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Preface

One of the most common statistical procedures in the behavioral and social 
sciences is to test the hypothesis that treatments or interventions have no 
effect, or that the correlation between two variables is equal to zero, etc.—
i.e., tests of the null hypothesis. Researchers have long been concerned with 
the possibility that they will reject the null hypothesis when it is in fact 
correct (i.e., make a Type I error), and an extensive body of research and 
data-analytic methods exists to help understand and control these errors. 
Less attention has been devoted to the possibility that researchers will fail to 
reject the null hypothesis, when in fact treatments, interventions, etc., have 
some real effect (i.e., make a Type II error). Statistical tests that fail to detect 
the real effects of treatments or interventions might substantially impede 
the progress of scientific research.

The statistical power of a test is the probability that it will lead you to 
reject the null hypothesis when that hypothesis is in fact wrong. Because 
most statistical tests are conducted in contexts where treatments have at 
least some effect (although it might be minuscule), power often translates 
into the probability that your test will you lead to a correct conclusion about 
the null hypothesis. Viewed in this light, it is obvious why researchers have 
become interested in the topic of statistical power and in methods of assess-
ing and increasing the power of their tests.

This book presents a simple and general model for statistical power analy-
sis that is based on the widely used F statistic. A wide variety of statistics used 
in the social and behavioral sciences can be thought of as special applications 
of the “general linear model” (e.g., t-tests, analysis of variance and covariance, 
correlation, multiple regression), and the F statistic can be used in testing 
hypotheses about virtually any of these specialized applications. The model 
for power analysis laid out here is quite simple, and it illustrates how these 
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analyses work and how they can be applied to problems of study design, 
to evaluating others’ research, and even to problems such as choosing the 
appropriate criterion for defining “statistically significant” outcomes.

In response to criticisms of traditional null hypothesis testing, several 
researchers have developed methods for testing what we refer to as “min-
imum-effect” hypotheses—i.e., the hypothesis that the effect of treatments, 
interventions, etc., exceeds some specific minimal level. Ours is the first book 
to discuss in detail the application of power analysis to both traditional null 
hypothesis tests and minimum-effect tests. We show how the same basic 
model applies to both types of testing and illustrate applications of power 
analysis to both traditional null hypothesis tests (i.e., tests of the hypothesis 
that treatments have no effect) and to minimum-effect tests (i.e., tests of the 
hypothesis that the effects of treatments exceeds some minimal level).

Most of the analyses presented in this book can be carried out using a 
single table, the One-Stop F Table presented in Appendix B. Appendix C 
presents a comparable table that expresses statistical results in terms of the 
percentage of variance (PV) explained rather than the F statistic. These two 
tables make it easy to move back and forth between assessments of statisti-
cal significance and assessments of the strength of various effects in a study. 
The One-Stop F Table can be used to answer many questions that relate to 
the power of statistical tests. A computer program, the One-Stop F Calcula-
tor, is on the book’s website www.psypress.com/statistical-power-analysis. 
The One-Stop F Calculator can be used as a substitute for the One-Stop F 
Table. This computer program allows users more flexibility in defining the 
hypothesis to be tested, the desired power level, and the alpha level than is 
typical for power analysis software. The One-Stop F Calculator also makes 
it unnecessary to interpolate between values in a table.

This book is intended for a wide audience, including advanced students 
and researchers in the social and behavioral sciences, education, health sci-
ences, and business. Presentations are kept simple and nontechnical when-
ever possible. Although most of the examples in this book come from the 
social and behavioral sciences, general principles explained in this book 
should be useful to researchers in diverse disciplines.

Changes in the New Edition

This third edition includes expanded coverage of power analysis for mul-
tifactor analysis of variance (ANOVA), including split-plot and randomized 
block factorial designs. Although conceptual issues for power analysis are 
similar in factorial ANOVA and other methods of analysis, special features 
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of ANOVA require explicit attention. The present edition of the book also 
shows how to calculate power for simple main effects tests and t tests that 
are performed after an analysis of variance is performed, and it provides 
a more detailed examination of t tests than was included in our first and 
second editions.

Perhaps the most important addition to this third edition is a set of exam-
ples, illustrations, and discussions included in Chapters 1 through 8 in boxed 
sections. This material is set off for easy reference, and it provides examples 
of power analysis in action and discussions of unique issues that arise as a 
result of applying power analyses in different designs. 

Other highlights of the third edition include the following:

A completely redesigned, user-friendly software program that •	
allows users to carry out all of the analysis described in this book 
and to conduct a wide range of tests; this new program allows users 
to conduct significance tests, power analyses, and assessments of N 
and alpha needed for traditional and minimum-effects tests
New chapters (Chapters 7 and 8) demonstrating the application of •	
POWER in complex ANOVA designs, including randomized block, 
split-plot, and repeated measures designs
A separate chapter (chapter 3) describing the rationale and opera-•	
tion of minimum effects tests
Worked examples in all chapters•	
Expanded coverage of the concepts behind power analysis (Chap-•	
ters 1 and 4) and the application of these concepts in correlational 
studies (Chapter 5)

Using the One-Stop F Calculator

A book-specific website www.psypress.com/statistical-power-analysis in-
cludes the One-Stop F Calculator, which is a program designed to run on 
most Windows-compatible computers. Following the philosophy that drives 
our book, the program is simple to install and use. Visit this website, and 
you will receive instructions for quickly installing the program. The program 
asks you to make some simple decisions about the analysis you have in 
mind, and it provides information about statistical power, effect sizes, F val-
ues, and/or significance tests. Chapter 2 illustrates the use of this program.
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The Power of Statistical Tests

▼      ▼      ▼      ▼      ▼

In the social and behavioral sciences, statistics serve two general purposes. 
First, they can be used to describe what happened in a particular study 
(descriptive statistics). Second, they can be used to help draw conclusions 
about what those results mean in some broader context (inferential statis-
tics). The main question in inferential statistics is whether a result, finding, 
or observation from a study reflects some meaningful phenomenon in the 
population from which that study was drawn. For example, if 100 college 
sophomores are surveyed and it is determined that a majority of them prefer 
pizza to hot dogs, does this mean that people in general (or college students 
in general) also prefer pizza? If a medical treatment yields improvements 
in 6 out of 10 patients, does this mean that it is an effective treatment that 
should be approved for general use? The goal of inferential statistics is to 
determine what sorts of inferences and generalizations can be made on the 
basis of data of this type and to assess the strength of evidence and the 
degree of confidence one can have in these inferences.

The process of drawing inferences about populations from samples is 
a risky one, and a great deal has been written about the causes and cures 
for errors in statistical inference. Statistical power analysis (Cohen, 1988; 
Kraemer & Thiemann, 1987; Lipsey, 1990) falls under this general heading. 
Studies with too little statistical power can lead to erroneous conclusions 
about the meaning of the results of a particular study. In the example cited 
above, the fact that a medical treatment worked for 6 out of 10 patients is 
probably insufficient evidence that it is truly safe and effective; and if you 
have nothing more than this study to rely on, you might conclude that the 
treatment had not been proven effective. Does this mean that you should 
abandon the treatment or that it is unlikely to work in a broader population? 
The conclusion that the treatment has not been shown to be effective may 
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say as much about the low level of statistical power in your study as about 
the value of the treatment.

In this chapter, we will describe the rationale for and applications of sta-
tistical power analysis. In most of our examples, we describe or apply power 
analysis in studies that assess the effect of some treatment or interven-
tion (e.g., psychotherapy, reading instruction, performance incentives) by 
comparing outcomes for those who have received the treatment to outcomes 
of those who have not (nontreatment or control group). However, power 
analysis is applicable to a very wide range of statistical tests, and the same 
simple and general model can be applied to virtually all of the statistical 
analyses you are likely to encounter in the social and behavioral sciences.

The Structure of Statistical Tests

To understand statistical power, you must first understand the ideas that 
underlie statistical hypothesis testing. Suppose 100 children are randomly 
divided into two groups. Fifty children receive a new method of reading 
instruction, and their performance on reading tests is on average 6 points 
higher (on a 100-point test) than the other 50 children who received stan-
dard methods of instruction. Does this mean that the new method is truly 
better? A 6-point difference might mean that the new method is really better, 
but it is also possible that there is no real difference between the two meth-
ods, and that this observed difference is the result of the sort of random 
fluctuation you might expect when you use the results from a single sample 
to draw inferences about the effects of these two methods of instruction in 
the population.

One of the most basic ideas in statistical analysis is that results obtained 
in a sample do not necessarily reflect the state of affairs in the population 
from which that sample was drawn. For example, the fact that scores aver-
aged 6 points higher in this particular group of children does not neces-
sarily mean that scores will be 6 points higher in the population, or that 
the same 6-point difference would be found in another study examining a 
new group of students. Because samples do not (in general) perfectly repre-
sent the populations from which they were drawn, you should expect some 
instability in the results obtained from each sample. This instability is usu-
ally referred to as “sampling error.” The presence of sampling error is what 
makes drawing inferences about populations from samples difficult. One 
of the key goals of statistical theory is to estimate the amount of sampling 
error that is likely to be present in different statistical procedures and tests 
and thereby gaining some idea about the amount of risk involved in using 
a particular procedure.
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Statistical significance tests can be thought of as decision aids. That 
is, these tests can help you reach conclusions about whether the findings 
of your particular study are likely to represent real population effects or 
whether they fall within the range of outcomes that might be produced by 
random sampling error. For example, there are two possible interpretations 
of the findings in this study of reading instruction:

 1. The difference between average scores from the two programs is 
so small that it might reasonably represent nothing more than sam-
pling error.

versus

 2. The difference between average scores from the two programs is 
so large that it cannot be reasonably explained in terms of sam-
pling error.

The most common statistical procedure in the social and behavioral sciences 
is to pit a null hypothesis (H0) against an alternative (H1). In this example, 
the null and alternative hypotheses might take the forms:

H0—Reading instruction has no effect. It doesn’t matter how you 
teach children to read, because in the population there is no differ-
ence in the average scores of children receiving either method of 
instruction.

versus

H1—Reading instruction has an effect. It does matter how you teach 
children to read, because in the population there is a difference in the 
average scores of children receiving different methods of instruction.

Although null hypotheses usually refer to “no difference” or “no effect,” it 
is important to understand that there is nothing magic about the hypothesis 
that the difference between two groups is zero. It might be perfectly reason-
able to evaluate the following set of possibilities:

H0—In the population, the difference in the average scores of those 
receiving these two methods of reading instruction is 6 points.

versus

H1—In the population, the difference in the average scores of those 
receiving these two methods of reading instruction is not 6 points.
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Another possible set of hypotheses is:

H0—In the population, the new method of reading instruction is not 
better than the old method; the new method might even be worse.

versus

H1—In the population, the new method of reading instruction is better 
than the old method.

This set of hypotheses leads to what is often called a “one-tailed” statisti-
cal test, in which the researcher not only asserts that there is a real differ-
ence between these two methods, but also describes the direction or the 
nature of this difference (i.e., that the new method is not just different from 
the old one, it is also better). We discuss one-tailed tests in several sections 
of this book, but in most cases we will focus on the more widely used two-
tailed tests that compare the null hypothesis that nothing happened with 
the alternative hypothesis that something happened. Unless we specifically 
note other wise, the traditional null hypothesis tests discussed in this book 
will be assumed to be two-tailed. However, the minimum effect tests we 
introduce in Chapter 2 and discuss extensively throughout the book have 
all of the advantages and few of the drawbacks of traditional one-tailed tests 
of the null hypothesis.

Null Hypotheses Versus Nil Hypotheses

The most common structure for tests of statistical significance is 
to pit the null hypothesis that treatments have no effect, or that 
there is no difference between groups, or that there is no correla-
tion between two variables against the alternative hypotheses that 
there is some treatment effect. In fact, this structure is so common 
that most people assume that the “null hypothesis” is essentially a 
statement that there is no difference between groups, no treatment 
effect, no correlation between variables, etc. This is not true. The 
null hypothesis is simply the hypothesis you actually test, and if 
you reject the null, you are left with the alternative. That is, if you 
reject the hypothesis that the effect of an intervention of treatment 
is X, you are left to conclude that the alternative hypothesis that 
the effect of treatments is not-X must be true. If you test and reject 
the hypothesis that treatments have no effect, you are left with the 
conclusion that they must have some effect. If you test and reject 
the hypothesis that a particular diet will lead to a 20% weight loss, 
you are left with the conclusion that the diet will not lead to a 20% 
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Most treatments of power analysis focus on the statistical power of 
tests of the nil hypothesis (i.e., tests of the hypothesis that treatments or 
interventions have no effect whatsoever). However, there are a number 
of advantages to posing and testing substantive hypotheses about the size of 
treatment effects (Murphy & Myors, 1999). For example, it is easy to test 
the hypothesis that the effects of treatments are negligibly small (e.g., they 
account for 1% or less of the variance in outcomes, or that the standardized 
mean difference is .10 or less). If you test and reject this hypothesis, you 
are left with the alternative hypothesis that the effect of treatments is not 
negligibly small, but rather large enough to deserve at least some attention. 
The methods of power analysis described in this book are easily extended 
to such minimum-effect tests and are not limited to traditional tests of the 
null hypothesis that treatments have no effect.

What determines the outcomes of statistical tests? There are four out-
comes that are possible when you use the results obtained in a particular 
sample to draw inferences about a population; these outcomes are shown 
in Figure 1.1.

As Figure 1.1 shows, there are two ways to make errors when testing 
hypotheses. First, it is possible that the treatment (e.g., a new method of 
instruction) has no real effect in the population, but the results in your sam-
ple might lead you to believe that it does have some effect. If the results of 
this study lead you to incorrectly conclude that the new method of instruc-
tion does work better than the current method, when in fact there were no 
differences, you would be making a Type I error (sometimes called an alpha 
error). Type I errors might lead you to waste time and resources by pursuing 
what are essentially dead ends, and researchers have traditionally gone to 
great lengths to avoid Type I errors.

weight loss (it might have no effect; it might have a smaller effect; 
it might even have a larger effect).

Following Cohen’s (1994) suggestion, we think it is useful to 
distinguish between the null hypothesis in general and its very spe-
cial and very common form, the “nil hypothesis” (i.e., the hypoth-
esis that treatments, interventions, etc., have no effect whatsoever). 
The nil hypothesis is common because it is very easy to test and 
because it leaves you with a fairly simple and concrete alternative. 
If you reject the nil hypothesis that nothing happened, the alter-
native hypothesis you should accept is that something happened. 
However, as we show in this chapter and in the chapters that fol-
low, there are often important advantages to testing null hypoth-
eses that are broader than the traditional nil hypothesis.
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There is an extensive literature dealing with methods of estimating and 
minimizing the occurrence of Type I errors (e.g., Zwick & Marascuilo, 1984). 
The probability of making a Type I error is in part a function of the stan-
dard or decision criterion used in testing your hypothesis (often referred 
to as alpha, or α). A very lenient standard (e.g., if there is any difference 
between the two samples, you will conclude that there is also a difference in 
the population) might lead to more frequent Type I errors, whereas a more 
stringent standard might lead to fewer Type I errors.1

A second type of error (referred to as Type II error, or beta error) is also 
common in statistical hypothesis testing (Cohen, 1994; Sedlmeier & Gig-
erenzer, 1989). A Type II error occurs when you conclude in favor of H0, 
when in fact H1 is true. For example, if you conclude that there are no real 
differences in the outcomes of these two methods of instruction, when in 
fact one really is better than the other in the population, you have made a 
Type II error.

Statistical power analysis is concerned with Type II errors (i.e., if the 
probability of making a Type II error is β, power = 1 − β). Another way of 
saying this is to note that power is the (conditional) probability that you will 

1 It is important to note that Type I errors can only occur when the null hypothesis 
is actually true. If the null hypothesis is that there is no true treatment effect (a nil 
hypothesis), this will rarely be the case. As a result, Type I errors are probably quite 
rare in tests of the traditional null hypothesis, and efforts to control these errors at 
the expense of making more Type II errors might be ill advised (Murphy, 1990).

Figure 1.1 Outcomes of statistical tests.
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avoid a Type II error. Studies with high levels of statistical power will rarely 
fail to detect the effects of treatments. If we assume that most treatments 
have at least some effect, the statistical power of a study often translates into 
the probability that the study will lead to the correct conclusion (i.e., that it 
will detect the effects of treatments).

Effects of sensitivity, effect size, and decision criterion on power. The 
power of a statistical test is a function of its sensitivity, the size of the 
effect in the population, and the standards or criteria used to test statistical 
hypotheses. Tests have higher levels of statistical power when:

 1. Studies are highly sensitive. Researchers can increase sensitivity by 
using better measures or using study designs that allow them to 
control for unwanted sources of variability in their data (for the 
moment, we define sensitivity in terms of the degree to which 

Understanding Conditional Probability

Figure 1.1 illustrates four different possible outcomes of a statisti-
cal test. You might notice that the probabilities of these four events 
do not sum to 1.0. That is because the probabilities illustrated in 
Figure 1.1 are conditional probabilities.

Look at the right-hand column of Figure 1.1 (the column labeled 
“Treatments have an effect”). If treatments do have some effect 
in the population, your statistical test can lead to two possible 
outcomes. You might correctly conclude that there is a difference 
between these two treatments (the probability that this will occur 
is 1 − β), or you might mistakenly conclude that there is no real 
difference between treatments (the probability that this will occur 
is β).  We refer to these as conditional probabilities because these 
two events are conditioned by, or only occur, if treatments have a 
real population effect.

Both Type I and Type II errors are conditional events. That is, it 
is not possible to make a Type I error unless there is truly no treat-
ment effect in the population. If treatments have any effect whatso-
ever, it is not possible to make a Type I error when testing the nil 
hypothesis. Similarly, it is impossible to make a Type II error unless 
there is a real treatment effect. As we will see later, the conditional 
nature of Type I errors has very important consequences for testing 
the traditional nil hypothesis.
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 sampling error introduces imprecision into the results of a study; 
a fuller definition will be presented later in this chapter). The sim-
plest method of increasing the sensitivity of a study is to increase its 
sample size (N). As N increases, statistical estimates become more 
precise and the power of statistical tests increase.

 2. Effect sizes (ES) are large. Different treatments have different effects. 
It is easiest to detect the effect of a treatment if that effect is large 
(e.g., when treatment outcomes are very different or when treat-
ments account for a substantial proportion of variance in outcomes; 
we discuss specific measures of effect size later in this chapter 
and in the chapters that follow). When treatments have very small 
effects, these effects can be difficult to reliably detect. As ES values 
increase, power increases.

 3. Criteria for statistical significance are lenient. Researchers must 
make a decision about the standards that are required to reject H0. 
It is easier to reject H0 when the significance criterion, or alpha (α) 
level, is .05 than when it is .01 or .001. As the standard for determin-
ing significance becomes more lenient, power increases.

Power is highest when all three of these conditions are met (i.e., sensitive 
study, large effect, lenient criterion for rejecting the null hypothesis). In prac-
tice, sample size (which affects sensitivity) is probably the more important 
determinant of power. Effect sizes in the social and behavioral sciences tend 
to be small or moderate (if the effect of a treatment is so large that it can be 
seen with the naked eye, even in small samples, there may be little reason to 
test for it statistically), and researchers are often unwilling to abandon the tra-
ditional criteria for statistical significance that are accepted in their field (usu-
ally alpha levels of .05 or .01; Cowles & Davis, 1982). Thus, effect sizes and 
decision criteria tend to be similar across a wide range of studies. In contrast, 
sample sizes vary considerably, and they directly impact levels of power.

With a sufficiently large N, virtually any test statistic will be “signifi-
cantly” different from zero, and virtually any nil hypothesis can be rejected. 
Large N makes statistical tests highly sensitive, and virtually any specific 
point hypothesis (e.g., the difference between two treatments is zero, the 
difference between two reading programs is 6 points) can be rejected if 
the study is sufficiently sensitive. For example, suppose you are testing a 
new medicine that will result in a .0000001% increase in success rates for 
treating cancer. This increase is larger than zero, and if researchers include 
enough subjects in a study evaluating this treatment, they will almost cer-
tainly conclude that the new treatment is statistically different from existing 
treatments. On the other hand if very small samples are used to evaluate a 
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treatment that has a real and substantial effect, statistical power might be 
so low that they incorrectly conclude that the new treatment is not different 
from existing treatments.

Studies can have very low levels of power (i.e., are likely to make Type II 
errors) when they use small samples, when the effect being studied is a 
small one, or when stringent criteria are used to define a “significant” result. 
The worst case occurs when a researcher uses a small sample to study a 
treatment that has a very small effect, and he or she uses a very strict stan-
dard for rejecting the null hypothesis. Under those conditions, Type II errors 
may be the norm. To put it simply, studies that use small samples and strin-
gent criteria for statistical significance to examine treatments that have small 
effects will almost always lead to the wrong conclusion about those treat-
ments (i.e., to the conclusion that treatments have no effect whatsoever).

The Mechanics of Power Analysis

When a sample is drawn from a population, the exact value of any statis-
tic (e.g., the mean or difference between two group means) is uncertain, 
and that uncertainty is reflected by a statistical distribution. Suppose, for 
example, that you evaluate a treatment that you expect has no real effect 
(e.g., you use astrology to advise people about career choices) by comparing 
outcomes in groups who receive this treatment with outcomes in groups 
who do not receive it (control groups). You will not always find that treat-
ment and control groups have exactly the same scores, even if the treatment 
has no real effect. Rather, some range of values can be expected for any test 
statistic in a study like this, and the standards used to determine statistical 
significance are based on this range or distribution of values. In traditional 
null hypothesis testing, a test statistic is “statistically significant” at the .05 
level if its actual value is outside of the range of values you would observe 
95% of the time in studies where the treatment had no real effect. If the test 
statistic is outside of this range, the usually inference is that the treatment 
did have some real effect.

For example, suppose that 62 people are randomly assigned to treatment 
and control groups, and the t-statistic is used to compare the means of the 
two groups. If the treatment has no effect whatsoever, the t-statistic should 
usually be near zero, and will have a value less than or equal to approxi-
mately 2.00 95% of the time. If the t-statistic obtained in a study is larger 
than 2.00, you can safely infer that treatments are very likely to have some 
effect; if there was no real treatment effect, values greater than 2.00 would 
be a very rare event.
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Understanding Sampling Distributions

In the example above, 62 people are randomly assigned to groups 
that either receive astrology-based career advice or who do not 
receive such advice. Even though you might expect that the treat-
ment has no real effect, you would probably not expect that the 
difference between the average level of career success of these two 
groups will always be exactly zero. Sometimes the astrology group 
might do better and sometimes it might do worse.

Suppose you repeated this experiment 1,000 times and noted 
the difference between the average level of career success in the 
two groups. The distribution of scores would look something like 
Figure 1.2 below.

This distribution is referred to as a “sampling distribution,” and 
it illustrates the extent to which differences between the means of 
these two groups might be expected to vary as a result of chance 
or sampling error. Most of the time, the differences between these 
groups should be near zero, because we expect that advice based 
on astrology has no real systematic effect. The variance of this dis-
tribution illustrates the range of differences in outcomes you might 
expect if your hypothesis is that astrology has no real effect. In this 
case, about 95% of the time, you expect the difference between 
the astrology and the no-astrology groups to be about 2 points or 
less. If you find a bigger difference between groups ( suppose the 

-4            -3             -2             -1             0              1              2              3              4

Figure 1.2 A sampling distribution.
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As the example above suggests, if treatments have no effect whatsoever 
in the population, you should not expect to always find a difference of pre-
cisely zero between samples of those who receive the treatment and those 
who do not. Rather, there is some range of values that might be found for 
any test statistic in a sample (e.g., in the example cited earlier, you expect 
the value of the difference in the two means to be near zero, but you also 
know it might range from approximately −2.00 to +2.00). The same is true 
if treatments have a real effect. For example, if a researcher expects that 
the mean in a treatment group that receives career advice based on valid 
measures of work interests will be 10 points higher than the mean in a 
control group (e.g., because this is the size of the difference in the popula-
tion), that researcher should also expect some variability around that figure. 
Sometimes, the difference between two samples might be 9 points, and 
sometimes it might be 11 or 12. The key to power analysis is estimating the 
range of values one might reasonably expect for some test statistic if the real 
effect of treatments is small, or medium, or large. Figure 1.3 illustrates the 
key ideas in statistical power analysis.

Suppose you use a t-test to determine whether the difference in average 
reading test scores of 3,000 pupils randomly assigned to two different types 
of reading instruction is statistically significant. You do not make any spe-
cific prediction about which reading program will be better and, therefore, 
test the two-tailed hypothesis that the two programs lead to systematically 
different outcomes. To be “statistically significant,” the value of this test 
statistic must be 1.96 or larger. As Figure 1.3 suggests, the likelihood you 
will reject the null hypothesis that there is no difference between the two 
groups depends substantially on whether the true effect of treatments is 
small or large.

If the null hypothesis that there is no real effect was true, you would 
expect to find values of 1.96 or greater for this test statistic in 5 tests out of 

average success score for the astrology group is 5 points higher 
than the average for the no-astrology group), you should reject the 
null hypothesis that the career advice has no systematic effect.

You might ask why anyone in their right mind would repeat 
this study 1,000 times. Luckily, statistical theory allows us to esti-
mate sampling distributions on the basis of a few simple statis-
tics. Virtually all the statistical tests discussed in this book are 
conducted by comparing the value of some test statistic with its 
sampling distribution, so understanding the idea of a sampling 
distribution is essential to understanding hypothesis testing and 
statistical power.
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every 100 performed (i.e., α = .05). This is illustrated in graph 1 of Figure 1.3. 
Graph 2 of Figure 1.3 illustrates the distribution of test statistic values you 
might expect if treatments had a small effect on the dependent variable. You 
might notice that the distribution of test statistics you would expect to find 
in studies of a treatment with this sort of effect has shifted a bit, and that in 
this case 25% of the values you might expect to find are greater than or equal 
to 1.96. That is, if you run a study under the scenario illustrated in graph 2 

Figure 1.3 Essentials of power analysis. 

Worse             No Effect          Better 
with                                          with 
treatment                                 treatment

Worse             No Effect          Better 
with                                          with 
treatment                                 treatment

Worse             No Effect          Better 
with                                          with 
treatment                                 treatment

Value needed to 
reach significance

Value needed to 
reach significance

Value needed to 
reach significance

95%                  5%

75%                  25%

10%                 90%

1. Distribution Expected if Treatments Have No Effect

2. Distribution Expected if Treatments Have a Small Effect

3. Distribution Expected if Treatments Have a Large Effect

Note. Depending on the test statistic in question, the distributions might take 
different forms, but the essential features of this figure would apply to 
any test statistic.
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of this figure (i.e., treatments have a small effect), the probability you will 
reject the null hypothesis is .25. Graph 3 of Figure 1.3 illustrates the distri-
bution of values you might expect if the true effect of treatments is large. In 
this distribution, 90% of the values are 2.00 or greater, and the probability 
you will reject the null hypothesis is .90. The power of a statistical test is the 
proportion of the distribution of test statistics expected for a study like this 
that is above the critical value used to establish statistical significance. The 
qualifier “for a study like this” is important because the distribution of test 
statistics you should reasonably expect in a particular study depends on 
both the population effect size and the sample size. If the power of a study 
is .80, that is the same thing as saying that if you draw a distribution of the 
test statistic values you expect to find based on the population effect size 
and the sample size, 80% of these will be equal to or greater than the critical 
value needed to reject the null hypothesis.

No matter what hypothesis you are testing, or what statistic you are using 
to test that hypothesis, power analysis always involves three basic steps 
that are listed in Table 1.1. First, a criterion or critical value for “statisti-
cal significance” must be established. For example, the tables found in the 
back of virtually any statistics textbook can be used to determine such 
critical values for testing the traditional null hypothesis. If the test statistic 
a researcher computes exceeds this critical value, the researcher will reject 
the null hypothesis. However, these tables are not the only basis for set-
ting such a criterion. Suppose you wanted to test the hypothesis that the 
effects of treatments are so small that they can safely be ignored. This might 
involve specifying some range of effects that would be designated as “negli-
gible,” and then determining the critical value of a statistic needed to reject 
this hypothesis. Chapter 2 shows how such tests are performed and lays out 

Table 1.1 The Three Steps to Determining Statistical Power

1.  Establish a criterion or critical value for statistical significance.
•	 	What	is	the	hypothesis	that	is	being	tested	(e.g.,	traditional	null	

hypothesis, minimum-effect tests)?

•	 	What	level	of	confidence	is	desired	(e.g.,	α = .05 versus α = .01)?
•	 	What	is	the	critical	value	for	your	test	statistic?	(These	critical	values	are	

determined on the basis of the degrees of freedom [df] for the test and the 
desired confidence level.)

2.  Estimate the effect size (ES).
•	 	Are	treatments	expected	to	have	large,	medium,	or	small	effects?
•	 	What	is	the	range	of	values	researchers	expect	to	find	for	the	test	statistic,	

given this ES?
3.  Determine where the critical value lies in relationship to the distribution of 

test statistics expected if the null hypothesis is true (i.e., the sampling 
distribution).
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the implications of such hypothesis testing strategies for statistical power 
analysis.

The power of a statistical test is the proportion of the distribution of test statis-
tics expected for a study (based on the sample size and the estimated ES) that 
is above the critical value used to establish statistical significance.

Power analysis requires researchers to make their best guess of the size of 
effect treatments are likely to have on the dependent variable(s); methods 
of estimating effect sizes are discussed later in this chapter. As we noted 
earlier, if there are good reasons to believe that treatments have a very large 
effect, it should be quite easy to reject the null hypothesis. On the other 
hand, if the true effects of treatments are small and subtle, it might be very 
hard to reject the hypothesis that treatments have no real effect.

Once you have estimated ES, it is also possible to use that estimate 
to describe the distribution of test statistics that should be expected. We 
describe this process in more detail in Chapter 2, but a simple example 
will show what we mean. Suppose you are using a t-test to assess the dif-
ference in the mean scores of those receiving two different treatments. If 
there was no real difference between the treatments, you would expect to 
find t-values near zero most of the time, and you can use statistical theory to 
tell how much these t-values might depart from zero as a result of sampling 
error. The t-tables in most statistics textbooks tell you how much variability 
you might expect with samples of different sizes, and once the mean (here, 
zero) and the standard deviation of this distribution are known, it is easy 
to estimate what proportion of the distribution falls above or below any 
critical value. If there is a large difference between the treatments (e.g., the 
dependent variable has a mean of 500 and a standard deviation of 100, and 
the mean for one treatment is usually 80 points higher than the mean for 
another), large t-values should be expected most of the time.

The final step in power analysis is a comparison between the values 
obtained in the first two steps. For example, if you determine that a t-value 
of 1.96 is needed to reject the null hypothesis, and also determine that 
because the treatments being studied have very large effects you are likely 
to find t-values of 1.96 or greater 90% of the time, the power of this test 
(i.e., power is .90).

Sensitivity and power. Sensitivity refers to the precision with which a sta-
tistical test distinguishes between true treatment effects and differences in 
scores that are the result of sampling error. As noted above, the sensitivity 
of statistical tests is largely a function of the sample size. Large samples pro-
vide very precise estimates of population parameters, whereas small sam-
ples produce results than can be unstable and untrustworthy. For example, 
if 6 children in 10 do better with a new reading curriculum than with the old 
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one, this might reflect nothing more than simple sampling error. If 600 out 
of 1,000 children do better with the new curriculum, this is powerful and 
convincing evidence that there are real differences between the new cur-
riculum and the old one.

In a study with low sensitivity, there is considerable uncertainty about 
statistical outcomes. As a result, it might be possible to find a large treatment 
effect in a sample, even though there is no true treatment effect in the popu-
lation. This translates into both substantial variability in study outcomes 
and the need for relatively demanding tests of “statistical significance.” If 
outcomes can vary substantially from study to study, researchers need to 
observe relatively large effects to be confident that they represent true treat-
ment effects and not mere sampling error. As a result, it is often difficult 
to reject the hypothesis that there is no true effect when small samples are 
used, and many Type II errors should be expected.

In a highly sensitive study, there is very little uncertainty or random 
variation in study outcomes, and virtually any difference between treatment 
and control groups is likely to be accepted as an indication that the treat-
ment has an effect in the population.

Effect size and power. Effect size is a key concept in statistical power 
analysis (Cohen, 1988; Rosenthal, 1991; Tatsuoka, 1993a). At the simplest 
level, effect size measures provide an index of how much impact treatments 
actually have on the dependent variable; if H0 states that treatments have no 
impact whatsoever, the effect size can be thought of as an index of just how 
wrong the null hypothesis is.

One of the most common ES measures is the standardized mean differ-
ence, d, defined as d = (Mt − Mc)/SD, where Mt and Mc are the treatment 
and control group means, respectively, and SD is the pooled standard devia-
tion. By expressing the difference in group means in standard deviation 
units, the d-statistic provides a simple metric that allows one to compare 
treatment effects from different studies, areas of research, etc., without hav-
ing to keep track of the units of measurement used in different studies 
or areas of research. For example, Lipsey and Wilson (1993) cataloged the 
effects of a wide range of psychological, educational, and behavioral treat-
ments, all expressed in terms of d. Examples of interventions in these areas 
that have relatively small, moderately large, and large effects on specific sets 
of outcomes are presented in Table 1.2.

For example, worksite smoking cessation/reduction programs have a 
relatively small effect on quit rates (d = .21). The effects of class size on 
achievement or of juvenile delinquency programs on delinquency outcomes 
are similarly small. Concretely, a d-value of .20 means that the difference 
between the average score of those who receive the treatment and those 
who do not is only 20% as large as the standard deviation of the outcome 
measure within each of the treatment groups. This standard deviation 
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measures the variability in outcomes, independent of treatments, so d = .20 
indicates that the average effect of treatments is only 1/5th as large as the 
variability in outcomes among people who receive the same treatments. In 
contrast, interventions such as psychotherapy, meditation and relaxation, 
or positive reinforcement in the classroom have relatively large effects on 
outcomes such as functioning levels, blood pressure, and learning (d-values 
range from .85 to 1.17).

It is important to keep in mind that “small,” “medium,” or “large” effect 
refers to the size of the effect, but not necessarily to its importance. For 
example, a new security screening procedure might lead to a small change 
in rates of detecting threats, but if this change translates into hundreds of 
lives saved at a small cost, the effect might be judged to be both important 
and worth paying attention to.

When the true treatment effect is very small, it might be hard to accu-
rately and consistently detect this effect in successive samples. For example, 
aspirin can be useful in reducing heart attacks, but the effects are relatively 
small (d =.068; see, however, Rosenthal, 1993). As a result, studies of 20 or 
30 patients taking an aspirin or a placebo will not consistently detect the 
true and life-saving effects of this drug. Large sample studies, however, pro-
vide compelling evidence of the consistent effect of aspirin on heart attacks. 
On the other hand, if the effect is relatively large, it is easy to detect, even 
with a relatively small sample. For example, cognitive ability has a strong 
influence on performance in school (d is approximately 1.10), and the effects 

Table 1.2 Examples of Effect Sizes Reported in Lipsey and Wilson (1993) Review

Dependent Variable d

Small Effects (d = .20)
Treatment programs for juvenile delinquents Delinquency outcomes .17
Worksite smoking cessation/reduction 
programs

Quit rates .21

Small versus large class size, all grade levels Achievement measures .20

Medium Effects (d = .50)
Behavior therapy versus placebo controls Various outcomes .51
Chronic disease patient education Compliance and health .52
Enrichment programs for gifted children Cognitive, creativity, 

affective outcomes
.55

Large Effects (d = .80)
Psychotherapy Various outcomes .85
Meditation and relaxation techniques Blood pressure .93
Positive reinforcement in the classroom Learning 1.17
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of individual differences in cognitive ability are readily noticeable even in 
small samples of students.

Decision criteria and power. Finally, the standard or decision criteria used 
in hypothesis testing has a critical impact on statistical power. The stan-
dards that are used to test statistical hypotheses are usually set with a goal 
of minimizing Type I errors; alpha levels are usually set at .05, .01, or some 
other similarly low level, reflecting a strong bias against treating study out-
comes that might be due to nothing more than sampling error as meaningful 
(Cowles & Davis, 1982). Setting a more lenient standard makes it easier to 
reject the null hypothesis, and while this can lead to Type I errors in those 
rare cases where the null is actually true, anything that makes it easier to 
reject the null hypothesis also increases the statistical power of the study.

As Figure 1.1 shows, there is always a tradeoff between Type I and 
Type II errors. If you make it very difficult to reject the null hypothesis, you 
will minimize Type I errors (incorrect rejections), but you will also increase 
the number of Type II errors. That is, if you rarely reject the null, you will 
often incorrectly dismiss sample results as mere sampling error, when they 
may in fact indicate the true effects of treatments. Numerous authors have 
noted that procedures to control or minimize Type I errors can substantially 
reduce statistical power and may cause more problems (i.e., Type II errors) 
than they solve (Cohen, 1994; Sedlmeier & Gigerenzer, 1989).

Power analysis and the general linear model. In the chapters that follow, 
we describe a simple and general model for statistical power analysis. This 
model is based on the widely used F statistic. This statistic and variations on 
the d are used to test a wide range of statistical hypotheses in the context 
of the general linear model (Cohen & Cohen, 1983; Horton, 1978; Tatsuoka, 
1993b). The general linear model provides the basis for correlation, mul-
tiple regression, analysis of variance, discriminant analysis, and all of the 
variations of these techniques. The general linear model subsumes a large 
proportion of the statistics that are widely used in the behavioral and social 
sciences, and by tying statistical power analysis to this model, we will show 
how the same simple set of techniques can be applied to an extraordinary 
range of statistical analyses.

Statistical Power of Research in the Social and Behavioral Sciences

Research in the social and behavioral sciences often shows shockingly low 
levels of power. Starting with Cohen’s (1962) review of research published 
in the Journal of Abnormal and Social Psychology, studies in psychology, 
education, communication, journalism, and other related fields have rou-
tinely documented power in the range of .20 to .50 for detecting small to 
medium treatment effects (Sedlmeier & Gigerenzer, 1989). Despite decades 
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of warnings about the consequences of low levels of statistical power in the 
behavioral and social sciences, the level of power encountered in published 
studies is lower than .50 (Mone, Mueller, & Mauland, 1996). In other words, 
it is typical for studies in these areas to have less than a 50% chance of 
rejecting the null hypothesis. If you believe that the null hypothesis is virtu-
ally always wrong (i.e., that treatments have at least some effect, even if it is 
a very small one), this means that at least half of all studies in the social and 
behavioral sciences (perhaps as many as 80%) are likely to reach the wrong 
conclusion by making a Type II error when testing the null hypothesis.

These figures are even more startling and discouraging when you realize 
that these reviews have examined the statistical power of published research. 
Given the strong biases against publishing methodologically suspect studies 
or studies reporting null results, it is likely that the studies that survive the 
editorial review process are better than the norm, that they show stronger 
effects than similar unpublished studies, and that the statistical power of 
unpublished studies is even lower than the power of published studies.

Studies that do not reject the null hypothesis are often regarded by 
researchers as failures. The levels of power reported above suggest that “fail-
ure,” defined in these terms, is quite common. If a treatment effect is small, 
and a study is designed with a power level of .20 (which is depressingly com-
mon), researchers are 4 times as likely to fail (i.e., fail to reject the null) as to 
succeed. Power of .50 suggests that the outcome of a study is basically like 
the flip of a coin. A researcher whose study has power of .50 is just as likely 
to fail to reject the null hypothesis as he or she is to succeed. It is likely that 
much of the apparent inconsistency in research findings is due to nothing 
more than inadequate power (Schmidt, 1992). If 100 studies are conducted, 
each with power of .50, approximately half of them will reject the null and 
approximately half will not. Given the stark implications of low power, it is 
important to consider why research in the social and behavioral sciences is 
so often conducted in a way in which failure is more likely than success.

The most obvious explanation for low level of power in the social and 
behavioral sciences is the belief that social scientists tend to study  treatments, 
interventions, etc., that have small and unreliable effects. Until recently, this 
explanation was widely accepted, but the widespread use of meta-analysis in 
integrating scientific literature suggests that this is not necessarily the case. 
There is now ample evidence from literally hundred of analyses of thou-
sands of individual studies that the treatments, interventions, and the like 
studied by behavioral and social scientists have substantial and meaningful 
effects (Haase, Waechter, & Solomon, 1982; Hunter & Hirsh, 1987; Lipsey, 
1990; Lipsey & Wilson, 1993; Schmitt, Gooding, Noe, & Kirsch, 1984); these 
effects are of a similar magnitude as many of the effects reported in the 
physical sciences (Hedges, 1987).
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A second possibility is that the decision criteria used to define “statis-
tical significance” are too stringent. We argue in several of the chapters 
that follow that researchers are often too concerned with Type I errors and 
insufficiently concerned with statistical power. However, the use of overly 
stringent decision criteria is probably not the best explanation for low levels 
of statistical power.

The best explanation for the low levels of power observed in many areas of 
research is many studies use samples that are much too small to provide accu-
rate and credible results. Researchers routinely use samples of 20, 50, or 75 
observations to make inferences about population parameters. When sample 
results are unreliable, it is necessary to set some strict standard to distinguish 
real treatment effects from fluctuations in the data that are due to simple 
sampling error, and studies with these small samples often fail to reject null 
hypotheses, even when the population treatment effect is fairly large.

On the other hand, very large samples will allow you to reject the null 
hypothesis even when it is very nearly true (i.e., when the effect of treatments 
is very small). In fact, the effects of sample size on statistical power are so 
profound that it is tempting to conclude that a significance test is little more 
than a roundabout measure of how large the sample is. If the sample is suffi-
ciently small, you will virtually never reject the null hypothesis. If the sample 
is sufficiently large, you will virtually always reject the null hypothesis.

Using Power Analysis

Statistical power analysis can be used for both planning and diagnosis. 
Power analysis is frequently used in designing research studies. The results 
of power analysis can help in determining how large your sample should 
be, or in deciding what criterion should be used to define “statistical signifi-
cance.” Power analysis can also be used as a diagnostic tool, to determine 
whether a specific study has adequate power for specific purposes, or to 
identify the sort of effects that can be reliably detected in that study.

Because power is a function of the sensitivity of your study (which is 
essentially a function of N), the size of the effect in the population (ES), 
and the decision criterion that is used to determine statistical significance, 
we can solve for any of the four values (i.e., power, N, ES, α), given the 
other three. However, none of these values is necessarily known in advance, 
although some values may be set by convention. The criterion for statisti-
cal significance (i.e., α) is often set at .05 or .01 by convention, but there is 
nothing sacred about these values. As we note later, one important use of 
power analysis is in making decisions about what criteria should be used to 
describe a result as “significant.”
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The Meaning of Statistical Significance

Suppose a study leads to the conclusion that “there is a statistically 
significant correlation between the personality trait of conscien-
tiousness and job performance.” What does statistically significant 
mean?

Statistically significant clearly does not mean that this correla-
tion is large, meaningful, or important (although it might be all of 
these). If the sample size is large, a correlation that is quite small 
will still be “statistically significant.” For example, if N = 20,000, a 
correlation of r = .02 will be significantly (α = .05) different from 
zero. The term statistically significant can be thought of as short-
hand for the following statement:

In this particular study, there is sufficient evidence to allow the 
researcher to reliably distinguish (with a level of confidence defined by 
the alpha level) between the observed correlation of .02 and a correla-
tion of zero.

In other words, the term statistically significant does not 
describe the result of a study, but rather describes the sort of result 
this particular study can reliably detect. The same correlation will 
be statistically significant in some studies (e.g., those that use a 
large N or a lenient alpha) and not significant in others. In the end, 
“statistically significant” usually says more about the design of the 
study than about the results. Studies that are designed with high 
levels of statistical power will, by definition, usually produce sig-
nificant results. Studies that are designed with low levels of power 
will not yield significant results. A significant test usually tells you 
more about the study design than about the substantive phenom-
enon being studied.

The ES depends on the treatment, phenomenon, or variable you are 
studying, and is usually not known in advance. Sample size is rarely set in 
advance, and N often depends on some combination of luck and resources 
on the part of the investigator. Actual power levels are rarely known, and it 
can be difficult to obtain sensible advice about how much power you should 
have. It is important to understand how each of the parameters involved is 
determined when conducting a power analysis.

Determining the effect size. There is a built-in dilemma in power analysis. 
In order to determine the statistical power of a study, ES must be known. 
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But if you already knew the exact strength of the effect the particular treat-
ment, intervention, etc., you would not need to do the study! The whole 
point of doing a study is to find out what effect the treatment has, and the 
true ES in the population is unlikely to ever be known.

Statistical power analyses are always based on estimates of ES. In many 
areas of study, there is a substantial body of theory and empirical research 
that will provide a well-grounded estimate of ES. For example, there are 
literally hundreds of studies of the validity of cognitive ability tests as pre-
dictors of job performance (Hunter & Hirsch, 1987; Schmidt, 1992), and 
this literature suggests that the relationship between test scores and perfor-
mance is consistently strong (corrected correlations of approximately .50 are 
common). Even where there is no extensive literature available, researchers 
can often use their experience with similar studies to realistically estimate 
effect sizes.

When there is no good basis for estimating effect sizes, power analyses 
can still be carried out by making a conservative estimate. A study that has 
adequate power to reliably detect small effects (e.g., a d of .20 or a correla-
tion of .10) will also have adequate power to detect larger effects. On the 
other hand, if researchers design studies with the assumption that effects 
will be large, they might have insufficient power to detect small but impor-
tant effects. Earlier, we noted that the effects of taking aspirin to reduce 
heart attacks are relatively small, but that there is still a substantial payoff 
for taking the drug. If the initial research that led to the use of aspirin 
for this purpose had been conducted using small samples, the researchers 
would have had little chance of detecting the life-saving effect of aspirin.

Determining the desired level of power. In determining desired levels of 
power, researchers must weigh the risks of running studies without adequate 
power against the resources needed to attain high levels of power. Research-
ers can always achieve high levels of power by using very large samples, but 
the time and expense required may not always justify the effort.

There are no hard-and-fast rules about how much power is enough, but 
there does seem to be consensus about two things. First, if at all possible, 
power should be greater than .50. When power drops to less than .50, a 
study is more likely to fail (i.e., it is unlikely to reject the null hypothesis) 
than succeed. It is hard to justify designing studies in which failure is the 
most likely outcome. Second, power of .80 or greater is usually judged to 
be adequate. The .80 convention is arbitrary (in the same way that signifi-
cance criteria of .05 or .01 are arbitrary), but it seems to be widely accepted, 
and it can be rationally defended.

Power of .80 means that success (rejecting the null) is 4 times as likely as 
failure. It can be argued that some number other than 4 might represent a 
more acceptable level of risk (e.g., if power = .90, success is 9 times as likely 
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as failure), but it is often prohibitively difficult to achieve power much in 
excess of .80. For example, to have a power of .80 in detecting a small treat-
ment effect (where the difference between treatment and control groups is 
d = .20), a sample of approximately 775 subjects is needed. If power of .95 
is desired, a sample of approximately 1,300 subjects will be needed. Most 
power analyses specify .80 as the desired level of power to be achieved, and 
this convention seems to be widely accepted.

Applying power analysis. There are four ways to use power analysis: 
(1) in determining the sample size needed to achieve desired levels of 
power, (2) in determining the level of power in a study that is planned or 
has already been conducted, (3) in determining the size of effect that can 
be reliably detected by a particular study, and (4) in determining sensible 
criteria for “statistical significance.” The chapters that follow will lay out the 
actual steps in doing a power analysis, but it is useful at this point to get a 
preview of the four potential applications of this method:

 1. Determining sample size. Given a particular ES, significance crite-
rion, and a desired level of power, it is easy to solve for the sam-
ple size needed. For example, if researchers think the correlation 
between a new test and performance on the job is .30, and they 
want to have at least an 80% chance of rejecting the null hypoth-
esis (with a significance criterion of .05), they need a sample of 
approximately 80 cases. When planning a study, researchers should 
routinely use power analysis to help make sensible decisions about 
the number of subjects needed.

 2. Determining power levels. If N, ES, and the criterion for statisti-
cal significance are known, researchers can use power analysis to 
determine the level of power for that study. For example, if the 
difference between treatment and control groups is small (e.g., d = 
.20), there are 50 subjects in each group, and the significance crite-
rion is α = .01, power will be only .05! Researchers should certainly 
expect that this study will fail to reject the null, and they might 
decide to change the design of this study considerably (e.g., use 
larger samples or more lenient criteria).

 3. Determining ES levels. Researchers can also determine what sort 
of effect could be reliably detected, given N, the desired level of 
power, and α. In the example above, a study with 50 subjects in 
both the treatment and control groups would have power of .80 
to detect a very large effect (approximately d = .65) with a .01 sig-
nificance criterion, or a large effect (d =.50) with a .05 significance 
criterion.

 4. Determining criteria for statistical significance. Given a specific 
effect, sample size, and power level, it is possible to determine the 
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significance criterion. For example, if you expect a correlation coef-
ficient to be .30, N = 67, and you want power to equal or exceed .80, 
you will need to use a significance criterion of α = .10 rather than 
the more common .05 or .01.

Hypothesis Tests Versus Confidence Intervals

Null hypothesis testing has been criticized on a number of grounds (e.g., 
Schmidt, 1996), but perhaps the most persuasive critique is that null hypoth-
esis tests provide so little information. It is widely recognized that the use of 
confidence intervals and other methods of portraying levels of uncertainty 
about the outcomes of statistical procedures have many advantages over 
simple null hypothesis tests (Wilkinson et al., 1999).

Suppose a study is performed that examines the correlation between 
scores on an ability test and measures of performance in training. The 
authors find a correlation of r = .30, and on the basis of a null hypothesis 
test, decide that this value is significantly (e.g., at the .05 level) different 
from zero. That test tells them something, but it does not really tell them 
whether the finding that r = .30 represents a good or a poor estimate of the 
relationship between ability and training performance. A confidence inter-
val (CI) would provide that sort of information.

Staying with this example, suppose researchers estimate the amount of 
variability expected in correlations from studies such as this and conclude 
that a 95% CI ranges from .05 to .55. This confidence interval would tell 
researchers exactly what they learned from the significance test (i.e., that 
they could be quite sure the correlation between ability and training perfor-
mance was not zero). A confidence interval would also tell them that r = .30 
might not be a good estimate of the correlation between ability and perfor-
mance; the confidence interval suggests that this correlation could be much 
larger or much smaller than .30. Another researcher doing a similar study 
using a larger sample might find a much smaller confidence interval, indicat-
ing a good deal more certainty about the generalizability of sample results.

As the previous paragraph implies, most of the statements that can be 
made about statistical power also apply to confidence intervals. That is, 
if you design a study with low power, you will also find that it produces 
wide confidence intervals (i.e., there will be considerable uncertainty about 
the meaning of sample results). If you design studies to be sensitive and 
power ful, these studies will yield smaller confidence intervals. Although the 
focus of this book is on hypothesis tests, it is important to keep in mind 
that the same facets of the research design (N, the alpha level) that cause 
power to go up or down also cause confidence intervals to shrink or grow. 
A powerful study will not always yield precise results (e.g., power can be 
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high in a poorly designed study that examines a treatment that has very 
strong effects), but in most instances, whatever researchers do to increase 
power will also lead to smaller confidence intervals and to more precision 
in sample statistics.

Summary

Power is defined as the probability that a study will reject the null hypoth-
esis when it is in fact false. Studies with high statistical power are very likely 
to detect the effects of treatments, interventions, etc., whereas studies with 
low power can lead researchers to dismiss potentially important effects as 
sampling error. The statistical power of a test is a function of the size of 
the treatment effect in the population, the sample size, and the particular 
criterion used to define statistical significance. Although most discussions 
of power analysis are phrased in terms of traditional null hypothesis test-
ing, where the hypothesis that treatments have no impact whatsoever is 
tested, power analysis can be fruitfully applied to any method of statistical 
hypothesis testing.

Statistical power analysis has received less attention in the behavioral and 
social sciences than it deserves. It is still routine in many areas for research-
ers to run studies with disastrously low levels of power. Statistical power 
analysis can and should be used to determine the number of subjects that 
should be included in a study, to estimate the likelihood that a study will 
reject the null hypothesis, to determine what sorts of effects can be reliably 
detected in a study, or to make rational decisions about the standards used 
to define “statistical significance.” Each of these applications of power analy-
sis is taken up in the chapters that follow.
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A Simple and General Model 
for Power Analysis

▼      ▼      ▼      ▼      ▼

This chapter develops a simple approach to statistical power analysis that is 
based on the widely used F-statistic. The F-statistic (or some transformation 
of F) is used to test statistical hypotheses in the general linear model (Hor-
ton, 1978; Tatsuoka, 1993b), a model that includes all of the variations of 
correlation and regression analysis (including multiple regression), analysis 
of variance and covariance (ANOVA and ANCOVA), t-tests for differences in 
group means, and tests of the hypothesis that the effect of treatments takes 
on a specific value or a value different from zero. Most of the statistical tests 
that are used in the social and behavioral sciences can be treated as special 
cases of the general linear model.

Analyses based on the F-statistic are not the only approach to statistical 
power analysis. For example, in the most comprehensive work on power 
analysis, Cohen (1988) constructed power tables for a wide range of statis-
tics and statistical applications, using separate effect size (ES) measures and 
power calculations for each class of statistics. Kraemer and Thiemann (1987) 
derived a general model for statistical power analysis based on the intraclass 
correlation coefficient and developed methods for evaluating the power of a 
wide range of test statistics using a single general table based on the intra-
class r. Lipsey (1990) used the t-test as a basis for estimating the statistical 
power of several statistical tests.

The idea of using the F distribution as the basis for a general system of 
statistical power analysis is hardly an original one; Pearson and Hartley 
(1951) proposed a similar model over 50 years ago. It is useful, however, to 
explain the rationale for choosing the F distribution in some detail because 
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the family of statistics based on F have a number of characteristics that help 
to take the mystery out of power analysis.

Basing a model for statistical power analysis on the F statistic provides 
a nice balance between applicability and familiarity. First, the F statistic is 
familiar to most researchers. This chapter and the one that follows show 
how to transform a wide range of test statistics and effect size measures 
into F statistics, and how to use those F values in statistical power analysis. 
Because such a wide range of statistics can be transformed into F values, 
structuring power analysis around the F distribution allows one to cover a 
great deal of ground with a single set of tables.

Second, the approach to power analysis developed in this chapter is flex-
ible. Unlike other presentations of power analysis, we do not limit ourselves 
to tests of the traditional null hypothesis (i.e., the hypothesis that treatments 
have no effect whatsoever). Traditional null hypothesis tests have been 
roundly criticized (Cohen, 1994; Meehl, 1978; Morrison & Henkel, 1970), 
and there is a need to move beyond such limited tests. Our discussions of 
power analysis consider several methods of statistical hypothesis testing 
and show how power analysis can be easily extended beyond the traditional 
null hypothesis test. In particular, we show how the model developed here 
can be used to evaluate the power of “minimum-effect” hypothesis tests 
(i.e., tests of the hypothesis that the effects of treatments exceed some pre-
determined minimum level).

Recently, researchers have devoted considerable attention to alternatives 
to traditional null hypothesis tests (e.g., Murphy & Myors, 1999; Rouanet, 
1996; Serlin & Lapsley, 1985, 1993), focusing in particular on tests of the 
hypothesis that the effect of treatments falls within or outside of some range 
of values. For example, Murphy and Myors discuss alternatives to tests of 
the traditional null hypothesis that involve specifying some range of effects 
that would be regarded as negligibly small, and then testing the hypothesis 
that the effect of treatments either falls within this range (H0) or is greater 
than this range (H1).

The F statistic is particularly well suited to tests of the hypothesis that 
effects fall within some range that can be reasonably described as “negli-
gible” versus falling above that range. The F statistic ranges in value from 
zero to infinity, with larger values indicating stronger effects. As we show 
in sections that follow, this property of the F statistic makes it easy to adapt 
familiar testing procedures to evaluate the hypothesis that effects exceed 
some minimum level, rather than simply evaluating the possibility that treat-
ments have no effect.

Finally, the F distribution explicitly incorporates one of the key ideas of 
statistical power analysis (i.e., that the range of values that might reasonably 
be expected for a variety of test statistics depends in part on the size of the 
effect in the population). As we note below, the concept of ES is reflected 
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very nicely in one of the three parameters that determines the distribution 
of the F statistic (i.e., the noncentrality parameter).

The General Linear Model, the F Statistic, and Effect Size

Before exploring the F distribution and its use in power analysis, it is useful 
to describe the key ideas in applying the general linear model as a method 
of structuring statistical analyses, to show how the F statistic is used in 
testing hypotheses according to this model, and to describe a very general 
index of whether treatments have large or small effects.

Suppose 200 children are randomly assigned to one of two methods of 
reading instruction. Each child receives instruction that is either accompa-
nied by audio-visual aids (computer software that “reads” to the child while 
showing pictures on a screen) or given without the aids. At the end of the 
semester each child’s reading performance is measured.

One way to structure research on the possible effects of reading instruc-
tion is to construct a mathematical model to explain why some children read 
well and others read poorly. This model might take a simple additive form:

 yijk = ai + bj + abij + eijk (2.1)

where
 yijk = The score for child k, who received instruction method i and 

audio-visual aid j
 ai = The effect of the method of reading instruction
 bj = The effect of audio-visual aids
 abij = The effect of the interaction between instruction and audio-

visual aids
 eijk = The part of the child’s score that cannot be explained by the 

treatments received

When a linear model is used to analyze a study of this sort, researchers 
can ask several sorts of questions. First, it makes sense to ask whether the 
effect of a particular treatment or combination of treatments is large enough 
to rule out sampling error as an explanation for why people receiving one 
treatment obtain higher scores than people not receiving it. As we explain 
below, the F statistic is well suited for this purpose.

Second, it makes sense to ask whether the effects of treatments are rela-
tively large or relatively small. There are a variety of statistics that might 
be used in answering this question, but one very general approach is to 
estimate the percentage of variance (PV) in scores that is explained by vari-
ous effects included in the model. Regardless of the specific approach taken 
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in statistical testing under the general linear model (e.g., analysis of vari-
ance, multiple regression, t-tests), the goal of the model is always to explain 
variance in the dependent variable (e.g., to help understand why some chil-
dren obtained higher scores than others).

Linear models such as the one above divide the total variance in scores 
into variance that can be explained by methods and treatment effects (i.e., 
the combined effects of instruction and audio-visual aids) and variance that 
cannot be explained in terms of the treatments received by subjects. The 
percentage of variance associated with each effect in a linear model pro-
vides one very general measure of whether treatment effects are large or 
small (i.e., whether they account for a lot of the variance in the dependent 
variable or only a little). The value of PV is closely linked to F.

There are a number of specific statistics that are used in estimating PV, 
notably eta-squared and R2, which are typically encountered in the contexts 
of the analysis of variance and multiple regression, respectively. We prefer 
to use the more general term PV because it describes a general index of the 
effects of treatments or interventions and is not limited to any specific sta-
tistic or statistical approach. As we show later, estimates of PV are extremely 
useful in structuring statistical power analyses for virtually any of the spe-
cific applications of the general linear model.

Understanding Linear Models

Linear models combine simplicity, elegance, and robustness, but 
for people who are the least bit math-phobic, they can seem intimi-
dating. Consider the model illustrated in Equation 2.1 (presented 
earlier in this chapter). The mathematical form of this model is

 yijk = ai + bj + abij + eijk

This model is easier to understand if we rewrite it as a story or an 
explanation. This equation says

In order to understand why some children perform better than 
others in reading (yijk), it is important to consider three things. 
First, the type of instruction (ai) matters. Second, it makes a dif-
ferent whether the child gets audio-visual aids (bj). Third, these 
two variables might interact; the effects of methods of instruc-
tion might be different for children who receive audio-visual aids 
than for those who do not (abij). Finally, all sorts of other vari-
ables might be important, but the effects of these variables were 
not measured and cannot be estimated in this experiment. The 
combined effects of all of the other things that affect performance 
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The F Distribution and Power

If you take the ratio of two independent estimates of the variance in a popu-
lation (e.g., s2

1 and s2
2), this ratio is distributed as F, where:

 F = s2
1/s2

2 (2.2)

The distribution of this F-statistic depends of the degrees of freedom for the 
numerator (s2

1) and the denominator (s2
2). The F ratio can be used to test a 

wide range of statistical hypotheses (e.g., testing for the equality of means or 
variances). In the general linear model, the F-statistic is used to test the null 
hypothesis (e.g., that means are the same across treatments) by comparing a 
measure of the variability in scores due to the treatments with a measure of 
the variability in scores you might expect as a result of sampling error. In its 
most general form, the F test in general linear models is as follows:

 F = Variability due to treatments/Variability due to error (2.3)

The distribution of the F-statistic is complex, and it depends in part on 
the degrees of freedom of the hypothesis or effect being tested (dfhyp) and 
the degrees of freedom for the estimate of error used in the test (dferr). If 
treatments have no real effect, the expected value of F is very close to 1.0 
[E(F ) = dferr/(dferr − 2)]. That is, if the traditional null hypothesis is true, the 
F ratios will usually be approximately 1.0. Sometimes, the F ratio might be a 
bit greater than 1.0 and sometimes it might be a bit less; depending on the 
degrees of freedom (dfhyp and dferr), the F values that are expected if the null 
hypothesis is true might cluster closely around 1.00, or they might vary con-
siderably. The F tables shown in most statistics textbooks provide a sense of 
how much F values might vary as a function of sampling error, given various 
combinations of dfhyp and dferr.

introduce some error (eijk) into the explanation of why some chil-
dren end up performing better than others.

Linear models are easiest to understand if you think of them 
as an answer to the question: “Why do the scores people receive 
on the dependent variable (Y) vary?” All linear models answer that 
question by identifying some systematic sources of variance (here, 
ai + bj + abij); whatever cannot be explained in terms of these sys-
tematic sources is explained in terms of error (eijk).
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The F and chi-squared distributions are closely related. The ratio of two 
chi-squared variables, each divided by its degrees of freedom, is distributed 
as F, and both distributions are special cases of a more general form (the 
gamma distribution). Similarly, the t-distribution is closely related to the F 
distribution; when the means of two groups are compared, the value of t is 
identical to the square root of F.

The noncentral F. Most familiar statistical tests are based on the central 
F distribution (i.e., the distribution of F-statistics expected when the tradi-
tional nil hypothesis is true). However, interventions or treatments normally 
have at least some effect, and the distribution of F values expected in any 
particular study is likely to take the form of a singly noncentral F distribu-
tion. The power of a statistical test is defined by the proportion of that sin-
gly noncentral F distribution that exceeds the critical value used to define 
“statistical significance.”

The shape and range of values in this noncentral F distribution is a func-
tion of both the degrees of freedom (dfhyp and dferr) and the “noncentrality” 
parameter (λ). One way to think of the noncentrality parameter is that it is 
a function of just how wrong the traditional null hypothesis is. When λ = 0, 
the traditional null hypothesis is true and the noncentral F is identical to the 
central F that is tabled in most statistics texts.

The exact value of the noncentrality parameter is a function of both ES 
and the sensitivity of the statistical test (which is largely a function of the 
number of observations, N). For example, in a study where n subjects are 
randomly assigned to each of four treatment conditions, λ = [nΣ(µj − µ)2 ]/σ2

e, 
where µj and µ represent the population mean in treatment group j and the 
population mean over all four treatments, and σ2

e represents the variance in 
scores due to sampling error. Horton (1978) noted that in many applications 
of the general linear model:

 λest = SShyp/MSerr (2.4)

where λest represents an estimate of the noncentrality parameter, SShyp rep-
resents the sum of squares for the effect of interest, and MSerr represents the 
mean square error term used to test hypotheses about that effect. Using PV 
to designate the proportion of the total variance in the dependent variable 
explained by treatments (which means that 1 − PV refers to the proportion 
not explained), the noncentrality parameter can be estimated using the fol-
lowing equation:

 λest = dferr [PV/(1 − PV)] (2.5)

Equations 2.4 and 2.5 provide a practical method for estimating the value 
of the noncentrality parameter in many of the most common applications of 
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the general linear model.1 A more general form of Equation 2.5 that is useful 
from complex analyses of variance is:

 λest = [N − p] ∙ [PV/(1 − PV)] (2.6)

where
 N =  Number of subjects
 p =  Number of terms in the linear model

The noncentrality parameter reflects the positive shift of the F distribution as 
the size of the effect in the population increases (Horton, 1978). For example, 
if N subjects are randomly assigned to one of k treatments, the mean of the 
noncentral F distribution is approximately (N − k)(k + λ − 1)/(k − 1)(N − 3) 
as compared with an approximate mean of 1.0 for the central F-distribution. 
More concretely, assume that 100 subjects are assigned to one of four treat-
ments. If the null hypothesis is true, the expected value of F is approxi-
mately 1.0, and the value of F needed to reject the null hypothesis (α = .05) 
is 2.70. However, if the effect of treatments is in fact large (e.g., PV = .25), 
you should expect to find F values substantially greater than 1.0 most of 
the time; given this effect size, the mean of the noncentral F distribution 
is approximately 11.3, and more than 99% of the values in this distribution 
exceed 2.70. In other words, the power of this F test, given the large effect 
size of PV =.25, is greater than .99. If the population effect is this large, a 
statistical test comparing k groups and using a sample of N = 100 is virtually 
certain to correctly reject the null hypothesis.

The larger the effect, the larger the noncentrality parameter and the larger 
the expected value of F. The larger the F, the more likely it is that H0 will 
be rejected. Therefore, all other things being equal, the more noncentrality 
(i.e., the larger the effect or the larger the N), the higher the power.

1 Equations 2.4 and 2.5 are based on simple linear models in which there is only 
one effect being tested and the variance in scores is assumed to be due to either the 
effects of treatments or to error (e.g., this is the model that underlies the t-test or the 
one-way analysis of variance). In more complex linear models, dferr does not neces-
sarily refer to the degrees of freedom associated with variability in scores of individ-
uals who receive the same treatment (within-cell variability in the one-way ANOVA 
model), and a more general form of Equation 2.5 (λest = [(N − k) ∙ (PV/(1 − PV)], where 
N represents the number of observations and k represents the total number of terms 
in the linear model) is needed. When N is large, Equation 2.5 yields very similar 
results to those of the more general form shown above.
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Using the Noncentral F Distribution to Assess Power

Chapter 1 laid out the three steps in conducting a statistical power analysis, 
determining the critical value for significance, estimating ES, and estimating 
the proportion of test statistics likely to exceed critical value. Applying these 
three steps here, it follows that power analysis involves the following:

 1. Deciding the value of F that is needed to reject H0. As we will see 
later in this chapter, this depends in part on the specific hypothesis 
being tested.

 2. Estimating the ES and the degree of noncentrality. Estimates of PV can 
be used to estimate the noncentrality parameter of the F distribution.

 3. Estimating the proportion of the noncentral F that lies above the 
critical F from step 1.

In the chapters that follow, we present a simple method of conducting 
power analyses that is based on the noncentral F distribution. This method 
can be used with a wide variety of statistics and can be used for testing 
both nil hypotheses and null hypotheses that are based on specifications 
of negligible versus important effects. Methods of approximating the singly 
noncentral F distribution are presented in subsequent chapters. Appendix A 
presents a table of F values obtained by estimating the noncentral F distribu-
tion over a range of dfhyp, dferr, and ES values.

The table presented in Appendix A saves you the difficulty of estimating 
noncentral F values, and more importantly, of directly computing power 
estimates for each statistical test. This table can be used to test both tradi-
tional and minimum-effect null hypotheses, and to estimate the statistical 
power of tests of both types of hypotheses.

Approximations. The methods described in this book are simple and 
general, but are not always precise to the last decimal place. There are 
many statistical procedures that fall under the umbrella of the “general 
linear model,” and some specific applications of this model may present 
unique complications, or distributional complexities. However, the methods 
described in this book provide acceptably accurate approximations for the 
entire range of statistical tests covered under this general model.

Approximations are particularly appropriate for statistical power analysis 
because virtually all applications of this technique are themselves approxi-
mations. That is, because the exact value of the population effect size is 
rarely known for certain, power analyses usually depend on approximations 
and conventions rather than working from precise knowledge of critical 
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parameters. Thus, in power analysis good approximations are usually quite 
acceptable.

For example, power analysis might be used to guide the selection of 
sample sizes or significance criteria in a study. Power analysis typically func-
tions as a decision aid rather than as a precise forecasting technique, and it 
is rare that different decisions will be reached when exact versus approxi-
mate power values are known. That is, users of power analysis are likely 
to reach the same decisions if they know that power is approximately .80 
in a particular study as they would reach if they knew that the power was 
precisely .815.

Statistical power analysis is an area where precision is not of sufficient 
value to justify the use of cumbersome methods in pursuit of the last deci-
mal place. It is possible to use the general method presented in this book 
to closely approximate the more specific findings that are obtained when 
power analyses are tailored to specific analytic techniques (see Cohen, 1988, 
for discussions of power analysis for each of several types of statistical 
tests). Our approach allows researchers to estimate statistical power for sta-
tistical tests in the general linear model by translating specific test statistics 
or effect size measures into their equivalent F values.

Translating Common Statistics and ES Measures Into F

The model developed here is expressed in terms of the F-statistic, which 
is commonly reportetd in studies that employ analysis of variance or mul-
tiple regression. However, many studies report results in terms of statistics 
other than the F value. It is useful to have at hand formulas for translating 
common statistics and effect size measures (e.g., d) into their F equivalents. 
Table 2.1 presents a set of formulas for doing just that.

Suppose a study compared the effectiveness of two smoking cessation 
programs, using a sample of 122 adults, who were randomly assigned to 
treatments. The researchers used an independent-groups t-test to compare 
scores in these two treatments and reported t-value of 2.48. This t-value 
would be equivalent to an F value of 6.15, with 1 and 120 degrees of freedom. 
The tabled value for F with 1 and 120 degrees of freedom (α = .05) is 3.91, 
and the researchers would be justified in rejecting the null hypothesis.

Suppose another study (N = 103) reported a squared multiple correlation 
of R2 = .25 between a set of four vocational interest tests and an occupa-
tional choice measure. Applying the formula shown in Table 2.1, this R2 
value would yield an F value of 8.33, with 4 and 100 degrees of freedom. 
The critical value of F needed to reject the traditional null hypothesis (α = 
.05) is 2.46; the reported R2 is significantly different from zero.
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Suppose that in another study, hierarchical regression is used to deter-
mine the incremental contribution of several new predictor variables over 
and above the set of predictor variables already in an equation. For example, 
in a study with N = 250, two spatial ability tests were used to predict per-
formance as an aircraft pilot; scores on these tests explained 14% of the 
variability in pilots’ performances (i.e., R2 = .14). Four tests measuring other 
cognitive abilities were added to the predictor battery, and this set of six 
tests explained an additional 15% of the variance in performance (i.e., when 
all six tests are used to predict performance, R2 = .29). The F-statistic that 
corresponds to this increase in R2 is F(4, 243) = 12.83. 

Table 2.1 Translating Common Statistics Into F Equivalent Values

Degrees of 
Freedom

Statistic F Equivalent dfhyp dferr

t-Test for difference 
between means

F (1, dferr) = t2 — N − 2

Correlation coefficient F(1, dferr) =
r

r

2

21

dferr

−
— N − 2

Multiple R2 F(dfhyp, dferr) =
R

R

2

21

df

df
err

hyp( )−
p N − p − 1

Hierarchical regression F(dfhyp, dferr) =
( )

( – )

R R

R
F R

F

2 2

21

− /df

/df
hyp

err

k N − p − 1

Chi-squared (χ2) F(dfhyp, dferr) = χ2/dfhyp dfhyp  ∞

Standardized mean 
difference (d)

F(1, dferr) =
d2

4

dferr — N − 2

d (repeated measures) F(1, dferr) =
d

r

2

4 1

dferr

ab−
— N − 2

Note: p = number of X variables in multiple regression equation. R2
F and R2

R rep-
resent the full and reduced model R2 values, respectively, where the k 
represents the difference in the number of X variables in the two models. 
A χ2 variable with df = dfhyp is distributed as F with df of dfhyp and infinity. 
When d is used to describe the difference between two measures obtained 
from the same sample, rab refers to the correlation between the two mea-
sures being compared.
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As Table 2.1 shows, χ2 values can be translated into F equivalents. For exam-
ple, if a researchers found a χ2 value of 24.56 with 6 degrees of freedom, 
the equivalent F value would be 4.09 (i.e., 24.56/6), with dfhyp = 6 and dferr 
being infinite. Because the F table asymptotes as dferr grows larger, dferr = 
10,000 (which is included in the F table listed in Appendix B) represents an 

Worked Example: Hierarchical Regression

In Table 2.1, we presented a formula that can be used to calculate 
the F equivalent of the increase in R2 reported in a study that used 
hierarchical regression. The formula is as follows:

 F
R R

R

F R

F
( , )

( )

( )
df df

/df

/df
hyp err

hyp

er

=
−

−

2 2

21 rr

In this study (N = 250), the researchers started with two predic-
tors and reported R2 = .15, then added four more predictors and 
reported R2 = .29. It follows that:

dfhyp = 4  This is the number of predictors that is added 
to the original set of two predictors. The null 
hypothesis is that adding these four predictors 
leads to no real increase in R2.

dferr = 250 − 6 − 1 = 243

R2
F = .29 The full model containing all six tests explains 

29% of the variance in performance.

R2
R = .14 The restricted model that contains only the first 

two tests explains 14% of the variance.

F(4, 243) = [(.29 − .14)/4]/[(1 −.29)/243]

F(4, 243) =.0375/.00292 = 12.84

Most F tables will not report critical values for 4 and 243 degrees of 
freedom, but if you interpolate between the critical values of F (α = 
.05) for 4 and 200 degrees of freedom and for 4 and 300 degrees 
of freedom, you will find that F values of 2.41 or greater will allow 
you to reject the null hypothesis. With F(4, 243) = 12.84, you can 
easily reject the null hypothesis and conclude that adding these 
four predictors does lead to a change in R2.
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 excellent approximation to infinite degrees of freedom for the error term. 
The critical value of F (α = .05) needed to reject the null hypothesis in this 
study is 2.10, so once again, the null hypothesis will be rejected.

Table 2.1 also includes the ES measure d. This statistic is not commonly 
used in hypothesis testing per se, but it is widely used in describing the 
strength of effects, particularly when the scores of those receiving a treat-
ment are compared with scores in a control group. This statistic can also 
be easily transformed into its F equivalent using the formulas shown in 
Table 2.1.

Finally, a note concerning terminology. In the section above, and in sev-
eral sections that follow, we use the term “F equivalent.” We find this term 
to be explicit in recognizing that even when the results of a statistical test in 
the general linear model are reported in terms of some statistic other than 
F (e.g., r, t, d), it is nevertheless usually possible to transform these statistics 
into the F value that is equivalent in meaning.

Worked Examples: Using the d-Statistic

The d-statistic can be used to describe the strength of an effect in a 
single study. For example, if a researcher was comparing two treat-
ments and reported d = .50, this would indicate that the difference 
between treatment means was one half as large as the standard 
deviation within each group. An even more common use of d is in 
meta-analysis, in which the results of several studies are summa-
rized to estimate how large an effect is in the population.

Suppose, for example, that previous research suggests that 
the effect size d should be about .25. This ES measure would be 
extremely useful in conducting power analyses. Given this value of 
d, a study in which 102 subjects were randomly assigned to one of 
these two treatments would be expected to yield the following:

 F
d

( , )1
4

2

df
df

err
err=

where
 d = .25
 dferr = N − 2 = 102 − 2 = 100

and

 F(1,100) = [.252 ∙ 100]/4
 F(1,100) = [.0625 ∙ 100]/4 = 1.56
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The calculations above are based on the independent groups t, 
in which participants are randomly assigned to one of two treat-
ments. Suppose you used a repeated measures design (e.g., one 
in which scores of 102 subjects on a pre-test and a post-test were 
compared, with a correlation of .60 between these scores). If you 
expect that d = .25, the formula for transforming repeated-mea-
sures t yields the following:

 F
d

( , )1
4 1

2

df
df

r
err

err

ab

=
−

where
 d = .25
 dferr = N − 2 = 102 − 2 = 100
 rab = .60

and

 F(1,100) = [.252 ∙ 100]/[4 ∙ .632] [the square root of (1 − .60) is 
.632]

 F(1,100) = [.0625 ∙ 100]/2.529 = 2.47

The critical value for F (α = .05) when the degrees of freedom are 1 
and 100 is 3.93, suggesting that the studies described above would 
not have sufficient power to allow you to reject the traditional null 
hypothesis.

As you may have noticed, in the examples above we included 
the sample size. The reason for this is that the value and the inter-
pretation of the F-statistic depends in part on the size of the sam-
ple (in particular, on the degrees of freedom for the error term, or 
dferr). In the preceding paragraph, a d value of .25 in a sample of 
102 would yield F(1, 100) = 1.56. In a study that randomly assigned 
375 participants to treatments, the same d would translate into F(1, 
373) = 5.82, which would be statistically significant. This reflects 
the fact that the same difference between means is easier to sta-
tistically detect when the sample (and therefore dferr) is large than 
when the sample is small. Small samples produce unstable and 
unreliable results, and in a small sample it can be hard to distin-
guish between true treatment effects and simple sampling error.
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Transforming From F to PV. Table 2.1 shows how to transform com-
monly used statistics and effect size estimates into their equivalent F values. 
Table 2.1 can also often be used to transform from F values into ES mea-
sures. For example, suppose you randomly assigned participants into four 
different treatments and used analysis of variance to analyze the data. You 
reported a significant F value [F(3, 60) = 2.80], but this does not provide 
information about the strength of the effect. Equation 2.7 allows you to 
obtain an estimate of the proportion of variance in the dependent variable 
explained by the linear model (i.e., PV), given the value of F:

 PV = (dfhyp ∙ F)/[(dfhyp ∙ F) + dferr] (2.7)

which yields

 PV = (3 ∙ 2.80)/[(3 ∙ 2.80) + 60] (2.8)

 PV = 8.4/68.4 = .123

In other words, the F value reported in this study allows you to determine 
that treatments accounted for 12% of the variance in outcomes.

Equation 2.7 cannot be used in complex, multifactor analyses of variance 
because the F-statistic for any particular effect in a complex ANOVA model 
and its degrees of freedom do not contain all of the information needed 
to estimate PV. In Chapters 7 and 8, we discuss the application of power 
analyses to these more complex designs and will show how information 
presented in significance tests can be used to estimate ES.

Defining Large, Medium, and Small Effects

Cohen’s books and papers on statistical power analyses (e.g., Cohen, 1988) 
have suggested a number of conventions for describing treatment effects as 
“small,” “medium,” or “large.” These conventions are based on surveys of the 
literature and seem to be widely accepted, at least as approximations. Table 2.2 
presents conventional values for describing large, medium, and small effects, 
expressing these effects in terms of a number of widely used statistics.

For example, a small effect might be described as one that accounts for 
about 1% of the variance in outcomes, or one where the treatment mean is 
about one fifth of a standard deviation higher in the treatment group than in 
the control group, or as one where the probability that a randomly selected 
member of the treatment group will have a higher score than a randomly 
selected member of the control group is about .56.
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The values in Table 2.2 are approximations and nothing more. In fact, a 
few minutes with a calculator shows that they are not all exactly equivalent 
(e.g., if you square an r value of .30, you get an estimate of PV =.09, not 
PV = .10). Although they are not exact or completely consistent, the values in 
Table 2.2 are nevertheless very useful. These conventions provide a starting 
point for statistical power analysis, and they provide a sensible basis for com-
paring the results in any one study with a more general set of conventions.  

Nonparametric and Robust Statistics

The decision to anchor our model for statistical power analysis to the F dis-
tribution is driven primarily by the widespread use of statistical tests based 
on that distribution. The F-statistic can be used to test virtually any hypoth-
esis that falls under the broad umbrella of the “general linear model.” There 
are, however, some important statistics that do not fall under this umbrella, 
and these are not easily transformed into a form that is compatible with the 
F distribution.

For example, a number of robust or “trimmed” statistics have been devel-
oped in which outliers are removed from observed distributions prior to 
estimating standard errors and test statistics (Wilcox, 1992; Yuen, 1974). 
Trimming outliers from data can sometimes substantially reduce the effects 
of sampling error, and trimmed statistics can have more power than their 
normal-theory equivalents (Wilcox). The power tables developed in this 
book are not fully appropriate for trimmed statistics and can substantially 
underestimate the power of these statistics when applied in small samples.

A second family of statistics that are not easily accommodated using the 
model developed here are those statistics referred to as “nonparametric” or 
distribution-free statistics. Nonparametric statistics do not require a priori 
assumptions about distributional forms and tend to use little information 
about the observed distribution of data in constructing statistical tests. 

Table 2.2 Some Conventions for Defining Effect Sizes

PV r d f 2

Probability of a Higher 
Score in Treatment Group

Small effects .01 .10 .20 .02 .56
Medium effects .10 .30 .50 .15 .64
Large effects .25 .50 .80 .35 .71

Note: Cohen’s f 2 = R2/(1 − R2) = η2/(1 − η2) = PV/(1 − PV), where η2 = 
SStreatments /SStotal.

Sources: Cohen (1988), Grissom (1994).
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The conventional wisdom has long been that nonparametric tests have less 
power than their parametric equivalents (Siegel, 1956), but this is not always 
the case. Nonparametric tests can have more power than their parametric 
equivalents under a variety of circumstances, especially when conducting 
tests using distributions with heavy tails (i.e., more extreme scores than 
would be expected in a normal distribution; Zimmerman & Zumbo, 1993). 
The methods developed here do not provide accurate estimates of the power 
of robust or nonparametric statistics.

From F to Power Analysis

Earlier in this chapter, we noted that statistical power analysis involves a 
three-step process. First, you must determine the value of F that is needed to 
reject the null hypothesis (i.e., the critical value of F). Virtually any statistics 
text is likely to include a table of critical F values that can be used to test the 
traditional null hypothesis. The great advantage of framing statistical power 
analysis in terms of the noncentral F distribution is that this approach makes 
it easy to test a number of alternatives to the nil hypothesis. As we show in 
Chapter 3, this approach to statistical power analysis makes it easy to evalu-
ate the power of tests of the hypothesis that treatments have effects that are 
not only greater than zero, but that are also sufficiently large that they are 
substantively meaningful. Like tests of the traditional null hypothesis, these 
minimum-effect tests start with the identification of critical values for the F 
statistic.

Once the critical value of F is established for any particular test, the 
assessment of statistical power is relatively easy. As we noted in Chapter 1, 
the power of a statistical test is the proportion of the distribution of test 
statistics expected for a particular study that is above the critical value used 
to establish statistical significance. If you determine that the critical value 
for the F statistic that will be used to test hypotheses in your study is equal 
to 6.50, all you need to do to conduct a power analysis is to determine the 
noncentral F distribution that corresponds with the design of your study 
(which determines dfhyp and dferr) and the ES you expect in that study, which 
determines the degree of noncentrality of the F distribution. If the critical 
value of F is equal to 6.50, power will be defined as the proportion of this 
noncentral F distribution that is equal to or greater than 6.50.

A number of methods can be used to carry out statistical power analyses. 
For the mathematically inclined, it is always possible to analytically estimate 
the noncentral F distribution; we discuss analytic methods below. However, 
most users of power analysis are likely to want a simpler set of methods. We 
discuss the use of power tables and power calculators in the section below.
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Analytic and Tabular Methods of Power Analysis

Analytic methods of power analysis are the most flexible and the most 
exact, but also the most difficult to implement. Power tables or graphs pro-
vide good approximations of the statistical power of studies under a wide 
range of conditions. Our preference is to work with tables; in part the type 
of graphs needed to plot a variable (i.e., power) as a function of three other 
variables (i.e., N, α, and ES) strike us as complicated and difficult to use. 
Software and calculators that can be used to estimate statistical power com-
bine the flexibility and precision of analytic methods with the ease of use 
of power tables.

Analytic methods. The most general method for evaluating statistical 
power involves estimating the noncentral F distribution that corresponds 
with the design of your study and the ES you expect. While this analytic 
method is both precise and flexible, it is also relatively cumbersome and 
time consuming. That is, the direct computation of statistical power involves 
(1) determining some standard for statistical or practical significance, (2) esti-
mating the noncentral F distribution that corresponds to the statistic and 
study being analyzed, and (3) determining the proportion of that noncentral 
F distribution that lies above the standard. Even with a relatively power-
ful computer, the processes can be time consuming and may be daunting 
to many consumers of power analysis; for readers interested in analytic 
approaches, Appendix A presents several methods for estimating the nec-
essary distributions. A more user-friendly approach is to develop tables or 
calculators that contain the essential information needed to estimate statisti-
cal power.

Power tables. A number of excellent books present extensive tables 
describing the statistical power of numerous tests; Cohen (1988) is the most 
complete source currently available. The approach presented here is sim-
pler (although it provides slighty less information) and is considerably more 
compact. Unlike Cohen (1988), who developed tables for many different 
statistics, our approach involves translating different statistics into their F 
equivalents. This allows us to present virtually all the information needed 
to perform significance tests and power analyses for statistical tests in the 
general linear model in a single table.

Appendix B contains a table we call the “One-Stop F Table.” This is called 
a “one-stop” table because each cell contains the information needed for 
(1) conducting traditional significance tests, (2) conducting power analyses 
at various key levels of power, (3) testing the hypothesis that the effect in 
a study exceeds various criteria used to define negligibly small or small to 
moderate effects, and (4) estimating power for these “minimum-effect” tests. 
Minimum-effects tests are explained in detail in Chapter 3; at this point 
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we focus on the use of the One-Stop F Table for testing the traditional null 
hypothesis and for evaluating the power of these tests.

Using the One-Stop F Table

Each cell in the One-Stop F Table contains 12 pieces of information. The 
first four values in each cell are used for testing significance and estimating 
power for traditional null hypothesis tests. The next eight values in each 
cell are used for testing significance and estimating power when testing the 
hypothesis that treatment effects are negligible, using two different opera-
tional definitions of a “negligible” effect (i.e., treatments account for 1% or 
less of the variance, or they account for 5% or less of the variance). In this 
chapter, we focus on the first four pieces of information presented for each 
combination of dfhyp and dferr.

This table presents the critical value of F for testing the traditional null 
hypothesis, using α values of .05 and .01, respectively. We label these 
“nil .05” and “nil .01.” For example, consider a study in which 54 subjects are 
randomly assigned to one of four treatments, and the analysis of variance is 
used to analyze the data. This study will have dfhyp and dferr values of 3 and 
50, respectively. The critical values of F for testing the nil hypothesis will 
be 2.79 when α equals .05; the critical value of F for testing the nil hypoth-
esis will 4.20 when α equals .01. In other words, in order to reject the nil 
hypothesis (α = .05), the value of the mean square for treatments will have 
to be at least 2.79 times as large as the value of the mean square for error 
(i.e., F = MStreatments/MSerr).

The next two values in each cell are F equivalents of the effect size values 
needed to obtain power of .50 and power of .80 (we label these “pow .50” 
and “pow .80”), given an α level of .05 and the specified dfhyp and dferr. 
The values of pow .50 and pow .80 for 3 and 50 degrees of freedom in the 
table are 1.99 and 3.88, respectively. That is, a study designed with 3 and 
50 degrees of freedom will have power of .50 for detecting an effect that is 
equivalent to F = 1.99. It will have power of .80 for detecting an effect that 
is equivalent to F = 3.88. F equivalents are handy for creating tables, but 
in order to interpret these values, it is necessary to translate them into ES 
measures.

Because subjects are randomly assigned to treatments and the simple 
analysis of variance is used to analyze the data, we can use Equation 2.7, 
presented earlier in this chapter, to transform these F values into equivalent 
F values (i.e., PV = (dfhyp ∙ F)/[(dfhyp ∙ F) + dferr]). Applying this formula, you 
will find that in a study with dfhyp and dferr values of 3 and 50, you will need 
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a moderately large ES to achieve power of .50. Translating the F value of 2.16 
into its equivalent PV, you will find:

 PV = (3 ∙ 1.99)/[(3 ∙ 1.99) + 50] = 5.97/55.97 = .106 (2.9)

That is, in order to achieve power of .50 with dfhyp and dferr values of 3 
and 50, you will need to be studying treatments that account for at least 10% 
of the variance in outcomes. Applying the same formula to the F needed to 
achieve power of .80 (i.e., F = 3.88), you will find that you need an effect 
size of PV = .188. In other words, in order to achieve power of .80 with 
this study, you will need to study a truly large effect, in which treatments 
account for approximately 19% or greater of the variance in outcomes.

Suppose that on the basis of your knowledge of the scientific literature, 
you expect the treatments being studied to account for about 15% of the 
variance in outcomes. This ES falls between PV = .10 and PV = .19, which 
implies that power of this study will fall somewhere between .50 and .80. 
As we show in the section that follows, it is easy to estimate where in 
this range the power of this study actually falls (in this example, power is 
approximately .65).

Interpolating between tabled values. As with all F tables, our One-Stop 
F Table is incomplete, in that it does not table all possible values of dfhyp 
and dferr. Fortunately, relatively good approximations to all of the values in 
this table can be obtained by linear interpolation. For example, our table 
includes dferr values of 50 and 60. If you wanted to find appropriate F values 
for dferr = 55, these would lie about halfway between the values for dferr = 50 
and dferr = 60. Thus, the approximate F needed to reject the traditional null 
hypothesis (α = .05) with dfhyp = 2, dferr = 55 would be 3.165 (i.e., halfway 
between 3.15 and 3.18). Similarly, if dferr = 48, you could estimate the appro-
priate F values by computing the value that F was 80% of the distance 
between the tabled F for dferr = 40 and the tabled F for dferr = 50. In general, 
the value of the interpolated F can be obtained using the formula below: 
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where
 Fbelow = Tabled F below the value to be calculated
 Fabove = Tabled F above the value to be calculated
 dfbelow = dferr for tabled F below the value to be calculated
 dfabove = dferr for tabled F above the value to be calculated
 dfint = dferr for F value to be calculated
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It is important to keep in mind that linear interpolation will yield approxi-
mate values only. For the purposes of statistical power analyses, these inter-
polations will virtually always be sufficiently accurate to help you to make 
sensible decisions about the design of studies, the choice of criteria for 
defining “statistical significance,” etc.

Worked Example: Interpolating Between 
Values for Power of .50 and .80

A second application of linear interpolation is likely to be even 
more useful. Our table includes F equivalents for the effect size 
values needed to obtain power levels of .50 and .80, respectively. 
In the example described earlier, where dfhyp = 3 and dferr = 50, F 
values of 1.99 and 3.88 are equivalent to the population PV values 
that would be needed to obtain power levels of .50 or .80. These 
F values translated into PV values in a study such as this are .10 
and .19, respectively. Here, you expected treatments to account for 
15% of the variance. If you translate this figure into its F equivalent 
(using formulas presented in Table 2.1), you obtain F of 2.94. You 
can use linear interpolation to estimate the power of this study, 
using a formula that closely parallels the formula used to interpo-
late F values:
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where
 Fhypothesized =  F equivalent for hypothesized size of the 

effect
 F.50 =  F equivalent of the PV needed to obtain 

power of .50 (α = .05)
 F.80 =  F equivalent of the PV needed to obtain 

power of .80 (α = .05)

In the example discussed above dfhyp = 3 and dferr = 50. If you 
expect treatments to account for 15% of the variance, the equiva-
lent F value is 2.94. In terms of Equation 2.11, Fhypothesized = 2.94, 
F.50 = 1.99, and F.80 = 3.88, which means that the power of this 
study for rejecting the null hypothesis (α = .05) is .64.
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The One-Stop F Calculator

It is often easier and more convenient to use a computer program rather 
than a set of tables to estimate statistical power. The One-Stop F Calculator 
program distributed with this book is the computer program analog for 
all tables at the back of this book, including the One-Stop F Table and the 
One-Stop PV Table. The One-Stop F Calculator program is written in Visual 
Basic and uses subroutines based on programs developed by Reeve (1986a, 
1986b, 1986c).

Figure 2.1 illustrates the screen that opens when the One-Stop F Calcu-
lator is installed on a computer. This calculator contains five options for 
power analysis: “Significance Testing,” “Power Analysis,” “Sample Size (df 
Error) Determination,” “Calculate Alpha and Power for a Completed Study,” 
and “Calculate Power for a Completed Study.” The calculator allows you 
to directly enter the information needed to complete each type of power 
analysis, or to go to a help screen that explains what information is needed 
and why. The calculator also gives you a quick way of looking up the vari-
ous methods used to translate test statistics into their equivalent F and PV 
values. To use the calculator, simply select the option you want to explore, 
enter the requested information in the white text boxes and hit “Calculate.”

To use this calculator, several decisions must be made. First, what 
hypothesis is being tested? The most common statistical test involved the nil 
hypothesis (i.e., the hypothesis that treatments have no effect). To test the 
traditional null hypothesis, enter the null hypothesis that treatments account 
for some negligible amount of variance (e.g., 1% or less of the variance), 
versus the alternate hypothesis that treatments have effects that are large 
enough to care about. These hypotheses can be easily tested by entering 
the appropriate effect size (e.g., .01 for 1% of the variance, .05 for 5%) in the 
“Effect Size” text box.

Depending on the option you choose (e.g., “Significance Testing”), you 
may need to enter the alpha level, dfhyp, dferr, PV, d, or F. For example, sup-
pose 120 subjects are randomly assigned to one of four treatments. You are 
interested in significance testing, using an alpha level of .05. In the “Signifi-
cance Testing” section, enter values of 0, .05, 3, and 116 in the “Effect Size,” 
“Alpha,” “dfhyp” and “dferr” boxes and press “Calculate.” The One-Stop F Cal-
culator will show that you will need an F value of 2.68 to achieve statistical 
significance, which is equivalent to a PV of .064.

To determine the effect size needed to achieve power of .80 for this same 
study, go to the “Power Analysis” option and enter values of 0, .80, .05, 3, 
and 116 in the “Effect Size,” “Power,” “Alpha,” “dfhyp” and “dferr” boxes and 
press “Calculate.” The One-Stop F Calculator will show that you will need a 
moderately large effect size (PV = .087) to achieve this level of power.
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Suppose you expected a somewhat smaller ES (e.g., PV = .05), and you 
want to determine the sample size needed to achieve power of .80. Go to 
the “Sample Size (dferr) Determination” option and enter values of 0, .80, .05, 
3 and .05 in the “Effect Size,” “Power,” “Alpha,” “dfhyp” and “PV” boxes and 
press “Calculate.” The One-Stop F Calculator will show that you will need 
a dferr of 203 to achieve this level of power. In the one-way analysis of vari-
ance, the total sample size is given by N = dfhyp + dferr + 1, which means that 
you will need a sample of 207 to achieve power of .80.

Suppose you calculate the value of F and find F = 2.50. The “Calculate 
Alpha and Power for a Completed Study” option allows you to determine 
the confidence with which you could reject the null hypothesis. Enter values 
of 0, 2.50, 3, and 116 in the “Effect Size,” “F,” “dfhyp” and “dferr” boxes and 
and press “Calculate.” The One-Stop F Calculator shows you could reject 
the traditional null hypothesis at the .06 level with power of .638. In many 
cases, it is difficult to convince researchers to use alpha levels other than 
the traditional values of .05 or .01. If you select the “Calculate Power for a 
Completed Study with a Selected Alpha Level” option and enter values of 0, 
.05, 2.5, 3, and 116 in, you will find that power in this study is .600 when 
alpha is .05.

The “Help” menu for the One-Stop F Calculator provides a primer on 
power analyses, references to relevant articles and books, and a discussion of 
the information needed to implement each of the options, as well as a discus-
sion of the meaning of the results provided under each of the five options.

Summary

The statistics that are most widely used in the social and behavioral sciences 
are either interpreted in terms of, or easily translated into, the F statistic. 
Our model for power analysis uses the noncentral F distribution to estimate 
the power of a wide range of statistics (compare with Patnaik, 1949). This 
noncentral F represents the distribution of outcomes you expect to find in 
any particular study (given an effect size, dfhyp, and dferr); the degree of non-
centrality (λ) is a direct function of the effect size of interest. The statistical 
power of your study is simply the proportion of this noncentral F distribu-
tion that lies above whatever criterion you use to define “statistical signifi-
cance.” This model of power analysis is not limited to tests of the traditional 
null hypothesis (i.e., that treatments had no effect whatsoever), but rather 
can be easily generalized to tests of substantively meaningful hypotheses 
(e.g., that the treatment effect exceeds some specific value).

We discuss both analytic and tabular methods of statistical power analy-
sis. In particular, we introduce the “One-Stop F Table,” which contains all 
of the information needed to test the null hypothesis and estimate statistical 
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power. We also discuss a parallel table that lists PV values that are equivalent 
to the F values shown in the One-Stop F Table. This table allows researchers 
to conduct analyses in terms of effect size estimates rather than in terms 
of their F equivalents. Both tables contain the same basic information, but 
different users might find one form or the other more convenient to use. 
Finally, we discuss the “One-Stop F Calculator” program, which is included 
with this book. This program gives you a simple interface for carrying out 
virtually all of the analyses discussed in this book.
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3

Power Analyses for 
Minimum-Effect Tests

▼      ▼      ▼      ▼      ▼

The traditional null hypothesis is that treatments, interventions, etc., have 
no effect; in Chapters 1 and 2, we use the term nil hypothesis to describe 
this particular version of H0. The nil hypothesis is so common and so widely 
used that most researchers assume that the hypothesis that treatments 
have no effect, or that the correlation between two variables is zero, is the 
null hypothesis. This is wrong. The null hypothesis is simply the specific 
hypotheses that is being tested (and that might be nullified by the data), and 
there are an infinite number of null hypotheses researchers might test. One 
researcher comparing two treatments might test the hypothesis that there 
is no difference between the mean scores of people who receive different 
treatments. A different researcher might test the hypothesis that one treat-
ment yields scores that are, on average, 5 points higher than those obtained 
using another treatment. Yet another researcher might test the hypothesis 
that treatments have a very large effect, accounting for at least 25% of the 
variance in outcomes. These are all null hypotheses. Knowing that there are 
so many null hypotheses that might be tested, it is useful to understand why 
one special form (i.e., the nil hypothesis) is the one that actually is tested in 
most statistical analyses.

There are two advantages to testing the nil hypothesis: (1) it is easy 
to test this hypothesis—tests of this hypothesis represent the standard 
method presented in statistics textbooks, data analysis packages, etc., and 
the derivation of test statistics designed to evaluate the nil hypothesis is 
often comparatively simple and (2) if a researcher rejects the hypothesis that 
treatments have no effect, he or she is left with the alternative that treat-
ments have some effect. If H0 states that nothing happened as a result of 
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treatments, the alternative hypothesis (H1) is that something happened as a 
result of treatments. In contrast, tests of many specific alternatives to the nil 
hypothesis can lead to confusing results.

Suppose a researcher tests and rejects that hypothesis that the difference 
between treatment means is 5.0. The alternative hypothesis (H1) is that the 
difference in treatment means is not 5.0, and this includes quite a wide 
range of possibilities. Treatments might lead to differences greater than 5.0. 
They might have no effect whatsoever. They might have some effect, but 
lead to differences less than 5.0. They might even have the opposite effect 
than the researchers expected (i.e., a new treatment might lead to worse 
outcomes than the old one). All the researcher learns by rejecting this null 
hypothesis is that the difference is not 5.0.

As we noted in Chapters 1 and 2, nil hypothesis testing has increasingly 
come under attack (Cohen, 1994; Meehl, 1978; Morrison & Henkel, 1970; 
Murphy, 1990; Schmidt, 1992, 1996. For discussions of the advantages of this 
approach, see Chow, 1988; Cortina & Dunlap, 1997; Hagen, 1997). The most 
general criticism of the traditional approach to null hypothesis testing is that 
very few researchers actually believe that the nil hypothesis is correct. That 
is, it is rare to encounter serious treatments or interventions that have no 
effect whatsoever which is the traditional null hypothesis. In a later section, 
we discuss in detail why the nil hypothesis is almost always false. Here, we 
simply note that if the null hypothesis to be tested is known in advance to 
be false, or is very likely to be false, tests of that hypothesis have very little 
value (Murphy, 1990).

The second critique of nil hypothesis testing is that the outcomes of tests 
of the traditional null hypothesis are routinely misinterpreted. As we show 
below, the outcomes of standard statistical tests probably reveal more about 
the power of your study than about the phenomenon you are studying. If 
you design a study with sufficient power, you will almost always reject the 
nil hypothesis. If you design a study with insufficient power, you will usu-
ally fail to reject the nil hypothesis. These facts are well understood by most 
researchers, but it is still common to find that when researchers fail to reject 
the null hypothesis, they end up drawing conclusions about the treatments 
or about the relationships being studied. In particular, researchers who fail 
to reject the null hypothesis all too often conclude that the treatments or 
interventions being studied did not work, or that the variables being studied 
are not correlated. Similarly, researchers who do reject the null hypothesis 
often conclude that there are meaningful treatment effects or that the inter-
vention being studied worked. It should be clear by now that the outcomes 
of nil hypothesis tests are not driven solely, or even mainly, by the substan-
tive phenomenon being studied. The outcomes of nil hypothesis tests usu-
ally tell researchers more about the study than they do about the substantive 
phenomenon being studied.
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A third criticism of the traditional null hypothesis is that showing that 
a result is “significant” at the .05 level does not necessarily imply that it is 
important nor that it is especially likely to be replicated in a future study 
(Cohen, 1994). This significance test merely shows that the results reported 
in a study probably would not have been found if the true effect of treat-
ments was zero. Unfortunately, researchers routinely misinterpret the results 
of significance tests (Cohen; Cowles, 1989; Greenwald, 1993). This is entirely 
understandable; most dictionary definitions of significant include synonyms 
such as “important” or “weighty.” However, these tests do not directly assess 
the size or importance of treatment effects, nor do they assess the likelihood 
that future studies will find similar effects.

Tests of the traditional nil hypothesis are more likely to tell you about 
the sensitivity of your study than about the phenomenon being studied. 
With large samples, statistical tests of the traditional nil hypothesis become 
so sensitive that they can detect the slightest difference between a sample 
result and the specific value that characterized the null hypothesis, even if 
this difference is negligibly small. With small samples, on the other hand, it 
is difficult to establish that anything has a statistically significant effect. The 
best way to get an appreciation of the limitations of traditional null hypothe-
sis tests is to scan the tables in any power analysis book (Cohen, 1988). What 
you will find is that, regardless of the true strength of the effect, the likeli-
hood of rejecting the traditional null hypothesis is very small when sam-
ples are small, and the likelihood of rejecting this hypothesis is extremely 
high when samples are large. Clearly, there is a need for approaches to 
significance testing that tells researchers more about the phenomenon being 
studied than about the size of their samples. Alternatives to traditional nil 
hypothesis tests are described later in this chapter.

Is the Nil Hypothesis Almost Always Wrong?

There are several reasons to believe that the nil hypothesis is, by 
definition, almost always wrong. That is, regardless of the treat-
ments interventions, correlations, etc., being studied, it is very 
unlikely that the true population effect (the difference between 
two means, the correlation between two variables) is precisely 
zero. First, the hypothesis is in theory usually wrong because is it 
is a point hypothesis. That is, the hypothesis being tested is that 
the effect of treatments is exactly zero, even to the millionth deci-
mal place or beyond. The traditional nil hypothesis represents a 
convenient abstraction, similar to the mythical “frictionless plane” 
encountered by freshmen in solving physics problems, in which 
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potentially small effects are treated as zero for the sake of simplic-
ity. There are many real-world phenomena that seem to mirror 
the traditional nil hypothesis, the most obvious being flipping a 
coin (see Fick, 1995, for examples that seem to show how the 
traditional null could be correct). However, even in studies that 
involved repeated flips of a fair coin, the hypothesis that there 
is no difference whatsoever in the probability of getting a head 
or a tail is simply not true. It is impossible to mill a coin that is 
so precisely balanced that the likelihood of getting heads or tails 
is exactly equivalent; imbalance at the ten-billionth of the ounce 
will lead you to favor heads or tails if you flip the coin a sufficient 
number of times.

Notice that there is nothing special about the hypothesis that 
the difference between two treatments is zero. All point hypoth-
eses (e.g., that the difference between two treatments is 5.0) suffer 
from the same problem. In the abstract, they might be true, but 
in reality, there is no way to ever demonstrate that they are true. 
Because the nil hypothesis is infinitely precise, none of the real-
world phenomena it is designed to test can possibly be assessed at 
that level of precision. Therefore, if you showed that there was no 
difference in two treatments, even at the billionth decimal place, 
the possibility that some difference might emerge with a finer 
grained analysis could never be completely dismissed.

A third argument for the conclusion that the nil hypothesis 
is almost always wrong is best conveyed using a spatial analogy. 
Suppose you used a standard football field to represent all of the 
outcomes that could possibly occur when you compare the means 
of two populations, each of which received different treatments. 
One possibility is that there is no difference. Another possibility is 
that one treatment mean is .01 units higher than the other. Another 
possibility is that one treatment mean is .02 units higher than the 
other, and so on. Divide the football field so that H0 represents the 
one outcome (no difference) that corresponds to the nil hypothesis 
and H1 represents all the other outcomes. How much space do 
you think you would devote to H0 versus H1? The most optimistic 
proponent of nil hypothesis testing would only devote a tiny patch 
of dirt to H0. Virtually the entire football field would have to be 
devoted to H1 because there is an effectively infinite number of out-
comes that could happen in this experiment. H0 represents one of 
these outcomes, and H1 represents all of the rest. In spatial terms, 
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Implications of Believing That the Nil 
Hypothesis Is Almost Always Wrong

The fact that the traditional nil hypothesis should almost always be rejected 
has important implications for thinking about Type I and Type II errors. In 
fact, we would argue that tests of the traditional nil hypothesis make sense 
only if you believe that the nil hypothesis is often correct, and we know 
of no researchers who actually believe this. It is very important to under-
stand why assumptions about the likelihood that the nil hypothesis is true. 
Consider Figure 3.1 which illustrates two ways of making errors in a nil 
hypothesis test. First, it is possible that H0 is really true and that research-
ers will wrongly conclude that treatments do have some effect (i.e., a Type I 
error). There is a large and robust literature detailing methods for control-
ling Type I errors (e.g., Wilkinson et al., 1999; Zwick & Marascuilo, 1984). As 
Figure 3.1 makes clear, the likelihood of making a Type I error depends first 
and foremost on whether the nil hypothesis that treatments have no effect is 
actually true (Murphy, 1990). If you believe that the nil hypothesis is never 
true, it follows that Type I errors are impossible—these errors can occur if 
and only if H0 is true. If you believe that the nil hypothesis is almost always 
wrong, it follows that Type I errors are at best very rare. Unless you believe 
that the nil hypothesis is often right, it is unlikely that you will ever have 
much reason to be concerned about Type I errors.

the solution space that represents H0 is essentially infinitely small, 
whereas the solution space that represents H1 is infinitely large.

The argument against the traditional null is not only a philo-
sophical one; there are also abundant data to suggest that treat-
ments in the social and behavioral sciences virtually always have at 
least some effect (Lipsey & Wilson, 1993; Murphy & Myors, 1999). 
In fact, it may not be possible to devise a real treatment that has 
no effect whatsoever. To be sure, there is no shortage of crackpot 
interventions, junk science, and treatments that have no meaning-
ful effect (e.g., wearing magnetized bracelets as a way of treating 
cancer). However, if your goal is to evaluate serious treatments 
devised by someone who had a sensible reason to believe that 
they might work, the likelihood that treatments will have no effect 
whatsoever is so low that tests of the nil hypothesis may be point-
less (Murphy, 1990).
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Figure 3.1 Errors in statistical tests.

Polar Bear Traps: Why Type I Error 
Control Is a Bad Investment

A simple analogy helps to drive home the importance of the 
low likelihood that the nil hypothesis is true. Suppose you are a 
homeowner and a salesman comes to the door selling Polar Bear 
Traps. He makes a compelling case that a polar bear attack would 
be very unpleasant and that these are good traps. Would you buy 
traps? We would not. The likelihood that a polar bear will attack is 
so small that purchasing the traps strikes us as a waste of money.

You should think of any and all procedures designed to con-
trol or reduce Type I errors as Polar Bear Traps. They give you 
a means of controlling or limiting something that you know is 
highly unlikely in the first place. More important, these traps cost 
something. Virtually anything you do to control Type I errors will 
increase the likelihood of Type II errors. For example, the common 
rationale for using a stringent alpha level, such as α = .01, rather 
than a less demanding criterion (e.g., α = .05) in defining statisti-
cal significance is that the stricter alpha will lead to fewer Type I 
errors. If you think that Type I errors are virtually impossible in 
the first place, you are unlikely to believe that the loss of power 
implied by the more stringent alpha is worthwhile. In general, 
steps you take to control Type I errors usually lead to reduced lev-
els of power. If you think about Type I error control as a Polar Bear 
Trap, you are unlikely to see it as a wise investment.
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Throughout this book, we show how the conclusion that the traditional nil 

hypothesis is rarely true undermines many familiar methods of statistical 

analysis. If you believe that the nil hypothesis is never true, it follows that 

tests of that hypothesis never tell you anything about the substantive ques-

tions your study is trying to answer (although they may tell you some things 

about the design of the study). If you accept our argument that the null 

hypothesis is almost always wrong in serious research studies, it follows 

that tests of this hypothesis have very little value and that alternatives are 

needed to solve some of the problems inherent in this method of hypothesis 

testing. If you truly believe that the nil hypothesis is so often true that tests 

of this hypothesis have any real probative value, you are in a very small 

minority. Most researchers who routinely use nil hypothesis tests simply do 

not understand that they are using procedures that make sense only in the 

unlikely case where H0 is actually likely to be true.

The Nil May Not Be True, but It Is Often Fairly Accurate

The conclusion that the nil hypothesis is almost always wrong is 
not the same as the conclusion that most treatments, interventions, 
etc., actually work. On the contrary, it is reasonable to believe that 
many treatments and interventions have very small effects, and 
the statement that they had no effect at all is often fairly close to 
the truth. As we noted in Chapters 1 and 2, most studies you read 
in the literature are likely to deal with treatments, interventions, 
etc., that have small (but perhaps important) effects. If the effects 
of treatments were large and obvious, there would not be much 
demand for further studies testing the nil hypothesis. Many of 
the most important and interesting studies you are likely to read 
will deal with new treatments, novel interventions, and innovative 
approaches—most of these just will not work very well. As a point 
hypothesis, the nil hypothesis is almost always wrong; but as a 
general description of what researchers expect might happen, it is 
often a good approximation. What is needed is an approach that 
captures the worrisome possibility that many treatments, interven-
tions, etc., might have very small effects, without all the problems 
that accompany tests of point hypotheses. A method that over-
comes many of the limitations of traditional nil hypothesis tests is 
presented in the section that follows.



56  Statistical Power Analysis

Minimum-Effect Tests as Alternatives  
to Traditional Null Hypothesis Tests

The criticisms of nil hypothesis tests outlined above have led some critics to 
call for abandoning null hypothesis testing altogether (e.g., Schmidt, 1992, 
1996). Rather than take this drastic step, we think it is better to reform the 
process. The problem with most null hypotheses tests is that the specific 
hypothesis being tested (i.e., that treatments have no effect whatsoever) is 
neither credible nor informative (Murphy, 1990). There are several alterna-
tives to testing the nil hypothesis, and all of these are a marked improve-
ment over the standard procedure of testing the hypothesis that the effect of 
treatments is precisely zero.

Serlin and Lapsley (1993) show how researchers can test the hypothesis 
that the effect of treatments falls within or outside of some range of values 
that is “good enough” to establish that one treatment is meaningfully better 
than the other. Rouanet (1996) shows how Bayesian methods can be used to 
assert the importance or negligibility of treatment effects. Both of these meth-
ods allow researchers to directly test credible and meaningful hypotheses.

The method described in this book involves testing “minimum-effect” 
hypotheses (Murphy & Myors, 1999). The traditional nil hypothesis involves 
a choice between the following:

H0—Treatments have no effect.

versus

H1—Treatments have some effect.

Minimum-effect hypotheses involve a choice between the following:

H0—Treatments have an effect that is so small that it can be described 
as negligible.

versus

H1—Treatments have an effect that is so large that they should be 
described as meaningful or important.

Minimum-effect tests require researchers to make a decision about what sort 
of treatment effect is so small that it should be labeled as negligible. This 
decision may be a difficult one, but if a reasonable standard for defining 
effects that are negligibly small can be defined, it is quite easy to develop 
the appropriate tests, using the same noncentral F-based model we have 
used in presenting power analysis.
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The central assumption of minimum-effect tests is that there is some 
range of possible effect size values that are so small that they might as well 
be zero. For example, if there is a substantive reason to believe that a treat-
ment effect that accounts for less than 1% of the variance is simply too small 
to care about, it does not matter whether the true treatment effect is PV = 0.0, 
PV = .001, PV = .002, etc. Anything that falls below PV = .01 will be regarded 
as too small to be meaningful or important, and the null hypothesis in this 
minimum-effect test is that the population treatment falls somewhere within 
this range. A researcher who can reject this null hypothesis is left with the 
alternative hypothesis that effects are large enough to be important.

Minimum-effect tests have many advantages over traditional nil hypothe-
sis tests. First, both H0 and H1 are substantively meaningful and intrinsically 
interesting to most researchers. Second, the minimum-effect null hypoth-
esis, that treatments have effects so small that they are negligible, is one 
that might actually be true. Third, these tests can be developed in ways that 
allow researchers to apply virtually all of the procedures, standards, and 
metrics they have learned in the context of nil hypothesis testing to tests 
that the effects of treatments are either negligibly small or large enough to 
be of interest.

Minimum-effect tests are meaningful. There is much to be learned by 
conducting minimum-effect tests of null hypothesis that effects of treat-
ments are negligibly small (e.g., they account for 1% or less of the variance in 
outcomes). In contrast to tests of the traditional null, tests of this sort are far 
from trivial. First, researchers do not know in advance whether H0 is right 
or wrong. Second, these tests involve questions that are of real substantive 
interest. Because these include some range of values rather than a single 
exact point under the “null umbrella,” the results of these tests are not a 
foregone conclusion. Although it might be impossible to devise a treatment, 
intervention, etc., that had no effect whatsoever, there are any number of 
treatments whose effects fall somewhere between zero and whatever point 
you choose to designate as a negligible effect. The possibility that your 
treatments will have a negligibly small effect is both real and meaningful 
(whereas the possibility that they will have no effect whatsoever is not), and 
researchers can learn something important about their treatments by testing 
this hypothesis.

The minimum-effect might actually be true. In an earlier section of 
this chapter, we noted that when testing the traditional null hypothesis, 
a researcher can guarantee the outcome if the sample is sufficiently large. 
That is, with a sufficiently sensitive study, the statistical power of tests of the 
traditional null hypothesis will reach 1.00. The reason it is possible to reach 
power levels of 1.00, regardless of the substantive question being examined 
in a study, is that traditional models of power analysis are based on the 
entirely realistic assumption that H0 is virtually never true.
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As we noted above, the assumption that H0 is virtually never true also 
means that Type I errors are virtually impossible and that significance tests 
will rarely tell you anything meaningful about the substantive questions 
being studied. In contrast to the nil hypothesis, the minimum-effect null 
hypothesis is often a realistic possibility. That is, there certainly are treat-
ments, interventions, etc., that turn out to have truly small effects. Because 
there is a real possibility that the effect of treatments will turn out to be 
negligible, H0 might really be true, and Type I errors might really occur.

Because there is a very real possibility that the effects of treatments 
will turn out to be negligibly small, the upper bound of the power of min-
imum-effects tests will generally be less than 1.00. No matter how sensitive 
the study, researchers can never be certain in advance of the result of a 
minimum-effect test. We regard this as a good thing. One major criticism 
of tests of the traditional nil hypothesis is that they are literally pointless 
(Murphy, 1990). Because researchers know in advance that the traditional 
H0 is almost certainly wrong, they are unlikely to learn anything new about 
H0, regardless of the outcome of the significance test. Minimum-effect tests, 
on the other hand, can be informative, particularly if these tests are con-
ducted with acceptable levels of statistical power. If a researcher designs a 
study that has a great deal of power and still fails to reject the hypothesis 
that the effects of treatments are negligible, this failure to reject the null 
hypothesis can be interpreted as strong evidence that the treatment effect 
truly is negligible.

Minimum-effect tests produce meaningful information. Tests of the nil 
hypothesis do not necessarily tell researchers anything useful about the 
phenomenon being studied. Consider a study comparing two different 
methods of mathematics instruction. Students are randomly assigned to one 
of these two methods, and at the end of the year, they all take the same final 
examination. A study reports a significant difference (α < .05) between the 
mean test scores in these two treatments. What have we really learned?

Without additional information (e.g., sample size), the result presented 
above does not necessarily tell us anything meaningful about the two treat-
ments. For example, it is possible that there is a miniscule difference in 
the mean scores of students who receive these two treatments, and that 
the researcher used a sufficiently large sample to detect that difference. It 
is possible that the difference is large, but the significance test does not, by 
itself, tell you that.

Suppose another researcher fails to reject the null hypothesis. Does this 
mean that there is literally no difference between the two treatments? Again, 
in the absence of additional information, it is impossible to say what this study 
tells us about the treatments. If the sample was very small, the researcher 
will not reject H0—even if one method is truly much better than another.
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Suppose another researcher examines these same two treatments and 
determines that treatment effects that account for 1% of the variance or 
less can safely be labeled as negligible. If this researcher rejects the null 
hypothesis that treatment effects are negligible (i.e., the population effect 
falls somewhere between PV = 0.0 and PV = .01), this researcher has learned 
something meaningful about the treatments. In particular, this study has 
presented evidence that there is a meaningful difference between the two 
methods of mathematics instruction.

Testing the Hypothesis That Treatment Effects Are Negligible

The best way to describe the process of testing a minimum-effect hypothesis 
is to compare it with the process used in testing the traditional nil hypoth-
esis. The significance of the F-statistic is usually assessed by comparing the 
value of the F obtained in a study to the value listed in a standard F table. 
The tabled values presented in virtually every statistics text correspond to 
specific percentiles in the central F distribution. For example, if dfhyp = 2 
and dferr = 100, the tabled values of the F-statistic that is used in testing the 
nil hypothesis are 3.09 and 4.82, for α = .05 and α = .01, respectively. In 
other words, if the nil hypothesis is true and there are 2 and 100 degrees of 
freedom, you should expect to find F values of 3.09 or less 95% of the time, 
and values of 4.82 or less 99% of the time. If the F in a particular study is 
greater than these values, the researcher can reject the null hypothesis and 
conclude that treatments probably do have some effect.

Tests of minimum-effect hypotheses proceed in exactly the same way, the 
only difference being that they use a different set of tabled F values (Murphy 
& Myors, 1999). The F tables found in the back of most statistics texts are 
based on the central F distribution, or the distribution of the F-statistic 
that would be expected if the traditional nil hypothesis were true. Tests of 
minimum-effect hypotheses are based on a noncentral F distribution rather 
than the central F that is used in testing the nil hypothesis.

For example, suppose a researcher decides that treatments that account 
for 1% or less of the variance in outcomes have a “negligible” effect. It is 
then possible to estimate a noncentrality parameter (based on PV = .01), 
and to estimate the corresponding noncentral F distribution for testing the 
hypothesis that treatment effects are at best negligible. If PV = .01, dfhyp = 2, 
and dferr = 100, 95% of the values in this noncentral F distribution will fall at 
or below 4.49, and 99% of the values in this distribution will fall at or below 
6.76 (as we note below, F values for testing minimum-effect hypotheses 
are listed in Appendix B). In other words, if the observed F in this study is 
greater than 4.49, the researcher could be confident (α = .05) in rejecting the 
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hypothesis that treatments accounted for 1% or less of the variance. Later in 
this chapter, we discuss standards that might be used in designating effects 
as “negligible.”

You might notice that minimum-effect hypotheses involve specifying a 
range of values as “negligible.” In the example above, effects that account for 
1% or less of the variance in the population were designated as negligible 
effects, and if a researcher can reject the hypothesis that the effects are neg-
ligibly small, he or she is left with the alternative hypothesis that they are not 
negligibly small (i.e., that treatment effects are large enough to consider).

You might wonder how a single critical F value allows you to test for a 
whole range of null possibilities. If you remember, one characteristic of the 
F-statistic is that it ranges from zero to infinity, with larger F values indicat-
ing larger effects. Therefore, if you can be 95% confident that the observed F 
is larger than the F you would have obtained if treatments accounted for 1% 
of the variance, you can also be at least 95% confident that the observed F 
would be larger than that which would have been obtained for any PV value 
between .00 and .01. If the observed F is larger than the F values expected 
95% of the time when PV = .01, it must also be larger than 95% of the values 
expected for any smaller PV value.

An example. Suppose 125 subjects are randomly assigned to one of five 
treatments. You find F(4, 120) = 2.50, and in this sample, treatments account 
for 7.6% of the variance in the dependent variable. This F is large enough to 
allow you to reject the traditional null hypothesis (α = .05; the critical value 
of F for testing this nil hypothesis is F = 2.45). This significant F allows the 
researcher to reject the nil hypothesis, but since the nil hypothesis is almost 
always wrong, rejecting it in this study does not really inform the researcher 
much about the treatments.

Suppose also that treatments of this sort that account for less than 1% of 
the variance in the population have effects that can sensibly be labeled as 
“negligible.” To test the hypothesis that the effects observed in this study 
came from a population in which the true effect of treatments is negligibly 
small, all the researcher needs to do is to consult the noncentral F distri-
bution with dfhyp = 4, dferr = 120, and λ = 1.21 (i.e., a good estimate of the 
noncentrality parameter λ is given by [120 ∙ .01]/[1 − .01]). In this noncentral 
F distribution, 95% of the values in this distribution are 3.13 or less. The 
obtained F was 2.50, which is smaller than this critical value. This means 
that the researcher cannot reject this minimum-effect null hypothesis. That 
is, although the researcher can reject the hypothesis that treatments have 
no effect whatsoever (i.e., the traditional null), the researcher cannot reject 
the hypothesis that the effects of treatments are negligibly small (i.e., a 
minimum-effect hypothesis that treatments account for less than 1% of the 
variance in outcomes).
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Defining a minimum effect. The main advantage of the traditional nil 
hypothesis is that it is simple and objective. If a researcher rejects the 
hypothesis that treatments have no effect, he or she is left with the alterna-
tive that they have some effect. On the other hand, testing minimum-effect 
hypotheses requires value judgments and requires that some consensus be 
reached in a particular field of inquiry. For example, the definition of a 
“negligible” effect might reasonably vary across areas, and there may be no 
set convention for defining which effects are so small that they can be effec-
tively ignored and which cannot. An effect that looks trivially small in one 
discipline might look reasonably large in another. However, it is possible to 
offer some broad principles for determining when effects are likely to be 
judged “negligible.”

First, the importance of an effect should depend substantially on the par-
ticular dependent variables involved. For example, in medical research it is 
common for relatively small effects (in terms of the percentage of variance 
explained) to be viewed as meaningful and important (Rosenthal, 1993). 
One reason is that the dependent variables in these studies often include 
quality of life, and even survival (i.e., mortality rates). A small percentage of 
variance might translate into many lives saved.

Second, decisions about what effects should be labeled as “negligible” 
might depend on the relative likelihood and relative seriousness of Type I 
versus Type II errors in a particular area. As we note in a section that fol-
lows, the power of statistical tests in the general linear model decreases 
as the definition of a “negligible” effect expands. In any particular study, 
power is higher for testing the traditional nil hypothesis that treatments 
have no effect than for testing the hypothesis that they account for 1% or 
less of the variance in outcomes, and higher for tests of the hypothesis that 
treatments account for 1% or less of the variance than for tests of hypothesis 
that treatments account for 5% or less of the variance in outcomes. If Type II 
errors are seen as especially serious in a particular area of research, it might 
make sense to choose a very small figure as the definition of a “negligible” 
effect.

On the other hand, there are many areas of inquiry in which numerous 
well-validated treatments are already available (see Lipsey & Wilson, 1993, 
for a review of numerous meta-analyses of treatment effects), and in these 
areas, it might make sense to “set a higher bar” by testing a more demanding 
hypothesis. For example, in the area of cognitive ability testing (where the 
criterion is some measure of performance on the job or in the classroom), 
it is common to find that tests account for 20% to 25% of the variance in 
the criterion (Hunter & Hunter, 1984; Hunter & Hirsch, 1987). Tests of the 
traditional null hypothesis (i.e., tests that have no relationship whatsoever to 
these criteria) are relatively easy to reject; if r2 = .25, a study with N = 28 will 
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have power of .80 for rejecting the traditional null hypothesis (Cohen, 1988). 
Similarly, the hypothesis that tests account for 1% or less of the variance in 
these criteria is easy to reject; if r2 = .25, a study with N = 31 will have power 
of .80 for rejecting this minimum-effect hypothesis (Murphy & Myors, 1999). 
In this context, it might make sense to define a “negligible” relationship as 
one in which tests account for 10% or less of the variance in these criteria.

Utility analysis has been used to help determine whether particular treat-
ments have effects that are large enough to warrant attention (Landy, Farr, & 
Jacobs, 1982; Schmidt, Hunter, McKenzie, & Muldrow, 1979; Schmidt, Mack, 
& Hunter, 1984). Utility equations suggest another important parameter that 
is likely to affect the decision of what represents a negligible versus a mean-
ingful effect (i.e., the standard deviation of the dependent variable, or SDy). 
When there is substantial and meaningful variance in the outcome variable 
of interest, a treatment that accounts for a relatively small percentage of vari-
ance might nevertheless lead to practical benefits that far exceed the costs 
of the treatment.

For example, suppose a training program costs $1,000 per person to 
administer, and that it is proposed as a method of improving performance in 
a setting where the current SDy (i.e., the standard deviation of performance) 
is $10,000. Utility theory can be used to determine whether to compare the 
costs with the expected benefits of this method of training. Depending on 
the effectiveness of the training program, researchers might conclude that 
benefits exceed costs (if the training is highly effective) or that costs exceed 
benefits (if the training is not very effective). Utility theory equations can 
also be used to determine the level of effectiveness the training program 
needs to meet so that benefits will at least equal costs, and it can be argued 
that this effectiveness level represents a very good definition of a minimum 
effect. That is, training programs that lead to more costs than benefits are 
not likely to be seen as effective, whereas training programs that lead to 
benefits that exceed their costs will be seen as effective. This break-even 
point represents a sensible definition of a minimally effective program.

Landy, Farr, and Jacobs (1982) discuss the application of utility theory in 
evaluating performance improvement programs. They note that the overall 
benefit of such interventions can be estimated using the equation:

 ∆U = (rxy * SDy) – C (3.1)

where
 ∆U = The projected gain in productivity associated with training
 rxy = The correlation between training and performance
 C = The cost of the training program
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In this example, SDy = $10,000 and C = $1,000, so Equation 3.1 can be 
restated as:

 ∆U= (rxy ∙ $10,000) − $1,000 (3.2)

A minimally effective training program will produce benefits that are equal 
to costs. The benefits of this training program depend on its effectiveness 
(i.e., the benefits are estimated by [rxy ∙ $10,000]). Therefore, in defining the 
minimum level of training effectiveness that will allow benefits to offset 
costs, all we need to do is to determine the value of rxy at which predicted 
benefits equal costs.

Benefits equal costs when (rxy ∙ SDy) equals C. Rearranging the terms in 
Equation 3.1, this break-even point is defined as:

 (rxy ∙ SDy) = C when rxy = C/SDy (3.3)

That is, benefits equal costs when the effectiveness of training (rxy) is equal 
to C/SDy. In our example, benefits equal costs when rxy is equal to .10 (i.e., 
$1,000/$10,000). If this value of rxy is squared, the point at which the ben-
efits of training at least equal costs is when PV = .01. In other words, if train-
ing accounts for at least 1% of the variance in performance, benefits will at 
least offset costs, and this strikes us as a sensible definition of a minimum 
effect.

In many of the examples presented in this chapter and chapters that fol-
low, we use conventions similar to those described in Cohen (1988), describ-
ing treatments that have less than 1% of the variance as having small effects, 
and those that account for less than 5% of the variance in outcomes as hav-
ing small to medium effects. Many of the tables presented in this book are 
arranged according to these particular conventions. However, it is critical 
to note that the decision of what represents a “negligible” effect is one that 
is likely to vary across research areas, and that there will be many cases in 
which these particular conventions do not apply. Appendix A presents the 
information needed to determine critical F values for minimum-effect tests 
that employ some other operational definition of “negligible,” and we urge 
researchers to carefully consider their reasons for choosing any particular 
value as a definition of the minimum effect of interest.

Power of minimum-effect tests. As this example suggests, researchers 
should expect less power when testing the hypothesis that effect exceeds 
some minimum value than when testing the hypothesis that the effect is 
exactly zero. Switching from a central to a noncentral distribution as the 
basis of your null hypothesis necessarily increases the F value needed to 
reach significance, thereby reducing power.
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The traditional hypothesis that treatments have no effect whatsoever is 
almost always wrong (Murphy, 1990) and is therefore relatively easy to reject. 
If the sample is large enough, researchers will always reject the hypoth-
esis that treatments have no effect, even if the true effect of treatments is 
extremely small. Tests of the hypothesis that treatment effects exceed the 
standard that is used to define negligible are more demanding than tests 
of the traditional nil hypothesis, in part because there is always a chance 
that the treatment effects are negligible. Therefore, there is no guarantee 
that a researcher will reject a minimum-effect hypothesis, no matter how 
sensitive the study. However, as we note in several of the chapters that fol-
low, the lower power of minimum-effect tests is easily offset by the fact that 
these tests tell researchers something meaningful, regardless how large the 
sample size or how sensitive the study.

Using the One-Stop Tables to Assess Power 
to Test Minimum-Effect Hypotheses

In Chapter 2, we describe the use of the One-Stop F Table (Appendix B) and 
the One-Stop PV Table (Appendix C) in performing significance tests and 
power analyses for nil hypothesis tests. These same tables also include all 
the information you need to conduct significance tests and power analyses 
for tests of minimum-effect hypotheses, where negligible effects are defined 
as those that account for 1% or less of the variance or as those that account 
for 5% or less of the variance in outcomes.

Testing minimum-effect hypotheses (PV = .01). Rather than testing the 
hypothesis that treatments have no effect whatsoever, researchers might 
want to test the hypothesis that treatment effects are so small that they 
account for less than 1% of the variance in outcomes. If this PV value rep-
resents a sensible definition of a “negligible” effect in a particular area of 
research and researchers test and reject this hypothesis, they can be confi-
dent that effects are not negligibly small.

The fifth and sixth values in each cell of the One-Stop F Table are the 
critical F values needed to achieve significance (at the .05 and .01 levels, 
respectively) when testing the hypothesis that treatments account for 1% or 
less of the variance in outcomes. With dfhyp = 3 and dferr = 50, an F of 3.24 
or larger (with α = .05) is needed to reject the hypothesis that the treatment 
effect is negligibly small (defined as accounting for 1% or less of the variance 
in outcomes).

The seventh and eighth values in each cell are F equivalents of the effect 
size values needed to obtain particular levels of power (given an α level of 
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.05 and the specified dfhyp and dferr) for testing this minimum-effect hypoth-
esis. The values in the table are 2.46 and 4.48 for power levels of .50 and 
.80, respectively. This translates into PV values of .13 and .21, respectively. 
That is, if treatments accounted for 13% of the variance in the population, a 
study that uses minimum-effect tests with dfhyp = 3, dferr = 50, and α = .05 
will have power of approximately .50 for detecting that effect. If treatments 
account for 21% of the variance in the population, the power of this study 
will be approximately .80.

Testing minimum-effect hypotheses (PV = .05). Many treatments routinely 
demonstrate moderate to large effects. For example, well-developed cogni-
tive ability tests allow researchers to predict performance in school and in 
many jobs with a relatively high degree of success (correlations in the .30 to 
.50 range are common). Rather than testing the hypothesis that tests have no 
relationship whatsoever with these criteria (i.e., the traditional nil) or even 
that treatments account for 1% or less of the variance in outcomes, it might 
make sense to test a more challenging hypothesis (i.e., that the effect of this 
particular treatment is at least small to moderate in size). For reasons that 
are explained in the section that follows, there are many contexts in which it 
is useful to test the hypothesis that treatments explain 5% or less of the vari-
ance in the population. If a researcher can test and reject the hypothesis that 
effects explain 5% or less of the variance in outcomes, he or she is left with 
the alternative that treatments explain greater than 5% of the variance. In 
most contexts, effects this large are likely to be treated as meaningful, even 
if smaller effects (i.e., those accounting for 1% of the variance) are not.

The ninth and tenth values in each cell of the One-Stop F Table represent 
the critical F values needed to achieve significance (at the .05 and .01 levels, 
respectively) when testing the hypothesis that treatments account for 5% or 
less of the variance in outcomes. With dfhyp = 3 and dferr = 50, an F of 4.84 
or greater (with α = .05) is needed to reject the hypothesis that treatments 
account for 5% or less of the variance in the population.

The eleventh and twelfth values in each cell are F equivalents of the 
effect size values needed to obtain particular levels of power (given an α 
level of .05 and the specified dfhyp and dferr) for tests of this minimum-effect 
hypothesis. The values in the table are 4.08 and 6.55 for power levels of .50 
and .80, respectively. This translates into PV values of .20 of and .28, respec-
tively. In other words, in order to have power of .50 for testing the hypoth-
esis that treatments account for 5% or less of the variance in outcomes in a 
study with dfhyp = 3 and dferr = 50, the true population effect size will have 
to be fairly large (PV = .20). In order to achieve power of .80, the population 
effect will have to be quite large (PV = .28).
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You might note that our One-Stop F Table does not contain a set of rows 
corresponding to relatively large effects (i.e., effects accounting for more 
than 5% of the variance in outcomes). As we noted in Chapter 1, when 
the effect of treatments is known or thought to be large, there is often no 

Worked Example: Minimum-Effect Testing

A researcher randomly assigns 125 participants to one of five treat-
ments and reports F(4, 120) = 3.50, and that treatments account 
for 10% of the variance (if applying Equation 2.7 from Chapter 2 
confirms this transformation of F to PV, i.e., PV = (dfhyp ∙ F)/[(dfhyp ∙ 
F) + dferr]). What conclusions can be drawn from this study?

First, it is possible to reject the nil hypothesis at both the .05 
and .01 levels; the critical values shown in Appendix B for dfhyp = 
4 and dferr = 120 are 2.45 and 3.48, respectively. If the observed 
value of PV (i.e., PV = .10) is taken as a reasonable estimate of the 
population PV, the study has more than adequate power for these 
nil hypothesis tests. As Appendix C shows, a population PV of .09 
would be large enough to provide power of .80 for tests of the nil 
hypothesis when dfhyp = 4 and dferr = 120.

Second, it is possible to reject the null hypothesis (α = .05) 
that treatments account for 1% or less of the variance. Appendix B 
shows that an F value of 3.13 or greater would be needed to reject 
this null hypothesis. If a more stringent alpha level (e.g., α = .01) 
is set, the observed F will be smaller than the critical value of F 
(i.e., F = 4.40). In other words, the researcher will not be able to 
reject, with a 99% level of confidence, the hypothesis that treat-
ments account for 1% or less of the variance.

Appendix C shows that population effect sizes of PV = .07 
and PV = .11 will be needed to achieve power levels of .50 and 
.80, respectively, in tests of this minimum-effects hypothesis. The 
observed PV falls between these two values, and if this observed 
effect is used as an estimate of the population effect, this suggests 
that power is slightly less than .80.

Finally, the results of this study would not allow researchers 
to reject the hypothesis (α = .05) that treatments account for 5% or 
less of the variance. The critical value of F for this null hypothesis 
test is 5.45. Appendix C shows that in order to have power of .80 
for testing this hypothesis with dfhyp = 4 and dferr = 120, the popula-
tion treatment effect would have to be quite large (i.e., PV = .18).



Power Analyses for Minimum-Effect Tests  67 

point to conducting the research. Large effects are usually so obvious that a 
study confirming their existence is unlikely to make much of a contribution. 
More to the point, when the effects under consideration are large, statisti-
cal power is unlikely to be a problem unless samples are extremely small. 
When samples are this small, researchers have problems that are much more 
severe than statistical power (e.g., lack of generalizability), and power analy-
ses for large effects strike us as very limited in value.

Using the One-Stop F Calculator for Minimum-Effect Tests

Both the One-Stop F Table and the One-Stop PV Table (Appendices B and 
C) are designed to support both nil hypothesis tests and minimum-effect 
tests. In particular, these tables provide the information needed to carry 
out significance tests and power analyses when the hypothesis being tested 
is that treatments account for 1% or less of the variance or that treatments 
account for 5% or less of the variance in outcomes. The One-Stop F Calcu-
lator is also designed to support both nil hypothesis and minimum-effect 
tests. Unlike the tables presented in Appendices B and C, this calculator 
allows researchers to conduct significance tests and power analyses for all 
possible minimum-effect tests.

Suppose the working definition of a negligible effect in a particular area 
of research was an effect that accounted for less than 2.5% of the variance in 
outcomes. There is nothing sacred about values of 1% or 5% of the variance 
as definitions of negligible, and any other value might be chosen. It would 
be possible to conduct minimum-effect tests for this particular definition of 
negligible by calculating noncentral F that corresponds to the test. A simpler 
method is to use the One-Stop F Calculator, which is designed to make the 
process of minimum-effects testing every bit as easy as testing the tradi-
tional nil hypothesis.

Suppose you randomly assign 102 participants to either a training pro-
gram that requires active learning or a training program based on traditional 
lectures. You find a significant difference between the mean test scores of 
these two groups, t = 3.66, PV = .118. The first step in applying the models 
described in this chapter is to transform this t-value into an F. Since F = t2, 
this translates into F = 13.39 with dfhyp = 1 and dferr = 100.

To test for statistical significance (α = .05), using a minimum-effects test 
in which effects accounting for 2.5% or less of the variance are treated as 
negligible, choose the “Significance Testing” option of the One-Stop F Cal-
culator and enter values of .025, .05, 1, and 100 in the “Effect Size,” “Alpha,” 
“dfhyp,” and “dferr” boxes. The calculator indicates that the critical value of 
F for testing this hypothesis is 10.87 (the corresponding PV is .10). The 
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observed F is larger than the critical value, so you can be confident that in 
the population, treatments account for more than 2.5% of the variance.

The “Power Analysis” option of this calculator suggests that the power 
of this study is less than .80. If you enter values of .025, .80, .05, 1, and 100 
in the “Effect Size,” “Power,” “Alpha,” “dfhyp” and “dferr,” boxes, you will find 
that a population PV of .146 would be needed to yield power of .80. The 
observed PV is .116, substantially smaller than the value needed to achieve 
power of .80.

If the researcher wanted to achieve power of .80, he or she would need a 
larger sample. The “Sample Size (df Error) Determination” option of the cal-
culator allows the researcher to determine sample size requirements. Enter 
.025, .80, .05, 1, and .116 in the “Effect Size,” “Power,” “Alpha,” “dfhyp,” and 
“PV” boxes, and you will find that dferr must be at least 143 (dferr = N − 2, so 
N must be 145) to achieve power of .80 for testing this null hypothesis.

Summary

Tests of the traditional nil hypothesis, that treatments or interventions have 
no effect, have been criticized by methodologists. The most important criti-
cism is that the nil hypothesis is, by definition, almost always wrong. As a 
result, tests of that hypothesis have little real value, and some of the proce-
dures that are widely used in statistical analysis (e.g., adopting a stringent 
alpha level to control for Type I errors) are illogical and costly.

This chapter describes an alternative to the traditional nil hypothesis 
test, in which the null hypothesis describes a range of possible outcomes. 
In particular, it is often possible to define a range of effect sizes that would, 
by any reasonable standard, be defined as negligible. One possibility is to 
define any treatment effect that accounts for less than 1% of the variance in 
treatments as negligible (another possibility is to use 5% of the variance as a 
cutoff). Tests of the null hypothesis either that treatment effects fall within 
some range defined as negligible or that the effects of treatments are large 
enough to be of real interest to the researcher are easy to perform and they 
offer numerous advantages. First, the results of these tests are not trivial. 
If a researcher can confidently reject the hypothesis that treatments had a 
negligibly small effect, he or she is left with the conclusion that they had 
effects large enough to be important.

The minimum-effects tests described here are simple extensions of the 
familiar F test. The only difference between nil hypothesis F tests and 
 minimum-effect F tests is that they use different F tables. Nil hypothesis 
tests are based on the hypothesis that treatments have no effect, a hypoth-
esis that is extremely unlikely to be true. Minimum-effect tests have the 
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advantage of being simple and informative. In the chapters that follow, we 
present minimum-effect tests as well as nil hypothesis tests. In our final 
chapter, we argue that the advantages of alternatives to nil hypothesis tests, 
such as the minimum-effects test, are so compelling that they call into ques-
tion the continuing use of the traditional nil hypothesis test.
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4

Using Power Analyses

▼      ▼      ▼      ▼      ▼

In Chapter 1, we noted that there are two general ways that power analysis 
might be used. First, power analysis is an extremely useful tool for plan-
ning research. Critical decisions, such as how many subjects are needed, 
whether multiple observations should be obtained from each subject, and 
even what criterion should be used to define statistical significance can be 
better made by taking into account the results of a power analysis. Decisions 
about whether to pursue a specific research question might even depend 
on considerations of statistical power. For example, if your research idea 
involves a small (but theoretical meaningful) interaction effect in a complex 
experiment, power analysis might show that thousands of subjects would 
be needed to have any reasonable chance of detecting the effect. If the 
resources are not available to test for such an effect, it is certainly better to 
know this before the fact than to learn it after collecting your data.

Second, power analysis is a useful diagnostic tool. Tests of the traditional 
null hypothesis often turn out to be little more than roundabout power anal-
yses. If you conduct a study and all of the correlations among variables, as 
well as all of the planned and unplanned comparisons between treatments 
turn out to be statistically significant, this probably indicates that the sample 
was very large. If the sample is large enough, you will have tremendous 
power and any effect that is literally different from zero will also be statisti-
cally different from zero. On the other hand, if none of a researcher’s well-
conceived hypotheses are supported with significant results, that researcher 
might want to conduct a power analysis before asking what is wrong with 
his or her ideas. If the power is too low, a researcher might never reject the 
null hypotheses, even in cases where it is clearly and obviously wrong.

In this chapter, we discuss the major applications of power analysis. In 
Chapter 1, we noted that because statistical power is itself a function of three 
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parameters—the number of observations (N), the criterion used to define 
statistical significance (α), and the effect size (ES)—it is possible to solve for 
any one of four values (i.e., power, N, ES, or α) given the other three. The 
effect size parameter may be the most problematic because it represents a 
real but unknown quantity (i.e., the real effect of your treatments). Before 
discussing practical applications of power analysis, it is useful to examine 
more closely the methods that might be used in estimating effect sizes.

Estimating the Effect Size

In Chapter 1, we noted that the exact effect size is usually unknown; if you 
knew precisely how treatment groups would differ, there would be little 
point in carrying out the research. There are three general methods that 
might be followed in estimating effect sizes in statistical power analysis. 
First, you might use inductive methods. If similar studies have been carried 
out previously, you might use the results from these studies to estimate effect 
sizes in your own studies. Twenty years ago, this inductive method might 
have relied heavily on personal experience (i.e., whatever studies a particular 
researcher had read and remembered); but with the rapid growth of meta-
analysis, it is often easy to find summaries of the results of large numbers of 
relevant studies (see, for example, Hunter & Hirsh, 1987; Lipsey & Wilson, 
1993) already translated into a convenient effect size metric (e.g., d, r2).

Second, you might use deductive methods, in which existing theory or 
findings in related areas are used to estimate the size of an effect. For exam-
ple, suppose you want to estimate the effect of vitamin supplements on per-
formance in long-distance races. Suppose further that you know that (a) the 
vitamin supplement has a strong and immediate effect on the efficiency with 
which your body uses oxygen, and (b) efficiency in using oxygen is strongly 
correlated with success in such a race. It seems reasonable in this context to 
deduce that the vitamin supplements should have a reasonably strong influ-
ence on race outcomes.

Third, you might use widely accepted conventions that define what repre-
sents a “large,” “medium,” or “small” effect to structure your power analysis. 
As we note below, analyses based on these conventions require very careful 
thought about what sort of effect you can realistically expect or what sort 
of information about statistical power you really need. Nevertheless, the use 
of these conventions can help in carrying out useful and informative power 
analyses, even if there is no basis for predicting with any accuracy the size 
of the treatment effect.

Inductive methods. Inductive methods are best where there is a wealth 
of relevant data. For example, there have been hundreds and perhaps 
thousands of studies on the validity of cognitive ability tests in predicting 
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performance in school and on the job (Hunter & Hirsch, 1987; Hunter & 
Hunter, 1984). Similarly, Lipsey and Wilson (1993) review numerous meta-
 analyses of psychological and educational interventions. This method is not 
restricted to the behavioral and social sciences; meta-analytic procedures 
are being applied in areas such as cancer research (e.g., Himel, Liberati, 
Laird, & Chalmers, 1986); Lipsey and Wilson (1993) cite numerous meta-
analyses of research on other medical topics.

Suppose you are doing research on the effectiveness of programs designed 
to help individuals quit smoking and you have sufficient resources to collect 
data from 250 subjects. Lipsey and Wilson (1993) cite two separate meta-
analyses that suggest relatively small effects on quit rates (for physician-
delivered and worksite programs, d =.34 and d = .20, based on eight and 
twenty studies, respectively). This body of research provides a reasonable 
starting point for estimating power; the average of the two d values in these 
two meta-analyses is .274. The F equivalent for this effect size estimate, 
given a study comparing quit rates in a treatment group (n = 125) with those 
in a control group (n = 125) is F(1, 248) = 3.57. Your power for testing the 
traditional null hypothesis (α = .05) is therefore below .50 (the F equivalent 
for power of .50 from the One-Stop F Table is 3.81; see Appendix B). If you 
were testing the hypothesis that treatments accounted for 1% or less of the 
variance in outcomes in the population, your power would be well below 
.50 (the F equivalent for power of .50 is 10.33; in this study, power is less 
than .10).

Using the One-Stop F Calculator to Perform Power Analysis

Suppose you have 250 subjects available for a study. You can use 
the One-Stop F Calculator to carry out a range of analyses that are 
useful for understanding the statistical power of different studies 
that might be carried out and for understanding the limitations you 
might have to work with in planning and analyzing studies. For 
example, suppose you wanted to determine what sorts of effects 
could be detected in tests of the nil hypothesis with a power of .80.

Choose the Power Analysis option and enter 0.0 for ES, .05 for 
alpha, .80 for power, 1 for dfhyp, and 248 for dferr. This sets you up 
to test the traditional nil hypothesis, using α = .05, in a study in 
which 250 subjects are divided into two groups (dfhyp = number of 
groups − 1, dferr = N − dfhyp − 1). You will find that with a sample 
this large, you can detect effects as small as PV = .03 (d = .35) 
with power of .80. You can use this same option to determine the 
effect size needed to achieve this same level of power in tests of 
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minimum-effect hypotheses. For example, if treatments account 
for as little as 6% of the variance in outcomes, this sample will give 
you power of .80 for testing the hypothesis that treatments account 
for 1% or less of the variance in the population.

Suppose you expect a very small effect (e.g., treatments will 
account for 1.5% of the variance in outcomes). You probably will not 
have a great deal of power with a sample of 250; you can use the 
One-Stop F Calculator to determine how large the sample will need 
to be to achieve the desired level of power. Choose the Sample 
Size (df error) Determination option. Entering 0.0 as the ES, .8 as 
power, 1 as dfhyp, and .015 as the PV, you will find that a sample of 
N = 495 will be needed (dferr = 493, N = dferr + 2).

Finally, suppose you have a rough idea of the effect size you 
expect (e.g., treatments will explain 1.5% of the variance). You can-
not afford to collect a sample of N = 495, and you would like to 
find out how much power you have with the sample of N = 250 
that is available. There are a variety of ways to do this analysis, 
but the simplest approach involves an iterative process in which 
you estimate power, see how close you are, then continue to refine 
your estimate. This iterative process starts with a rough guess of 
the level of power your study is likely to have. It is never a bad idea 
to start with power = .50.

Choose the Power Analysis option and enter 0.0, .05, .50, 1, and 
248 for ES, alpha, power, dfhyp, and dferr, respectively. If you hit 
Calculate, you will find that given N = 250, you will need to have a 
population effect of PV = .04 to achieve power of .50. You expect 
a much smaller population effect (PV = .015), so you should expect 
power to be less than .50. Your next guess might be that power 
will be .25. Entering 0.0, .05, .25, 1, and 248 for ES, alpha, power, 
dfhyp, and dferr, respectively, you will find that you can achieve 
power of .25 for population effects as small as PV = .026. This 
means that the power of your study is even less than .25. If you 
follow the strategy of cutting the assumed power value in half (i.e., 
entering .1275 for power), you will find that your estimate of power 
is still too high; you would need a population PV of .017 or greater 
to achieve power of .1275. The actual level of power in this study 
is roughly .10, which means that you are 9 times as likely to fail 
to reject the null hypothesis with this study as you are to reject it. 
This strikes us as a very low level of power.
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Even though the study you have in mind has a relatively large sample 
(N = 250), power is low, even for testing the traditional null hypothesis. The 
reason for this is that the effects of smoking cessation programs on quit 
rates are small (d = .24 means that treatments account on average for about 
1.4% of the variance in quit rates). The body of research in this area gives 
you good reason to expect small effects, and if you want to have adequate 
power for detecting these effects, you will need a much larger sample (e.g., 
you will need about 525 subjects to achieve power of .80 in tests of the tra-
ditional null hypothesis).

Deductive methods. Deductive methods are the best when there is a 
wealth of relevant theory or models; Newtonian mechanics is probably the 
best example of an area in which numerous effects can be deduced on the 
basis of a small set of theoretical statements and principles. However, there 
are areas in the social and behavioral sciences where the relevant theories 
or models are sufficiently well developed so that sound inferences could be 
made about effect sizes. For example, the models most commonly used to 
describe human cognitive abilities are hierarchical in nature, with specific 
abilities linked to broad ability factors, which in turn are linked to a single 
general cognitive ability (see Carroll, 1993, for a review of factor-analytic 
studies). If you wanted to estimate the validity of a new test measuring spe-
cific abilities as a predictor of performance in school, you could use what is 
known about the structure of abilities to make a reasonable estimate; tests 
that are strongly related to verbal or general cognitive ability factors are 
likely to show moderate to strong relationships to school performance.

Suppose you used existing models of cognitive ability to estimate test 
validity and obtained a figure of .40 (e.g., estimated correlation between 
test scores and school performance). If you used a sample of 65 subjects, an 
expected correlation of .40 would yield an F equivalent value of F(1, 63) = 
12.00, and your power for testing the traditional null would be greater than 
.80; tests of the hypothesis that tests account for greater than 1% of the vari-
ance in the population would also have power in excess of .80. Because the 
expected effect is relatively large, it is easy to obtain adequate power, even 
with a small sample.

Worked Example: Calculating F equivalents and Power

If you expect the correlation between two variables to be .40, and 
you have 65 participants in your experiment, what level of power 
would you expect? There are several ways of attacking this ques-
tion, but the most general of these involves transforming the cor-
relation into its equivalent F value.
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Effect size conventions. As we noted in the preceding section, there are 
some widely accepted conventions for defining “small,” “medium,” and 
“large” effects. For example, a “small” treatment effect has been described 
as one in which treatments account for approximately 1% of the variance 
in outcomes, as one in which the difference between treatment and control 
group means is about one fifth of a standard deviation, or as one in which 
a person randomly selected from the treatment group has a probability of 
.56 of having a higher score than a person randomly selected from the con-
trol group (see Table 2.2 in Chapter 2). None of these figures is sacred or 
exact (e.g., 2% of the variance might reasonably be described as a “small” 
effect”), but the conventions described in Table 2.2 do seem to be accepted 
as reasonable by many researchers, and they provide a basis for doing a 
power analysis even when the actual treatment effect cannot be estimated 
by inductive or deductive methods.

When conventions are used to estimate effect sizes, it is usually best to 
base power analyses on small or small to medium effect sizes. As we noted 

 1. The formula shown in Table 2.1 (Chapter 2) for transforming r to 
F is
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 2. dferr = N − 2 = 65 − 2 = 63; r2 = .402 = .16, so  F(1, 63) = (.16 ∙ 63)/
(1 − .16) = 12.0.

 3. Once again, you can use the same procedure illustrated in a 
previous example in which you make a rough guess at power 
then adjust up or down until you reach a point where the F 
value provided by the One-Stop F Calculator is approximately 
12.0

 4. Use the Power Analysis option of the One-Stop F Calculator 
and start by entering: ES = 0.0, power = 0.80 (a guess), alpha = 
0.05, dfhyp = 1, and dferr = 63. The computer program responds 
with F = 7.85.

 5. Try a higher power estimate. Enter power = .90, and the cal-
culator will return F = 10.19, which is still less than F = 12

 6. Keep raising the power estimate. Try a power estimate of .95. 
Enter power = .95, and the calculator will return F = 12.3, 
which is slightly above F = 12. If you try a slightly lower level, 
you will find that when power = .94, F = 11.76. In other words, 
the power of this study for detecting a correlation of .40 is 
between .94 and .95.
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in Chapter 1, a study with sufficient power to detect a small effect will have 
sufficient power for detecting medium and large effects as well. If you plan 
your study with the assumption that the effect is a large one, you run the 
considerable risk of missing meaningful effects that did not reach quite 
the magnitude you optimistically hoped to achieve. Thus, if the data and 
theory in a particular field do not provide a firm inductive or deductive basis 
for estimating effect sizes, you can always follow the convention and base 
your analysis on the assumption that the effects might very well be small. A 
study that has sufficient power to reliably detect small effects runs little risk 
of making a serious Type I or Type II error, regardless of the actual size of 
the treatment effect.1

Four Applications of Statistical Power Analysis

The two most common application of statistical power analysis are in 
(1) determining the power of a study, given N, ES, and α and (2) determining 
how many observations will be needed (i.e., N), given a desired level of 
power, an ES estimate, and an α value. Both of these analysis are extremely 
useful in planning research and are usually so easy to do that they should be 
a routine part of designing a study. Power analysis may not be the only basis 
for determining whether to do a particular study or how many observations 
should be collected, but a few simple calculations are usually enough to 
help researchers make informed decisions in these areas. The lack of atten-
tion to power analysis (and the deplorable habit of placing too much weight 
on the results of small sample studies) is well documented in the research 
literature (Cohen, 1962; Haase, Waechter, & Solomon, 1982; Sedlmeier & 
Gigerenzer, 1989), and there is no good excuse to ignore power in design-
ing studies.

Two other applications of power analysis are less common but no less 
informative. First, you can use power analysis to evaluate the sensitivity of 
your studies. That is, power analysis can tell you what sorts of effect sizes 
might be reliably detected in a study. If you expect the effect of a treatment 
to be small, it is important to know whether your study will detect that 
effect, or whether the study you have in mind only has sufficient sensitivity 

1 As we noted in Chapters 1 and 2, Type I errors are a concern only when there 
is some possibility that the null hypothesis is true, which is virtually never the case 
in tests of the traditional null. Type II errors are still possible if the treatment effect 
is extremely small, but we would not regard this type of error (i.e., concluding that 
treatments have no effect when in fact they have a completely trivial effect) as very 
serious.
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to detect larger effects. Second, you can use power analysis to make rational 
decisions about the criteria used to define statistical significance.

Calculating Power

Chapters 1 and 2 were largely devoted to explaining the theory and proce-
dures used in calculating the statistical power of a study, and we will not 
repeat here all of the details laid out in those two chapters. It is, however, 
useful to comment on problems or issues that arise in carrying out each of 
the steps of statistical power analysis.

As the examples presented in Chapter 2 suggest, in estimating the level 
of power expected in a study you do the following:

 1. Estimate the size of the effect, expressed in terms of a common ES 
measure, such as PV or d;

 2. Determine the degrees of freedom (i.e., dfhyp and dferr) for the sta-
tistical test you want to perform and the type of hypothesis (e.g., 
traditional null, minimum-effect hypothesis) you want to test;

 3. Translate that effect size estimate into an F equivalent, given these 
dfhyp and dferr values; and

 4. Use the One-Stop F Table to estimate power. If the F equivalent is 
greater than the F needed to obtain power of .80, you should have 
sufficient power for most purposes, and a more precise estimate is 
probably not necessary. If the F equivalent is less than the F needed 
to obtain power of .50, you will not have sufficient power for most 
purposes, and a more precise estimate is probably not helpful. If 
the F equivalent is between these two values on the One-Stop F 
Table, you can use the interpolation formulas in Chapter 2 (Equa-
tions 2.10 and 2.11) to estimate the power level of the study.

As we noted earlier, there are several ways to estimate the effect size. 
Regardless of the method chosen, it is usually better (or at least more pru-
dent) to underestimate than to overestimate ES values; a study with enough 
power to detect a small effect will also have enough power to detect a 
larger effect. Second, when planning a study, some preliminary estimate of 
the sample size (and possibly of the research) design must be made. This 
estimate, which may be modified if the study yields either too much or too 
little power, helps in determining the degrees of freedom of the F-statistic. 
In most cases, power analyses are likely to lead you to increase the sample 
size, but it is certainly possible that a power analysis will lead you to con-
clude that adequate power can be obtained with a smaller sample than the 
one you had initially planned.
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As we have emphasized in Chapters 1 and 2, power depends substan-
tially on the precise hypothesis being tested. It is easier to obtain high 
levels of power for tests of the traditional null hypothesis than for tests of 
a minimum-effect hypothesis, at least in part because the traditional null is 
so easily rejected. Tests of minimum-effect hypotheses, while more difficult, 
are likely to be more informative.

Finally, you need to make a decision about the significance criteria. Later 
in this chapter, we discuss in detail the issues involved in making this choice. 
Here, it is sufficient to note that your choice is often practically limited to 
the conventional values of .05 versus 01. If you use any other value to define 
statistical significance (e.g., .02 might be a perfectly reasonable choice in 
some settings), you will have to fight convention and defend your choice to 
a potentially hostile set of reviewers, readers, and editors (Labovitz, 1968).

Determining Sample Sizes

Rather than calculating the level of power a particular study had or will 
have, it is often useful to determine the sample or research design needed 
to achieve specific levels of power. To do this, you must first decide how 
much power you want. As we noted in Chapter 2, it is hard to justify a study 
design that yields power less than .50; when power is less than .50, the study 
is more likely to lead to an incorrect conclusion (i.e., it will not reject H0, 
even though you are virtually certain this hypothesis is wrong) than to a 
correct one. Power substantially greater than .80 might be desirable, but it 
is often prohibitively difficult to obtain; in most analyses, the desirable level 
of power is likely to be .80.

Once the desirable level of power is selected, determining sample sizes 
follows the same general pattern as the determination of power itself. That 
is, you need to take into account the research design, the estimated effect 
size, the nature of the hypothesis being tested, and the significance criteria 
being used. Appendix D can be used to determine sample sizes needed to 
detect a wide range of effects.

The rows of Appendix D correspond to effect sizes, described in terms 
of either the standardized mean difference (d) or the proportion of variance 
explained (PV), which represent the most common effect size estimates in 
the literature. Table 4.1 provides formulas for translating a number of other 
statistics, including F, into d and/or PV. 

The values in Appendix D represent degrees of freedom (dferr) rather 
than exact sample sizes (N). Our reason for presenting a table of dferr values 
rather than a table of sample sizes is that N is a function of both dfhyp and 
dferr. In many applications, N = dfhyp + dferr + 1, but in complex multifactor 
designs (e.g., studies using factorial analysis of variance), the total sample size 
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depends on the number of levels of all design factors, and without knowing 
the research design in advance, it is impossible to put together an accurate 
table for N. In most cases, however, the sample size needed to achieve power 
of .80 will be very close to the dferr value shown in Appendix D. Chapter 5 
deals with applications of power analysis in multifactor studies.

Appendix D presents dferr needed when testing the traditional null hypoth-
esis. Appendix E presents the dferr needed when testing the hypothesis that 
treatments account for 1% or less of the population variance in outcomes. As 
you can see, larger samples are needed when testing this minimum-effect 
hypothesis than when testing the traditional (but sometimes trivial) hypoth-
esis that treatments have no effect whatsoever.

To illustrate the use of Appendix D and Appendix E, consider a study 
comparing the effectiveness of four diets. Suppose you expect a small to 
moderate effect (e.g., the choice of diets is expected to account for about 
5% of the variance in weight loss). To achieve power of .80 in testing the 
traditional null hypothesis (with α = .05), you would look down the column 
of Appendix D that corresponds to dfhyp = 3 (i.e., with four diets, there are 
3 degrees of freedom) and find that the dferr needed for PV = .05 would be 
approximately 209. You would therefore need a sample of about 214 subjects 
(i.e., N = 209 + 3 + 1) to achieve this level of power, or about 54 per group. 

Appendix E shows the dferr needed to achieve power of .80 in testing 
the hypothesis that treatments account for 1% or less of the variance in 

Table 4.1 Translating Common Statistics 
Into Standardized Mean Difference (d) or 
Percentage of Variance (PV) Values
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 outcomes. To achieve a power of .80 in testing this minimum-effect hypoth-
esis, you would need a sample of approximately 409 (i.e., N = 405 + 3 + 1), or 
about 100 per group. This sample is almost twice as large as the one needed 
to reject the traditional null hypothesis that treatments have no effect. How-
ever, if you put together a study that allows you to reject the hypothesis that 
treatments have a negligibly small effect (i.e., they account for less than 1% 
of the variance in outcomes), you will not only know that treatments have 
some effect, but also have a formal test of the hypothesis that the effect is 
large enough to warrant your attention.

Determining the Sensitivity of Studies

It is often useful to know what sort of effect could be reasonably detected in 
a particular study. If a study can reliably detect only a large effect (especially 
in a context where you expect small effects to actually occur), it might be 
better to postpone that study until the resources needed to obtain adequate 
power are available. The process of determining the effect size that can be 
detected, given particular values for N and α, together with a desired level 
of power again closely parallels the procedures described above. In fact, 
Appendices D and E, which specify the dferr needed to achieve power of .80 
in testing both traditional and minimum-effect hypotheses are also quite 
useful for determining the type of effect that could be reliably detected in 
a given study.

Suppose you are comparing two methods of mathematics instruction. 
There are 140 students available for testing (70 will be assigned to each 
method), and you decide to use an α level of .05 in testing hypotheses. 
Here, dfhyp = 1 (i.e., if two treatments are compared, there is one degree of 
freedom for this comparison) and dferr = 138 (i.e., dferr = N − dfhyp − 1). If 
you look down the dfhyp = 1 column of Appendix D, you find that 138 falls 
somewhere between the dferr needed to detect an the effect of treatments 
when PV = .05 and PV = .06 (or between d = .46 and d = .51). In other words, 
with 140 students, you would have power of .80 to detect a small to moder-
ate effect, but you would not have this level of power for detecting a truly 
small (but perhaps important) effect.

Take another example. Suppose there are four cancer treatments and 
44 patients. Here, dfhyp = 3 and dferr = 40. If you consult Appendix D, you 
will find that you have power of .80 to detect effects that are quite large (i.e., 
PV = .24); if the true effects of treatments are small or even moderate, your 
power to detect these effects will drop substantially.

Both the examples above are based on tests of the traditional null 
hypothesis. If you want to test the hypothesis that treatments account for 
1% or less of the variance in outcomes (which corresponds to d values of 
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.20 or less), your sample of 140 students will given you power of .80 for 
detecting differences this large between the two treatments only if the true 
effect is relatively large (i.e., PV = .09 or d = .63; see Appendix D). You will 
have this level of power for detecting nontrivial differences among the four 
cancer treatments (with N = 44) only if the true differences between treat-
ments are truly staggering (i.e., PV = .26; see Appendix E).

Determining Appropriate Decision Criteria

As we noted earlier, the choice of criteria for defining statistical significance 
is often practically limited to the conventional values of .05 versus .01 (occa-
sionally, social scientists use .001 or .10 as significance levels, but these are 
rare exceptions). The choice of any other value (e.g., .06) is likely to be met 
with some resistance, and the battle is probably not worth the effort. Because 
the choice among significance levels is constrained by convention, the steps 
involved in making this choice do not exactly parallel the processes laid 

Using the One-Stop F Calculator to Evaluate Sensitivity

The most common application of power analysis is to determine 
sample sizes. Another very useful application is to determine what 
sorts of effects might reasonably be detected with a given sample 
size and significance criteria. Suppose, for example, that you are 
studying the effect of a new math curriculum in a small school. 
There are only 100 students, and you have the option of assigning 
half to one curriculum and half to another, but you cannot increase 
the sample size. You can use power analysis to determine what 
sorts of questions can sensibly be asked in this context.

If 100 students are randomly assigned to one of two groups, 
dfhyp = 1 and dferr = 98 (i.e., N − 2). If you go to the Significance 
Testing option of the One-Stop F Calculator and enter 0.0 for ES 
(this is a traditional null hypothesis test), .05 for alpha, 1 for dfhyp,  
and 98 for dferr, you will find that you will be able to detect a small 
to moderate effect (PV = .038).

Suppose you decide a traditional nil hypothesis test is not use-
ful in this setting (e.g., you are almost certain H0 is false). You can 
evaluate the sensitivity of minimum-effect tests by simply changing 
the ES entry to .01 (to test the hypothesis that treatments account 
for 1% of the variance or less in outcomes). With this relatively 
small sample, you will need a much larger effect (PV = .068) to 
reject the null hypothesis.
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out in the three preceding sections of this chapter. Rather than describing 
specific steps in choosing between .05 and .01 as alpha levels, we discuss 
the range of issues that are likely to be involved in making this choice. This 
discussion leads us to the conclusion that you should never use the .01 level 
(or any more stringent criterion, such as .001) when testing traditional null 
hypotheses, nor should you usually use other procedures designed to guard 
against Type I errors in testing this hypothesis. As we show below, choice 
of the .01 significance criterion leads to a substantial reduction in statisti-
cal power, with virtually no meaningful gain in terms of protection against 
Type I errors. The same is true of most procedures designed to reduce Type 
I errors (see Zwick & Marascuilo, 1984, for a review of procedures used to 
control Type I error in testing multiple contrasts).

Balancing risks in choosing significance levels. In Chapter 1, we noted 
that when testing the traditional null hypothesis, two types of errors are 
possible. Researchers who reject the null hypothesis when in fact it is true 
make a Type I error (α is the probability of making this error if H0 is in fact 
true). The practical effect of a Type I error is that researchers could come 
to believe that treatments have some effect when in fact they have no effect 
whatsoever. Researchers who fail to reject the null hypothesis when it is false 
make a Type II error (β is the probability of making this error when H0 is in 
fact false, and power = 1 − β). The practical effect of making a Type II error is 
that researchers might give up on treatments that in fact have some effect.

The most common strategy for reducing Type I errors is to make it dif-
ficult to reject the null hypothesis (e.g., by using .01 rather than .05 as 
a criterion for significance). Unfortunately, this strategy also substantially 
reduces the power of your tests. For example, suppose you are comparing 
two treatments (with 200 people assigned to each treatment) and you expect 
a small effect (i.e., d = .20). Using .05 as a significance criterion, your power 
would be .64; if α = .01, power drops to .37 (Cohen, 1988). This tradeoff 
between Type I error protection and power suggests that in deciding which 
significance level to use, you must balance the risk and consequences of a 
Type I error with the risk and consequences of a Type II error. Nagel and 
Neff (1977) discuss a decision-theoretic strategy for choosing an alpha level 
that provides an optimum balance between the two errors.

Cascio and Zedeck (1983) suggest that Equation 4.1 can be used to esti-
mate the apparent relative seriousness (ARS) of Type I versus Type II errors 
in statistical significance tests:

 ARS
(H )

[1 H
1

1

=
−
p

p
β

α( )]
 (4.1)

where p(H1) = Probability that H0 is false
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According to Equation 4.1, if the probability that treatments have some effect 
is .7, alpha is .05 and power is .80, your choice of the .05 significance cri-
terion implies that a mistaken rejection of the null hypothesis (i.e., a Type 
I error) is 9.33 times as serious [i.e., (.7 ∙.2)/(.3 ∙ .05) = 9.33] as the failure to 
reject the null when it is wrong (i.e., a Type II error). In contrast, setting α at 
.10 leads to a ratio of 4.66 [i.e., (.7 ∙ 2)/(.3 ∙ .10) = 4.66], or to the conclusion 
that Type I errors are treated as if they are 4.66 times as serious as a Type II 
error (see also Lipsey, 1990).

The first advantage of Equation 4.1 is that it makes explicit values and 
preferences that are usually not well understood, either by researchers or by 
the consumers of social science research. In the scenario described above, 
an alpha level of .05 makes sense only if you think that Type I errors are 
over 9 times as serious as Type II errors. If you believe that Type I errors are 
only 4 or 5 times as serious as Type II errors, you should set your signifi-
cance level at .10, not at .05.

The second advantage of Equation 4.1 is that it explicitly involves the 
probability that the null hypothesis is true. As we have noted in several 
other contexts, the traditional null hypothesis is virtually never true, which 
means that both null hypothesis testing and efforts to reduce Type I errors 
are sometimes pointless (Murphy, 1990). If the null hypothesis is by defini-
tion false, it is not possible to make a Type I error. Thus, the only circum-
stance in which you should use stringent significance criteria, adopt testing 
procedures that minimize Type I errors, and so forth are those in which the 
null hypothesis might actually be true. This virtually never happens when 
testing the traditional null hypothesis, but it might occur when testing a 
minimum-effect hypothesis.

Should you ever worry about Type I errors? In testing the traditional null 
hypothesis, it is often virtually impossible to make a Type I error, no matter 
how hard you try. If H0 is known to be false, there simply is no way to make 
a Type I error, and your only concern should be maximizing power (and 
therefore minimizing Type II errors). In contrast, there are good reasons for 
concern over Type I errors when testing a minimum-effect hypothesis. It is 
virtually impossible to devise serious treatments or interventions that have 
no effect whatsoever, but there are many treatments, interventions, tests, etc., 
that have only negligible effects. If the hypothesis to be tested is that the effect 
of treatments falls under some sensible minimum, it is quite possible that the 
null will be true, and that you will in fact learn something by testing it.

As Equation 4.1 suggests, it is impossible to sensibly evaluate the relative 
emphasis given to Type I versus Type II errors unless the probability that the 
null hypothesis is in fact true can be estimated. Table 4.2 shows the relative 
seriousness with which Type I versus Type II errors are treated, as a func-
tion of both the alpha rate and the probability that the null hypothesis is 
true, in studies where power = .80. For example, if there is a 5% chance that 
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treatments really do have a negligible effect (i.e., the probability that the min-
imum-effect null hypothesis is true = .05), the decision to use an alpha level 
of .01 makes sense only if you believe that Type I errors are 380 times as seri-
ous as Type II errors. As you can see from Table 4.2, as alpha increases (i.e., 
as it becomes easier to reject H0), the relative seriousness attached to Type I 
versus Type II errors goes down. If you believe that Type II errors are at all 
serious, relative to Type I errors, the message of Table 4.2 is clear—i.e., you 
should use a more lenient criterion for determining statistical significance.

It is easy to rearrange the terms of Equation 4.1 to compute the alpha 
level you should use to reach an appropriate balance between Type I and 
Type II errors, a balance we describe as the desired relative seriousness 
(DRS).2 For example, if you decide to treat Type I errors as twice as serious 
as Type II errors, the DRS is 2.00; if the probability that the null hypothesis 
was true is .30, power is .80, and you want to treat Type I errors as if they 
are twice as serious as Type II errors, you should use an alpha level of .23. 
The desired alpha level (i.e., level which will yield the appropriate balance 
between Type I and Type II errors) can be obtained from Equation 4.2.

 α β
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H DRS

=
−











p
p

( )
[ ( )]

1

1
1
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where
	 αdesired = Alpha level that will yield the desired relative seriousness of 

Type I and Type II errors
 DRS = Desired relative seriousness of Type I and Type II errors

To repeat what we regard as a critical point, you should be concerned with 
Type I errors if and only if there is a realistic possibility that such an error can 
occur. One of the distinctions between the traditional null and minimum-

2 Keep in mind, however, that using nonconventional alpha levels will often 
require you to vigorously defend your choice, even in contexts where the “conven-
tional” choice (e.g., .05, .01) makes no sense whatsoever.

Table 4.2 Relative Seriousness of Type I Versus 
Type II Errors as Function of Alpha and Probability 
That the Null Hypothesis Is True (Power = .80)

Probability That  
H0 Is True

Alpha

.01 .05 .10

.50  20.00  4.00  2.00

.30  46.66  9.33  4.66

.10 180.00 36.00 18.00

.05 380.00 76.00 38.00



86  Statistical Power Analysis

effect tests is that there is a realistic possibility that the minimum-effect null 
hypothesis will be true, which suggests that serious decisions must be made 
about the appropriate balance between Type I and Type II errors. Equations 
4.1 and 4.2 can help you make those decisions.

Finding a Sensible Alpha

Suppose you truly believed that Type I errors were 10 times as seri-
ous as Type II errors. Using Equation 4.2, it is possible to design 
a study in such a way that the likelihood of making Type I versus 
Type II errors reflects their relative seriousness, which in this case 
will translate into designing a study in which the probability of 
making a Type I error is one-tenth the probability of making a 
Type II error. In order to do this, you need to determine what level 
of power you want to achieve, some estimate of the probability 
that the null hypothesis is wrong (i.e., p(H1)). We have argued in 
several parts of this book that p(H1) will almost certainly be high 
(e.g., p(H1) = .90) when testing the null hypothesis and have also 
argued that power should be high in most studies. If you assume 
that power (1 – β) = .80 (and therefore β = .20) and that Type I 
errors are 10 times as serious as Type II errors, Equation 4.2 trans-
lates into

	 αdesired = [(.9 ∙ .2)/(1 − .9)) ∙ (1/10)] = .18

In other words, the alpha level that makes the most sense in this 
context is α = .18.

If you think that the null hypothesis is almost always wrong, 
and that p(H1) should equal .99 rather than .90, Equation 4.2 trans-
lates into

	 αdesired = [(.99 ∙ .2)/(1 − .99)) ∙ (1/10)] = 1.98

An alpha level greater than 1.0 is impossible, so what does this 
calculation tell you? If you really believe that the null hypothesis 
is almost always wrong and that Type I errors are 10 times worse 
than Type II errors, this calculation suggests that you cannot set 
your alpha too high. No matter what decision criteria you choose, 
performing significance testing when you know ahead of time that 
H0 is almost certainly wrong will always cause you to run a risk 
of Type II errors, and that does not make sense, given your beliefs 
about the relative seriousness of the two errors.
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Summary

Statistical power analysis can be used in planning future studies (e.g., deter-
mining how many subjects are needed) or in diagnosing studies that have 
already been carried out (e.g., calculation of power levels helps you sensi-
bly interpret significance tests). All applications of statistical power analysis 
require at least an estimate of the true effect size; estimates can be obtained 
from literature reviews or from relevant theory. Even where little is known 
about the true effects of treatments, effect size conventions can be used to 
structure power analyses.

It is possible to use the methods described here to (1) determine the 
probability that a study will correctly reject the null hypothesis, (2) deter-
mine the number of subjects or observations needed to achieve adequate 
power, (3) determine the sort of effects that can be reliably detected in a 
particular study, or (4) make informed choices about the criteria that define 
statistical significance. As we have noted throughout this book, these appli-
cations of power analysis are not in any way limited to tests of the tradi-
tional null hypothesis, but rather can be easily adapted to more interesting 
and informative tests of the hypothesis that treatment effects exceed some 
minimum level.

The distinction between traditional and minimum-effect hypotheses is 
especially important when making decisions about criteria for defining a 
significant outcome. Simply put, when testing the traditional null hypoth-
esis, there is rarely any justification for choosing a stringent alpha level (e.g., 
.01 rather than .05). Procedures designed to protect you against Type I errors 
(e.g., Bonferroni corrections) usually reduce your power and should only be 
applied if there is some realistic possibility that a Type I error can be made. 
This is unlikely when testing the traditional null hypothesis; this hypothesis 
is usually known to be incorrect, virtually by definition. Type I errors are a 
very real concern in tests of minimum-effect hypotheses, and the equations 
presented here allow you to rationally assess the relative emphasis placed 
on maximizing statistical power versus avoiding errors of this sort. 
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5

Correlation and Regression

▼      ▼      ▼      ▼      ▼

There is a clear link between correlation and regression analysis and the 
broader topic of power analysis because both are concerned fundamentally 
with effect sizes (ES). Throughout this book, we use the percentage of vari-
ance in the dependent variable that is explained by treatments, interven-
tions, or other variables (i.e., PV) as our main ES measure. If you square 
the correlation between two variables, X and Y, what you get is PV (i.e., the 
proportion of variance in Y that is explained by X). Similarly, in multiple 
regression, where several X variables are used to predict scores on Y, the 
squared multiple correlation coefficient (i.e., R2) is a measure of proportion 
of the variance of Y that is explained. One of the substantial advantages 
of framing statistical analyses under the general linear model in terms of 
correlation (e.g., both t-tests and analyses of variance are easily performed 
using correlational methods) is that it is virtually impossible to make one of 
the most common mistakes when testing the null hypothesis—i.e., forget-
ting to examine and report effect size measures. Correlations are effect size 
measures.

Power analysis is useful for both designing and understanding correla-
tional studies. It provides a coherent framework for making decisions about 
sampling and about the interpretation of both significant and nonsignificant 
findings. As with other analytic methods discussed in this book, the general 
message of power analysis when applied to correlation is that large samples 
are usually needed to provide adequate power. However, as the example 
discussed below shows, large samples can lead to potentially confusing 
results, particularly when researchers depend on tests of the nil hypothesis 
to drive the interpretation of their results.
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The Perils of Working With Large Samples

McDaniel (1988) used very large samples to study the validity measures of 
pre-employment drug use as predictors of job suitability in the military. 
Validity coefficients for pre-employment use of drugs such as marijuana, 
cocaine, various stimulants, and depressants were calculated in samples 
ranging in size from 9,224 to 9,355 subjects. As you might expect, the corre-
lations were all “statistically significant,” and an incautious reading of these 
“significance” tests might mislead readers when arriving at conclusions 
about the value of these tests.

Several of the validities reported by McDaniel (1988) are shown in 
Table 5.1. These results are almost beyond the scope of the One-Stop F 
Table, but interpolating between dferr = 1,000 and dferr = 10,000 allows us 
to reject the traditional null hypothesis in every case at the .01 level. The 
interpolated critical F value for α = .01 at 1 and 9,224 degrees of freedom is 
6.64, which is much smaller than any of these observed F values. However, 
as we note below, the tests are significant because of the enormous samples 
involved, not because of the size of the effect.

Although significant in the traditional sense, McDaniel’s (1988) validities 
are probably not meaningful in any substantive sense, and as the author 
himself notes, employers would be better advised to base their  employment 
decision on information other than applicant’s previous history of drug use. 
This study is an excellent example of the pitfalls of relying on tests of the tra-
ditional null hypothesis. These correlations are all “significant,” and it is all 
too easy to confuse “significant” with “meaningful.” As we note below, these 
correlations are so small that they should probably be ignored altogether.

We titled this section “The Perils of Working With Large Samples” because 
significance tests can cause real problems for researchers who work with 
small samples (low power), but can also cause problems for researchers 
who work with large samples. In this study, all the correlations were sig-
nificant, but none was very big. Large samples have many important advan-
tages, notably their ability to provide more accurate estimates, but they 

Table 5.1 Predictive Validity of Pre-Employment Drug 
Use Reported by McDaniel (1988)

Drug N Validity PV t F

Marijuana 9,355 .07 .0049 6.79 46.06
Cocaine 9,224 .04 .0016 3.85 14.81
Stimulants 9,286 .07 .0049 6.76 45.73
Depressants 9,267 .07 .0049 6.76 45.63
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can mislead researchers who rely on significance tests to tell whether their 
results are noteworthy and important.

Traditional versus minimum-effect tests. An examination of Table 5.1 
shows just how small these validities are, accounting for less than half a 
percent of the variance in job suitability in each case. This fact is reflected 
in the One-Stop F Table as well. At 1 and 9,224 degrees of freedom, the 
interpolated critical F for rejecting the null hypothesis that the effect is neg-
ligibly small (i.e., 1% or less of the variance) at 126.1, well above any of the 
observed F values. In other words, none of the validities reaches the level we 
have designated as “trivial.” Although they are significantly different from 
zero, it is clear that the relationship between these tests and job suitability is 
so weak that the variables could be treated as virtually independent.

This example illustrates an important feature of minimum-effect null 
hypotheses. Unlike the traditional null, you cannot necessarily reject a 
 minimum-effect null simply by collecting more data. If an effect is genuinely 
negligible, it will continue to be negligible no matter how many subjects you 
test. This phenomenon is reflected in the One-Stop F Table by the fact that 
critical F values for the 1% and 5% minimum-effect nulls do not asymptote 
as dferr increases. As you can see, as dferr gets very large, the critical values 
for minimum-effect nulls keep pace with the increase and do not allow you 
to reject the minimum-effect null hypothesis unless the effect you are study-
ing is genuinely meaningful. Herein lies another important advantage of 
minimum-effect null hypothesis testing over traditional null hypothesis test-
ing. When testing a minimum-effect null hypothesis, you cannot guarantee 
rejection simply by collecting a large sample.

Power estimation. As we noted above, the large samples employed in this 
study give tremendous power in tests of the traditional null hypothesis. If 
we assume, for example, that pre-employment tests account for only one 
half of one percent of the variance in job suitability (i.e., PV = .005), we 
would still have power in excess of .80 for all of the tests of the traditional 
null hypothesis reported in Table 5.1. With N = 9,224 and an assumed effect 
of PV = .005, the F equivalent is 46.35, whereas the critical F for achieving 
power of .80 is 7.81. It is little wonder that the author of this study rejected 
the traditional null hypothesis. Even if the true effect of pre-employment 
drug tests is absolutely trivial, this study would still provide plenty of power 
for rejecting the hypothesis that there is no effect whatsoever.

In contrast, if the hypothesis to be tested is that these tests account for 
1% or less of the variance in suitability, McDaniel’s (1988) study does not 
achieve power of even .50; to reach this level of power for samples this 
large, you would need an F of greater than 120. As we noted above, if the 
samples included 90,000 rather than 9,000 individuals, you still would not 
have power for rejecting a minimum-effect null with data like these. The 
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effect is much too small to be sensibly described as “meaningful,” and no 
matter how large the sample, it will still be small. The fact that you can 
never attain the power needed to reject a minimum-effect hypothesis when 
the effect is in fact negligible is neatly illustrated with this study.

Multiple Regression

Students who apply for admission to college usually submit scores on sev-
eral tests (e.g., SAT general and subject tests), high school transcripts, and 
other indicators of academic potential. One of the challenges faced by 
admissions officers is to put all of this information together to predict the 
applicants’ future performance. One solution to this problem is to use mul-
tiple regression.

Multiple regression involves using several X variables to predict a crite-
rion or outcome variable (Y). The X variables can be continuous (e.g., SAT 
scores) or discrete (e.g., membership in honor societies); multiple regression 
provides an analytic method of combining information from multiple pre-
dictors to do the best job possible predicting scores on Y.1 In this particular 
context, multiple regression involves finding the weighted linear combina-
tion of test scores, high school grades, and other indicators that are most 
highly correlated with the criteria of success in college.

Power analysis can be easily applied to several types of regression. The 
examples below illustrate some of the possibilities.

Multiple regression models. Beaty, Cleveland, and Murphy (2001) examined 
the relationship between four personality factors (neuroticism, agreeable-
ness, extroversion, and conscientiousness) and evaluations of organizational 
citizenship behaviors. Their results suggest that these four personality vari-
ables account for approximately 3% of the variance in ratings of citizenship. 
Because their sample was large (N = 488), this R2 value was judged to be 
significantly different from zero.

It is important to keep in mind that multiple regression involves find-
ing the best possible combination of variables for predicting Y. That means 
that no other possible weighted combination of these four personality vari-
ables will account for more than 3% of the variance in citizenship. This 
R2 is significantly different from zero, but it is worth asking whether it is 
large enough to allow the conclusion that the relationship between person-
ality and organizational citizenship is anything but trivial. As we noted in 

1 The “best” set of predictions is defined here as predictions that minimize the 
sum of the squared differences between actual and predicted Y variables (i.e., the 
least squares method).
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our earlier discussions of minimum-effect hypotheses, it might be reason-
able to define treatments, interventions, or predictors that account for 1% 
of the variance or less in the population as having effects that are trivially 
small. Either the One-Stop F Table or the One-Stop F Calculator can be used 
to test the hypothesis that the relationship between these four personality 
traits and evaluations of organizational citizenship is either trivially small 
(H0) or large enough to be meaningful (H1).

Testing Minimum-Effect Hypotheses in Multiple Regression

In this study, N = 488, R2 = .03. This is a significant multiple correla-
tion, but it is not clear whether it is large enough to be meaningful. 
One way to ask the question about whether this R2 is large enough 
to be meaningful is to define the PV value that represents a trivial 
effect (e.g., one that accounts for 1% of the variance or less) and test 
the hypothesis that in the population, the percentage of variance 
accounted for is larger than 1%. To carry out this minimum-effect 
test, all you need to do is to determine the degrees of freedom and 
use them to either guide your search through the One-Stop F Table 
or enter them into the One-Stop F Calculator.

With a sample of 488 subjects and four predictor variables (i.e., 
p = 4), the degrees of freedom for the sample R2 are 3 (p − 1) and 
484 (N − p − 1). The One-Stop F Calculator (Significance Testing 
option) shows that in order to reach a .05 alpha level in tests of 
this minimum-effect hypothesis, R2 must be .035, which is slightly 
higher than the observed R2 of .03. In other words, you cannot 
reject the hypothesis (α = .05) that the relationship between these 
four personality variables and evaluations of citizenship behavior 
is trivially small. However, you can nearly approximate the type of 
effect needed to reject this hypothesis.

If you enter .01, .80, .05, 3, and 484 for ES, power, alpha, dfhyp, 
and dferr under the Power Analysis option, you will find that you 
could achieve power of .80 for tests of the hypothesis (N = 488) 
that these four personality variables have a trivial versus a mean-
ingful relationship with citizenship given a population PV as low 
as .045. In other words, if the percentage of variance explained 
had been .045 rather than .03, you would have had power of .80 
for testing this minimum-effect hypothesis. With a population PV 
of .03, you would need a much larger sample (dferr = 1143, N = 
1148) to achieve this same level of power.
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One of the properties of multiple regression is that adding new predictor 
variables always increases the value of R2. For example, adding any variable 
to the four personality characteristics discussed in the example above will 
lead to an increase in the percentage of variance explained. As a result, it is 
always important in regression to know and consider how many predictor 
variables are in the regression equation. Explaining 20% of the variance in 
some important criterion variable with four predictors is considerably more 
impressive than explaining 20% of the variance with 15 predictors. As a 
result, virtually all assessments of power in multiple regression will require 
information about both the number of subjects (N) and the number of pre-
dictor variables (p).

Hierarchical regression models. Bunce and West (1995) examined the role 
of personality factors (propensity to innovate, rule independence, intrinsic 
job motivation) and group climate factors (support for innovation, shared 
vision, task orientation, participation in decision making) in explaining inno-
vation among health service workers. They carried out a 17-month, three-
stage longitudinal study, and as with most longitudinal studies, suffered 
significant loss of data (subject mortality) across time. Their N dropped from 
435 at stage 1 to 281 and 148 at stages 2 and 3. Incomplete data reduced the 
effective sample size for several analyses further; several critical analyses 
appear to be based on a set of 76 respondents.

One analysis used stage 1 innovation, personality factors, and group fac-
tors as predictors in a hierarchical regression model, where the dependent 
variable was innovation at stage 2. The results of this analysis are summa-
rized in Table 5.2.

The principal hypotheses tested in this analysis were (1) personality 
accounts for variance in stage 2 innovation not explained by innovation at 
stage 1, and (2) group climate accounts for additional variance not accounted 
for by personality and stage 1 innovation. Because stage 1 innovation is 
entered first in the equation, you might interpret tests of the changes in 
R2 after personality and climate are added to the equation as reflecting the 
influence of these factors on changes in innovation over time. The results 
suggest that personality has a significant effect, but that group climate 

Table 5.2 Hierarchical Regression Results Reported in Bunce 
and West (1995)

Predictor R2 df F ∆R2 df F

Innovation (stage 1) .18 1,75 16.73*
Personality .33 4,72  8.86* .15 3,72 5.37*
Group Climate .39 8,68  5.38* .06 4,68 1.67

* p < .05 in tests of the traditional null hypothesis
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does not account for variance above and beyond stage 1 innovation and 
personality.

Power estimation. The results in Table 5.2 show a pattern we have encoun-
tered in some of our previous examples, a relatively small sample combined 
with some reasonably large effects (e.g., stage 1 innovation accounts for 18% 
of the variance in stage 2 innovation), which makes it difficult to determine 
offhand whether the study will have enough power for its stated purpose. 
Some quick calculations suggests that this study does not possess sufficient 
power to test all of the hypotheses of interest.

Rather than starting from the reported R2 and F values, suppose you 
used standard conventions for describing large, medium, and small effects 
to structure your power analysis. In hierarchical regression studies, the pre-
dictors are usually chosen to be relevant to the dependent variable (which 
means they should each be related to Y) and are therefore usually intercor-
related (i.e., several variables that are all related to Y are likely to also be 
related to one another). As a result, you will generally find that the first 
variable entered will yield a relatively large R2 and that R2 will not increase 
as quickly as more variables are entered (Cohen & Cohen, 1983). This might 
lead you to expect a large effect for the first variable you enter, a smaller 
change in R2 for the next variable, and a smaller change in R2 for the last 
variable. In Chapter 2, we noted that R2 values of .25, .10, and .01 corre-
sponded to conventional definitions of large, medium, and small effects (see 
Table 2.2). These values turn out to be reasonably similar to the actual R2 

and ∆R2 values shown in Table 5.2 (i.e., .18, .15, and .06, respectively). Even 
more to the point, the overall R2, which represents the sum of these con-
ventional values (i.e., R2 = .36 = .25 + .10 + .01) is very similar to the actual 
overall value (i.e., R2 = .39) reported by Bunce & West (1995).

To estimate power for detecting R2 values of .25, .10, and .01, given the 
degrees of freedom in this study, we first translate the R2 values into F 
equivalents, using the equations shown in Table 2.1. The F equivalents are 
25.0, 3.69, and .27, respectively. There is plenty of power for testing the 
hypothesis that R2 = .25 [F(1, 75) = 25.0]; the critical tabled F for this level 
of power is 8.01. Even when testing the minimum-effect hypothesis that 
the first variable entered accounts for 5% or less of the variance, power far 
exceeds .80.

There is also a reasonable level of power for testing the hypothesis that 
the second variable entered into the regression equation will have a medium 
effect [i.e., R2 = .10, F(3, 72) = 3.69]. Interpolating between values in the 
One-Stop F Table, you would achieve power of .80 with an F value of 3.79. 
The F here is quite close, and the power of this test is approximately .78.

If you assume that the third in a set of intercorrelated predictors will 
generally yield a small increment in R2 (i.e., ∆R2 = .01), there is clearly not 
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enough power to test that hypothesis. To achieve power of .50, you would 
need an F of 1.68; assuming a small effect here, F is only .27.

The conclusions reached by looking at these three conventional values 
closely mirror those that would be obtained if the actual R2 values were 
used. The F values for the first predictor (stage 1 innovation), second pre-
dictor (personality), and third predictor (group climate) are 16.73, 5.37, and 
1.67, respectively. Power easily exceeds .80 in tests of the hypothesis that 
stage 1 innovation is related to stage 2 innovation (the critical F for this level 
of power is 8.01). Power also exceeds .80 for testing the hypothesis that per-
sonality accounts for variance not explained by stage 1 innovation (the criti-
cal F is 3.79; the observed F is 5.37). Power is slightly less than .50 for testing 
the hypothesis that group climate accounts for variance not accounted for by 
the other two predictors (the critical F is 1.68; the observed F is 1.67).

Power in Testing for Moderators

Many theories in the social behavior sciences take the form “X is related to 
Y, but the strength of this relationship depends on Z.” This is a moderated 
relationship. For example, the relationship between cognitive ability and job 
performance is stronger for jobs that involve frequent and intense cognitive 
demands than for jobs that are relatively simple and not demanding (Guten-
berg, Arvey, Osburn, & Jenneret, 1983). That is, job demands moderate the 
relationship between cognitive ability and job performance.

One of the most widely replicated findings in research on moderator 
effects is that studies that search for moderators often lack sufficient power 

Sample Size Estimation

The sample is certainly large enough to provide a powerful test 
of the hypothesis that stage 1 innovation predicts stage 2 innova-
tion. Power is also reasonably high for testing the hypothesis that 
adding personality to the equation yields a significant increase 
in R2. However, a much larger sample would be needed to pro-
vide a powerful test of the last hypothesis (i.e., that group cli-
mate explains additional variance). We used the Sample Size (dferr) 
Determination option of the One-Stop F Calculator to determine 
the number of subjects needed to attain power of .80 for a test of 
an increase in R2 of .01. A sample of greater than 1,170 would be 
needed, nearly 15 times as large as the sample collected by Bunce 
and West (1995).
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to detect them (Osburn, Callender, Greener, & Ashworth, 1983; Sackett, Har-
ris, & Orr, 1986). Once you understand how moderators are defined and 
assessed, it is easy to see why power can be so low in so many studies.

Suppose you think cognitive ability (X) is related to job performance 
(Y) and that this relationship is moderated by job complexity (Z). The best 
method of testing the hypothesis that Z moderates the relationship between 
X and Y is to first determine whether Y is related to both X and Z (e.g., 
is there a significant and meaningful correlation between ability and per-
formance and between job complexity and performance?). Next, a series 
of regression models is compared. In particular, the test for moderation 
involves computing the cross-product between X and Z (i.e., multiply each 
person’s ability score by his or her job complexity score—symbolized by 
X ∙ Y ), then compare the following:

 1. R2
y.x, z (i.e., the squared correlation between job performance and 

both ability and job complexity).
 2. R2

y.x, z,x∙z (i.e., the squared correlation between job performance and 
ability, job complexity, and the cross-product between ability and 
job complexity).

If there is a real moderator effect, adding the cross-product to a regression 
equation that contains both ability and job complexity considered alone 
will lead to an increase in R2. That is, considering ability and job complexity 
jointly will provide new information over and above what can be gained by 
considering these two factors separately; the statistical test for a modera-
tor involves testing the hypothesis that adding cross-product terms leads 
to a significant and meaningful increase in R2. For example, if R2

y.x, z = .30 
and R2

y.x, z,x∙z = .45, this means that the joint consideration of ability and job 
complexity accounts for 15% of the variance in performance that cannot be 
accounted for by ability and job complexity considered alone.

The most compelling explanation for the traditionally low levels of power 
for testing moderator hypotheses is that large increases in R2 when cross-
products are added to a regression equation are rare, meaning that most 
moderator effects are fairly small. One of the recurring themes in power 
analysis, regardless of the statistical procedures being analyzed, is that small 
effects lead to low power unless samples are extremely large.

Why Are Most Moderator Effects Small?

There are statistical as well as substantive reasons to expect moderator 
effects to be small in most cases. In particular, the cross-product terms 
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described above will almost always end up being highly correlated with 
the variables that were used to create this cross-product. For example, if 
the cross-product between ability and job complexity is used in testing for 
moderators, you should expect reasonably large correlations between abil-
ity and complexity considered alone and the cross-products between these 
two variables. If ability and complexity are positively correlated, the cross-
product of these two variables must be highly correlated with the two vari-
ables considered alone.

As we noted in the preceding section, adding a new variable to a regres-
sion equation will always lead to some increase in R2, but there is also a 
decreasing payoff in the sense each new variable that is added to a regression 
is likely to lead to increasingly small increases in R2. In multiple regression, 
the increase in R2 represents new information contributed by the variable 
added to the regression equation, and when the new variable to the regres-
sion (e.g., x ∙ z) is correlated with variables already in the regression equa-
tion (e.g., both x and z considered alone), it is quite unlikely that it will 
add a great deal of new information. Even in situations where there are 
very strong moderator effects (i.e., where the relationship between X and Y 
changes substantially depending on the value of Z), it is uncommon to find 
large increases in R2.

Power Analysis for Moderators

Suppose you collected data from 500 employees in a range of jobs 
and correlated ability and performance scores. If you had highly 
reliable measures of ability and job performance, it would be rea-
sonable to find ability–performance correlations in the range of .35 
to .60, with an average of approximately .50. This translates into 
an R2 value of .25. A sample of N = 500 provides plenty of power 
for testing the hypothesis that ability is related to performance. 
For example, if you enter 0, .05, .99, 1, and 498 into the ES, alpha, 
power, dfhyp, and dferr boxes of the Power Analysis section of the 
One-Stop F Calculator, you will find that you can achieve power of 
.99 with an R2 value as low as .031. If you add job complexity to 
the regression equation, it is reasonable to expect an increase in R2 
of approximately .05 to .10. If you enter 0, .05, .99, 1, and 497 into 
the ES, alpha, power, dfhyp, and dferr boxes of the Power Analysis 
section of the One-Stop F Calculator, you will again find that you 
can achieve power of .99. If you add the cross-products of ability 
and job complexity into that regression equation, you might expect 
an increase in R2 of approximately .005 to .01. The Sample Size 



Correlation and Regression  99 

Implications of Low Power in Tests for Moderators

Sometimes the relationships between variables are truly simple, but many 
relationships are complicated by the existence of moderator variables. For 
example, as noted above, the complexity of jobs moderates the relationship 
between cognitive ability and job performance. Ability is always positively 
related to performance, but that relationship is stronger in complex jobs 
than in simpler jobs. As a result, the best answer to the question, “What is 
the correlation between ability and job performance?” is “It depends on the 
complexity of the job.”

The low power of most tests for moderators has potentially important 
effects on research and applications of research in the behavioral and social 
sciences (Osburn et al., 1983; Sackett et al., 1986). In particular, lack of 
power in a search for moderators may lead researchers to underestimate 
the complexity of their data. For example, prior to Gutenberg et al.’s (1983) 
study showing that job complexity was a moderator of the ability–perfor-
mance relationship, many researchers assumed that validity was invariant 
(i.e., that the validity of ability tests was identical across most if not all 
jobs). This was not necessarily because of the lack of variability in outcomes 
across jobs, but rather because of the lack of power in studies searching for 
moderators. Similarly, researchers sometimes assume that the tests they use 
are unbiased because tests of the hypothesis that sex, race, age, or other 
demographic characteristics of test takers do not moderate the relation-
ships between test scores and important criteria. Unless very large samples 
are used, tests of the hypothesis that demographic variables moderate the 
effects of tests often have insufficient power, and the failure to identify 
moderators may say more about the quality of the study than about the lack 
of bias of the test. In general, the conclusion that any relationship between 
two variables in invariant may be difficult to test because it can be very 

(dferr) Determination option of the One-Stop F Calculator suggests 
you would need a sample of well over 1,500 employees to detect a 
change of .005 in R2. Even if the change is a large as .01, you would 
still need a sample of more than 750 employees.

A sample of N = 500 is relatively large, compared with the 
typical samples obtained in behavioral and social science research; 
depending on the topic, samples of 50 to 200 subjects are com-
mon. However, this sample is not large enough to provide a power-
ful test of the moderator hypothesis unless the moderator effect is 
an unusually strong one.
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demanding to put together powerful tests of the hypothesis that moderator 
variables exist.

Summary

Power analyses are easily applied to studies that use correlation and regres-
sion. The power of a statistical test always depends on three factors: sample 
size, alpha, and effect size. Because the squared correlation coefficient is an 
effect size measure (i.e., it is identical to PV), the process of applying power 
analysis in this context is unusually straightforward.

Our analysis of a correlational study that used very large samples illus-
trates the potential folly of using traditional nil hypothesis tests to evaluate 
the importance and meaning of study results. In the McDaniel (1988) study, 
all the correlations between pre-employment drug tests and employment 
outcomes were significant, but none was very large. This study also illus-
trates the advantages of testing a minimum-effects hypothesis. If you define 
a trivially small relationship between X and Y as one in which X accounts 
for less than 1% of the variance in Y (leaving at least 99% unexplained), 
none of the correlations examined in this section would be thought of as 
meaningful. If you test the null hypothesis that the relationship between 
pre-employment drug tests and employment outcomes is trivially small, you 
will find that you cannot reject this null hypothesis. These correlations are 
trivially small, at least by this definition.

Applications of power analysis to a variety of multiple regression appli-
cations suggest that it is often easy to test the hypothesis that one or two 
variables predict Y, but that it becomes increasingly difficult to test the 
hypothesis that other variables add new information once the first few rea-
sonable predictors of Y are taken into account. Because most of the variables 
that are likely to be included in a regression equation are almost certain 
to be positively intercorrelated, it becomes increasingly hard for each new 
variable to add information to the prediction of Y over and above whatever 
information is already present in the regression equation. This has serious 
implications for tests of moderator hypotheses because the essence of the 
test for moderation is that the cross-product of two variables (e.g., X and Z) 
contains information that is not contained by X alone or Z alone. Because of 
the typically high levels of correlation between X, Z, and the cross-product 
of X and Z, it is unusual to find that adding the cross-product of X and Z 
to a regression equation that already contains both X and Z as individual 
variables will lead to large increases in R2. In other words, moderator effects 
tend to be fairly small, and it is very difficult to achieve high levels of power 
in studies where small effects are expected.
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t-Tests and the Analysis of Variance

▼      ▼      ▼      ▼      ▼

One of the most common applications of statistics in the behavioral and 
social sciences is the comparison of means obtained from different treat-
ments, different groups, or different measurements. For example, there are 
thousands of studies published each year that involve comparisons between 
a treatment group that has received some sort of intervention or special 
treatment and a control group that has not received this intervention. Other 
comparisons might involve assessing differences between scores obtained 
prior to some treatment or intervention (pre-test) with scores obtained sub-
sequent to that treatment (post-test). Still other comparisons might contrast 
the average scores across several groups that receive different treatments or 
combinations of treatments.

The t-Test

The t-test is commonly used to compare one group or one set of scores 
with another. For example, 200 subjects might be randomly assigned to 
treatment and control groups; the independent t-test can be used to statisti-
cally compare these average scores. Alternately, pre-test and post-test scores 
might be collected from the same set of 200 subjects; repeated measures or 
dependent t-tests can be used to compare these scores. Finally, this same 
t-statistic can be used to compare the mean in a sample with some fixed 
or reference value. For example, you might have the hypothesis that the 
average SAT Critical Reasoning score in a sample is equal to the population 
mean of 500. This one-sample t-test is rarely encountered in the behavioral 
and social sciences; therefore, our discussion will focus for the most part on 
the independent and the dependent t-tests.
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As with other test statistics, the evaluation of a t-statistic involves compar-
ing the observed value of t with the critical value of t for the null hypothesis 
being tested. The critical value of t, in turn depends on three things: the 
type of hypothesis being tested (e.g., traditional nil versus minimum-effect 
test), the alpha level, and the degrees of freedom.

The degrees of freedom for the three different types of t-tests are listed 
in Table 6.1.

It is not always clear why different tests have different degrees of free-
dom, but if you keep in mind what each test compares, it is easier to see 
why, for example, the one-sample test has different degrees of freedom from 
the two-sample test. In a one-sample test, the scores of N people are used 
to estimate a population mean. Using our previous example, if you compare 
the mean in a sample of N students who took the SAT Critical Reasoning 
test to the overall average score this test is designed to yield (i.e., a score of 
500), the degrees of freedom are N − 1 because there is only one sample sta-
tistic being used to estimate its corresponding population parameter. That 
is, the hypothesis you are testing is that the mean score in the population 
you sampled from is 500. In the two-sample test, there are n subjects in 
both the treatment and control group, and scores in these samples are used 
to estimate the means in the populations each group represents, yielding 
(n − 1) degrees of freedom within each group, or (n − 1) + (n − 1) = N − 2 
degrees of freedom for the study. In a dependent t-test, where the same N 
people provide both sets of scores to be compared, the hypothesis being 
tested is that Post-test − Pre-test = 0. There are N measures of this pre/post 
difference, yielding N − 1 degrees of freedom for estimating the population 
difference between pre-tests and post-tests.

In very small samples, a t-table is often used in assessing statistical sig-
nificance; for samples of 60 or more, the distribution of the t-statistic is very 
similar to a standard normal distribution. Thus, for example, the critical 
value for a two-tailed t-test with df = 100 is 1.96. Rather than relying on the 
t-distribution, it is both easy and useful to convert t to F, by simply squaring 
the value of t. In particular, t2(dferr) = F(1, dferr). Throughout this text, we 

Table 6.1 Degrees of Freedom for the t-Statistic

Type of Test Test Compares df

One-sample Sample mean to some fixed 
value

N − 1

Independent t Two sample means (n1 − 1) + (n2 − 1) or N − 2
Dependent t Two scores from the same 

set of people
N − 1

N = Number of individuals in sample
n = Number of individuals in each independent group
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have noted that converting to F simplifies power analysis, something that is 
trivially easy to do when working with the t-test.

Suppose 100 subjects are randomly assigned to either a treatment designed 
to increase reading speed or a control group. A researcher compares the 
means for these two groups and reports t(98) = 2.22. This translates into 
F(1, 98) = 4.94; applying the F to PV conversion formula of Equation 2.7 PV 
= (dfhyp ∙ F)/[(dfhyp ∙ F) + dferr] you find:

 PV = (1 ∙ 4.94)/[(1 ∙ 4.94) + 98] = .05

This is both a relatively small sample and a relatively small effect, sug-
gesting that the level of power in this study will be low. The One-Stop F 
Table confirms this. The F needed to achieve power levels of .50 and .80 are 
3.85 and 7.95, respectively. The observed F is between these two values, and 
the level of power for this study is .58.

Independent Groups t-Test

Suppose a researcher is interested in comparing the outcomes of two different 
programs designed to help people quit smoking. The researcher thinks that a 
good study can be done using 50 subjects (25 randomly assigned to each treat-
ment). Power analysis might lead this researcher to rethink that assumption.

Estimating power for this study. Suppose the researcher chooses to test 
a traditional null hypothesis, using an alpha level of .05. She is not sure 
whether there will be large or small differences between the programs, and 
performs a power analysis that assumes small treatment effect (e.g., PV = 
.01). In the t-test, there is 1 degree of freedom for the hypothesis being 
tested (i.e., dfhyp). The degrees of freedom for error (see Table 6.1) are:

 dferr = n1 + n2 − 2

 dferr = 25 + 25 − 2

 dferr = 48

To determine whether the proposed study has sufficient power, use the 
“Power Analysis” frame on the One-Stop F Calculator and enter 0.0 for ES, 
.05 for alpha, 1 for dfhyp, and 48 for dferr. In order to achieve a power of .80, 
you would need fairly strong effect (i.e., PV = .14), much larger than the small 
effect that the researcher assumed. The study this investigator has planned 
has very low power. If you enter .50 for power in this section of the One-
Stop F Calculator, you will find that you still need a moderately large effect 
(i.e., PV = .079) to achieve this low level of power. If you keep entering 
smaller estimates of power, you will eventually find that if there truly is a 
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small effect in the population (i.e., PV = .01), a sample of N = 50 will achieve 
power of .105. That is, if there truly is a small difference between these two 
programs, the odds are about 1 in 10 that your study will find it, and about 
9 in 10 that your study will miss it. If the investigator had reason to believe 
that PV was equal to .10 as opposed to .01, power would have been much 
higher (with N = 50 and PV = .10, power is .615); but if the assumption of a 
small effect is a reasonable one, this study is grossly under-powered.

Determining an Appropriate Sample Size

The power analysis conducted above shows that the researcher 
was much too optimistic about the possibility of detecting a small 
difference between two approaches to reducing smoking using a 
sample of N = 50. To determine the sample size needed for a study 
such as this, two different approaches might be followed. First, 
you can use the One-Stop F Calculator. Second, you can use the 
table presented in this book to estimate the sample size required 
to reach an acceptable level of power.

If you assume that there is a small difference between pro-
grams (i.e., PV = .01) and that you desire power of .80 for tests of 
the traditional null hypothesis, you can use the One-Stop F Calcu-
lator to determine the sample size that will be required. Using the 
Sample Size (dferr) determination section of the calculator, enter 0.0 
for ES, .8 for power, .05 for alpha, 1 for dfhyp, and .01 for PV. You 
will find that you need a sample of 755 subjects to achieve this 
level of power (the calculator shows dferr = 753, which is equal to 
N − 2, so N = 755).

Alternately, you could use the dferr Table presented in Appen-
dix D. This table shows that when PV = .01 and dfhyp = 1, the dferr 
required to achieve power of .80 is 775. You might note that this 
is not exactly the same value as the one provided by the One-Stop 
F Calculator in the example above, although it is quite close. As 
we noted earlier in this book, virtually all power calculations are 
estimates, usually based on broad assumptions (e.g., that PV = 
.01), and the precise assumptions of different calculations are not 
always identical. The small differences provided by alternate calcu-
lations are not important, in part because power analysis is almost 
always more concerned with providing useful rough estimates than 
with providing precise answers, and regardless of which value one 
used, the same conclusion would be reached (i.e., that a much 
larger sample would be needed to provide adequate power).
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Traditional Versus Minimum-Effect Tests

Clapp and Rizk (1992) measured placental volumes in 18 healthy women 
who maintained a regular routine of exercise during pregnancy. Nine women 
engaged in aerobics, four ran, and five swam. The control group comprised 
16 females who did not engage in such a regimen. Placental volumes were 
measured using modern ultrasound techniques at 16, 20, and 24 weeks ges-
tation. Results of the study are reproduced in Table 6.2.

Two aspects of this study are especially noteworthy. First, the sample 
is small (N = 34). In most cases, this would mean very low power levels. 
However, in this study the effects are quite strong. In the three time periods 
studied, exercise accounted for between 29% and 47% of the variance in 
placental volume (d ranges from 1.71 to 2.41). Because the apparent effects 
of exercise were quite substantial, it should be easy to rule out the hypoth-
esis that the treatment had no effect (traditional null), or even that the true 
effects of exercise are at best small (minimum-effect hypothesis).

The t-test in this study has 32 degrees of freedom; if it is squared, the 
statistic is distributed as F with 1 and 32 degrees of freedom. If you con-
sult the the One-Stop F Table, you will find entries for 1 and 30 and 1 and 
40 degrees of freedom, but none for 1 and 32 degrees of freedom, meaning 
that you must interpolate to analyze these results. As can be seen in the 
One-Stop F Table, critical F values for the traditional null hypothesis at 1 and 
30 degrees of freedom for α = .05 and .01 are 4.16 and 7.56, respectively. 
The corresponding values at 1 and 40 degrees of freedom are 4.08 and 7.31. 
Using Equation 2.10, the α = .05 and .01 critical values for 1 and 32 degrees 
of freedom when testing the traditional null hypothesis are 4.14 and 7.51, 
respectively. All of the observed F values in Table 6.2 are greater than 7.51, 

Table 6.2 Placental Volumes Reported by Clapp and Rizk (1992)

Week
Control 
(N = 16)

Treatment
(N = 18) t F PV d

16 106 (18) 141 (34) 3.68 13.55 .29 1.94
20 186 (46) 265 (67) 3.96 15.66 .33 1.71
24 270 (58) 410 (87) 5.45 29.66 .47 2.41

Note: Volumes are expressed in cm3. Standard deviations are shown 
in parentheses. Note that in this table d represents the mean 
difference divided by the control group SD. Use of pooled 
SD values yields somewhat smaller d values, but they will 
nevertheless exceed conventional benchmarks for “large” 
effects.
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so we can reject the traditional null at the .01 level and conclude that regular 
exercise has some impact on placental volume.

You can conclusively rule out the possibility that exercise has no effect, 
and the data suggest that the actual effect is quite large. However, it is 
always possible that the true effect is small and that the large PV and d 
values observed here represent chance fluctuations in a process that usually 
produces only a small effect. You can use the One-Stop F Table to test the 
hypothesis that the effects of treatments are negligible, or perhaps small to 
moderate. Again, using Equation 2.10 to interpolate, the critical F (α = .05) 
for the minimum-effect null hypothesis that the effect is small to medium 
in size (i.e., the null is that treatments account for no more than 5% of the 
variance in outcomes) is 9.52. All F values in Table 6.1 exceed 9.52, so we 
can reject the minimum-effect null hypothesis that the effects of treatments 
are no greater than small to moderate, with a 95% level of confidence. We 
can also reject this hypothesis at the .01 level for mean placental volumes at 
20 and 24 weeks (critical F = 15.26; observed F = 15.66 and 29.44 at 20 and 
24 weeks, respectively). That is, we can be at least 99% confident that the 
effects of treatments exceed our definition of small to moderate.

Power estimation. Assume, as the results of this study suggest, that the 
effects of maternal exercise on placental volume are substantial (e.g., exer-
cise accounts for 25% of the variance in placental volume). If this assump-
tion is true, this study possesses very high levels of power for rejecting the 
traditional null. With 1 and 32 degrees of freedom, an effect size of PV = 
.25 has an F-equivalent value of 10.66. The critical F for achieving a power 
of .80 at α = .05 in this study is 8.3. The power to reject the hypothesis that 
treatments account for less than 1% of the variance in the population is also 
well in excess of .80; the critical F for power of .80 in testing this minimum-
effect hypothesis is 10.12. Using the Calculate Power for a Completed Study 
option in the One-Stop F Calculator, we estimate power to be at least .91 for 
these tests.

In addition to placental volume, Clapp and Rizk (1992) examined a range 
of other dependent variables for the women in this study. If exercise could 
function as a viable treatment of fetal under- or overgrowth, we might expect 
it to have some effect on the final birth weight of the babies as well. In this 
case, Clapp and Rizk reported the mean birth weight of babies for women 
in the control group as 3,553 g (SD = 309) compared with 3,408 g (SD = 445) 
for women in the treatment group. Reference to the One-Stop F Table shows 
that even when testing hypotheses about birth weight, you cannot reject the 
traditional null hypothesis [F(1, 32) = 1.19, p < .05].

One possible explanation for this finding is low power. If the true effect 
of exercise on birth weight (as opposed to placental volume) is small, power 
will be well less than .50 in this study. For example, if we assume that the 
true effect of exercise on birth weight meets the conventional definition for 
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a small effect (i.e., PV = .01), the F equivalent in this study is less than .32, 
whereas the critical F for a power of .50 to reject the traditional null at the 
.05 level is 4.03. Thus the power of this study to detect traditionally signifi-
cant differences in birth weight is much less than .50 (approximately .18 in 
fact). Of course the power to detect substantively meaningful differences is 
even lower.

Sample size estimation. How many subjects would be required to reliably 
detect differences in birth weight as a result of exercise during pregnancy? 
In order to answer this question you can refer to Appendices D and E, 
which allow you to determine sample sizes needed, given that α = .05 and 
the desired level of power is .80. If you assume that the effect of exercise 
on birth weight is small (PV = .01, d = .20), you will need appromixmately 
777 subjects in total (i.e., N = dfhyp + dferr + 1; for the t-test, dfhyp = 1) or 
appromixmately 389 subjects in each group (i.e., 777/2) to achieve this level 
of power in tests of the traditional null hypothesis.

The power analyses conducted here suggest that the Clapp and Rizk (1992) 
study was well suited for answering questions about the effect of exercise on 
placental volume, which was its major focus. Power exceeded .80 for tests of 
both traditional and minimum-effect null hypotheses. However, the sample 
size is quite inadequate for answering questions about the effects of exercise 
on birth weight. Because a small effect might reasonably be expected here, 
huge samples are probably needed to provide adequate power.

One-Tailed Versus Two-Tailed Tests

In the two examples above, the null hypothesis being tested was that there 
were no differences between treatments or conditions, or that the differ-
ences were trivially small (e.g., accounted for less than 1% of the variance in 
outcomes). This represents a two-tailed statistical test because differences 
in programs will lead you to reject the null regardless of the direction of 
the difference. For example, in Clapp and Rizk (1992), you would reject the 
null hypothesis if subjects in the treatment condition had higher scores than 
those in the control condition but would also reject the same null hypothesis 
if subjects in the control condition ended up with higher scores. This type 
of test is most common in the behavioral and social sciences, and it is called 
a two-tailed test because score differences at either end of the distribution 
(i.e., large positive differences or large negative differences) will cause you 
to reject the null hypothesis.

Sometimes, researchers have specific directional hypotheses (e.g., that 
scores in the treatment group are higher than scores in the control group). 
These one-tailed tests are more powerful than their two-tailed counter-
parts and are preferable in many circumstances. The key to working with 
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one-tailed tests is that doubling the alpha level of a two-tailed test allows 
you to determine the critical values, power, sample size needed, etc., of a 
one-tailed test. That is, results you obtained from analysis of the power of 
two-tailed tests at the α = .10 level would be identical to those obtained 
for one-tailed tests at the α = .05 level. The One-Stop F Calculator is particu-
larly useful for working with one-tailed tests because it allows you to enter 
in virtually any alpha value you want.

Repeated Measures or Dependent t-Test

Suppose 50 students take a pre-test designed to measure their knowledge of 
American history. They then go through a training program and complete 
a post-test measure of history knowledge three weeks later. One of the key 

Re-Analysis of Smoking Reduction 
Treatments: One-Tailed Tests

The analyses presented earlier in this chapter were based on the 
assumption that two-tailed tests were being performed (i.e., that 
two interventions designed to reduce smoking were being com-
pared), without specifying a priori which one was likely to work 
better. Suppose the researcher had a good reason to believe that 
one treatment was indeed better. There would be substantial 
advantages to using one-tailed rather than two-tailed tests.

First, with degrees of freedom of 1 and 48 for the hypothesis 
being tested, power analysis for one-tailed tests, with α = .05 would 
be performed by using an alpha level of .10 when entering data 
into the One-Stop F Calculator. If the true differences between pro-
grams is small (e.g., assume that the true PV = .01), power would 
still be quite low with only 50 subjects. Choose the Power Analysis 
option and enter 0.0 for the ES, .10 for alpha, and 1 and 48 for dfhyp 
and dferr, respectively. If you enter .80 for the desired power level, 
you will find that a much larger effect (PV = .11) would be needed 
to reach that level of power. If you enter increasingly lower levels 
of desired power, you will eventually find that this study achieves 
power of about .18 in a one-tailed test (versus power of .11 for a 
two-tailed test). Using the Sample Size (dferr) Estimation option, 
you will find that you need a sample of N = 585 to achieve power 
of .80 in one-tailed tests of this null hypothesis (with a two-tailed 
test, N = 755 is required).
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assumptions of the two-sample t-test is that the scores being compared are 
obtained from independent samples, and that certainly is not the case in 
studies that rely on the dependent t-test. Rather, it is best to assume that 
multiple scores obtained from the same people (either on pre- and post-
versions of the same measure or on two distinct measures) are correlated, 
and this correlation affects both the structure of the significance test and 
the power of that test.

Table 6.3 presents the means and standard deviations for the pre- and 
post-test scores, as well as the correlation between pre and post. The for-
mula for the dependent t is

 t

N N
r

N

= −

+ −

Mean 1 Mean 2

var 1 var 2 SD SD2 12 1 2

 (6.1)

where
Mean 1, var 1, SD1 are mean, variance, and standard deviation of first 

measure
Mean 2, var 2, SD2 are mean, variance, and standard deviation of sec-

ond measure

Equation 6.1 presents a general formula for the t-test. When the means of 
independent groups are compared, the correlation between scores is neces-
sarily equal to zero, and Equation 6.1 reduces to the more familiar formula 
for t presented below:

 t

N N

= −

+

Mean 1 Mean 2

var 1 var 2
 (6.2)

In our example of pre-test/post-test comparisons, the difference between 
means is relatively small (d = .315), and the sample is also relatively small, 
but because of the increased power provided by a repeated-measures 
design, this difference is nevertheless statistically significant. In Chapter 7, 

Table 6.3 Pre-Test and Post-Test Comparison

Pre-Test Post-Test

Mean 110 116
SD  20  18

Note: The correlation between pre-test and post-
test scores is .40, t = 3.14, d = .315.
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we  discuss repeated measures designs for comparing any number of scores 
(the dependent t can only be used to compare two different scores) and will 
show a more general version of the dependent t-test that is based directly 
on the analysis of variance and the F-statistic. We will hold our discussions 
of power analysis for research designs that involve repeated measures until 
that chapter. We will, however, note something that might be obvious from 
examining Equation 6.1. The larger the correlation between the two measures 
being compared, the smaller the standard error of the difference between 
means, and therefore the higher the power of statistical comparisons.

The Analysis of Variance

The analysis of variance (ANOVA) is widely used in the social and  behavioral 
sciences and is often the method of choice for analyzing data from psycho-
logical experiments. Students sometimes find the term analysis of variance, 
confusing because this method is often used to test the null hypothesis that 
the means obtained from different groups or under different conditions 
are all identical, as opposed to the alternate hypothesis that some group 
means are different from others. This suggests that a more apt term might 
be analysis of means. In fact, analysis of variance is a very good term 
because the principal goal of this method of analysis it to help us under-
stand why scores vary. In a traditional experiment, where subjects are ran-
domly assigned to one of several treatments, ANOVA is used to determine 
how important differences between treatment means are for understanding 
the data obtained from an experiment. If treatments explain a substantial 
portion of the variance in scores, we might conclude that treatment effects 
are large and important. On the other hand, it is possible (particularly if the 
number of subjects is large) to conclude that there are significant differences 
between the means obtained in different treatments, even though the over-
all amount of variance explained by treatment effects is quite small.

The analysis of variance provides both significance tests and effect size 
measures. Significance testing is done using the F statistic, making the appli-
cation of the models developed in this book (all of which are based on the 
noncentral F distribution) especially easy. Analysis of variance also provides 
an effect size measure, eta-squared, which represents the proportion of 
variance (i.e., PV) explained by differences between groups of treatments. 
Again, this effect size measure fits neatly and easily into the frameworks 
presented here, most of which revolve around F and PV.

The simplest application of ANOVA is called a one-way analysis of vari-
ance, in which there are two or more treatments or conditions that subjects 
might be assigned to and in which the main focus is to determine how much 
of the variability in scores can be explained by the different treatments. This 
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one-way analysis of variance is closely related to the independent-groups 
t-test, in that the t-test is used to compare scores in two groups or condi-
tions, whereas the analysis of variance is used to compare average scores 
in any number of treatments. When there are only two groups, the one-way 
analysis of variance can be used in place of the t-test; as we noted earlier, 
the F-statistic that is used in significance in ANOVA is obtained simply by 
squaring the value of t. More complex analyses, which are discussed later 
in this chapter and in the chapters that follow, will allow us to ask a wider 
array of questions, but there is often considerable utility in asking the sim-
ple question: “How important are the different treatments or conditions in 
explaining variability in subjects’ scores?” The one-way analysis of variance 
asks this question.

Suppose an investigator randomly assigns 60 rats to one of three groups. 
All rats run through a straight alley (runway) once a day for a total of 30 days. 
Rats in the first group are given a small reward for each run through the 
runway. Rats in the second group are given a medium-sized reward for each 
run through the runway. Rats in the third group are given a large reward for 
each run through the runway. One hour after a given rat runs through the 
runway, each rat is given additional food. The total food per day for all rats 
is the same. That is, the additional food for the small-sized reward rats is 
more than the additional food for the medium-sized reward rats. The addi-
tional food for medium-sized reward rats is more than the additional food 
for large-sized reward rats.

At the end of 30 days, training is completed, and each rat is given one last 
trial running through the alley; the time it takes each rat to make it to the 
end of the alley is recorded. The question here is whether the magnitude of 
reward during training will affect the dependent variable (time to run).

Table 6.4 reports the results of an analysis of variance conducted on data 
from this experiment.

In this table, df represents the degrees of freedom for the hypothesis 
being tested and error (in one-way ANOVA, dfhyp = k − 1, where k represents 
the number of means being compared, and dferr = N − k), SS represents the 
sum of the squared deviations attributable to differences in treatment means 
and to variability within each of the treatment groups (which is used to 
estimate error), and MS represents mean squares (MS = SS/df) for treatment 
and error effects. These mean squares are sample estimates of variance in 

Table 6.4 ANOVA Results for the Rat Running Study

Source df SS MS F Eta2

Magnitude of reward 2 32 16.0 1.34 .045
Error 57 678 11.89
Total 59 710
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the population that can be explained by group differences and by error (the 
variance is computed by taking the average of the squared deviations from 
the mean; hence, the term mean square).

Eta-squared (SS for the hypothesis divided by SS total) provides an esti-
mate of the proportion of variance accounted for by differences between 
groups; the implication of finding that differences between groups account 
for 4.5% of the variance in scores is that the lion’s share of variance (95.5%) is 
explained by something other than differences in the magnitude of rewards 
these rats received during training. The F ratio is calculated by dividing 
the mean square for differences between groups by the mean square for 
error (i.e., F = MShyp/MSerr = 16.0/11.89 = 1.34). In this study, an F value of 
approximately 3.15 would be needed to reject the null hypothesis that dif-
ferences in reward have no effect whatsoever, meaning that the effect here 
is nonsignificant.

Power analysis. The sample was not very large, and one likely explanation 
for the nonsignificant finding is that power is low. Using the Calculate Power 
for a Completed Study option of the One-Stop F Calculator, enter 0.0 for ES 
(traditional null hypothesis), .05 for alpha, 1.34 for F, and 2 and 57 for dfhyp 
and dferror, respectively. You will find that this study has power of .26. Using 
the Sample Size (dferr) Determination option, if you enter .80 as the desired 
power level and .045 as the PV value, you will find that this study will require 
206 rats (i.e., dferr = 203) to achieve power of .80. If you make the conserva-
tive assumption that in the population PV = .01 (i.e., assume that there is a 
small effect), you will need 936 rats to achieve this level of power.

Retrieving Effect Size Information From F Ratios

Unfortunately, many studies report the outcomes of significance 
tests without presenting the more important information about 
effect sizes. In the one-way ANOVA, it is quite easy to translate 
information about significance to information about effect size. 
In Chapter 2, we presented a formula (Equation 2.7) that bears 
repeating:

 PV = (dfhyp ∙ F)/[(dfhyp ∙ F) + dferr]

As we noted in Chapter 2, this formula cannot be used for com-
plex ANOVAs, but it is perfect for the one-way analysis of vari-
ance. Suppose two studies report nonsignificant results, the first 
reporting F(1, 500) = 3.52, and the second reporting F(1, 32) = 
3.70. Would you regard the results in these two studies as similar? 
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Which Means Differ?

A significant F in the one-way analysis of variance indicates that the null 
hypothesis that all means are identical can be rejected, but it does not neces-
sarily tell you which means are and which are not reliably different. A vari-
ety of procedures has been developed to provide a more detailed follow-up 
in studies that report significant differences between treatment means.

The least significant difference (LSD) procedure. Suppose an investigator 
performs an ANOVA for an experiment in which there are three different 
treatments and obtains a statistically significant F. Knowing that ANOVA 
asks the global question of whether there are any differences between treat-
ments, the investigator decides to use t-tests to compare all possible pairs of 
treatments, provided the F in ANOVA is statistically significant, and decides 
to use the same alpha level (e.g., .05) for all comparisons. This can easily 
be done using the LSD procedure, which involves computing the smallest 
difference in treatment group means that will be judged to be statistically 
significant, using the formula:

 LSD
MSE

df ]error
= t

kα / [2
2

 (6.3)

where
 t = Square root of the value of F needed to achieve significance for 

1 and dferr degrees of freedom at the α/2 level
 MSE = Mean square error
 k = Number of groups

The t-value used in this formula is simply the square root of the F needed to 
achieve statistical significance with the degrees of freedom of 1 and dferr for 

If you compute PV, you will find that differences between groups 
explained 6/10 of 1 percent of the variance in the first study, but 
10.3% of the variance in the second. You might still pay attention 
to the fact that neither study produced significant results, but the 
most reasonable interpretation of these data is that the first study 
is dealing with a truly miniscule effect (with over 500 cases, there 
would be plenty of power to detect nontrivial effects), whereas the 
second study simply lacks the power needed to detect even mod-
erately strong effects. These do not look like similar findings once 
effect size information is taken into account.
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an alpha level twice as high as the desired alpha for each comparison. The 
One-Stop F Calculator can be used to find the value of F needed to reach 
statistical significance at the .10 level for df 1 and 57. This F (obtained using 
the Significance Testing option) is 2.79, so the equivalent t is 1.67 (the square 
root of 2.79).

Power for the LSD Procedure. When power is calculated for the LSD pro-
cedure, the Calculate Power for a Completed Study with a Selected Alpha 
option of the One-Stop F Calculator can be used. Simply enter 0.0 for the ES 
(traditional null hypothesis), .05 for alpha, the F ratio that is equivalent of t 
in Equation 6.3 (in the example above, F = 2.79), and the values of dfhyp and 
dferr (here, 1 and 57). In this study, power is disappointingly low (power = 
.358), suggesting that if the investigator is seriously interested in comparing 
individuals means, a good deal more data are needed.

Ryan’s procedure. There are a number of alternatives to the LSD, many of 
which were designed to address the potential inflation of Type I error that 
results from conducting many different tests. As we have noted in several 
earlier chapters, the likelihood of Type I errors is much lower than most 
people think, especially when tests of the traditional null hypothesis are 
conducted. Nevertheless, it is useful to describe at least one of the methods 
that attempts to deal with uncertainty about error rates.

An investigator who wants to make the entire experiment the conceptual 
unit for all statistical tests can use Ryan’s (1962) procedure. Ryan’s procedure 
is a stairstep procedure in which potential t-tests are performed until the 
procedure indicates no further t-tests need to be calculated. Each individual 
test is conducted using an alpha level that provides an overall alpha level of 
.05 for the experiment as a whole.

Consider the experiment with four groups. Assume that a traditional null 
hypothesis with an alpha level of .05 is used. Further assume that dferr is 
300 and means for the four groups are M1 = 55, M2 = 23, M3 = 91, M4 = 12. 
The F ratio ANOVA must be statistically significant before any means can be 
compared using Ryan’s procedure. Suppose here that F(3, 300) = 10.0, which 
is easily significant.

Once a significant F is established, groups are ordered from the group 
with the lowest mean to the group with the highest mean: M4, M2, M1, 
M3. The first t-test compares group 4 (lowest mean) and group 3 (highest 
mean). Figure 6.1 shows the four means ordered from lowest to highest mean. 
Figure 6.1 also shows the four steps between the lowest mean (M4) and the 
highest mean (M3).

The first t-test compares the means that are farthest away from one 
another, here M4 and M3, which are four steps apart. In order to preserve 
an overall alpha level of .05, the alpha levels for specific tests need to be 
adjusted. The “corrected” alpha level (alpha′) for this test is
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 alpha =
2′

−
α

J R( )1
 (6.4)

where
 J = Number of groups
 R = Number of steps between the two means
 Alpha′ in this example is [(2 ∙ .05)/(4 ∙ (4 − 1))] = .0083.

The Significance Testing option of the One-Stop F Calculator can be used 
to determine the critical value of F for the t-test. Enter 0.0 for ES, .008 for 
alpha, and 1 and 300 for dfhyp and dferr, and you will find that the critical 
value of F for significance testing is F = 7.12. The F from ANOVA was greater 
than 7.12 (the reported F value was 10.0), which means you can reject the 
null hypothesis that M4 does not differ from M3. Note that you should 
report that M4 differs from M3 at the .05 level, not the .0083 level.

If the first t-test (M4 versus M3) was not statistically significant, no fur-
ther t-tests would be performed. If the first t-test is statistically significant, 
two more t-tests are justified. In Figure 6.1, there are two sets of means that 
are three steps removed from each other, M4 and M1 and M2 and M3. The 
corrected alpha′ for both of these t-tests is once again given by equation 6.4 
(i.e., alpha′ = [(2 ∙ .05)/(4 ∙ (3 − 1))] = .0125).

The Significance Testing option is once again used to determine the criti-
cal value of F for the two t-tests, by entering 0.0 for ES, .012 for alpha, and 
1 and 300 for dfhyp and dferr. This critical value is F = 6.38, which allows you 
to reject the null hypotheses that M4 does not differ from M1 and that M2 
does not differ from M3.

If means that are three steps apart are significantly different, t-tests are 
justified for means that are two steps apart (e.g., M3 versus M1, M4 versus 
M2, and M2 versus M1), and finally, significant results at two steps justify 
comparisons of adjacent means. Note that the critical value for F becomes 
less stringent as the investigator tests means that are closer together in terms 
of number of steps. Also note that it is harder to find statistical significance 
for all t-tests with Ryan’s procedure as opposed to the LSD procedure.

Order Means Used in Ryans Procedure

Steps              1        2          3         4 

M4     M2     M1     M3 

12       23      55        91 

Figure 6.1 Order means used in Ryans procedure.
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Power can be calculated for each of the t-tests performed with Ryan’s pro-
cedure, using the “Calculate Power for a Completed Study With a Selected 
Alpha Level option, by entering 0.0 for ES, the alpha′ value, the F equivalent 
of t for the t-test, 1 and 300 degrees of freedom. Of course Ryan’s procedure 
can be adapted for use with minimum-effect hypotheses, by simply entering 
the appropriate ES when using the One-Stop F Calculator.

Summary

Many studies in the behavioral and social sciences revolve around compari-
sons between the average scores received in treatment and control groups. 
The independent-groups t-test is widely used and, unfortunately, often 
applied in studies with too little power. Another common comparison made 
in social science research is between different measurements (e.g., pre-
tests versus post-tests) obtained from the same individuals. The dependent 
t-test offers more power but also more complexity than the more common 
 independent-groups test; both complexity and power are a direct result of 
the fact that the measures being compared are likely to be correlated.

The analysis of variance represents a more flexible and general version 
of the statistical procedures that underlie the t-test. The t-test compares 
two scores, whereas ANOVA allow you to compare scores from any number 
of groups or treatments (including two). ANOVA is particularly well suited 
for the models presented in this book because it is built around the F test 
and around effect size measures that indicate the percentage of variance 
explained by treatments—in particular, eta-squared. Several applications of 
power analysis in the analysis of variance were presented and discussed. 
Finally, it is common in ANOVA to plan and conduct detailed follow-up 
tests. ANOVA tells you whether all means are the same or whether some 
differ from others, but does not tell you which treatments produce reliably 
different outcomes. Power analyses for procedures used to examine com-
parisons of specific sets of treatments or conditions have been presented 
and discussed.
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7

Multifactor ANOVA Designs

▼      ▼      ▼      ▼      ▼

Experiments and quasi-experimental studies in the behavioral and social 
sciences often involve several independent variables that are manipulated 
or studied jointly. For example, an educational psychologist might be inter-
ested in the effects of both the amount of instruction (e.g., 2, 3, or 4 days a 
week) and the method of instruction (e.g., traditional lecture versus hands-
on learning) on the achievement of students. A factorial experiment is one 
in which the individual and joint effects of both of these independent vari-
ables can be studied. So, for example, an investigator might randomly assign 
each of 240 students to one of the conditions illustrated in Figure 7.1.

If students are randomly assigned to these six conditions, there should 
be 40 students in each cell of Figure 7.1. (In this sort of study, it is common 
to use lowercase n to designate the number of people in each condition and 
uppercase N to designate the total number of participants.)

Sometimes, it is not possible to assign students at random. For example, 
it might be administratively impossible to move students around at random, 
but you might be able to assign classes or groups of students to each cell, cre-
ating a quasi-experimental study. The distinction between a true experiment 
and a quasi-experimental study is that experiments involve random assign-
ment of each individual to conditions, whereas quasi-experimental studies 
do not allow every subject to be randomly assigned to conditions. The meth-
ods used to analyze data from experiments and quasi-experiments are iden-
tical, but true experiments permit stronger inferences about causation.
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The Factorial Analysis of Variance

The analysis of variance (ANOVA) is a statistical technique that involves ask-
ing the question, “Why do some people get high scores and others get low 
scores on the dependent variable?” (Or, “Why do scores vary?”) In its most 
general form, in a study where subjects are assigned to different treatments 
and their scores on some common dependent variable are obtained, ANOVA 
answers this question by breaking down the variability of scores into two 
components, as illustrated in Equation 7.1.

 
Variability in scores Variability due to di= ffferences in treatment means

    Variabilit+ yy each of the treatmentswithin
 (7.1)

In a study where there is only one independent variable (e.g., the number of 
days of instruction), Equation 7.1 corresponds to:

 
Variability in scores Variability due to tr= eeatments

   + Variability due to error
 (7.2)

In this sort of study, the mean square between (MSB) provides an estimate 
of the variability associated with treatments; the mean square within (MSW) 
provides an estimate of the variability in scores among subjects who receive 
the same treatment (i.e., variability that is not due to the treatments). Thus, 
MSW represents variability due to error, i.e., the variability that you would 
expect if all the differences among scores were merely random, chance 
fluctuations. The statistic F = MSB/MSW tells you whether the variability due 
to treatments is large relative to the variability in scores due to error, i.e., 
whether the variability due to treatments is larger than what you would 
expect if everything was due to chance. If the variability due to treatments 
represents more than chance fluctuations, you can conclude that your treat-
ments had some effect. In a one-way ANOVA, all of the variability in scores 
is broken down into these two components (between versus within), and as 
a result, it is easy to use the F statistic to estimate the effect size, PV.

As we noted in Chapters 2 and 6, in a one-way ANOVA, PV = dfhyp∙ 
F/[(dfhyp∙ F) + dferr)]. In factorial ANOVA, the questions asked and the break-
down of the variability in scores becomes more complex, and as a result, 
the estimation of PV and of statistical power also becomes more complex. 
In this chapter, we generalize the formula used for estimating PV from the 
F values obtained in a factorial ANOVA study.

Factorial experiments allow you to ask several questions simultaneously. 
For example, the factorial study illustrated in Figure 7.1 allows you to ask 
three questions: (1) What is the effect of the number of days of instruction? 
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(2) What is the effect of the style of teaching? and (3) Do these two vari-
ables interact? (i.e., does the effect of the amount of instruction depend on 
the method of instruction used?). Different research designs might allow 
researchers to ask a wider range of questions (e.g., in a later section of this 
chapter, we discuss repeated-measures designs, which allow you to examine 
systematic subject effects and subject by treatment interactions), or might 
provide a more narrowly focused examination of the data (e.g., designs with 
nested factors can be more efficient but may not provide an opportunity to 
ask all of the questions that are possible in a fully crossed factorial design). 
In multifactor ANOVA studies, it is common to have different levels of power 
for each of hypotheses tested.

Different questions imply different levels of power. In the design illus-
trated in Figure 7.1, there are three distinct hypotheses that can be tested 
via ANOVA, two main effect hypotheses (i.e., the hypothesis that the type 
of instruction and the amount of instruction influence learning), and one 
interaction hypothesis (i.e., the hypothesis that the effects of the type of 
instruction depends on the amount of instruction). All other things being 
equal, you will have more power for testing the hypothesis that the type 
of instruction matters than for testing the hypothesis that the amount of 
instruction matters. You will have more power for testing either of these 
main-effect hypotheses than for testing the hypothesis that the amount and 
type of instruction interact. To understand why this is true, it is necessary to 
think concretely about the type of question ANOVA is designed to answer.

As we noted in Chapter 6, in some ways, the term analysis of variance 
is an unfortunate one because it can lead people to forget what ANOVA 
was designed to do. The analysis itself focuses on identifying sources of 
variability or variance (hence, the acronym ANOVA), but the reason for 
doing the analysis is often to compare means. For example, when I ask 
whether the main effect for type of instruction is large, what I am really 
asking is whether the mean score of people who received lecture training is 

Lecture

Hands-on

2 days             3 days                4 days

Figure 7.1 A factorial experiment.
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substantially different from the mean score of people who received hands-
on instruction. Similarly, when I ask whether the main effect for amount of 
instruction is large, what I really want to know is whether the scores of peo-
ple who received more instruction are substantially different from the scores 
of people who received less instruction. Interaction hypotheses in the design 
illustrated in Figure 7.1 involve comparisons of individual cell means.

A general principle running through all of the power analyses discussed 
in Chapters 1 and 2 is that there is more power when hypotheses are tested 
in large samples than when similar hypotheses are tested in smaller sam-
ples. That is, power increases with N. In ANOVA, the level of power for 
comparing means (i.e., for testing hypotheses about main effects and inter-
actions) depends largely on the number of observations that go into calcu-
lating each mean. Suppose, for example, that 240 subjects show up for the 
study illustrated in Figure 7.1. Tests of the main effect for type of instruc-
tion will compare the mean score of the 120 people who receive lectures 
with the mean score of the 120 people who receive hands-on instruction. 
Tests of the main effect of amount of instruction will compare three means, 
each based on 80 subjects (i.e., 80 people received 2 days of instruction, 
80 received 3 days, and 80 received 4 days). Tests of the interaction effect 
will involve comparing cell means, each of which is based on 40 people 
(e.g., 40 subjects received 2 days of lecture, another 40 received 3 days of 
hands-on instruction, and so on). All other things being equal, power is 
higher for statistical tests that involve comparing means from samples of 
120 people (here, tests of the main effect of instruction type) than for tests 
that involve comparisons samples of 80 people (here, tests of the main effect 
of amount of instruction). Statistical tests that involve comparisons among 
means obtained from samples of 40 people (here, tests of the interaction) 
will often have even lower levels of power.

In ANOVA, it is common to distinguish between the number of observa-
tions in each cell of a design (designated by the lowercase n) and the total 
number of observations in a study (designated by the uppercase N). In the 
study described above, the interaction means are based on n = 40 subjects, 
and the main effect means for the type of instruction and amount of instruc-
tion main effects are based on samples of 3n and 2n subjects (i.e., 120 and 
80), respectively. If all other things were equal, you would expect more 
power in the larger sample. Unfortunately, all things are rarely if ever equal, 
and it is difficult to state as a general principle that tests of main effects will 
always be more powerful than tests of interactions, or that main effect tests 
that involve comparing fewer means (and therefore fewer dfhyp) will be more 
powerful than main effect tests that involve comparing more means (and 
therefore more dfhyp). The reason for this is that the effect sizes for each of 
the separate questions pursued in ANOVA can vary. For example, suppose 
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that there is a very large interaction effect, a moderately large main effect 
for the amount of instruction, and a very small main effect for the type of 
instruction. This might lead to the highest level of power for tests of the 
interaction and to the lowest level of power for tests of the type of instruc-
tion main effect.

Estimating power in multifactor ANOVA. The process of estimating the 
power of tests of main effects and interactions in ANOVA is a straightfor-
ward extension of the processes described in Chapters 1 and 2. In particu-
lar, power depends on sample size, effect size, and the decision criteria. For 
example, assume that you expected a small main effect (PV = .01) for the 
type of instruction, a moderately large main effect (PV = .10) for the amount 
of instruction, and an equally large effect (PV = .10) for the interaction. If 
N = 240 (i.e., there are 240 subjects randomly assigned to the six cells in this 
design), you would expect power to equal approximately .30 for the type of 
instruction main effect (assuming α = .05). You would expect power levels 
of approximately .99 for the amount of instruction main effect and the type 
by amount interaction. In other words, power levels would be quite low for 
testing some effects and quite high for others in this study.

Estimating PV from F in a multifactor ANOVA. In a one-way ANOVA, all 
of the variability in scores is broken down into two components, variability 
due to treatments and variability due to error. Once you know the value 
of F in a one-way ANOVA, it is easy to determine the value of PV, which 
reflects the proportion of variance due to differences between treatments. 
In a multifactor ANOVA, F does not, by itself, give enough information to 
allow you to calculate PV. For example, in the study illustrated in Figure 7.1, 
the F for the type of instruction main effect tells you how large this effect 
is relative to MSerr, but it does not tell you how much of the total vari-
ance is accounted for by differences in types of instruction. In a multifactor 
ANOVA, the PV for one main effect depends in part on the size of the other 
main effects and interactions.

If you have the values of each of the F statistics (and their degrees of free-
dom) computed in a multifactor ANOVA, it is often possible to solve for the 
percentage of variance explained by each of the effects (we describe excep-
tions below). Returning to our example, suppose you found the following:

Type of instruction: F(1, 234) = 3.64
Amount of instruction: F(2, 234) = 15.19
Type X amount interaction: F(2, 234) = 16.41

These three sets of F values and degrees of freedom provide all of the infor-
mation needed to determine the PV for each of these three effects, as well 
as the PV for the error term.
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To see how this information can be used to calculate PV, we start by not-
ing that

 F = MShyp/MSerr (7.3)

and

 F ∙ dfhyp = SShyp/MSerr (7.4)

In a design where there are two main effects (label these A and B) and one 
interaction (labeled AB), it is easy to show that:

 PVerr = dferr/[dferr + (FA ∙ dfA) + (FB ∙ dfB) + (FAB ∙ dfAB)] (7.5)

If you know the percentage of variance explained by error, it follows that the 
rest of the variance is explained by the model as a whole (i.e., by the com-
bined effects of the A effect, the B effect, and the AB interaction). That is,

 PVmodel = 1 − PVerr (7.6)

Finally, once you know the combined effects of A, B, and AB, all that remains 
is to determine the percentage of variance explained by each. These values 
are given by

 PV A PV F F Ffor df / df dfmodel A A A A B= ⋅ ⋅ ⋅ + ⋅[( ) (( ) ( BB AB ABdf) ( ))]+ ⋅F  (7.7)

 PV B PV F F Ffor df / df dfmodel B B A A B= ⋅ ⋅ ⋅ + ⋅[( ) (( ) ( BB AB ABdf) ( ))]+ ⋅F  (7.8)

 PF AB PV F F Ffor df / dfmodel AB AB A A B= ⋅ ⋅ ⋅ +[( ) (( ) ( ⋅⋅ + ⋅df dfB AB AB) ( ))]F  (7.9)

Worked Example: Calculating PV From 
F and df in Multifactor ANOVA

Suppose an article provides information about statistical signifi-
cance but not about effect size. It is often possible, and if possible, 
worthwhile, to calculate effect size estimates. Earlier in the chap-
ter, we presented the following data:

Type of instruction: F(1, 234) = 3.64
Amount of instruction: F(2, 234) = 15.19
Type X amount interaction: F(2, 234) = 16.41
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Applying Equation 7.5, you find:

 PVerr = dferr/[dferr + (FA ∙ dfA) + (FB ∙ dfB) + (FAB ∙ dfAB)]

 = 234/[234 + (3.46 ∙ 1) + (15.19 ∙ 2) + (16.41 ∙ 2)]

 PVerr = 234/300.66 = .78

Applying Equation 7.6, you find

 PVmodel = 1 − PVerr

 PVmodel = 1 − .78 = .22

Applying Equations 7.7–7.9, you find

 PV for A = PVmodel ∙ [(FA ∙ dfA)/((FA ∙ dfA) + (FB ∙ dfB) + (FAB ∙ dfAB))]

 = .22 ∙ [(3.64 ∙ 1)/((3.64 ∙ 1) + (15.19 ∙ 2) + (16.41 ∙ 2)]

 = .22 ∙ .054 = .012

 PV for B = PVmodel ∙ [(FB ∙ dfB)/((FA ∙ dfA) + (FB ∙ dfB) + (FAB ∙ dfAB))]

 = .22 ∙ [(15.19 ∙ 2)/((3.64 ∙ 1) + (15.19 ∙ 2) + (16.41 ∙ 2)] 

 = .22 ∙ .46 = .10

 PV for AB = PVmodel ∙ [(FAB ∙ dfAB)/((FA ∙ dfA) + (FB ∙ dfB) + (FAB ∙ dfAB))]

 = .22 ∙ [(16.14 ∙ 2)/((3.64 ∙ 1) + (15.19 ∙ 2) + (16.41 ∙ 2)]

 = .22 ∙ .48 = .10

In other words, the proportion of variance explained by each of 
the factors in this ANOVA model is:

Factor PV

A .012
B .10
AB .10
Error .78
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It is easy to extend Equations 7.5 through 7.9 to designs with three, four, or 
more factors. There are only two real limitations to these equations. First, 
they can only be used with fully crossed factorial designs, where an equal 
number of subjects is assigned to every possible combination of levels of A, 
B, etc. Thus, equations of this sort will not allow you to easily compute PV 
from F in nested designs or incomplete designs. Corresponding calculations 
are possible but laborious. Second, and more importantly, these equations 
apply only to fixed-effect models, in which all significance tests involve 
comparing the MS for each effect in the model to MSerr. Models that include 
random effects require more complex significance tests, and it is not pos-
sible to develop a simple set of formulas that cover all possible combinations 
of fixed and random effects. Luckily, fixed-effect models are much more 
common in the behavioral and social sciences than random-effect or mixed 
models (e.g., the default method for virtually all statistical analysis packages 
is to use fixed-effect models for structuring significance tests), especially in 
designs that do not include repeated measures.

Factorial ANOVA Example

In a meticulously designed study, Martin, Mackenzie, Lovegrove, and McNi-
col (1993) examined the effect of tinted lenses on the reading performance 
of children with specific reading disabilities (SRDs). This treatment was 
first suggested by Irlen (1983) who distinguished a condition called “sco-
topic sensitivity syndrome” which could be ameliorated to some degree by 
prescription lenses with certain tints. Controversy surrounds this treatment 
because it seems highly unlikely to many psychologists that filtering a few 
wavelengths from the perceptual array could have any impact on the higher 
cognitive processes associated with reading (Evans & Drasdo, 1991). Irlen 
proposed a mechanism involving perceptual distortions at certain wave-
lengths on the retina, but other authors have attributed any improvement in 
reading to placebo effects (Cotton & Evans, 1990; Winter, 1987).

From an original sample of 300, Martin et al. (1993) selected 60 subjects 
for further study. Twenty children were normal readers, 20 children had 
SRDs that could be treated by tinted lenses, and 20 children had SRDs 
deemed unsuitable for the treatment. The sample selection process con-
trolled for such variables as native language, eyesight, intelligence, behav-
ioral disorders, organic problems, and exposure to previous therapies. The 
three groups were compared on three occasions (pre-test, post-test, and 
follow-up) using the Neale Analysis of Reading Ability (Neale, 1973) which 
provided measures of reading accuracy and comprehension. A post-test 
occurred 1 year after the pre-test and follow-up occurred 6 months after 
that. Although the sample in this study was small, the authors were able 
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to achieve substantial sensitivity because of their careful procedures and 
because they used a repeated-measures design, in which multiple observa-
tions were obtained from each subject.

The data in this study were analyzed using a 3 x 3 analysis of variance. 
Martin et al. (1993) reported a significant main effect for groups on accuracy 
[F(2, 57) = 65.57] and comprehension [F(2, 57) = 7.72]. The main effect for 
occasion was also significant in each case [F(2, 114) = 24.99 for accuracy and 
F(2, 114) = 36.43 for comprehension]. The One-Stop F Table contains a range 
of useful information that helps put these results in perspective.

Power estimation: Main effects. There are good reasons to believe that 
the main effects in this study are large, and if this is true, the power of all 
main effect tests was extremely high. For the groups’ main effect the criti-
cal F value for achieving power of .80 to reject the traditional null (α = .05) 
is 5.06. The F equivalent for a large effect in this study is 9.50, suggesting 
power well in excess of .80. Power is also greater than .80 for rejecting (at 
the .05 level) the minimum-effect null hypothesis that main effects account 
for 1% or less of the variance in treatments. Here, the critical F value was 
6.19. However, in tests of the groups’ main effect, there is not power in 
excess of .80 for tests of the minimum-effect null for a small to medium 
effect (i.e., that treatments account for less than 5% of the variance in the 
population; the critical F = 9.76).

The same conclusions can be drawn about the occasions’ main effect. 
In this case the critical F value for achieving power of .80 to reject the 1% 
minimum-effect null hypothesis at the .05 level is 6.96; for tests of the 5% 
minimum-effect null, the critical value is 12.72. With dfhyp = 2 and dferr = 
114, a large effect (i.e., F = .25) yields an F equivalent value of 19.00, which 
is well in excess of the critical F needed to attain power of .80 for tests of 
the minimum-effect null hypotheses described above.

Testing interaction hypotheses. Examination of the main effects does 
not really address the principal research question, i.e., the effects of tinted 
lenses on reading performance of children with SRDs. If tinted lenses work, 
we should observe performance of the treated SRDs to be more similar to 
the untreated SRDs in the pre-test condition but more similar to the subjects 
without reading disorders during post-test, hopefully persisting until follow-
up. This is an interaction hypothesis. The interaction of groups by occasion 
was significant in the traditional sense for accuracy [F(4, 114) = 2.98] and 
comprehension [F(4, 114) = 3.13]. In both cases the critical F(α = .05) value 
was 2.45 for tests of the traditional null. A minimum-effect null (i.e., that the 
interaction effect accounts for 1% or less of the variance: critical F = 3.10) 
can also be rejected for comprehension measures.

The power of tests of these interactions can be determined from the One-
Stop F Table. Suppose, for example, that the interaction effect is moderately 
large. If the population PV = .10, the F equivalent for dfhyp = 4, dferr = 114 is 
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3.16. The corresponding critical value for a power of .80 is 3.07. Power to 
reject the 1% minimum-effect null is somewhat lower. In this case, critical 
F values are 2.27 and 3.90 for power levels of .5 and .8, respectively. The F 
equivalent for a moderate effect (i.e., PV = .10) falls between these critical 
values, so we can use Equation 2.7 (Chapter 2) to obtain a more accurate 
estimate. The power to reject the 1% minimum-effect null is approximately 
.5 + .3 (3.16 − 2.27)/(3.90 − 2.27) = .66. Thus, although acceptable for testing 
the traditional null hypothesis, this study is not quite adequate for address-
ing minimum-effect null hypotheses.

There is a reasonable level of power for detecting moderately strong inter-
actions. Suppose, however, that the interaction effect is small (e.g., PV = .01). 
With dfhyp = 4 and dferr = 114, the equivalent F value is now .287, which is 
obviously too small to yield even marginal levels of power. In other words, 
the sample in this study is large enough to give adequate power if and only 
if the true interaction is at least moderately strong.

In a complex experiment, each statistical test may show a different level 
of power. First, the predicted and/or actual effect sizes may differ for main 
effects, simple interactions, and higher-order interactions. Second, the 
degrees of freedom for different tests in a model may vary, sometimes sub-
stantially. In general, it is most likely to have higher power for testing main 
effects and lower power for testing complex interactions. First, main effects 
usually have more degrees of freedom. Second, main effects are usually 
(but not always) stronger than complex interactions. When the focus of your 
study is a complex three- or four-way interaction, very large samples might 
be needed to provide adequate power.

Martin et al. (1993) conclude that tinted lenses have no effect on reading 
ability, but the significant interactions just discussed do not warrant such a 
conclusion. The comprehension interaction, in particular, shows that treated 
children with SRDs performed like untreated children with SRDs in the pre-
test but improved to almost the same level as normal children in the post-
test and follow-up, after the lenses were applied.

Fixed, Mixed, and Random Models

Earlier in this chapter, we mentioned the concept of fixed versus random 
factors. The distinction between the two is not always clear, but it can have 
important implications for analysis of variance and power analysis. To illus-
trate the difference between fixed and random factors, consider an experi-
ment in which subjects are randomly assigned to perform a simple motor 
task (e.g., keeping a cursor on a moving target) under various types of 
 distractions. Two factors are varied, noise level (three different levels: 70, 90, 
110 db) and room temperature (four different levels: 60, 67, 80, 90 degrees). 
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The data suggest that both noise and temperature, as well as the combina-
tion of the two, are likely to influence performance. The question is whether 
noise and temperature are fixed or random factors.

The best way to determine whether a factor is fixed or random is to read 
the discussion section of an article. A factor is fixed if the inferences that 
are made are restricted to the levels actually included in the study. So, if 
the inference is about the difference between 70, 90, and 110 db of noise, 
noise is a fixed factor. On the other hand, if the discussion says “the more 
noise, the worse the performance,” the inference goes beyond the levels 
of noise actually included in the experiment and uses these as a sample 
from a broader population of values that might have been included. If the 
researcher draws inferences about levels of noise not included in the experi-
ment, noise is a random factor.

As this example implies, it is not necessarily the variable itself or even 
the design of an experiment that causes factors to be classified as fixed or 
random. Sometimes, a variable will necessarily be fixed because all pos-
sible levels have already been included in the experiment (e.g., if gender 
is a factor in a design); but in most cases, it is the inferences drawn by the 
researcher and not the variables or the design that matter most.

The analysis of variance is simplest when all factors are fixed, and virtu-
ally all analyses in the social and behavioral sciences are conducted on this 
basis (fixed effects are the default assumption of virtually every piece of 
ANOVA software). Calculations for SSs, dfs, and MSs are the same for fixed, 
mixed, and random models (mixed models include both fixed and random 
factors), but there are important differences in the way significance tests are 
conducted. In particular, the use of random effects leads to questions about 
the meaning of error in the F ratio. In a fixed-effect study, F ratios are cre-
ated by dividing the mean square of interest by the mean square for error. In 
studies that involve random factors, the choice of error terms for construct-
ing F ratios depends on which factors are fixed and which are random.

If both factors in the study described above are treated as random fac-
tors, the denominator for the F ratio for the noise factor is given by F = 
MSnoise/MSnoise∙temperature and the F ratio for the temperature factor is given by 
F = MStemperature/MSnoise∙temperature. That is, the denominator for the F ratio for 
each of these random effects is the mean square for the noise × temperature 
interaction (the error term for testing this interaction is MSerr).

Table 7.1 shows what is used as a denominator for fixed, mixed, and ran-
dom models in experiments that involve two factors (A and B).

Because it is difficult to determine the exact structure of the F test in 
research designs that might involve various mixes of fixed and random fac-
tors (the status of some factors as fixed or random might not even be deter-
mined until the data have been collected), it is difficult to develop power 
analyses for all variations of ANOVA designs. The power analyses developed 
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here, and in other texts that discuss power analysis for ANOVA, are based 
on the assumption that all factors are fixed. 

Randomized Block ANOVA: An Introduction 
to Repeated-Measures Designs

Several years ago, a colleague interviewed for a job at a university where 
animal learning researchers decided to break the mold. Instead of the usual 
laboratory with rats, pigeons, and other small animals, researchers had a 
laboratory where alligators tried to solve a flooded maze. It is a good bet 
that the researchers did not get more alligators every time a power analysis 
told them N was too small.

There are many research areas where it is virtually impossible to use 
large numbers of subjects. Sleep research often involves multiple nights in 
a large sleep laboratory, with a large number of observations each night. 
Vision research often involves hundreds of trials per subject. Although the 
advice that researchers should aim for large N applies even in these areas 
so they can generalize their conclusions to the wider population, a research 
design that involves large N is often beyond the resources of an investigator. 
Repeated-measures designs allow researchers to obtain a large amount of 
information from a relatively small number of subjects, by obtaining several 
scores from each subject.

In Chapter 5 we discussed a one-way ANOVA study in which rats received 
a small, medium, or large reward for every trial in a straight alley runway. 
Each rat contributed one score for only one level of the independent vari-
able. Suppose the design for the study is changed so that each of 50 rats 
experiences all three conditions. That is, a rat might receive small rewards 
for 30 days; on day 30, this rat is tested. Next, the rat might receive medium 
rewards for 30 days; on day 30, the rat is tested. Finally, that rat might 
receive large rewards for 30 days, and finally take one last test run. Each rat 

Table 7.1 Denominators for Fixed, Mixed, and Random Models

Fixed Mixed Random

Factor A Fixed Factor A Random
Factor B Random Factor B Fixed

Factor A MSerr MSAB MSerr MSAB

Factor B MSerr MSerr MSAB MSAB

AB Interaction 
MSerr

MSerr MSerr MSerr

Note that all three models use MSerr for denominator of the AB interaction.
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provides three scores for analysis, time to run through the straight alley on 
day 30 for each level of reward. In a good design, the order in which each 
rat experiences the three reward conditions would be randomized or coun-
terbalanced from rat to rat.

Many books refer to subjects in a repeated-measures study as blocks; the 
design of this experiment is often referred to as a randomized block design. 
This design allows the measurement of individual differences and the 
removal of variability from block to block (i.e., from rat to rat) from the error 
term, increasing statistical power. In particular, a randomized block design 
breaks down the variability of scores into variability that can be explained 
by differences between treatments, variability that can be explained by dif-
ferences between blocks, and error variance. In this study, the three sources 
of variance and their degrees of freedom are shown in Table 7.2.

The statistic F = MSrat/MSerr is used to determine if variability among rats 
is large relative to variability caused by error. The statistic F = MSreward/MSerr 
is used to determine if variability caused by treatments is large relative to 
variability for error. From the perspective of power analysis, there are at 
least two advantages to this randomized block design. First, it increases the 
total number of observations (i.e., there are only 50 rats, but 150 data points 
in the study). Second, it removes variability associated with systematic dif-
ferences among the rats from the error term. If some rats are just faster than 
others, irrespective of reward levels, this variability in speed would repre-
sent another source of error in a simple one-way ANOVA.

Independent Groups Versus Repeated Measures

Most discussions of statistical power start with the assumptions that subjects 
are randomly assigned to treatments and one score on the dependent vari-
able is obtained from each subject. One hallmark of independent groups 
or between-subjects design is that observations are statistically indepen-
dent. That is, the score obtained from subject 2 in a study is assumed to be 
independent of the score obtained from subject 1. The independent groups 

Table 7.2 Sources of Variance in a Randomized Block Study

Source df Comment

Rats 49 Differences in the average performance across rats
Reward  2 Differences in the average performance across conditions
Error 98 Variability in scores not explained by rat or reward main effects

Note: With 50 rats and 3 data points per rat, the total number of observations is 
150.
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design has many attractive features, but it is not always the best design for 
a study.

The randomized block design provides an introduction to the use of 
repeated measures to help improve the power of studies. Chapter 8 exam-
ines complex repeated-measures designs, but before moving on to those 
designs, it is useful to understand some of the complexities repeated-
 measures designs entail. First, power analysis suggests that the larger the 
N, the more power there is for a statistical test. In a between-subjects study, 
there is no ambiguity because N refers to number of subjects. In a study 
involving repeated measures, N usually refers to the number of observations 
with several observations coming from each subject, and different ways of 
producing the same number of observations will have different implications 
for statistical power. For example, suppose a study involves 10 subjects, each 
of whom provides five observations. Although there are 50 observations, the 
study is not statistically equivalent to a study in which there are 50 subjects, 
each of whom provides a single observation. Similarly, doubling the number 
of observations has different effects, depending on the way observations are 
doubled. Ten subjects, each providing 10 observations, provide a different 
level of power than will be obtained if there are 20 subjects, each providing 
5 observations, or 100 subjects, each providing 1 observation.

Table 7.3 shows a key difference between a repeated-measures study and 
a study that uses between-subject designs in which each subject provides 
one observation. Suppose studies to be compared use a .05 alpha level and 
a small to moderate treatment effect is expected (e.g., the maximum dif-
ferences between treatment means is d = .50). Further assume there are 
relatively small correlations between repeated measures (i.e., r values of .20 
or less). Table 7.3 shows the number of subjects that would be needed for a 
between-subjects study versus a repeated-measures study to achieve power 
of .80 (Maxwell & Delaney, 1990).

A comparison of these two designs provides interesting information. First, 
if the total number of observations is held constant, researchers obtain more 

Table 7.3 Number of Subjects Required to Achieve Power = .80 
(Maximum d = .50, r = .20)

Between-Subject Repeated Measures

Number of 
Treatments

Number of 
Subjects

Number of 
Treatments

Number of 
Subjects

Number of 
Observations

2 128 2 53 106
3 237 3 65 195
4 356 4 74 296
5 485 5 82 410
6 624 6 88 528
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power from the repeated measures than from a between-groups design. 
With two treatments, only 53 subjects with two observations per subject 
are required to provide power of .80. A between-groups design requires 
128 subjects to achieve power of .80. If there are four treatments, power of 
.80 is obtained with 74 subjects in repeated-measures and 356 subjects in 
between-subjects designs.

Suppose the correlation between observations is higher (e.g., the average 
correlation between observations is .40 rather than .20). As Table 7.4 shows, 
the higher the correlation between observations, the larger the statistical 
advantage repeated-measures designs provide. In Chapter 6, we noted that 
the correlation between observations was part of the formula for the stan-
dard error term in the dependent t-test and that large correlations meant 
smaller standard errors. This principle carries over to repeated-measures 
designs. For example, with three treatments, 50 subjects are required to 
achieve power in a repeated-measures design when the average correlation 
among measures is r = .40, whereas 65 subjects would be required when 
r = .20. There are several ways to explain why repeated-measures studies 
are more powerful than similar between-subjects studies. First, as a com-
parison of Tables 7.3 and 7.4 suggests, correlation among pairs of repeated 
measures makes a big difference. The analysis of variance involves breaking 
down variability in scores into variance caused by treatments and variance 
caused by error. If observations for a given subject are consistently high or 
consistently low, there is a high correlation for each pair of treatments and 
less error variance. Usually there is less random variability in data from a 
repeated-measures design than in comparable independent groups design.

The decreased variability in repeated-measures or correlated-measures 
designs is analogous to the central idea in traditional psychometric theory. 
By grouping together several intercorrelated observations, it is possible to 
get a highly reliable measure of where a subject stands on the dependent 
variable. Repeated-measures designs allow researchers to take advantage of 

Table 7.4 Number of Subjects Required to Achieve Power = .80 
(Maximum d = .50, r = .40)

Between-Subject Repeated Measures

Number of 
Treatments

Number of 
Subjects

Number of 
Treatments

Number of 
Subjects

Number of 
Observations

2 128 2 40  80
3 237 3 50 150
4 356 4 57 228
5 485 5 63 315
6 624 6 68 408
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the fact that several correlated observations from a subject are more reliable 
as compared with a single observation from a subject.

In addition, repeated-measures designs allow for identification and 
removal of sources of variance in scores that are treated as error in a 
between-subject design. In particular, repeated-measures designs allow for 
estimation and removal of systematic subject effects that cannot be esti-
mated or controlled in between-subject designs.

Going back to an earlier example of a study in which subjects are asked 
to complete a complex psychomotor task under different sorts of distraction, 
noise (70, 90, 110 db) and room temperature (60, 67, 80, 90 degrees Fahren-
heit), suppose you have enough time and money to collect 120 observations. 
Table 7.5 shows the effects that can be estimated (along with their degrees of 
freedom) in a between-subjects study (using 120 subjects) and in a within-
subjects study in which 10 subjects participate in all 12 conditions.

The repeated-measures design allows you to find out whether there are 
systematic subject effects (some subjects might be better at this sort of task 
than others), subject by noise interactions (some subjects may be more 
distracted by noise than others), and subject by temperature interactions 
(some subjects may be more distracted by hot or cold than others). These 
subject effects can all be estimated and removed from the residual error 
term. In contrast, between-subject designs lump all of these effects into 
“error.” If there are meaningful subject effects and subject by treatment 
interactions, repeated-measures designs will allow you to remove them from 
error, while between-subjects designs will treat these systematic effects as 
part of the overall error term. Anything you can do to reduce error is likely 
to increase statistical power, and one reason for the power of repeated mea-
sure designs is that they allow you to isolate these subject effects.

Finally, there is a more general statistical explanation for the power of 
repeated-measures designs. In Chapter 2, we discussed the noncentral F dis-
tribution, and noted that as the noncentrality parameter gets larger, the mean 

Table 7.5 Sources of Variance in Between-
Versus Within-Subjects Designs

Between df Within df

Noise (N) 2 Noise 2
Temperature (T) 3 Temperature (T) 3
N ∙ T 6 N ∙ T 6
Error 108 Subjects (S) 9

N ∙ S 18
T ∙ S 27
Error 54
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of the F distribution increases and the variance grows larger as well. One 
thing that affects the noncentrality parameter is the effect size; it is this rela-
tionship that allowed us to create F tables for minimum-effect F tests. Thus, 
the larger the effect of your interventions and treatments, the stronger the 
upward shift in the distribution of F values you expect to find in your study.

Vonseh and Schork (1986) note that in repeated-measure studies the 
value of the noncentrality parameter depends on both the effect size and 
the correlations among repeated measures. The precise effects of the cor-
relations among repeated measures on the distribution of F are complex and 
nonlinear, but in general, the higher the correlation among your measures, 
the more noncentral the distribution of F becomes. Repeated-measures stud-
ies tend to yield larger values of F and, therefore, more power.

Why doesn’t everyone use repeated-measures designs? Repeated- measures 
designs are more powerful, more efficient, and easier to implement than 
between-subjects designs. For example, suppose a power analysis tells 
you that 400 subjects are needed to obtain a reasonable level of power. You 
might go out and recruit 400 individuals, getting a single score from each 
one (a between-subjects design). Alternately, you might need to recruit only 
10 subjects, and get 40 observations from each (in fact, this will yield more 
power than a between-subjects design with N = 400). Given the practical 
and statistical advantages of repeated-measured designs, you might wonder 
why anyone uses between-subjects designs.

Although repeated-measures designs are attractive in many ways, they 
often turn out to be inappropriate for many research topics. Consider, 
for example, a study examining the effectiveness of five different meth-
ods of instruction for teaching second-grade students basic mathematics. 
A repeated-measures design that exposes all students to all five methods 
will run into a serious problem, often labeled a “carry-over effect.” That is, 
whatever the students learn with the first method they are exposed to will 
affect their learning and performance on subsequent methods. By about the 
fourth time students have gone over the material (using each of four meth-
ods), they probably will have learned it, and will certainly be getting pretty 
sick of it. The first four trials will almost certainly affect outcomes on trial 
number five.

In general, many research questions make a repeated-measures design 
difficult to implement. Studies of learning or interventions designed to 
change attitudes, beliefs, or the physical or mental state of subjects might all 
be difficult to carry out in a repeated-measures framework. If the interven-
tions you are studying change subjects, it might be difficult to interpret data 
when several different interventions are implemented, one after the other. 
The fact that human beings have good memories probably compromises 
most repeated-measures designs using human participants to some extent. 
Similarly, some research paradigms involve tasks that are complex or time 
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consuming, and even if it is theoretically feasible to repeat the task under 
a variety of conditions, there may be serious practical barriers to obtain-
ing multiple observations from each subject. Some studies allow for mixed 
designs, in which some of the factors studied represent repeated measures 
and others represent between-subject factors, and these designs often rep-
resent the best compromise between the power and efficiency of repeated-
measures designs and the independence of observations that characterizes 
between-subject designs.

One of the apparent strengths of repeated-measures designs is also a 
potential weakness (i.e., the ability to obtain a large number of observations 
from a small number of subjects). For example, in some areas of physiologi-
cal psychology, it might be common to obtain several hundred observations 
from each subject, and it is not unusual to see studies where the number of 
subjects is 10 to 20, and sometimes samples are even smaller. These are not 
small-sample studies in the traditional sense because the number of obser-
vations is potentially huge (e.g., in some areas of vision research, studies in 
which 10 subjects each provide 400 trials are common). However, the small 
number of subjects does raise important concerns about the generalizabil-
ity of your results. Even if true random sampling procedures are used, you 
have to be concerned about the possibility that the results obtained from 
one group of 10 subjects might be quite different from those obtained 
from another group of 10. In between-subject studies, you might not have 
the same set of worries. A random sample of 400 subjects is almost certain 
to provide results that generalize to the parent population, and a second 
random sample of 400 is almost certain to provide converging findings. In 
some cases where it is feasible to obtain hundreds of observations from 
each of a few subjects, you might conclude that it is better to obtain a hand-
ful of observations from a larger set of subjects.

Complexities in Estimating Power in Repeated-Measures Designs

The application of ANOVA (and of power analysis) in repeated-measures 
designs can be complicated because these designs lead to violations of impor-
tant statistical assumptions that underlie the analysis of variance. In partic-
ular, research designs that involve obtaining multiple measures from each 
respondent can lead to violations of assumptions of independence of spheric-
ity (i.e., the assumption that the variances of the differences between all pos-
sible pairs of repeated measures are equal). To obtain accurate results in such 
designs, both the degrees of freedom and the estimate of the noncentrality 
parameter must be adjusted by the factor epsilon, which reflects the severity 
of violations of the assumption of sphericity, e.g., the best estimate of λ in 
repeated-measures designs is given by [epsilon ∙ dferr ∙ PV/(1 − PV); see Algina 
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& Keselman, 1997, for discussions of sphericity and power]. However, this 
correction factor is not always reported and cannot often be calculated on the 
basis of results that are likely to be reported in a journal article.

A conservative approach to this problem is to make a worst-case correc-
tion (Greenhouse & Geisser, 1959). The factor epsilon ranges in value from a 
maximum of 1 (indicating no violation) to a minimum of 1/(k − 1), where k 
represents the number of levels of the repeated-measures factor. When the 
degrees of freedom for factors involving repeated measures are multiplied 
by epsilon, it is possible to obtain a conservative test of significance by com-
paring the obtained F with the critical value of F using the epsilon-adjusted 
degrees of freedom.

For example, in this study, data are collected from each subject on three 
occasions, meaning that “occasion” is a repeated-measures factor, and the 
“occasion X group” factor has a repeated-measures component. The worst-
case estimate of epsilon is that epsilon = .5; i.e., epsilon = 1/(3 − 1). To use 
this worst-case estimate of epsilon here, you would multiply the degrees 
of freedom for the occasion effect and the occasion X group effects by .5 
(i.e., you would use degrees of freedom of dfhyp = 1, dferr = 57 and dfhyp = 2, 
dferr = 114, respectively, to test the occasion and occasion X group effects 
rather than the actual degrees of freedom of dfhyp = 2, dferr = 57 and dfhyp = 4, 
dferr = 114). Similarly, you would need to adjust the estimate of λ, also mul-
tiplying your estimate of λ by .5.

In practice, a good estimate of power can be obtained by simply multi-
plying both the degrees of freedom and PV by this worst-case estimate of 
epsilon (rather than directly adjusting your estimate of λ). If you compare 
the power estimate you obtain without any epsilon correction (the power 
estimates in this example did not include any correction for violations of 
the sphericity assumption) with the power estimate obtained making a 
worst-case assumption about violations, you will have a pretty good idea of 
the range of power values you could reasonably expect.

Summary

The analysis of variance can be used to ask a wide range of questions, and 
experiments can often be structured to allow researchers to examine both 
the individual and the joint effects of several variables. Power analyses for 
multifactor designs are more complicated than for one-way ANOVA because 
the same study often yields quite different levels of power for the different 
questions it asks. Usually, studies yield more power for questions about 
main effects than for questions about interactions (because the means that 
define main effects are based on larger samples than those that define inter-
actions), but this is not always the case. As we noted in Chapter 1, power is 
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a complex function of sample size, effect size, and decision criteria, and it is 
difficult to make any clear a priori statements about the power of different 
parts of a multifactor analysis.

The randomized block factorial design is an interesting and important 
variation on the more common independent-groups design, and it pro-
vides an introduction to the complexities of repeated-measures analyses. 
Research designs that involve multiple measures from each participant have 
the potential to yield very high levels of power but also present a number 
of analytic challenges, particularly in cases where violations of statistical 
assumptions are severe. The chapter that follows examines more complex 
repeated-measures designs.
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Split-Plot Factorial and 
Multivariate Analyses

▼      ▼      ▼      ▼      ▼

A number of research designs include repeated measures, sometimes in com-
bination with between-subjects factors. This chapter discusses variations on 
the multifactor designs discussed in Chapter 7 that include repeated mea-
sures and ends with a discussion of the multivariate analysis of variance.

Split-Plot Factorial ANOVA

A good deal of the early development of analysis of variance occurred in 
areas related to agricultural research, and this is sometimes the best expla-
nation for the terminology still used in ANOVA. The split-plot factorial 
design was originally developed to help analyze data obtained when plots 
of agricultural land were divided for various uses.

Suppose a researcher randomly assigns each of 120 students to one of 
three methods of instruction (lecture, hands-on, or programmed instruction) 
and assesses their performance after 2, 3, 4, and 5 days of training, as shown 
in Figure 8.1. Methods of instruction represent a between-subjects factor; 40 
different students are assigned to each level of this factor. Training time, on 
the other hand, is a repeated-measures factor. That is, each student is tested 
4 times. In a split-plot design, each participant is exposed to one level of the 
between-subjects factor and to all levels of the within-subjects factor.

One of the distinguishing features of the split-plot factorial design is that 
it allows the estimation of variability due to systematic subject differences. 
However, because each subject receives only one method of instruction, 
subject differences are partially confounded with group differences. In 
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analyzing data from this design, we use the concept of nesting and ana-
lyze variability attributable to systematic subject differences within groups. 
The analytic layout and degrees of freedom for this design are shown in 
Table 8.1. Note that there are 480 total observations (i.e., 120 subjects, 4 
observations per subject), and that no specific term is labeled “error.” Rather, 
different terms in this model are used in constructing specific F-statistics.

Days of Training 

Two        Three        Four          Five 
Days       Days         Days         Days 

Subject 1
Lecture Subject 2

Subject 40
Subject 41

  Method of Hands-on    Subject 42
Instruction

Subject 80
Subject 81

Programmed    Subject 82
     Learning

Subject 120

Figure 8.1 A split-plot factorial design.

Table 8.1 Sources of Variance, df, and Error Terms for Split-Plot 
Design

Source df Error Term for F Statistic

Methods of Instruction (M) 2 MSS/M

Subjects within Methods (S/M) 117
Training Time (T) 3 MSS/M∙T

M ∙ T 6 MSS/M∙T

S/M ∙ T 351
Total 479
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In the split-plot factorial design, tests of the significance of the between-
subjects factor use variability attributable to subjects, nested within levels of 
that factor, as a basis for constructing the F-statistic. In particular, the signif-
icance test for the Methods of Instruction factor compares the mean square 
for Methods with the mean square for Subjects nested within Methods (i.e., 
F = MSM/MSS/M). The rationale here is that all of the subjects within each 
training method received the same treatment. Therefore, variability within 
these treatment groups cannot be due to treatments, but rather must be due 
to nontreatment factors, which are treated as sources of error.

Significance tests for repeated-subjects factors (or for interactions that 
include repeated subjects factors) use the interaction between subjects and 
treatments as a basis for forming the F test. For example, the significance 
test for the Training Time factor compared variability attributable to train-
ing time with variability that is explained by the interaction between subject 
differences and training time (i.e., F = MST/MSS/M∙T). Similarly, the F test for 
the Methods of Instruction by Training Time interaction involves computing 
F = MSM∙T/MSS/M∙T.

You might notice in Table 8.1 that the number of degrees of freedom for 
Subjects nested within Methods of Instruction has a value that does not seem 
intuitively obvious (i.e., df = 117). Because subjects are nested within three 
different methods of instruction, the best way to determine degrees of free-
dom is to calculate the df within each of the three training methods (there 
are 40 subjects who receive each training method, so there are 39 degrees of 
freedom within each method), then multiplying by the number of methods 
yields df = 3 ∙ 39 = 117. The degrees of freedom for the interaction between 
training time and subjects nested within methods of instruction in given by 
multiplying 117 by the number of methods (i.e., df = 3 ∙ 117 = 351).

In other ANOVA designs, power has been affected by the degrees of 
freedom for both the hypothesis and the error term, and the same is true 
for split-plot factorial designs. That is, in evaluating power, the first step is 
to compute dfhyp and dferr.

Estimating Power for a Split-Plot Factorial ANOVA

As in other ANOVA designs, power depends on ES, alpha, dfhyp 
and dferror, and PV for each main effect and interaction. Suppose, 
for example, that you decide to test minimum-effect hypotheses, 
testing the null hypothesis that the main effects and interactions 
account for 1% or less of the variance in responses. On the basis of 
prior experience and existing research, you believe that Methods 
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Power for Within-Subject Versus Between-Subject Factors

Studies that use repeated measures usually have more power than compa-
rable between-subjects studies, but there are a number of factors that influ-
ence this generalization, and an exact description of the effects of including 
repeated measures on power can be complex. First, as Bradley and Russell’s 
(1998) analysis of split-plot designs shows, the use of repeated measures 
tends to increase power for some statistical tests and decrease power for 
others. In general, tests of repeated-measures factors have higher power 
and tests of between-subjects factors have lower power than they would 
in comparable studies that rely exclusively on between-subjects designs. 
The increase in power for repeated-measures factors is proportional to the 
square root of (1 + ρ), where ρ represents the average correlation between 
repeated measures, whereas the decrease in power for between-subjects 
factors in split-plot designs is proportional to the square root of (1− ρ). If the 

of Instruction will have a relatively small effect (e.g., PV = .05) and 
that Training Time and the M ∙ T interaction will have a moder-
ately large effect (e.g., PV = .10) on responses. To assess the power 
of the test of the Methods of Instruction main effect, choose the 
Power Analysis option of the One-Stop F Calculator and enter ES = 
.01, alpha = .05, dfhyp = 2, and dferr = 117. Make an initial guess 
about power (e.g., that power = .50) and hit the Calculate com-
mand button. Continue to adjust your guesses about power until 
the program shows PV = .01. In this study, power for the Methods 
of Instruction main effect is equal to .35.

To assess power for the Time of Training effect, enter ES = .01, 
alpha = .05, dfhyp = 3, and dferr = 351, then enter an initial guess 
about power. Continue to adjust your guesses about power until 
the program shows PV = .01. In this study, power for the Time of 
Training main effect is equal to .996.

Finally, to assess power for the M ∙ T interaction effect, enter 
ES = .01, alpha = .05, dfhyp = 3, and dferr = 351, then enter an initial 
guess about power. Continue to adjust your guesses about power 
until the program shows PV = .01. In this study, power for the Time 
of Training main effect is equal to .989.

You might note that there is tremendous power for testing Time 
of Training and M ∙ T effects, in large part because each of these 
tests combined relatively strong effects with relatively large dferr.
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correlation between measures is small the effects of using repeated mea-
sures on the power of either type of test are small.

Second, the effects of adding additional repetitions of measures to a study 
can often be smaller than you might think (Overall, 1996). In particular, 
adding a new set of measures does not always add new information, and as 
the redundancy of new information increases, the contribution of additional 
measurements to the power of a study decreases. This effect is comparable 
to one seen in psychometrics, where adding a few new items to a short scale 
can dramatically increase reliability, whereas adding the same number of 
new items to a longer scale may have no discernable effect.

One result of the effects of correlations among observations on power 
analysis is that the tables and software provided with this book will tend to 
produce conservative estimates of power and of sample-size requirements 
for repeated-measures factors. On the whole, we think it is best to err on 
the side of designing studies with more rather than with less power, so 
the relatively small bias that can be produced as a result of failing to take 
the correlations among observations into account when calculating power 
does not strike us as a bad thing.

Split-Plot Designs With Multiple Repeated-Measures Factors

Suppose 120 subjects are randomly assigned to one of three exercise pro-
grams (e.g., strength-oriented, cardiovascular, combined). Forty subjects in 
each program follow two different diet regimens (high protein, high fiber), 
and three different cycles of exercise and rest (massed exercise, frequent 
short breaks, fewer but longer breaks). This design is shown in Figure 8.2; 
the source table for this study is shown in Table 8.2.

As with the simpler split-plot design in Table 8.1, this design includes 
both a between-subjects factor (exercise) and within-subjects factors (diet, 
break cycle).

In general, power analysis for this design proceeds very much in the same 
way as power analyses for the split-plot design shown in Table 8.1. Estimates 
of effect sizes are still needed, and once the effect size and degrees of free-
dom are established, power estimation proceeds in the same way as in the 
other designs described in Chapters 7 and 8. That is, power always depends 
on the effect size, the decision criteria, and the degrees of freedom.

The Multivariate Analysis of Variance

Throughout this book, we have concentrated on a family of statistical meth-
ods that all have one feature in common—i.e., that there is some specific 



142  Statistical Power Analysis

variable that represents the focus of the analysis, the dependent variable. 
In many studies, researchers are likely to collect data on several dependent 
variables and to conduct multivariate rather than univariate analyses. For 
example, suppose you are interested in determining whether there are dif-
ferences in the outcomes of four specific training programs that have been 
proposed for teaching pilots to use a new global positioning technology. 
You might evaluate their performance in terms of the number of errors 
made in applying this technology, in terms of the amount of time needed 
to learn the technology, or in terms of increased efficiency in planning and 
sticking to flight routes. Rather than conducting three separate analyses of 
variance (i.e., one for errors, one for time spent, and one for flight plan-
ning), you are likely to use multivariate methods that combine these three 
dependent variables into a single analysis. Specifically, you are likely to 
carry out a multivariate analysis of variance (MANOVA).

There is a substantial literature dealing with power analysis in MANOVA 
(e.g., Maxwell & Delaney, 1990; Stevens, 1980, 1988, 2002; Vonesh & Schork, 

High Fiber 

Massed                      Frequent Breaks                   Longer Breaks 

High 
Protein 

High Fiber 

Massed                      Frequent Breaks                   Longer Breaks 

High 
Protein 

High Fiber 

Massed                      Frequent Breaks                   Longer Breaks 

S1 

Strength 

S40 

S41 

Cardio 

S80 

S81 

Combined 

S120 

Figure 8.2 Design with multiple repeated-measures factors.



Split-Plot Factorial and Multivariate Analyses  143 

1986). In a very general sense, the issues in determining the power of 
MANOVA are quite similar to those that affect the power of univariate 
ANOVAs. First, the power of MANOVA depends on N, the effect size, and 
the alpha level, just as in univariate ANOVA. Large samples, strong effects, 
and lenient alpha levels lead to high levels of power, whereas small samples, 
small effects, and stringent alpha levels lead to lower levels of power. Sec-
ond, a principle already noted for repeated-measures ANOVA also applies 
to MANOVA. In general, power is higher when the variables being exam-
ined (here, the multiple dependent variables that are combined to carry 
out MANOVA) are more highly correlated than when they are uncorrelated. 
Finally, the power of MANOVA depends on the number of dependent vari-
ables. A study that uses four or five dependent measures will tend to have 
more power than a study that uses only one (leading to a univariate ANOVA) 
or two. Stevens (1988, 2002) presents useful tables for estimating power in 
MANOVA.

A simple, if somewhat conservative, approach to power analysis in 
MANOVA is to conduct a power analysis for the dependent variable that 
is expected to produce the smallest effect. If you have power of .80, for 
example, in a univariate ANOVA for this particular dependent variable, you 
can be sure that you will have power in excess of .80 for a MANOVA that 
combines this variable with other dependent variables for which stronger 
effects are expected.

Finally, it is useful to note that MANOVA can be used as a substitute for 
many repeated-measures analyses, ranging from dependent t-tests (when 
there are only two measures) to factorial repeated-measures designs. If 
there are several dependent variables, MANOVA presents a more powerful 

Table 8.2 Split-Plot Design With Two 
Repeated-Measures Factors

Source df F Test

Exercise 2 MSE/ MSS/E

Subjects/Exercise 117
Diet 1 MSD/MSS/E ∙ D

Break cycle 2 MSB/MSS/E ∙ B

D ∙ B 2 MSD ∙ B/MSS/E ∙ D ∙ B

E ∙ D 2 MSE ∙ D/MSS/E ∙ D ∙ B

E ∙ B 4 MSE ∙ B/MSS/E ∙ D ∙ B

D ∙ E ∙ B 4 MSD ∙ E ∙ B/MSS/E ∙ D ∙ B

S/E ∙ D 117
S/E ∙ B 234
S/E ∙ D ∙ B 234
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alternative to ANOVA or the  t-test. In general, MANOVA will have slightly 
more power than would be obtained when analyzing the same data using a 
repeated-measures design (i.e., one that treats the dependent variables as 
a set of repeated measures).

Summary

Power analyses can be easily extended to research designs that include 
a mix of within- and between-subjects factors; this chapter discusses the 
widely used split-plot factorial design. One of the complexities of this design 
is that subjects are nested within treatments. Nevertheless, the application 
of the methods of power analysis described in this book is quite straightfor-
ward when working with this particular design.

We end this chapter with a discussion of the multivariate analysis of vari-
ance (MANOVA). It is simple to obtain conservative estimates of the power 
of multivariate analyses of these sorts, either by conducting a univariate 
analysis for the dependent variable that shows the weakest effects (a very 
conservative approach) or by analyzing power for the univariate repeated-
measures design that corresponds with MANOVA (less conservative). As 
with all of the other analyses described in this book, power depends on 
the effect size, the number of observations, and the criteria used to define 
statistical significance.
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The Implications of Power Analyses

▼      ▼      ▼      ▼      ▼

The power of a statistical test is the probability that you will reject the null 
hypothesis being tested, given that this null hypothesis is in fact wrong. As 
we have noted throughout, the traditional null hypothesis that treatments 
have no effect whatsoever (or that the correlation between two variables is 
precisely zero, or any other hypothesis of “no effect”) is very often wrong, 
and in this context the statistical power of a test is essentially the probability 
that the test will lead to the correct conclusion. When testing the traditional 
null hypothesis, it is obvious that power should always be as high as pos-
sible. When testing a minimum-effect hypothesis (e.g., that the effect of 
treatments is negligibly small, but not necessarily precisely zero), the impli-
cations of varying levels of statistical power are potentially more complex, 
and a wider range of issues needs to be considered in determining how to 
use and interpret statistical power analysis.

This chapter begins with a discussion of the implications of statistical 
power analysis for tests of both traditional and minimum-effect null hypoth-
eses. Next, we discuss the benefits of taking statistical power seriously. 
Some of these are direct and obvious (e.g., if you do a power analysis, you 
are less likely to conduct a study in which the odds of failure substantially 
outweigh the odds of success), but there are also a number of indirect ben-
efits to doing power analyses that may, in the long run, be even more impor-
tant than the direct benefits. Finally, we consider the question of whether 
power analysis renders the whole exercise of testing the traditional null 
hypothesis moot. If power is very high (or very low), the outcome of most 
statistical tests is not really in doubt, and the information from these tests 
might be severely limited as power reaches either extreme.
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Tests of the Traditional Null Hypothesis

In Chapter 1, we noted that two types of errors might be possible in testing 
a statistical hypothesis. First, you might reject the null hypothesis when it is 
in fact true (a Type I error). Second, you might fail to reject the null hypoth-
esis when it is in fact wrong (a Type II error). Textbooks invariably stress 
the need to balance one type of error against the other (e.g., procedures that 
minimize Type I errors also lead to low levels of power), but when the null 
hypothesis is almost certain to be wrong there is little to be gained and much 
to be lost by attempting to maintain such a “balance” (Murphy, 1990).

The fact that the traditional null hypothesis is so often wrong leads to 
three conclusions about statistical power: (1) you cannot have too much 
power, (2) you should take the simplest and most painless route to maximiz-
ing power, and (3) tests with insufficient power should never be done.

You cannot have too much power. If the null hypothesis is very likely to 
be wrong, it is very unlikely you will ever make a Type I error, and the only 
way you are likely make an error in statistical hypothesis testing is by fail-
ing to reject H0. Our reason for repeating this point so many times is that it 
flies in the face of convention, where substantial attention is often devoted 
to the unlikely possibility that a Type I error might occur. In tests of the tra-
ditional null, power is essentially the probability that the test will reach the 
right conclusion (because the traditional null is usually wrong), and there is 
little coherent statistical rationale for arguing that power should not be high. 
There are many practical problems with attaining high levels of power, as 
we note below. However, it is always to your advantage to maximize power 
in tests of the traditional null hypothesis.

Maximizing power: The hard way and the easy way. There are two practi-
cal and eminently sensible ways to attain high levels of power. The easy way 
is to change the alpha level. As we showed in Chapter 2, power is higher 
when a relatively lenient alpha level is used. Traditionally, the choice of 
criteria for defining statistical significance has been between alpha levels 
of .05 and .01. When testing the traditional null, there is little scientific or 
statistical advantage to using a stringent test, and you should generally set 
the alpha level for your tests as high as possible. Unfortunately, you are 
likely to meet resistance if you use alpha levels of .10, .20, or anything other 
than .05 or some other conventional figure, but this resistance is misplaced. 
Higher alpha rates yield more power, often with no meaningful increase in 
the likelihood of a Type I error.

The second strategy for maximizing power is to increase the sensitivity 
of your study, which generally implies using larger samples. Even though 
this strategy is more demanding than simply changing the alpha level, we 
strongly recommend it. Large, carefully constructed samples increase the 
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generalizability and stability of your findings, and they decrease the possi-
bility that sampling error will lead to meaningless or misleading results. We 
say more about this in sections that follow.

While it is clearly harder to increase power by increasing N than by 
increasing α, this strategy has the immense benefit of improving your study. 
Simply changing the alpha level does nothing to enhance the meaningful-
ness or interpretability of your research, but the use of large samples helps to 
minimize one of the recurring problems in social science research—the over-
reliance on the unstable results obtained in small samples (Schmidt, 1992).

Tests with insufficient power should never be done. Suppose you were 
diagnosed with an ulcer and your doctor told you about a new treatment. 
This treatment is more likely to make things worse than to make things bet-
ter, and alternative treatments are available that do not have this problem. 
Would you try the new treatment? Our answer is “no,” and we believe this 
analogy applies exactly to statistical tests of the traditional null hypoth-
esis. If power is low, you should not carry out a test of the traditional null 
hypothesis.

When power is less than .50 and you are virtually certain that H0 is 
wrong, the test is more likely to yield a wrong answer than a right one. More 
to the point, the test is unlikely to produce new and useful knowledge; it is 
more likely to mislead you. If you are virtually certain before the test that 
H0 is false, a test that rejects H0 doesn’t tell you much that you didn’t already 
know. A test that fails to reject H0 shouldn’t change your mind either (if H0 
is wrong virtually by definition, the results of your test shouldn’t change 
this), but people will sometimes be misled by their data. Low-power tests 
are unlikely to have any effect except to mislead and confuse researchers 
and readers.

Tests of Minimum-Effect Hypotheses

The alternative to testing the traditional null hypothesis that treatments 
have no effect is to test the minimum-effect null hypothesis that the effect 
of treatments is so small that it could be safely ignored. Different disciplines 
or research areas might require substantially different operational defini-
tions of a “negligibly small” effect, and the standards suggested in previous 
chapters and in our One-Stop F Table (i.e., treatments accounting for less 
that 1%, or in some cases less than 5%, of the variance in outcomes have 
negligibly small effects) will not always apply. Nevertheless, we believe that 
tests of minimum-effect null hypotheses are necessary if the whole enter-
prise of statistical hypothesis testing is to prove useful.

Statistical power analysis can be used to its fullest advantage in tests of 
minimum-effect null hypotheses. Because the hypothesis being tested may 
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very well be true (i.e., although treatments are very unlikely to have abso-
lutely no effect, the hypothesis that they have trivial effects is often a real-
istic one), it becomes important to develop specific procedures and criteria 
for “accepting the null” or determining when the evidence is consistent or 
inconsistent with the proposition that the effects of a particular treatment 
are indeed negligible; power analysis is extremely useful for this purpose. It 
also becomes important to give serious consideration to an issue that is usu-
ally (and incorrectly) presented in the context of traditional null hypothesis 
tests (i.e., the appropriate balance between Type I and Type II errors).

Accepting the null. In traditional null hypothesis testing, the idea of accept-
ing the null hypothesis is sometimes treated as a sort of heresy. Rather than 
allowing one to accept the hypothesis that treatments have no effect, the 
traditional framework usually leaves you with two options: (1) deciding that 
there is sufficient evidence to reject the null (i.e., a significant outcome), and 
(2) deciding that there is not yet enough evidence to reject the null (i.e., a 
nonsignificant result). Because you already know that the traditional null is 
almost certain to be false, the fact that you have not yet accumulated enough 
evidence to confirm this fact tells you more about your study than about the 
substantive phenomenon you are studying.

As we have noted throughout, power is substantially affected by the size 
of the sample. If N is very small, you will not reject the null, no matter what 
research question you are pursuing. If N is large enough, you will reject the 
traditional null, again, no matter what research question you are pursuing. 
It is hard to resist the conclusion that tests of the traditional null hypothesis 
are little more than indirect measures of your sample size! In tests of the 
traditional null, the most logical interpretation of a nonsignificant result is 
that your sample is too small.

Occasionally, the door is left open for treating nonsignificant results as 
meaningful. For example, some journals allow for the possibility of publish-
ing nonsignificant results, at least under some conditions (e.g., the inaugural 
issue of the journal Human Performance included an editorial suggest-
ing that nonsignificant results would be treated as meaningful if specific 
research design criteria, including a demonstration of adequate statistical 
power, were met). The argument that is sometimes offered is that if well-
designed studies fail to detect an effect, this might provide some evidence 
that that effect is likely to be a very small one, and that the null hypothesis 
might be very close to being true, even if the effect of treatments is not pre-
cisely zero. Bayesian approaches have been applied to the problem of statis-
tically demonstrating that an effect is so small that it should be effectively 
ignored (Rouanet, 1996). Nevertheless, the bias against “accepting the null” 
runs so strong in tests of the traditional null hypothesis that this framework 
simply doesn’t leave any appealing alternative when the effect of treatments 
is negligibly small. You will either collect a very large sample and reject the 
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null (which may mislead you into thinking that the effect of treatments is 
something other than trivial) or you will fail to reject it and perhaps collect 
more data about an essentially meaningless question.

In tests of minimum-effect hypotheses, there is a realistic possibility that 
the hypothesis being tested (i.e., that the effect of treatments is at best neg-
ligible) is indeed true, and there is a real need to develop procedures or 
conventions for deciding when to “accept the null.” We believe that power 
analysis plays a critical role in determining and defining those procedures 
or conventions.

Suppose the hypothesis being tested is that the effect of treatments is at 
best negligible (e.g., treatments account for 1% or less of the variance in out-
comes). A powerful study could provide strong evidence that this hypothesis 
is in fact true. For example, if power is .80, this translates into odds of 4 to 1 
that a statistical test will reject this hypothesis if it is in fact false. Failure 
to reject the null under these conditions can mean only one of two things: 
(1) the null really is true, or (2) the null is false, and this is that one test in 
five that yields the wrong result. The most logical conclusion to reach in this 
study is that the effects are negligibly small.

As we noted in Chapter 3, a complete evaluation of the meaning of the 
outcomes of statistical tests requires some knowledge about the probability 
that the null hypothesis being tested actually is true (i.e., the prior probabil-
ity of H0). The central weakness of traditional null hypothesis testing is that 
this prior probability is thought to be vanishingly small, and perhaps zero 
(Murphy, 1990). If this prior probability is zero, tests of the null hypothesis 
cannot provide much useful information.

The central weakness of the alternative approach described in this book, 
in which minimum-effect hypotheses are framed and tested, is that this 
prior probability is generally unknown. In Chapter 3, we noted that the prior 
probability of the traditional null hypothesis would necessarily be very low, 
and by most definitions is zero. It is likely that the prior probability of a 
 minimum-effect null will also be somewhat low, especially if you are test-
ing the hypothesis that the effect of treatments is at best negligible. Our 
rationale for believing that this prior will be small is that most treatments in 
the social and behavioral sciences do indeed have an effect. In Chapter 1, 
we noted Lipsey and Wilson’s (1993) review of over 300 meta-analyses of 
research studying the efficacy of psychological, educational, and behavioral 
treatments. These meta-analyses, in turn, summarize the results of thou-
sands of studies in areas ranging from smoking cessation success rates to 
the effectiveness of computer-aided instruction. Over 85% of the meta-analy-
ses they summarized reported effects that exceeded conventional criteria for 
“small effects” (i.e., d = .20 or PV = .01 or less). It is clear from the massive 
body of research summarized in that paper that a broad range of treatments 
and applications in the social and behavioral sciences have at least some 
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effect, and the likelihood that a new treatment will have an absolutely neg-
ligible effect strikes us as small, especially if the new treatment is solidly 
based in theory and research.

Balancing errors in testing minimum-effect hypotheses. In tests of the tra-
ditional null hypothesis, Type I errors are practically impossible and there 
is virtually nothing to be lost by setting alpha as high as possible. In tests 
of the minimum-effect hypothesis, the strategy of setting alpha as high as 
possible is no longer appropriate. The whole distinction between traditional 
and minimum-effect null hypotheses is that there is some realistic possibil-
ity that a minimum-effect null is true, and it is therefore possible to make 
a Type I error.

Although Type I errors are a real possibility in tests of minimum-effect 
null hypotheses, this does not mean that power should be ignored in carry-
ing out these tests. The possibility of Type I errors should not blind you to 
the substantial likelihood that you will make Type II errors if you choose 
an unduly stringent alpha level. Choose any cell of the One-Stop F Table in 
Appendix B, and you will see that (1) a larger F value is needed to reject the 
minimum-effect null than to reject the traditional null, given the same alpha 
level, and (2) a larger F value is needed to reject the hypothesis that effects 
are small to moderate (i.e., they account for 5% or less of the variance) than 
to reject the hypothesis that these effects are negligibly small (i.e., they 
account for 1% or less of the variance). That is, all other things being equal, 
it is harder to reject a minimum-effect hypothesis than to reject the hypoth-
esis that treatments have no effect whatsoever. The more demanding the 
hypothesis (e.g., 5% versus 1% as the upper bound to be tested), the harder 
it is to reject H0. In our view, there is usually no good reason to make things 
even more difficult than they already are by choosing an unrealistically 
stringent alpha level. Earlier, we suggested that when testing the traditional 
null hypothesis, the .01 alpha level should usually be avoided. We believe 
the same advice holds for tests of minimum-effect hypothesis; the .01 alpha 
level should still be avoided in most cases.

We suggest a two-part test for determining whether you should use an 
alpha level of .01 rather than .05. First, .01 makes sense only if the conse-
quences of a Type I error are relatively serious. In Chapter 4, we discussed 
concrete ways of comparing the perceived seriousness of Type I and Type II 
errors and noted that researchers often act as if falsely rejecting the null is 
much more serious than failing to reject the null when you should. This may 
well be true in some settings, but before deciding to set a stringent alpha 
level (thus markedly decreasing your power), we believe you should explic-
itly consider the relative costs of the two errors. Choose .01 only if there is 
a good reason to believe that a Type I error is substantially more serious 
than a Type II error.
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Second, .01 makes sense only if the prior probability that the null hypoth-
esis is true is reasonably high. That is, if the hypothesis to be tested is that 
a treatment has at most a negligible effect (e.g., it accounts for 1% or less of 
the variance in outcomes), you should be concerned with Type I errors only 
if there is some realistic possibility that the effects of treatments are indeed 
trivial. Finally, keep in mind that this is a two-part test. Use the .01 level 
rather than the .05 level only if the consequences of a Type I error are large 
and the possibility that one might actually occur is substantial. In all other 
cases, we think you should use .05 as an alpha level and that you should use 
an even more lenient alpha level whenever possible.

Power Analysis: Benefits, Costs, and Implications  
for Hypothesis Testing

If power analysis is taken seriously, there will be fundamental changes 
in the design, execution, and interpretation of research in the social and 
behavioral sciences. We believe that most of these changes will be benefi-
cial and are enthusiastic advocates of power analysis. As we note below, the 
indirect benefits of power analysis may prove, in the long run, even more 
important than the direct benefits of adopting this approach. There are, 
of course, some costs associated with incorporating power analysis in the 
design and interpretation of research; however, we believe the benefits still 
substantially outweigh the costs. Finally, it is useful to consider the implica-
tions of having extreme levels of power (either extremely high or extremely 
low) when conducting statistical hypothesis tests.

Direct Benefits of Power Analysis

As we noted in Chapter 1, power analysis can be used as both a planning 
tool (e.g., determining how many subjects should be included in a study) 
and a diagnostic tool (e.g., making sense out of previous studies that have 
either reported or failed to report “significant” results). Individuals who 
incorporate statistical power analysis into their research repertoire are bet-
ter equipped to both plan and diagnose research studies, and they directly 
benefit from the information provided by power analyses.

Planning research. Statistical power analysis provides a rational frame-
work for making important decisions about the design and scope of one’s 
study. To be sure, there are many subjective decisions that must be made 
in applying power analysis (e.g., what effect size is anticipated, what alpha 
level is best), and the techniques described in this book do not represent a 
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foolproof formula for making decisions about research design (e.g., choos-
ing between repeated-measures or between-subjects designs) or sample 
size. The advantage of power analysis over other methods of making these 
important decisions, which are often made on the basis of force of habit 
or by following the lead of other researchers, is that it makes explicit the 
consequences of these design choices for your study. If you are seriously 
interested in rejecting the null hypothesis, we think a power analysis is 
absolutely necessary in making good choices about study design and sample 
size.

Power analysis also highlights the importance of a decision that is usually 
ignored or made solely on the basis of conventions in one’s field (e.g., the 
alpha level that defines “statistical significance.”) The choice of stringent cri-
teria (e.g., α = .01) is sometimes interpreted as scientifically rigorous, whereas 
the choice of less rigorous criteria (e.g., α = .10) is sometimes derided as 
“soft science.” Nothing could be further from the truth. In fact, any decision 
about alpha levels implies some wish to balance Type I and Type II errors, 
and power analysis is absolutely necessary if you wish to make any kind 
of sense of that balance. Once you appreciate the implications of choosing 
different alpha levels for the statistical power of your studies, you are more 
likely to make sensible choices about this critical parameter.

If power analysis is taken seriously, it is likely that fewer studies with small 
samples or insufficient sensitivity will be done. In our view, researchers bene-
fit substantially by knowing whether the study they have in mind has any real 
likelihood of detecting treatment effects. As we note below, the indirect ben-
efits to the field as a whole that might come with a decline in small- sample 
research are even greater than the benefits to the individual researcher.

Interpreting research. One criticism of tests of the traditional null hypoth-
esis is that they can routinely mislead researchers and readers. Research-
ers who uncover a “significant” result are likely to confuse that with an 
important or meaningful result. This is hardly surprising; most dictionary 
definitions of significant include “important,” “weighty,” or “noteworthy” as 
synonyms. Similarly, nonsignificant is easily confused with “not important” 
or “nonmeaningful.” As power analysis clearly shows, very meaningful and 
important treatment effects are likely to be “nonsignificant” if the study 
lacks power, whereas completely trivial effects are likely to be “significant” 
if enough data are collected. It is impossible to sensibly interpret “signifi-
cant” or “nonsignificant” results without considering the level of statistical 
power in the study that produced those results.

To give a concrete illustration, suppose you reviewed a dozen studies, all 
of which reported a “nonsignificant” correlation between attitudes toward 
drug use and subsequent drug consumption. What does this mean? If the 
studies are all based on small samples, it is entirely possible that there is a 
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real and meaningful correlation between attitudes and subsequent behavior 
(e.g., if N = 30 and α = .05, power for detecting a correlation as large as .30 
is only .50), and that the studies simply did not have enough power to detect 
it. On the other hand, if all the studies included very large samples (e.g., N = 
2,500), you could probably conclude that there is essentially no relationship 
between present attitudes and future behavior. Although the traditional null 
hypothesis might not be literally true in this instance, it would have to be 
very nearly true. With this much power, the studies you reviewed would 
have almost certainly detected any consistent relationships between atti-
tudes and behavior.

Indirect Benefits of Power Analysis

The widespread use of power analysis is likely to confer many indirect 
benefits. Most notably, studies designed with statistical power in mind are 
likely to use large samples and sensitive procedures. Perhaps even more 
important, power analysis directs the researcher’s attention toward the most 
important parameter of all—the effect size. The ultimate benefit of statistical 
power analysis may be that it forces researchers to think about the strength 
of the effects they study, rather than thinking only about whether a particu-
lar effect is “significant.”

Large samples, sensitive procedures. Small samples are the bane of social 
science research (Hunter & Schmidt, 1990; Schmidt, 1992). These studies 
produce unstable results, which in turn produce attempts to develop theo-
ries to “explain” what may be little more than sampling error. If power 
analyses were routinely included in the process of designing and planning 
studies, large samples would be the norm and sampling error would not 
loom as so large a barrier to cumulative progress in research.

Proponents of meta-analysis (e.g., Schmidt, 1992) note that by combining 
the outcomes of multiple small-sample studies, it is possible to draw sen-
sible conclusions about effect sizes, even if the individual study samples are 
too small to provide either sufficient power or stable results. There is merit 
to this position, but there are also two problems with this solution to the 
problem of small samples. First, it creates a two-tiered structure in which 
the primary researchers do all the work, with little possibility of rewards 
(i.e., they do studies that cannot be published because of insufficient power 
and sensitivity) and the meta-analyst gets all the credit for amassing this 
material into an interpretable whole. Second, it leaves the meta-analyst at 
the mercy of a pool of primary researchers. Unless there are many studies 
examining exactly the question the meta-analyst wants answered, the only 
alternatives are to change the question or to aggregate studies that in fact 



154  Statistical Power Analysis

differ in important ways. Neither alternative seems attractive, and if power 
analysis becomes routine, neither will be strictly necessary. If future studies 
include large samples and sensitive procedures, the need for meta-analyses 
will become less pressing than it is today.

The decision to use large samples is itself likely to improve other aspects 
of the research. For example, if you know that you will have to devote con-
siderable time and resources to data collection, you will probably take more 
care to pre-test, use reliable measures, follow well–laid out procedures, etc. 
In contrast, if running a study amounts to little more than rounding up 25 
undergraduates and herding them to your lab, the need for careful planning, 
precise measurement, etc., might not be pressing. In large-sample research, 
you may have only one chance to get things right, and you are less likely 
to rely on shoddy measures, incomplete procedures, etc. The net result of 
all this is that studies carried out with careful attention to statistical power 
are likely to be better and more useful than studies carried out with little 
regard for power.

Focus on effect size. If you scan most social science journals, you will find 
that the outcomes of significance tests are routinely reported, but effect size 
information is sometimes nowhere to be found. Our statistical training tends 
to focus our attention on p values and significance levels and not on the sub-
stantive question of how well our treatments, interventions, tests, etc., work 
(see Cowles, 1989, for a historical analysis of why social scientists focus 
on significance tests). One of the most important advantages of statistical 
power analysis is that it makes it virtually impossible to ignore effect sizes.

The whole point of statistical analysis is to help you understand your 
data, and it has become increasingly clear over the years that an exclusive 
focus on significance testing is an impediment to understanding what the 
data mean (Cohen, 1994; Schmidt, 1992; Wilkinson et al., 1999). Statistical 
power analysis forces you to think about the sort of effect you expect, or at 
least about the sort of effect you want to be able to detect; once you start 
thinking along these lines, it is unlikely you will forget to think about the 
sort of effect you actually did find. If power analysis did nothing more than 
direct researchers’ attention to the size of their effects, it would be well 
worth the effort.

Costs Associated With Power Analysis

Statistical power analysis brings a number of benefits, but there are also 
costs. Most notably, researchers who pay attention to statistical power will 
find it harder to carry out studies than researchers who do not think about 
power when planning or evaluating studies. Most researchers (the authors 
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included) have done studies with small samples and insufficient power 
and have “gotten away with it,” in the sense that they reported significant 
results. Even when power is low, there is always some chance that you will 
reject H0, and a clever researcher can make a career out of “getting lucky.” 
Power analysis will lead you to do fewer small-sample studies, which in 
the long run might mean fewer studies period. It is relatively easy to do a 
dozen small-sample studies, with the knowledge that some will work and 
some will not. It is not so easy to do a dozen large-sample studies, and one 
long-term result of applying power analysis is that the sheer number of stud-
ies performed in a field might go down. We don’t see this as a bad thing, 
at least if many low-quality, small-sample studies are replaced with a few 
higher-quality, large-sample studies. Nevertheless, the prospects for build-
ing a lengthy vita by doing dozens of studies might be diminished if you pay 
serious attention to power analysis.

The most serious cost that might be associated with the widespread use 
of power analysis is an overemphasis on scientific conservatism. If studies 
are hard to carry out and require significant resources (time, money, energy), 
there may be less willingness to try new ideas and approaches or to test 
creative hypotheses. The long-term prospects for scientific progress are not 
good if researchers are unwilling or unable to take risks or try new ideas.

Implications of Power Analysis: Can Power Be Too High?

Throughout this book, we have advocated paying attention to the prob-
ability that you will be able to reject a null hypothesis you believe to be 
wrong (i.e., power). The pitfalls of low power are reasonably obvious, but it 
is worth considering whether power can be too high. Suppose you follow 
the advice laid out in this book and design a study with a very high level of 
power (e.g., power = .95). One implication is there is little real doubt about 
the outcomes of your statistical tests; with few exceptions, your tests will 
yield “significant” outcomes.

When power is extreme (either high or low), you are not likely to learn 
much by conducting a formal hypothesis test. This might imply that power 
can be too high. We don’t think so. Even when the outcome of a formal sta-
tistical hypothesis test is virtually known in advance, statistical analysis still 
has clear and obvious value. First, the statistics used in hypothesis testing 
usually provide an effect size estimate or the information needed to make 
this estimate. Even if the statistical test itself provided little new information 
(with very high or very low power, you know how things will turn out), the 
process of carrying out a statistical test usually provides information that can 
be used to evaluate the stability and potential replicability of your results.
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Consider, for example, the familiar t-test. The t-statistic is a ratio of the 
difference between sample means to the standard error of the difference.1 
If the level of power in your study is very high, tests of the significance of t 
might not be all that informative; high power means that it will exceed the 
threshold for “significance” in virtually all cases. However, the value of t is 
still informative because it gives you an easy way of determining the stan-
dard error term, which in turn can be used in forming confidence intervals. 
For example, if the M1 − M2 = 10.0 and t = 2.50, it follows that the standard 
error of the difference between the means is 4.0 (i.e., 10.0/2.5), and a 95% 
confidence interval for the difference between means would be 7.84 units 
wide (i.e., 1.96 ∙ 4.0). This confidence interval gives a very concrete indica-
tion of how much variation one might expect from study to study when 
comparing M1 with M2.

In general, the standard error terms for test statistics tend to become 
smaller as samples get larger. This is a concrete illustration of the general 
principle that large samples provide stable and consistent statistical esti-
mates, whereas small samples provide unstable estimates. Even in settings 
where the significance of a particular statistical test is not in doubt, confi-
dence intervals provide very useful information. Obtaining a confidence 
interval allows you to determine just how much sampling error you might 
expect in your statistical estimates.

The paragraph above illustrates a distinction that is sometimes blurred by 
researchers—i.e., the distinction between statistical analysis and null hypoth-
esis testing. Researchers in the behavioral and social sciences have tended to 
over-emphasize formal hypothesis tests and have paid too little attention to 
critical questions such as, “How large is the effect of the treatments studied 
here?” (Cohen, 1994; Cowles, 1989; Wilkinson et al., 1999). Ironically, seri-
ous attention to the topic of power analysis is likely to reduce researchers’ 
dependence on significance testing. The more you know about power, the 
more likely you are to take steps to maximize statistical power, which means 
that rejecting the null should be nearly a foregone conclusion. Once you 
understand that the null hypothesis test is not the most important facet of 
your statistical analysis, you are likely to turn your attention to the aspects of 
your analysis that are more important, such as estimating effect sizes.

Does all this mean that null hypothesis tests should be abandoned? 
Probably not. First, as we have noted throughout this book, many of the 
outstanding criticisms of the null hypothesis can be easily addressed by 
shifting from tests of point hypotheses (e.g., that treatments have no effect 
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whatsoever) to tests of range or interval hypotheses (e.g., that the effects of 
treatments fall within some range of values denoting small effects). Second, 
the prospects for fundamental changes in research strategies seem poor, 
judging from the historical record (Cowles, 1989). Statisticians have been 
arguing for decades that the use of confidence intervals is preferable to the 
use of null hypothesis tests, with little apparent effect on actual research 
practice. Critics of null hypothesis tests have not suggested an alternative 
that is both viable and likely to be widely adopted. There is every indication 
that null hypothesis tests are here to stay and that careful attention should 
be given to methods of making the process of hypothesis testing as useful 
and informative as possible. Careful attention to the principles of power 
analysis is likely to lead to better research and better statistical analyses.

Summary

Power analysis has profound implications for statistical hypothesis testing, 
regardless of whether you test the traditional null hypothesis (i.e., that treat-
ments had no effect whatsoever) or a minimum-effect null hypothesis (e.g., 
that the effects of treatments are at best small). In tests of the traditional null, 
Type I errors are very unlikely (because the traditional null is essentially 
false by definition), and your only real concern in structuring significance 
tests should be for maximizing power. This can be done by collecting huge 
samples or by using extremely sensitive procedures. But there is an easier 
way to accomplish this goal: When testing the traditional null hypothesis, 
you should always set your alpha level as high as you dare. Unfortunately, 
the weight of tradition rarely allows you to choose an alpha level higher 
than .05 (alpha of .10 is seen in some social science research, but even there, 
it is barely tolerated). You should never choose a more stringent level, unless 
there is some very unusual and compelling reason to do so.

Tests of minimum-effect null hypotheses are less familiar, but in fact, 
virtually everything you know about hypothesis testing applies to tests of 
this sort. In fact, much of what you already know about hypothesis testing 
applies better to tests of minimum-effect null hypotheses than to tests of 
the traditional null.

When testing minimum-effect null hypotheses, you must seriously con-
sider the possibility that the null hypothesis will be true. This opens the 
door for what is sometimes considered statistical heresy (i.e., accepting 
the null). It also opens the door to the possibility that Type I errors will be 
made, which means that alpha levels, statistical tests, balancing Type I and 
Type II errors, etc., have some real meaning in this context.

Power analysis has many benefits. It helps you make informed decisions 
about the design of your own research (especially about the number of 
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cases needed and the choice of alpha levels), and it also helps you make 
sense out of other researchers’ “significant” or “nonsignificant” results. How-
ever, the indirect benefits of power analysis may be the most important. 
Power analysis is likely to lead you to use larger samples, which in turn will 
often encourage you to use better measures, more pre-tests, more carefully 
designed procedures, etc. Power analysis also helps to focus your attention 
on effect sizes, rather than focusing exclusively on the p value associated 
with some statistical test. All of this is likely to improve the quality and con-
sistency of social science research.

There are some costs associated with using power analysis. In particular, 
you will often find it hard to obtain samples large enough to provide suf-
ficient power. This is especially true in studies where the central hypothesis 
involves some complex higher-order interaction between multiple indepen-
dent variables. It can be prohibitively difficult to obtain enough power to 
sensibly test such hypotheses. Reliance on power analysis may also indi-
rectly discourage researchers from trying out new concepts, hypotheses, or 
procedures.

Throughout this book, we have advocated careful attention to statistical 
power. As the level of power increases, you should have less and less doubt 
about the outcomes of null hypothesis tests. Ironically, careful attention 
to power is likely to decrease the relative importance of null hypothesis 
tests and increase the attention you pay to other aspects of your statistical 
analysis, notably effect sizes and confidence intervals. We see this as a good 
thing. Null hypothesis testing is valuable (especially when testing minimum-
effect null hypotheses), but it should not be the primary focus of your sta-
tistical analysis. Rather, well-conducted null hypothesis tests should be only 
a part of the analytic arsenal bought to bear when attempting to determine 
what your data really mean. Power analysis is the first step in carrying out 
sensible tests of both traditional and minimum-effect null hypotheses.
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Working With the Noncentral F Distribution

There are several analytic approaches for estimating the noncentral F dis-
tribution for the purpose of power analysis. First, of course, it is possible to 
calculate the distribution of F for any combination of dfhyp, dferr, and λ. Pro-
grams for estimating this distribution can be found on a variety of websites 
(e.g., http://www.danielsoper.com/statcalc/calc06.aspx).

Second, you might use tables of the familiar F distribution that are 
included in most statistics texts to estimate values in a noncentral F dis-
tribution, using reasonably simple approximation based on the central 
F distribution (Horton, 1978; Patnaik, 1949; see also Tiku & Yip, 1978). The 
distribution of the noncentral F, with the degrees of freedom dfhyp and dferr, 
is strongly related to the central F distribution with the degrees of freedom 
g and dferr, where

 g = (dfhyp + λ)2/(dfhyp + 2λ) (A.1)

For example, suppose a researcher randomly assigns 123 subjects to one of 
three treatments and reports the following results:

Sum of Squares df Mean Square F PV

Treatments  10.00 2 5.00 2.50 .04
Error 240.00 120 2.00
Total 250.00

This table gives you enough information to estimate the noncentrality 
parameter ( λ = SStreatments/MSerr = 10/2 = 5.0), and this in turn allows you to 
estimate the noncentral F distribution that corresponds to this study. First, 
calculate the value of g:

 g = (2 + 5.0)2/(2 + 10) = 49/12 = 4.08

Because g will be used to estimate the degrees of freedom of the central F 
distribution that is most closely linked to the noncentral F distribution with 
2 and 120 degrees of freedom and a noncentrality parameter of λ = 5.0, this 
value is rounded downwards to 4.0. That is, the noncentral F distribution 
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we are interested in will be closely related to the central F distribution with 
degrees of freedom of 4 and 120.

To calculate power, first calculate the quantity F*:

 F* = F(critical)/[(dfhyp + λ)/dfhyp] (A.2)

where F(critical) is the critical F value (α =.05) for the familiar central F with 
degrees of freedom g and dferr. If you go to an F table, you will find that the 
critical value for testing the null hypothesis is 3.07. Therefore, F* is given by

 F* = 3.07/[(2 + 5.0)/2] = 3.07/3.50 = .877

Once you have determined the value of F*, any reasonably detailed table of 
the familiar central F distribution will allow you to determine the propor-
tion of the F distribution that has a value greater than or equal to F*. In the 
central F distribution with 4 and 120 degrees of freedom (remember, g = 
4 and dferr = 120), approximately 50% of the F values are .877 or greater. 
Therefore, in a population in which treatments are expected to account for 
4% of the variance in outcomes (i.e., PV = .04), a study that is based on N = 
123 will have power of .50.

A third method is to use a computer program specifically designed for 
computing probabilities in the noncentral F distribution. For example, it is 
possible to obtain estimates of the appropriate noncentral F using simple 
functions that are built into a number of widely used programs (e.g., SPSS, 
Excel). In SPSS, the statement is

 COMPUTE p = NCDF.F(Fobserved, dfhyp, dferr, dferr PV/(1 − PV))

Using the data from our previous example, this statement would become

 COMPUTE p = NCDF.F(2.50, 2, 120, 5.00)

This statement will return a value of approximately .50, which is the power 
of this test given dfhyp, dferr, and λ values of 2, 120, and 5.00, respectively.
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