at 55 dollars. Substituting p; = 55 into
ITI’s demand function (6-41) and solving for gz,

g2 = 40—;9—‘ (6-42)

1 Thereader can verify that these price-quantity combinations represent a Cournot
solution. MC equals MR for each duopolist, on the assumption that his rival's
output level remains unchanged. The method by which the initial price-quantity
combinations were achieved is of no concern for the kinked-demand-curve analysis.
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II’s output level and market share will increase as I increases his price
and thereby decreases his output level. Substituting the value for ¢
given by (6-42) into I’s demand function (6-41),

_ 260 — 501

pl 3 (6-43)

I’s price is a function of ¢, alone given the assumption that II maintains
his price at 55 dollars. Starting from the initial position, (6-43) is only
valid for p; > 70 and ¢1 < 10. I’s MR function for price increases can
be derived by forming his total revenue function from (6-43):

260 —
Ri=q (—‘—3““52)

dR; _ 260 — 10¢;
in -3 (6-44)
At ¢, = 10, I’'s MR for a price increase is 5334 dollars.

The demand and MR functions given by (6-43) and (6-44) are not valid
if T reduces his price. In this case, IT will follow by lowering his price
by an amount sufficient to allow him to retain half the total volume of
sales. II must increase his output level by the same amount as I in
order to maintain his market share: g2 = 1. Substituting ¢, = ¢, into
I’s demand function (6-41),

and

P1 = 100 — 3qx (6-45)

I’s priceis a function of ¢, alone given the fact that II maintains his mar-
ket share. The demand function given by (6-45) is valid for p, < 70
and ¢; > 10. I’s MR function for price decreases can be derived by
forming a total revenue function from (6-45):

R1 = ¢1(100 — 3q1)
dR,
and do = 100 — 6q; (6-46)
51
At ¢; = 10, I's MR for a price decrease is 40 dollars.
The initial position represents a maximum-profit point for I. His MC
for an output of 10 units is. 50 dollars. He cannot increase his profit by

increasing his price (reducing his output level), since MR exceeds MC

(53%4 > 50) and this difference would be increased by a price increase.
He cannot increase his profit by reducing his price (increasing his output
level), since MR is less than MC (40 < 50) and this difference would be
increased by a price reduction. His initial price-quantity combination is
optimal for any value of MC from 53%4 to 40 dollars. A reduction of his
MC by an amount not greater than 10 dollars would not induce him to
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lower his price and expand his sales. Likewise, an increase of MC by an
amount not greater than 3}4 dollars would not induce him to increase his
price and contract his sales. '

Graphically, I's effective demand curve is ‘kinked ”’ and his effective
MR curve discontinuous at his initial output level. His demand curve

is D'D’ (see Fig. 6-5) if II reacts by
maintaining his market share and DD
¥ if II reacts by maintaining his price.
The shaded portions of these demand
D MC curves give his effective demand i
ME curve; DD is valid for price increases,
\ and D’D’ for price decreases. His
D effective MR curve follows the MR
curve corresponding to DD to the
left of his initial output level and the
D MR curve corresponding to I D’ "to
\ MR the right of his initial output level.

o 4 I is unable to equate MR and MC.
FIGURE 6-5 The Theory-of-games Solution.
The mathematical theory of games
has been applied to market situations in which the outcome depends upon
the actions of participants with conflicting interests. Situations of
duopoly, oligopoly, and bilateral monopoly (a market with a single seller
and a single buyer) often fit into this category. Duopolists are in conflict
if a move by one results in a diminution of the profit of the other. The
theory of games provides specific behavior assumptions which result in an
equilibrium for such a market, though the equilibrium is quite different

from those provided by the other solutions.

A game may consist of a sequence of moves as in chess, or it may con-
sist of a single move on the part of each of its participants. The present
analysis is limited to single-move games. In this context, a sirategy is
the specification of a particular move for one of the participants. A
duopolist’s strategy consists of selecting a particular value for each of the
variables under his control. If price is his only variable, a strategy
consists of selecting a particular price. If price and advertising expen-
diture are both variables, a strategy consists of selecting particular values
for both price and advertising expenditure. Each participant is assumed
to possess a finite number of strategies though the number may be very
large. This assumption rules out the possibility of continuous variation
of the action variables. The outcome of the duopolistic game, i.e., the
profit earned by each of the participants, is determined from the relevant
cost and demand relations once each of the duopolists has selected a
strategy. V ' '

$
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Games are classified on the basis of two criteria: (1) the number of
participants and (2) the net outcome. The first merely involves a count-
ing of the number of participants with conflicting interests. There are
one-person, two-person, three-person, and in the general case, n-person
games. The second criterion allows a distinction between zero-sum and
non-zero-sum games. A zero-sum game is one in which the algebraic
sum of the outcomes, e.g. profits, for all the participants equals zero for
every possible combination of strategies. If the net outcome of a game
is different from zero for at least one strategy combination, it is classified
as a non-zero-sum game.

A one-person, zero-sum game is uninteresting, since the player gains
nothing, regardless of his strategy choice. A monopolist or a monopsonist
might be considered as the sole participant in a one-person, non-zero-
sum game. The present analysis is restricted to two-person, zero-sum
games and can be applied to a duopolistic market in which one partic-
ipant’s gain always equals the absolute value of the other’s loss. In
general, if I has m and II has n strategies, the possible outcomes of the
game are given by the profit matrix

iy QGiz " " Qin
21 Qg2 ~ * ° Qg (6-47)
Ami Qmz ° * * COman

where a;; is I’s profit if I employs his zth strategy and II employs.his
jth. Since the game is zero-sum, the corresponding profit earned by II
is —Qyj.

For a specific example consider the profit matrix

8 40 20 5
10 30 —10 -8

If I employs his first strategy and I1 employs his second, I’s profit is 40,
and I’s is —40. If I employs his second strategy and II employs his
third, I’s profit is —10, and II’s is 10.

The duopolist’s decision problem consists of choosing an optimal
strategy. I desires the outcome (40) in the first row and second column
of (6-48), and II desires the outcome (—10) is the second row and third
column. The final outcome depends upon the strategies of both duopo-

(6-48)

‘lists, and neither has the power to enforce his desires. If I selects his

first strategy, II might select his fourth, and the outcome would be 5
rather than 40. If ITI selects his third strategy, I might select his first,
and the outcome would be 20 rather than —10. The theory of games
postulates behavior patterns which allow the determination of equilib-
rium in these situations. I fears that II might discover his choice of
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strategy and desires to ““play it safe.” If I selects his zth strategy, his
minimum profit, and hence II’s maximum, is given by the smallest ele-
ment in the ith row of the profit matrix: min a;;. This is his expected

2

profit from the employment of his zth strategy if his fears regarding II’s
knowledge and behavior are realized. I’s profit will be greater than this
amount if II fails to select his appropriate strategy. I desires to maxi-
mize his minimum expected profit. Therefore, he selects the strategy ¢
for which min a;; is the largest. His expected outcome is max min a;;.

7 i ]
He cannot earn a smaller profit and may earn a larger one. ’

IT possesses the same fears regarding I’s information and behavior.
If II employs his jth strategy, he fears that I may employ the strategy
corresponding to the largest element in the jth column of the profit
matrix: max a;. Therefore, II selects the strategy j for which max a;;

% 3
is the smallest, and his expected profit is —min maxa;;. The decisions
7 i
of the duopolists are consistent and equilibrium is achieved if
max min ¢;; = min max a;;
i g i i

Returning to the example given by (6-48), I will employ his first
strategy. If II anticipates his choice, I’s profit will be 5. If I employed
his second strategy, and II anticipated his choice, his profit would be — 10.
II will employ his fourth strategy and limit his loss to 5. Every other
column of (6-48) has a maximum greater than 5. In this case

max min ¢;; = mib max ¢;: = dy = 5
i g i

The duopolists’ decisions are consistent, and an equilibrium is established.
Neither of the duopolists can increase his profit by changing his strategy

if his opponent’s strategy remains unchanged.
Assume that the profit matrix is

-2 4 —~1 6
[ 3 -1 5 10] , (6-49)

where I has two strategies and II has four. This profit matrix and its
corresponding game problem can be simplified by introducing the con-
cept of dominance. An inspection of (6-49) reveals that II will never
employ his third strategy since he can always do better.by employing his
first, regardless of I’s strategy choice. Each element in the third column
is larger, and therefore represents a greater loss for II, than the cor-
responding element in the first. In general, the jth column dominates the
kth if a;; = ag for all7 and a;; < ax for at least onez. The fourth column

of (649) is dominated by both the first and second columns. Domi-
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nance can also be defined with regard to I’s strategies. In general, the
7th row dominates the hth if a;; = ax; for all j and a;; > as; for at least one
7. Neither row of (6-49) dominates the other. A rational player will
never employ a dominated strategy. Therefore, the profit matrix can
be simplified by the removal of all dominated strategies.
Eliminating the third and fourth columns of (6-49), the profit matrix
becomes
[—2 - 4] (6-50)
3 -1

Following the rules established above, I will desire to employ his second
strategy, and II will desire to employ his first. These decisions are not
consistent:

max min g;; = @2 = —1 7 3 = an = min max a;

[ J J i
If the duopolists employ these strategies, the initial outcome would be
a2 = 3. If II employs his first strategy, I cannot increase his profit by
changing strategies. However, if I employs his second strategy, II
can decrease his loss from 3 to —1 by switching to his second strategy.
I can then increase his profit from —1 to 4 by switching to his first. II
can then decrease his loss from 4 to —2 by switching to his first. The
assumptions which lead to an equilibrium position for (6-48) result in
endless fluctuations for (6-50).

The game problem given by (6-50) can be solved by allowing the duopo-
lists to select their strategies on a probabilistic basis. Let the probabili-
ties of I's employing his first and second strategies be r and (1 — r)
respectively where 0 < r < 1. If he selected probabilities of 0.5 for
each strategy, he could flip a coin and employ his first strategy if it fell
‘“heads’ and his second if it fell ““tails.” Such a random selection will
not allow II to anticipate I’s choice even if he knows the probabilities
assigned to I's strategies. II can randomize his strategy selection by
assigning the probabilities sand (1 — s) to hisstrategies where 0 =< s < 1.
The duopolists are now concerned with expected, rather than actual,
profits. A duopolist’s expected profit equals the sum of the possible out-
comes, each multiplied by the probability of its occurrence. For exam-
ple, if II employs his first strategy with a probability of one and I selects
the probabilities » and (1 — ), I’s expected profit is ra;; + (1 — r)aa.
If 11 employs his second strategy with a probability of one, I’s expected
profit is raz + (1 — 7)azs.

The decision problem of each duopolist is to select an optimal set of
probabilities. The probabilities which they employ are defined as
optimal if
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rai "l‘ (1 b r)azl g V

raiz + (1 — r)ap =V (6-51)
and san+ (1 —8)are =2V

san + (1 — s)aze =V (6-52)

where V is defined as the value of the game. The relations of (6-51) state
that I's expected profit is at least as great as V if II employs either of his
pure strategies with a probability of one. The relations of (6-52) state
that II’s expected loss is at least as small as V if I employs either of his
pure strategies with a probability of one. It can be proved that values for
" r and s always exist such that (6-51) and (6-52) are satisfied and that V is
unique.

If both duopolists select their strategies on a probabilistic basis, I’s
expected profit can be determined from (6-51):

E,=8ran+ 10 —ran]l + A —s)[rae+ (1 — r)as] = sV 4+ 1A —95)V
or E, = sra;; + 8(1 - 7')021 + (1 - S)Talz
+ 1A =70 —3)a2=V (6-53)

ID’s expected loss can be determined from (6-52):

E,=r[sani+ 1A —s)are) + (1 —7)[sann + (1 — s)az] =rV+ (1 -1V
or E; = rsan + r(l — s)arz + (1 — r)san
+ (1 —7r)(1 —8)ae =V (6-54)

The left-hand sides of (6-53) and (6-54) are identical: I’s expected profit
equals II’s expected loss. Coiabining (6-53) and (6-54):

V=E=E=sV
which proves that
E1 = Ez = V

The expected outcome is the same for each of the duopolists and equals
the value of the game if both employ their optimal probabilities. If
I employs his optimal probabilities, his expected profit cannot be less
than V, regardless of II’s strategy choice. It will be greater than V
if II employs a nonoptimal set of probabilities. Likewise, if II employs
his optimal probabilities, his expected loss cannot be greater than V,
regardless of I's strategy choice. It will be less if I employs a nonoptimal
set of probabilities.

I’s optimal probabilities can be determined by reducing the theoretical
game problem to a linear-programming problem (see Sec. 3-7). Define
the variables

2= —% and 2 = 1 I—f ! (6-55)
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By this definition
1
*'f; =2y -} 23 (6"56)

I desires to make his expected profit as large as possible, or equivalently,
he desires to make 1/V as small as possible. His programming problem
is to find values for z; and z; which minimize (6-56) subject to

anz1 + anze: 2 1
a2y + Qg% = 1

such that 2, zz = 0.t The relations of (6-57) are derived by substitut-
ing (6-55) into (6-51). Using the solution method described in Sec. 3-7,
the optimum solution for the game problem given by (6-50) is z; = 0.4,
22 =0.6,and 1/V = 1. By (6-55),r = 04, and (1 — r) = 0.6.

The dual for I’s linear-programming problem is to find values for w;
and w; that maximize

(6-57)

: w1 + W
subject to '
anw; + appwe =1
anWe + azpw: <1

such that wy, w: = 0. Letting wi = s/V and w, = (1 — s)/V, the dual
problem allows the determination of II's optimal probabilities. The
solution of the dual for the game problem given by (6-50) is w, = 0.5,
we = 0.5, and 1/V = 1. II’s optimum probabilities are s = 0.5 and
1 —s) =05

An extension of the analysis to more complicated games is possible,
but requires the nuse of mathematics beyond the scope of the present
volume. An extension is a necessity for economic applications since the
zero-sum requirement is seldom fulfilled in an actual market situation.
The duopoly problem might be extended to a two-person, non-zero-sum
game, or equivalently, to a three-person, zero-sum game in which the
third person is an artificial entity—‘ Nature”’—with outcomes equal to
the negative of the combined outcomes of the duopolists. The pos-
sibility of coalitions arises in games containing three or more persons.
For example, the duopolists may act together in order to maximize
industry profit. In an oligopolistic market two or more of the par-
ticipants may join together to the detriment of their rivals.

t The value of the game need not be positive. It may be negative or zero. To
ensure that ¥V > 0, and therefore z;, z; = 0, select a number U with the property
that a;; + U > 0 for all 7 and 7 and add U to every element of the profit matrix.
This operation increases the value of the game by U, but it does not change the
optimal probabilities. See J. G. Kemeny, J. L. Snell, and G. L. Thompson, I'nireduc-
tion to Finite Mathematics (Englewood Cliffs, N.J.: Prentice-Hall, 1957), p. 291.
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6-3. Product Differentiation: Many Sellers

The many-sellers case of monopolistic competition contains elements of
both monopoly and perfect competition.! It is akin to perfect competi-
tion in that the number of sellers is sufficiently large so that the actions of
an individual seller have no perceptible influence upon his competitors.
It is akin to monopoly and differentiated oligopoly in that each seller
possesses a negatively sloped demand curve for his distinct product.

Assuming linear demand curves, the price received by each seller
is a function of the quantities sold by each of the n firms within the

industry:
n

Px = Ak — QkkGx — 2 b;,,-q,' (k = 1, “ e . ,n) (6—58)
o}
where dpr/97: = —byi; is negative, but numerically small. To facilitate

exposition, assume that all firms have identical demand and cost func-
tions, i.e., by; = b for all k¥ and 7 except k = 7, aw = a, Ar = A, and
Cw(gz) = C(gx) for all k. Assuming initial price-quantity combinations
which are the same for all firms, the industry can be described in terms of
the actions of a ‘‘representative’ firm. The revenue and cost functions
of all firms and their maximizing behavior are identical, though their
products are differentiated in the eyes of consumers. The demand curve

facing the representative firm becomes
n

Po=A —aqg — b q,: (6-59)

=1
>k

o,

The profit of the representative firm is

n
Te = qk(A —ag— b z Qi) — C(gw) (6-60)

ot
Since b is numerically small and a quantity change on the part of the
representative firm affects each of its (n — 1) competitors to the same
degree, the effects of his movements upon the price of any particular
competitor are negligible. Therefore, the entrepreneur of the representa-
tive firm acts as if his actions had no effects upon his competitors. Equat-

ing his MR and MC on the assumption that the output levels of his com-
petitors remain unchanged:
L3
A—20g—b ) g =Cg) (6-61)
iz
1See Edward H. Chamberlin, The Theory of Monopolistic Competition (7th ed.;
Cambridge, Mass.: Harvard University Press, 1958).
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The second-order condition requires that his MC be increasing more
rapidly than his MR. The optimum output level for the kth firm
depends upon the current output levels of all its competitors.

The symmetry assumption ensures that if it is profitable for the repre-
sentative firm to make a particular move, it is profitable for all other firms
to make the same move. All firms will attempt to maximize profit
simultaneously, and quantity variations by the kth firm will be accom-
panied by identical variations on the part of all the other firms within
the industry. The representative firm will not move along the demand
curve (6-59) which is constructed upon the assumption that the output
levels of the other firms remain unchanged. Itseffective demand curve is
constructed by substituting ¢, = g¢; into (6-59):

e =A — [a+ (n — 1)blgx (6-62)

The number (n — 1) is not of a negligible order of magnitude. A 1 per
cent increase in the output level of one competitor may cause pi to
decrease by 0.02 per cent, but a simultaneous 1 per cent increase on the
part of 1,000 firms may decrease px by 20 per cent or more. The effective
demand curve (6-62) which accounts for simultaneous and identical move-
ments on the part of all sellers has a steeper slope than (6-59). The
entrepreneur of the representative firm may realize that he is unable to
move along his individual demand curve, but this information is of no
use to him, since he has no control over the output levels of his com-
petitors. The other firms change their output levels because they can
increase their profits. 1'heir actions are not governed by the actions of
the representative firm. The representative firm must take advantage of
its opportunity to increase profit and act in the same manner as the other
firms.

The representative firm starting from some arbitrary initial price-
quantity combination faces two separate demand curves. In Fig. 6-6q,
DD is its demand curve for variations of its output level alone, and D’'D’
is its effective demand curve for identical variations of the output levels
of all firms within the industry. The two intersect at the initial price-
quantity combination. As all firms increase their output levels, the
shape and position of D'D’, which is a function of ¢ alone [see (6-62)],
remain unchanged, and DD, the position of which is dependent upon the
outputs of all firms [see (6-59)], ‘‘slides” along D’D’, always intersecting
it at the current output level of the representative firm.

The industry reaches an equilibrium when MR equals MC for all firms.
The n simultaneous equations of (6-61) must be solved for the n unknown
quantities. It can be proved by advanced methods that the symmetry
assumption guarantees that (6-61) will result in equal output levels for all
n firms. Therefore, the solution can be obtained by substituting ¢z = ¢:
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in (6-61) and solving
A —[2a+ (n — 1)bla: = C'(q) (6-63)

for gi.t The latter formulation involves only one equation and one
variable. The maximum profit and optimum price-quantity combina-
tion are the same for all firms. A graphic description of short-run
equilibrium is presented in Fig. 6-6b. MR equals MC, and DD intersects
D’D’ at the equilibrium price-quantity combination.

B
PR
g o
(a)
FIGURE 6-6

Free entry and exit drive pure profit to zero in a perfectly competitive
industry and can have the same effect in the many-sellers case of monopo-
listic competition. The profit of the representative firm can be expressed
as a function of its output and the number of firms within the industry if
gx = ¢; is substituted in (6-60):

mo= Aq — [a + (n — 1)blgi? — C(q) (6-64)

Setting m equal to zero, (6-63) and (6-64) are a system of two equations
in the two variables g and n. The solution of these equations gives the
long-run equilibrium values for the output level of the representative firm
and the number of firms. '

The long-run equilibrium position of the representative firm is pic-
tured in Fig. 6-7. New firms will be induced to enter the industry if the
pure profit of the representative firm is greater than zero. As the num-

t This solution is not the same as that for an oligopolistic market in which one
of the entrepreneurs knows that (6-62) is his effective demand curve. MR is 4 —
[2a 4 2(n — 1)blgx in this case, or (n — 1)bgz dollars less for every output level
The output level at which MR and MC are equated is smaller than that obtained
from a solution of (6-63).
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ber of firms increases, the representative firm can sell a smaller output at
any given price, i.e., both DD and D’D’ are shifted to the left. Long-run
equilibrium is attained when MR
equals MC, DD is tangent to the
average cost curve (indicating that
total revenue equals total cost and
therefore profit equals zero), and the
tangency point is intersected by
D'D’. , o

The long-run equilibrium point for
the representative firm is to the left
of the minimum point on its average
total cost curve. Price equals aver-
age cost, as is true for the represent-
ative firm in perfect competition,
but price does not equal MC. Con-
trasted with the results of perfect
competition, the representative firm produces a smaller output at 2
greater average total cost.

by

FIGURE 6-7

6-4. Monopsony

The preceding sections deal with entrepreneurs who purchase their
inputs in perfectly competitive markets. Input prices are invariant with
respect to the quantities which they buy. The entrepreneur who is the
sole purchaser of a particular input, the monopson:st, is considered in the
present section. A monopsonist cannot purchase an unlimited amount
of an input at a uniform price; the price which he must pay for each quan-
tity purchased is given by the market supply curve for the input. Since
the supply curves for most inputs are positively sloped, the price which
the monopsonist must pay is generally an increasing function of the
quantity he purchases.

First consider the case of a monopsonist who uses a single input, which
we shall call labor, for the production of a commodity which he sells in a
perfectly competitive market. An example might be provided by a pro-
ducer who is the sole purchaser in a local labor market and sells his output
in a competitive national or international market. His production
function states output as a function of the quantity of labor () employed:

¢ = h(z) (6-65)
The cost equation and revenue function are, as before:

R = pq C =rx
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where r is the price of labor. However, the price of labor is now an
increasing function of the amount employed:

r = g(x) (6-66)

where dr/dx > 0. The marginal cost of labor is the rate of change of its
cost with respect to the quantity employed:?
dac
7 =t (6-67)
Since g’(z) > 0, the marginal cost of labor exceeds its price for z > 0.
The monopsonist’s profit can be expressed as a function of the amount
of labor which he employs:

=R —C = ph(z) — rz (6-68)
Setting the derivative of (6-68) with respect to z equal to. zero,
dr _ ., N _
gp = PM@) -7 —2g'(x) = 0

ph'(z) =r + z¢'(z) - (6-69)

The first-order condition for profit maximization requires that labor be
employed up to a point at which the value of its marginal product equals
its marginal cost. The second-order condition requires that the rate of
change of the value of the marginal product of labor be less than the rate
of change of its marginal cost:

dzﬂ' ’”" ’ 17
g = Ph'(@) — 2¢'(z) — 29"(z) <O

ph(z) < 2¢'(z) + z9"(2) (6-70)

The monopsonist’s optimum cutput and the price of labor are determined
by solving (6-69) for z and substituting the value for which the second-
order condition is satisfied into (6-65) and (6-66).

The profit-maximizing monopsonist (see Fig. 6-8) will employ 2° units
of labor at a wage rate of 7 dollars. The equality of the price of labor
with the value of its marginal product, the equilibrium point for an
entrepreneur who purchases labor in a perfectly competitive market,
would result in the employment of z(¥ units of labor at a wage rate of
(1,  The monopsonist employs a smaller quantity of labor at a lower
wage rate. ‘

1 The reader should note that marginal cost is here defined with respect to the quan-
tity of labor employed rather than the quantity of output produced. The abbrevi-
ated form (MC) is reserved for marginal cost with respect to output level.
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If the monopsonist’s production and labor supply functions are
g = 1522 — 0.2z r = 144 + 23.4x

and he sells his output in a perfectly competitive market at a price of

dc
¥ dx

glx)
el

rot—— Pax

F1GuRrEe 6-8

3 dollars, his total revenue function and cost equation are

R = 452 — 062 C = 1441 + 23.42°

Setting the value of the marginal product of labor equal to its marginal
cost,
90z — 1.8z% = 144 + 46.8x

which yields the quadratic equation:
1.822 —'432z + 144 =0

"with the roots z = 4 and z = 20. The second-order condition

90 — 3.6z < 46.8

is satisfied for x = 20. The solution # = 4 is a minimum-profit position.
Substituting z = 20 into the appropriate functions,

q=4400 r=612 =960

If a monopsonist is also a monopolist in the market for his output,‘
the price he receives is a function of the quantity which he sells:

p =F(g

His profit may again be expressed as a function of the quantity of labor
which he employs:
7 = pq — rz = Flh(z)h(z) — rz
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or more simply,

7 = R(z) — C(x) (6-71)

where total revenue and total cost are expressed as functions of the quan-
tity of labor employed. Setting the derivative of (6-71) equal to zero
yields the first-order condition that the rate of increase of total revenue
from the employment of another unit of labor (the marginal-revenue
product of labor) must equal its marginal cost. The second-order
condition requires that the marginal-revenue product of labor increase
less rapidly than its marginal cost.

6-b. Summary

A monopolistic firm constitutes an industry and is unfettered by the
competition of close rivals. A monopolist is free to select any price-
quantity combination which lies on his negatively sloped demand curve.
Since an expansion of his output results in a reduction of his price, his MR
is less than his price. His first-crder condition for profit maximization
requires the equality of MR and MC. His second-order condition
requires that MC be increasing more rapidly than MR.

If second-order conditions are satisfied, a discriminating monopolist
maximizes his profit by equating the MR in each of his markets to the MC
for his output as a whole. Similarly, a multiple-plant monopolist maxi-
mizes his profit by equating the MC in each of his plants to the MR for
his output as a whole.

Neither a lumnp-sum nor a profit tax will affect the optimum price-
quantity combination for a profit-maximizing monopolist. The imposi-
tion of either a specific or an ad valorem sales tax will result in a reduction
of his output and an increase of his price. A

The profit of a duopolist or an oligopolist depends upon the actions and
reactions of his rivals. Different theories are based upon different
assumptions regarding market behavior. The Cournot solution is real-
ized if each market participant maximizes his profit on the assumption
that his rivals’ output levels are unaffected by his actions. The collusion
solution is realized if the market participants join together to maximize
total industry profit. The Stackelberg solution is based upon the
assumption that duopolists explicitly recognize the interdependence of
their actions. FEach desires to assume the role of either a leader or a
follower, and market equilibrium is achieved if their desires are con-
sistent. These three solutions are applicable for both homogeneous and
differentiated products. The producers of differentiated products may
find advertising profitable.

The market-shares solution is realized if a market participant follows
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the moves of his rivals in such a way as to maintain his historical share of
total industry sales. The kinked-demand-curve solution is realized if a
seller assumes that his rivals will follow his price reductions, but leave
their prices unchanged in response to his price increases. In the two-
person, zero-sum case, the theory-of-games solution is based upon the
assumption that each duopolist desires to ‘“play it safe’’ and selects a
strategy or combination of strategies to maximize his profit, given the
most unfavorable strategy choice on the part of his rival.

In the many-sellers case of monopolistic competition an individual seller
possesses a negatively sloped demand curve for his distinct product, but
his output constitutes such a small part of the total market that his
actions do not have perceptible effects upon his rivals. However, simul-
taneous movements on the part of all sellers cause shifts of the individual
demand curves. Short-run equilibrium is achieved when each seller
has equated MR and MC. The number of firms within the industry
increases or decreases sufficiently to drive the pure profit of the repre-
sentative firm to zero in the long run.

A monopsonist faces a rising supply curve for an input. He may be
the sole purchaser of a particular type of labor. The monopsonist’s.
marginal cost of labor exceeds the wage.rate, since he must increase the
wage rate for all his employees in order to expand employment. The
first-order condition for profit maximization requires that he employ
labor up to the point at which the value of its marginal productivity
equals its marginal cost. If the monopsonist is also a monopolist in-his
product market, the first-order condition requires that he equate the
marginal-revenue productivity of labor to its marginal cost.
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CHAPTER 7

WELFARE ECONOMICS

The objective of welfare economics is the evaluation of the social
desirability of alternative economic states. An economic state is a
particular arrangement of economic activities and of the resources of the
economy. States of the economy may differ in many respects: (1)
markets may be perfectly competitive or monopolistic; (2) markets may
be in equilibrium or disequilibrium; (3) there may be several multimarket
equilibrium positions. and the economy may have attained one of them.
Each state is characterized by a different allocation of resources and a
different distribution of the rewards for economic activity. Although
the economist may not always be able to prescribe a method by which one
state of the economy can be transformed into another, policy measures
frequently will be available for changing an existing situation. It is
important to know in such cases whether the contemplated change is
desirable. Imagine, for example, that the economy can attain multi-
market equilibrium at two different sets of commodity and factor prices.
Since the desires of consumers and entrepreneurs are consistent at both
equilibria, society can choose between them, if at all, only on welfare
grounds. The principles by which such problems can be solved fall -
within the domain of welfare economics.

The welfare of a society depends, in the broadest sense, upon the satis-
faction levels of all its consumers.! But almost every alternative to
be judged by welfare economists will have favorable effects on some people
and unfavorable effects on others. Welfare comparisons would be simple
if it were possible to aggregate the utilities of individuals into a single
utility function. Unfortunately this operation cannot be performed.
Interpersonal comparisons of utility are not possible. There is no
obvious way to determine whether individual I or individual II derives
more satisfaction from the consumption of a given bundle of goods.?

1 Statements of this kind are based on ethical beliefs or value judgments and can-
not be proved. It is reasonable to postulate that the concept of social welfare tran-
scends the more restricted notion of economic welfare. For obvious reasons the
present analysis deals only with the latter.

2 Ordinal utility functions are assumed throughout this chapter. The difficulty
would not be eliminated by assuming cardinal functions, since measurability for
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Welfare comparisons on the basis of individual utilities are possible only
in a very restricted sense. As a result the conclusions of welfare eco-
nomics are not so widely applicable as would be desirable.

The Pareto conditions for maximum welfare and the fulfillment of
these \conditions in perfect competition are discussed in Sec. 7-1. The
welfare implications of monopolistic competition are outlined in Sec. 7-2.
The argument for the optimality of perfect competition is qualified by
introducing interdependent utility functions and external economies
and diseconomies in Sec. 7-3. Finally, social welfare functions and
alternative criteria for judging improvements in social welfare are con-
sidered in Sec. 7-4.

7-1. The Efficiency of Perfect Competition

Economic efficiency, often called Pareto optimality, is defined in terms
of the outcome of one or more economic activities. The distribution of
consumer goods (including leisure and other withheld primary factors)
among consumers is efficient if every possible reallocation of goods among
consumers results in the reduction of the satisfaction of at least one.
Production is efficient if every feasible reallocation of inputs among
(within) firms diminishes the output level of at least one firm (com-
modity). It will be shown that—in the absence of external economies
and ‘diseconomies—a perfectly competitive equilibrium satisfies the
conditions of Pareto optimality.

Since individual utility levels cannot be compared, changes which
improve the positions of some individuals but cause a deterioration in
those of others cannot be evaluated in terms of efficiency; the net effects
of the moves may or may not be beneficial. However, welfare can be said
to increase (diminish) if at least one person’s position improves (deterior-
ates) with no change in the positions of others. Clearly no situation can
be optimal unless all possible improvements of this variety have been
made. Perfect competition is an optimum and a welfare ideal in this
sense.!

The Consuming Sector. According to the hypothesis of perfect com-
petition among consumers, the price of a commodity is not altered by vari-
ations in the consumption level of an individual consumer. Similarly,
the prices of labor and other primary factors are independent of the sales
by any single consumer.

individual consumers is neither necessary nor sufficient for interpersonal utility
comparisons.

1'The present discussion is limited to static efficiency. No attention is paid to the
welfare aspects of resource allocation over time, the time path of welfare, or the wel-
fare aspects of alternative time paths for the economy.
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- The utility funetion of the zth consumer is

Ui = Udga, - - . 1Jim) (7-1)

where ¢y is the quantity of @ which he consumes. The goods consumed
include the quantities of primary factors which he retains, such as labor
(see Sec. 5-2). Primary factors retained are indicated by the subscript
(k=1,...,8),and produced commodities by (k =s+ 1, ..., m).
If there is perfect competition among consumers, a consumer maximizes
his satisfaction if his RCS (rate of commodity substitution) between any
pair of goods equals their price ratio:?!

_ Oqax _ p; P
s~ (BHk=1,...,m) (7-2)
Since prices are the same for all consumers, perfect competition implies
that the rates of commodity substitution between @, and Q; are the same
- for all n consumers: ]
i Qe @Gh=1,...,n)

dg;  dms (G k=1,...,m) (7-:?.’)

These equalities are necessary for the realization of Pareto optimality
in consumption. For illustration assume that there are only two con-
sumers denoted by the first subscripts 1 and 2 and only two goods @ and
Q2. The utility functions of the consumers are Ui(q11,q12) and Us(ga,
qz22) where g1 + gu = ¢} and ¢12 + ¢2» = ¢3. Now assume that con-
sumer II enjoys the level of satisfaction U3 = constant. In order to
maximize the utility of consumer I subject to this constraint, form:the
function V :

U¥ = Ui(qi1,q12) + >\[U2(qg — qu, qg — qu12) — Uil

where X is a Lagrange multiplier, and set its partial derivatives equal to
zero: )
aUl* _ U, - iU,

= =0
3911 3911 aQn
auF AU, U, «
v — —— — x R e oo 0 -
9q12  9qi2 9q12 (7-4)
Ut '

= U — @, @ — ) — U3 =0
"9U+/8q11 _ 8Us/dqn

and 3U./3gz  9U3/0que

(7-5)

10Of course, the second-order conditions must also be fulfilled. It is postulated
throughout the remainder of this section that the second-order conditions are fulfilled.
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The left-hand side of (7-5) is consumer I’s RCS, and the right-hand side is
II’s. If (7-5) were not fulfilled, it would be possible to increase I’s
satisfaction without diminishing II’s. The equality of the RCSs result-
ing from perfect competition ensures that the distribution of goods
(including leisure) among consumers is Pareto-optimal. The mathe-
matical analysis for the two-consumer case is easily generalized for any
number of consumers.

The argument can be presented in terms of an Edgeworth box diagram.
The dimensions of the rectangle in Fig. 7-1 represent the total available
quantities of @; and Q. in a pure-exchange economy. Any point in the

box represents a particular distribu-

421 o tion of the commodities between the

@, twoconsumers. For example, if the

distribution of commodities is given

by point A, the quantities of @ and

Q2 consumed by I are measured by

the coordinates of A, using the south-

west corner O as the origin; the

quantities consumed by II are meas-

ured by the coordinates of point A,

using the northeast corner O’ as the

origin. The indifference map of I is

F1aure 7-1 drawn, using O as the origin, and the

indifference map of II, using O’ as

the origin. The RCSs of the two consumers are equal where an indif-

ference curve of I is tangent to an indifference curve of II. The locus

of all such points is the contract curve CC. The mathematical form

of the contract curve is given by (7-5), which is a function of ¢u
and ¢;a.

The rates of commodity substitution are unequal at point 4, and it is
possible to increase the utility levels of both consumers by altering the
_existing distribution. For example, if the final position (after a redis-
tribution of @; and Q) is between M and N, both consumers would
have gained, since both would be on higher indifference curves than at A.
If the final point isat M or N, one consuraer will have gained without any
deterioration in the other’s position. If a point on the contract curve is
reached, it is not possible to improve further the position of either con-
sumer without a deterioration in the position of the other. According
to the conditions of Pareto optimality any point between M and N is
unambiguously superior to A. However, the evaluation of alternative
points on the contract curve would involve an interpersonal comparison
of utilities and is therefore not possible without an explicit ethical belief
in one’s ability to make such comparisons.
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The Producing Sector. In perfect competition among producers in
commodity markets the price of a commodity is not altered by variations
of the individual firm’s output level. Perfect competition among pro-
ducers in input markets requires that the prices that the firm pays for
inputs do not change in response to variations in the levels of its purchases

Let the hth firm’s production function be given by the implicit function

F;,(qm, . e ,q;,,,.) = ( (7‘6)

where gu. (k = 1, . . . , s) is an input and is defined as gax = —2 and
g (k=s4+1,..., m) an output. It was shown (see Sec. 3-6) that
profit maximization under conditions of perfect competition requires that

e _ Py
— i v— 7-7
Aqns Px -7

If both subscripts j and k refer to inputs, (7-7) states that the RTS (rate
of technical substitution) must equal the ratio of the input prices. If
the subscripts refer to two outputs, it states that the RPT (rate of prod-
uct transformation) must equal the ratio of output prices. If gu is an
output and ¢x; an input, (7-7) states that the rate at which an input can
be transformed into an output (MF, or marginal product) must equal the
ratio of the prices of the input and output.

Conditions (7-7) ensure Pareto optimality in the producing sector.
The argument is analogous to that employed for the consumer. Since
each entrepreneur adjusts to the prices that confront him in the market
without noticeably affecting them, each pays the same price for a given
type of input and receives the same price for a given type of output, and
the corresponding RTSs, RPTs, and MPs are the same for all N firms:

aqhk'_ O (1,, h = 1, e ey N) (7-8)

ogn; 9¢;; (j: k = L ..., m)

‘These equalities imply Pareto optimality in the following senses: (1) if
inputs are reallocated among firms so that the output level of one firm is
increased, the output level of some other firm must decrease, and (2) if
inputs are reallocated among uses within firms so that the aggregate out-
put level of one commodity is increased, the aggregate output level of
some other commodity must decrease.

Only the proof of the first statement is given here.! Assumethat there
are two producers using the primary inputs X; and X, with the explicit
production functions ¢; = f1(213,%12) and g2 = fa(%21,222), Where z11 + a1
= z) and z12 + 22 = 27 are the total quantities of the two inputs and
1 + g2 = ¢ is the aggregate output of commodity Q. Maximize the out-

! The reader may verify the proof of the other statement.
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put of entrepreneur I subject to the constraint that the output of II is
at the predetermined level ¢). Form the function

L = fi(z1,219) + Mfo(z} — 211, 25 — 212) — g3

and set the partial derivatives equal to zero:

oL _ ofi _ N ofs _
9z,  9zy 0z

oL _ ofr | ofe -0
0Z12 0%z CE2TS

oL .
N = fo(x} — 21, x} — 212) — @3 =0

af1/6x11 — afz/axu
6f1/6x12 6]”2/62:12

which proves that the equality of the RTSs is necessary for Pareto
optimality.

General Pareto Optimality. Efficiency iz the consuming and pro-
ducing sectors implies that the allocation of resources is Pareto-optimal
throughout the economy. Consider the consumers’ RCSs between
Qi and Q;. All these RCSs equal p;/px. This price ratio also equals all
producers’ RPTs between Qi and @;. Therefore RCS = RPT for all
consumers, firms, and commodities. Similar conditions can be derived
if either.j or ¥ or both refer to primary factors: the consumers’ RCS
between a factor which they retain and a commodity which they con-
sume must equal (by an analogous argument) the producers’ correspond-
ing rate of transforming the factor into the commodity (MP). The
equality of the various rates of substitution and transformation ensures
Pareto optimality throughout the economy. For example assume that
RCS = 34 and RPT = 24. Three units of §; could be transformed into
two units of @ by moving along a producer’s transformation function.
A consumer who surrenders three units of @; (the position of all other
consumers remaining unchanged) would require only one unit of @y in
exchange in order to remain on the same indifference curve and avoid
a diminution of utility. The satisfaction level of this consumer could
therefore actually be increased by performing the technological trans-
formation of three units of @ into two of @; Such an improvement is
not possible if the RCSs and RPTs are equal.

The Pareto optimality of perfect competition can be deduced directly
from the following argument. The RCS between any two commodities
Q: and Q; equals their price ratio if there is perfect competition among
consumers:

and

(7-9)

RCes = 2
Pk
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If there is perfect competition among entrepreneurs in commodity and
factor markets,
r r
Pi= P, P~ WP, (7-10)
where r is the price of factor X and MP; and MP; are its marginal
products in producing @; and Qx. Therefore :

RCS = i 7‘/ MPk 1/MP,
_ marginal cost of @;in terms of X
" marginal cost of Q; in terms of X

= RPT (7-11)

which proves Pareto optimality.
Equation (7-11) would appear to hold even if (7-10) does not, provided
that

pi _ r/MP; _
P r/MP; (7-12)
But (7-12) can hold without (7-10) only if
-—k— G=1,....m) (7-13)

MP;

where k& # 1 is a factor of proportionality, i.e., if prices are proportional
to marginal cost (= r/MP). Equation (7-13) becomes

r 1

2 & MP; ”(7 14)
The left-hand side of (7-14) equals the consumers’ rate of substitution
between @; and X; the right-hand side is (1/k) times the producers’ rate
of transformation between Q; and X. Therefore the consumers’ and
producers’ corresponding rates of substitution and transformation are not
equal. Consumers do not provide the optimal amount of X (labor),
and allocation cannot be Pareto-optimal.! Assume, for example, that
price is three times MC, i.e., & = 3. Let the RCS between labor and-
commodity @ equal 2 and the MP of labor, 6. A consumer would be
willing to surrender an additional hour of leisure (work for an additional
hour) if he received 2 more units of Q. But the application of an addi-
tional hour of labor would result in the production of 6 more units of Q
Thus the situation is not Pareto-optimal. .

1Since »/MP is the marginal cost of output (MC), (7-12) can be stated as
p: MC!
~ MCi

The above proof also implies that for an optimum, p = MC for every commodity;
the proportionality of prices and marginal costs is not sufficient.
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Perfect competition represents a welfare optimum in the narrow sense
of fulfilling the requirements of Pareto optimality. Optimality is con-
tingent on the assumption that all second-order conditions are fulfilled.
If one should be violated (e.g., if transformation functions were convex
or indifference curves and isoquants concave to the origin), the equality
of the relevant rates of substitution or transformation would not ensure
optimality. In fact, the point at which the rates of substitution and
transformation are equal may be a ‘‘pessimum?” rather than an optimum.
The optimum is then represented by a corner solution (see Sec. 2-2).

Corner solutions may result even if indifference curves are convex
and transformation curves concave to the origin, provided that their
shapes are such that the RCSs are always greater (or smaller) than the
. corresponding RPTs for any point on a transformation curve. In such
cases welfare optima must be described in terms of marginal inequalities.

An additional difficulty is introduced by the fact that the analysis of
Pareto optimality accepts the prevailing income distribution, i.e., the
prevailing factor endowment. The problem of finding an optimal income
distribution is not considered. I+ 'is conceivable that the norm of the
perfectly competitive economy would lead to a situation in which a
majority of individuals lived at a subsistence level or below. At point B
in Fig. 7-1, consumer I is very well off, but. consumer II is not. Since
point B is on the contract curve, one could not improve one consumer’s
p osition without causing a deterioration in the position of the other. It
is an efficient point and cannot be said to be inferior to any other point,
such as A. The analysis of welfare in terms of Pareto optimality leaves a
considerable amount of indeterminacy in the solution: there are an infinite
number of points in Fig. 7-1 which are Pareto-optimal. The acceptance
of the contract curve as representing welfare optima is already a value
judgment. In order to judge the relative social desirability of alterna-
tive points on the contract curve, society must make additional value
iudgments which state its preferences among alternative ways of allocat-
ing satisfaction to individuals. Value judgments are ethical beliefs and
are not the subject of economic analysis. They are taken for granted
and can then be incorporated in economic analysis. The indeterminacy
is the consequence of considering an increase in welfare to be unambigu-
ously defined only if an improvement in one individual’s position is not
accompanied by a deterioration of the position of another. This inde-
terminacy can only be removed by further value judgments.

7-2. The Efficiency of Monopolistic Competition

The conditions for Pareto optimality fail to be realized in a world
characterized by monopolistic competition. The efficiency criteria of
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Sec. 7-1 are not fulfilled in the presence of monopoliés, oligopolies, monop-
sonies, etc. It was shown in Sec. 7-1 that perfect competition leads to an
efficient allocation of resources. It will be shown in the present section
that an efficient allocation of resources must be a perfectly competitive
one. The argument will parallel the development of Sec. 7-1.

- The Consuming Sector. Assume that consumers are not in perfect
competition in commodity and factor markets. One or more consumers
may be unable to buy as much of a commodity or sell as much of a factor
as they desire without noticeably affecting its price. Assume that a
consumer must pay a higher price as he increases his purchases.

Assume that there are two consumers with the utility functions

U, = U1(911,912) U, = Uz({lz1,922) (7'15)

where ¢;; is the amount of the jth commodity consumed by the ith con-
sumer. Let the price of each commodity depend upon the aggregate
amount demanded:

= g(qu + q=21) P2 = h(qiz + q20) (7-16)
The budget constraints of the two consumers are
¥y — 9(qu + g21)gun — h(grz + g22)q12 = O (7-17)

ys — g(qu + g21)g21 — h(g1z + Q22)q22 = 0

Each maximizes his utility index subject to his budget constraint. Form: 7
the functions

Ut = Ui(g,9:2) + My1 — g9(gu + ga1)qu — h(grz + g22)q1i)
U; = Uz(q'u,q'zz) + u[yg — g(gqu + g21)921 — h(q12 + 922)922]

and set the appropriate partial derivatives equal to zero:

d

aU‘ Mg+ qug'l =0 ZU‘ AR + 91zh'] =0

6%] .a%' (7-18)

g Mot ag1 =0 Fo = b+ k] =0
0U /8¢ g+ qug’ '_

and aU./3qia ~ h + qul’ (7-19)

aUz/aQH _g+ ‘.Img' :
aUz/BQ22 - h + quh' (7-20)

The individual consumer is in equilibrium if his RCS equals the ratio of
the marginal costs of acquiring additional quantities of @, and Q.f
Under the present assumptions the marginal costs will not equal the com-
modity prices and will exceed them if g’ and A’ are positive (see Sec. 6-4).

t Again it is assumed that the second-order conditions are fulfilled.
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In general, the right-hand sides of (7-19) and (7-20), and thus the cor-
responding RCSs, will not be equal.! One may conclude that in the
absence of perfect competition among consumers the distribution of
consumer goods will not generally be Pareto-optimal.

The Producing Sector. The failure to establish Pareto optimality in
the productive sector may be the result of monopolistic competition in
product or input markets. The failure to attain Pareto optimality can
be proved by simple extensions of Secs. 3-2, 3-5, and 6-4.

If there is monopolistic competition in the markets for inputs, the
price of each input is an (increasing) function of the quantity bought.
It is easily seen that each entrepreneur’s RTS must equal the ratio of the
marginal costs of buying additional units of inputs, not the ratio of their
prices. These ratios will generally differ from entrepreneur to entrepre-
neur, and their respective RTSs will not be equal. The production of
aggregate output for the commodity in question is not Pareto-optimal,
because the divergence between individual entrepreneurs’ RTSs implies
that they are not on their contract curve: it would be possible to increase
some entrepreneurs’ output levels without decrezsing the output levels of
the others by appropriately reallocating inputs among them.?

If there is perfect competition in input markets, but monopolistic
competition in product markets, the MP of X in producing @ multiplied
by the marginal revenue (MR) of @ must equal the price of X. The
rates of product transformation between two given commodities will not
necessarily be the same for all producers, and the production of com-
modities will not be Pareto-optimal: one could find a reallocation of inputs
which would increase the output level of a commodity without diminish-
ing the output level of another. '

The Absence of Pareto Optimality in General. Any element of monop-
olistic competition prevents a Pareto-optimal allucation of resources.
This assertion is easily proved by a four-stage argument:

1. Under conditions of monopolistic competition among consumers,
the corresponding RCSs of different consumers are not necessarily equal.

2. Under conditions of monopolistic competition among firms in input
markets, the corresponding RTSs of different firms are not necessarily
equal.

1The RCSs will be equal if giy = ¢1z and g2 = g22. However, the system as a
whole will not achieve Pareto optimality even if the RCSs are equal.

2The argument can be phrased alternatively as follows. If input markets are
monopolistically competitive, the MP of X in producing @ must equal (marginal cost
of hiring an extra unit of X)/p, and the RTSs need not be the same for all firms. Let
MP. and MP, be the marginal products of inputs X and Y in producing @, and assume
that MP,/MP, = 19¢ for firm I and MP,/MP, = 24 for firm II. The output
levels of both firms will increase if a unit of X is transferred from II to I and & unit
of Y is transferred from I to II.
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3. Under conditions of monopolistic competition among firms in
product markets, the corresponding RPTs of different firms are not
necessarily equal.

4. Assume that 1 and 2 do not hold i.e., that monopolistic competition
exists only among firms in product markets In addition, postulate
that the corresponding RPTs for different firms are equal by accident.
Then

1/MP; _ r/MP; _ MR

RPT = 7731p, = 7/MP; ~ MR,

(7-21)

RPT = RCS is a necessary, but insufficient, condition for Pareto opti-
mality. This necessary condition is fulfilled if and only if

MR; _p;
MR;, P

i.e., if the elasticity of demand for Q; equals the elasticity of demand for
Qx, since MR = p[l — (1/e¢)]. The insufficiency of this condition is
proved by assuming that RCS = RPT for every pair of commodities
and showing that the allocation of resources cannot be Pareto-optimal.
Equation (7-21) can hold only if

r/MP; _ D
r/MP:,

(7-22)

The existence of monopolistic competition implies that only the ratios
are equal, but not the numerators (or denominators) taken in pairs. It
was shown [Eqgs. (7-12) to (7-14)] that the consumer’s rates of substitu-
tion between commodities and primary factors, then, do not equal the
corresponding MPs (the producers’ rate of transforming labor into out-
put). Therefore the over-all allocation of resources is not Pareto-optimal.

It was proved in Sec. 7-1 that perfect competition results in Pareto-
optimal aliocation. One may now add the even stronger conclusion that
every Pareto-optimal allocation must be a perfectly competitive one,
since Pareto optimality cannot be obtained under conditions of monopo-
listic competition. It is therefore necessary and sufficient for an efficient
allocation of resources that all markets be perfectly competitive. This
is intuitively clear from the fact that price exceeds MC in the absence of
perfect competition. MC is a measure of the cost to society of using
resources in the production of an additional unit of commodity Q; its price
is a measure of the benefit to society from producing an additional unit
of Q. The net benefit to society can beincreased aslongasp > MC, and
imperfect competition violates the criteria of efficiency by not producing
sufficiently large quantities of commaodities.
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7-3. External Effects in Consumption and Production

The conclusions of the foregoing analysis are not universally valid.
They are contingent upon the assumption that there are no external
effects in consumption and production, i.e., that the utility level of a con-
sumer does not depend upon the consumption levels of others and that the
total cost of an entrepreneur does not depend upon the output levels of
others. Pareto optimality may not be realized under conditions of
perfect competition if there are external effects in consumption and
production.

Interdependent Utility Functions. Assume that the utility level of
one consumer depends upon the consumption of another. Extreme altru-
ism may increase the satisfaction of the zth consumer if the consumption
level of the jth consumer is raised.  The desire to ‘‘keep up with the
Joneses’ may have the opposite effect.

Assume that there are two consumers with the utility functions

Ui = Ui(q11,912,921,922)

7-23
Uz = Uas(q11,912,921,922) (7-23)

where ¢1; + gz = ¢}, q12 + g2z = ¢3. In order to maximize the utility
of I subject to the constraint that the utility of II is at the predetermined
level U} = constant, form the function

U% = Uilqu, q12, ¢ — 11, 42 — q12)
+ MUa(g11, 912, ¢ — @11, @5 — q12) — U9)

and set the partial derivatives equal to zero:

Uy ot _avs o0 a0
aqn 0q11  dgn dq11  9qn

aU* _aU, oU, [aUz aUz]
OU  _9Uh 9% 4 \ |92 _ 9% _ 7-24
9q12 0q12 0922 0q12  0Q2 ( )
aUT — U 0 0 0
= Ui ¢, @ — g1, 8 — quo) — U3 =0
and 0U,/0q1; — 8U,/8gn _ 9U1/3qu1 — 0U,/3gqn (7-25)

6U1/aq12 - aUl/aQ22 - aszaqn - aUz/aqM

Equation (7-25) is the necessary condition for Pareto optimality. It
generally differs from (7-3) [or (7-5)], which states that I’s RCS must
equal II’'s. Perfect competition results in the attainment of (7-3), but
not of (7-25). Since the partial derivatives of the utility functions are
functions of all variables, the optimum position of each consumer depends
upon the consumption level of the other. For example, assume that the
only external effect present in the two-consumer system is dU:/dg1 < O.
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Equation (7-25) becomes

oU+1/dq11 _9 U./3qu — 8U,/dqn
aU,/3q12 —3U2/3q22

(7-26)

The RCS of consumer II must be smaller for an optimal distribution
than it would be in the absence of external effects.

It can be shown diagrammatically that condition (7-3) does not neces-
sarily ensure Pareto optimality in the presence of external effects. Fig-
ures 7-2a and 7-2b give the indifference maps of consumers I and II

92 G20

o

a1 423

{a) ; (b}
Figure 7-2

respectively. Assume that in the initial situation I consumes the com-
modity batch represented by A and II consumes the batch represented
by F. These pcints—at which their RCSs are equal—are reached by
utility maximization carried out individually by the two consumers with
no regard for possible external effects. Assume that I is not affected by
II’s consumption, and II’s utility level is reduced by I's consumption of
@1 (but not of @;). -II’s indifference map (solid curves) is drawn on the
assumption that I’'s consumption is given by A. In their individual
equilibrium situations I’s utility index is 100, and II’s, 80. Let the
distribution of commodities be altered by some authority in such a way
that the aggregate quantities consumed remain unchanged and that I
moves to C and II to D. The utility level of consumer I has not been
changed by this reallocation. However, the diminution of his consump-
tion of @, changes II’s utility level for every commodity combination
consumed by the latter: II’s relevant indifference curves after the change
in I’s consumption are given by the dotted curves in Fig. 7-25. Consumer
II’s utility level is increased to 90 since his new positionis at D. One can
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conclude that II’s utility level can be increased without diminishing I’s
utility level; hence the equality of the RCSs does not ensure Pareto
optimality.

External Economies and Diseconomies. It was shown that the
p = MC criterion is necessary for Pareto optimality in the producing
sector. The equality of price and marginal cost for all commodities and
firms implies that the corresponding RPTs of different firms are the same.
The RPT (the slope of the transformation curve) measures the oppor-
tunity cost or the real sacrifice, in terms of opportunities foregone, of
producing an additional unit of a commodity. Untilnow thisopportunity
cost has been considered internal to the firm: in order to produce an addi-
tional unit of Q; it has to sacrifice the production of a certain number of
units of Q. The relevant measure of the sacrifice from society’s point
of view is the number of units of @i that society has to give up in order to
produce an additional unit of @;. The opportunity cost is the same from
the private and social points of view in the absence of external economies
and diseconomies. If such external effects are present in the productive
sphere, one must take into account the interdependence between the costs
of the ith firm and the output of the Ath (see Sec. 4-3).

Assume for simplicity’s sake that there are only two firms with the cost
functions

Ci = Cilgr,gs)  Ca = Calgn,g2) (71-27)

where ¢q1 and ¢, are the output levels. The cost functions (7-27) express
the existence of external effects. If each firm maximizes its profit indi-
vidually, price will equal MC or

aC, aC,
P=%: P (7-28)
- The profit of each firm depends upon the output level of the other, but
neither can affect the output of the other, and thus each firm maximizes
its profit with respect to the variable under its control. -

The welfare associated with production can be measured by the differ-
ence between the social benefit created and the social cost incurred.
The social benefit derived from ¢; + ¢ units of the commodity can be
measured by the total revenue p(¢: + g¢2), i.e., by the amount that con-
sumers are willing to pay for the output. The social costs are measured
by the sum of the costs incurred by both entrepreneurs producing the
commodity, Ci(q1,92) + C2(g1,g2)- In order to maximize welfare, one
must maximize the entrepreneurs’ joint profits:

7 =m + 72 = (@1 + q2) — Cilgn,q2) — C2(q1,92) (7-29)
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Setting the partial derivatives equal to zero,

or _ aC, 98C.
3. P T g T o
o aC, oC,
BQ2 p 3(12 6g2

(7-30)

The second-order conditions require that the principal minors of the rele-
vant Hessian

_ 6201 _ 6202 _ 6201 _ 6202
GQ12 6Q12 6q1 OQQ 6q1 aq2
92C, 3%C, _9%C, _ 9*C,

B dq1 0q2 B 0q: 9q2 9q,? - 0q2?
alternate in sign, or that

2 2 i
00, _2C g (7-31)

- 6q12 - 6q12
and (_ 3C: _ 6202> (_ 3°Cy _ 3202)
dg::  aq® 0q22  09gs®
32C, 82C, )2
- 7-3
(8@ gz = 91 9¢: >0 (7-82)

Inequalities (7-31) and (7-32) together imply

9*C.
3912 >0 39’22 + aqs

82Cy |, 98%C,

a2C,
6q12 +

2> 0 (7-33)

The partial derivatives 8C1/dq; and 8C2/dq. are the private marginal
costs because they measure the rate of increase of an individual entre-
preneur’s total cost as his output level rises. Individual maximization
requires that price equal private marginal cost and that private marginal
cost be increasing. The sums dC1/8¢q; + dC2/dq: and 3C1/3q: + 9C2/dq:
are soctal marginal costs because they ieasure the rate of increase of the
industry’s costs as the output level of a particular firm increases. Wel-
fare maximization requires that price equal the social marginal cost of
each entrepreneur and that social marginal cost be increasing. The
equality of price and social marginal cost guarantees that the consumers’
RCS will equal not the individual firms’ RPTs but society’s RPT, since
the ratio of the social marginal costs measures, from society’s point
of view, the alternatives foregone by producing an additional unit of a
commodity. ‘

Assume that firm I experiences external economies and firm II experi-
ences external diseconomies. Then 98C:/dq, < 0 and 98C,/dq:1 > 0.
As a result, 8C1/9q1 + 3C2/dq; in (7-30) can be made to equal price only



216 MICROECONOMIC THEORY: A MATHEMATICAL APPROACH

if 8C,/dq: is smaller than under individual profit maximization. With
increasing MC this means that the firm which is the cause of external dis-
economies should produce a lower level of output for welfare maximiza-
tion than in the case of individual maximization. By analogous reason-
ing the firm which is the cause of external economies should increase its
output. This can generally be accomplished by appropriate taxation and
subsidization of the output levels of the firms concerned.
Assume that the cost functions of the two firms are

01 = 0.1912 + 5q1 — 0.1922 Cz = 0.2Q22 + 7Q’2 + 0.025Q12

Firm I experiences external economies and is the cause of external dis-
economies; the converse holds for firm II. Assuming that the price is 15
dollars and setting it equal to MC for both firms,

15=02¢:+5 g=50 m =290
15=04¢,+7 g =20 w =175

In order to maximize welfare, form the joint profit function
T o= 15(q1 -I- qz) — 0.125q12 — 5g1 - 0.1q22 — 7Q2

and set the partial derivatives equal to zero:

o
or _ _m_

Hence ¢, = 40, g = 40, and = = 360. The reader may verify that the
second-order conditions are satisfied. Total profits are greater under
welfare maximization than under individual maximization

290 + 17.5 = 307.5 < 360

Individual maximization does not ensure Pareto optimality. Pareto
optimality requires that the RCS equal the rate at which society can
transform one commodity into another. In the absence of external
effects, the private and social rates of product transformation are iden-
tical. In the presence of external economies or diseconomies individual
maximization results in the fulfillment of the socially ‘‘wrong’’ or irrele- -
vant marginal conditions. Of course, aggregate profits have to be redis-
tributed among the individual firms. Without such redistribution, some
firms would experience a diminution in their profits, and the resulting
position could not be said to be socially preferable. In the present
example, 400 dollars accrue to firm I and —40 dollars to firm II as a result
of welfare maximization. A redistribution of any amount greater than
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57.5, but less than 110, dollars from firm I to firm II will leave each better
off than under individual maximization.

The quantities that would be produced under joint profit maximization
can be enforced by appropriately taxing and subsidizing producers if they
maximize profits individually. The magnitude of the necessary taxes can
be calculated from the demand and supply functions. Let the aggregate
demand function be D = D(p), the aggregate supply function with indi-
vidual profit maximization S = ZSi(p), and the supply function derived
on the assumption of joint profit maximization S* = ZS8¥(p). The
equality 8* = D determines a price p* and the quantities sold S¥(p*).
To achieve this price and these quantities under individual profit maxi-
mization, one must impose unit taxes (or subsidies) ¢ such that

Si(p* — ;) = S¥(p*)
The taxes can be determined by solving for the #;s:
t: = hi(p*)

Finally, it follows that the profits of at least one entrepreneur can be
increased without reducing the profits of the others, if the amount col-
lected by taxation is appropriately redistributed among entrepreneurs
as lump-sum payments.

7-4. Social Welfare Functions

The indeterminacy which remains if Pareto optimality is the only
requirement for welfare optimization can be removed through the intro-
duction of a social welfare function. A social welfare function is an
ordinal index of society’s welfare and is a function of the utility levels of
all individuals. It is not unique, and its form depends upon the value
judgments of the person for whom it is a desirable welfare function. In
certain cases it may be impossible to decide upon an acceptable form for
the social welfare function by common consensus; it may then have to be
imposed in dictatorial fashion. Whatever the case may be, its form
depends upon the value judgments of its promulgators, since it expresses
their views concerning the effect that the utility level of the sth individual
has on the welfare of society. Moreover, the acceptance by an individual
of the social welfare function for the purpose of solving the problem of
distribution also involves a value judgment. The general form of the
social welfare function is

W = W(U,U., . .., U, (7-34)
where U, is the level of the utility index of the 7th individual.
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Determination of the Welfare Optimum. Assume that society con-
sists of two individuals whose utility functions are

U 1= Ul(?ll,?lz,xx) Uy, = Ug(gzl,Q22,$2) (7-35)

where ¢;; is the amount of the jth commodity consumed by the 7th indi-
vidual and z; the amount of work performed by the zth individual.

Society’s aggregate production function states the aggregate amounts
of each commodity that can be produced as a function of the aggregate
amount of labor and can be stated as an implicit function:

F(quu + g21, @12 + qa2, ©1 + 12) = 0 (7-36)
Assume finally that the social welfare function is
W = W(U,Uy) (7-37)

The goal of society is to maximize (7-37) subject to the constraint given
by (7-36). Form the function

W* = WU1(g11,912,21), U2(q21,q22,%2)] + AF (g1 + @o1, Q12 + oo, 21 + %2)

and set its partial derivatives egual to zero:

‘;‘;’: - ngq—t{;+)\F1=0

‘?q‘: - Wl%wtm -

a;f;* = WI%Z—:+>\F3= 0

%'Z* = F(gu + g2, Q12+ @22, 1+ 22) = 0

The system of equations (7-38) consists of seven equations in seven
variables and can generally be solved for the unknowns (see Secs. A-3 and
5-5). The welfare optimum is completely determined as a result of the
introduction of distributional value judgments in the form of the social
welfare function.! It can easily be verified that the resulting allocation

1Tn terms of the Edgeworth box diagram discussed in Sec. 7-1, the introduction of
the social welfare function is equivalent to ranking all points on the contract curve
from the point of view of social preferability.
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is Pareto-optimal. Move the second terms of the first six equations in
(7-38) to the right and then divide the first equation by the second and
third and the fourth equation by the fifth and sixth respectively:

aU,/3qu _ F1 _ 9U./dqxn aU,/oqu _ Fy1 _ 3Us/9gn

8U1/ag,2 o F2 n aUz/anz 3U1/a$1 - T’a o aUz/axz

(7-39)

The rates of commodity substitution are the same for all consumers and
also equal the corresponding rates of product transformation. More-
over, the rate at which consumers substitute work (or its counterpart,
leisure) for commodities equals the marginal product of labor. This
proves Pareto optimality if the second-order conditions are also satisfied.?

Social Preference and Indifference. Economists have tried to develop
criteria by which one can judge whether a given change in the economy is
socially preferable to the existing state. Such criteria are usually stated
as ‘‘compensation criteria’’:

1. The Kaldor criterion: state A is socially preferable to B if those who
gain from A can compensate the losers (i.e., bribe them into accepting
state A) and still be in a better position than at B.

2. The Hicks criterion: state A is socially preferable to B if those who
would lose from A cannot profitably bribe the gainers into not making
the change from B to A.

3. The Scitovsky criterion: state A is socially preferable to B if the
gainers can bribe the losers into accepting the change and simultaneously
the losers cannot bribe the gainers into not making the change.

The fundamental difficulty of compensation principles is that they
refer to potential, rather than actual, welfare since they do not require
that compensation actually be paid. In general, nothing can be said
about the social preferability of A over B in the absence of actual compen-
sation unless one is willing to make additional value judgments. Con-
sider the case in which a change is contemplated from state A to state B.
Some persons are affected unfavorably by the movement, and others
benefit. Assume that there exists some redistribution of income (I)
which compensates the losers; assume moreover that the losers cannot
bribe the gainers to oppose the change from A to B. There is no guaran-
tee, however, that the redistribution that would compensate the losers

1 A social welfare function is analogous to the individual consumer’s utility func-
tion. It provides a ranking—from society’s or a dictator’s point of view—of alterna-
tive positions in which different individuals enjoy different utility levels. It possesses
the property that if a given social welfare function provides an acceptable ranking, so
does any monotonic transformation of it. The reader may verify this proposition by
proceeding analogously to the analysis in Sec. 2-3. Assume that the welfare function
is 8 = G(W) where G > 0 and derive the first- and second-order conditions for
a maximum,
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will actually be carried out. The actual redistribution (II) following the
establishment of B may be such that the losers are not compensated. In
addition, it is possible that the losers could have effectively blocked the
move to B (by bribing the gainers) had they known that the actual out-
come was going to be given by redistribution II. Under these circum-
stances it is not legitimate to say that the fulfillment of the Scitovsky
criterion implies that state B is socially preferable to A.

In the effort to create a social analogue to individual indifference
curves, economists have tried to derive contour lines in the commodity
space which represent alternative combinations of aggregate quantities of
commodities among which society as a whole is indifferent. Scitovsky
contours are derived in the following fashion. Assume that all individuals
enjoy specified levels of utility and that the outputs of all commodities
but one are at specified levels. Then determine the smallest quantity of
the remaining commodity necessary to meet the above specifications.
The problem is expressed mathematically for a two-person-two-com-
modity economy as follows:

Minimize 11 + g21

subject to Ui(gi,g12) — Ul =0
Uag21,922) — U3 = 0
Q12 + g2 = qg

This problem can be solved by forming the function

V. =¢u+ qu + MU (g11,q12) — Udl
+ MofUs(g2, 43 — q12) — U3l (7-40)

where A\, and A; are Lagrange multipliers, and setting the partial deriva-
tives with respect to gi1, 912, 921, A1, and A: equal to zero. The total
minimum quantity of @, necessary to satisfy the conditions of the problem
is generally determinate. For each possible value of g7 a different opti-
mal value of ¢} (= ygn + g21) can be determined. The locus of all
(4%,93) points for given values of U, and U forms a Scitovsky contour.!
If the individual indifference curves are convex to the origin, the Scitovsky
contours will be convex to the origin. However, these contours are not
‘““social’’ indifference curves, as it might appear from their shapes alone.
A completely different Scitovsky contour is obtained if the specified values
of U, and U; are changed. Take for example point A on the Scitovsky
contour S, in Fig. 7-3. For any point on 8, the total quantities of @,
and Q; must be distributed between the two consumers in such a manner
that I enjoys the utility level U? and II the level US. But the quantities

1The reader may verify that points on a Scitovsky contour represent a Pareto-
optimal distribution of commodities by finding the partial derivatives of (7-40).
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corresponding to 4 could also be distributed in a different manner, one
that results in a utility level U for I and Ui® for II. By carrying
out the maximization process as indicated in (7-40) for these new values
of U, and U,, an entirely new set of points is determined, which describe
a new Scitovsky contour corresponding to the different utility levels
assigned to individuals. This new contour S: must have a common
point with S; at 4, but there is clearly no reason to expect that the two
contours will coincide throughout their lengths. S; and S may therefore
either intersect at A (as in Fig. 7-3) or be tangent to each other. Neither
case is consistent with the usual properties of indifference curves.

dp %2

S3

S, 51

fo) qq o 51
F1GURE 7-3 FIGURE 7-4

The explicit introduction of value judgments in the form of a social
welfare function permits the derivation of contours with some desirable
properties. Let the social welfare function be W = W(U,,U,) in a two-
person society. Find the Scitovsky contours corresponding to all dis- -
tributions of utility (U:,U:) for which W(U,,U;) = WO These con-
tours are shown in Fig. 7-4. The least ordinate corresponding to any
value of ¢; represents the minimum amount of €. necessary to ensure
society the welfare level W°. Therefore the envelope B of the Scitovsky
contours in Fig. 7-4 is the locus of minimal combinations of @, and @
necessary to ensure society the welfare level W° and may be called a
Bergson contour.!

The problem of finding the point of maximum Welfare can thus be
solved in two equivalent ways. :

1See J. de V. Graaff, Theoretical Welfare Economics (London: Cambridge Uni-
versity Press, 1957), chap. III. The felicitous terms Scitovsky confour and Bergson
contour are due to Graaff. Bergson contours are nonintersecting in the absence of
external effects but do not necessarily possess the “right’’ convexity.
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1. Each point on the aggregate transformation function defines a
commodity combination that can be attained with the available resources.
Even if only Parsto-optimal distributions of commodities are considered,
a contract curve and thus an infinite number of ways in which utility can
be distributed among consumers correspond to each point on the aggre-
gate transformation function.! Find all possible ways of distributing
utility among consumers corresponding to all points satisfying the trans-
formation function. Of all these utility distributions choose the one for
which W(U4,U,, . . . ,U,) is a maximum. The solution is obtained by
examining points in the utility space.

2. Determine all Bergson contours. Each of these contours corre-
sponds to a different welfare level. Choose that point on the aggregate
transformation function which lies on the highest attainable Bergson
contour. A solution is thus also obtained by examining points in the
commodity space. The equivalence of the two procedures is obvious from
the fact that both are equivalent to maximizing W(U,, . . . ,U,) subject
to the constraint given by the aggregate production function.

7-6. Summary

The purpose of welfare economics is to evaluate the social desirability
of alternative allocations of resources. In the absence of elaborate value
judgments concerning the desirability of alternative income distribu-
- tions, a simple value judgment is to consider a reallocation to represent an
improvement in weliare if it makes at least one person better off without
making anybody worse off. If it is not possible to reallocate resources
without making at least one person worse off, the existing allocation is
Pareto-optimal. It is necessary for Pareto optimality that (1) the cor-
respording rates of substitution of all consumers be equal, (2) the cor-
responding rates of transformation of all producers be equal, (3) the rates
of substitution equal the corresponding rates of transformation. The
second-order conditions must also be fulfilled for maximum welfare in the
Pareto sense.

Perfect competition results in the fulfillment of the first-order condi-
tions for Pareto optimality. It is in this sense that perfect competition
represents a welfare optimum. It does not guarantee that the second-
order conditions are fulfilled; nor does it ensure that the distribution of
income (or of utility) is optimal in any sense. In addition, the definition
of optimum welfare in terms of Pareto optimality leaves a certain amount
of indeterminacy in the analysis, since every point on a contract curve is

1The geometric representation of the possible ways of distributing utility among
two consumers corresponding to a given point on the aggregate transformation curve
is called a wizlity possibility curve.
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Pareto-optimal and one cannot choose between them without additional
restrictions.

It has been shown that the existence of monopolistic elements in com-
petition among consumers or entrepreneurs in any market precludes the
possibility of a Pareto-optimal allocation. Even if, by accident, con-
sumers’ rates of commodity substitution were equal to the corresponding
rates of product transformation for producers, Pareto optimality would
still not be attained as a result of divergences between consumers’ rate
of substitution between commodities and labor and the producers’ corre-
sponding rate of transforming labor into commodities.

The conditions under which Pareto optimality is attained under per-
fect competition must be modified in the presence of external effects such
as interdependent utility functions amd external economies and dis-
economies. The equality of the rates of commodity substitution is no
longer sufficient to ensure Pareto optimality in the consuming sector (even
if one postulates that the second-order conditions are fulfilled). Price
must equal social marginal cost rather than private marginal cost in the
producing sector. A Pareto-optimal allocation can generally be attained
by appropriately subsidizing or taxing the sale of commodities the pro-
duction of which causes external economies or diseconomies respectively.

The indeterminacy which remains in the analysis of Pareto optimality
can be removed by explicitly introducing a social welfare function which
states society’s (or a dictator’s) preferences among alternative distribu-
tions of utility among individuals. Rather than a single social welfare
function there are many, each expressing the evaluations of different
groups of people. Which one is chosen for the purpose of solving the
problem of allocation depends upon the institutional framework within
which society decides upon such matters. Economists have attempted to
judge the social preferability of alternative positions in terms of the

‘ability of the gainers to compensate the losers and the inability of the

losers to bribe the gainers into not undertaking the reallocation. Such
compensation principles are invalid if compensation is potential rather
than actual. The desirability of a reorganization of the economy can
still be evaluated, however, by translating the social welfare function into
the commodity space and finding that point on society’s transformation
curve which lies on the highest Bergson contour.
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CHAPTER 8§

OPTIMIZATION OVER TIME

The theories of consumption and production as presented in Chapters
2 and 3 cover optimization for a single time period. In a short-run
analysis entrepreneurs are assumed to possess plants of fixed size, but
beyond this, the decisions of optimizing units for successive time periods
are assumed to be independent. The consumer spends his entire income
during the current period and maximizes the level of a utility index
defined only for goods consumed during the current period. Similarly,
the entrepreneur’s production function relates inputs and outputs during
the current period, and he maximizes his profit for the current period.

Multiperiod utility and production functions are defined in the
preseni chapter, and the single-period theories of consumption and pro-
duction are extended to cover optimization over time. The introduction
of time is accompanied by a number of simplifying assumptions. Time is
divided into periods of equal length, and market transactions are assumed
to be limited to the first day of each period. During the remaining days
of each period the consumers supply the factors they have sold and con-
sume the commodities they have purchased; entrepreneurs apply the
inputs they have purchased and produce commodities for sale on the next
marketing date. The consumer’s current expenditure is no longer
bounded by a single-period budget constraint. He may spend more or
less- than his current income and borrow or lend the difference. Entre-
preneurs also have the option of borrowing and lending.

The bond market and the concepts of compounding and discounting
are described in Sec. 8-1. Section 8-2 contains an extension of the thecry
of the consumer to the multiperiod, multicommodity case. Time prefer-
ence and the effects of interest rates upon consumption expenditures over
time are considered in Sec. 8-3. Section 8-4 contains a brief discussion of
how production theory can be extended to the multiperiod case, and an
investment theory for the firm is developed in Sec. 8-5. Methods for
extending the single and multimarket equilibrium analyses to cover
interest rates and multiperiod expectations are indicated in Sec. 8-6.
Finally, an appendix contains a discussion of the problems involved in
determining the length of investment periods.

225
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8-1. Basic Concepts

Multiperiod analysis requires the introduction of several new concepts
to describe the methods and costs of borrowing and lending.

The Bond Market. Borrowing and lending are introduced with the
following simplifying assumptions: (1) consumers and entrepreneurs are
free to enter into borrowing and lending contracts only on the first day of
each period; (2) there is only one type of credit instrument: bonds with a
one-period duration; (3) the bond market is perfectly competitive; (4)
borrowers sell bonds to lenders in exchange for specified amounts of cur-
rent purchasing power, expressed in terms of money of account; and (5)
loans plus borrowing fees are repaid without default on the following
marketing date. )

These assumptions represent a considerable simplification of actual
credit markets, but they allow the easy derivation of many basic results
which can be extended to more complicated markets. Each of the above
assumptions may be relaxed, at the cost of complicating the analysis, but
without essentially altering the basic results. Assumption (1) follows
from the discrete definition of time utilized in multiperiod analyses. As
the period is defined to be smaller and smaller, market transactions
become more frequent and are continuous in the limit.! Assumption (2)
could be altered by assuming the existence of different types of credit
instruments, e.g., promissory notes and mortgages, with different maturi-
ties. Assumption (3) can be relaxed by drawing on the analysis of
mounopolistic competition given in Chapter 6. Assumptions (4) and (5)
can aiso be altered in a number of ways.

Let b, be the bond position of some individual at the end of trading on
the tth marketing date. The sign of b, signifies whether he is a borrower
or lender. If b; < 0, he is a borrower with bonds outstanding and must
repay b; dollars plus the appropriate borrowing fee on the (¢ + 1)th
marketing date. If b, > 0, he is a lender who holds the bonds nf others
and will receive b; dollars plus the appropriate borrowing fee on the
(¢ + 1)th marketing date.

Since borrowing fees are also expressed in terms of money of account,
they may be quoted as proportions of the amounts borrowed. On the
(t + 1)th marketing date a borrower must repay (1 + Z;) times the
amount he borrowed on the ¢{th. The proportion ¢, is the market rate of
interest connecting the ¢th and (¢ + 1)th marketing dates. Since the
bond market is assumed to be perfectly competitive, the market rate
of interest is not affected by the borrowing or lending of any single
individual and is the same for all individuals. Interest rates are fre-

1See the appendix to this chapter for an example of an analysis in which market
transactions are assumed to take place continuously.
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quently expressed as percentages. If the interest rate is?;, the borrowing
fee is 100z per cent of the amount borrowed. For example, the borrow-
ing fee is 5 per cent if 7z; = 0.05,

Market Rates of Return. Individuals desiring to borrow for a dura-
tion of more than one period can sell new bonds on successive marketing
dates to pay off the principal and interest on their maturing issues.
Similarly, lenders may reinvest their principal and interest income.
Consider the case of an individual who invests b; dollars on the ¢th market-
ing date and continues to reinvest both principal and interest until the
7th marketing date. The value of his investment at the beginning of the
(¢ + 1)th marketing date is b,(1 + 2:). If he invests the entire amount,
the value of his investment at the beginning of the (¢ + 2)th marketing
date is bs(1 + 2;)(1 4+ 7,41). The value of his investment at the beginning
of the rth marketing date is

bL(l + 2;)(1 + ’i¢+1) ot (1 + if—l)

The total return on this investment is
J = bl 4 )1 +ins) - -+ 1+ i1) — by

Since the bond mearket is perfectly competitive, the average and-
marginal rates of return (£&,) for this investment are equal and constant:

b= == (14+3)1 +%4) - -+ U +4.) —1 (8la)
b, db,:

For example, if 7 = (¢ + 2), 7, = 0.10 and 7;, = 0.06,

£e2 = (1.10)(1.06) — 1 = 0.166

.Since the investor is earning interest on his previous interest income,

the compound market rate of return exceeds the sum of the individual

interest rates. It isinteresting to note that only the levels of the interest

rates, and not the order of their sequence, affect the market rate of return.

The market rate of return remains 0.166 for 7z = 0.06 and 7¢,; = 0.10.
It is convenient to define

£ =0 (8-1d)

which states that an investor will earn a zero rate of return if he buys
and sells bonds on the same marketing date. A positive return is earned
only if bonds are held until the following marketing date. The market
rates of return defined by (8-1) are applicable for borrowing as well as
lending.



228 MICROECONOMIC THEORY: A MATHEMATICAL APPROACH

If the investor expects a constant rate of interest, s, = + - + = 4,1 = 4,
Eqgs. (8-1a) and (8-1b) become

b= (L + Dt = 1

which can be evaluated from a compound-interest table for specific values
of (r — t) and 2.

Discount Rates and Present Values. The existence of a bond market
implies that a rational individual will not consider one dollar payable
on the current (¢ = 1) marketing date equivalent to 1 dollar payable
on some future marketing date. If he invests 1 dollar in bonds on the
current marketing date, he will receive (1 4 #;) dollars on the second
marketing date. One dollar payable on the second marketing date is
the market equivalent of (1 4+ #1)~! = 1/(1 + 71) dollars payable on the
first. It is possible tolend (1 + %;)~! dollars on the first marketing date
and receive 1 dollar on the second, or borrow (1 + ¢;)~* dollars on the
firstandrepay 1 dollar on thesecond. Theratio (1 + ¢1)~!isthe discount
rate for amounts payable on the second marketing date. The present
value, sometimes called the discounted value, of y2 dollars payable on the
second marketing date is y2(1 4 71)~! dollars.

Discount rates can be defined for amounts payable on any marketing
date. In general, the discount rate for sums payable on the {th marketing
date is .

(L4 i) 4in) -+ - (4 )= (L + &)

It follows from (8-1) that an investment of (1 + £1.)~! dollars on the
first marketing date will have a value of 1 dollar on the ¢th.

 An entire income or outlay stream can be expressed in terms of its pres-
ent value, a single number. Consider the income stream (y1,y2, . - - ,Yr)
where y; is the income payable on the ¢{th ma,rketmg date. The present
value (y) of this stream is

“utaim T Yo

If all interest rates are positive, the discount rate increases and the
present value of any fixed amount decreases as r increases. If all interest
rates are 0.10, the present value of a dollar payable on the second market-
ing date is approximately 0.91 dollars, a dollar payable on the fifth is
approximately 0.68, and a dollar payable on the tenth approximately
0.42,

The computation of present values allows an economically meaningful
comparison of alternative income and outlay streams. Assume that the
interest rate is 0.10 and consider two alternative two-period income
streams: (y; = 100, y» = 330) and (y: = 300, y. = 121). The first
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income stream contains 9 dollars more than the second,. but the second
will always be preferred, since its present value (410 dollars) exceeds the
present value of the first (400 dollars). The preferability of the second
stream can be demonstrated by transforming it into a stream directly

“comparable to the first. The second income stream gives its holder

200 dollars more on the first marketing date than the first income stream.
Let him invest these 200 dollars in bonds on the first marketing date.
This leaves a spendable income of 100 dollars on the first marketing date
and adds 220 dollars to his spendable income on the second. The trans-
formed income stream is (y; = 100, y» = 341), which is clearly preferable
to the first income stream. This result can be generalized: regardless
of how an income stream is transformed through borrowing and lending,
an income stream with a greater present value can be transformed into a
preferred stream.

8-2. Multiperiod Consumption

A consumer generally receives income and purchases commodities on
each marketing date. His present purchases are influenced by his
expectations regarding future price and income levels, and he must
tentatively plan purchases for future marketing dates. If his expecta-
tions prove correct and his tastes do not differ from the expected pattern,
his tentative plans will be carried out on future marketing dates. If his
expectations are not realized, he will revise his tentative plans. The
present discussion is restricted to a consumer who formulates an inte-

‘grated plan on the current marketing date for his consumption expendi-

tures on n goods over a horizon containing T periods. His horizon is
simply the period of time for which he plans on the current marketing
date. It may be of any length, but for simplicity assume that it cor-
responds to the remainder of his expected lifetime. It is not essential
that he actually know how long he will live; it is only necessary that he
presently plan as if he did. If his life expectancy should change in the
future, he would alter his horizon accordingly and revise his plans.

The Multiperiod Utility Function. In the most general case the con-
sumer’s ordinal utility index depends upon his planned consumption of
each of the » goods in each of the T time periods:

U= U(qlh « oo @012, - - o 002 o . . HQiTy . . - anT) (8'2)

where ¢; is the quantity of @;that he purchases on the {th marketing date
and consumes during the {th period.

The construction of a single utility index does not imply that the con-
sumer expects his tastes to remain unchanged over time. It only implies
that he plans as if he knew the manner in which they will change. For
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example, he may know that a baby carriage will yield a great deal of
satisfaction during the years in which he is raising his family and no satis-
faction at all during the years of his retirement. The utility index (8-2)
is not necessarily valid for the consumer’s entire planning horizon. It
merely expresses his present expectations. A change in his objective
circumstances or subjective desires may cause him to revise his utility
index on some future marketing date. A consumer who formulates his
utility index on the expectation that he will become the father of a bounc-
ing baby girl and in fact becomes the father of triplet boys will surely
revise his utility index after the event. A consumer who discovers a
desirable new commodity will revise his utility index to include this .
commodity.

The Budget Constraint. The consumer expects to receive the earned-
income stream (y1,¥2, . - - ,¥r) on the marketing dates within his plan-
ning horizon. Generally, his expected-income stream is not even over
time. One possibility is a relatively low earned income during the early
years of the consumer’s working life, which increases as he gains training
and szniority and reaches a peak during the middle years of his working
life. His earned income may then begin to fall and become zero after
retirement. Whatever his earned-income stream may be, it will seldom
coincide with his desired consumption stream. Through borrowing and
lending he is able to reconcile the two streams.

The consumer’s total income receipts on the {th marketing date are
the sum of his earned income and his interest income from bonds held
during the preceding period: (y; + %.1b:e~1). His interest income will be
positive if his bond holdings are positive and negative if his bond hold-
ings are negative, i.e., if he is in debt. His expected savings on the {th
marketing date, denoted by s;, are defined as the difference between his
expected total income and total consumption expenditures on that date:

St = Y + 7:¢—1b:—1 - z Diqje (t = 1, « e ey T) (8“3)
i=1

where p; is the price of Q; on the initial marketing date and p; (f = 2,
. . ., T)is the price that he expects to prevail for @; on the {th marketing
date. Similarly, 7; is the rate of interest determined on the initial mar-
keting date and 7, (¢ = 2,. . ., T — 1) is the rate of interest that the
consumer expects to prevail on the {th marketing date. The consumer’s
savings will be negative if his expenditures exceed his total income.

If the consumer is at the beginning of his earning life, his initial bond
holdings (be) represent his inherited wealth. If he is revising his plans
at a date subsequent to the beginning of his earning life, his bond hold-
ings also reflect the results of his past savings decisions. To simplify
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the present analysis assume that he is at the beginning of his earning life
and that by = 0. On each marketing date the consumer will increase or
decrease the value of his bond holdings by the amount of his savings on
that date:

b¢ == bg._] + 8¢ (t = 1, e e ey T) (8-4)

A ‘““typical” consumer might dissave and go into debt during the early
years of his earning life while he is earning a comparatively low income,
buying a home, and raising a family; then save to retire his debts and
establish a positive bond position during the remainder of his working
life; and finally dissave and liquidate his bonds during retirement.

Taking (8-3) and (8-4) together, the consumer’s planned bond hold-
ings after trading on the 7th marketing date can be expressed as a func-
tion of his earned incomes, his consumption levels, prices and interest
rates:

b, = (y1 - Piqu'l)

A s

pnq,l) 1+ %)+ (’yz - S P:’ijz)

i=1

b, = (yl -

bs = (yl - z Pﬂqﬂ) A +a)1 +4) + (Z/z - i szqu)(l + 2)
j S

=1
| + (ys - z pjﬁst)

i=1
and in general, utilizing (8-1a),

2 (yc 2 puq,e) Q+&) G=1,...,T) (8-5)

The consumer’s bond holdings after trade on the 7th marketing date equal
the algebraic sum of all of his savings, net of interest expense or income,
through that date with interest compounded on each.

In the single-period case the optimizing consumer would buy a suf-
ficiently large quantity of each commodity to reach complete satiation if
he did not possess a budget constraint. A similar situation would arise
in the multiperiod case if there were no limitation upon the amount of
debt that he could amass over his lifetime. The budget constraint for a
multiperiod analysis can be expressed as a restriction upon the amount of
the consumer’s terminal bond holdings (br). He may plan to leave an
estate (or debts) for his heirs, but for simplicity assume that he plans to
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leave his heirs neither assets nor debts. Evaluating br from (8-5), his
budget constraint is:

by = i (y; - i Pje?ﬂ) I+ &r) =0
(=1 i=1

Dividing through by the constant (1 + £;7) and moving the consumption-
expenditure terms to the right, the consumer’s budget constraint can
also be written as

T
z ye(l + &)1 =

t=1 ¢

T n

Y Y pagal + £ (8-6)
=1 5=1

since

1+ &r =(1 4+ - (14 dr-y)
1+ &Hr (144) - Q+ 2r-)

’ 1
A+ (T )

In the form (8-6) the budget constraint states that the consumer equates
the present values of his earned income and consumption streams.

Utility Maximization. The consumer desires to maximize the lavel of
his lifetime utility index (8-2) subject to his budget constraint (8-6).
Form the function

= (14 &)1

n

U*=U(qu, - - - gnr) + A ET (yz - z ??jeq,z) (14 &t
(=1

=1
and set its partial derivatives equal to zero:

9 ) = o v .
ous _ 98U _ AR+ &) pr =0 G=1 » ™)

9 9¢; ¢t=1...,D7
T n
*
aati = 2 (yt - z szq:'t) Q4+ &)1=0
i=1 g=1

and

_ % — aU/anr = pkr(l + El-r)_l (.7: k = 17 re ot n) (8-7)
0%, aU/aQﬂ pﬂ(l + Ell)—l (ty T= 1’ LR ] T)

The consumer must equate the rates of substitution between each pair of
commodities in every pair of periods to the ratio of their discounted
prices.

The first-order conditions are similar to those for the single-period
analysis. Commodities are now distinguished by time period as well
as kind, and discounted prices have replaced simple prices. Once these
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modifications have been made, the second-order conditions are the same
as those given in Sec. 2-7 for the general one-period analysis. Income
and substitution effects can be defined with respect to changes in the dis-
counted prices of the various commodities on the various marketing dates
if the interest rates remain unchanged.?
Demand Functions. Solving the n7T independent equations given by
_(8-7) and the budget constraint for the consumer’s commodity dewmands,

G=1L...,n)

Gt = Da(pu, + - - Persiyy - - - i) ¢=1,...,T)

The consumer’s demand for the 7th commodity on the {th marketing date
depends upon the price of each commodity on each marketing date and
the interest rates connecting each pair of successive periods. The
consumer’s demand functions for bonds are obtained by substituting his
commodity demand functions for the ¢;s in (8-5):

t»=§:ﬂw—;ﬁpﬂhwm...ﬁpo]a+sa}

= bilpwy - - sir-) (r=1...,T)

If earned-income levels are treated as parameters, bond purchases are
also functions of all prices and all interest rates.

The demand functions for commodities are again homogeneous of
degree zero in prices and earned-income levels: if all actual and expected
prices and earned-income levels change by the factor k£ > 0 with all
interest rates remaining uichanged, the consumer’s demand for each com-
modity on each marketing date will remain unchanged.? The demand
functions for bonds are homogeneous of degree one with respect to prices
and earned-income levels. From the zero-degree homogeneity of the
commodity demand functions it follows that

bf(kpll .+ o kprﬂ‘;il ¢ v . iT-'l) = . ky
— z kpthjt(kpll; P ,kpnf,ﬁ, ... ,’I:T..l) (1 + Et'r)] = kb7

i=1

If every element in the consumer’s earned-income stream and all prices
should double, his planned commoditypurchases would remain unchanged,

1 More than one discounted price would change if one of the interest rates changed,
since each interest rate enters the discount factors applicable for all prices on all the
marketing dates following the date on which it is determined.

2 The method of proof for this statement is the same as that utilized to prove the
similar statement in Sec. 2-4.
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and he would double his planned bond purchases. However, since his
bond holdings are measured in terms of the monetary unit of account,
they will exchange for exactly the same physical quantities of commodities
as before the doubling of the values of bond holdings and commodity
prices. The interest rates are pure numbers independent of the monetary
unit and must remain unchanged if commodity demands are to remain
unchanged.

8-3. Time Preference

Though much of the analysis of multiperiod consumption is formally
identical with the analysis for a single period, the explicit introduction of
time and interest rates presents a number of new problems. Attention is
centered upon the unique problems of multiperiod consumption by assum-
ing that actual and expected commodity prices are fixed in value and
remain unchanged. The consumer’s problem can then be stated as that
of selecting an optimal time pattern for his consumption expenditures.

The Consumption-utility Function. For pairs of commodities pur-
chased on a particular marketing date, the first-order conditions given by
(8-7) become

9¢;t Dt (G k=1...,n)
. %4t _ Pkt 8-8
O Dt ¢=1,...,T (8-8)

The consumer equates the rate of commodity substitution (RCS) between
every pair of commodities purchased on a single marketing date to their
simple price ratio. The intraperiod substitution rates are independent of
the interest rates. Thus, with regard to purchases on each marketing
- date, the consumer satisfies the first-order conditions for single-period
utility maximization, with the exception of the single-period budget
constraint. The consumer’s optimization problem can be separated into
two parts: (1) the selection of optimal values for his total consumption
expenditures on the various marketing dates, and (2) the selection of
optimal commodity combinations corresponding to the planned expendi-
tures on each marketing date. Once the first problem has been solved,
the consumer can solve the second by formulating 7' independent single-
period problems with the optimal total consumption expenditures serving
as single-period budget constraints.

Define ¢, as the consumer’s total expenditure for commodities on the
tth marketing date:

n

a=) pags  @E=1,...,7) (8-9)

i=1

The utility function (8-2), together with (8-9) and the (» — 1)T inde-
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pendent equations of (8-8), forms a system of (nT + 1) equations in
(nT + T + 1) variables: U, ¢, (=1, ...,n)¢=1...,T)and
ece(t=1,...,T). Generally, nT of these equations can be utilized to
eliminate the g;s, and the consumer’s utility index can be expressed as a
function of his consumption expenditures:

U=V, ...,r (8-10)

Since (8-10) is constructed on the assumption that (8-8) is satisfied, it
gives the maximum value of the utility index corresponding to each
consumption-expenditure pattern.

The consumer’s time-substitution rate:

s, _ Vi

“ % V. ¢Gr=1,...,T)

is the rate at which consumption expenditure on the rth marketing
date must be increased to compensate for a reduction of consumption
expenditure on the {th in order to leave the consumer’s satisfaction level
unchanged. No generality is lost by limiting attention to the cases for
which 7> {. If the consumer’s time-substitution rate is 1.06, his.con-
sumption expenditure on the rth marketing date must be increased at the
rate of 1.06 dollars for each dollar of consumption expenditure sacrificed
on the tth. In other words he must receive a premium of at least 0.06
dollars before he will postpone a dollar’s worth of consumption expendi-
ture from period ¢ to period . This minimum premium is defined as‘the
consumer’s rate of time preference for consumption in period { rather than
period 7 and is denoted by 7,:
ac,

= —ot—1 (r=1...,T) (r>8)  (81l)
ace . .

The consumer’s rates of time preference may be negative for some con-
sumption time patterns, i.e., he may be willing to sacrifice a dollar’s
worth of consumption in period ¢ in order to secure less than a dollar’s
worth in a later period. If expected consumption expenditures are
10,000 dollars on the {th marketing date and only 1 dollar on the rth,
7 would most likely be negative. The consumer’s subjective rates of
time preference are derived from his consumption-utility function and
depend upon the levels of his consumption expenditures. They are inde-
pendent of the market rates of interest and his borrowing and lending
opportunities.

The Consumption Plan. The consumer’s utility-maximization prob-
lem of Sec. 8-2 can now be reformulated using his consumption expendi-
tures as variables. He wants to maximize the level of his consumption-
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utility index (8-10) subject to his lifetime budget constraint. Form the
function

T
V5= Ven .. o) +u ) = )1+ b7
t=1

and set its partial derivatives equal to zero:

av*
3Cg

Vi—p(l+ &)1 =0 t=1...,T
(8-12)

T
an = ; (ye—c)(1 + &)1 =0 e

[ ( +(;)
—_ a__c" — (1 + Eu)_l _ ” C_
and —ZE= T~ e T Gr=1. .., D)
‘ (r>1t) (8-13)
and substituting from (8-1a} and (8-11),

9 = & Gr=1,...,T) (=>1% (8-14)

The consumer in this case adjusts his subjective preferences to his market
opportunities by equating his rate of time preference between every pair
of periods to the corresponding market rate of return. If 5, were less
than £, the consumer could buy bonds and receive a premium greater
than necessary to maintain indifference. If %, were greater than &,
he could increase his satisfaction by selling bonds and increasing his con-
sumption in period ¢ at the expense of consumption in period +. Though
7t~ 1nay be negative for some consumption-expenditure patterns, the
observed (optimum) values of 5, will always be positive if the iuterest
rates are positive.

Second-order conditions require that the principal minors of the rele-
vant bordered Hessian determinant alternate in sign:

Vu Vi -1
Vau Vo ~1 4 £2)71 > 0
—1 -1+ &) 0 ,
Vi Vi Vis -1
Va Va Vs —(1 + &)
Va Ve Vs —(A 4+ &3)[<0; - -+ (8-19)
-1 =0+ &)t =0+ &)™? 0

The reader may verify that the second-order conditions imply that the
rates of time preference be decreasing. '

For a numerical example consider a hypothetical consumer with a two-

\period horizon. Assume that his utility function is U = cic2 and that his
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actual and expected incomes are (y; = 10,000, y. = 5,250). Form the
function

V* = cico + £[(10,000 — ¢1) + (5,250 — c2)(1 + 1)~

and set its partial derivatives equal to zero:

V*
aacl SeTe= 0
V* .
6362 =c —p(l+ &)t =
av* -
- (10,000 — ¢1) + (5,250 — ¢3)(1 + 1)t =0

If the interest rate is 0.05 (5 per cent), the opfimum consumption expen-
ditures are ¢; = 7,500 and ¢, = 7,875. The consumer’s rate of time pref-
erence for these expenditures equals the interest rate (market rate of
return):

_ d_Cg _ _ C2 _ _ 7,875 _ .
me = — d61 1 = ‘c-l 1 = —-——7’500 1 - 0.05
The second-order condition recuires that
0 1 -1
1 0 —Q4+)?|=20+4+72)1t>0
-1 —(1 42 0

and is satisfied for z; > —1. '
The two-period horizon case can be described graphically by giving a
new interpretation to the conventional indifference-curve diagram. The
consumer’s earned-income stream is
given by the coordinates of point A €250
in Fig. 8-1. Let y° be the present
value of this income stream. The
consumer’s budget constraint is

Y —c— el +14) =

The locus of all consumption points
with a present value of y° forms a
straight line with negative slope
equal to the market exchange rate,
(1 + 71), between consumption ex-
penditures on the first and second
marketing dates. One dollar of in-
come on the first marketing date can
be transformed into (1 + ;) dollars of consumption expenditure on the
second if the consumer lends at the market rate of interest. Likewise,

Ficure 8-1
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(1 + 71) dollars of income on the second marketing date can be trans-
formed into 1 dollar of consumption expenditure on the first if the con-
sumer borrows at the market rate of interest. Assume that the con-
sumer’s budget constraint is given by the line labeled »° in Fig. 8-1. If
he borrows on the first marketing date, he will move along his budget line
going to the right of point A. If he lends, he will move along his budget
line going to the left of point A.

The curves labeled U™ and U® are members of the family of time indif-
ference curves. Each is the locus of consumption expenditures yielding a
given level of satisfaction. The slope of a time indifference curve is
— (1 4+ 7m12). These curves reflect the assumption that the rate of time
preference is decreasing, i.e., the curves are convex with respect to the
origin as required by the second-order condition (8-15). The coordinates
of the tangency point B give the optimal consumption expenditures. The
consumer will buy AC dollars worth of bonds on the first marketing date
and will spend the principal and interest, CB, for consumption goods on
the second.

Substitution and Income Effects. The effects of a change in the rate
of interest upon the consumer’s optimal consumption levels can be
separated into income and substitution effects by methods similar to
those employed in Sec. 2-6.

Assume that the consumer’s horizon encompasses two marketing dates.
In order to determine the effects of changes in the interest rate and
earned-income levels, differentiate the first-order conditions (8-12)
totally for T = 2:

Vll dCI + V12 dcz - d# = 0
Vadel + Varde, — (1 + 1) tdu = —p(l + i))~2di; (8-16)
—dc1 — (1 + 21)"tdce — 0 = —dy, — (1 + 41)! dye

+ (2 — ) + 71)"2di;

The array of coefficients on the left-hand side of (8-16) is the same as the
array for the last (and for T = 2, the only) bordered Hessian determinant
of (8-15).

Using Cramer’s rule to solve (8-16) for de,

der = —u(l + )7 22 dis + [—dyn — (1 + i) dys
Ds,

+ (Y2 — c2)(1 + 71)72 di) D

(8-17)

where D is the bordered Hessian determinant and D, is the cofactor of
the element in its {th row and rth column. Dividing (8-17) through
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by d7; and assuming that dy1 =dy, =0,

d¢y D

3 = Tt -2 Do 5 T @ =) +i)2F! (8-18)
Let y denote the present value of the consumer’s' earned-income

stream:

y =1y +y:00 + a)?

An increase of y; by 1 dollar or of y2 by (1 + 7;) dollars will each increase
y by 1dollar. The rate of increase of ¢, with respect to a dollar’s increase
in the present value of the consumer’s earned-income stream can be
derived from (8-17):

% aCl

— _Da
3y =1+ 1) N

D (8-19)

A change of 7; will alter the present values of the consumer’s earned-
income and consumption streams. Consider thos&-changes of 7; which
are accompanied by changes in ¢; and c¢2 such that the level of the con-
sumer’s utility index remains unchanged: dU = V,de; + Vade, = 0.
Since (8-13) requires that V./V; = (1 + ;)7 it follows that

—dey — (L +41)tdee =0
and from (8-16) it follows that
| —dy; — Q4+ 4)dy: + (2 — )1 +41)"2de =0
Substituting. into (8—17)

(-3—9-) = a2 (8-20)
1'1 U=con8t

- Substituting —(y1 — ¢1){1 + 21)"! = (y2 — ¢2) (1 + 2;)~2, which follows

from the budget constraint, and utlhzmg (8-18) and (8-19), (8-17) may be
written as

601 ,QE_].' . - acl X
6‘21 (ail)vsf;omt + (yl 61) (1 + ?‘ ) (ay)‘ll“ﬁonﬂ (8 21)

The total effect of a change in the rate of interest is the sum of a substitu-
tion and an income effect. The income effect equals the rate of change of
consumption expenditure with respect to an increase in the present value
of the consumer’s earned-income stream weighted by his bond holdings
multiplied by a discount factor.

The sign of the substitution effect is easily determined. From the
first-order conditions ¢ > 0, and from the second-order condition D > 0.
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Evaluating D,

V},z - ].

Dz = — l Q4+t 0

= (1 + 2‘1)—1 >0

Therefore, the substitution effect with respect to ¢; in (8-18) is negative.
The substitution effect with respect to ¢z is

dc, _ . __2])_22
(E)U—comt - #(1 + 21) D

Since Dy, = —1 < 0, the substitution effect with respect to ¢ is positive.
An increase of the interest rate will induce the consumer to substitute
consumption in period 2 for consumption in period 1 as he moves along a
given time indifference curve. Thisfollowsfrom the fact that an increase
of the interest rate is equivalent to an increase in the prices of commodities
on the first marketing date relative to those on the second. If the con-
sumer reduces consumption in period 1 and purchases bonds, his interest
earnings will be greater, and he will be able to purchase a larger quantity
of commodities on the second marketing date for each dollar’s worth of
purchases sacrificed on the first.

Although an increase of income may cause a reduction in the purchases
of a particular commodity, it is difficult to imagine a situation in which an
increase of income will cause a reduction in the aggregate consumption
expenditure on any of the marketing dates. One can assume that
(8¢1/3Y);meonet 18 positive for all except the most extraordinary cases. If
this is true, the direction of the income effect is determined by the sign of
the consumer’s bond position (y1 — ¢1) at the end of trading on the first
marketing date since the second term of (8-21) is of the same sign as
(y1 — ¢1). If the consumer’s bond holdings are positive, an increase of
the interest rate will increase his interest income and is equivalent to an
increase of his earned income. If he isin debt, an increase of the interest
rate will increase his interest expense and is equivalent to a reduction of
his earned income. In this case both effects are negative, and the total
effect, dc1/d7, will therefore be negative. If his bond position is positive,
the total effect will be positive or negative depending upon whether the
value of the income effect is larger or smaller than the absolute value of
the substitution effect.

8-4. Multiperiod Production

The theory of the firm can also be extended to the multiperiod case.
The analysis of the entrepreneur is similar to that of the consumer, as in
the single-period case.
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The Multiperiod Production Function. Production is seldom instan-
taneous. Generally, time must elapse between the application of inputs
and the securing of outputs. Assume that (1) the entrepreneur buys
inputs and sells outputs only on the marketing dates within his horizon,
(2) he performs the technical operations of his production process in the
time between marketing dates, (3) during the {th period he applies the
inputs he purchased on the {th marketing date, and (4) on the (¢ + 1)th
marketing date he sells the outputs secured during the tth period. These
assumptions serve to define the time sequence of production. The fol-
lowing analysis could be based on many alternative sets of time-sequence
assumptions without any major changes of its results.

Consider an entrepreneur who desires to formulate an optimal produc-
tion plan for a horizon encompassing L complete periods and (L + 1)
marketing dates. Following the notation of Sec. 3-6, the entrepreneur’s
production function can be written in implicit form as

F(Qw, NN IR AR P/ XN TS PR ,QmL) =0 (8—22)
wheregz (7 =1, ...,8)( =2,...,L+ 1)isthe quantity of the jth
output secured during the (¢ — 1)th period and sold on the ¢th marketing
date and —¢q; {(j=s+1,...,m) ¢t =1,...,L)is the quantity of

the jth input purchased on the {th marketing date and applied to the
production process during the ¢tth period. Any outputs which the entre-
preneur may sell on the initial marketing date are the result of past pro-
duction decisions, and their levels enter (8-22) as constants rather than
variables. On the (L + 1)th marketing date the entrepreneur plans to
sell the outputs secured during the Lth period, but does not plan
to purchase inputs, since he does not anticipate production in any
period beyond the Lth. The multiperiod production function relates
the input and output levels for all periods within the entrepreneur’s
planning horizon. The inputs applied during each period contribute to
the production of outputs during all periods, and it is usually impossible
to attribute a particular output to inputs applied during a specific period.
However, it is possible to ascertain the effects of marginal variations and
compute the marginal productivities of each input applied during each
period with respect to each output secured during each period.

Profit Maximization. The entrepreneur also faces a perfectly com-
petitive bond market and is free to borrow and leiid on the same terms as
consumers. Given these opportunities, he will generally desire to maxi-
mize the present value of his net revenues from production subject to the
technical constraints imposed by his production function. Form the
function

L+l m
w* = 2 2 Pagi(l + &) + N (qazy « -+ ,qmL)
i=1 j=1
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and set its partial derivatives equal to zero:

dr* oF

@=sz(1+£1¢)_‘+’\@=0
¢=2,...,L+1) for(j=1,...,9)
t=1,...,L) for(j=s+1,...,m)

aﬂ_*

TN =F(q12 - - - ,qmr) =0

and
_ a%‘z _ aF/anf _ pkr(]- + Elf)—l

0. OF/3qi  pi(l + Er)?
Gr=2...,L+1) for(j,bk=1,...,59)

¢Gr=1,...,L) for (j,k=s+1,...,m)

(8-23)

If Q; and Qi are both outputs, (8-23) requires that their rate of product
transformation (RPT) equal the ratio of their discounted prices. If
both are inputs, it requires that their rate of technical substitution (RTS)
equal the ratio of their discounted prices. If @;is an output and Qx an
input, let zx, = —gqir and 7x, = Dr, and write (8-23) as

00t o1 + 1)t = ran(l + £1,)1

amkr
G=1,...,9 k=s+1,...,m)
t=2,...,L+1) (r=1,...,L)

The discounted value of the marginal product of X, applied during the
7th period with respect to each output in each time period must be
equated to the discounted price of X on the rth marketing date.

The second-order conditions are the same as those presented in Sec.
3-6 if each output and each input on each marketing date is defined as a
distinct variable and simple prices are replaced by discounted prices.
Substitution effects may be derived for changes in each of the discounted
prices, assuming that the interest rates remain unchanged.

An entrepreneur would not undertake single-period production if all
inputs were variable and his maximum profit were negative. A similar
limitation applies in the multiperiod case. If all inputs are variable, the
entrepreneur will not undertake production at all if the discounted value
of his net revenues from operations is negative. However, this restriction
does not take account of all his options. He may find it most profitable
to undertake production, but to cease operations before the end of his
planning horizon. The entrepreneur will not operate after the rth
marketing date unless the present value of the added net revenues is
nonnegative:
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L+1 s
z Pige(1 + £1)7?
t=r415=1
L m
-~ Z 2 rwal+ 8120 (r=1,...,L) (824)
t=jrj'=s+1

If (8-24) does not hold for some value of 7, the entrepreneur can earn more
by investing all his fundsin bonds on the 7th marketing date than by con-
tinuing production. If (8-24) does not hold for 7 = 1, he will not under-

. take production at all.

Demand and supply functions can be derived in a manner similar to
that used in Sec. 8-1 to derive consumer demand functions. The entre-
preneur’s demands for inputs, supplies of outputs, and demands for bonds
on each marketing date can be expressed as functions of all prices and
interest rates. The demand functions for inputs and supply functions
for outputs are homogeneous of degree zero, and the demand functions
for bonds are homogeneous of degree one with respect to all input and
output prices.

8-5. Investment Theory of the Firm

The multiperiod production decisions of the firm are presented in a
very general form in Sec. 8-4. The advantages and disadvantages of this
formulation are similar to the advantages and disadvantages of the multi-
period consumption analysis contained in Sec. 8-2. The formal relation-
ships between single-period and multiperiod production decisions are
obvious, but many of the new problems arising from the introduction of
time and interest rates are obscured by this formulation. Simplifying
assumptions similar to those employed in Sec. 8-3 are utilized in the
present section in order to bring the new problems to the forefront and
derive some of the concepts and results of neoclassical investment theory.
Specifically, it is assumed that entrepreneurs consider all current and
expected input and output prices as known and constant and perform
certain preliminary optimizations. It is then possible to treat the invest-
ment expenditures and revenues from sales on each of the marketing dates -
within the entrepreneur’s horizon as the only variables and confine the
analysis to an investigation of their interrelationships and the effects of
the interest rates.

Special cases have played an important role in the development of
microeconomic investment theory. Cases are frequently distinguished
on the basis of input and eutput time structures. The simplest case is
porni-input—point-output, which covers investment in working capital:
all inputs are purchased on one marketing date, and all outputs are sold
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on a subsequent marketing date. Tree growing and wine aging often
serve as examples. The multipoint-inpui—poini-output case covers the
production of an output which requires the application of inputsduring a
number of successive periods.! Shipbuilding might fall into this cate-
gory. The point-input—-multipoint-output case covers an investment
in a durable good which is purchased on one marketing date and is used
for the production of outputs during a number of successive periods.
Finally, there is the general multipoint-inpui—multipoint-output case.
The first three cases are, of course, embraced by the fourth. In the
present section attention is limited to the general and poini-input—poini-
output cases.

The Investment-opportunities Function. The entrepreneur’s invest-
ment expenditure on the {th marketing date, denoted by I, equals the
value of his input purchases on that date:

It = — Z y o (t = 1, « e ,L) (8"25)
ji=8+1

His total revenue from sales on the {th marketing date, denoted by R, is

8
Ri= ) pgs  (t=2%...,L+0D) (8-26)
i=1
The definitions (8-25) and (8-26) require 2L equations.

Assume that an entrepreneur is given the levels for all his inputs and
outputs except the inputs he purchases on the {th marketing date, and
desires to minimize the present value of his investment expenditure on
that date. To solve his constrained-minimization problem, form the
function

If = — E Dieg(l + £1)7?
i=a+1

*7¢ 0 0 0 0
+ MF(q1s - - . e L+ 109at 1,1y < « ¢ ety o« o Qag2iy « o 1mL)

and set its partial derivatives equal to zero:

oIy _ 1L \x OF _ .

aqjt - p"(l + Eu) + x aq]t - O (.7 =38 + 1) . v ey m)

oIy 0 T o .

NF - Flgls, - - - 2 L+18041,1 « o o Qaatiry o o« Tot2ty o -+ - ,0%z) =0
and _ %9 _ Pu G,k=s+1,...,m) (8-27)

e Pje

1If time is treated as a continuous variable, the word coninuous replaces multipoint
in the titles of the special cases.



OPTIMIZATION OVER TIME 245

The first-order conditions are the familiar ones for single-period con-
strained cost minimization (see Sec. 3-2): RTSs are equated to fixed price
ratios. The optimum intraperiod RTSs are independent of the interest
rates. It is assumed that the entrepreneur always allocates his invest-
ment expenditure on the {th marketing date so that (8-27) is satisfied.
Conditions (8-27) contain (m — s — 1) independent equations for each
marketing date, or a total of L(m — s — 1) independent equations.

Now assume that the entrepreneur is given the levels for all his inputs
and outputs except the outputs he sells on the {th marketing date, and
desires to maximize the present value of his revenue from sales on this
date. The first-order conditions for this constrained-maximization
problem require that

git _ Pmt ke
— S = = PO -2
30 Py (U, 1, , 8) (8-28)

The optimum RPTSs for outputs sold on a given marketing date are also
constants which are independent of the interest rates. It is assumed that
the cntrepreneur always adjusts his production so that (8-28) is satisfied..
Conditions (8-28) contain a total of L(s — 1) independent equations.

The - entrepreneur’s investment-opportunities function is constructed
with the assumptions that (1) he satisfies his multiperiod production
function, (2) he always equates his intraperiod RTSs to the fixed input-
price ratios, and (3) he always equates his intraperiod RPTs to the-
fixed output-price ratios. His investment opportunities therefore are
described by his production function (8-22) and Eqgs. (8-25) through-
(8-28). The system as a whole contains (Lm + 1) independent equations
and (Lm + 2L) variables. Generally, Lm of the equations can be used to
eliminate the Lm ¢;s. The revenues and investment expenditures are
then related by a single implicit function:

H(Il, o ,IL,Rz, .o ,RL+1) = O (8—29)

Given all the revenues and all but one of the investment expenditures,
(8-29) gives the minimum value for the remaining investment expendi-
ture. Similarly, given all but one of the revenues and all the investment
expenditures, (8-29) gives the maximum value for the remaining revenue.

The entrepreneur possesses both external and internal investment
opportunities: he can purchase bonds and he can invest in his own firm.
His external rates of return are the same as those for consumers, as given
by (8-1). In the general case, average internal rates of return cannot be
defined in a manner parallel to average market rates of return, since it is
not possible to attribute the entire revenue on the 7th marketing date to
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the investment on any particular marketing date. Fach revenue depends
upon all the investment expenditures. However, marginal internal rates
of return can be defined for any investment-revenue pair, assuming that
all other investments and revenues remain unchanged. The marginal
internal rate of return® from investment on the {th marketing date with
respect to revenue on the rth, denoted by p., is

_OR _, _ _oH/OL _,
P = 5T, oH/oR,
¢t=1...,L) ¢=2...,L+1) (830

Each of the marginal internal rates of return depends upon the levels of all
the planned revenues and investment expenditures.

The marginal internal rate of return functions given above by (8-30)
are independent of the market rates of interest and the entrepreneur’s
borrowing and lending opportunities. For given input and output price
expectations, (8-30) provides a description in marginal terms of the objec~
tive technical framework within which the entrepreneur operates. For
some investment and revenue combinations p., may be negative.

The Investment Plan. The entrepreneur’s maximization problem of
Sec. 8-4 can now be expressed in terms of investment expenditures and
revenues. From the set of investment and revenue streams that satisfy
(8-29) he desires to select one that maximizes the present value of his net-
revenue stream. Form the function

L41 L
w =) R+ k)= ) I+ 87+ uH(D, - .. Rip)
- =2 i=1

and set its partial derivates equal to zero:
ar* -1 oH
a—R:—(l‘*‘Elc) +P-5R“‘—

om* - oH _ _
vé-j-;—'-(l‘*‘fu)l'*‘l-‘bz-o (t—ly'°')L)

or*
N

t=2 ...,L+1)

= H(Iy, . . . , Rur) = 0

1 There is no generaliy accepted name for this concept. Friedrich Lutz and Vera
Lutz, The Theory of Investment of the Firm (Princeton, N.J.: Princeton University
Press, 1951), use “marginal internal rate of return.’” Irving Fisher, The Theory of
Interest (New York: Kelly and Millman, 1954), uses ‘“marginal rate of return over
cost.”” Other names for this or closely allied concepts include “marginal productivity
of investment,” ‘“marginal efficiency of investment,” and ‘“marginal efficiency of
capital.”
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where p < 0.f Substituting from (8-30), the first-order conditions
require that
| t=1,...,L)

p‘f=£tf (1'=2,...,L+1) (8'31)

The entrepreneur must equate each of his marginal internal rates of
return to the corresponding market rate of return.
The second-order conditions require that

Hy H,, H, Hy Hyy Hyuy Hy o
Hy H H:| <O0;|Hzn Hyp Hes Hp| <0;--- (832
H, H, O Hs;y Hs;, Hs H,

H, H, H; 0

where H; is the first-order partial derivative of the implicit function

(Eq. 8-29) with respect to the jth variable and Hj is the second-order

partial derivative with respect to thejth and kth variables. All the above

determinants must be negative.! These conditions must hold regardless

of the order in which the 2L investments and revenues are listed.
Expanding the first determinant of (8-32),

2H \HHy2 — HopHi® — HuH2 <0 (8-33)

The rate of change of the marginal internal rate of return for investment
on the {th marketing date with respect to revenue on the rth is

.
T == T Hp (HuHz? — 2HH1\Hy + H2Hy?%)

where H, — oH /I, and H, = 0H/9R,. Since (8-33) must hold for
the variables listed in this order and since H, > 0, (8-33) implies that
3per

3psr t=1...,L)
o, <% w=2... L+ (8-34)
Thus, the second-order conditions imply that all the marginal internal
rates of return be decreasing.

t The first-order conditions require that dH/oR, and 8H /8l be of opposite sign.
The investment-opportunities function is assumed to be constructed so that 0H/
8R: >0 and 8H/8I; < 0 for the optimum production plan. If a solution were
obtained with the signs reversed, it would only be necessary to redefine (8-29) as —H
to obtain the desired form. ‘

1 Second-order conditions require that the principal minors of the Hessian determi-
nant of the second-order derivatives of #* bordered by the first-order derivatives of
H{I,, ... ,Rr41) be alternately positive and negative. Conditions (8-32) are
obtained by factoring out g < 0. ‘
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If conditions (8-31) and (8-34) were not satisfied, the entrepreneur
could increase the present value of his profit by either selling bonds and
expanding internal investment or buying bonds and contracting internal
investment.

Point-input-Point-output. In the simplest case the entrepreneur
invests on one marketing date and receives the resultant revenue on the
next. He may repeat the production process over time, but his produc-
tion onthe first marketing date only affects hisrevenue on the second, and
his effective planning horizon includes one full period and two marketing
dates.

The entrepreneur’s revenue can generally be stated as an explicit func-
tion of his investment expenditure: '

R:=h(I) - (8-35)

In this special case all revenues on the second marketing date can be
attributed to investment on the first, and it is possible to define an aver-
age internal rate of return:

R, — I, _ h(Iy) _

T T, 1

The average internal rate of return can be comapared with the correspond-
ing market rate of return ;.

The entrepreneur desires to maximize the present value of his net
revenues from operation:

=Rl + )= I,
Substituting from (8-35), = can be stated as a function of I; alone:!

*=hI)1 +4) - L

9 WA 4 i)t —1 =0 (8-36)
dI,
Rearranging terms and substituting from (8-1) and (8-30), the first-order
condition becomes

p1z = 11 = §1z

The entrepreneur equates his marginal internal rate of return to the cor-
responding market rate of return—in this case the market rate of interest.

1 Direct substitution and the use of a Lagrange multiplier are equivalent alterna-
tives. The same result is obtained by maximizing

7 = R(1 + )™ — I1 + p{Rs — h(f))]
(see Sec. A-3).
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The second-~order condition requires that

o= WA+ )1 <0
and if 2, > —1,
- R(I5) < 0 (8-37)

The marginal internal rate of return must be decreasing.
Imagine that (8-37) is satisfied, but pj2 > &12. The marginalreturn
from borrowing funds for internal use exceeds their interest cost, and the

2 ‘ p

Iy

{6}

F1GURE 8-2

entrepreneur can increase his profit by expanding investment. Con-
versely, if p12 < &2, he is earning less on the marginal dollar of internal
investment than he must pay for it and he can increase his profit by con-
tracting investment.

By total differentiation of (8-36),

h"(I],) dIl = d‘lq

and ZT{:' h”(II) <0 (8-38)
If the second-order condition is satisfied, (8-38) is negative: an increase
in the rate of interest will cause the entrepreneur to reduce his investment
expenditure.

Possible shapes for the average and marginal internal return functions,
labeled ARR and MRR respectively, are pictured in Fig. 8-2a¢. Both
the average and marginal rates increase, reach a peak, and then decline
as investment is increased. These curves possess the normal properties
of average and marginal pairs (see Sec. A-2). If the interest rate is
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i), the entrepreneur will invest I dollars. For this level of investment
the marginal internal and market rates of return are equal (first-order
condition), and the marginal internal rate is decreasing (second-order
condition). The entrepreneur’s total interest cost is given by the area
OI%43%, his total return by OI%BC, and his net return by :34ABC.

In a perfectly competitive system the net return of the representative
firm in each industry will be driven down (or increased) to zero by the
entry (or exit) of firms. A long-run competitive equilibrium is pictured
in Fig. 8-2b. The optimal investment of the representative firm is I).
The average and marginal internal rates of return are equal, and the
average internal rate of return now equals the rate of interest.

8-6. Interest-rate Determination

The methods of Chapters 4 and 5 can be utilized for an analysis of
bond-market equilibrium, and interest-rate determination ean be included
within the general pricing process. A closer analogy with the earlier
analyses of market cquilibrium is obtained if the use of loanable funds
rather than bonds is treated as the commodity for sale.! A demand for
(supply of) bonds is equivalent to a supply of (demand for) loanable
funds. An interest rate is the price of using loanable funds for a specified
period of time. By convention, interest rates are expressed as propor-
tions of the amounts borrowed, but they can be expressed in terms of
money of account, as are all other prices. Let 100 dollars serve as a unit
of purchasing power. An interest rate of ¢, is then the equivalent of a
price of 100z; dollars per unit of purchasing power.

First, consider a partial-equilibrium analysis of the loanable-funds
market. From the individual equilibrium conditions derived in Secs.
8-3 and 8-5 the current excess demand for loanable funds by each con-
sumer and entrepreneur can be expressed as a function of the current and
expected interest rates. It is convenient to use excess demand functions
rather than demand and supply functions, since individual consumers
and entrepreneurs may demand loanable funds at one interest rate and
supply them at another.

A theory of interest-rate expectations must be formulated before
market equilibrium can be determined. Many different expectation
theories might be utilized. One possibility is to assume that individuals
expect future interest rates to be at fixed levels regardless of the current
interest rate; future interest rates then enter the current excess demand
functions as constants rather than variables. Another possibility is the
expectation that future interest rates will equal the current interest rate:

!In the present analysis there is assumed to be no circulating money. Loanable
funds represent general purchasing power expressed in terms of a money of.account.
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%1 =12 =43 * + - . Still another possibility is the expectation that the
current absolute change of the interest rate will be realized in the future:
fh— % =ta— % =1 — 12 = - -, orin general 4 =ty — ({ — 1)7,.
Each of these expectation assumptlons allows the individual excess
demands to be stated as functions of the current interest rate alone. An
aggregate excess demand function is constructed by summing the indi-
vidual functions. Since the individual excess demands are transformed
into functions of the current interest rate before aggregation, it is not
necessary that all individuals plan for horizons of the same length. An
equilibrium current interest rate is one for which the excess demand for
current loanable funds equals zero.

The multimarket equilibrium theory of Chapter 5 can also be extended
to include the interest rate and multiperiod expectations. Theories of
price and interest-rate expectations must be introduced to allow the
individual excess demands for each commodity and loanable funds to be
expressed as functions of only current prices and the current interest rate.?
Multimarket equilibrium is then determined by the requirement that the
excess demand for every commodity and for loanable funds simul-
taneously equal zerc.

The formulation of the mathematical requirements for specific cases of
single-market and multimarket equilibrium i3 left as an exercise for the
reader.

8-7. Summary

_Consumers and entrepreneurs are assumed to have free access to a per-
fectly competitive bond market and may adjust their income and outlay
streams over time through borrowing (selling bonds) and lending (buying
bonds). An interest rate expresses the cost of borrowing, or income from
lending, for a duration of one period, as a proportion of the amount bor-
rowed or lent. Market rates of return for durations longer than one
period are defined as compounds of the interest rates connecting pairs of
successive periods. Discount rates are defined as the reciprocals of the
corresponding market rates of return. An entire income or cost stream
can be reduced to a single number, its present value, by multiplying each
of its elements by the appropriate discount rate and summing.

The consumer’s utility index is defined as a function of the quantities
of n goods that he consumes during each of the 7' periods within his
planning horizon. He desires to maximize the level of this index subject
to a lifetime budget constraint, which requires the equality of the present
values of his consumption and earned-income streams. First-order con-

18ee J. R. Hicks, Value and Capzzal (2d ed.; Oxford: Clarendon Press, 1946), GhaP
XVI for a specific theory of price expectatmns
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ditions require that he equate intraperiod and interperiod RCSs to dis-
counted commodity-price ratios. Second-order conditions follow from
those for the n-commodity, single-period analysis. The consumer’s
~ present and planned commodity demands are functions of all current and
expected prices and interest rates and are homogeneous of degree zero
with respect to all prices and earned incomes. His demands for bonds are
functions of the same variables, but are homogeneous of degree one with
respect to all prices and earned incomes.

If prices are assumed to remain unchanged, the consumer’s utility
index can be expressed as a function of his consumption expenditures.
The consumer’s rate of time preference for consumption during period ¢
rather than period 7 (>1) is defined as the smallest premium which he will
accept as compensation for postponing a marginal dollar’s worth of con-
sumption expenditure. The first-order conditions for constrained utility
maximization require that the consumer equate his rates of time prefer-
ence to the corresponding market rates of return. Substitution and
income effects with respect to changes in the rate of interest can be defined
analogously to the single-period case.

An entrepreneur is assumed to formulate a production plan for a
planning horizon encompassing L periods and (L 4+ 1) marketing dates.
On the ith marketing date he sells the outputs produced during the
(t — 1)th period and purchases inputs for application to the production
process during the ith period. He desires to maximize the present value
of his net operating revenues subject to the technical rules specified in his
multiperiod production function. First-order conditions require that he
equate input and output substitution rates to discounted price ratios.
Second-order conditions again follow from those for the general one-
period analysis. ‘

The analysis of the entrepreneur’s investment problems can also be
simplified by assuming that actual and expected prices remain unchanged
and that he always combines inputs and produces outputs so that intra-
period RTSs and RPTs are equated to the appropriate price ratios. The
entrepreneur’s investment-opportunities function relates his investment
expenditures and revenues on the assumption that he performs this pre-
liminary optimization. Marginal internal rates of return are defined for
each of the investments with respect to each of the revenues. First-
order conditions require that each marginal internal rate of return be
equated with the corresponding market rate of return. Second-order
conditions imply that each of the marginal internal rates be decreasing.
The general analysis is applied to the special case of point-input—point-
output.

Single-market and multimarket equilibrium analyses can be extended
to include the current interest rate and multiperiod expectations.
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Appendix : A Note on the Length of the Investment Period

Capitalistic production is characterized by the fact that time elapses
between the application of inputs and the attainment of the resultant
outputs. The multiperiod approach tends to obscure some of the time
aspects of capitalistic production. Though the variables are dated,
entrepreneurs’ horizons are assumed to be of fixed length, and time does
not enter the analysis as a variable. In the point-input—point-output
case the length of time for which inputs are invested by definition always
equals one period and is unaffected by changes in the rate of interest.
The members of the “ Austrian school’’ of capital theory considered the
length of the investment period, or the *‘period of production,” as they
called it, to be the crucial variable in the theory of investment and
capital.!

A consideration of the investment period in the point-input—point-
output case requires the adoption of an alternative approach in which
time is treated as a continuous variable and purchases and sales may take
place at any point in time. A time period, such as a year, is necessary
to provide a unit with which to measure time, but it has no other sig-
nificance. Since elapsed time is now a variable, let { = O represent the
present. The valuet = 7 now represents a point in time r periods hence,
where 7 no longer need be an integer.

The concepts of Sec. 8-1 do not allow the determination of compound
and present values for sums due on dates for which ¢ is not an integer.
Since time is assumed a continuous variable, interest is assumed to be com-
pounded continuously. It can be proved with the use of advanced
methods? that if interest is compounded continuously, the value of prin-
cipal and compound interest at time ¢ of a present investment of w dollars
is

where the irrational number ¢ = 2.71828 apx is the base of the system of
natural logarithms and 7 is the interest rate per year which is assumed to
remain unchanged. The present value of % dollars payable at time ¢ is

ueit

since a present investment of ue—* dollars in bonds will have a value of
% dollars at time ¢.

1 See Eugen v. B6hm-Bawerk, The Posttive Theory of Capttal, trans. by W. Smart
(New York: G. E. Stechert, n.d.), and Knut Wicksell, Lectures on Political Economy,
trans. by E. Classen (London: Routledge, 1934), vol. I, pp. 144-195.

2 These methods are described, though not rigorously derived, by R. D. G. Allen,
Mathematical Analysis for Economists (New York: Macmillan, 1938), pp. 228-232.
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Imagine an entrepreneur engaged in the point-input—point-output
process of wine aging. He purchases a cask of grape juice for I° dollars
and waits while it ferments and ages. Assume that fermentation and
aging are costless processes so that his only other cost is the interest charge
on hisinitial investment. Further assume that the sales value of the wine
is a function of the length of its aging period [R()].

The entrepreneur’s optimization problem is to select an aging period,
i.e., a value for ¢, that maximizes the present value of his profit:

T = R(t)e* — I°
Setting the derivative of = with respect to ¢ equal to zero,

dr Lo e
= (t)e=* — iR()e " =0

Factoring out e~* > 0 and rearranging terms,

E'@®) _

RO - ) (8A-1)

The entrepreneur must equate his marginal rate of return with respect
to time [R’(t)/ R(t)] to his marginal rate of cost with respect to time (z).
The second-order condition requires that

d27l' " 1/ ° .
o = [R'() — 23R’ (1) + ()l < 0

Substituting from (8A-1) for 7 and 22 and multiplying through by e*/R(f)
> 0,
R"(MRE) — [R'W)]*
[R()]?

The marginal rate of return with respect to time must be decreasing, i.e.,
its derivative must be negative. If (8A-1) and (8A-2) are satisfied
for ¢ = 7, the entrepreneur’s marginal earnings would be more than the
rate of return if his investment period were slightly shorter than r, and
less than the market rate of return if it were slightly longer than 7.

The effect of a change of the rate of interest upon the investment period
can be determined by total differentiation of (8A-1):

R"(t) dt — sR'(t) dt — R(t) ds = 0

dt _ R() )
The numerator of (8A-3) is positive, and (8A-2) requires that its denomi-
nator be negative. A decline in the interest rate will lead the entre-
preneur to lengthen his investment period.

<0 (8A-2)

and
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The investment period is a meaningful concept for point-input—point-
output production processes such as wine aging and tree growing. It
provides a description of the ‘“method of production’ and varies in a
known way with the interest rate. Some members of the Austrian school
attempted the impossible task of extending the point-input—point~output
results to more complex cases by defining average investment periods.
Investment periods cannot be defined in the multipoint-input-multi-
point-output case, since it is impossible to attribute particular outputs to
particular inputs. But this is not the only difficulty. An entire output
stream can be attributed to the inputs on a specific date in the point~
input—multipoint-output case. There are as many investment periods
as there are elements in the output stream. The average investment
period must be some weighted average of these periods. The values of
the elements in the output stream cannot be used as weights, since dollars
at different points in time are not identical. It is necessary to discount
intertemporal values if they are to be comparable, but if discounted values
are used as weights, the average investment period is not independent of
the interest rate.
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APPENDIX

MATHEMATICAL REVIEW

This appendix contains a brief review of some of the mathematical
concepts that are used in the text. Rigorous proofs are generally
omitted; in fact, many statements are not proved at all.

The major tools of analysis are algebra and differential and integral
calculus. The solution of simultaneous equations and the use of deter-
minants are outlined in Sec. A-1. The fundamentals of differential
calculus with respect to functions of a single variable are discussed in
Sec. A-2. The analysis is extended to functions of many variables, and
the applications of partial differentiation are discussed in Sec. A-3. The
basic properties of integrals are reviewed in Sec. A-4, and the appendix
ends with a discussion of difference equations in Sec. A-5.

A-1, Simultaneous Equations and Determinants

A system of n equations in n variables can be written as

auZ + a12% + © ¢ ¢+ ATn = by
a1%1 + a2 + ¢ * + QTn = b2 (A-1)
Uni%1 + GnaTe + © * * F GnnZn = by

where the as are coefficients and the bs constant terms. Any set of »
numbers that preserves all » of the equalities in (A-1) when substituted
for the zs is a solution for this system. A simple example of a system of
simultaneous equations is

3231 - 52;2 11
T + 2222 =11

Its only solution is z, =7, 2z, = 2.

A determinant is a number derived from a square array of numbers
according to rules to be specified. It is denoted either by vertical lines
on both sides of the array from which it is calculated or by a boldface

257
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letter. If A denotes the array,! A denotes its determinant:

an 12 * *° OGia

............

The elements of the matrix A are the coefficients a;; where the first sub-
script is the row index and the second subscript the column index. Thus
agz 1s the element in the fifth row and seventh column of the array.

~ The rule by which a determinant is calculated from an array is merely
stated here.? Products of numbers (or elements) are formed from A4
such that each product contains one and only one element from each row
and one and only one element from each column. Thus the determinant
is defined only for square arrays. All such products can be written with
the row indices in natural order (1,2,3, . . . ,n). Examples are the
products anazz * * - @.n and 12621833 © * - @ne. If the number of
tnversions® among the column indices is even, the sign of the product is
left unchanged. If the number of inversions among the column indices
is odd, it is changed from minus to plus or from plus to minus. The value
of the determinant is the algebraic sum of all such products. Consider
the determinant

an  Qig
a2 a2

A =

= A11022 — G122

Only two products can be formed from the matrix 4 according to the rule
stated above. A negative sign precedes the second term, since it con-
tains one inversion (an odd number) of the column subscripts when the
row subscripts are written in natural order.4 )

1 Any rectangular array of numbers is called a mairiz. A matrix with m rows
and n columns is of the order (m X n). An (m X 1) matrix is a column vector,
and a (1 X m) matrix is a row vector. The terms “array’’ and “matrix’’ are used
interchangeably.

2 For more extensive discussion see A. C. Aitken, Determinants and Matrices (New
York: Interscience, 1951), chap. II; S. Perlis, Theory of Matrices (Cambridge, Mass.:
Addison-Wesley, 1952), chap. IV;¢r G. Birkhoff and S. MacLane, A Survey of Modern
Algebra (rev. ed.; New York: Macmillan, 1953), chap. X.

3 An inversion is an instance in which a lower index follows a higher one. For
example, the indices 1, 2 are in natural order; the sequence 2, 1 contains one inversion.
The sequence 1, 3, 2, 5, 4 contains two inversions, since it contains two instances in
which a lower index follows a higher one: 3 comes before 2, and 5 before 4. The
sequence 4, 3, 2, 1, 5 contains six inversions.

4 The same result is obtained by counting the number of inversions among row
subscripts when the column subscripts are written in natural order. The reader may
check that if a matrix has n rows and n columns, the number of terms in the expression
for its determinant is n! (read ‘‘n factorial”), ie., n-(n —1) « - - 3-2.1. See
Aitken, op. cit., pp. 26-36. :
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53]

the determinant is 12 4+ 2 = 14,

The above rule is very cumbersome if the matrix contains a large num-
ber of rows and columns. Generally, a determinant is more easily evalu-
ated by an expansion in terms of cofactors. For any element a;; of the
matrix A form an array by striking out the 7th row and the jth column of
the original matrix. The determinant of the remaining array, which
contains (n — 1) rows and (n — 1) columns, is the minor of the element
a;;;f The cofactor of this element is its minor multiplied by +1 if
(z + 7) iseven and by —1 if (¢ 4+ j) is odd. The determinant A can be
written as

If the matrix is?

A =0,Ci 4+ a::Cio + - * - + ainCin

for any given row index ¢ where C;; is the cofactor of the element in the 7th
row and jth column. Similarly,

A = 01;Cy; + a9Coi + - - + anCa;

for any column index j. Since a determinant can be expanded in terms
of any single row or column, the multiplication of any row or column of
the array A by a number k changes the value of the determinant by the
same multiple.

Imagine that the 7th row of the matrix is multiplied by k. Then
expanding the new determinant in terms of the 7th row and denoting it
by A¥*,

A* = kanCa + kaiCi2 + * * © + kainCin = kA

The expansion

aaCj +.@:Cjs 4+ + + + + 8:inCjan forz £ 3

is an expansion by alien cofactors and equals zero.? Using this theorem
it can be proved that adding a multiple of any row (or column) to any

.1 The matrix or the array itself is written with square or round brackets. The
operation of forming the determinant, however, is indicated by vertical bars instead
of brackets.

t The diagonal of the array running in northwest-southeast direction is the principal
diagonal. Minors of elements on the principal diagonal (i.e., of a1, aze, etec.) are
called principal minors. The principal minor of a1, in the original determinant A is a
determinant of the order (n — 1) X (n — 1) and is denoted by A;;. The principal
minor of as; in the minor A;; is a determinant of order (n — 2) X (n — 2) and is
denoted by Ajiee. This (n — 2) X (n — 2) determinant is itself a principal minor
of the original determinant.

- 2 See Birkhoff and MacLane, op. ¢it., p. 286.
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other row (or column) leaves the value of the determinant unchanged.
For example, multiply the jth row by k, add it to the zth row, and denote
the new determinant by A**, Expanding A** in terms of its sth row:

A** = (an + kaj1))Ca + (G2 + kaj2)Cie + - - -+ + (ain + kajn)Cin
= a1Ci + aisCiz + -+ + + inCin
+ k(@1Ca + a;2Ci2 + - -+ + @jxCin)
=A

since the bracketed term in the second line is an expansion by alien cofac-
tors and therefore equals zero.

The system of simultaneous equations in (A-1) can be solved by
Cramer’s rule, which states that the solution for z; is given by the ratio of
two determinants, the denominator being the determinant of the coef-
ficients of the system of equations and the numerator being the deter-
minant of the coefficients with the jth column replaced by the column of
constant terms. First applying the rule that multiplying a column of
the array multiplies the value of the determinant by the same number and
then applying the rule that adding multiples of one column to some other
column does not alter thz value of the determinant, the solution for z,
is derived as follows:

a1iT1 Qiz * * C Qia anz1 + a12x2 Q12 ¢ Gia
@21%1 Q22 * * * Gon| _ |Gn%1 + G2a%2 Q22 * C C Qaa | _
xlA =1. ... ... .. ... I Y - °
AniZy1 Anz2 * ° ° CGnn An1%1 + Anolz QAaz ° = " Qnn
auZy + Gz2 + ¢ 0+ G G2 C " Grn
_|anz1 + az: + - - - 4+ awmZTn Q22 - - - G2a
anixl + An2l2 + Tt + AnnZn QAn2 ° ° ° Qan
b ap Q1n
b2 a2 Qzn
13
bn  Gn2 Anm

by substituting the column of constants from (A-1) for the sums in the
first column. Denoting the determinant on the right-hand side by Ai,
the solution for z, is

A,

= A (A‘Z)

-as stated. The expression (A-2) is meaninglessif A = 0. In this case no
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unique solution exists, and the rows of the array are linearly dependent or,
equivalently, the matrix is singular.}

If the value of a determinant is zero, one of the equations can be
expressed as a linear combination of the remaining ones. For example,
the nth equation might then be obtained by multiplying the first equation
by 6 and adding 3 times the second to the first. The nth equation con-
tains no new information and can be omitted, because it depends linearly
on the first (n — 1) equations. For example, assume that the nth equa-
tion is a linear combination of the first (n — 1) equations. The 7th
equation is

and the nthis
n—1 n n—1
5o 8w =T
i=1 j=1 i

where the ¢s are constants not all equal to zero. Any set of s which
satisfies the first (n — 1) equations necessarily satisfies the nth. The
last equation adds no new informaticn. The system is reduced to
(n — 1) equations in n variables. If no (n — 1)-rowed minor vanishes,
it is possible to solve for any (n — 1) variables in terms of the constant
terms and the remaining variable.

If the original system of n equations is homogeneous (all constant terms
equal zero), all the zs are zero if the determinant of the system is non-
vanishing. According to Cramer’s rule each z is expressed as a fraction.
The denominator is nonzero by hypothesis. The numerator vanishes
for every x, because all bs equal zero, and the determinant of any array
with a column of zeros is itself zero. If the determinant vanishes, it is
- possible to solve only for the relative values of the variables, and the solu-
tion is unique except for a factor of proportionality. For example, if

1 Denote by = (the Greek capital letter sigma) the operation of summing such that

n
a; is defined to mean a; + a2+ + - - 4+ a5, The rows of the matrix A are

i=1
defined tobe linearly dependent if_ it is possible to find a set of numbers ¢1, €2, . . . , ¢

n
such that Z cia;; = 0 for all values of the index j, provided that the ¢s are not all
i=1 .
equal to zero. It can be proved that the value of the determinant of the array is
zero if and only if the rows (or the columns) of the array are linearly dependent.
See Aitken, op. ¢it., pp. 62 and 64.
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the system of simultaneous equations is

3z — 4z, =0
6:1:1 - 8:1:2 = 0

the determinant is (3)(—8) — (6)(—4) = 0. Hence the two equations
are not independent, and the second equation can be omitted.! Then

32:1 - 4232 = 0
or z_4
z2 3

Any set of values satisfies the system as long as the relation between z;
and z, is as 4:3.f Numerical values for the variables can only be
obtained by choosing an arbitrary value for one of them.

A-2. Calculus: Functions of a Single Variable

Functions, Limits, Con#inuity. The relation y = f(z) (read “y is a
function of z’’) means that a rule exists by which it is possible to associate
values of the variable y with values of the variable 2. Examples are
y = 1/z,y = 3z?% y = log sin z, and y = 1 when z is an odd integer and

= 0 for any other value of z. In each case values of y correspond to
given values of z according to the rule of association specified in the form
of the function. The variable y may be undefined for some values of
z; y = 1/z cannot be evaluated for z = 0, and y = log sin z cannot be
evaluated for values of = for which sin z is negative.

The relation y = f(z) is an explicit function, since y is expressed in
terms of z. If the functional relation between y and z is denoted by
g(y,xz) = 0, y is an mplicit function of z. Specifying a value of z implic-
itly defines a value of y such that the expression on the left-hand side
reduces to zero when the appropriate values of z and y are substituted in
it. The relations y = 72, y = az + b, and y = /z provide examples of
explicit functions; the expressions ax +b —y =0, 22 — y* = 0, and
e? + y — z 4+ log z = 0 are examples of implicit functions. In order to
rewrite an implicit function in explicit form it is necessary to solve the
equation g(y,z) = 0 for y. This is not always possible. The implicit
function e¥ + y — z + logz = 0 cannot be written in explicit form
because the equation cannot be solved analyticaliy for z or y. An

1 It does not matter which equation is omitted. Discarding the first leads to the
same answer.

t The discussion in the previous paragraphs is intentionally not rigorous. Neces-
sary and sufficient conditions for the solubility of a system of simultaneous equations
are proved in any textbook on algebra. See Aitken, op. cit., pp. 63-66, 69-71, or
Perlis, op. cit., pp. 4548.
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explicit function can always be rewritten in implicit-function form.
For example, the explicit function y = 3z* 4+ 2sin 2 — 1 becomes
y — 3z% — 2sinz + 1 = 0 in implicit form.

A sequence of numbers is a list or enumeration of numbers such as
112;3)4)5’° .. 0r 1> %}%J%ﬂ%l‘ .. ;01‘2, 1: %x%:%»- -+ 0r
1,0, —1,0,1,. ... Each number in a sequence can be assigned an
index indicating how ‘‘far out” the number is in the sequence. Thus
in the third sequence above, z; = 1. The sequence converges to a limit
K if there exists a number K with the property that the numerical mag-
nitude of the difference between K and an item in the sequence is arbi-
trarily small (can be made as small as one desires) if one takes an item in
the sequence sufficiently ‘far out,” i.e., an item with sufficiently high
index, and if the difference remains at least as small for every item in the
sequence with even higher index. The third sequence has the limit zero.

The explicit function f(z) (or, what is the same thing, the variable y)
approaches the limit L as z approaches the number a, if the value of the

.function can be made to be as near the number L as is desired by taking

values which are sufficiently close to a, and if the value of the function
remains at least as near L for all z values even closer to a. The process of
finding the limit of f(x) at £ = a may be visualized in the following
manner. Take successive values z;, zs, ..., etc, of z that form
a sequence converging to a. Substitute these values of z in f(x).
This results in a sequence of values f(z)), f(z2), . . ., ete. If this
sequence converges to a number L, f(z) has thelimit L at x = a. Alimit
exists if L is finite. The operation of taking the limit of f(x) is denoted by
lim f(z) = L.
sl

The function f(x) =1 4+ 1/x approaches the limit 1 as z— o (z
approaches infinity). However, this result cannot be obtained by sub-
stituting o« forzin 1 4 1/z because 1/« does not equal zero. A/B = C
implies that A = B-C. If 1/ =0, then1l = () - (0). Since thisis
untrue, the problem must be resolved by a different reasoning, namely by

‘an application of the definition of the limit. In fact, o is not a number,

but rather a direction. Its appearance in a formula is equivalent to
the command to list the positive integers in increasing order and go as far
as possible, i.e., to take the limit. The value of ¥ can be made to differ
from 1 by less than 0.1 by selecting a value for = greater than 10. If
z = 20,1 4 1/x = 1.05, which differs from 1 by only 0.05. Likewise, y
can be made to differ from 1 by less than 1/1,000,000 by selecting a value
for = greater than 1,000,000. The difference between the value of y
and the number 1 can be made smaller than any prespecified number by
taking an z that is sufficiently large.

The function f(z) is continuous at the point z = a if the following con-
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ditions are fulfilled: (1) lim f(z) exists, (2) f(a) exists, (3) f(a) = lim f(z).t
G =4

The function is continuous in the interval ¢ < z < b if it is continuous at
every point in the interval. This definition of continuity implies that
the function must be ‘“‘continuous’ in the everyday sense of the word:
one must be able to draw the graph of the function without lifting the
pencil from the paper.!

The Derivative. Assume that the function y = f(z) is continuous in
some interval. If the independent variable z changes by a small quantity
Az, the value of the function will change by the quantity Ay. Hence
y + Ay = f(z + Az). The change in the value of the function can be
expressed as

Ay = f(z + Az) — f(z) (A-3)
Dividing both sides of (A-3) by Az:

Ay _ f(z + A7) — f(z)

Az Az (A-4)

The average rate of change of y per unit change of z for the interval z
to z + Az is given by (A-4). For example, imagine that if one walks
another half-hour, one covers an additional distance of 2 miles. The
independent variable time is changed from z to z 4+ ¥4 hours; Ay = 2
miles, Az = 34 hour, and Ay/Az = average speed = 4 miles per hour.
The derivative of f(z), denoted by dy/dz, f’(z), or 3, isdefined as the rate
of change of f(z) as Az approaches zero:

;% =.f1($) = }iinof(x + A;;i — f(z) . (A-5)

The derivative is the rate of change or the speed in terms of the above
example, or, to put it differently, the limit of the average rate of change
(average speed) as Az (the time interval) approaches zero. If the graph
of f(z) is plotted, the derivative calculated at the point z = a is the slope
of the curve representing f(z) at the point £ = a. The average rate of
change is the slope of the secant between two points on the curve, and

t At the point z = a the value of the function must be finite, and this value must
equal the limit of the function as z approaches a. The function ¥ = 1 when z is an
odd integer and y = 0 for any other value of z is not continuous when z is an odd
integer. If f(z) and g(z) are two functions which are both continuous at z = a,
then f(z) + g(z), f(z) - g(z), and f(z)/g(z) (provided that g(z) # 0) are also continuous.

1 Note that a function that has ‘““corners’ or “kinks’”’ but no gaps is continuous.
The absolute value of a number z (denoted by Iz|) is defined as follows:

|z| == ifz=0
2| = —z ifz <0

The function y = |z| has a kink at z = 0, but is continuous.
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the derivative is the slope of the tangent to the curve at a given point.
These concepts are illustrated by y
Fig. A-1.

The derivative of a derivative is
a second derivative, denoted by
d?y/dz?, and is defined as Ax+Ax) ~flx)

@2 lim L2t Aw) f'(z) (A-6)
dz?  azs0
The second derivative is the rate of
change of the first derivative, i.e., the
rate at which the slope of the function
is changing. In terms of the previous
example it is the acceleration or the
rate of change of speed. Higher-order derivatives are defined similarly.

Techniques of Differentiation. To differentiate a function is to find its
derivative. Some of the more important techniques of differentiation
are stated below without proof:! ~
- 1L f(z) = ¢ (constant), f'(z) = 0

2. f(z) = z», f'(x) = na~?

3. f(z) = g(z) - h(2), f'(z) = ¢'(2) - h(z) + g(z) ' (2)

4. f(x) = g(z)/h(z), k(z) # 0, f'(z) = [¢'(z) - h(z) — g(z) - K ()]/[h(2)]?

5. f(z) = g[h(z)], f'(x) = ¢'[h(x)] - K’ (x) (function of a function rule)

6. f(x) = log z, f'(z) = 1/x (log to base e)

7 j(z) = e, f'(z) = ae=

‘8. If y = f(z) is single-valued and continuous, and can be written
in inverse form as = = g(y) such that f(z) is continuous and # 0,
f'(z) = 1/¢'(y) or dy/dxz = 1/(dz/dy) (inverse-function rule).

Maxima and Minima. A function of one variable y = f(z) has a
(relative) maximum at the point z = a if f(a) = f(z) for all values of z

y=flx)

Az flx+Ax)

Ax
x x+Ax

Ficure A-1

" in a small neighborhood about the point a. The value f(a) is not neces-

sarily larger than values of f(x) outside the small neighborhood about a.
Similarly, f(z) has a minimum at z = b if f(b) < f(z) for all z in a small
neighborhood about b.

Sufficient conditions for maxdima and minima can be indicated intui-
tively as follows. A function that has a maximum (or minimum) is, by
definition, neither increasing nor decreasing at its extreme point. But
the first derivative is the function’s rate of increase. It must therefore
equal zero at an extreme point. A function first increases, becomes
stationary, and then decreases in the case of a maximum. Thus the

1 Proofs can befound in any standard elementary text on calculus. See R. Courant,
Differential and Integral Calculus (London: Blackie, 1934), pp. 136--140, 173, 175, or
H. B. Fine, Calculus (New York: Macmillan, 1937), chaps. III and VII.
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second derivative (the rate of change of the first derivative) is negative at
a maximum. For similar reasons it is positive at a minimum. These
conditions on the first and second derivatives are sufficient for maxima
and minima. :

A more rigorous proof of necessary and sufficient conditions runs as
follows. Assume that y = f(z) is a continuous function with continuous
first- and second-order derivatives. The theorem of the mean states!
that its average rate of change between two points (the slope of its secant)
is equal to its derivative (slope of the tangent) evaluated at some point
within the interval:

f(x+A2—f(x)=f’(z+0Az) 0<o6<1 (A-T)

If f(z) is a maximum, f(z + Az) — f(z) < 0. Then the fraction on the
left-hand side of (A-7) is nonpositive for positive values of Az and non-
negative for negative values of Az. Let Az approach zero from the right
(i.e., through positive values). Then the limit of the fraction in (A-7)
must itself be nonpositive. Letting Az approach zero from the left (i.e.,
through negative values), the limit of the fraction must be nonnegative.
But the limit of the fraction in (A-7) as Az approaches zero is f'(z); this
must be neither positive nor negative and hence must equal zero. A
necessary condition for a maximum or minimum is that the first deriva-
tive equal zero. This condition on the first derivative is the first-order
condition for a maximum -or minimum. ,

An additional condition must be fulfilled for 4 maximum or minimum.
Expanding f(z) in Taylor series? with remainder term about the point z,

(@ + A7) = §@) + bz (@) + (AT”‘V '@+ 08z) 0<6<1 (AS8)
Since f/(x) = 0 when f(z) is a maximum, (A-8) becomes
fo+ 82) = jz) = CL 0+ 000) (4-9)

This implies that f’/(z + 6 Az) is nonpositive for all values of Az within a
small neighborhood of z. By the continuity of the second derivative

lim f’(x + 9 Az) = f'/(z), and this must be nonpositive. Hence, the
Az—0 .
first derivative must equal zero, and the second derivative must be non-
positive for a maximum.® These conditions are necessary, but not suf-

ficient. Their insufficiency is illustrated by the function y = z3. Its

1 Proved in any standard text on calculus. See Courant, op. cit., pp. 102-104, or
Fine, op. cit., pp. 104-105.

2 See Fine, op. cit., pp. 208, 214-215, or any other standard text on calculus.

8 Courant, op. cit., pp. 169-163.
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first and second derivatives vanish at z = 0, yet the function has neither
a.maximum nor a minimum at that point. Sufficient conditions can be
stated as follows: a zero first derivative and a negative (positive) second
derivative implies that the function attains a maximum (minimum).
However, this statement does not provide necessary conditions, since
the second derivative may vanish although f(z) attains a maximum or
minimum. As an example consider the function y = z* which possesses
zero first and second derivatives at z = 0, yet has a mmlmum at that
point.

Necessary and sufficient conditions for a maximum (minimum) are as
follows: f(z) attains a maximum (minimum) at z = @ if and only if

- (1) dy/dz = 0 at z = a, (2) the first (n — 1) (n even) derivatives are all

zero and the first nonzero derivative (the nth) is negative (positive) at
z.= Q.

In general, the maximum and minimum values of a function are found
by determining and solving the equation f/(z) = 0, then substituting the
values of z for which the first derivative vanishes into f”/(z) and evaluat-
ing its sign. If it is negative, the corresponding value of f(x) is a maxi-
mum; if it is positive, the corresponding value is a minimum. If the
second derivative is zero, there are three possibilities: (1) d3y/dz® = 0,
(2) d*y/dz® = 0 and d*y/dz* = 0, or (3) d3/dz® = 0 and d'y/dz* = 0.

If (1) holds, the function has an inflection point (i.e., the first derivative
~has an extreme value) rather than a maximum or minimum. If (2)

holds, the function has a maximum or minimum according to whether the
fourth derivative is negative or positive. If (3) holds, the signs of the

- fifth and sixth derivatives must be examined and (1) and (2) applied with

dby/dz® replacing d’y/dz® and d®y/dz® replacing diy/dz*.
The examplesin Chapters 2 through 8 are based on functions which fall
into a class with the property that the second derivative is nonzero for

 extreme values. Necessary and sufficient conditions for functions in this

class involve only the first and second derivatives. The above refine-
ment involving higher-order derivatives is not mentioned in the text,
but should be kept in mind. The conditions on the second derivative are
the second-order conditions.

Average and Marginal Curves. Assume that B = pg and

- 13 = (@)

The functional relationship p = f(g) is frequently referred to as an aver-
age curve.! The curve the ordinate of which measures the rate of change

1 The relation p = f(g) is an average curve because it relates values of p to the aver-

~age values (with respect to g) of the variable B. An economic example is provided by

the demand curve where ¢ is-quantity sold, p is price, and R is total revenue.
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of R (the change at the margin) is the marginal curve or the curve
marginal to p = f(g). Substituting the value f(¢g) for p in B = pg and
differentiating with respect to ¢ .

%—? @ +d@ (A-10)

Let ¢ be restricted to nonnegative values. The relationship (A-10)
implies that the marginal curve will lie below the average curve if the
average curve is decreasing and above it if the average curve is increas-
ing, since f’(¢) < 0 and ¢ > 0 imply f(¢) > dR/dq for all positive values
of ¢ and conversely for f’(g) > 0. Hence the average curve is rising when
the marginal curve is above the average, and the average is falling when
the marginal is below the average. It also follows that if the average
curve has an extreme point (i.e., a point at which f’(¢) = 0), the marginal
curve intersects the average curve at this point.
When ¢ = 0, (A-1G) becomes-

dR
a1 - f(0) (A-11)

The value of p from the average curve is p = f(0). Hence the average
curve and the curve marginal to it intersect at the point where they both
meet the p axis. The slope of the average curve is dp/dg = f'(¢), and
the slope of the marginal curve is

d’*R
dq2
If the average curve is a straight line, f/(¢) = 0, and the slope of the
marginal curve is twice the slope of the average curve. On the basis of

this information the marginal curve can be constructed diagrammatically
with ease if the average curve is given. :

= f(9) + 1@ + of" (@ = 2 (9) + af"(q)

A-3. Calculus: Functions of Many Variables

Partial Derivatives. The definitions of a limit and continuity are
easily generalized to a function of #» independent variables

y = flxy,®e, . . . ,Zn)
The partial derivative of ¥ with respect to z; is
fi = _a_y = lim f@yzey o o o @i+ BTy o o o Ta) = J(@Ts - o . ,T8)
axi Azi—0 Axi

which is the rate of change of the function with respect to z;, all other
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variables remaining constant. The techniques of differentiation are
the same as those for a functivn of a single variable; all variables other
than z; are treated as constants. For example, if

y = 321222 + z2 log 71

3z + i—:—? and 9y _ 6z,22 + log 1
1

then 3%,

_ﬁ. 4
6:1:1
Higher-order derivatives are determined by successive partial differentia-
tion; 9% /dx,* is the partial derivative of f; with respect to z;, also denoted
by fii; 0%y /9z;dx; is the partial derivative of f; with respect to z; (one of the
second cross partial derivatives) and is denoted by f;;. For the previous
example

Ay 1
0%s 331 o 63:2 + 5‘;
If the first and second cross partial derivatives are continuous, fi; = fi.
The partial derivatives of the implicit function f(z;,2s, . . . ,2.) = O are
obtained by assuming that y = f(x1,72, . . . ,z.) and calculating 9y/dz,,
dy/9z,, etc.
The Total Differential. For a function of a single variable

dy _ o
iz =@

The symbol dy/dx denotes the derivative and was not interpreted as a
fraction composed of the quantities dy and dxr. Defining dx as an
increment or change in the independent variable, dy can be defined as

dy = f'(z) dz (A-12) -

" This is the differentzal of f (x). At a given point z° the value of the func-

tion is y° = f(z°), and (A-12) can be rewritten in terms cf deviations from
this point as

y— g =f'(z%) - (@ — 29) (A-13)

which is the equation of the tangent to y = f(x) at the point (x°y?).
Hence, (A-12) is the general form of the equation of the tangent to the
function. For small changes of z (A-13) gives the approximate value of
the corresponding change of f(z).

The total differential of a function of n variables is defined as

dy = frdxr + fadzs + - -+ + fudza (A-14)

which is the general form of the equation of the tangent plane (or hyper-
plane) to the surface (or hypersurface) defined by ¥y = f(x1,xs, . . . ,Zn).
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It also provides an approximate value of the change in the function when
all variables are permitted to vary, provided that the variation in the
independent variables is small. The total derivative of the function with
respect to z; is

Ea:fl._: R "'+f“d_:c: (A-15)

or the rate of change of y with respect to 2; when all other variables are

" permitted to vary and where all z; are specified functions of z;.

Given the implicit function f(zy,zs, . . . ,Z») = 0, the partial deriva-
tive dz1/9z. is obtained by first finding the total differential

fidzy +fadza+ - -+ + fadz, =0

dividing by dz;
dz, dxz d:c, ] . dz, _
fldx1+f2d_x; +f’dx‘ M +ft+ ot +fﬂ%;—0
and setting all differentials other than dz; and dz; equal to zero. Then
az; '
f? ax‘ + f' = O
9z; _ _Ji N 3
and T (A-16)

Equation (A-16) is the tmplicit-function rule.

Assume that y = f(zy,z2), %1 = g(wi,ws2), and z: = h(wi,w2). The
partial derivatives of % with respect to w; and w, are determined by the
compostte-function rule derived below. Taking total differentials

dy = dx1 + gy dzs | (A-17)
T2
dzy = %1 dy + 32 ‘9‘”1 du, @A)
~ Dz 6-”62 -
dxz —, awl dw W + (A 19)

and substituting (A-18) and (A-19) into (A-17) and collecting terms
on dw, and dws,

dy 9z, , 9y dms dy 9z | By axz) . }
dy = (6:::1 aw, T 9z, 6w) wi (a 3w T 9z; 0m,) T2 (A-20)

The expression (A-20) is itself a total differential in which the first
bracketed term equals dy/0w: and the second one equals dy/dws. . Hence
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Oy _- 9y oz , 9y dzp
dw, 0z;0wy & 0z Ow:
dy _ 0y 0z , dy 022

dw:  0z; 0wz ' 0z dws

(A-21)

If the independent variables of a function f(z;,z2) are themselves func-
tions of some other variables w; and w., f(z1,22) is differentiated partially
with respect to wi and ws according to (A-21). This is the composite-
function rule.

Envelopes. Let f(z,y,k) = 0 be an implicit function of the variables
z and y. The form of this function is assumed to depend on the magni-
tude of the parameter k. In general, f(z,y,k) = O describes a curve in
the zy plane. A different curve corresponds to each possible value ofk.
The envelope of this family of curves is itself a curve with the property
that it is tangent to each member of the family. The equation of the
envelope is obtained by taking the partial derivative of f(z,y,k) with
respect to £ and eliminating & from the two equations*-. .

f (z;y:k) =0
fk(x;yyk) =0

This method of obtaining the envelope is generally applicable, provided
that fiz # 0 and fofye — fufa # 0.

Maxima and Minima without Constraints. The definitions of maxima
and minima are similar to those for a function of a single variable.
Necessary and sufficient conditions are difficult to derive. Only suf-
ficient conditions are stated here.! It is sufficient for a maximum or
minimum that the following conditions be fulfilled: (1) all first partial

derivatives must equal zero:f1 = 0,2 = 0,. . . ,fa = 0; (2) forming the
Hessian determinant A of the second partial derivatives: -
fu fiz o fia
a=|fu fu to0 T
ful fn2 fnn

and using A; to denote the principal minor of A which is obtained by
deleting the last (n — 7) rows and (n — %) columns of the array A, the
principal minors must alternate in sign for a maximum: A; < 0, Az > 0,

t For proof see W. F. Osgood, Advanced Calculus (New York: Macmillan, 1925),
pp. 186-193; Fine, op. cil., pp. 272-274.

1See W. F. Osgood, op. cit., pp. 173-179; R. G. D. Allen, Mathematical Analysis for
Economists (London: Macmillan, 1938),.chap. XIX; P. A. Samuelson, Foundations of
Economic Analysis (Cambridge, Mass.: Harvard University Press, 1948), appendix A.
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A; <0, ..., A,(—1)*»>0.1t All principal minors must be positive
for a minimum.! The conditions on the signs of the principal minors are
the second-order conditions. Extreme values are determined in a man-
ner analogous to that employed in the single-variable case. The n
equations f; =0, f2=0, . . ., f» = 0 are solved for the n variables
Zi, T2, - - - , Tn. The signs of the principal minors of the Hessian are
calculated for each solution. If their signs are as required for a maximum
(minimum), the function f(z,zs, . . . ,z.) attains a maximum (mini-
mum) for that solution.

Constrained Maxima and Minima. Many maximum and minimum
problems in economics are such that the independent variables are not
permitted to take on all possible values; the variables are ‘“constrained ”’
to satisfy some side relation. The constrained-maximum problem is to
maximize the function f(x;,xs, . . . ,z.) subject to the constrzint that
only those values of (z1,x2, . . . ,z.) that satisfy the equation

g(x1,xe, « . . ,xn) =0
are admissible. For example, the function
J@yme) = (21 — 1) + (22 — 2)*

has an unconstrained minimum at the point z; = 1, z, = 2. However,
if this function is subject to the requirement that z; — 2 — 2 = 0, its
minimum value is achieved at the point z; = 34, z = —34. The func-
tion f(z,,ze2) defines a surface in three-dimensional space. The equation
71 — 22 — 2 = 0 defines a straight line in the horizontal zz: plane.
The constrained-minimum problem is one of finding the lowest point of
the surface defined by f(x1,22) such that this point is above the straight
line defined by the constraint. These concepts are illustrated with

t In the two-variable case this means that fi1 < 0 and fiufee — (f12)2 > 0, which
also implies that fs2 must be negative. )

1 The second derivative must be negative (positive) for a maximum (minimum) in
the one-variable case if one disregards the possibility of a zero second derivative.
The second total differential (d%y) must be negative (positive) for a maximum (mini-
mum) in the many-variable case, disregarding again the possibility of a zero value.
The second total differential

n n
dly = z z fij dxi dj
i=14i=1

is a quadratic form in the variables dr;. It can be shown that a quadratic form is
negative definite (d?y < O for all values of the dz:s except dxs = 0 for all ¢) if the
principal minors of the Hessian alternate in sign as indicated and is positive definite if
they are all positive.
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reference to a maximum problem in Fig. A-2. The unconstrained maxi-
mum occurs at the point M. The constraint is given by the line A B.
All points on the surface other than
those lying above the line AB, namely *2
the points along the curved line PN Q,
are irrelevant. The constrained maxi-
mum occurs at the point N. The
result will generally differ from the
unconstrained case, and the constrained
maximum will generally be lower than
the unconstrained maximum.

There may be more than one con-
straint, but the number of constraints
must be smaller than the number of
variables. The following discussion is
confined to the case of a single con-
straint, since cases with more than
one constraint are relatively rare in economics.!

Method 1. If it is possible to solve the equation g(zy,z2, . . . ,z») = 0
for one of the variables, say z1 = h(zs, . . . ,Zs), the solution for z,
can be substituted in f(zy,zs, . . . ,2:) to give flh(ze, . . . ,Z4), Z

. ,Z»] which is a function of n — 1 variables. Denote this function
by H(zz, ... ,©»). The maximization of f(z;,z2, . . . ,T.) subject to
the constraint is equivalent to the unconstrained maximization of -
H(zs, . . . ,xn) withrespecttozs, . . . , z.. The constrained-maximum

Ficure A-2

problem is thus reduced to an unconstrained one that is handled in cus- -

" tomary fashion.

Method 2. The procedure outlined above involves a loss of symmetry
depending upon which variable is expressed in terms of the others from the
constraint. A more general procedure involves the use of Lagrange
multipliers. Form the function

V = fmy,2e, . o . 2a) + MglT1)22, . . . ,20) (A-22)

The function (A-22) is a function of the (n + 1) variables z1, Zo, « « +  Za
and A, which is the undetermined Lagrange multiplier (different from
zero). Maximizing V is equivalent to maximizing f(z1,z2, . . . ,Zn),
subject to g(zy,z2, . . . ,z») = 0. In addition, f(z),zs, . .. ,zs) 1is
identically equal to V only for those values of the variables that satisfy
. the constraint.

1 For an exception see W. J. Baumol, “Income Effect, Substitution Effect, Ricardo
Effect,”” Econemica, n.s. vol. 17 (February, 1950), pp. 69-80.
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The first-order conditions require that-the first partial derivatives of V
must vanish for both maxima and minima. This condition gives (» + 1)
equations in (n + 1) variables :

v

6—% =fi+rx=0

v - (A-23)
oz, ~ I T M =0 :
14

67 = g(xl,:z:z, PR ,x,,) =0

The last equation ensures that the constraint is satisfied. The solution
of this system of simultaneous equations gives the point or points at
which f(z1,zs, . . . ,2») achieves a maximum (or minimum) subject to
g(zliz'h .. :xﬂ) = O'T

Denote the second partial derivatives of ¥V by V;; and form the deter-
minants

Vu Vi ¢ Vu Vi Vi 0
Va Va go|,|Va Ve Vi gof, ...,
()] g2 O Vas Viz Vi g5

g1 gz gs O

Vi Vi Via 91
Va Vo . Vin 92
an Vﬂ2 me gn
()1 g2 gn 0

which are obtained by bordering the principal minors of the Hessian
determinant of second partial derivatives of ¥V by a row and a column
containing the first partial derivatives of the constraint. The element in
the southwest corner of each one of these arrays is zero. By the second-
order conditions all these bordered determinants must be negative for a
minimum and must alternate in sign, starting with plus, for a maximum;
i.e., the signs of the determinants from left to right must be +, —, +, ete.
The above conditions on the signs of the determinants together with
(A-23) are sufficient for maxima and minima.!

1 Note that it makes no difference whether the function ¥ is formed by writing
F—2xgorf+2g.

1 See Samuelson, op. cit., appendix A; Allen, op. cit., chap. XIX; and for a rigorous
treatment of some aspects of this problem, G. Debreu, ¢ Definite and Semi-definite
Quadratic Forms,” Econometrica, vol. 20 (April, 1952), pp. 295-300.
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Jacobians. Consider the system of simultaneous equations

A(zyzey - . . ,Z8) = Ya
fAzyzs, . . . ,:l:,{) = Y2 (A-24)

..............

fﬂ(xlyxﬁr e 733“) = Yn

The Jacobian of (A-24) is the determinant of the first partial derivatives
of the functions f* and is denoted by

| oy By
0z, azy 0z,
] e e Yn
I = ag;’z:’ : ’Z % S (A-25)
2 7 A 2ag ] 3% éﬁg L %
0r; 0z, 0z,

The importance of Jacobians is clear from the following two theorems:

1. If the functions fi(z1,22, . . . ,Za), (¢ = 1,2,. .., n), are continu-
ous and possess continuous first partial derivatives, it is necessary and suf-
ficient for the system of equations (A-24) to possess a solution z; = ¢*(y1,
Y2y « - - 5Yn), G = 1,2, .. ., n), that the Jacobian be nonvanishing in a
neighborhood about a point (23,23, . . . ,22) for which (A-24) holds.

2. The existence of a function H(yy,ys, . . . ,¥a) = 0, i.e., functional
dependence among the equations of (A-24), is necessary and sufficient
for the Jacobian of (A-24) to vanish identically or to vanish at every
point in a neighborhood around (22,23, . . . ,z9).

Proofs are given for the sufficiency parts of the theorems in the two-
variable case. The proof of the firsi theorem utilizes the lemma that a
continuous function f (xl,xz) = y with continuous first partial derivatives
possesses the solution z1 = ¢(z5y1) if fi = 0.1 Cons1der the two-
variable system consmtmg of the equations

f(x1,22) = na ' (A-26)
9(z1,%2) = y2 (A-27)

If the Jacobian does not vanish, not all partial derivatives may equal zero.
Assume that fy # 0. Then one may write

T = $(z2,y1) (A-28)

Substituting in (A-27),
F = gl¢(z2y1),25] — y2 =0 (A-29)
Then L gt (A-30)

t See W. F. Osgood, op. cit., pp. 133-135.
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Substituting (A-28) in (A-26),
G = f[¢(xg,y1),x2] - Hh = 0

Since @ is identically equal to zero, its partial derivative with respect to
z2 also equals zero:

SG = fig,+ fa=0 (A-31)

Solving (A-31) for ¢; and substituting its value in (A-30),

g_z;=gl( §z>+g _f_i-‘l_z_f__—lf@ (A-32)

Since by hypothesis the Jacobian (the numerator) and f; do nct vanish,
0F /dz2 7 0 and (A-29) can be solved for ;. Therefore

22 = h(y1,y2) (A-33)

Substituting (A-33) into (A-28) gives the solution for z;.
To prove the second theorem, assume that there exists a functional
dependence H (yi,y2) = 0. Taking the total derivative,

Hydy;+ Hady=0

Substituting for dy: and dy, their values obtained by differentiating

(A-26) and (A-27) and collecting terms,
(H1fy + Hagi) dzy + (Hif2 + Hags) dz, = 0

Since this must hold for all values of dz; and dxz, the bracketed terms must
each equal zero:

Hifi+ Hogy =0 H1f2+Hzgzi0

Moving the second terms te the right-hand side and dividing the first
equation by the second,

Hlfl = "Hzgl
H1f2 —Hqg,
or fig2 — fo01 =0 (A-34)

The left-hand side of (A-34) is the Jacobian which equals zero.
As an example, consider the functions

312—222—2_:1/1
1t — 4321 + 4x32? = Y2

The functional dependence between them is glven by (1 +2)2 —ys = 0
The Jacobian
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3(y1,Ys) _ 21, —2

d(z1,72) | 4713 — 82172 —47242 + 822
= (—8z:® 4 16z17;) — (—8z:1® + 16x122) = O

vanishes identically.

If the functions (A-26) and (A-27) are linear, the first theorem reduces
to the familiar proposition that the determinant of the array of coef-
ficients must be nonvanishing. This condition is fulfilled if the number
of equations equals the number of variables and if the equations are not
functionally dependent. If the Jacobian of a system of linear equations
vanishes, the equations are linearly dependent (see Sec. A-1).

A-4. Integrals
The integral of a function f(z) is another function F(x) which has the

. property that its derivative equals f(z); F’(z) = f(z). An integral is

unique except for an arbitrary additive constant ¢, since a constant
vanishes on differentiation. Thus if F(z) is an integral of f(z), so is
F(z) 4+ ¢. Integration is the process of finding the integral and is in a
sense differentiation in reverse. The integral F(z) } ¢ is known as the
indefinite integral and is denoted by

[ 1@ dz = P(z) + ¢

The techniques for finding the indefi- P
nite integrals of various kinds of
functions are fairly difficult aud are
not treated here.

Integration can be used to calcu-
late the area under a curve. The fix;)
function f(z) is plotted in Fig. A-3.
To calculate the area between the
z axis and the curve between points | A%
a and b, subdivide the distance ¢ P - b =z
(b — a) into segments of width Az;, FIGURE A-3
and then erect rectangles of height A
f(z;) over each segment. The height of each rectangle is the value of the
function evaluated at the left~-hand boundary of each segment. The
required area A is approximately Zf(z:) Az;.} As the width of the rec-
tangles becomes smaller, the expression Zf(z.) Az; comes closer to the true

Y

y=flx)
-

1 The sum of these rectangles underestimates the area under the curve. If the
height of the rectangles were given by the value of the function corresponding to the
right-hand boundary of each segment, the approximation would overestimate the
correct area. Either method is permissible for the analysis.
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area A. In fact,
A = lim Zf(x;) Ax;
Azi—0

provided that this limit exists.! Now change the right-hand-side
boundary b of the area under consideration to a variable boundary z.
The area from a to a variable right-hand-side boundary «z is a function of
z and will be denoted by 4 (a,r). A somewhat larger area would result
if the right-hand-side boundary were somewhat farther to the right, i.e.,
if this boundary were £ + Az. The resulting area will be denoted by
A(a,x + Az). The difference between these two areas is

A(a,x + Az) — A(a,x) = A(z,z + Ax)

The area between the points z and = 4+ Az is also given by the width of
the interval Az multiplied by the value of the function f(x) at some pomt
between z and £ + Az. Denote this value of z by z¢:

A(a,xz + Az) — A(a,:c) = f(xo) Az
A(ax + Ax) — A(a,x)

or 2D =208 < fa)

. When Az approaches zero, x + Az approaches z, and hence z, approaches
z, since zo is between z and z + Az. Taking limits
dA A(a,x + Az) — A(a,x)

%2 _ lim

= f(x)

This proves that the derivative of the area under a function is the func-
tion itself or that the integral of a function is the area under it. The area
A(a,b) is the definite integral of f(x) between the points @ and b. If
F(z) is an indefinite integral of f(x), the definite integral between a and
bis

[’ 1(x) dz = F@v) — F(a)

Integration is important for the solution of differential equations. A
differential equation is one in which a derivative occurs. An example is
dy/dr — 3y + 2 = 0. To solve this equation means to find a formula
f(x) which satisfies the equation when it is substituted into it. In the case
of the above equation one has to find an expression for ¥ in terms of z
which has the property that if one differentiates it and subtracts from the
derivative three times the expression and adds two, the result is zero.
Such a solution is given by y = €** + 24, as can be checked by sub-
stituting this expression in the differential equation above.

! The limit exists if the function f(z) is continuous.
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A-5. Difference Equations

Consider the sequence of numbers 1, 4, 9, 16, 25, etc., and denote them
by y1, ¥2, - ., ¥, . . . . The first differences of this sequence are
Ayy =y —y1 =3, Ays = ys — Y2 = 5, Ay; = ys = y3 = 7, etc. The
second differences are the differences between the first differences or
A%y = Ayp — Ayy = 2, A%y, = Ay; — Ay, = 2, ete. In this particular
sequence of numbers the second differences are constant and equal 2.

This can be written as
Ay = 2 (A-35)

Equation (A-35) can also be written as the difference between two first

differences, or
AYeyr — Ayy = 2 (A-36)

Each of the first differences in (A-36) can be written as the difference
between two members of the sequence, or

Yegz — Yer1) — Werr — Y) = Yer2 — 21 + 3o = 2 (A-37)

Equation (A-37) is a difference equation, since it was obtained by taking
differences of a sequence of numbers. It relates the ({ + 2)th member
of the sequence to the (! + 1)th and the {th members. In general, differ~
ence equations relate the {th member of a sequence to some previous mem-
bers. The general linear difference equation of nth order with constant
coefficients is

ays + e+ QY2+ ¢ 0 0 A+ GnYen + b =0 (A-38)

Equation (A-38) is linear because no y is raised to any power but the first
and because it contains no products of ys. It is an nth-order equation
because the most distant value of y upon which y: depends is y:n.
Thus (A-37) is a iinear difference equation of second order with constant
coefficients. A difference equation is homogeneous if b = 0. Both
(A-37) and (A-38) are nonhomogeneous. ‘

The Nature of the Solution. The homogeneous first-order equation is

' yg = QYt1 (A-39)

Given the information that yo = 2, y; = 2a can be determined from
(A-37) by substituting the value of yo on the right-hand side. Then"
ys = a(2a) = 2a2 In this fashion it is possible to calculate the value of y
for any value of £. This procedure is cumbersome and can be avoided by
finding a general solution for the difference equation. A general solution
is an expression, usually a function of ¢ which gives the value of y,
immediately upon substitution of the desired value of {. A function of ¢
must be found such that y;, = f({). Any such function is a solution if it
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satisfies the difference equation. In the first-order case the solution
F(¢) must satisfy?

f@) = af(t = 1) (A-40)

In addition the solution must also be consistent with the inztzal conditions.
The initial conditions are a statement about the value of  at one or more
specified points in the sequence. The number of initial conditions must
be the same as the order of the equation in order to obtain a complete
solution. Only one initial condition is necessary in the first-order case.
This was given by y, = 2 in the previous example. The problem is to
find the solution or solutions that satisfy the difference equation and then
to select the solution that also satisfies the initial conditions.? Subse-
quent discussion is confined to linear difference equations of first and
second order with constant coefficients.

Homogeneous First-order Equations. Equation (A-39) can be written
as

Yo _ 4 for all ¢

Yo
Therefore,
= Y Yer Y2l _
Y Yot Yrs ” yoyo a*yo

The term at is itself a solution since it satisfies (A-39):
at = a(at—?)

If f(t) is a solution, so is ¢f(¢) where ¢ is a constant. Thus assume that
the general solution is y: = ca’. This satisfies the difference equation
because

cat = a(cat™?)

The parameter a is given by the difference equation and ¢is determined on
the basis of the initial condition such that the general solution cat is con-
sistent with it. In the previous example the initial condition was given
by yo = 2. %o = ca® = ¢ = 2, and the general solution is y, = 2at.

Homogeneous Second-order Equations. The homogeneous linear
second-order equation is

aye + byr1 + 2 =0 (A-41)

1 A difference equation can also be regarded as defining y as a function of . To
every value of ¢ there corresponds a value of ¥ with the proviso that the independent
variable { can take on only integral values, i.e., 0, 1, 2, 3, ete.

2In the subsequent discussion, most proofs are omitted, and the ones given are
sketchy at best. The reader is referred to W. J. Baumol, Economic Dynamics (New
York: Macmillan, 1951), chaps. IX-XI, and S. Goldberg, Introduction lo Difference
Eguations (New York: Wiley, 1958), chaps. II-III.
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Any function of ¢ is a solution if it satisfies the difference equation. A
solution is provided by z* where z is a number as yet undetermined, as
can be verified by substituting z* into (A-41):

art + bzt 4 cxt-2 =0 (A-42)
and dividing through by z*—2
az? +bx+c¢c=0 (A-43)

Equation (A-43) is a quadratic equation which is solved by the customary
formula

_ —b* /b® — 4ac
z = 3a . (A-44)

This generally gives two values of z: z; and z,. Then z;* and z.* are both
solutions of (A-42).f It is known that in this case kiz:¢ + kazof is also a
solution. This, in fact, is the general solution of the homogeneous

_second-order difference equation where k; and % are constants determined

in accordance with the initial conditions. Two initial conditions are
needed in the second-order case. Assume that these are yo = 3 and

41 = 4. Then

kyvz® + koxe® = kv + ke =3
kizit 4 kexo! = kixy + koxe = 4

This system of equations can be solved for k, and %2, since z, and z, are
already known.

In some cases b® — 4ac is negative. This introduces a complication
because, according to (A-44), one would have to take the square root of a
negative number.! In such a case the solution is obtained by a different
method and involves the trigonometric functions sine and cosine. The
solution is merely stated here. Introduce the following notation:

e _ D
2a
py = — 22— dae
2a
R = /02 + vyt

t If b2 — 4ac = 0, the two roots of the quadratic equation are not distinct, i.e.,
z) = 23 = —b/2a. Then set z = (~b/2a) and z.* = {(—b/2a)®.. See Baumol,
op. cit., p. 178,

1The square root of a negative number is an imaginary number, denoted by the
letter Z, e.g., v/ —16 = 4¢. The quantity = (sum of a real and an imaginary number)
is a complex number. See Baumol, op. cit., pp. 181-195. ’
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Find the angle z the sine of which is v,/4/9,2 4+ v,? and the cosine of
which is vi/4/v:2 + v22.1 The solution is

ye = R{w; sin (#2) + w. cos (#2)] (A-45)

where wy and w. are constants determined in the usual fashion in accord-
ance with the initial conditions.

Nonhomogeneous Difference Equations. Two steps are required to
find the solution of a nonhomogeneous difference equation. The first
one is to find the solution f(¢) of the corresponding homogeneous equation.
The second one is to find the particular solution denoted by g(¢). The

. final general solution is f(f) + g(¢). Finding the particular solution is

illustrated with reference to a second-order equation. The nonhomo-
geneous equation is

ay. + by:_l + CYe—2 +d=0 (A"46)

The solution of the homogeneous part of (A-46) is kizy) + kszst. To
find a particular solution substitute in (A-46) » = K (constant) and
solve for K:

aK +bK +cK+d=0

—d
and K = —ﬂ—_—*_— ' (A—47)
provided that a + b + ¢ ¢ 0. Then the general solution is
y = ket + kaxst + __—4

where ki, and k; are now determined in accordance with the initial con-
ditions. If a + b + ¢ = 0, -assume that the particular solution is
% = Kt, substitute this in (A-46), and solve for K. Then the general
solution is ¥, = kiz:* + koxst + Kt, provided that (—b — 2¢) = 0. If
—b — 2¢c = 0, substitute K¢*> and proceed analogously. In the first-
order case either ¥, = K or y: = Kt, and in the second-order case either
¥ = K, or y; = Ki, or y; = Ki? leads to the correct particular solution.
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single-market, 110-117
dynamic, 113-117
statie, 110-113
Walrasian, 110-113, 147

Stackelberg, H. von, 180-181

Stackelberg disequilibrium, 181-182

Stackelberg solution, 180-182

Strategy, 186
mixed, 189-191
pure, 187-189

Subsidy (see Tax)

Substitutes, 29-30

Substitution effect, 24-28, 33-34, 74-75,

233, 238-240
cross-, 29, 74-75

Supply curve (se¢ Supply function)
Supply function, aggregate, 89-91, 93, 98,
100, 102-105, 108-109
long-run, 91-94, 99-100
market (see aggregate, above)
multiperiod, 243
short-run, 88-91
very short-period, 89
Symmetric determinant, 29
Symmetry assumption, 97-98, 137, 175n.,
193

Tax, lump-sum, 173, 217
profit, 173-174
sales, ad valorem, 104-105, 174-175
specific, 104-107, 174, 217
welfare effects of, 216-217
Taylor series, 266
Technology, 44
Theory, of games, 186-191
role of, 1-3
Thompson, G. L., 191n.
Time preference, 234-240
Total differential, 269-271
Total productivity, 44—47
Total revenue, 53, 76, 83, 167-168
Transformation, linear, 37-38
monotonic, 17, 37
Transitivity, 7, 32
Traansport cost, 102
Two-commodity exchange, 133-134

Uncertainty, choice under, 34-38
Unequal probability axiom, 35
Unstable equilibrium (see Stability)

© Utility, cardinal, 6-7, 10n., 34, 37-38,

201n.
expected, 36-37
interpersonal comparisons of, 38; 201,
204
marginal, 12-13, 38, 109n.
of income, 7, 27, 109n.
maximization of, 12-16, 23-24, 108,
129-130, 136, 203, 209, 212,
232-233, 236-238
ordinal, 7-8, 12, 34, 37
von Neumann-Morgenstern, 34-35
Utility function, 6, 8-9, 30, 43, 108, 129,
135, 203 ‘
consumption, 234-235
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Utility function, muttiperiod, 229-230  Variable cost, 55

Utility functions, interdependent, 212- Variable input, 42-44
214
Utility index, 16-20, 129
construction of, 36-37 Walras, L., 6
uniqueness of, 16-20, 37-38 Walrasian stability, 110-113, 147
Utility possibility curve, 222n. Welfare, economic, 201-202, 208

maximization of, 218-222
Welfare function, social, 217-219,
Value of games, 190 221-222
Value judgments, 208, 217-218, 221 Wicksell, K., 253n.
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