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Preface 

PURPOSE 

This textbook develops, at an introductory level, the theoretical concepts and 
computational techniques of linear programming and game theory, and also discusses 
applications of these topics in the social, life, and managerial sciences. Closely 
related to this development, it presents an introduction to the process of mathematical 
model building, which is discussed in two distinct settings. The chapters on linear 
programming contain various examples of real-world situations involving a single 
decision maker faced with some sort of deterministic (except in Sections 8.1 and 
8.4) optimization problem. In the two chapters on game theory the emphasis is on 
the development of a different type of model, a model of a conflict situation involving 
two participants with opposing interests. 

LEVEL AND PREREQUISITES 

The text is written for students in mathematics, science, economics, and opera-
tions research. The presentation is, for the most part, mathematically complete, that 
is, in terms of definitions, theorems, and proofs. However, examples are used fre-
quently, not only to motivate new ideas, but also to assist in the understanding of the 
theory and the associated proofs. The goal is to provide a book that the student will 
find rigorous and challenging, yet readable and helpful. 

The prerequisites for reading the text are minimal. The material should be ac-
cessible to any student who has successfully completed one or two undergraduate 
mathematics courses. No use is made of the theoretical concepts from linear algebra 
such as the dimension and basis of a vector space or linear independence of vec-
tors. Matrices and vectors are used only as notational tools, so any student familiar 
with these tools and their operations of addition and multiplication can read the text. 
Appendix A contains a brief list of the topics from linear algebra used in the book. 

TECHNOLOGY 

Two software tools for solving linear programming problems are introduced in 
the third edition of the text. The first tool is LP Assistant, a user-friendly program 
that performs the arithmetic of the pivot operation, the computational heavy step 
in each iteration of the simplex algorithm. To use the program, the user need only 
input the initial tableau, indicate the appropriate pivot point at each iteration, and 
be able to recognize and interpret a final tableau. It is an ideal teaching tool. It 
allows the student to master the steps of the algorithm without hindrance from minor 
errors in arithmetic, and it allows the instructor to ask students to solve larger and 
therefore more realistic linear programming problems without fear of student failure 
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simply because of a computational error. The program, developed by coauthor G. E. 
Keough, is designed for use with the text. It emulates the presentation and use of 
the algorithm as it appears in the book. Its capabilities and operation are described 
briefly in Appendix D (full documentation is made available with the program). The 
software is platform-independent and available for download from the Internet. 

The second software unit to be integrated into the book is the spreadsheet tool 
Solver, an add-in to Microsoft's Excel package. Solver can solve linear, nonlinear, 
and integer programming problems. It is used in the text to provide solutions, and 
sensitivity analysis where applicable, to linear and integer programming problems. 
Also, the data contained in Solver's sensitivity report is explained and verified, us-
ing the theory developed in Chapter 5. Appendix E, written for someone already 
familiar with spreadsheet operations, outlines the use of Excel and Solver to solve 
programming problems. 

LENGTH AND ORGANIZATION 

The book probably contains more material than can be taught in a one-semester 
course. However, once the central ideas of Chapters 3 and 4 have been developed, the 
instructor has considerable latitude in the selection of other topics to be discussed. 
Chapters 5, 6, 7, and 9 and the four sections of Chapter 8 are all independent of each 
other and can immediately follow upon Chapter 4, with the only provisos being that 
Sections 5.6 and 5.7 also be covered before Chapter 6 and Section 5.1 before Section 
8.4. Chapter 10, on non-zero-sum games, has Chapter 9, on zero-sum games, as a 
prerequisite. 

CONTENTS 

Linear programming and game theory are introduced in Chapter 1 by means of 
examples. This chapter also contains some discussion on the application of mathe-
matics and on the roles that linear programming and game theory can play in such 
applications. To introduce the reader to the broad scope of the theory, Chapter 2 
(on model building) presents various real-world situations that lead to mathemati-
cal models involving linear optimization problems. Also, a two-variable problem is 
resolved geometrically, and with this example the ideas of sensitivity analysis are in-
troduced. Several of the examples are revisited later in the text as tools are developed 
to resolve the questions raised here. 

Chapters 3 and 4 are the core of the book. The simplex algorithm is presented in 
Chapter 3 and the concept of duality in Chapter 4. The development of the simplex 
algorithm is motivated algebraically, and all of Chapter 3 maintains an algebraic 
flavor. LP Assistant is introduced in the problem set following Section 3.5, where the 
reader is first asked to use the simplex algorithm. The convergence of the algorithm is 
proved inductively in Section 3.8. There are geometrical considerations throughout 
the chapter, however, to promote understanding of the development, and Section 3.9 
is about convexity. The concept of convexity is used later in the text in Section 8.3 
and Chapter 10. The use of Excel and Solver to solve linear programming models is 
demonstrated in the last section of Chapter 3. 
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The dual of any linear programming problem is defined in Section 4.2, and the 
Duality Theorem is proved in Section 4.4. Sections 4.1 and 4.3 develop examples 
demonstrating the relevance of the dual problem. The Complementary Slackness 
Theorem is discussed and proved in Section 4.5. The proof is an immediate conse-
quence of a result preliminary to the proof of the Duality Theorem. No results in the 
text are contingent on the Complementary Slackness Theorem, but complementary 
slackness is referred to occasionally, especially in the problem sets. 

Sensitivity analysis is presented at two levels in Chapter 5. In Section 5.1, three 
examples involving elementary sensitivity analysis are presented, and the problems 
raised are solved using the theory of duality. Also in this section Solver's sensitivity 
report is introduced, the constraints section explained, and some data corroborated. 
The more general study of sensitivity analysis begins in Section 5.2 with the devel-
opment of the matrix representation of the simplex algorithm. Here it is assumed 
that the reader is familiar with matrix multiplication and the inverse of a matrix. Ac-
companying the development of the theory, the variables (Adjustable Cells) portion 
of Solver's sensitivity report is discussed and some results are corroborated in Sec-
tion 5.3, and a similar correlation between the theory of the chapter and data of a 
sensitivity report occurs in Section 5.5. In Section 5.6 the Dual Simplex Algorithm 
is presented. Although the algorithm is motivated by problems raised in Section 
5.5, Section 5.6 is independent of the theory of these preceding sections and could, 
in fact, be read directly after Chapter 4. The Dual Simplex Algorithm is used in 
Sections 5.7, 6.3, and 6.4. 

Chapter 6 provides an introduction to integer programming. Two algorithms that 
can be used to solve integer programming problems are presented. Except for the 
fact that both of these algorithms use the Dual Simplex Algorithm as a tool, this 
chapter could be read after Chapter 3. The solution of integer programming models 
using Excel and Solver is presented in the last section of the chapter. 

Chapter 7 deals with the transportation problem. A Ford-Fulkerson algorithm is 
developed for the solution of these problems, and in Section 7.3 various other models 
to which the algorithm can be applied are discussed. Variations on these models and 
sensitivity analysis questions are considered in Problem Set 7.3, along with several 
other models amenable to a solution using the algorithm. 

Extensions of the general theory are introduced by means of examples in the first 
three sections of Chapter 8. The first example demonstrates one approach to a non-
deterministic model. (The resulting optimization problem has many upper bound 
constraints, and so, as an auxiliary benefit, special solution techniques for such prob-
lems are illustrated.) In Section 8.2 a method of working with a problem with mul-
tiple goals is discussed, and in Section 8.3 the decomposition principle is illustrated. 
In Section 8.4, a different type of application of linear programming is presented. By 
means of an example, the problem of measuring the efficiencies of similar operating 
units is considered. The four sections are independent of each other. Sections 8.1 
and 8.2 may be read after Chapter 3; Section 8.3 requires an understanding of duality 
(and convexity), and Section 8.4 an understanding of sensitivity analysis. 

Two-person, zero-sum games are the subject of Chapter 9. First, the axioms that 
form the foundation of the theory are discussed at some length to help the reader 
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understand not only the concept of a solution to a game, but also the limitations on 
the applicability of the theory. Then, using the Duality Theorem of linear program-
ming, the existence of solutions to two-person, zero-sum games is demonstrated. 
Computational techniques and examples conclude the chapter. 

Utility theory is introduced in the first section of Chapter 10. The remainder of 
the chapter is devoted to two-person, non-zero-sum games. These games provide 
excellent examples of some of the difficulties that can be encountered when attempt-
ing to formulate mathematical models of complicated situations that involve human 
behavior. In discussing these games, factors not relevant in the theory of two-person, 
zero-sum games, such as the possibility of cooperation between the participants, are 
considered, and various approaches and solution concepts are explored, primarily 
by means of examples. Added to the text in this third edition is J. Nash's proof 
in Section 10.3 of the existence of an equilibrium strategy for any noncooperative 
two-person, non-zero-sum matrix game. 

Finally, in addition to Appendices A, D, and E mentioned above, Appendix B 
displays an example of simplex algorithm cycling, and Appendix C contains a brief 
discussion of the efficiency of the simplex algorithm and some theoretical advances 
in the field. 

EXERCISES 

Problem sets containing computational exercises, problems testing understand-
ing, and examples motivating new material conclude each section of the text. There 
are over 450 problems in the text, almost half of which have multiple parts. The prob-
lems are placed in each section and not simply at the conclusion of each chapter, so 
the reader is constantly encouraged to test and develop his or her understanding of 
the material. Solutions to a selected set of the problems are given at the end of the 
book. 
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CHAPTER 1 

MATHEMATICAL 

MODELS 

1.1 APPLYING MATHEMATICS 

Recent history has shown us that many problems of our technically oriented society 
yield to mathematical descriptions and solutions. Problems as complex as sending 
people into space or maximizing the profit of a giant industrial conglomerate and 
problems as simple as balancing our own monthly budget or winning at the game 
of Nim are susceptible to mathematical formulations. This book is concerned with 
two specific fields of mathematics, linear programming and game theory, that offer 
insights into certain problems of the real world and techniques for solving some of 
these problems. 

To understand best how one goes about applying a mathematical theory to the so-
lution of some real-world problem, consider the stages that a problem passes through 
from organization to conclusion. We list four: 

• recognition of the problem; 
• formulation of a mathematical model; 
• solution of the mathematical problem; and 
• translation of the results back into the context of the original problem. 

These four stages are by no means exclusive or well defined. Other authors have 
broken down the problem-solving operation in different ways, but the four steps 
listed indicate the framework in which the applied mathematician works. 

The meaning of the first stage, recognition of the problem, is self-explanatory. 
The meaning of the second stage, formulation of a mathematical model, can be 
much more mysterious, conjuring visions of a precisely built representation of a 
small, snow-covered village at a scale of ^ . Actually, although the meaning of this 
step can be made quite clear, it is usually the most critical and difficult step to imple-
ment in the entire operation. The development of the mathematical model consists 
of translating the problem into mathematical terms, that is, into the language and 
concepts of mathematics. As an example of this process, consider what is called the 
"word problem" word problem of high school algebra. Here the mathematics is triv-
ial and the problems are unrealistic, but many students stumble over the difficulties 
inherent in translating some concocted word problem into an algebraic equation, that 
is, in formulating the mathematical model. It was not always easy to determine how 
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much 40% antifreeze solution to drain from the 20-qt cooling system to attain a 75% 
solution by adding a 90% antifreeze mixture. 

In the development of a mathematical model of a complex situation, two basic 
and opposing elements are encountered. On the one hand, one seeks simplifying 
assumptions and overlooks minor details so that the resulting mathematical problem 
yields to a successful analysis. On the other hand, the model must adequately re-
flect reality so that the knowledge gained from the study of the model can be applied 
to the original problem. The ability to select those elements of a problem that are 
of major importance and disregard those of minor importance probably comes best 
from experience. Throughout the text and, in particular, in the next two sections, ex-
amples and problems requiring the development of a mathematical model are given. 
Although in many instances problems from a text may immediately single out the 
important elements and may seem somewhat artificial, much skill is to be gained by 
attempting them; practice model building and problem solving whenever possible. 

Once the mathematical model has been formulated, one comes to the third stage 
in the process, the solution of the mathematical problem. It should be emphasized 
that this can entail much more than just computing the difference of a function at the 
end points of an interval or finding the solution to a system of equations. Even if the 
known theory does provide a complete theoretical solution to the problem, the spe-
cific answer to the problem at hand must still be calculated. It could very well be that 
further analysis does not provide any simplification of the problem, and only through 
involved computations can an estimate of the solution be made. Thus, finding a so-
lution to a problem could mean determining a technique to approximate a solution 
that is financially feasible to implement within a given computer's capabilities and 
provides error estimates within given tolerance limits. 

The meaning of the fourth step of the operation, the translation of the results 
back into the context of the original problem, is clear. Of course, more than a simple 
numerical answer is called for. The simplifying assumptions on which the solution 
is based must be understood, and the changes in the problem that would invalidate 
these assumptions should be considered. 

We now give two examples of specific and well-known problems and begin the 
development of the associated mathematical models. 

1.2 THE DIET PROBLEM 

The diet problem is one of the classical illustrations of a problem that leads to a 
linear programming model. The problem is concerned with providing at minimal 
cost a diet adequate for a person to sustain himself or herself. Simply stated, what 
is the least expensive way of combining various amounts of available foods in a diet 
that meets a person's nutritional requirements? 

To develop a mathematical model of this problem, first the various aspects of 
the problem must be considered. Here the two competing needs for simplification 
and realism come into play as one attempts to state in precise terms the different 
components of the problem. For example, just how does one determine the basic 
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nutritional requirements? We must consider the age, sex, size, and activity of our 
subject. We must determine what nutrients, among the many known nutrients such 
as calories, proteins, and the multitude of vitamins and minerals, are essential. Can 
a need for one be met by a combination of others? Is it the case that too much of 
a certain nutrient is harmful and therefore forces an upper bound on the intake of 
that quantity? Should we provide for some variety in the diet, hopefully to meet 
nutritional requirements unknown to us at the present time? 

Another component of the problem requiring study is consideration of the foods 
to be used in the diet. What foods can we assume are available? For example, can 
we assume that fresh fish, fruits, or vegetables or frozen foods are available? Once 
the foods that can be used in the problem are established, the nutrient values of these 
foods must be determined. Here again only approximations can be made, since the 
nutrient value of a certain type of food, say apples or hamburger, not only varies 
from sample to sample because of lack of uniformity, but is also contingent on the 
conditions and duration of storage and the method of preparation for consumption. 
The cost of a food can also fluctuate due to seasonal and geographical variances. 

Once suitable approximations for the nutritional requirements of our subject and 
the nutrient values and cost of the available foods have been determined, a mathemat-
ical problem involving finding the minimum of a linear function can be formulated. 
To demonstrate this, we will consider a much simplified version of the diet problem. 

Suppose we wish to minimize the cost of meeting our daily requirements of pro-
teins, vitamin C, and iron with a diet restricted to apples, bananas, carrots, dates, and 
eggs. The nutrient values and cost of a unit of each of these five foods, along with 
the meaning of a unit of each, are given in the following table. 

Food 

Apples 
Bananas 
Carrots 
Dates 
Eggs 

Measure 
of a Unit 

1 med. 
1 med. 
1 med. 
\ cup 

2 med. 

Protein 
(g/unitj 

0.4 
1.2 
0.6 
0.6 
12.2 

Vitamin C 
(mg/unit) 

6 
10 
3 
1 
0 

Iron 
(mg/unit) 

0.4 
0.6 
0.4 
0.2 
2.6 

Cost 
(cents/unit) 

8 
10 
3 

20 
15 

Our daily diet requires at least 70 g of protein, 50 mg of vitamin C, and 12 mg of 
iron. Since we are assuming that our supply of these foods is unlimited, it is obvious 
that we can find a diet that meets our needs; for example, a diet consisting of 6 units 
of eggs and 5 units of bananas would be more than adequate, as the reader can easily 
verify. 

Our problem then is to determine the least expensive way of combining various 
amounts of the five foods to meet our three daily requirements. Hence the decision 
to be made involves the number of units of each of the five foods to consume daily. 
To translate this question into a mathematical problem, introduce five variables A, B, 
C, D, and E, where A is defined as the number of units of apples to be used in the 
daily diet, B the number of units of bananas, C the number of units of carrots, D the 
number of units of dates, and E the number of units of eggs. The cost in cents of 
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such a diet is given by the function f(A,B,C,D,E) = 8A + 105 + 3C + 20D + 15E, 
found by using the cost column in the above table. It is this function that we wish to 
minimize. 

However, there are clearly restrictions imposed by the problem on the possible 
values of the variables A, B, C, D, and E, that is, restrictions on the domain of the 
function / . First, all the variables must be nonnegative. And to guarantee that the 
daily nutritional requirements are fulfilled, the following three inequalities must be 
satisfied: 

0.4A + 1.25 + 0.6C + 0.6D + 12.2E > 70 
6A + 105 + 3C + W > 50 

0.4A + 0.65 + 0.4C + 0.2D + 2.6E > 12 

These inequalities are determined by considering the total input of the three re-
quired nutrients in a diet consisting of A units of apples, B units of bananas, and so 
on. For example, since 1 unit of apples contains 0.4 g of protein, A units contain 
0.4A g. Similarly, B units of bananas contain 1.25 g of protein, C units of carrots 
0.6C units, D units of dates 0.6D units, and E units of eggs 12.2E units. Adding these 
five terms gives the total intake of protein. Since our daily requirement of 70 g of 
protein is a minimal requirement and more is allowable, we have the first inequality. 
Similarly, the other two inequalities follow. 

In sum, the resulting mathematical problem is to determine the minimum value 
of the function 

f(A,B,C,D,E) = 8A+10B + 3C + 20D+l5E 

with the possible values of A, 5, C, D, and E restricted by the inequalities 

0.4A + 1.25 + 0.6C + 0.6D + 12.2£ > 70 
6A + 105 + 3C + ID > 50 

0.4A + 0.65 + 0.4C + 0.2D + 2.6E > 12 
A,B,C,D,E > 0 

In 1945 George Stigler [1 ] considered the general diet problem. Stigler discussed 
the questions we raised and others, and he justified modifications and simplifications. 
For human nutritional requirements, Stigler decided on nine common nutrients (calo-
ries, protein, calcium, iron, vitamins A, Bi, B2, C, and niacin) and estimated their 
needs from data supplied by the National Research Council. Stigler initially consid-
ered 77 types of foods and determined their average nutrient values and costs. From 
this he was able to construct a diet that satisfied all the basic nutritional requirements 
and cost only $39.93 a year (less than 11 cents/day) for the year 1939. The diet 
consisted solely of wheat flour, cabbage, and dried navy beans. 
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1.3 THE PRISONER'S DILEMMA 

In the context of game theory, the word game in general refers to a situation or contest 
involving two or more players with conflicting interests, with each player having 
partial but not total control over the outcome of the conflict. The following is an 
example of such a situation. However, at this stage we are not yet able to translate the 
conflicting interests represented in the example into a precise mathematical problem, 
in contrast to the example developed in the previous section. Indeed, one of the major 
contributions of game theory is the resulting study of the question of what it means 
to solve a game. 

The situation we consider is as follows. A certain democratic republic has a 
unicameral legislature with a membership drawn primarily from two major political 
parties. Before the assembly is a bill sponsored by a citizens' group designed to 
restrict the power and influence of the senior members of each political party. On 
this issue the legislators can be divided into three approximately equal groups - two 
groups whose members will follow the directives of their respective party leaders and 
a third group of responsible representatives who consider passage of the bill more 
important than the maintenance of party loyalties and will support the bill regardless 
of circumstances. 

Consider now this situation from the viewpoint of the leaders of the two parties. 
Due to the nature of things they would like to see the bill defeated, but their con-
stituents overwhelmingly support the bill. However, an impending general election 
complicates matters. Because they are fairly adaptable people, the leaders know that 
they could, in fact, work moderately well within the limits set by the bill, so each 
group believes that the most beneficial outcome of the vote on the bill would be for 
their party to profess support for the bill while the opposition party opposes the bill. 
Of course, this would mean that the bill would pass, but the wave of public support 
generated for the one party voting for the bill would be a prevailing factor in the 
impending election. Thus the problem is, how should each group of leaders direct 
their respective faithful party members to vote on the bill? 

To answer this question, the leaders of one of the parties gather to consider the 
various possible outcomes of the vote on the bill. The most favorable outcome, as 
far as they are concerned, is for their party to support the measure and the opposition 
to oppose it. They denote this outcome by the ordered pair (Y,N) (they vote "yea" 
and the opposition votes "nay"). The least favorable outcome is the reverse of this 
situation, with their party members opposing but the opposition favoring passage of 
the bill (the (N, Y) outcome). The two remaining possible outcomes are for both 
parties to support the bill (outcome (Y,Y)) and for both parties to oppose the bill 
(outcome (N,N)). Neither of these outcomes would be a factor in the election, since 
the public reaction, either good or bad, would be balanced evenly between the two 
parties. However, outcome (N,N) is preferred over outcome (Y,Y), on the grounds 
that if both parties oppose the bill, it would be defeated and so the power of the party 
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leaders would remain unaffected. Thus the leaders of the party linearly order the four 
possible outcomes, from most to least favorable, as follows: 

(Y,N)>(N,N)>(Y,Y)>(N,Y) 

Wishing to make this analysis even more precise and, hopefully, instructive, some 
of the leaders propose to assign numerical weights to each of these outcomes. They 
claim that such an assignment not only could reflect the above linear ordering, but 
also could measure how much more one outcome is preferred over another. They 
point out, for example, that a consideration in some contest of the three outcomes 
win $3, win $2, and win $1 would not be identical to a consideration of the three 
outcomes win $100, win $2, and win $1. Seeing the merits of this proposition, the 
leaders continue their deliberations on the four possible outcomes of the vote on 
the bill. Since outcomes (Y,N), (Y,Y), and (N,Y) all result in passage of the bill, 
their relative merits can be measured only by their effects in the impending election. 
Moreover, because of the equivalent strengths across the country of the two parties, 
the leaders believe that the advantage of (Y,N) over (Y,Y) is equal to the advantage 
of (Y,Y) over (N,Y). In fact, they argue that public reaction to support of the bill 
by only one party could be the determining factor in the election contests in up to 
12 representative districts. Accepting this as a general unit and arbitrarily assigning 
the value 0 to outcome {Y,Y), they set (Y,N) to be worth 12 units and (N,Y) to 
be worth —12 units. There remains to be considered outcome (N,N), which lies 
between (Y,N) and (Y,Y) in the linear ordering. The assigning of a weight to this 
outcome is not immediate but, after a subcommittee review, prolonged debate, and 
various trade-offs in other matters, the political leaders accept the value of 6 units for 
this outcome. 

Suppose that the leaders of the other party conduct similar deliberations and, 
since the positions of the two parties are comparable, reach the same conclusions. 
Then, to each possible outcome is attached two numerical weights, the value of that 
outcome to each party. Let us denote this pair of weights by an ordered pair of 
numbers, with the first component being the value of that particular outcome to one 
fixed party, called Party D, and the second component being the value to the other 
party, Party R. Then this situation can be represented by the following tableau: 

Party R 
Vote "yea" Vote "nay" 

Party D Vote "yea" (0,0) (12,-12) 
Vote "nay" (-12,12) (6,6) 

Thus, for example, the outcome of a "nay" vote by Party D and a "yea" vote by 
Party R is (—12,12); that is, that outcome is worth —12 units for Party D and 12 
units for Party R. 

This completes our analysis of this situation for the time being. It will be resumed 
in Chapter 10. We have formulated a two-person, non-zero-sum game in which each 
player has two possible moves, but we do not yet have a precisely stated mathe-
matical problem to be solved. A primary component of game theory is the analysis 
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accompanying an attempt to define exactly what one would mean by a solution to 
the game or a resolution of the conflict. Such an analysis for a certain type of game 
is made in Chapter 9, where a complete mathematical model is formulated for finite, 
two-person, zero-sum games and the resulting mathematical problems are resolved 
(terms such as zero-sum are defined there). 

The assigning of meaningful weights to the various possible outcomes is not 
properly a part of game theory but is the function of utility theory (see Section 10.1). 
In the example of this section the use of game theory actually begins with the above 
tableau. Moreover, it is assumed in the theory that the information contained in 
that tableau is known to both parties. However, the theory does distinguish various 
interpretations of the conflict situation, such as whether or not the players can com-
municate with each other before the event, whether or not they can cooperate with 
each other, and whether or not agreements made are actually binding. 

A word of explanation as to the meaning of the title of this section is in order. 
The game that has been developed in the section is an example of a certain type of 
two-person game. The archetype of games in this category, and the game that lends 
its name to the category, is the following example of a prisoner's dilemma. 

Two men are arrested on suspicion of armed robbery. The district attorney is 
convinced of their guilt but lacks sufficient evidence for conviction at a trial. He 
points out to each prisoner separately that he can either confess or not confess. If one 
prisoner confesses and the other does not, the district attorney promises immunity for 
the confessor and a 2-year jail sentence for the convicted partner. If both confess, he 
promises leniency and the probable result of a 1-year jail sentence for each prisoner. 
If neither confesses, he promises to throw the book at each of them on a concealed 
weapons charge, with a 6-month jail sentence resulting for each. 

The possible actions and the corresponding outcomes for the two prisoners are 
given by the following tableau. The outcomes are stated in terms of ordered pairs, 
with the first component representing the length of a prison term in months for Pris-
oner 1 and the second component the length for Prisoner 2. 

Prisoner 2 
Confess Not Confess 

Prisoner 1 Confess (-12,-12) (0,-24) 
Not Confess (-24,0) (-6,-6) 

The negative signs indicate the undesirable nature of the outcomes (certainly a 
12-month sentence is more favorable than a 24-month sentence, that is, —12 > —24). 
The similarity between this tableau and the previous one should be apparent, since 
the positions of the numbers in the linear ordering of the preferences and in the 
tableaux correspond. In fact, in this particular case, all the corresponding entries in 
the two tableaux differ by a fixed amount, 12. 
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1.4 THE ROLES OF LINEAR PROGRAMMING AND 

GAME THEORY 

Using as a base the four-step description of the operation of applying mathematics 
given in Section 1.1, an outline of how the fields of linear programming and game 
theory fit into this general scheme can be given. 

In Section 1.2 an example of a linear programming problem was given. Many 
problems that occur in business, industry, warfare, economics, and so on can be 
reduced to problems of this type, problems of finding the optimal value of some 
given linear function while the domain of the function is restricted by a system of 
linear equations or inequalities. The major concern here is not to determine whether 
or not an optimal value exists, but to develop a technique to determine quickly and 
easily the optimal value and where it occurs. Thus, from a mathematical point of 
view, we wish to develop for linear programming problems a method to use in the 
third stage of the process, finding the solution of the mathematical problem; and 
in particular, because realistic problems arising from a complex situation may have 
many variables and many constraints, we need a computationally efficient method of 
solution. Moreover, since the users of an algorithm need to know if the algorithm 
will always work, the question of completeness of the solution technique must be 
addressed. 

In Section 1.3 an example of a game theory problem was given. Our first concern 
with games will be with two-person, zero-sum games. Although the extent of our 
assumptions may seem to limit the applicability of the theory, this theory still serves 
as the foundation for the study of more complex games. Moreover, two-person, zero-
sum games provide the opportunity to consider at a theoretical level the second stage 
in the process of applying mathematics, the formulation of the mathematical model. 
What one means by the solution to a game is not at all apparent, and axioms must 
be established that define this concept precisely and adequately reflect the economic 
or social situations to which game theory might be applied. This is in contrast to 
linear programming problems, where the desire to maximize profits or minimize 
costs translates immediately into a problem of optimizing a particular function. 

From our discussion so far, the problems of game theory and linear program-
ming may seem to be totally unrelated, but this is not the case. Once our mathemat-
ical model for two-person, zero-sum games is developed, the problems of existence 
and calculation of a solution to a game will be related to the theory of linear pro-
gramming. Here the unifying concept will be the notion of duality. Duality will be 
introduced in Chapter 4, and the main theorem of that chapter, the Duality Theorem, 
will provide the answer to the principal question of our study of games, that is, the 
question of existence of a solution. 



CHAPTER 2 

THE LINEAR PROGRAMMING 

MODEL 

2.1 HISTORY 

The basic problem of linear programming, determining the optimal value of a linear 
function subject to linear constraints, arises in a wide variety of situations, but the 
theory that we will develop is of recent origin. 

In 1939 the Russian mathematician L. V. Kantorovich published a monograph 
entitled Mathematical Methods in the Organization and Planning of Production [2]. 
Kantorovich recognized that a broad class of production problems led to the same 
mathematical problem and that this problem was susceptible to solution by numerical 
methods. However, Kantorovich's work went unrecognized. 

In 1941 Frank Hitchcock [3] formulated the transportation problem, and in 1945 
George Stigler [1] considered the problem referred to in Section 1.2 of determining 
an adequate diet for an individual at minimal cost. Through these problems and 
others, especially problems related to the World War II effort, it became clear that 
a feasible method for solving linear programming problems was needed. Then in 
1951 George Dantzig [4] developed the simplex method. This technique is the basis 
of the next chapter. John von Neumann recognized the importance of the concept of 
duality, the mathematical thread uniting linear programming and game theory, and 
the first published proof of the Duality Theorem is that of Gale, Kuhn, and Tucker 
[5]. 

Since the late 1940s, many other computational techniques and variations have 
been devised, usually for specific types of problems or for use with certain types 
of computing hardware. The theory has been applied extensively in industry. On 
the one hand, management has been forced to define explicitly its desired objectives 
and given constraints. This has brought about a much greater understanding of the 
decision-making process. On the other hand, the actual techniques of linear program-
ming have been successfully applied in the petroleum industry, the food processing 
industry, the iron and steel industry, and many more. 

Theoretical developments in linear programming have attracted the attention of 
both theoreticians and the practitioners in the field (along with the readers of the New 
York Times). Some comments on these events are included in Appendix C on theory 
and efficiency in linear programming 
An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, inc. 
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2.2 THE BLENDING MODEL 

The diet problem described in Section 1.2 is an example of a general type of linear 
programming problem that involves blending or combining various ingredients. The 
cost and composition or characteristics of the various ingredients are known, and the 
problem is to determine how much of each of the ingredients to blend together so 
that the total cost of the mixture is minimized while the composition of the mixture 
satisfies specified requirements. In the diet problem, foods were combined to form a 
diet minimizing costs and meeting basic nutritional requirements. 

The construction of the mathematical model for problems of this type follows 
quickly once the usually more difficult task of defining the characteristics and cost 
of the ingredients and required composition of the blend has been accomplished. 
Assuming that all this information is at hand, the amounts of each of the ingredients 
to blend together must be decided. Thus, variables are assigned to represent these 
amounts. The cost function, the function to be optimized, can then be constructed by 
considering the cost of each of the ingredients and assuming that the total cost is the 
sum of the individual costs. The system of constraints, that is, the set of restrictions 
of the variables, follows by considering the requirements specified for the final blend. 

Example 2.2.1. To feed her stock a farmer can purchase two kinds of feed. The 
farmer has determined that the herd requires 60, 84, and 72 units of the nutritional 
elements A, B, and C, respectively, per day. The contents and cost of a pound of each 
of the two feeds are given in the following table. 

Nutritional Elements (units/lb) 
A B C Cost (cents/lb) 

Feed! 3 7 3 10 
Feed 2 2 2 6 4 

Obviously, the farmer could use only one feed to meet the daily nutritional re-
quirements. For example, it can easily be seen that 24 lb of the first feed would 
provide an adequate diet at a daily cost of $2.40. However, the farmer wants to 
determine the least expensive way of providing an adequate diet by combining the 
two feeds. To do this, the farmer should consider all possible diets that satisfy the 
specified requirements and then select from this set the diet of minimal cost. 

To translate this into a mathematical problem, let x be the number of pounds of 
Feed 1 and y the number of pounds of Feed 2 to be used in the daily diet. Then by 
definition, x and y must be nonnegative. Moreover, a diet consisting of x lb of Feed 1 
and y lb of Feed 2 would contain 3x + 2y units of nutritional element A. Since 60 
units of element A are required daily, we must have 3x + 2y> 60. We are assuming 
that providing more than the minimal requirements of any of the nutritional elements 
will have no harmful effects, and so any diet providing at least 60 units of element A 
will satisfy this requirement. Thus the inequality and not an equality. 

To provide insight into the nature of linear programming, this particular problem 
will be solved geometrically. The set of diets satisfying the above requirements can 
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be illustrated graphically. All the points (x,y) in the first quadrant satisfying the 
inequality are shown in Figure 2.1. 

The other two nutritional requirements demand that 

7x + 2y > 84 and 3x + 6y > 72 

The corresponding regions in the first quadrant are sketched in Figure 2.2. 
We must consider all feasible diets, that is, all diets that satisfy all three require-

ments. They are given graphically by the shaded region in Figure 2.3. 
The cost in cents of a diet of x lb of Feed 1 and y lb of Feed 2 i s 1 Ox + Ay. Thus 

we must determine the minimum of the function /(x,y) = 10x + 4y, while the x and 
y are restricted to the shaded region in Figure 2.3. 

Consider the graphs of the family of lines determined by the equation lOx + 4y = 
c, where c is constant. In Figure 2.4, some of these lines are graphed for various 
values of c. Note that all the lines have the same slope and that the lines move to the 
left as c decreases. 

Figure 2.2 
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Figure 2.3 

c = 200 

c = 120 

c = 40 

10 20 30 

Figure 2.4 

Each of the parallel lines consists of points that give the same value for the cost 
function 10x + 4j. Thus we seek that line farthest to the left that still intersects the 
shaded region of Figure 2.3. The line through point (6,21) is that line, as illustrated 
in Figure 2.5. Thus the cost of a minimal diet is 10-6 + 4-21 = 144 cents, and this 
diet consists of 6 lb of Feed 1 and 2 lb of Feed 2. 

This analysis can be extended. As the value of c in the family of lines 10x+4j = c 
decreases and the lines slide down and to the left, from the geometry it follows that 
the line we seek will intersect the set of feasible solutions at a corner point (or vertex) 
of the set of feasible solutions. In this example we can therefore conclude that a 
minimal-cost diet, if it exists, must be attained at either point (0,42), (6,21), (18,3), 
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Figure 2.5 

or (24,0). Thus, if we have the comer points at hand, evaluating the cost function at 
each of these points and comparing values will yield the desired optimal diet: 

corner points (0,42) (6,21) (18,3) (24,0) 
10;t + 4;y 168 144 192 240 

it 

Our above result is confirmed; the minimal-cost diet is to use daily 6 lb of Feed 1 
and 21 lb of Feed 2 at a cost of 144 cents. 

Suppose now that the price of Feed 1 increases from 10 cents/lb to 14 cents/lb, 
with all other data unchanged. Then the comer points of the set of feasible solutions 
is as above, and an evaluation of the new cost function at these points will yield the 
revised optimal solution. 

corner points (0,42) (6,21) (18,3) (24,0) 
Ux + 4y 168 168 264 336 

f fr 

Now the optimal diet is not unique. The minimal-cost line 14x + 4 j = 168 passes 
through the two corner points (0,42) and (6,21), and since any feasible point on this 
line delivers a diet of 168 cents/lb, the set of optimal feasible diets consists of the 
points on the line segment between the comer points (0,42) and (6,21), as displayed 
in Figure 2.6. 

We have in the solution to the above problem a function with a unique minimum 
value (certainly there can be only one minimum value) but with multiple optimal 
solution points. And in the example, with only two variables, the geometry justifies 
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Figure 2.6 

the result. The lines in the family {14x + 4}> — c : c a constant} and the boundary 
line Ix + 2y = 84 are parallel, with common slope— | , and when c decreases, the line 
with a minimum value for c that intersects the set of feasible solutions will lie on the 
segment of the boundary corresponding to this constraining line. 

The use of slopes can be extended. Consider the original cost function 10x + 
Ay. The slope of the associated family of lines {10x + 4y = c : c a constant} is — | , 
and the optimal solution point to the problem, (6,21), is at the intersection of the 
boundary lines Ix + 2y = 84 (with slope— | ) and 3x + 2y — 60 (with slope— | ) . Thus 
from the geometry, the slope — | of the function to be minimized must be between 
these two slopes. Indeed, —| < — | < —|. 

In fact, we can say that if the cost function is c\x + C2y, where c\ and C2 are posi-
tive numbers, the minimum cost would be attained at the point (6,21 ) if — \<— ^r < 
— | , that is, I < ^r < \, and the solution point would be unique if the inequalities 
are strict. 

Thus, for example, if the cost C2 of Feed 2 is fixed at 4 cents/lb but the cost 
c\ of Feed 1 is variable, the farmer should continue to use the (6,21) diet as long as 
| < ^ < \, that is, as long as 6 < c\ < 14, with a minimum daily cost of 6c\ +21 -4 — 
6ci +84 cents. 

Example 2.2.2. A landscaper has on hand two grass seed blends. Blend I contains 
60% bluegrass seed and 10% fescue and costs 80 cents/lb; Blend II contains 20% 
bluegrass seed and 50% fescue and costs 60 cents/lb. (Each also contains other types 
of seeds and inert materials.) The field about to be sowed requires a composition seed 
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consisting of at least 30% bluegrass and 26% fescue. What is the least expensive 
combination of the two blends that meets these requirements? 

To formulate a mathematical model for a problem involving percentages, ambi-
guities can arise. To avoid these, we can determine the optimal way to produce a 
fixed amount of the final product. 

For example, let us determine the combination that minimizes costs and produces 
100 lb of the required composition seed. Defining x as the number of pounds of 
Blend I used in this composition and y as the number of pounds of Blend II, the 30% 
bluegrass requirement translates into the inequality 

0.60x + 0.20;y>30 

as the 100 lb of the final composition must contain at least 30 lb of bluegrass. The 
fescue requirement yields the inequality 

0.10x + 0.50y>26 

These inequalities simplify to 3x + y > 150 andx + 5y > 260. The region in the 
first quadrant satisfying the inequalities is graphed in Figure 2.7. 

Since 100 lb of the composition is to be produced, x and y must also satisfy the 
equation x + y = 100 (see Figure 2.8). 

The cost in dollars of x lb of Blend I and y lb of Blend II is c(x,y) = 0.8x + 0.6v, 
and we seek the minimum of this linear function on the set of points represented by 
the heavy line in Figure 2.8. From the geometric argument of the previous example, 
it follows that the line in the family of parallel lines {(x,y) : 0.8x + 0.6j = c}, where 
c is a constant, with minimal c and intersecting this set must intersect the set at either 
(25,75) or (60,40). Evaluating, 

c(25,75) = $65 and c(60,40) = $72 

Thus, to produce 100 lb of the composition at minimum cost, 25 lb of Blend I and 75 
lb of Blend II should be used, and so the minimal-cost prescription for making any 
amount of the composition seed is to use 25% Blend I and 75% Blend II. 

Figure 2.7 
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Figure 2.8 

Example 2.2.3 (Continuation of Example 2.2.2). The operation of the landscaper of 
the above example has expanded. Now there are two fields to be maintained, Field X 
(the original field) and Field Y, with Field Y requiring a seed mixture that is at least 
15% bluegrass and 35% fescue; and there is an additional grass seed blend to work 
with, Blend III, with a composition of 25% bluegrass and 15% fescue and a cost of 
35 cents/lb. The relevant data are summarized in the following table. 

Composition 

Requirements 

Blend I 
Blend II 
Blend III 

Field X 
Field Y 

Bluegrass 

60% 
20% 
25% 

>30% 
> 15% 

Fescue 

10% 
50% 
15% 

>26% 
>35% 

Cost (centsAb) 

80 
60 
35 

Suppose the landscaper has an order for 100 lbs of seed for Field X and 160 
lbs of seed for Field Y. To determine the minimum cost to meet these demands, the 
following model is formulated. Let x\, *2, *3 be the number of pounds of Blends I, 
II, and III, respectively, used for Field X, and let y\,y2, J3 be the number of pounds 
of each used for Field Y The problem: 

To minimize the function 
(80JCI + 60x2 + 35*3) + (80yi + 60y2 + 35y3) 

subject to 
x i + x 2 + x 3 = 100 yi+}'2+3'3 = 160 (2.2.1) 
.6x1 + .2x2 + -25x3 > 30 .6yx + 2y2 + .25y3 > .15(160) = 24 
.IJCI + .5x2 + .15x3 > 26 Ayi + .5y2 + A5y3 > .35(160) = 56 
*i,*2,*3>0 y\,y2,yj>0 

Unlike the optimization problems of Examples 2.2.1 and 2.2.2, each with only 
two variables, this problem, with six variables, cannot be solved graphically. The 
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problems are essentially the same, with linear functions to be optimized subject to 
linear constraints. But any such problem with more than two variables is intractable 
to a graphical approach. The goal of Chapter 3 is to develop an efficient method of 
solving the general problem, regardless of size. 

While we cannot complete problem (2.2.1) at this time, some further comments 
on the problem are in order. The reader may have already noted that (2.2.1) can be 
simplified. Meeting the demands for Field X and meeting the demands for Field Y 
are independent problems; the x's and the y's in (2.2.1) are not related in the family of 
constraints. We could solve each of these problems separately and then combine the 
solutions to resolve the two-field problem. (Of course, graphical solution techniques 
would remain out of reach for the two three-variable problems.) 

On the other hand, further restrictions could easily eliminate this simplification. 
Suppose, for example, that only a limited amount of one of the blends is available 
— perhaps only 125 lbs of the new Blend III is on hand and can be used at this 
time. Then the constraint X3 +J3 < 125 would need to be added to (2.2.1), and the 
optimization problems for the two fields are no longer independent. 

Another variation could be that, because of shipping restrictions, the producer 
of the seed can deliver Blends I and II only in a single drum containing a premixed 
combination of the two blends, with the customers specifying the ratio of Blend I to 
Blend II to be used in preparing their orders. In the landscaper model, this means 
that the ratios of Blend I to Blend II used in each of the fields are the same, that is, 
2- = 21 o r Xxy2 = xiy\. However, adding the simple equality x\yi = X2V1 to (2.2.1) 
changes the optimization problem dramatically. The problem is no longer a linear 
programming problem, as x\ V2 = xiy\ is not a linear constraint. The problem is in the 
domain of nonlinear programming, a topic not considered in this linear programming 
text. 

Problem Set 2.2 

Problems 1-5 refer to Example 2.2.1. 

1. A salesperson offers the farmer a new feed for her stock. One pound of this feed 
contains 2, 4, and 4 units of the nutritional elements A, B, and C, respectively, 
and costs 7 cents. By considering a blend that consists of equal parts of Feeds 1 
and 2, show that the use of this new feed cannot reduce the minimal cost of an 
adequate diet. 

2. The farmer has determined that as long as the ratio of the cost of Feed 1 to the 
cost of Feed 2 is between 5 and | , an adequate diet of minimal cost can be 
achieved by using 18 lb of Feed 1 and 3 lb of Feed 2. Explain. 

3. What should the ratio of the costs of the feeds be to warrant the use of a diet 
consisting solely of Feed 1 ? When should the farmer use only Feed 2 for her 
stock? 

4. After reviewing his mother's mathematical formulation of the feed problem, the 
farmer's son claims that in general the constraining inequalities should be equal-
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ities. He reasons that money must be wasted if some of the nutritional elements 
are fed to the stock at a level above the minimal requirements. Is this true? 

5. After some study, the farmer has decided that 40 units of nutritional element D 
are also critical for the daily feeding of his stock. One pound of Feeds 1 and 
2 contains 4 and 2 units of element D, respectively. How does this change the 
analysis of the original problem? 

6. Products X and Y are to be blended to produce a mixture that is at least 30% A 
and 30% B. Product X is 50% A and 40% B and costs $10/gal; Product Y is 20% 
A and 10% B and costs $2/gal. To formulate a model to be used to determine a 
minimal-cost blend, we let x and y equal the number of gallons of X and Y used, 
respectively, and write the following mathematical problems: 

(a) Our first attempt. 

Minimize lOx + 2y 
subject to 
.5x + .2y > .3 
Äx+ Ay > .3 
* , y > 0 

Note that x = 0, y = 3 satisfies the constraints. So should we use only 
Product Y? Explain. 

(b) We try again. Our final product is to be at least 30% A and 30% B and 
contain x + y gal, so we want to 

Minimize I0x + 2y 
subject to 
.5x + .2y > -3(x + y) 
Ax+ Ay > 3(x + y) 
x,y>0 

But does x = 0, y = 0 satisfy the constraints? Explain. 
(c) Formulate a correct model. 

For Problems 7-10, formulate mathematical models and then solve the prob-
lems. 

7. (a) A poultry producer's stock requires at least 124 units of nutritional element 
A and 60 units of nutritional element B daily. Two feeds are available for 
use. One pound of Feed 1 costs 16 cents and contains 10 units of A and 3 
units of B. One pound of Feed 2 costs 14 cents and contains 4 units of A 
and 5 units of B. Determine for the producer the least expensive adequate 
feeding diet. 

(b) For what range on the ratio of the costs of Feed 1 to Feed 2 would the 
optimal diet be the above diet? 

(c) For what values of the ratio of the costs of Feed 1 to Feed 2 would the 
optimal diet for the problem of part (a) not be unique? 
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8. Premium loam is 60% soil and 40% domestic manure and costs $5/50 lb. Generic 
loam is 20% soil and 10% domestic manure (and 70% sand, stone, etc.) and 
costs $1/50 lb. We need loam for our backyard that is at least 36% soil and at 
least 20% domestic manure. What combination of the two loams should we use 
to minimize costs? 

9. A crude insecticide used commercially is 40% Toxin A and 35% Toxin B. New 
federal regulations set upper limits on toxin levels for commercial insecticides: 
36% for Toxin A and 28% for Toxin B. A compatible insecticide can be pro-
duced using a more refined process, but at an increased cost of $4 more than the 
crude insecticide for every 10 lb. This product would be only 15% Toxin A and 
10% Toxin B. The two insecticides can be blended. What combination of the 
two minimizes production costs and meets federal standards? 

10. (a) A cheese producer must feed her stock of Jersey cattle daily at least 550 
units of nutritional element A, 500 units of nutritional element B, and 820 
units of nutritional element C. She has available two feeds. One pound of 
Feed X costs 80 cents and contains 2 units of A, 5 units of B, and 7 units of 
C. One pound of Feed Y costs 30 cents and contains 3 units of A, 1 unit of B, 
and 2 units of C. The cheese producer wants to determine what combination 
of the two feeds will meet the dietary requirements of her Jerseys and keep 
costs at a minimum. Determine the least expensive adequate feeding diet. 

(b) Generalize. Suppose Feed X costs c\ cents/lb and Feed 2 costs ci cents/lb. 
For what range on the ratio of c\ to c% would the optimal diet of part (a) 
remain optimal? 

(c) In particular, assume that the cost of Feed Y is fixed at 30 cents/lb but that 
the cost of Feed X is increasing. By how much can this cost increase before 
the diet of part (a) is no longer optimal? If the cost of Feed X increases by 
more than this bound, what would be the new optimal diet? 

(d) Determine the resolution of the original problem with the added restriction 
that no more than 215 lbs of Feed X may be used in the daily diet. 

Formulate mathematical models for the following problems. (Do not attempt to 
solve the problems.) 

11. A paint manufacturer must produce a base for its line of indoor domestic paints. 
Four chemicals, A, B, C, and D, are critical in its manufacture. The final compo-
sition of the base by weight must be at least 5% of Chemical A, 3% of Chemical 
B, 26% of Chemical C, and no more than 15% of Chemical D. The manufacturer 
can produce this base by combining three crude minerals. The compositions by 
weight and the costs of these minerals are given in the following table: 

% of Chemical 
~Â B C D~ Cost($/lb) 

Mineral 1 0 5 30 20 4.00 
Mineral 2 6 8 30 10 7.50 
Mineral 3 7 0 25 16 3.00 
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The manufacturer could use just Mineral 2. However, he asks, "Is there some 
combination of the three minerals that will provide a base with the desired char-
acteristics at a lower cost?" 

12. A firm wants to market bags of lawn fertilizer that contain 23% nitrogen, 7% 
phosphoric acid, and 7% soluble potash. Chemicals A, B, C, D, and E are avail-
able and can be combined for the product. The contents in pounds and cost in 
dollars of 100 lb of each are: 

Nitrogen 
Phosphoric Acid 
Potash 
Cost 

A 

18 
12 
0 

10 

B 

28 
5 
5 

23 

C 

0 
6 

18 
10 

D 

30 
7 
8 

30 

E 

16 
3 
2 

15 

How much of each chemical should be used to minimize costs? 

13. A coin is to be minted containing at least 40% silver and at least 50% copper. 
The mint has available Alloys A, B, C, and D, with the following compositions 
and costs: 

% Silver 
% Copper 
Cost/lb ($) 

A 

30 
60 
11 

B 

35 
35 
12 

C 

50 
50 
16 

D 

40 
45 
14 

What blend of these alloys provides the required composition at minimal cost? 

14. The manager of a fleet of tracks needs an antifreeze solution containing at least 
50% pure antifreeze and at least 5% anticorrosion additives. He has available 
three commercial products, A, B, and C, with characteristics and costs given 
in the following table. What blend will provide a suitable solution at minimal 
costs? 

A B C 

% Antifreeze 60 18 75 
% Additives 10 3 0 
Cost (dollars/gal) 1.6 0.5 1.4 

15. A firm produces a rare blend of scotch whiskey. The blend must contain exactly 
43% alcohol, at least 25% Highland blend, and no more than 8% malt. Four 
distillery products can be combined for the blend. The contents are given below. 
Determine the combination that minimizes the cost. 
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A B C D 

% Alcohol 46 40 45 40 
% Highland 33 20 28 18 
%Malt 10 5 12 2 
Cost($/gal) 12 8 11 7 

16. The highway department requires a sand/salt mixture for spreading on its roads 
in the winter. The mixture must be no more than 70% sand and no less than 10% 
salt. (It can also contain gravel, dirt, etc.) Company A provides a mixture that 
is 75% sand and 2% salt and costs $5/ton; Company B provides a mixture that 
is 60% sand and 6% salt and costs $12/ton. Pure road salt costs $100/ton. What 
combination of the two mixtures and salt meets the requirements at minimal 
cost? 

17. (a) A fuel additive must be at least 32% Chemical A, at least 15% Chemical 
B, and no more than 40% inert element C. Four products, W, X, Y, and Z, 
can be combined to produce the additive, composition, and cost ($/gallon) 
as listed. Determine what percentage of each of these products is contained 
in the minimal-cost blend. 

W X 

%A 45 25 28 26 
%B 22 10 0 16 
%C 20 42 44 27 
Cost ($/'gal) 35 5 0 15 

(b) As in part (a), but with the additional restriction that the amount of X in the 
final blend cannot exceed the combined amounts of W and Z by more than 
5% of the combined amounts of W and Z. 

2.3 THE PRODUCTION MODEL 

Production models and their variations occur frequently in linear programming ap-
plications. Central to these problems is an operation or production system, say a 
factory or a refinery. Commodities such as raw materials, capital, and labor are input 
into the system and are acted on by various productive processes. The results are 
the output or goods produced, and the basic problem is to operate the system in a 
way that maximizes profit using limited resources, or minimizes costs while meeting 
specified production requirements, or some combination of these goals. 

Example 2.3.1. Suppose a boat manufacturer produces two types of boats for the 
sports and camping trade, a family rowboat and a sports canoe. The boats are molded 
from aluminum by means of a large pressing machine and are finished by hand labor. 
A rowboat requires 50 lb of aluminum, 6 min of machine time, and 3 hr of finishing 
labor; a canoe requires 30 lb of aluminum, 5 min of machine time, and 5 hr of finish-
ing labor. For the next 3 months the company can commit up to 1 ton of aluminum, 
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5 hr of machine time, and 200 hr of labor for the manufacture of the small boats. The 
company realizes a $50 profit on the sale of a rowboat and a $60 profit on the sale of 
a canoe. Assuming that all boats made can be sold, how many of each type should 
be manufactured in the next 3 months in order to maximize profits? 

Here the decision to be made involves the number of rowboats and the number of 
canoes to be produced in the next 3 months. Thus, let R and C denote these numbers, 
with R the number of rowboats and C the number of canoes. Then the profit for the 
company, measured in dollars, from its small boat line will be 507? + 60C, and this is 
the function to be maximized. 

The quantities R and C cannot be negative. Moreover, they are limited by the 
amount of resources available for the production of the boats. Specifically, at most 
1 ton of aluminum can be used, and so we must have 507? + 30C < 2000. Similarly, 
consideration of available machine time and finishing labor leads to the inequalities 

67? + 5C < 300 and 37? + 5C < 200 

Thus the mathematical problem is to determine 7? and C that maximize the func-
tion 507? + 60C and satisfy the constraints 7? > 0, C > 0, 

507? + 30C < 2000 
67? + 5C < 300 
37? + 5C < 200 

Example 2.3.2. In the above example, the $50 and $60 profit estimates would be 
determined by subtracting production and delivery costs from the selling price of 
each of the two boats. Suppose now that the cost to the manufacturer of the 1 ton 
of aluminum is not fixed. In particular, assume that the price per pound of the last 
500 lb of aluminum is 20 cents/lb more than the price of the first 1500 lb, and that 
the price of the first 1500 lb is the cost used in determining the $50 and $60 profit 
estimates. With this increase in cost of the last 500 lb of aluminum, what is the 
optimal production schedule? 

To account for this potential additional cost, the amount of aluminum used over 
1500 lb must be measured. Define X to be this amount, in pounds, and, as above, 
define 7? and C to be the number of rowboats and canoes to be produced. The problem 
now is to determine 7?, C, and X that maximize the function 

50T? + 60C-0.2X 

and satisfy the constraints 

507? + 30C < 1500 + X 
67? + 5C < 300 
37? + 5C < 200 

X < 500 
7?,C,X > 0 
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Notice that the constraint involved with the amount of aluminum used is stated 
in terms of a less than or equal to inequality as opposed to an equality. The inequal-
ity allows for the possibility of using less than 1500 lb of aluminum in an optimal 
production schedule. If more than 1500 lb of aluminum is to be used, the —0.2X 
term in the function to be maximized guarantees that at any optimal solution point in 
the problem, the value of X > 0 will be as small as possible, and so the 20 cents/lb 
additional cost will be assessed on the exact amount over 1500 lb required. 

(In this example, the profit function needed to be altered once the amount of 
aluminum used exceeded 1500 lb. At this point, profits decreased, and we were 
able to model this unfavorable shift using the one additional variable X. However 
if the cost of aluminum were less when purchased in quantity, then the objective 
function could experience a favorable shift depending on the amount of aluminum 
used, and the formulation of a correct mathematical model would not have been as 
straightforward. In Chapter 6 we will present a technique for modeling favorable 
shifts in the function to be optimized.) 

Example 2.3.3. A cabinet shop makes and sells two types of cabinets, type 1, for the 
kitchen, and type 2, for the bathroom. Manufacture of the cabinets consists of two 
steps, making the frames and drawers and then assembling and finishing the units. 
Labor requirements, in hr/unit, are as follows: 

Cabinet Frame/Drawers (hr) Assembly/Finishing (hr) 

Type 1 (kitchen) 2.6 2.1 
Type 2 (bathroom ) 1.5 1.8 

Each week the shop has 480 hr of labor available for the manufacture of the cabinets. 
However, to conserve labor, frames and drawers completed and ready for assembly 
and finishing can also be bought from a local dealer at a cost of $200 for a kitchen 
frame/drawer set and $110 for a bathroom frame/drawer set. 

The kitchen cabinets sell for $350 each; the first 70 bathroom cabinets sell for 
$250 per unit, but any more produced sell for only $225 per unit. We assume that all 
units produced will be sold. 

In order to determine a production schedule that maximizes net income (sales 
revenue less the cost of any frames and drawers bought), the shop manager first notes 
the decisions to be made, namely, how many of each type of cabinet to produce and 
how to generate the associated frames and drawers. Considering also the shift in 
selling price of the bathroom cabinets, the following variables are defined: 

ti = the total number of cabinets of type i produced, i= 1,2 

w, = the number of frames/drawers made of type i,i= 1,2 

bi = the number of frames/drawers bought of type i,i= 1,2 

u = the number of bathroom cabinets sold up to 70 

v = the number of bathroom cabinets sold over 70 
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The mathematical model then is to maximize 350/i + 250M + 225v — 200&i — 
110&2 subject to 

t\ =m\ +b\ 

t2=ni2 + bj 

2.6w1 + 1.5m2 + 2.1r1 + 1.8/2<480 

Î2 = u + v, u < 70 

ti,t2,mi,m2,b\,b2,u,v>0 

Note the roles of the variables u and v; u measures the number of bathroom cabinets 
produced up to and including 70, and v measures the number produced over 70. (For 
example, if 85 bathroom units are produced and sold, we would have u = 70 and 
v = 15.) The unfavorable shift in the function to be maximized reflected in the sum 
250u + 225v guarantees that u will reach 70, the variable's bound, before v moves 
offO. 

Example 2.3.4. Consider the operation of one division in a large plant. The division 
is responsible for manufacturing two parts of the plant's final product. The division 
manager has available four different processes to produce these two parts; each pro-
cess uses various amounts of labor and two raw materials. The inputs and outputs 
for 1 hr of each of the four processes are given in the following table. 

Process 

1 
2 
3 
4 

Labor 
(worker-hours) 

20 
30 
10 
25 

Input 
Raw Material A 

(lb) 

160 
100 
200 
75 

Raw Material B 
(lb) 

30 
35 
60 
80 

Output 
Units of 
Parti 

35 
45 
70 
0 

Units of 
Part 2 

55 
42 
0 
90 

The division is responsible for producing each week 2100 units of Part 1 and 1800 
units of Part 2. The division manager has at her disposal each week 4 tons of Raw 
Material A and 2 tons of Raw Material B and 1000 hr of labor. One pound of Raw 
Material A costs the firm $3, and one pound of Raw Material B costs $7. Because 
of labor contracts, the plant must pay its employees a full week's salary, regardless 
of whether or not the employees are used that week, so the cost of the 1000 hr of 
labor is fixed. However, the division manager can request her workers to work up to 
an extra 200 hr per week in overtime at a cost of $30/hr to the firm. The plant vice-
president in charge of production wants to know if the division can meet its weekly 
production requirements with the material on hand without using overtime and, if so, 
the minimal cost of this operation. And, because the decision to allow overtime must 
be made at the plant level, the vice-president also wants some estimate on how much 
money, if any, the division can save by using overtime. 

To respond to her supervisor's questions, the division manager must consider 
the problem in two stages and at each stage must determine the optimal use of her 
facilities. In the first stage overtime is not available, and thus the manager must 
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decide only on how best to utilize the four available processes. Let x, denote the 
number of hours a week that Process i is used, for / = 1,2,3,4. The constraints 
imposed by the limited amounts of labor and raw materials are the following. 

20xi + 30x2 + 10x3 + 25x4 < 1000 
160xi + 100x2 + 200x3 + 75x4 < 8000 
30xi + 35x2 + 60x3 + 80x4 < 4000 

The output requirements give 

35x, + 45x2 + 70x3 > 2100 
55xi + 42x2 + 90x4 > 1800 

Thus the initial question of determining whether or not the weekly production 
requirements can be met with the available materials is translated into the mathemat-
ical problem of determining if there exist four nonnegative numbers x\, X2, X3, X4 
that satisfy these five inequalities. A solution to this problem would provide a suit-
able or feasible way of operating the division, and this suggests that any nonnegative 
solution to the system of constraints in a linear programming problem be called a 
feasible solution. In this particular problem, the existence of a feasible solution is 
easy to verify. The weekly use of 30 hr of Process 3 and 20 hr of Process 4 will pro-
duce the exact number of needed parts and will not even exhaust any of the supplies 
of labor and raw materials. 

The cost of the operation when overtime is not employed depends only on the 
amounts of the raw materials used and is given in dollars by the function 

/(xi,X2,X3,X4) = 3(160xi + 100X2 + 200X3 +75X4) 

+ 7(30xi + 35x2 + 60x3 + 80x4) 

= 690xi+ 545x2 + 1020x3 + 785x4 

Thus the first optimization problem is to determine xi ,X2,X3,X4 that minimize 

/(xi ,x2,x3,x4) = 690xi + 545x2 + 1020x3 + 785x4 

subject to 

20xi + 30x2 + 10x3 + 25x4 < 1000 (2.3.1) 
160xi + 100x2 + 200x3 + 75x4 < 8000 
30xi + 35x2 + 60x3 + 80x4 < 4000 
35xi + 45x2 + 70x3 > 2100 
55xi + 42x2 + 90x4 > 1800 

Xi,X2,X3,X4 > 0 

The possibility of using overtime introduces one more decision the division man-
ager can make: how much if any overtime to use to reduce the total production cost. 
Let X5 denote the number of hours of overtime employed. Then 0 < X5 < 200. As 
before, xi, X2, X3, X4 represent the hours of use of the four processes. Note, however, 
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that this is a different problem, so the optimal schedule here may employ amounts 
of the processes different from those in the previous optimal schedule. The first 
constraint, the restriction on available hours, is the only inequality that needs to be 
changed. Since the total hours used cannot exceed IOOO+X5, this inequality becomes 

20xi + 30x2 + 10x3 + 25x4 < 1000 + x5 

The total cost function must also reflect the cost of the overtime, but the cost of the 
raw materials is measured as before. Thus the new total cost function, say g, can be 
defined by simply adding the cost of overtime to the original cost function / . Thus 
we must minimize 

g(xi,X2,X3,X4,X5) = 30X5 +/(X1,X2,X3,X 4) 

Hence the second problem is to minimize the function 

g{x\ ,X2,xi,X4,xs) — 30x5 + 690xi + 545x2 + 1020x3 + 785x4 

subject to 

20xi + 30x2 + 10x3 + 25x4 < 1000+ x5 (2.3.2) 
160xi + 100x2 + 200x3 + 75x4 < 8000 
30xi + 35x2 + 60x3 + 80x4 < 4000 
35xi + 45x2 + 70x3 > 2100 
55xi + 42x2 + 90x4 > 1800 

Xi,X2,X3,X4,X5 > 0,X5 < 200 

One final question. Suppose the vice-president in charge of production wants to 
make some estimate on the production costs of the firm's products and, to do this, 
requests the division manager to estimate the costs of manufacturing 1 unit of Parts 
1 and 2. It would be easy to determine the cost of 1 unit of Part 1, for example, if 
the division produced only this type of part and Process 3 was used in its production. 
Then the total cost of 1 hr of operation of this process — and here the cost of the 
hours involved would need to be included — divided by the number of units of Part 
1 produced would give a unit cost. However, this is not the situation. Not only can 
several processes be involved in the production of Part 1, but also the output of the 
processes can be mixed. Moreover, how can we measure the true costs of the labor 
and raw materials? It could be, for example, that a minimal-cost production schedule 
leaves a surplus of Raw Material A but exhausts the available supply of Raw Material 
B, and thus Raw Material B is more precious. Should this fact also be included in the 
costs of the raw materials? We will consider such questions later, in Chapters 4 and 
5, after the concept of duality has been introduced. (See in particular Problem 14 of 
Section 5.1.) 

Problem Set 2.3 

1. Solve the problem of Example 2.3.1 graphically. 
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2. Extremum problems for functions with several variables are discussed in multi-
variable calculus. The standard technique involves taking first partials and set-
ting them equal to zero. What information would this method provide for the 
problem of Example 2.3.1? 

3. The following are other suggested mathematical models for the problem of Ex-
ample 2.3.2 (with the variables R, C, and X defined as in the example). Deter-
mine why each model is not a proper representation of the problem. 

(a) Maximize 50R + 60C - 0.2(500) 
subject to 
50R + 30C < 2000 

6R+ 5C < 300 
3R+ 5C < 200 

R,C > 0 

(b) Maximize 50R + 60C - 0.2(50Ä + 30C - 1500) 
subject to 
50R + 30C < 2000 

6R+ 5C < 300 
3R+ 5C < 200 

R,C > 0 

(c) Maximize 50R + 60C - 0.2X 
subject to 
507? + 30C = 1500+X 

6/? + 5C < 300 
3R + 5C < 200 

X < 500 
R,C,X > 0 

Problems 4-6 refer to Example 2.3.4. 

4. As long as all workers in the division are interchangeable, there arises a re-
striction on the use of overtime: the total number of regular hours available 
must be exhausted before overtime is used. In this problem that would mean 
that, for an optimal schedule considering the use of overtime, if the quantity 
20xi + 30x2 + 10x3 + 25x4 is less than or equal to 1000, X5 must be 0. Prove that 
any optimal solution to (2.3.2) must have this property. 

5. Suppose the firm can sell excess units of Part 1 on the market for $3 and excess 
units of Part 2 for $2. Modify (2.3.1), the mathematical problem not involving 
overtime, to incorporate this possibility. 

6. Suppose the firm can supplement its supply of Raw Material A by purchasing the 
material from an outside source. Assume that an unlimited amount can be pur-
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chased and that the cost would be $4/lb. Construct the associated mathematical 
problem, assuming that the use of overtime is also possible. 

For Problems 7-10, formulate mathematical models and then solve the prob-
lems. 

7. A plant has two processes it can use to produce Products A and B. An hour's 
operation of Process 1 produces 3 units of A and 6 of B and costs $25; an hour's 
operation of Process 2 produces 5 units of A and 5 of B and costs $20. The plant 
must produce at least 90 units of A and 120 of B over the next week. How many 
hours should each process be used so that demands are met and costs minimized? 

8. A small plastics company makes novelty figures for sale at political conven-
tions. This spring the company has available 450 hr of labor and 825 spare units 
of plastic for use in the production of donkeys and elephants. Each elephant 
requires 2 hr of labor and 7 units of plastic; each donkey requires 5 hr of labor 
and 5 units of plastic. Elephants sell for $10, and up to 100 can be sold this 
summer; donkeys sell for $7, with a market for 80. How many of each should 
the company produce to maximize income over the coming summer? 

9. A bakery is preparing its weekend specials, this week to be bran muffins and/or 
brownies. The bakery can commit up to 81 lb of flour and up to 51 lb of sugar 
for the preparation of these specials. A dozen bran muffins require 12 oz of flour 
and 5 oz of sugar and sell for a profit of $0.50. A box of brownies uses 20 oz 
of flour and 16 oz of sugar and sells for a profit of $0.80. Assuming all muffins 
and brownies made can be sold, how many dozen muffins and how many boxes 
of brownies should be made to maximize profits? 

10. A cabinet shop produces and installs cabinets. Business is good, and the shop 
has an unlimited number of customers willing to pay $100 for each cabinet in-
stalled. However, for the next month, the shop has only 1750 hr of labor and 
1032 units of wood that it can commit for cabinet production. Each installed 
cabinet requires 5 hr of labor, 3 units of wood, and one frame. The frames can 
be prepared in the shop before installation, with each frame requiring 2 hr of 
the shop's labor and 1 unit of its wood, or they can be bought ready for instal-
lation from the local mill for $27 each. The shop pays $6/hr for labor, $5/unit 
for wood, and only pays for the labor and wood used. For the next month, how 
many cabinets should the shop install, and how should the necessary frames be 
generated so that net income is maximized? 

Formulate mathematical models for Problems 11-22. (Do not try to solve the 
problems.) 

11. An electronics firm manufactures integrated circuits for radios, televisions, and 
stereos. For the next month it has available 1500 units of materials and 920 units 
of labor. The requirements and selling price of one of each of the above products 
are given in the following table. 
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Units of Material Units of Labor Selling Price ($) 

Radio 2 1 8 
TV 12 8 60 
Stereo 15 6 45 

Determine a production schedule that maximizes income. 

12. An oil refinery has available three different processes to produce gasoline. Each 
process produces varying amounts of three grades of gasoline: Regular, Special, 
and Super. These amounts, in hundreds of gallons per hour of operation, are 
given in the following table, along with the cost in dollars of an hour's operation 
of each of the processes. 

Regular Special Super Cost ($) 

Process 1 3 4 2 160 
Process 2 6 6 8 400 
Process 3 6 3 4 300 

Each week the refinery must produce at least 3600 gal of Regular, 2000 gal of 
Special, and 3000 gal of Super. Determine the operation of the refinery that 
satisfies these demands and minimizes costs. 

13. A fruit grower has two systems for picking crops. In the first system, the pickers 
work individually and, because of their selectivity and care, this method yields 
more choice produce than regular produce. In the second system, four pickers 
work with a machine; while this method has a greater harvest, it yields less 
choice produce than regular produce and costs proportionately more due to the 
operating expense of the machine. The amounts of input and output for 1 hr of 
operation of each system are given in the following table: 

System 1 
System 2 

Input 
(worker-hours) 

1 
4 

Output (bu) 
Choice Regular 

4 2 
20 40 

Costs 

($) 

2 
11 

Weekly the grower must supply the retail outlet with 480 bu of choice produce 
and deliver 800 bu of regular produce to the local cannery. The grower has 
available 100 hr of labor per week. Determine an operating schedule that meets 
these demands and minimizes costs. 

14. A small steel plant uses three processes for the production of steel. The pro-
cesses require varying amounts of labor, ore, and coal and produce not only 
steel, but also one side product with limited salability. The relevant data for 1 hr 
of operation of each process is as follows. 
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Process 1 
Process 2 
Process 3 

Input 
Labor 

(worker-hours) 

8 
11 
7 

Ore 
(lb) 

200 
140 
300 

Coal 
(lb) 

145 
120 
225 

Steel 
(lb) 

550 
735 
600 

Output 
Side Product 

(lb) 

35 
15 
75 

For a week's operation the plant has available up to 5 tons of ore at $43/ton, 350 
hr of labor at $15.75/hr, and an unlimited amount of coal at $12/ton. All the steel 
produced can be sold for $650/ton, and up to 1 ton of the side product can be 
sold for $37/ton (any amount above 1 ton has no value). Because of operational 
restrictions, no one process can be employed for more than 40 hr in any week. 
Determine an operating schedule that maximizes net income. (Suggestion. To 
incorporate the value of the production of the side product into the function to 
be optimized, divide its total amount produced into two increments, say Si and 
52, where 5), 0 < 5) < 2000 lb represents the first ton produced.) 

15. Using carnations and roses, a florist can make up to three different floral arrange-
ments for the Mother's Day trade. The composition (number of flowers of each 
type) and selling price ($) of a single arrangement of each type are as follows: 

Carnations Roses Price ($) 

Type A 5 2 2.75 
TypeB 12 4 6.50 
TypeC 3 6 5.25 

The florist can purchase from a local wholesaler up to 85 doz carnations at 
$1.80/doz and up to 75 doz roses at $4.80/doz. The florist can also purchase 
up to an additional 65 doz carnations at $3/doz from a distant dealer. Assuming 
that all arrangements made can be sold, how many of each type should the florist 
make to maximize net income? 

16. A company has three machines to make units of A. Input and output data for 1 
hr of operation of each machine are as follows: 

Machine 1 
Machine 2 
Machine 3 

Input 
Raw Material Labor 

(lb) (worker-hours) 

80 
50 
76 

16 
35 
33 

Output 
(units of A) 

37 
43 
52 

The company must produce 2000 units of A weekly. The company can pur-
chase up to 1 ton of the raw material for $4/lb from one source and an unlimited 
amount from another source for $5.50/lb. The firm has 900 hr of labor available 
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at $8/hr, and an additional 200 hr of overtime available at $12/hr. The company 
pays only for the labor and raw material it uses. How many hours should each 
machine be used to meet demands at minimum cost? 

17. A farmer has 100 acres of tillable land on which corn, tomatoes, beans, peas, and 
carrots can be planted. The labor requirements, plant costs, and gross income 
for 1 acre of each of these crops are as follows: 

Labor Gross 
(worker-hours) Costs ($) Income ($) 

Corn 
Tomatoes 
Beans 
Peas 
Carrots 

5 
120 
25 
35 
40 

20 
200 

55 
40 
75 

95 
1300 
275 
345 
435 

The farmer has available up to 3600 hr of labor at $7.25/hr. However, the labor 
and plant costs must be paid before any income from the sale of the produce is 
realized. The farmer has $3000 in capital to invest in this year's planting and 
can borrow up to another $12,000 if desired. Any such loan would have a 9% 
annual interest rate but would be repaid within 4 months. Land unused for any 
of these vegetables must be maintained by planting ground cover. One acre of 
cover crops requires 2 hr of labor and costs $9. Determine a planting schedule 
that maximizes net income. 

18. A subsidiary is contracted to deliver 300 units of Part A, 450 units of Part B, and 
380 units of Part C to the parent enterprise. The subsidiary can either make the 
parts or purchase them from a distant wholesaler. The requirements if made and 
cost if bought of a unit of each part are as follows: 

Labor (hr) Q (units) Purchase Price ($) 

Part A 2 20 200 
PartB 6 15 265 
PartC 3 22 235 

The subsidiary has available 3500 hr of labor at $20/hr, another 550 hr of over-
time at $30/hr, and 5000 units of Q at $5/unit. The shop only pays for the labor 
and Q's used. Management would like to know how many units of each part the 
subsidiary should make and how many to buy in order to minimize net costs in 
meeting their contractual obligation. 

19. Using labor and Raw Material M, a shop can make and sell up to three different 
products, with the requirements and selling price per unit of each of the products 
as follows: 
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Labor (hr) M (lb) Selling Price ($) 

Product 1 3 6 325 
Product 2 1 10 300 
Product 3 5 8 415 

(a) For the next week, the shop has available 2000 hr of labor at $25/hr, another 
400 hr of overtime at $35/hr, and 3000 lb of M at $10/lb. The shop only 
pays for the labor and raw material used. How many units of each product 
should the shop make and sell in order to optimize net profit? 

(b) How would you modify your answer above if in fact only the first 150 units 
of product 1 would sell for $325 and any others sold would sell for $280? 

20. A company produces three types of tires for the SUV market. In their manufac-
ture, the tires are processed on two machines, a molder and a capper. The time 
(in hours) required on each machine and the income (wholesale selling price less 
costs, including labor at the regular pay rate) per unit made of each type of tire 
are: 

Machine Time (hr) 
Type Molder Capper Income ($) 

7 8 4 45 
2 10 7 53 
3 5 6 37 

Contractual demands for the next month call for the delivery of at least 75 units 
of each type of tire. To meet these demands while maximizing net income, the 
company has set aside 3400 hr of machine time at regular pay for the molder 
and 2700 hr at regular pay for the capper. There is also available up to a total of 
1000 hr of overtime that can be divided in any manner and used among the two 
machines. Overtime pay is $12/hr more than regular-time pay, and this cost must 
be considered in determining net income. Determine an operating schedule that 
maximizes net income. 

21. Blackstone Woodworkers has signed a contract with Lowe's Depot. They are 
committed to delivering 50 gazebos and 100 sheds next month for sales this 
spring. The manufacturing requirements and cost for a unit of each, along with 
the amount of each resource available next month, are as follows: 

Gazebo 
Shed 

Wood 
(units) 

13 
20 

Manufacturing Requirements 
Construction Time 

(hr) 

5 
3 

Finishing time 
(hr) 

8 
4 

Cost ($) 

440 
275 

Supply 2400 units 500 hours 900 hours 
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Blackstone can also purchase completely finished gazebos ready for delivery 
from a wholesale shop for $600/unit and can purchase sheds from a local lumber 
yard for $325/unit. However, the sheds come unfinished; before being ready for 
delivery, each shed purchased from the lumber yard requires the same 4 hr of 
finishing time as each of Blackstone's manufactured sheds. Formulate a model 
which could be used to determine how many gazebos and sheds Blackstone 
should make, and how many of each to purchase, in order to minimize the total 
cost. 

22. Shakers Inc., a furniture manufacturer, markets two types of tables, a Country-
style and a Mission-style. Next month the manufacturer is committed to meeting 
an order for 115 Country-style tables and 145 Mission-style tables. Using a 
sequence of three operations, Shakers can produce the tables themselves. Each 
table requires processing time on each operation. The time requirements and 
costs for a manufactured table are as follows: 

Operation (mins/table) Country Mission 

Cutting & Routing 10 20 
Manufactured Tables Sanding & Joining 25 45 

Staining & Finishing 20 30 
Cost ($/table) 120 160 

The company can also purchase unfinished tables from a commune of local 
woodcrafters. However, these tables need to be processed through the stain-
ing and finishing operation before they can be marketed. The relevant data, with 
costs including the necessary labor costs, are as follows: 

Operation (mins/table) Country Mission 

Purchased Tables Staining & Finishing 25 40 
Cost ($/table) 145 200 

Next month, Shakers has committed for this project 60 hr of labor for the cutting 
and routing operation, 120 hr for the sanding and joining operation, and 125 hr 
for the staining and finishing operation. Shakers would like to know how to meet 
next month's demand at minimum cost. 

23. A shop with three furniture makers produces uniquely designed chairs and sofas 
from fabric and wood. The requirements for each piece are as follows: 

Fabric (yd) Wood (units) Labor (hr) 

Chair 3 6 9 
Sofa 8 5 4 

For a week's operation, the shop has available 96 yd of fabric, 90 units of wood, 
and 120 hr of labor. A profit of $70 is realized from the sale of a chair and a profit 



34 CHAPTER 2. THE LINEAR PROGRAMMING MODEL 

of $60 from a sofa. Determine a weekly production schedule that maximizes 
profit. 

(a) Formulate a mathematical model for this example. 
(b) Show graphically that the solution to the problem calls for the manufacture 

of lj^ chairs and 9-fy sofas. 
(c) How would one implement such a schedule? 
(d) Possible answer to part (c): Show that the weekly production of 8 chairs and 

10 sofas, or of 8 chairs and 9 sofas, or of 7 chairs and 10 sofas is impossible 
within the given restrictions, but that 7 chairs and 9 sofas can be produced. 
Thus this feasible schedule, with integral components, appears to be the 
desired schedule. 

(e) Show that it is also possible for the shop to produce weekly, within the given 
limitations, 10 chairs and 6 sofas. Compare the profit associated with this 
production schedule with the profit of the (7,9) production schedule of part 
(d). 

(f) Conclusion: Problems requiring integral answers may require special tech-
niques. 

2.4 THE TRANSPORTATION MODEL 

Transportation problems were one of the first types of problems analyzed in the early 
history of linear programming. The general problem arises when goods available at 
several sources, such as warehouses or plants, must be shipped to various destina-
tions, such as retail outlets or distribution centers. With fixed amounts available at 
the sources and fixed demands to be met at the destinations, the problem is to deter-
mine a shipping schedule that minimizes transportation costs. It is assumed that the 
costs of shipping goods from a source to a destination are directly proportional to the 
amount of goods shipped. 

Example 2.4.1. A paper manufacturer having two mills must supply weekly three 
printing plants with newsprint. Mill 1 produces 350 tons of newsprint a week and 
Mill 2 550 tons. Plant 1 requires 275 tons/week, Plant 2 325 tons, and Plant 3 300 
tons. The shipping costs, in dollars per ton, are as follows: 

Plant 1 Plant 2 Plant 3 

Milll 17 22 15 
Mill 2 18 16 12 

The problem is to determine how many tons each mill should ship to each plant 
so that the total transportation cost is minimal. 

To formulate the mathematical model, let x,j denote the amount in tons to be 
shipped weekly from Mill i to Plant j , for i = 1,2 and j = 1,2,3. Then each x!y must 
be nonnegative. Moreover, the amount shipped from each mill cannot exceed the 
supply. Thus we must have 
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*11 +X\2+X\3 = 350 

X2\ + ^22+-«23 = 550 

We have equalities here, since the total weekly supply is equal to the total demand, 
and thus all the available newsprint at both mills must be shipped, leaving no surplus. 
So that the demands at each printing plant are met, the following equalities must be 
satisfied: 

x\\ +X2\ = 275 

X\2 + *22 = 325 

*13+*23 =300 

The total shipping cost is 17xn + 22xi2 + 15xi3 + 18x2i + 16x22 + 12^23, and it is 
this function of the six variables Xjj, i = 1,2, j = 1,2,3 that we wish to minimize. 

One complication in problems of this type can occur when the commodity to 
be shipped is not divisible. For example, problems involving the shipment of auto-
mobiles, lawn tractors or refrigerators would require integral solutions. Moreover, 
integrally restricted variables have applications extending beyond such obvious situ-
ations. The following is an example. 

Example 2.4.2. In the above transportation problem, suppose that the truck assigned 
to the Mill 2 to Plant 2 route is temporarily out of service, and that if this shipping 
link is to be utilized, a replacement vehicle must be rented, at a weekly rate of $700. 
This is an example of a fixed charge. Now our model must consider both viable 
shipping schedules which do not use the Mill 2 to Plant 2 link and include only 
shipping costs in the cost function and schedules which use the link and therefore 
include the rental fee in the cost function. Note that if the link is used, the rental fee 
of $700 is independent of the number of tons shipped; the product 700x22 cannot be 
simply added to the above cost function. What is needed is an "on/off" variable, a 
variable that is 1 if the link is used (X22 > 0 ) and 0 if the link is not used (X22 = 0). 
We can establish such a variable using integral restrictions. Using y to denote the 
variable, we add to the above constraints the restrictions 0 < y < l,y> 353*22, a n dy 
integral, and to the cost function the term 700y. 

The fixed charge is now properly accessed. The integrally restricted variable y 
can only equal 0 or 1, and the presence of the cost term 600y in the function to be 
minimized guarantees that y will be 0 if the constraints so allow (X22 — 0). But if 
X22 > 0, the inequality y > ^X22 forces y to be positive and therefore equal to 1. 
(Note that 325, the demand in tons of newsprint at Plant 2, is an upper bound for the 
possible values of X22, so the quotient 355X22 will never exceed 1.) 

We have an integer programming problem. The constraints and the function to be 
optimized are linear, and some (here only one) variables are restricted to be integral. 
Integer programming solution techniques are not as straightforward as one might 
hope. See, for example, Problem 23 of the previous section. Considerable study has 



36 CHAPTER 2. THE LINEAR PROGRAMMING MODEL 

been done in this field, and the theory has been found to have many applications. We 
will consider the topic in Chapter 6. 

Problem Set 2.4 

1. (a) Even though the optimization problem of Example 2.4.1 has six variables, 
the following elementary analysis does lead to the solution of the problem. 
It costs $l/ton less to supply Plant 1 from Mill 1 instead of Mill 2. However, 
supplying Plant 2 from Mill 2 saves $6/ton, and supplying Plant 3 from Mill 
2 saves $3/ton. The greatest relative savings comes from supplying Plant 
2 as much as possible from Mill 2. Continuing this argument, show that 
the optimal shipping schedule has x\ \ = 275, x\2 = 0, x\3 = 75, X21 = 0, 
X22 = 325, X23 = 225. 

(b) Extend the above approach to determine a minimal-cost shipping schedule 
if the link from Mill 2 to Plant 2 is not used. 

(c) Use these results to determine the resolution of the fixed-charge problem of 
Example 2.4.2. Is the rental truck used? 

Formulate mathematical models for the following problems. (Do not attempt to 
solve the problems.) 

2. (a) A canned goods supplier has two warehouses serving four outlets. The East 
Coast Warehouse has 600 cases on hand and the West Coast Warehouse 
has 1000 cases on hand. The shipping costs, in cents per case, and the 
requirements for the four outlets, all located east of the Mississippi, are 
given in the following table. 

Shipping Costs 
East Coast Warehouse 
West Coast Warehouse 

Requirements (cases) 

Outlet 1 

20 
45 

300 

Outlet 2 

16 
39 

350 

Outlet 3 

30 
50 

400 

Outlet 4 

20 
44 

450 

Determine a shipping schedule that minimizes transportation costs. 
(b) As in part (a), but assume also that there are truck rental fees of $50 if units 

are shipped from the East Coast Warehouse to Outlet 1 and $60 if units are 
shipped to Outlet 2. 

3. Three beverage plants supply five wholesale outlets with cases of soft drinks. 
The weekly production of each plant is as follows: 

Plant 1 Plant 2 Plant 3 

4000 2000 3000 
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The weekly demands and transportation costs (in cents per case) are as follows 
(dashed entries in the table indicate the impossibility of shipping cases between 
the corresponding plants and outlets): 

Plant 1 
Plant 2 
Plant 3 

Requirements (cases) 

1 

6.2 
6.5 
6.3 

1000 

2 

10.5 
9.0 

1200 

Outlets 
3 

5.1 
4.3 

3000 

4 

10.1 
11.3 
10.8 

400 

5 

8.0 
6.5 

2200 

Suppose in addition that the weekly surplus at each plant can be sold locally for 
$ 1.20/case at Plant 1, $ 1.10/case at Plant 2, and $ 1.14/ case at Plant 3. Determine 
a shipping schedule that minimizes transportation costs and takes into account 
the amount accrued from the sale of the surplus. 

4. A commodity is to be shipped from three warehouses to four outlets, each outlet 
receiving 120 units. The shipping costs in dollars per unit are: 

Warehouses 
1 
2 
3 

1 

12 
10 
21 

Outlets 
2 

15 
19 
30 

3 

10 
11 
18 

4 

25 
30 
40 

Warehouse 1 has available 100 units, Warehouse 2 150 units, and Warehouse 
3 300 units. For any unit not shipped, there is a storage charge of $6/unit at 
Warehouses 1 and 2 and $12/unit at Warehouse 3. Moreover, because of labor 
contracts, Outlet 2 cannot receive more units from Warehouse 1 than from Ware-
house 2, and Outlet 4 must receive at least half of its supply from Warehouse 3. 
Determine a minimal-cost shipping and storing schedule. 

5. Three distribution centers supply four retail stores with a commodity. Each cen-
ter has 150 units of the commodity on hand, and each store requires 100 units. 
Shipping costs in dollars per unit are: 

Distribution Centers 
1 
2 
3 

1 

23 
20 
21 

Retail Stores 
2 

16 
14 
19 

3 4 

56 31 
64 24 
58 28 

No storage facilities exist at Center 1, so all of its units must be delivered. Un-
delivered units can be stored at Centers 2 and 3, but there is a $3/unit storage 
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charge at Center 3 (and no storage fee at Center 2). Determine a minimal-cost 
shipping and storing schedule. 

6. Two sources supply three destinations with a commodity. Each source has a 
supply of 80 units, and each destination has a demand for 50 units. Shipping 
costs in dollars per unit are: 

Sources 
1 
2 

Destinations 
1 2 3 

8 17 19 
- 21 22 

The transportation costs from Source 2 to Destination 1 vary. The first 20 units 
shipped on this route cost $10/unit, and each unit over 20 cost $13/unit. Deter-
mine a minimal-cost shipping schedule. 

7. Three distribution centers supply four retail stores with a commodity. The sup-
plies at the centers, the demands at the stores, and the shipping costs ($/unit) are 
as follows: 

Distribution Centers 
1 
2 
3 

Demands 

1 

40 
38 
35 

200 

Retail Stores 
2 

50 
42 
54 

200 

3 

65 
60 
55 

200 

4 

85 
80 
76 

200 

Supplies 

225 
300 
375 

All 225 units at Center 1 must be shipped. However, surplus units remaining at 
Center 2 may be sold at Center 2 for a profit of $25/unit, and surplus units at 
Center 3 may be sold for a profit of $27/unit for the first 30 sold and $23/unit for 
any sold over 30. Determine a minimal-cost shipping schedule that takes into 
account the gain from the sale of the surplus units. 

2.5 THE DYNAMIC PLANNING MODEL 

The operation of many systems or processes can be divided into distinct time peri-
ods that allow for the flexibility of activities during each period and are such that 
decisions for one period affect not only that period but also subsequent periods. For 
example, the yearly operation of a giant steel plant can be divided into 12 monthly 
time periods. In each period labor, capital, and raw materials are combined to pro-
duce steel, with varying monthly demands for the product. At the beginning of each 
month, the amount of steel to be produced must be decided on. If demands are low, 
should employees be laid off or left idle, or should surplus steel be produced and 
stored? Should future high demands be met by immediately increased production 
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and storage or by hiring and training personnel? If the cost and availability of raw 
materials vary due to, say, weather factors and mining conditions, then the decision 
on the amount of raw materials to purchase in any one month is influenced by present 
and future needs, storage capacity, and available capital. 

Example 2.5.1. Consider the operation of a dealer of home heating oil. Suppose 
the dealer owns a storage tank with a capacity for 10,000 gal of oil that initially 
contains 3000 gal. Each month for the next 3 months the dealer can sell up to 8000 
gal of oil per month, charging $2.40/gal the first month, $2.55/gal the second, and 
$2.78/gal the third. Furthermore, the dealer can purchase up to 5000 gal of oil each 
month either for distribution during the month or for storage for later use. The cost 
to the dealer of this oil is $2.17/gal the first month, $2.29/gal the second month, and 
$2.45/gal the third. The storage cost is 15 cents/gal for fuel stored at the end of any 
given month. How much oil should the dealer purchase, sell, and store during each 
month to maximize profits? Assume that any oil left in the storage tank after the 
third month has a value of $2.05/gal. 

To formulate a mathematical model, we must first, as before, assign variables to 
represent the amounts of each activity that the dealer performs. Since, at the begin-
ning of each month, the dealer must decide on how much oil to buy, distribute, and 
store during that month, three variables will be needed for each period. In particular, 
let Pi denote the number of gallons of oil purchased by the dealer during Month i, 
where i— 1,2,3. Similarly, let D, represent the number of gallons of oil distributed 
during Month i and 5, the number of gallons in storage at the end of the month. 

There are many restrictions on these nine variables. Obviously, they must be 
nonnegative, and they all have fixed upper bounds, with 5, < 10,000, Pi < 5,000, and 
Di < 8,000, for i = 1,2,3. However, the quantities are also interrelated. For each 
month, the oil purchased during that month plus the oil stored from the previous 
month must equal the total amount of oil delivered and stored during that month. 
Thus, for the first month, 3000 + Pi = Si + D\. Similarly, for the next 2 months we 
must have 

Si+P2=S2+D2 and S2+P3=S3+D3 

The total profit for the operation is equal to the income from the oil sold plus 
the value of the oil left in the storage tank less the cost of the oil purchased and oil 
stored. This quantity, in dollars, is given by the following function, the function to 
be maximized: 

(2.40Di +2.55D2 + 2.78ö3) + 2.05S3 

-(2.17A+2.29/32 + 2.45P3)-0.15(Si+S,2+S,
3) 

Example 2.5.2. A shop must deliver 500 units of Q in Period 1, 650 in Period 2, and 
625 in Period 3. The shop has two different processes that can be used to produce 
the Q's, each process using raw material M and labor. Input and output for 1 hr of 
operation of each are: 
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Input Output 
M (units) Labor (hr) Units of Q 

Process X 8 3 25 
Process Y 4 5 20 

Each period the shop has available up to 175 units of M, but the material deteriorates 
quickly. Any units of M unused in one period cannot be saved for later use. The 
shop also has available each period up to 120 hr of regular-time labor at $30/hr and 
another 40 hr of overtime labor at $45/hr. Surplus units of Q made in one period may 
be stored for later delivery at a cost of $25/unit-period, but space limitations restrict 
the number stored to be no more than 50/period, and no units are to remain in stock 
after the three periods. The shop pays only for the labor and storage space used. (The 
cost of the raw material is fixed by other constraints.) 

To construct a model to be used to determine a production and storage schedule 
that minimizes labor plus storage costs, the shop manager first considers the deci-
sions to be made. Each period she must determine the number of hours to run each 
process, the number of units of Q to be made and how many of them to be stored, 
and the allocation of the labor force. This suggests that we define the following set 
of variables: 

xi = number of hours that process X is used in Period i,i= 1,2,3 
y, = number of hours that process Y is used in Period i, i = 1,2,3 
<7, = number of units of Q made in Period «,«'=1,2,3 
si = number of units of Q stored at the end of Period /, / = 1,2 
M, = number of hours of regular-time labor used in Period i, i = 1,2,3 
Vi = number of hours of overtime labor used in Period i,i= 1,2,3 

With these variables at hand, the constraints for the model are: 

for Period i, i = 1,2,3 8x(- + 4v, < 175 (units of M) 
3x( + 5y,- = ui + vi, Ui < 120, v,■ < 40 (hr of labor) 
Xi,yi,qi,ui,Vi > 0 (nonnegativity) 

for Period 1 25xi + 20yi = 500 + s{, 0 < s{ < 50 (units of Q) 

for Period 2 25x2 + 20j2 + Ji = 650 + s2,0 < s2 < 50 

for Period 3 25.X3 + 20j3 + 2̂ = 625 

The cost function (in $), the function to be minimized, is the sum of the costs accrued 
over the three periods: 30(wi +M2 + M3) +45(vi + v2 + V3) +25(*i +s2) 

Example 2.5.3. A firm is given a short-term government contract to produce a total 
of 3700 units of some commodity over a period of 4 weeks. Producing the com-
modity can involve three new cost factors to the firm: the hiring of new workers, the 
purchasing of material for the commodity from an outside source, and the imposing 
of a penalty for late deliveries. The operation of the plant that keeps the total cost of 
these factors at a minimum is to be determined. 

Specifically, the delivery schedule for the 3700 units is as follows: 
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End of Week 

Number of Units 

1 

700 

2 

1200 

3 

1000 

4 

800 

The plant has a stable workforce of 35. New workers can be hired but require a 
week of training, with one experienced worker capable of training five new workers 
each week. A worker can produce 25 units/week, but the trainees and trainers are 
not involved in production. All new workers hired for work on this contract cannot 
be retained by the firm, and so must be laid off by the end of the fourth week, if not 
sooner, at a cost of $125/worker. All workers receive $350/week. 

One raw material is required in the production of this commodity, with each unit 
of the commodity needing 2 lb of the material. A subsidiary of the firm produces 1 
ton of this material each week, but the material is perishable and can be used only 
during the week it is produced. However, the firm can also purchase an unlimited 
amount of the material on the market at a cost of $3/lb above its own production 
costs. 

To ensure considerations for future contracts, the plant must deliver the 3700 
units by the end of the fourth week. There is, however, a $5/unit/week penalty for all 
units not delivered on schedule. On the other hand, we will assume that there is no 
penalty or storage charge for any units delivered early. 

To construct a mathematical model of this situation, the contingencies involving 
labor, raw materials, and the delivery schedule must all be considered. Moreover, 
these elements can and do vary from week to week, and so decisions on the operation 
of the plant must be made each week. Thus we have in essence four time intervals: 
the beginning of the first, second, third, and fourth weeks. 

Let us first consider labor. Each week the firm must decide how to employ its 
labor force. The activities to be established at the beginning of each week are as 
follows: 

Activity Denoted by, for Week i, i = 1,2,3,4 

1. New workers to be hired H 
2. Workers to be laid off Ft 

3. Workers to train and be trained 7] 
4. Workers to be idle /, 
5. Workers to produce Pi 

Let Mi denote the number of pounds of raw material the firm should purchase 
during Week i from the outside source. Let D, denote the number of units of the 
commodity produced and delivered during Week ;'. To measure the penalty costs 
for late deliveries, let £/, denote the accumulated number of units required but not 
delivered during Week /. Thus, if for some week the number of units delivered is 
less than the scheduled number required for that week plus any deficit accrued from 
previous weeks, the associated Ui would measure that difference. If the number 
delivered is greater than or equal to that sum, the £/,• would be 0. 

The constraints imposed by labor during the first week come from considering 
the employment of the total labor force and the training of the new workers. Note 
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that F( must be 0 because, at the beginning of the first week, there are no new workers 
who can be laid off. We have 

35+Hl=Tl+h+Pl and Hi + -j = 7} 

Constraints imposed on the number of units produced are as follows: 

25P] = 0 1 

2000 +Mi >2Di 

£>i+£/i >700 

The last inequality may need some clarification. If the optimal production sched-
ule calls for D\ to be less than 700, then U\ will be the difference between 700 and 
D\ and the quantity D\ + V\ will equal 700. On the other hand, if the optimal sched-
ule calls for D\ to be greater than 700, then U\ will be zero and D\ + V\ will be 
greater than 700. 

The production costs in dollars for the first week's operation are 

350(35 + Hi ) + 3Afi+5[/i 

The constraints and costs for the next 3 weeks follow. 
Second-week constraints: 

= T2+h+P2 

= T2 

<HX 

= D2 

>2D2 

> 1200+(700-DO 

Second-week costs: 

350(35 + //! +H2-F2) + 125F2 + 3M2 + 5[/2 

Third-week constraints: 

= 73+ / 3 +P 3 

= n 
<H1+H2-F2 

= D3 

>2D 3 

> 1000 +(1200 + 700 -Di-D2) 

35+Hi+H2-F2 

H2 

F2 

25P2 

2000+ M2 

D2 + U2 

35 + Hl+H2-F2+H3 

H3-

F3 

Hi 

5 
Fi 

25P3 

2000+ M3 

D3 + U3 
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Third-week costs: 

350(35 + Hi+ H2- F2+ H3 - F3) + 125F3 + 3M3 + 5U3 

Fourth-week constraints: 

35+Hl+H2-F2+H3-F3+H4-F4 = T4 + I4+P4 
H4 

F4 < Hi +H2-F2+H3-F3 

25P4 = D4 

2000 + M4>2D4 

Dx +D2+D3 +D4 = 3700 

(all units must be delivered by the end of the fourth week) 

Fourth-week costs: 

350(35 + Hl+H2-F2+H3-F3+H4- F4) + 125^3 + 3M4 

At the end of the fourth week, any worker hired for this project and still employed 
must be laid off. Let F$ denote this number. Then 125F$ is the cost of this activity, 
while F5 is given by the equation 

F5 = Hi + H2+H3+H4~F2-F3~F4 

The function to be minimized (total cost) is given by the sum of these five costs. 
The nonnegative variables are restricted by all the above equalities and inequalities. 

Problem Set 2.5 

Problems 1 and 2 refer to Example 2.5.3. 

1. The constraints relating the amount of raw material used and the number of 
units produced, 2000+ M, > 2Dj, i = 1,2,3,4, are all inequalities. The use of 
an equality here would prevent the consideration of what flexibility in the firm's 
operation? 

2. Intuitively, F2 should be 0. Prove that any optimal solution to the resulting math-
ematical problem must have F2 = 0. {Hint. Show that if F2 = k > 0, then another 
solution can be found by letting F2 = 0 and reducing H\ by k. How does this 
change affect the value of the objective function?) 

Formulate mathematical models for the following problems. (Do not attempt to 
solve the problems.) 

3. An appliance dealer sells small refrigerators in the college market. This July, 25 
units are on hand. For the next 3 months, the dealer can buy from the manufac-
turer up to 65 refrigerators each month, and can sell to the student population up 
to 100 units each month at the following prices: 
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Refrigerators Buy ($) Sell ($) 

August 60 90 
September 65 110 
October 68 105 

The dealer has storage facilities for 45 units but must pay a $7/unit/month stor-
age charge for each refrigerator stored for sale in a subsequent month. Determine 
an optimal buying, selling, and storing plan. 

4. Suppose the dealer in Problem 3 can also buy and sell microwave ovens. Each 
month up to 35 can be purchased, and up to 55 sold, at the following prices: 

Ovens Buy ($) Sell ($) 

August 150 200 
September 175 250 
October 200 240 

The dealer presently has no ovens on hand. The ovens can be stored but, as 
above, the storage facility has space for at most 45 total units (either refriger-
ators or ovens or some combination) and storage costs remain $7/unit/month. 
Determine an optimal buying, selling, and storing program utilizing both the 
refrigerators and ovens. 

5. For the next 3 months a dealer in Commodity A can buy from the producer and 
sell to the retailer units of A at the following prices per unit: 

A Buy ($) Sell ($) 

Monthl 31 40 
Month 2 33 44 
Month 3 36 48 

During any particular month, the dealer can buy at most 450 units and sell at 
most 600 units and, moreover, can rent storage space from a local warehouse for 
up to 300 units at any one time at $2/unit/month. Determine an optimal buying, 
selling, and storing program, assuming the dealer has no units of A on hand 
initially and wants none on hand at the termination of the 3-month period. 

6. (a) Suppose the agent in Problem 5 can also buy and sell Commodity B at the 
following prices per unit: 

B Buy ($) Sell ($) 

Month 1 80 95 
Month 2 85 110 
Month 3 95 125 
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The dealer can buy at most 200 units of B and sell at most 250 units during 
any one month and can also store B at the local warehouse, but space is lim-
ited. Assume that the warehouse has 300 yd3 of space available, at $2/yd3, 
and that a unit of A requires 1 yd3 and a unit of B requires 2 yd3. Again, 
the dealer has no stock on hand and wants none at the end of the 3 months. 
Determine an optimal buying, selling, and storing program utilizing both 
commodities. 

(b) In the above problem, any units stored represent an investment of capital. 
Reconsider the problem, assuming that a maximum of $10,000 can be bor-
rowed each month for this purpose, with an accompanying 2% per month 
interest rate. 

7. A shop must deliver 300 units of A each month for the next 3 months. There 
are two different processes, each using labor and Raw Material M, which can be 
used to make the A's. Input and output for 1 hr of operation of each are: 

Process 1 
Process 2 

Input 
M (lb) Labor (hr) 

6 3 
2 4 

Output 
Units of A 

12 
9 

However, Process 2 is unavailable for use in the third and final month; it can be 
utilized only during the first 2 months. Each month the shop has available up 
to 110 lb of M at $36/lb and up to 95 hr of labor at $26/hr, but unused pounds 
of M and hours of labor in one month cannot be saved for use in a later month. 
However, extra units of A made in one month can be stored for later use at a cost 
of $20/unit-month. The shop pays only for storage, labor, and the raw material 
labor used. Determine a production schedule which minimizes total costs. 

8. A subsidiary division of an automobile plant produces automobile engines. For 
the next four quarters, the demands of the plant are: 

Quarter 

Number of Engines 

1 

400 

2 

450 

3 

800 

4 

550 

There is an initial inventory of 100 engines. The division can produce 475 en-
gines in a quarter using its normal facilities. By the use of overtime, up to an 
additional 100 engines can be produced in any quarter, at a cost of $26/engine 
above the normal costs. Any engines on hand at the end of a quarter can be 
stored at a cost of $14/engine each quarter. Any quarterly demand not met by 
the division costs the main plant in underutilization $33/engine for each quarter 
of the deficiency. By the end of the fourth quarter, all the demands must be met. 
Determine an operating schedule that minimizes costs. 

9. Using Material M, a firm produces Commodities A, B, and C, with the manu-
facture of a unit of A requiring 3 lb of M, a unit of B 7 lb, and a unit of C 12 lb. 
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For each of the next four quarters, the firm can sell up to 50 units of A, 40 units 
of B, and 30 units of C at the following prices: 

Quarter 

Units 
Units 
Units 

ofA 
ofB 
ofC 

1 

$20 
50 
90 

2 

$24 
58 
95 

3 

$ 26 
62 

105 

4 

$ 32 
65 

120 

Units of A, B, and C can be made and stored for later sale, with no storage costs, 
but a combined total of only 35 units can be stored over any one quarter. Each 
quarter, the firm can commit 700 lb of Material M to the production of A, B, and 
C. Unused M can also be stored for later use, but because of the volatile nature 
of the material, special storage facilities are required. At most 150 lb can be 
stored in the facility, and storage costs $0.75/lb/quarter. Determine an operating 
schedule that optimizes profit for the coming year. 

10. Using Material C, a firm produces Commodities A and B. The requirements for 
the manufacture of a unit of each are as follows: 

Commodity Labor (hr) C (units) 

A 3 5 
S 2 8 

The firm has available each month 400 hr of labor at a cost of $12/hr and up to 
an additional 100 hr of overtime at $18/hr. The firm has 3500 units of C in stock 
but can obtain no more. For the next 3 months, up to 100 units each of A and B 
can be sold each month at the following prices per unit: 

Month I 
Month 2 
Month 3 

Price of A ($) 

60 
62 
64 

Price ofB ($) 

50 
58 
65 

The firm's warehouse, with a 3000-ft3 capacity, can store units of A and B pro-
duced during one month for sale during a later month, but it must also store all 
the unused units of C. One unit of A requires 8 ft3 of space, one unit of B 9 ft3 of 
space, and one unit of C 0.8 ft3 of space. At the end of the 3-month period, any 
units of C left in stock must be disposed of at a cost of $ 1.50/unit. Determine an 
operating schedule that maximizes profit. 

11. During the next 3 months, FMC must meet the following demands for vans and 
light-duty trucks: Month 1,400 vans and 200 trucks; Month 2, 150 vans and 150 
trucks; Month 3, 300 vans and 225 trucks. 

• Because of plant capacities, each month at most a total of 520 vehicles can 
be produced. 
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• Each van uses 0.8 ton of steel, and each truck uses 1.3 tons. During Month 
1, steel costs $575/ton; during Month 2, $625/ton; and during Month 3, 
$650/ton. At most 500 tons of steel may be purchased each month and 
because of limited storage space, steel may be used only during the month 
it is purchased. 

• At the beginning of the 3-month period, 100 vans and 50 trucks are in 
inventory. 

• At the end of Month 1 and at the end of Month 2, vans and/or trucks on 
hand but not delivered may be stored for future delivery. Storage costs 
are $150/vehicle-month for the first 40 trucks stored in a given month and 
$ 175/vehicle-month for any number over 40. 

• At the end of the 3-month period, the company wants no vehicles in inven-
tory. 

Determine a production and storage schedule that minimizes the steel plus stor-
age cost. 

2.6 SUMMARY 

Now that we have seen some examples of problems leading to linear programming 
models, it should be emphasized that our list of categories and examples is by no 
means comprehensive, nor are our categories mutually exclusive. Many types of 
problems occurring in the world and amenable to linear programming techniques 
are not confined to the categories we have described. Moreover, our examples were 
somewhat straightforward. Real-life problems, usually with a multitude of interre-
lated components to be considered, tend to be much more complicated and may lend 
themselves to several different approaches. 

However, all the examples we have considered led to the same mathematical 
problem: that of finding the maximum or minimum of a linear function on a set 
determined by a family of linear equations or inequalities. This is the basic problem 
of linear programming: the optimization of a linear function subject to a system of 
linear constraints. 

If one is to establish a linear programming model for some real-life optimiza-
tion problem, the system or operation under study must be amenable to some basic 
assumptions. First, the system must be decomposable into a number of elementary 
operations called activities. An activity is usually a transformation process that con-
verts inputs such as labor or raw materials into the product of the operation, such 
as the manufactured goods. For example, in the feed problem of Example 2.2.1, 
an activity is the process of converting feed into three nutritional elements. For the 
paper manufacturer problem of Example 2.4.1, an activity is the transportation of 
newsprint from a mill to a printing plant. It is these activities that are combined 
in varying amounts to attain the stated objective. The amount or rate at which an 
activity operates or functions is called its activity level. 

Second, the objective of the entire operation, when measured in terms of the 
activity levels, must be a linear function. This means simply that if Xj measures the 
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level of activity j , there are constants Cj such that the product CjXj measures the 
attainment of the objective from the operation of activity j and such that the total 
output of the operation, if there are n activities, is given by the sum c\x\ + C2X2 + 

h cnx„. Thus the objective function is a linear function of the variables Xj. 
Third, the restrictions on the various input and output items and the requirements 

on the relationships between these items must be linear in form, that is, given by 
either linear equations or inequalities in the variables xj. Thus the component pro-
cesses or activities of the problem must be linear, and so, for example, doubling 
the quantities of all the items input into an activity must have the effect of doubling 
the output of the activity. In Example 2.3.1, dealing with the production of small 
boats, the activity of producing a boat depends linearly on the input of raw material, 
machine time, and labor. 

Certainly real-life situations can fail to satisfy the requirements listed above, but 
can still be open to a linear programming model that provides accurate and useful 
information. One simplifying principle is to neglect incidental details. For exam-
ple, the paper manufacturer of Example 2.4.1 can probably realistically ignore the 
quantity of newsprint lost in shipment from mill to plant. Also, the linearity restric-
tions may only be an approximation of the situation at hand, but at least it would still 
lead to a good first estimate of the desired solution. For example, in transportation 
problems, the cost of shipping a unit of goods may decrease if the volume of goods 
shipped is increased, due to a more economical use of available equipment or due to 
the accessibility of other means of transportation suitable for large shipments. The 
problems that we have considered belong to what is called the deterministic class; 
that is, they have involved no uncertainty. For example, the output of newsprint at 
the two paper mills and the requirements for newsprint at the three printing plants 
are stated precisely. However, few real-life situations can be predicted with such 
certainty. One approach here is to work with average values for the quantities un-
der study. Another approach is to develop a probabilistic or stochastic model. An 
elementary example of such a model is given in Section 8.1. 

The actual construction of a mathematical model of a real-life problem involves 
several steps, steps that the reader may have already recognized in doing the exam-
ples and exercises of the preceding sections. First, the entire operation under study 
must be decomposed into its component activities. Then the items and units used 
to measure the activity levels must be determined. It is the rate of these activity 
levels that is subject to our control and that is represented by the variables in the 
problem. Finally, the objective function, the function to be optimized, and the linear 
constraints must be identified. The constraints on the system are usually identified 
by consideration of the input and output items in the system and the restrictions and 
relationships between them. And although it may seem that the execution of these 
steps may become somewhat straightforward, that is not the case. Experience with 
programming techniques and understanding of the real-life problem under study are 
necessary in order to be able to distinguish the significant elements of the problem 
from the inconsequential ones and to interpret and employ any solution found for the 
problem properly. 
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The goal of the next chapter will be to develop a mechanical technique for solving 
the general mathematic problem resulting from the execution of the above steps. This 
general problem is called the basic problem of linear programming. 

Problem Set 2.6 

Formulate mathematical models for the following problems. (Do not attempt to 
solve the problems.) 

1. A soap manufacturer uses 1200 gal of Mineral Oil A and 2000 gal of Mineral 
Oil B weekly. These oils can be obtained from three products. The yield and 
cost of a drum of each are as follows: 

Product Oil A (gal) Oil B (gal) Cost ($) 

1 10 15 13 
2 9 16 7 
3 12 25 8 

Supplies of these products are unlimited. However, Products 2 and 3 require 
special processing to separate out the desired mineral oils, with each drum of 
Product 2 requiring 1 hr of processing and each drum of Product 3 requiring 2 
hr. Sixty hours of processing time are available weekly at $12/hr, and another 12 
hr are available at $16/hr. Determine what combination of these products should 
be used to meet the weekly demands and minimize purchase plus processing 
time costs. 

A farmer must determine a plan to feed his stock during the coming winter. He 
has two types of stock, each with distinct nutritional requirements. To feed the 
stock the farmer has available 1000 lb of grain harvested over the summer. How-
ever, this supply of grain is not adequate to meet the nutritional demands of the 
entire stock over the winter, and so the farmer must supplement this supply with 
feeds purchased from the local coop. Determine a feeding plan that utilizes all 
the available grain, satisfies the nutritional demands of the stock, and minimizes 
the amount spent on the supplementary feeds. The data follow. 

Nutritional demands (minimal number of units required/winter): 

Element A Element B Element C 

Stock 1 150 360 650 
Stock 2 90 700 450 

Nutritional contents (units/lb) and costs (cents/lb) of the grain and the two avail-
able feeds: 
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Grain 
Feed 1 
Feed 2 

Element A 

0.2 
1 
3 

Element B 

0.9 
5 
7 

Element C 

0.8 
10 
13 

Cost 

0 
15 
23 

3. A pet food manufacturer produces weekly 600 lb of dog food and 250 lb of cat 
food. The foods must contain minimal percentages of four nutritional elements, 
A, B, C, and D, as follows: 

Dog Food 
Cat Food 

A 

10 
8 

B 

5 
16 

C 

8 
5 

D 

8 
12 

The manufacturer has available six different meat by-products to combine to 
meet these demands, but only limited quantities of some are available. The 
available weekly supply, costs, and contents of the by-products are as follows: 

Supply Cost Contents % Nutritional Element 
By-product 

1 
2 
3 
4 
5 
6 

(lb/week) 

Unlimited 
300 
500 
400 

Unlimited 
200 

(cents/lb) 

33 
29 
30 
28 
37 
23 

A 

10 
8 

15 
6 
0 

12 

B 

0 
20 
14 
12 
18 
10 

C 

5 
6 
8 

10 
13 
4 

D 

8 
10 
10 
15 
20 
6 

Determine how much of each by-product should be combined in the production 
of each food so that total costs are minimized. 

4. A firm combines Raw Materials A, B, and C in the production of two products. 
The requirements (in pounds) for the manufacture of a unit of each product are 
as follows: 

Product 1 
Product 2 

Raw Material 
A B C 

4 12 8 
7 9 10 

The firm has available 1 ton of A, 2 tons of B, and 1^ tons of C. All units 
of the products made can be sold. The firm realizes a profit of $1.20/unit on 
the first 200 units of Product 1 sold and $l/unit on the remainder sold; and a 
profit of $1.40/unit on the first 150 units of Product 2 sold and $1.05/unit on the 
remainder. Determine a production schedule that maximizes profit. 
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5. The firm of Problem 4 has changed owners. Because of a subsequent expanded 
market, the firm can now sell all units produced at the fixed prices of $5.55/unit 
for Product 1 and $6.30/unit for Product 2. However, now the firm must purchase 
the necessary raw materials from outside sources, and the costs, which must be 
considered in determining profits, vary. The firm can purchase up to 1 ton of 
Raw Material A at 20 cents/lb and any amount over 1 ton at 35 cents/lb; up to 
2 tons of B at 10 cents/lb and any amount over at 20 cents/lb; and up to 1 \ tons 
of C at 15 cents/lb and any amount over at 25 cents/lb. Determine a production 
schedule that maximizes net profit, assuming that there is an additional overhead 
cost to the firm of $1/unit for each unit of Product 1 and of Product 2 produced. 

6. A machine shop assembles transuniversals for sale to the local automobile plant. 
Because of high demand, all units assembled can be sold for $425/unit. Three 
major components, Ci, C2, and C3, are required in the assembly of each tran-
suniversal, and the shop can either purchase these components from outside 
sources or manufacture the components themselves. In the internal manufacture 
of the components, and also in the final assembly of the transuniversals, labor 
and machine time on two machines, Mi and M2, are required. The requirements 
are as follows: 

Transuniversal Assembly 

Manufacture ofC\ 
Manufacture ofCi 
Manufacture ofC$ 

Labor 
(hr/unit) 

7 

0.3 
0.5 
1.0 

Machine Time 
M\ (min/unit) 

35 

10 
15 
13 

Machine Time 
M2 (min/unit) 

25 

8 
20 
12 

The shop has available each week 1600 hr of labor at $20/hr and 400 hr of 
overtime at $30/hr; and 180 hr of machine time for M\ and 200 hr for M2. The 
costs per unit of the components, if purchased externally or produced internally 
(internal costs exclude labor costs), are as follows: 

Cl ($) C2 ($) Cs ($) 

Purchase Price 65 81 73 
Production Cost 49 60 50 

Determine a production schedule that maximizes net income. 

7. A poultry producer has available 112 rods2 of land on which to raise during 
the next 12-week period chickens, ducks, and turkeys. The space and labor 
requirements and the profit — excluding labor costs — from the sale after the 
12-week breeding period are as follows: 
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Space Labor Profit ($/unit) 
(rods: /unit) (hr/week/unit) (excluding labor costs) 

Chickens 1.2 3 260 
Ducks 1.0 2 172 
Turkeys 0.8 1 88 

The producer has available each week 200 hr of labor at $13/hr and up to 45 hr 
of overtime at $18/hr. What stock should the producer raise over the 12-week 
period in order to maximize net income (profits less labor costs)? 

8. Labor, Material M, and units of Q are used to produce Products A and B, with 
requirements for a unit of each as follows: 

Labor (hr) Material M (lb) Units of Q 

Unit of A 2 5 2 
Unit of B 4 4 1 

For the next month, up to 1000 hr of labor at $25/hr and 1 ton of M at $12/lb can 
be used in the production of A and B. Units of Q can be purchased externally for 
$50/unit and can be assembled internally, with each unit assembled requiring 1 
hrof labor and parts which cost $15. A and B each sell for $350/unit. How many 
of each should be made, and how should the necessary units of Q be generated 
so that net profits are maximized? 

9. A shop is responsible for making and delivering 225 differentials each month 
for the next 4 months. Manufacture of a differential requires 2 hr of labor and 3 
units of A. Each month the shop has available 400 hr of labor at $18/hr, 150 hr 
of overtime at $26/hr, and an unlimited supply of A. However, the cost of a unit 
of A increases from month to month and is as follows: 

Month 

Cost ($) 

1 

12 

2 

17 

3 

25 

4 

26 

Any differentials above 225 made in one month can be stored for later delivery 
at a cost of $10/month/unit. Determine a minimal cost production plus storage 
schedule. 

10. A dealer supplies daily 500 units of Commodity C to an outlet in City A and 
800 units to an outlet in City B. To meet these demands, the dealer can buy 
units of C from a distant manufacturer (at $8/unit) and then ship the units to 
the outlets. Delivery of a single unit requires the use of a long-distance vehicle 
(1000 are available daily with a use cost of $20/vehicle); to City A, 12 hr of 
labor/unit delivered, and to City B, 14 hr of labor/unit delivered. The dealer can 
also purchase the commodity from wholesalers in each city. The wholesaler in 
City A charges $86/unit, and 3 hr of labor/unit are required for the distribution 
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of C from this wholesaler to the outlet in A. The wholesaler in City B charges 
$94/unit, with 4 hr of labor/unit required for distribution to the outlet in B. The 
dealer has available daily 14,140 hr of labor at $12/hr. Determine a purchase 
schedule that minimizes the cost of meeting the demands. 

11. A firm must meet the demands of seven markets for a commodity. The firm 
has three plants at which limited amounts of the commodity can be produced, 
and the firm can also buy unlimited amounts of the finished commodity from 
an outside source. The production capabilities of the plants, the demands of the 
markets, and the total costs (production or purchase costs plus transportation 
costs) of supplying the markets from the varying sources are given the following 
tables. Determine a supply schedule that minimizes overall costs. 

Plant 1 2 3 
Supply 

Number of Units 700 600 400 

Demand 
Market 

Number of Units 

1 

150 

2 3 4 5 

300 425 325 200 

6 

250 

7 

250 

Markets 
1 2 3 4 5 6 7 

Costs ($/unit) Plant 1 5 7 8 7 9 12 3 
Plant 2 13 16 10 12 14 18 9 
Plant 3 10 12 11 9 13 14 7 

Outside Source 21 25 35 26 27 38 20 

12. A refinery produces two grades of gasoline, regular and premium, by blending 
three different crude oils, A, B, and C. Two ingredients, a and j3, are critical 
in each grade. Regular grade must contain at least 20% of ingredient a and no 
more than 60% of ingredient /3; premium grade must contain at least 30% of 
ingredient a and no more than 55% of ingredient j3. Next week the refinery 
needs exactly 2000 gal of regular and 1000 gal of premium. These data are 
summarized in the following table. 

ß Gallons Required 

Regular > 20% < 60% 2000 
Premium > 30% < 55% 1000 

The composition, available supply, and cost of each of the crude oils A, B, and 
C which can be blended to produce these two products are as follows: 
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Oil A 
OilB 

one 

Composition 
of a 

30% 
45% 
15% 

Composition 
ofß 
65% 
50% 
55% 

Supply 
(gal) 

1800 
800 

Cost 
($/gal) 

3.50 
5.50 

Oil C is available from two different suppliers; the first supplier can provide up 
to 500 gal of oil C at $3/gal, and the second supplier can provide an unlimited 
amount of the crude oil, but at $4/gal. The company would like to know how to 
meet next week's demands at minimum cost. 

13. Using Raw Material A and units of Part B, firm LP Inc. makes units of three dif-
ferent products, with the requirements and selling price per unit of each product 
as follows: 

A (lb) B (units) Selling Price ($) 

Product! 5 10 95 
Product 2 3 12 85 
Product 3 6 9 100 

For the next week, LP Inc. must produce at least 450 total units of Products 1, 
2, and 3. The firm has available 2000 lb of A at $5/lb and another 700 lb at 
$7/lb and only pays for the pounds of A used. Part B is a by-product of another 
operation of the firm, and at this time 5000 units of B are available at no cost. 
However, any units of B not used in this production can be sold for a gain of 
$3/unit. Management would like to know how many units of each of the three 
products the firm should make and sell in order to optimize net profit. 

14. A wholesale clock company produces two models, a floor model (the grandfa-
ther) and a wall model (the cuckoo). Each clock consists of two main compo-
nents, the power mechanism and the case. Labor is required in the manufacture 
of each of these components and in the final assembly of the components to 
make the clock. The time requirements, along with the cost to the firm of the 
completed unit, are given in the following table. These cost estimates include 
the cost of the parts involved and the cost, computed at the regular pay rate, of 
labor. 

Floor Model 
Wall Model 

Mechanism (hr) 

3.00 
2.00 

Case (hr) 

1.75 
1.25 

Assembly (hr) 

5.0 
3.5 

Cost/unit ($) 

260 
190 

The firm can also subcontract out the manufacture of any number of cases of 
either or both types to a local shop. This saves labor (the time required to man-
ufacture the cases) but increases the overall cost of the units. Floor model cases 
used from this outside source in the final assembly of the grandfather add $25 
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to the total cost of production of the model ($260 —> $285), and the use of the 
shop's wall model case adds $20 ($190 —> $210) to final costs. Also, the firm 
can buy from a competitor any number of the complete wall model clocks at a 
price of $255 each. 

Next month, the firm must deliver 180 floor model units and 300 wall model 
units. To meet these demands, they have available 3000 hr of regular-time labor 
and up to an additional 650 hr of overtime, at a cost of $ 10/hr above regular-time 
pay. How can the firm meet these demands at minimum cost? 

15. A company has plants P\,P2, and P$ which produce units of Z needed at assem-
bly centers C\, C2, C3, and Q . The annual output capacities of the plants and 
demands at the assembly centers are: 

Annual Output of Units ofZ Annual Demand for Units ofZ 
Pi P2 Pi Q c2 c3 c4 

10,500 18,800 13,200 7,700 9,900 12,200 11,100 

The units can be delivered from the plants to the centers either by truck or by 
rail. However, for each route for which units are delivered by rail there is an 
annual route lease fee, independent of the number of units shipped through the 
route. The data follow. 

Frc 

Delivery Cost 
($/unit) 

Route Lease Fee 
(in $1000) 

im Plant 

P\ 

Pi 

P3 

By 

Truck 
Rail 

Truck 
Rail 

Truck 
Rail 

From Plant 

P\ 
Pi 
P3 

Cx 

60 
35 

95 
75 

110 
53 

Cx 

165 
250 
180 

To Center 

c2 
80 
62 

120 
89 

98 
35 

c3 
50 
22 

65 
45 

77 
32 

To Center 

c2 
220 
200 
190 

C3 

175 
220 
200 

C4 

30 
25 

75 
55 

88 
38 

Q 

150 
210 
170 

Determine a minimum cost delivery schedule for the next year; that is, for each 
plant and each center, determine how many units are to be shipped from the plant 
to the center by truck, and how many by rail, so that supplies are not exceeded, 
demands are met, and total cost is minimized. 

16. A firm supplies six outlets with two commodities, A and B, produced at three 
plants. The transportation costs vary from plant to market and are also dependent 
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on the commodity being shipped. Moreover, there are upper-bound capacities 
on the combined total number of units that can be shipped from each plant to 
each market. Determine if it is possible to meet the demands with the supplies 
given the restrictions on the shipping capacities and, if so, determine a minimal 
cost shipping schedule. The data are: 

Supplies 

Plant 
1 3 

Units of A 1000 2500 1500 
Units ofB 1400 1500 1100 

Outlet 
1 4 

Demands Units of A 1200 600 1100 1000 500 600 
Units ofB 800 800 1000 500 300 600 

Shipping Costs 
(cents/unit) 

Shipping 
Capacities 

From Plant 

1 

2 

3 

Commodity 

A 
B 

A 
B 

A 
B 

1 

26 
17 

48 
20 

30 
21 

2 

35 
19 

56 
32 

39 
32 

To Outlet 
3 

27 
13 

70 
45 

-

4 

32 
20 

45 
25 

40 
33 

5 

23 
12 

55 
30 

35 
29 

6 

40 
25 

60 
32 

32 
25 

From Plant 1 2 
To Outlet 
3 4 5 6 

600 500 1000 500 300 650 
600 500 2000 2000 350 450 
800 500 0 2000 250 400 



CHAPTER 3 

THE SIMPLEX METHOD 

3.1 THE GENERAL PROBLEM 

In the previous chapter, all examples led to one basic mathematical problem: the 
optimization of a linear function subject to a system of linear constraints. In this 
chapter we will develop a technique for solving this basic problem. 

One minor complication in studying the problem is that the optimization prob-
lem can take various forms. For example, we have seen both maximization and 
minimization problems and constraint sets that have consisted of equalities and in-
equalities in both directions. However, this difficulty is easily resolved because all 
linear programming problems can be transformed into equivalent problems that are 
in what we call standard form. 

Definition 3.1.1. The standard form of the linear programming problem is to deter-
mine a solution of a set of equations 

a\\x\ + a\iX2 + ... + a\nxn = b\ (3.1.1) 
<221*t + 022*2 + . . . + a2nXn = bi 

am\X\ -j- am2X2 ~r ■ ■ ■ ~r amnxn = t?m 

with 
Xj >0,j= l,...,n 

that minimizes the function 

Z = C\X\ + C2X2 H 1- CnXn - ZO 

(The —zo term allows for the inclusion of a constant in the expression for the 
function to be optimized. In an application such a constant could represent, for 
example, fixed costs or guaranteed benefits. We precede the constant with a negative 
sign for future convenience; zo can be positive, negative, or zero.) 

It is this standard form of the linear programming problem, a minimization prob-
lem involving only equalities, that we will solve. Thus our first task is to show that 
any linear programming problem can be formulated as a problem in standard form, 
where the number of equalities, m, and the number of variables, n, are determined 
by the problem. 

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, Inc. 
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Consider first a linear programming problem with a system of constraints that 
contains inequalities. For example, suppose a particular diet problem reduces to the 
mathematical problem of minimizing 3x\ + 2x% + 4x^ subject to the constraints 

30xi + 100x2 + 85x3 < 2500 
6xi + 2x2 + 3x3 > 90 

X],X2,X3 > 0 

Such a problem could result from seeking minimal-cost diet that places an upper 
bound on calorie intake and a lower bound on protein intake. We will show that this 
problem is equivalent to the following problem derived from the original problem by 
the addition of two new nonnegative variables, X4 and X5. 

Minimize 3xi + 2x2 + 4x3 
subject to 
30xi + 100x2 + 85x3 + x4 = 2500 

6x1 + 2x2 + 3x3 — x5 = 90 
Xl,X2,X3,X4,X5 > 0 

Notice that if (x^x^x^x^Xj) is a solution to the second constraint set, then, 
since x*A and x*5 are restricted to nonnegative values, 30xj + lOOxj + 85xj = 2500 — 
x\ < 2500 and 6x\ + 2x\ + 3x*3 = 90 +x 5 * > 90. Therefore (x*vx*2,4) is a so-
lution to the first constraint set. Similarly, if (x^x^xj*) is a solution to the first 
constraint set, there exist x\ and x\ [let x\ = 2500 - (30xj + lOOx̂  + 85x3) and 
x* = 6x, + 2xj + 3x3 - 90] that are nonnegative and such that (xj .x^x^x^Xj) is 
a solution to the second constraint set. Thus solutions of the two constraint sets cor-
respond, with corresponding solutions having the same first three coordinates. At 
the same time, the form to be minimized, 3xi + 2x2 + 4x3, depends only on the first 
three coordinates. Hence the minimal value of the linear function for both problems 
will be the same, and points where this minimum is achieved for one problem will 
correspond to points with this same property for the other problem. 

Clearly, this technique generalizes. Given any problem with a system of con-
straints containing inequalities, by adding additional nonnegative variables, an equiv-
alent problem can be formulated with a constraint system consisting only of equal-
ities. The number of variables added would equal the number of inequalities in the 
system of constraints. The variables added are called slack variables. In fact, they 
usually can be interpreted as measuring the slack or surplus of the items or require-
ments of the problem. For example, in the preceding diet problem, suppose the first 
restriction comes from consideration of the calorie intake and the second from the 
protein intake. Then, for a fixed diet, the slack variable X4 measures the number of 
calories below the maximum calorie requirement, and X5 measures the number of 
units of protein above the minimum protein requirement for that diet. 

Second, suppose a linear programming problem seeks to maximize the linear 
function cixi + C2X2 H + cnxn. But the problem of maximizing this function is 
equivalent to the problem of minimizing its negative: —cixi — C2X2 — • • • — cnxn. 
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Thus a maximization problem can be easily formulated as a minimization problem 
by multiplying the function to be optimized by (—1). 

The last restriction on the standard form of the linear programming problem is 
that all the variables be nonnegative. For most problems this restriction comes nat-
urally from the physical interpretation of the variables. In all the examples we have 
considered, the variables could assume only nonnegative values. However, for some 
complicated production systems involving various processes and options, it could be 
that some commodity that is input for some process is output for another, and it is not 
clear whether this commodity will be input or output in the optimal operation of the 
system. Thus we may wish to formulate the problem with a variable not restricted in 
sign. (Problems with unrestricted variables also appear when discussing duality, as 
we will see in Chapter 4.) 

Suppose that x\ is a variable unrestricted in sign for a linear optimization prob-
lem. However, any number can be written as the difference of two (not unique) 
nonnegative numbers. (For example, 7 = 7 — 0 = 8 — 1,-7 — 0 — 7 = 1 — 8.) Hence 
we can introduce into the problem two nonnegative variables, say x'l and x'/, and 
replace x\ everywhere in the problem with the difference x[ —x'(. This will give 
an equivalent problem with the unrestricted variable replaced by two nonnegative 
variables. 

As a result of these methods, for any linear programming problem, an equivalent 
problem can be constructed that is in standard form. 

Example 3.1.1. The problem of maximizing 3xj — 2x2 — *3 +M — 87 subject to 

4xi — x-i + X4 < 6 
—7xi + 8x2 + xj > 1 

x\ + x2 + 4x4 = 12 
xi,X2,X3 > 0, X4 unrestricted 

is equivalent to 

Minimize — 3xi + 2x2 +*3 
subject to 

4xi — X2 + X4 -
-7xj + 8x2 + X3 

X\ + X2 + 4X4 -

Xl,X2,X3,X4,X4',X5,X6 > 0 

In a linear programming problem, the function to be optimized is called the ob-
jective function. Any point (xi ,X2,... ,x„) with nonnegative coordinates that satisfies 
the system of constraints is called a. feasible solution to the problem. For a particu-
lar problem, a feasible solution can be interpreted as a way of operating the system 
under study so that all of the requirements are fulfilled, that is, as a feasible way of 
operation. 

Thus our basic problem is to determine, from among the set of all feasible so-
lutions, a point that minimizes the objective function. Moreover, to be able to han-

- ( x 4 - x 4 ' ) + 87 

- x4' + x5 

- x6 = 
- 4x4' 

= 6 
= 7 
= 12 
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die involved real-life problems, we need a solution algorithm easily programmed 
for computer use. Existence theorems derived from, say, the theory of continuous 
functions on compact sets or the theory of linear functions on convex sets, although 
mathematically quite attractive, do not provide an efficient means for actually finding 
a desired solution. 

The method that will be developed in this chapter for solving the basic linear pro-
gramming problem is called the simplex method. It is credited to George Dantzig [4], 
and this method and its various modifications remain among the primary means used 
today to solve linear optimization problems. One additional feature of this method 
that is useful for practical application and also very attractive mathematically is that 
the method can handle exceptional cases. For example, the method can determine if a 
problem has, in fact, any feasible solutions and, if so, whether the objective function 
actually assumes a minimum value. 

The basic step in the simplex method is derived from the pivot operation used to 
solve linear equations. In the next section we pause briefly from our consideration 
of the standard linear programming problem to consider linear equations. 

Problem Set 3.1 
1. (a) InExample3.1.1,xi =4,X2 = 12.X3 =0,^4 = 21,^4 = 22,^5 = 3,X6 = 61 

is a solution to the second constraint set. Find the corresponding solution to 
the first constraint set. 

(b) Conversely, x\ = 1, X2 = 3, X3 = 5, X4 = 2 is a solution to the first constraint 
set. Find a corresponding solution to the second. In this case, is your answer 
unique? 

2. Explain why the following constraint sets are not equivalent. 

Set A Set B 

Xl + X2 < 6 X\ + X2 + XT, = 6 
x\ + 2x2 £ 1 0 X] + 2x2 + X3 = 10 
Xi,X2 > 0 Xi,X2,X3 > 0 

Hint, xi = 3 and X2 = 3 satisfy the inequalities of Set A. Can you find an X3 such 
that (3,3.X3) satisfies the equalities of Set B? 

This shows that when introducing slack variables, the same variable cannot be 
used for different inequalities. 

3. Put the following problems into standard form. 

(a) Maximize 3xi — 2x2 
subject to 
5xi + 2x2 — 3x3 + X4 < 1 

3x2 — 4x3 < 6 
Xl + X3 — X4 > 11 

X],X2,X3,X4 > 0 
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(b) Minimize X2 + X3 + X4 

subject to 

X\ + X2 > 6 
x2 + X-i — X4 < 1 

5xi — 6x2 + 7x3 ~~ 8x4 > 2 

x\ > 0,X2 < 0,X3,X4 unrestricted 

(c) Minimize x 1 + X3 — X4 + 48 

subject to 

—3x] + X2 — X3 + 2x4 = —50 

X\ — X2 + X4 < 100 

2x2 — XT, — X4 > —150 

Xi,X2,X3,X4 > 0 

(d) Maximize 6x1 - 2x2 + 9x3 + 300 

subject to 

2xi — 6x2 — X3 < 100 

xi + x2 + 9x3 < 200 

0 < x i < 50,x2 > - 6 0 , x 3 > 5 

(e) Minimize 6x1+X2 

subject to 

- 5 x i + 8x2 < 80 

x\ + 2x2 > 4 

X, < 10,X2 > 0 

(f) Maximize xi + 2x2 + 4x3 

subject to 

|4xi + 3X2 — 7X31 < X\ + X2 + X3 

Xi,X2,X3 > 0 

(g) Maximize xi + 6x2 + 12x3 

subject to 

—x\ — X2 +X4 > maximum of 7xi + 2x2 and 5x2 +X3 +X4 

Xi,X2,X3,X4 > 0 

(h) - x i - x 2 + 2 x 3 + x 5 

subject to 

xi + 7x2 + 16x3 < 4x4 + xs 

X3 + 12X4 > Xi + 6x2 

9X5 < x2 + 3X4 
Xi,X2,X3,X4,X5 > 0 

4. Determine all feasible solutions to the linear programming problem of Prob-
lem 3(a) for which 
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(a) x\ = X2 = X4 = 0 
(b) x2 = 0,x3 = 6 
(C) X3 = 0 

5. Many times the amount of slack or surplus of a commodity enters into the initial 
formulation of the problem; it is a factor in the function to be optimized. For 
example, in a production problem, there could be a cost associated with the stor-
age of the surplus production of a commodity. For another example, formulate 
the mathematical model for the following. 

Two warehouses supply two retail outlets with 100-lb bags of lime. Warehouse 
A has 1000 bags, and Warehouse B has 2000 bags. Both outlets need 1200 bags. 
The transportation costs in cents per bag are given in the following table. 

From Outlet 1 Outlet 2 

Warehouse A 5 4 
Warehouse B 12 9 

However, there is a storage charge of 2 cents/bag for all bags left at Warehouse 
A and 8 cents/bag for those left at Warehouse B. Determine a shipping schedule 
that minimizes the total cost. 

6. In the text it was suggested that when putting a linear programming problem 
with unrestricted variables into standard form, each unrestricted variable is to be 
replaced by a pair of nonnegative variables. Actually, this method is inefficient 
if the problem has more than one unrestricted variable; we need introduce only 
one additional variable to handle all the unrestricted variables. For example, if a 
problem has unrestricted variables x\ and X2, show that replacing x\ with x'l — xo 
and X2 with x'2 — XQ where x\, x2 and xo are new nonnegative variables leads to 
an equivalent problem. 

7. Show that the following problems are equivalent. 

Problem A: Minimize x\ + 2x2 — 3x3 + 4x4 
subject to 
3xi — 2x2 + 5x3 — 6x4 = 20 
x\ + 7x2 — 6x3 + 9x4 = 30 

x\ > 0,X2,X3,X4 unrestricted 

Problem B: Minimize x\ + 2x2 — 3x*3 + 4x'4 — 3xo 
subject to 

3xi — 2x2 + - ^ — 6x4 + 3xo = 20 
x, + 7x2 - 6*3 + 9x4 - lOxo = 30 

X \ , X-y 5 X"), XA , XQ -^ U 
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8. Using the technique suggested in Problem 6, determine a linear programming 
problem in standard form with only eight variables and equivalent to the linear 
programming problem of Problem 3(b). 

3.2 LINEAR EQUATIONS AND BASIC FEASIBLE 

SOLUTIONS 

The pivot operation used in solving linear equations consists of replacing a system of 
equations with an equivalent system in which a selected variable is eliminated from 
all but one of the equations. The operation revolves around what is called the pivot 
term. The pivot term can be the term in any one of the equations that contains the 
selected variable with a nonzero coefficient. In the first step of the pivot operation, 
the equation containing the pivot term is divided by the coefficient in that term, thus 
producing an equation in which the selected variable has coefficient 1. Multiples of 
this equation are added to the remaining equations in such a way that the selected 
variable is eliminated from these remaining equations. 

It is easy to show that the solution set of the system of equations resulting from 
the pivot operation is identical to the solution set of the original system, that is, 
that the systems are equivalent (Problem 9). In general, repeated use of this pivot 
operation can lead to a system of equations whose solution set is obvious. 

Example 3.2.1. Solve 

x\ + 4x2 + 2x3 = 6 
3xi + 14x2 + 8x3 = 16 
4x! + 21x2 + 10x3 = 28 

We arbitrarily select x\ as the first variable to be eliminated from two of the equations 
and the lxi term of the first equation as the pivot term. Notice that we could have 
also selected the 3xi term of the second equation or the Ax\ term of the third equation 
for the pivot term. However, the arithmetic associated with the selection of the lxi 
term is less involved because of the unit coefficient. The pivot operation at this term 
consists of dividing the first equation by 1, subtracting three times the first equation 
from the second, and subtracting four times the first equation from the third. The 
resulting equivalent system is 

x\ + 4x2 + 2x3 = 6 
2x2 + 2x3 = — 2 
5x2 + 2x3 — 4 

Continuing, we arbitrarily select X2 as the next variable to be eliminated from two 
of the equations. Since we are striving to simplify the system, the next pivot term 
should not be the 4x2 term of the first equation; pivoting here would reinstate in 
the last two equations the x\ variable. Pivoting at the X2 term of either of the other 
two equations, however, will isolate the X2 variable to that pivoting equation without 
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destroying the isolated status of the x\ variable. Using the 2x2 term of the second 
equation as the pivot term (i.e., we divide the second equation by 2, then subtract 
four times the result from the first equation and five times the result from the third 
equation), we obtain 

x\ — 2x3 = 10 
X2 + X3 = — 1 

- 3x3 = 9 

At this stage, one might solve the third equation for X3 and use this value and the 
first two equations to compute the associated values for x\ and X2. Actually, that 
operation is essentially equivalent to the pivot operation with the —3x3 term of the 
third equation as pivot term. Pivoting at this term gives 

xi = 4 
X2 = 2 

X3 = —3 

and this system of equations is equivalent to the original system. However, the so-
lution set for the system obviously consists only of the point (4,2,-3), so we have 
proven that this point is the unique solution to the original problem. 

As we have seen in this example, repeated use of the pivot operation led to a 
system of three equations with three unknowns in a special form, where each variable 
appeared in one and only one equation and in that equation had coefficient 1. This 
form, called the canonical form, is crucial to the simplex method. We now define it, 
along with the associated term basic variable. 

Definition 3.2.1. A system of m equations and n unknowns, with m < n, is in canon-
ical form with a distinguished set of m basic variables if each basic variable has 
coefficient 1 in one equation and 0 in the others, and each equation has exactly one 
basic variable with coefficient 1. 

Given a linear programming problem in standard form, one way of simplifying 
the problem would be to replace the set of constraints with an equivalent system of 
equations in canonical form. Indeed, this step is necessary before the simplex algo-
rithm can be initiated on the linear programming problem. To apply the algorithm, 
the system of constraints must be in canonical form and the associated basic solution 
must be feasible. We define the terms basic solution and basic feasible solution in 
the following example. 

Example 3.2.2. Consider the linear programming problem in standard form of 

Minimizing xi —X2 + 2x3 — 5x4 = f{x\,X2-X3,X4) (3.2.1) 
subject to 
X\ + X2 + 2X3 + *4 = 6 

3x2 + X3 + 8x4 = 3 

Xi,X2,X3,X4 > 0 
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The system of constraints consists of two equations in four unknowns. Pivoting at 
the 3x2 term of the second equation gives the equivalent system 

xi + fx3 - §x4 = 5 (3.2.2) 

X2 + 3*3 + 5X4 = 1 

This system is in canonical form with basic variables xi and X2. One particular 
solution to this system of equations is obvious: set the nonbasic variables X3 and X4 
equal to 0, and set x\ equal to the constant term 5 and X2 equal to the constant term 
1. This solution point is called a basic feasible solution. 

Given a system of equations in canonical form with a specified set of basic vari-
ables, the associated basic solution is that solution to the system with the values of 
the basic variables given by the constant terms in the equations and the values of the 
nonbasic variables equal to zero. 

In a linear programming problem we are interested in solutions to the system of 
constraints with nonnegative coordinates. Those basic solutions with this property 
we call basic feasible solutions. These will prove to be the critical points when using 
the simplex method to determine the optimal value of the objective function. 

The point (5,1,0,0) is not the only basic feasible solution for the problem in our 
example. Returning to the constraints of (3.2.1), if we pivot at the 8x4 term of the 
second equation instead of the 3x2 term (or if we pivot in (3.2.2) at the 3X4 term of 
the second equation), we get 

xi + §X2 + f X3 = f (3.2.3) 
3 1 3 
gX2 + 5X3 + X4 = g 

Here the constraint set is represented by a system of equations in canonical form with 
basic variables x\ and X4, and the associated basic solution (^ ,0 ,0 , | ) is another 
basic feasible solution. 

Pivoting at the |x2 term of the first equation in (3.2.3) yields the equivalent sys-
tem 

fxi + x2 + 3x3 = 9 
-5X1 - X3 + x4 = —3 

This system is in canonical form with basic variables X2 and X4, but the associated 
basic solution (0.9,0,-3) is not feasible. The value of X4 is negative. Obviously, 
randomly selecting the variables to serve as basic variables can lead to a system of 
equations with some negative constant terms and thus an associated basic solution 
that is not feasible. As we will see, the simplex method provides a systematic way to 
resolve the problem of starting with and maintaining feasibility. 

We return now to the original linear programming problem of (3.2.1), but with 
the system of constraints replaced by the equivalent system of (3.2.2), a system in 
canonical form with a basic feasible solution. In order to apply the simplex method to 
the problem, one final step involving the objective function is necessary. The expres-
sion for the objective function needs to be coordinated with the canonical form of the 
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system of the constraints. In particular, the expression for the objective function must 
be in terms of only the nonbasic variables. This step can be considered an extension 
of the pivot operation used to put the system of constraints into canonical form, and 
is easily accomplished here using the system of constraints. We demonstrate. 

The objective function of the example is 

f(xi,X2,X3,X4) =X\ —X2 + 2x3 —5X4 

and the system of constraints in canonical form with basic variables x\ and X2, from 
(3.2.2), is 

X\ -\- 5X3 — 5X4 — 5 

X2 + 5*3 + §*4 = 1 

From these equations, it is obvious that the value of the objective function / at 
any point (xi,X2,X3,X4) satisfying the constraints can be given by 

x\—X2 + 2x3 — 5*4 = [5 — 5X3 + 5X4] — [l — 5X3 — 1*4] + 2x3 — 5x4 

= 5X3 — |x4 + 4 

Thus on this system of constraints, the problem of minimizing / is equivalent to the 
problem of minimizing the function 5X3 — |x4 + 4. With this new function our goal 
of expressing the function to be optimized in terms of only the nonbasic variables is 
attained. 

Through these operations we have replaced the linear programming problem of 
(3.2.1) with the following equivalent linear programming problem. 

Minimize 5X3 — 5X4 + 4 
subject to 
x\ + 5X3 — 5X4 = 5 

X2 + 3X3 + | x 4 = 1 

Xi,X2,X3,X4 > 0 

This problem is said to be in canonical form with basic variables x\ and X2-

Definition 3.2.2. The standard linear programming problem is in canonical form 
with a distinguished set of basic variables if: 

(a) The system of constraints is in canonical form with this distinguished set of 
basic variables. 

(b) The associated basic solution is feasible. 
(c) The objective function is expressed in terms of only the nonbasic variables. 

If the first two conditions of this definition are satisfied for a linear programming 
problem, the system of constraints can be used, as in the above example, to eliminate 
the basic variables from the objective function. While organizing and maintaining a 
problem in canonical form, we will abuse the language somewhat and always speak 
of one fixed objective function. Certainly in the above example the function x\ — 
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X2 + 2x3 ~ 5x4 does not equal the function |x3 — |*4 + 4. However, the problems 
of optimizing these functions on the given constraint set are equivalent, that is, the 
functions have the same minimum value, and the sets of feasible solutions on which 
this common optimal value is attained are the same. It is this equivalency that we 
have in mind when we say, for example, that the objective function is now given by 
fx3-5X4+4. 

The question of feasibility of a basic solution can be stated geometrically using 
the column vectors associated with the coefficient matrix of the system of equations. 
We demonstrate. 

Example 3.2.3. The system of constraints for the linear programming problem of 
(3.2.1) can be expressed in vector form as follows: 

X\ 

Thus the system of two equations and four variables is equivalent to the problem of 

1 
0 + X2 

1 
3 

+ X3 
2 
1 

+X4 
1 
8 = 

6 
3 

expressing the vector 

1 

as a linear combination of the vectors 
1 
0 ' 

1 
3 ' 

2 
1 , and 

Moreover, for our purposes, we are restricted to solutions with nonnegative 

coordinates. 
Suppose now we wish to determine geometrically if x\ and x% can serve as basic 

variables for a basic feasible solution. If so, the nonbasic variables X3 and X4 will 
equal zero, and the resulting vector equation reduces to 

Using the notation 

xi 

i ( i ) 

1 
0 + X2 

1 
3 = 

6 
3 

X\,X2 > 0 

,A® and b -

these vectors in K2 are sketched in Figure 3.1. 
Now the set of points of the form x\A^> for x\ > 0 is the line ray emanating 

from the origin in R2 in the direction of A^\ and similarly for the points X2A^ 
with X2 > 0. The set of points of the form x\A^ + X2Ä^2\ x\ and X2 > 0, can be 
determined using the usual rule for addition of vectors. This region (the convex cone 
of A'1' and A'2') is illustrated in Figure 3.2. Since b lies in this region, a solution to 
the system of equations with x\ and X2 nonnegative and X3 and X4 equal to 0 must 
exist. This solution is the point (5,1,0,0) found previously. 

To extend these ideas, let A ^ and AW . From the graph in Figure 

3.3 we see that b cannot be expressed as a sum of the form xjA^2' +X4A" withx2 and 
X4 > 0. Thus X2 and X4 cannot serve as basic variables for a basic feasible solution. 
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Figure 3.2 

(Recall, the associated basic solution is (0,9,0, —3).) Furthermore, it can be seen that 
any other pair of variables can serve as basic variables for a basic feasible solution. 
Note also that b is a multiple of A^3' alone. Thus in any basic feasible solution with 
XT, as a basic variable, only the X3 coordinate will be nonzero. Indeed, pivoting at 
the 1x3 term in the second equation in the constraints of (3.2.1) yields the equivalent 
system 

x\ — 5x2 — 15x4 = 0 
3X2 + *3 + 8x4 — 3 

This system is in canonical form with basic variables x\ andx3, and the associated 
basic (feasible) solution is (0,0,3,0), with the basic variablexi equal to zero. Abasic 
solution with some basic variables equal to zero is said to be degenerate. As we will 
see later when developing the simplex method, theoretical complications arise from 
the possibility of degeneracy. 

The reader may be somewhat puzzled by our earlier remark that, when deter-
mining the minimum of the objective function of a linear programming problem, the 
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Figure 3.3 

basic feasible solutions are the critical points to be considered. Why, when trying to 
minimize a function, should we wish to restrict our attention to only those feasible 
solutions of the constraint set that are basic and therefore have at least n — m zero 
coordinates? For example, in a diet problem with five nutritional requirements and 
15 foods from which to choose, is it possible to find a minimal-cost diet that uses at 
most only 5 of the foods? As we will show in this chapter, the answer to this question 
is "yes." In fact, we will show by an algebraic argument that if the objective func-
tion does have a minimum value, that value is assumed by at least one basic feasible 
solution. 

Actually, the role played by the basic feasible solutions in the resolution of a 
two-variable problem is apparent from the geometry of such a problem. Consider, 
for example, the solution procedure used to solve the blending problem developed in 
Example 2.2.1 on page 10. The problem there was to determine a blend of two feeds 
that minimized costs and met three nutritional requirements. Letting x\ denote the 
amount of Feed 1 and X2 the amount of Feed 2 in a diet, the associated mathematical 
problem was to 

Minimize 10xi +4^2 
subject to 
3xi + 2x2 > 60 
7xi + 2x2 > 84 
3xi + 6x2 > 72 
Xi,X2 > 0 

Putting this into standard form gives the following: 



70 CHAPTER 3. THE SIMPLEX METHOD 

Minimize 10xi + 4x2 (3.2.4) 

subject to 

3xy + 2x2 — XT, = 60 

7xi + 2x2 — X4 = 8 4 

3xi + 6x2 — X5 = 72 

Xi,X2,X3,X4,X5 > 0 

The slack variables X3, X4, and X5 measure the surplus amounts of the nutritional 
elements A, B, and C in a given diet. Now the geometric argument based on Fig-
ure 2.5 on page 13 showed that if the linear function had a minimal value, the func-
tion would assume that value at a corner or vertex of the region shaded in Figure 2.3. 
The four vertices of the shaded region in Figure 2.3 are the points (0,42), (6,21), 
(18,3), and (24,0). They occur on the boundaries of the regions defined by the orig-
inal three inequalities, that is, when some of the inequalities are actually equalities 
and the corresponding slack variables therefore equal zero. In fact, the solutions to 
the constraint set in standard form corresponding to these four points are: 

(0,42)^(0,42,24,0,180) 

(6,21) <-► (6,21,0,0,72) 

(18,3) <-► (18,3,0,48,0) 

(24,0) <-> (24,0,12,84,0) 

Note that each of the four points in the right column has two coordinates at zero 
level. These four points are basic feasible solutions to the constraint set in standard 
form. Therefore, if the objective function is bounded below, the minimal value must 
occur at a basic feasible solution. 

This geometrical analysis extends to the general problem, yielding another proof 
that for a linear programming problem, if the set of optimal solution points is not 
empty, the set of basic feasible solutions provides the foundation for this set. How-
ever, we do not use these ideas in the algebraic development which follows, and so 
we will postpone discussion of the geometry of the general problem until Section 
3.9. 

Problem Set 3.2 

1. Solve the following using the pivot operation. 

(a) 3x2 — 3x3 = 15 

Xi + X2 + X3 = 0 

3xi + 5x2 + 3x3 = 4 

(b) 3xi + 2x2 — 7x3 = 1 

xi — 5x2 — 6x3 = —4 
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(c) x\ + 2x2 — 2x4 = 5 
— 3x2 + xj + 4x4 = 2 

2. A system of equations is said to be redundant if one of the equations in the 
system is a linear combination of the other equations. Show by using the pivot 
operation that the following system is redundant. Is this system equivalent to a 
system of equations in canonical form? 

X\ + X2 — 3X3 = 7 
—2xi + X2 + 5x3 = 2 

3X2 ~~ X3 = 16 

3. A system of equations is said to be inconsistent if the system has no solution. 
Show by using the pivot operation that the following systems are inconsistent. 
Is either of these systems equivalent to a system in canonical form? 

(a) x\ + 2x2 = 3 
x\ + 2x2 = 4 

(b) X] + X2 — 3x3 = 7 
—2xi + X2 + 5x3 = 2 

3x2 — XT, = 15 

4. (a) Solve the following system of equations by finding an equivalent system in 
canonical form with basic variables xi and X2-

2xi + X2 — 2x3 = 17 
X] — X3 = 4 

(b) Is this system equivalent to a system in canonical form with basic variables 
xi andx3? 

(c) Interpret these results geometrically. 

5. Suppose a system of equations contains the following terms: 

axi + bxj 
ex i + dx2 

where a, b, c, and d are constants, a^O. 

The system is then replaced with an equivalent system by pivoting at the axi 
term. Show that these four terms become 

b 
X\ + -X2 

a 
( bc\ 

Oxi + Id X2 
V a ) 

The expression d — be I a provides a way of remembering the effect of the pivot 
operation on any term not in the row or column of the pivot term. 
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6. For the linear programming problem of 

Minimizing 5xi + 2x2 + 3x3 + M 
subject to 

X\ + X2 — 2X3 + 3X4 = 2 

—2xi + X3 = 2 

Xl,X2,X3,X4 > 0 

(a) Show geometrically that there can be only two basic feasible solutions to 
the problem. 

(b) Compute these two basic feasible solutions. 
(c) Show that the objective function is bounded below. 
(d) Assume that the minimal value of the objective function is attained at a basic 

feasible solution and determine this minimal value. 

7. Following the outline in Problem 6, complete the problem of Example 3.2.3. 

8. (a) Put the constraint set from the standard form of the blending problem con-
sidered in this section (the problem of (3.2.4)) into canonical form with 
basic variables x\, X2, and X5. The associated basic feasible solution is 
(6,21,0,0,72). 

(b) The objective function for this problem is lOxi +4x2. By eliminating the 
X] and X2 variables by using the equations found in part (a), this function 
can be expressed in terms of only X3 and X4. Verify that the form reduces to 
144 + X3+X4. 

(c) Since we are considering only feasible solutions to the constraint set, using 
part(b), give another proof that the minimal value of the objective function 
is 144. 

9. Prove that the system of equations resulting from a given system by applying 
the pivot operation is equivalent to (has the same solution set as) the original 
system. 

10. Prove that although there may be different ways of driving a system of equations 
into canonical form with a specified set of basic variables, there is a unique basic 
solution associated with this specified set of basic variables. 

11. True or false: A system of equations is equivalent to a system of equations in 
canonical form if and only if the original system has at least one solution. 

12. Construct a linear programming problem with four variables and three equations 
for which there exist degenerate feasible solutions with exactly two nonzero 
coordinates. 

3.3 INTRODUCTION TO THE SIMPLEX METHOD 

In this section the simplex method for solving linear programming problems will be 
introduced. The basic ideas behind the technique will be demonstrated by means 
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of a specific example. The goal of this section is to develop motivation and under-
standing; the theorems related to the simplex method will be proven in subsequent 
sections of this chapter. 

Let us consider the following problem in standard form: 

Minimize ~-4x\ +X2+X3+ 7x4 + 3x$ = z (3.3.1) 

subject to 

—6x1 + X3 — 2x4 + 2x5 = 6 

3*i + X2 — X3 + 8x4 + X5 = 9 

Xl,X2,X3,X4,X5 > 0 

The simplex method can begin only with the problem in canonical form. To put 
the problem into canonical form, we could first arbitrarily select two variables to 
be basic variables and then, by pivoting, attempt to put the system of constraints 
into canonical form with these variables as basic variables, with the hope that the 
associated basic solution would be feasible. Or, because here we have a problem 
with only two constraints, we could determine, using elementary vector geometry, a 
pair of variables that would serve as basic variables for a feasible solution. 

In general, however, finding an initial basic feasible solution to a problem can 
be a major difficulty. This problem will be solved in Section 3.6. For now, assume 
that we know that for the problem at hand, the variables X2 and X3 can serve as basic 
variables for a feasible solution. Pivoting at the 1x3 term of the first equation will put 
the system of constraints into canonical form. This gives 

—6x1 + X3 — 2x4 + 2x5 = 6 (3.3.2) 

—3xi + X2 + 6x4 + 3*5 = 15 

The associated basic solution, (0,15,6,0,0) , is feasible, as promised. Now these 
two equations can be used to eliminate the basic variables X2 and X3 from the expres-
sion for the objective function z, given by 

-4x i +X2+X3+7x4 + 3x5 =z (3.3.3) 

In fact, simply subtracting the two equations in (3.3.2) from the equation in 
(3.3.3) gives 

5xi + 0x2 + 0x3 + 3x4 — 2x5 = z — 21 

Hence the objective function can be given by the form 

5xi + 3x4 — 2x5 + 21 = z 

Thus the problem in canonical form with basic variables X2 and X3 is to 

Minimize z with (3.3.4) 

—6x1 + X3 — 2x4 + 2x5 = 6 

—3xi + X2 + 6x4 + 3x5 = 15 

5xi + 3x4 — 2x5 = —21 +z 
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The objective function has the value 21 at the associated basic feasible solution 
(0,15,6,0,0). Now the key idea behind the simplex method is to move to another 
basic feasible solution that gives a smaller value for z by replacing exactly one basic 
variable from the present set. As we will see, the mechanics for this replacement will 
be provided by the pivot operation. However, what variable from the set of nonbasic 
variables x\, X4, and x$ to insert into the basis, and what basic variable, X2 or X3, to 
replace in order to reduce the value of z are not obvious. 

These questions are answered first by considering the objective function z = 
5xi + 3x4 — 2x5 +21 . In this expression for z, the X5 variable has a negative coef-
ficient. Thus a feasible solution to the constraint set with x\ and X4 still equal to zero, 
but with X5 greater than zero, will give a smaller value for z- This suggests that we 
move X5 into the set of basic variables and attempt to make X5 as large as possible. 

But what basic variable, x\ or X3, should we replace? To answer this question, 
consider the constraint set with the conditions imposed by this situation, that the 
nonbasic variables x\ and X4 equal zero. From (3.3.4) we have 

X3 + 2x5 = 6 
X2 + 3X5 — 15 

Solving for X3 and xi gives 
X3 = 6 — 2x5 (3.3.5) 
X2 = 15 — 3X5 

Clearly, X5 cannot be arbitrarily large. To have a solution to the constraint set with 
x\ = X4 = 0, X2 and X3 must satisfy these equations and would possibly become neg-
ative. In fact, since X2 and X3 must be nonnegative, X5 is restricted by the inequalities 

0 < 6-2x5 and 0 < 1 5 - 3 x 5 

that is, X5 < 3 = I and X5 < 5 — -y. Since X5 must satisfy both these inequalities, the 
maximum possible value for X5 is 3. Letting X5 = 3 and using (3.3.5) to calculate X3 
and X2, we have the feasible solution x\ = X4 = 0, X5 = 3, X3 = 0, and X2 = 6. The 
value of z at this point is 15, six less than the value at the first basic feasible solution. 
At the point (0,6,0,0,3), X2 = 6 and X3 = 0. Thus X3, being at zero level, is the 
variable that should be replaced in the basis, giving X2 and X5 as the basic variables 
for this second solution point. (Note also that at (0,6,0,0,3), X2 andxs are the two 
variables assuming positive values.) 

In fact, by letting X5 equal the minimum of 3 and 5, we are guaranteed that X3 
will assume the value 0, because the minimum value 3 is the bound coming from 
the X3 equation in (3.3.5). To determine the variable to extract from the basis, then, 
we need only determine the basic variable of that equation in the modified constraint 
set (3.3.5) that leads to the minimal bound. And each of these bounds of 3 = | and 
5 = y is the ratio of the constant term in the equation to the coefficient of the X5 
variable. This suggests a simple procedure for determining the variable to extract 
from the basis, a procedure that will be spelled out in detail in the next section. 

The simplex method is the continuation of this process. To proceed, however, the 
problem must be in canonical form with basic variables X2 and X5. To do this, we 
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use the pivot operation. With the system of constraints expressed as in (3.3.4), the 
first equation contains the basic variable X3, which is to be replaced with the variable 
X5. Hence pivoting at the 2x5 term of this equation will put the system of constraints 
into canonical form with basic variables X2 and X5. Moreover, the effect of this pivot 
operation on the third equation in (3.3.4) would be to eliminate the variable X5 from 
that equation also. Then the objective function z would be expressed in terms of only 
the variables x\, X3, and X4. Thus the effect of the pivot operation at the 2x5 term of 
the first equation in (3.3.4) applied to all three equations would be to transform the 
entire problem into the desired canonical form. Pivoting here gives 

—3xi + 3X3 — X4 + X5 = 3 (3.3.6) 

6x1 + X2 — 3X3 + 9X4 = 6 

—xi + X3 + X4 = — 1 5 + z 

Now we proceed exactly as before. The variable x\ has a negative coefficient 
in the expression for the objective function and so should be inserted into the basis. 
Letting X3 = X4 = 0, the constraint set of (3.3.6) becomes 

- 3 x i + x 5 = 3 x5 = 3 + 3xi (3 3 7) 

6xi +X2 = 6 X2 = 6 — 6x1 

Since X2 and X5 must be nonnegative, we have 

0 < 3 + 3x, - l < x i 
0 < 6 - 6 x 1 ° r xi < 1 

The first inequality places no upper bound on xi, so the upper limit for xi is deter-
mined solely by the second inequality, the inequality resulting from the X2 equation 
in (3.3.7). Thus xi should replace X2 in the basis. Letting xi = 1 gives the basic 
feasible solution (1,0,0,0,6) , and the value of the objective function at this point is 
14. 

One lingering question that we have so far avoided is the following: When do 
we know that the minimal value of the objective function has been achieved and the 
process can terminate? Our example will now provide the answer to this question. 

We have seen that a reduced value for z can be determined by using xi and X5 as 
basic variables instead of X2 and X5. Accordingly, we put the system into canonical 
form with these as basic variables by pivoting at the 6x1 term of the second equation 
in (3.3.6). This gives 

3X2 - 3X3 + 3X4 + X5 = 6 

Xl + 5X2 - 3X3 + | x 4 = 1 

5X2 + | x 3 + §x4 = - 1 4 + z 

The objective function is given by z = \x2 + |x3 + 3X4 +14 . In contrast to the two 
previous situations, here the coefficients of the nonbasic variables are all positive. 
This means in fact that the value of the objective function at any feasible solution to 
the constraint set must be at least 14, since all the coordinates of a feasible solution 
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are nonnegative. Thus our process is terminated. The minimal value of the objective 
function can be no less than 14, and this value is attained at the point ( 1,0,0,0,6). 

To summarize, the simplex method begins with the problem in canonical form. 
We move from one basic feasible solution to another by replacing exactly one basic 
variable at each step, with the new basic feasible solution providing a reduced value 
of the objective function (except possibly when there is degeneracy, a complication 
to be discussed later). Consideration of the coefficients of the objective function tells 
us if the minimal value has been achieved and, if not, what variable to insert into the 
basis. Consideration of the modified constraint set tells us what variable to extract 
from the basis. And one simple pivot operation at each step keeps the entire system 
in proper form. 

In the next section, we will make precise the simplex method for the general 
problem and will consider the case where the objective function is not bounded be-
low. (See also Problem 3.) In Section 3.6 a method based on the simplex method for 
determining an initial basic feasible solution will be discussed. 

Problem Set 3.3 

1. Consider the system of equations 

xi +2xA= 8 (3.3.8) 
X2 + 3X4 = 6 

X3 + 6x4 = 18 

The system is in canonical form with basic variables x\, X2, and xj, and the 
associated basic solution is feasible. 

(a) Express the set of solutions to the system in terms of X4, that is, solve for 
x\,X2, andX3 in terms of X4. 

(b) Determine the set of values for the parameter X4 for which the corresponding 
solutions to the system are feasible. 

(c) Let X4 be the largest value in this set. What variable assumes the value zero? 
(d) Suppose we wish to express the system in canonical form with X4 in the 

basis, and such that the associated basic solution is feasible. From (c), what 
variable should be extracted from the basis and become the nonbasic vari-
able? Thus, at what term in (3.3.8) should we pivot? 

(e) Show that pivoting here has the desired effect. 
(f) For each equation in (3.3.8), compute the ratio of the constant term to the 

coefficient of X4. Relate these values to the choice of pivoting term in (d). 

2. Consider the problem of 

Minimizing x\ + X2 + 4x3 + 7x4 

subject to 

X\ + X2 + 5X3 + 2X4 = 8 

2x] + X2 + 8x3 = 14 

Xl,X2,X3,X4 > 0 
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(a) The variables x\ and X2 can serve as basic variables for a basic feasible 
solution. Show that the problem expressed with these as basic variables is 

x\ + 3x3 — 2^4 = 6 
xi + 2x3 + 4x4 = 2 

— X3 + 5X4 = —8 + Z 

(b) Entering X3 into the basis will reduce the value of z. Why? Show that the 
variable to be replaced is x%. 

(c) Perform the pivot operation. Show that the minimal value of the objective 
function is 7 and is achieved at (3,0,1,0). 

3. Use the simplex method to do the following problem. The problem is stated in 
canonical form with basic variables X2 and X3. Notice that at the first step in the 
simplex method, either x\ or X4 can enter the basis. 

Minimize —x\ — 2x4 + x$ 
subject to 

x\ + X3 + 6x4 + 3x5 = 2 
—3xi + X2 + 3x4 + X5 = 3 
Xi,X2,X3,X4,X5 > 0 

4. In the following problem, the objective function does not have a minimum. 
However, the problem is stated in canonical form with basic variables x\ and 
X2, and the simplex method can be initiated. 

Minimize 4x3 ~~ 6x4 
subject to 

X2 — 6x3 + 2X4 = 6 
x\ + 2x3 ~ M — 5 
xi,x2,x3,x4 > 0 

(a) What occurs after the first pivot operation that makes this problem different 
from our other examples? 

(b) Can you prove, using the resulting equations, that the objective function is 
in fact not bounded below? 

3.4 THEORY OF THE SIMPLEX METHOD 

In this section we develop the simplex method for a general linear programming 
problem. To initiate the algorithm, the problem must be in canonical form. In Section 
3.1 we showed that any linear programming problem is equivalent to a problem in 
standard form, and in Section 3.6 we will show how to drive a problem in standard 
form into canonical form. In fact, the technique developed in Section 3.6 will make 
use of the ideas developed in this section. Thus, for the time being, we assume that 
our general problem is in canonical form. 
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Suppose the problem has m constraints and n variables, with the first m variables 
as basic variables. The problem is then: 

Minimize z where (3.4.1) 
x\ + ... + a\^m+\xm+\ H 1- a\nxn = b\ 

+ x2 + ... + a2,m+\xm+\ H h a2nxn = b2 

Xm ~r &m,m+\Xm-\-\ ~r 

^m+1 Xin+1 ~r 

X\ , X2, ■ ■ . , Xfi ^_ *-* 

aij, b{, Cj, and zo are constants and, since the associated basic solution is feasible, 
bi >0,i = l,...,m. 

Example 3.4.1. We wish to minimize z with 

X\ + 2x3 — X4 

X2 — X3 — 5X4 

2X3 + 3X4 

Xi,X2,X3,X4 > 0 

Here we have a problem with m = 2 constraints, n = 4 variables, and in canonical 
form. The associated basic feasible solution is (10,20,0,0), and the value of the 
objective function z at this point is —60. Note that in this particular problem the 
coefficients C3 = 2 and C4 = 3 are nonnegative. Since X3 and X4 are restricted to be 
nonnegative, the smallest value z = 2x3 + 3x4 — 60 can possibly attain is —60, the 
value of the objective function at the (10,20,0,0) solution point. This suggests our 
first theorem. 

Theorem 3.4.1 (optimality criterion). For the linear programming problem of (3.4.1), 
if Cj > 0, j = m + 1,.. . , n, then the minimal value of the objective function is —zo 
and is attained at the point {b\, b2,..., bm, 0, . . . , 0). 

Proof. For any point satisfying the set of constraints, the value of the objective func-
tion is given by z = cm+\xm+\ H h c„x„ — zo- Since any feasible solution to the 
constraints has nonnegative coordinates, the smallest possible value for the sum 
cm+\Xm+\ H 1- c„xn is zero. Thus the minimal possible value for z is —zo, and 
this value is assumed at the point (b\,b2,■ ■ .,bm,0,... ,0). D 

Hence the problem is resolved if all the c/s are nonnegative. Assume now that 
at least one Cj, say cs, is negative. Then we attempt to enter the variable xs into the 
basis. In order to determine what basic variable to replace, we consider the constraint 
set with all the nonbasic variables except x̂  equal to zero. This gives 

Q-mnXn — t?m 

CnXn = Z0 + Z 

= 10 
= 20 
= 60 + z 
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x\+a\sxs = bi x\=b\—a\sxs 

X2 + Ü2SXS = Z?2 X2 = bi - Ü2SXS 

or . (3.4.2) 

Xm ~r amsXs — ®m Xm — &m @msXs 

Example 3.4.2. Here we wish to minimize z with 

X[ + 2X3 — X4 = 10 

xi — *3 — 5x4 = 20 

2x3 — 3x4 = 60 + z 

Xi,X2,X3,X4 > 0 

Except for a change in sign in C4, this is exactly the problem of Example 3.4.1. As 
before, (10,20,0,0) is a feasible solution, and the value of the objective function 
z = 2x3 — 3x4 — 60 at this point is —60. However, here we could reduce the value of 
z if we could find feasible solutions to the constraint set with X4 positive and X3 equal 
to zero, since C4 = — 3 is negative. Setting X3 = 0, the constraints reduce to 

x\— X4 = 10 x\ = 10+ X4 
X2 — 5X4 = 20 X2 = 20 + 5X4 

Note that if we fix X4 at any positive number and then use these two equations to 
solve for x\ and x-i, the resulting values will be positive. Thus all points in the set 

{(xi,X2,0,X4) : X4 > 0,Xi = 10 + X4,X2 = 20 + 5x4} 

are feasible solutions to the system of constraints. But the function z = 2x3 — 3x4 — 60 
is unbounded below on this set. This suggests our next theorem. 

Theorem 3.4.2. For the linear programming problem of (3.4.1), if there is an index 
s, m + 1 < s < n, such that cs < 0 and a,s < Ofor all i = 1,2,. . . , m, then the objective 
function is not bounded below. 

Proof. Assume there is an index s satisfying the conditions of the theorem. Since the 
coefficients a,s are all nonpositive, the m equations of (3.4.2) can be used to find a set 
S of feasible solutions to the constraints with xs assuming arbitrarily large values, the 
original basic variables x\ to xm positive values, and the remaining variables value 
zero. But the objective function is given by the form 

z = cmxm+\ -\ hcsxs H hcnxn — zo, 

and on S, this reduces to z = csxs — zo- Since cs < 0, z is unbounded below on S. D 

Assume now that cs < 0 and that at least one a,5 > 0. Then the argument above 
breaks down, because if ais > 0, the equation x, = fo, — aisxx places a limit on how 
large xs can become. In fact, for x, to remain nonnegative, we must have 0 < b,■ — 
a„xç, that is, xs < bija^ for aiv > 0. Thus our goal now is simply to replace in 
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the basis one of the basic variables x\,... ,xm with the variable xs. Because of the 
term csxs in the expression for the objective function, the value of z at this new basic 
feasible solution hopefully will be reduced. Our one demand on this new basis is that 
the associated basic solution be feasible. Hence the equations of (3.4.2) for which 
ais > 0 restrict our choice of the variable to extract from the basis. Since we must 
have xs < -*- for all i with a,s > 0, the largest possible value for xs is 

f bi 
Min < — : ais > 0 

Suppose this minimum value is attained when i = r. Then letting xs = -£- will give 

xi > 0 for i = 1,.. . , m and, in particular, xr = br — — = 0. Since xr takes on the value 
zero here, it appears that xr is the variable to be replaced in the basis. And since in 
(3.4.1) the rth equation of the constraints isolates xr, the problem can be put into 
canonical form with basic variables x\, ..., xr-\, xr+\, ..., xm, xs by a single pivot 
operation at the arsxs term of the rth equation. Before formally stating and proving 
these results, we give an example. 

Example 3.4.3. Minimize z with 

X\ + 2X4 — 
X2 - Xi, -

X3 + 6x4 — 
— 2X4 + 

Xl,X2,X3,X4,X5 > 0 

The problem is in canonical form with basic variables x\, X2, and xj. The associated 
basic feasible solution is (10,20,18,0,0), and the value of the objective function at 
this point is —60. However, a, = —2 is negative, and so we attempt to reduce the 
value of z by inserting X4 into the basis. Letting X5 = 0, the constraints reduce to 

xi + 2x4 = 10 x\ = 10 — 2x4 
X2 — X4 = 20 or X2 = 20 + X4 
X3 + 6x4 = 18 X3 = 18 — 6x4 

The second equation places no restriction on X4. However, the first requires that 
X4 < Y = 5 and the third that X4 < ^ = 3. The largest possible value for X4 with 
X5 = 0 is the minimum of 3 and 5, that is, 3. Letting X4 = 3 gives X3 = 0. Thus 
X4 should replace X3 in the basis and, since the third equation of the constraints 
isolates X3, pivoting at the 6x4 term of this equation should keep the problem in 
canonical form, but with basic variables x\, X2, and X4. In fact, pivoting here yields 
the following equivalent problem: 

x5 = 10 
5x5 = 20 

12x5 = 18 
3x5 = 60 + z 



3.4. THEORY OF THE SIMPLEX METHOD 81 

inimize z with 

X\ — | x 3 + 3X5 = 4 
x2 + gx3 - 7x5 = 23 

gx3 + x4 - 2x5 = 3 
|x 3 - x5 = 66 

Xi,X2,X3,X4,X5 > 0 

The problem remains in canonical form, but with basic variables x\, x2, and X4. 
The associated basic solution (4,23,0,3,0) is feasible, and the value of the objective 
function at this point is —66. Although the optimal value of z has not yet been 
attained, we have, as promised, moved to a basic feasible solution yielding a reduced 
value for z while maintaining the problem in canonical form. 

Theorem 3.4.3. In the problem of (3.4.1), assume that there is an index s such that 
cs < 0 and that at least one a,-s > 0, i = 1,.. . , m. Suppose 

br { bi 
— = Min < — : 1 < i < m and a,s > 0 

Then the problem can be put into canonical form with basic variables 

X\ , X 2 , . • • , Xr— \ , Xr+ \ , . . . , X m , Xs. 

The value of the objective function at the associated basic feasible solution is 

, csbr 
-ZQ-\ 

ars 

Proof. Consider the problem of (3.4.1) under the assumptions of the theorem. The 
coefficient ars ^ 0 (it is, in fact, positive), and so the term arsxs of the rth equation 
can be used as the pivot term in the pivot operation applied to the m + 1 equations. 
By pivoting here, the system of constraints will be expressed in canonical form with 
basic variables xi, ...,xr-\,xr+\, ...,xm,xs. The constant terms, b*t say,/= l,...,m, 
on the right side of the equations, become 

b* = bt —-, for i = 1,.. . , m and / ^ r and b* = —- (3.4.3) 

Clearly b* > 0. If ais < 0 then, since br > 0 and ars > 0, b* > bt > 0. If ais > 0 
and / ^ r, by the choice of r, fc,-/a,-s > br/ars, and so b{ > aisbr/ars. Hence b*t > 0. 
Therefore the basic solution associated with these basic variables is feasible. 

Now the objective function is given in (3.4.1) by the form cm+\xm+\ -\ h csxs + 
h cnxn = zo + z. The effect of the pivot operation on this equation will be to 

eliminate the xs term from the equation, producing the equation 

c*xr + c*m+lxm+i H hc*_{xs-i + c*s+lxs+i H hc*nxn =ZQ+Z (3.4.4) 

with ZQ = zo - csbr/ars. 
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Thus the objective function is expressed in terms of only the new nonbasic vari-
ables and the value of this function at the new basic feasible solution is — zo + 
csbr/ars. D 

Notice the result of this pivot operation applied to the system of constraints and 
the objective function. The problem remains in canonical form with the original 
basic variable xr replaced with the variable xs. The value of the objective function at 
this new basic feasible solution is equal to the value — zo a t the original basic feasible 
solution plus the quantity csbr/ars. Since we have assumed that cs < 0 and ars > 0, 
csbr/ars is less than or equal to zero, and is strictly less than zero if br is strictly 
positive. Thus, if br > 0, the pivot operation has left the system in canonical form 
at a basic feasible solution with a smaller value for the objective function. Let us 
assume for the time being that this is always the case, that any basic feasible solution 
to the system of constraints has no basic variable equal to zero. A basic solution 
with some basic variables equal to zero is called a degenerate solution, so we are 
assuming that all basic feasible solutions are nondegenerate. 

Under this nondegeneracy hypothesis, Theorem 3.4.3 states that if at least one 
of the coefficients cj, m + 1 < j < n, is negative, say cs, and if at least one of the 
coefficients a,s, 1 < / < m, is positive, then a specific pivot operation leaves the 
problem in canonical form at a basic feasible solution that gives a reduced value 
for the objective function. Now we can continue. If the new coefficients of the 
objective function are all nonnegative, we are at the minimal value for the objective 
function, as Theorem 3.4.1 applies. If one of these coefficients is negative and if all 
of the coefficients of the associated variable are nonpositive in the constraint set, the 
objective function is unbounded below, as Theorem 3.4.2 applies. Otherwise, we can 
apply Theorem 3.4.3 again, driving to another basic feasible solution with an even 
smaller value for the objective function. Since at each step the value of the objective 
function is reduced (due to the nondegeneracy assumption), there can be no repetition 
of basic feasible solutions. The different values for the objective function guarantee 
that a particular basic feasible solution can appear at most once in the process (see 
Problem 10 of Section 3.2). Now there are at most a finite number of basic solutions, 
as there are only (^) = n ! / [m ! (« — m) ! ] way s of selecting m basic variables from a 
set of n variables. Thus this process must eventually terminate. Either the minimum 
value of the objective function will be reached or the function will be proven to be 
unbounded. 

This is the simplex method, with a proof, using the nondegeneracy hypothesis, 
that the process must terminate after a finite number of steps with either Theorems 
3.4.1 or 3.4.2 applying. The nondegeneracy assumption is quite critical. If some ba-
sic feasible solutions were degenerate, the pivot operation of Theorem 3.4.3 applied 
in a row with £>, = 0 would leave the value of the objective function unchanged. After 
several steps of this, we would have no assurance that basic feasible solutions would 
not reappear, possibly causing the process to cycle indefinitely. In fact, examples of 
cycling have been constructed (see Appendix B). Thus, from a mathematical point 
of view, our proof of convergence of the process is inadequate. In Section 3.8 we 
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will provide a complete proof that, for any linear programming problem, there exists 
a sequence of pivot operations that will drive the problem to completion. 

From a practical point of view, however, a pleasant phenomenon occurs. The 
cliché "whatever can go wrong will go wrong" does not seem to apply. Although 
degeneracy occurs quite frequently in linear programming applications, very rarely 
will cycling occur. Simple rules such as those described below usually are sufficient 
to prevent cycling. The rules are certainly adequate to prevent cycling in the exam-
ples of this text (except, of course, for the example of Appendix B). Moreover, more 
precise rules for the selection of the pivoting term can be given that will guarantee 
that cycling does not occur (see Section 3.8). 

We now summarize the steps of the simplex method, starting with the problem in 
canonical form. 

1. If all Cj > 0, the minimum value of the objective function has been achieved 
(Theorem 3.4.1). 

2. If there exists an s such that cs < 0 and a,s < 0 for all i, the objective function 
is not bounded below (Theorem 3.4.2). 

3. Otherwise, pivot (Theorem 3.4.3). To determine the pivot term: 
(a) Pivot in any column with a negative Cj term. If there are several negative 

Cj's, pivoting in the column with the smallest c; may reduce the total 
number of steps necessary to complete the problem. Assume that we 
pivot in column s. 

(b) To determine the row of the pivot term, find that row, say row r, such that 

— =Min{ — :a;s>ol 
ars I ais J 

Notice that here only those ratios bijais with als > 0 are considered. If 
the minimum of these ratios is attained in several rows, a simple rule such 
as choosing the row with the smallest index can be used to determine the 
pivoting row. 

4. After pivoting, the problem remains in canonical form at a different basic 
feasible solution. Now return to step 1. 

If the problem contains degenerate basic feasible solutions, proceed as above. 
These steps should still be adequate to drive the problem to completion. 

Problem Set 3.4 

1. Complete the problem of Example 3.4.3. 

2. Solve the following using the ideas developed in this section. 

(a) Minimize xj, + x\ subject to 

X\ — X4 = 5 

X2 + 2X3 — 3*4 = 10 

X\,X2,X$,X4 > 0 
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(b) Minimize X3 subject to the constraints of part (a). 
(c) Minimize X3 — X4 subject to the constraints of part (a). 
(d) Minimize X3 — X4 subject to 

x\ — X4 = 5 
X2 + 2X3 = 10 

X\,X2,X3,X4 > 0 

(e) Minimize — xj, +X4 subject to the constraints of part (d). 
(f) Minimize —X3 +X4 subject to 

x\ + XT, — X4 = 0 

X2 + 2X3 = 10 
Xi,X2,X3,X4 > 0 

(g) Minimize —X3 — X4 subject to the constraints of part (f). 

3. Calculate the coefficient c* in (3.4.4) on page 81. Can the variable removed from 
the basis at one step of the pivot operation return to the basis on the next step? 

4. Using the form for the objective function given in (3.4.1) on page 78 and the 
coordinates of the new basic feasible solution given in (3.4.3) on page 81, by 
direct calculation show that the value of the objective function at the new basic 
feasible solution is as stated in Theorem 3.4.3. 

5. Using (3.4.3) on page 81, determine when the pivot operation will go from a 
nondegenerate basic feasible solution to a degenerate basic feasible solution. 

6. Suppose a problem is in canonical form and the associated basic feasible solution 
is degenerate, and x\ is a basic variable with the value zero. The pivot operation 
is performed with the x\ variable extracted from the basis. Describe the new 
basic feasible solution. 

7. In Chapter 2 we saw linear programming problems with multiple optimal so-
lution points. We do, however, have a uniqueness condition for problems in 
canonical form. Show that if a problem is driven to the canonical form in (3.4.1) 
and Cj > 0 for m + 1 < j < n, then the minimal value — zo of the objective func-
tion is attained only at the point (b[,...,bm,0,...,0). 

8. Extend the formulas in the proof of Theorem 3.4.3 expressing the results of the 
pivot operation at the ars term. Show that for any j ^ s, 

i 7̂  r * 

rj ars 

* 
Cj =Cj-

Q,rs 

Csürj 

9. Consider the linear programming problem of (3.4.1). Suppose that the value of 
the function 

z = cm+\xm+\ H I" CnXn — ZQ 
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equals the value of the objective function 

Z = cm+\xm+\ H \~ CnXn — Zo 

in all solutions to the system of constraints of (3.4.1). Prove that 

ZQ = ZQ and c'j = Cj for all j , m + 1 < j <n 

Conclusion. Given a linear programming problem in canonical form with a spec-
ified set of basic variables, the coefficients in the expression for the objective 
function are unique. 

3.5 THE SIMPLEX TABLEAU AND EXAMPLES 

At each step of the simplex method, it is crucial to know only the basic variables and 
the values of the coefficients in the system of equations. To facilitate computation 
of a solution, at each step all we need do is record this information. This suggests a 
notation similar to the detached coefficient notation used for solving linear equations. 
We illustrate with the example of Section 3.3 [see equation (3.3.1)]. The problem, 
expressed in canonical form with basic variables xj and x$, was, as in (3.3.4), to 
minimize z with 

—6xi + *3 — 2^4 + 2x5 = 6 
—3xi + X2 + 6x4 + 3x5 = 15 

5xi + 3x4 — 2x5 = —21 +z 
Xi,X2,X3,X4,X5 > 0 

This information is recorded in tableau form in Table 3.1. 
The initial line of x's in the array simply labels the columns of the tableau with 

the variables of the problem. The first column identifies the basic variables. The 
first two rows correspond to the system of constraints, with the constant terms given 
in the last column. The last row corresponds to the equation defining the objective 
function, with the constant term on the right side of that equation in the last column 
and the z term suppressed from the tableau because it remains fixed throughout the 
simplex method. 

We now apply the simplex method. As noted in Section 3.3, the —2 in the X5 
column of the last row indicates that we should pivot in that column. To determine 
the pivoting row, we compare the ratios bi/ais for a(s > 0, as in Theorem 3.4.3, and 

Table 3.1 

* 3 

X2 

X\ X2 X3 X4 X5 

- 6 0 1 - 2 2 

- 3 1 0 6 3 

5 0 0 3 - 2 

6 

15 

-21 
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Table 3.2 

X3 

X2 

X5 

X2 

X\ X2 X->, X4 X5 

- 6 0 1 - 2 (T) 

- 3 1 0 6 3 

5 0 0 3 - 2 

- 3 0 \ - 1 1 

(?) 1 -§ 9 0 

- 1 0 1 1 0 

6 

15 

-21 

3 

6 

-15 

Table 3.3 

*5 

*1 

0 

1 

0 

\ 

I 
\ 

1 
4 
1 
4 
3 
4 

7 
2 
3 
2 
5 
2 

1 

0 

0 

6 

1 

- 1 4 

find the row in which the minimum is attained. In this case | is less than y and, 
therefore, we should pivot at the 2 in the first row, replacing the basic variable X3 
with the variable x$. The tableau representing the result of this pivot operation can 
be constructed from the present tableau by dividing the first row by 2 and then adding 
multiples of this row to the remaining rows in such a way as to generate zeros in the 
X5 column. We illustrate in Table 3.2, placing this new tableau directly below the 
original tableau. 

The second tableau represents the problem as stated in (3.3.6) on page 75. The 
associated basic feasible solution is (0,6,0,0,3), and the value of the objective func-
tion at this point is the negative of the constant in the lower right-hand corner of the 
tableau,-(-15) = 15. 

Pivoting now at the 6 in the x\ column of the second row gives the tableau of Table 
3.3. Since all the constants in the last row, excluding the —14, are nonnegative, the 
minimum value of the objective function has been attained. This value, —(—14) = 
14, is attained at the basic feasible solution ( 1,0,0,0,6), as can be read from the final 
tableau. 

Hereafter the steps of the simplex method for any example will be recorded using 
this tableau notation. We emphasize that if at any time you are confused or bewil-
dered by a statement based on the tableau presentation of a problem, simply translate 
the information in the tableau back into a clearly stated problem with the system of 
constraints and the objective function defined as usual, that is, "attach back" the vari-
ables. The tableau remains just a notation for a linear programming problem and the 
associated equations. 
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Table 3.4 

X4 

X5 

X6 

X4 

X2 

X6 

x\ 

X2 

X(, 

x\ 

3 

- 1 

2 

- 2 

© 
- 1 

0 

- 5 

1 

0 

0 

0 

X2 

2 

0 
- 2 

- 3 

0 

1 

0 

0 

0 

1 

0 

0 

*3 

0 

4 

5 

- 3 

- 8 

4 

13 

9 
8 
5 

12 
5 

13 

1 

X4 

1 

0 

0 

0 

1 

0 

0 

0 
1 
5 
1 
5 

0 

1 

*5 

0 

1 

0 

0 

- 2 

1 

2 

3 
2 
5 
3 
5 

2 

1 

X6 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

60 

10 

50 

0 

40 

10 

70 

30 

8 

18 

70 

70 

Example 3.5.1. Maximize 2x\ + 3x2 + 3x3 subject to 

3JCI + 2 X 2 < 60 

-x\ + x2 + 4x3 < 10 
2x\ — 2x2 + 5x3 < 50 

*1,*2,*3 > 0 

Introducing three slack variables and putting the problem into standard form gives 
the following: 

Minimize — 2x\ — 3x2 — 3x3 
subject to 
3xi + 2X2 + X4 
—x\ + X2 + 4x3 + %5 
2xi — 2x2 + 5x3 + *6 

Xi,X2,Xs,X4,Xs,X6 > 0 

The system of constraints for this problem is in canonical form with basic variables 
X4, X5, and Xß, the associated basic solution, (0,0,0,60,10,50), is feasible, and the 
objective function is written in terms of the nonbasic variables. Thus the simplex 
method can be initiated. Table 3.4 gives the resulting tableaux. 

Note that the first pivot could have been made in either the first, second, or third 
column. From the last tableau we see that, for the problem as stated in standard 
form, the minimal value of the objective function is —70, and this value is attained at 
the point (8,18,0,0,0,70). Since the original problem was a maximization problem 
with no slack variables, the optimal value for the original objective function is 70 
and is attained at the point (8,18,0). 

= 60 
= 10 
= 50 
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Table 3.5 

X4 

*5 

X4 

X2 

Xl 

x2 

X\ X2 X3 X4 X$ 

1 1 - 2 1 0 

- 3 (T ) 2 0 1 

0 - 2 - 1 0 0 

( Î ) 0 - 4 1 - 1 

- 3 1 2 0 1 

- 6 0 3 0 2 

1 0 — 1 à —i 
0 1 - 1 \ \ 

0 0 - 3 § I 

7 

3 

0 

4 

3 

6 

1 

6 

12 

Example 3.5.2. Maximize 2x2 +*3 subject to 

X\ + X2 — 2X3 < 7 

—3xi + X2 + 2x3 < 3 

X\,X2,X3 > 0 

The standard form of the problem is 

Minimize —2x2 — *3 

subject to 

X] + X2 — 2X3 + X4 = 7 

— 3xi + X2 + 2X3 + *5 = 3 

Xi,X2,X3,X4,X5 > 0 

This problem is in canonical form with basic variables X4 and X5, and the steps of 
the simplex algorithm are displayed in Table 3.5. The three negative entries in the 
third column of the previous tableau indicate that the objective function is unbounded 
below. 

Example 3.5.3. Finally, we consider the problem of 

Minimizing —4xi +X2 + 30x3 — 11*4 ~~ 2x5 + 3x6 

subject to 

—2xi + 6x3 + 2x4 — 3x6 + xj = 20 

^4xi + X2 + 7X3 + X4 — X6 = 1 0 

— 5x3 + 3x4 + X5 — X6 = 6 0 

Xi,X2,X3,X4,X5,X6,X7 > 0 

The system of constraints, as given, is in canonical form with basic variables X7, x2, 
and X5, and the associated basic solution, (0,10,0,0,60,0,20), is feasible. However, 
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Table 3.6 

x7 

X2 

*5 

Xl 

X4 

X5 

X\ 

X4 

*5 

Xl 

XA 

x6 

Xl 

- 2 

- 4 

0 

0 

© 
- 4 

12 

-24 

1 

0 

0 

0 

1 

0 

0 

0 

x2 

0 

1 

0 

0 

- 2 

1 

- 3 

6 
l 
3 
1 
3 

1 

- 2 
7 
24 
1 
12 

1 
4 

0 

*3 

6 

7 

- 5 

13 

- 8 

7 

-26 

55 
4 
3 
5 
3 

-10 

23 
7 
4 
5 
2 
5 
2 

3 

X4 

2 

CD 
3 

- 6 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

*5 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 
1 

24 
5 
12 
1 
4 

2 

x6 

- 3 

- 1 

- 1 

2 

- 1 

- 1 

2 

- 4 
1 
6 
5 
3 

CO 
- 8 

0 

0 

1 

0 

Xl 

1 

0 

0 

0 

1 

0 

0 

0 
1 
6 
2 
3 

- 2 

4 
1 

12 
1 
6 
1 
2 

0 

20 

10 

60 

110 

0 

10 

30 

170 

0 

10 

30 

170 
5 
4 

45 
2 
15 
2 

230 

the expression for the objective function contains the basic variables X2 and X5. By 
subtracting the second equation and adding twice the third equation to the equation 

—4x\-\-X2 + 30X3 — 1 IX4 — 2X5 + 3X6 = Z 

we have 
13X3 — 6x4 + 2X6 = 110 + Z 

Using this expression to define the objective function, the problem is in canonical 
form with basic variables X7, x%, and X5, and the simplex method can be initiated. The 
corresponding tableaux are given in Table 3.6. As can be seen, the minimal value of 
the objective function is —230 and is attained at the point ( | ,0,0, y ,0, y ,0). Note 
the presence of degeneracy in the second and third steps. 

Problem Set 3.5 

1. Each of the following tableaux corresponds to a linear programming problem 
in canonical form with three equality constraints, an objective function to be 
minimized, seven nonnegative variables x\, . . . , X7, and with variables xs,X3,xi 
serving as basic variables. For each, either (i) the solution of the problem can 
be determined from the given tableau or (ii) one or more iterations of the sim-
plex algorithm are necessary to complete the problem. If (i), state the complete 
resolution of the problem; if (ii), determine all valid pivot points for the tableau. 
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x5 

x-i 

X\ 

X] 

0 

0 

1 

0 

X2 

5 

6 

9 

6 

* 3 

0 

1 

0 

0 

XA, 

3 

- 1 

8 

- 4 

*5 

1 

0 

0 

0 

X6 

- 1 

0 

- 3 

2 

*7 

8 

- 6 

4 

3 

39 

10 

88 

-75 + z 

X5 

X3 

x\ 

x\ 

0 

0 

1 

0 

X2 

5 

6 

9 

6 

x3 

0 

1 

0 

0 

x\ 

- 3 

1 

- 8 

4 

* 5 

1 

0 

0 

0 

X6 

- 1 

- 1 

- 3 

2 

* 7 

8 

- 6 

4 

0 

39 

10 

88 

-75 + z 

*5 

X 3 

*1 

*1 

0 

0 

1 

0 

x2 

5 

6 

9 

- 6 

* 3 

0 

1 

0 

0 

xn, 

- 3 

1 

- 8 

0 

X5 

1 

0 

0 

0 

x6 

- 1 

0 

- 3 

0 

x7 

8 

- 6 

4 

3 

3 

2 

0 

- 7 5 + z 

*5 

x-i 

x\ 

x\ 
0 

0 

1 

0 

x2 

5 

6 

9 

- 6 

* 3 

0 

1 

0 

0 

X4 

- 3 

1 

- 8 

0 

x5 

1 

0 

0 

0 

x6 

- 1 

0 

- 3 

- 2 

* 7 

8 

- 6 
4 

3 

3 

2 

1 

-75 +z 

X5 

x3 

x\ 

x\ 

0 

0 

1 

0 

X2 

5 

6 

9 

- 6 

X3 

0 

1 

0 

0 

X4 

- 3 

- 1 

- 8 

0 

X5 

1 

0 

0 

0 

x6 

1 

0 

- 3 

- 2 

Xl 

8 

- 6 

7 

- 3 

60 

30 

50 

-75 +z 

X5 

*3 

x\ 

x\ 
0 

0 

1 

0 

X2 

- 5 

- 6 

9 

6 

* 3 

0 

1 

0 

0 

XA, 

- 3 

- 1 

- 8 

0 

X5 

1 

0 

0 

0 

X6 

- 1 

0 

- 3 

2 

*7 

8 

- 6 

4 

3 

39 

0 

88 

- 7 5 + z 

2. For each of the following, put the problem into canonical form, set up the initial 
tableau, and solve by hand using the simplex method. At most, two pivots should 
be required for each. Along the way, objective functions requiring some initial 
adjustments and unbounded objective functions should be encountered. 
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(a) Minimize 2x\ + 4x2 — 4x3 + 7x4 

subject to 

8xi — 2x2 + x3 — M < 50 

3xi + 5x2 + 2x4 < 150 

X\ — X2 + 2X3 — 4X4 < 100 

Xi,X2,X3,X4 > 0 

(b) Maximize x\ + 2x2 — *3 

subject to 

x2 + 4x3 < 36 

5xi - 4x2 + 2x3 < 60 

3x] — 2x2 + XJ < 24 

X),X2,X3 > 0 

(c) Minimize —5xi +4x2 +X3 

subject to 

X] + X2 — 3X3 < 8 

2x2 — 2x3 < 7 

—xi — 2x2 + 4x3 £ 6 

•*1,*2,*3 > 0 

(d) Maximize 9x2 + 2x3 — X5 

subject to 

xj — 3x2 — 4x4 + 2x6 = 60 

2x2 — X4 — X5 + 4x6 = ~20 

X2 + X3 + 3X6 = 10 

Xi,X2,X3,X4,X5,X6 > 0 

(e) Maximize xi + 12x2 + 9x3 

subject to 

3xi + 2x2 — 6x3 < 20 

2xi + 6x2 + 3x3 < 30 

6x1 + 2x3 < 16 

X\,X2,X3 > 0 

(f) Min imize X3 — X4 

subject to 

xi — 3x4 + X5 

X2 + 6x4 — 5X5 

X3 — 3X4 + 2X5 

Xi,X2,X3,X4,X5 > 0 

= 1 
= 6 
= 5 



92 CHAPTER 3. THE SIMPLEX METHOD 

For the remaining problems, the use of the software LP Assistant, as described in 
Appendix D, is strongly encouraged. The program facilitates considerably the im-
plementation of the simplex method. The user needs to enter a valid initial tableau 
and appropriate pivots points, and needs to recognize a final tableau and interpret the 
results, but the machine completes the arithmetic of each pivot step. 

3. Solve. Maximize x\ — X5 
subject to 
x\ + X4 — 2x$ = 1 

X2 + X4 = 6 

X3 + 2x4 — 3x5 — 4 

XUX2,X3,X4,X5 > 0 

Note that in this example a variable removed from the basis in one step of the 
pivot operation eventually returns to the basis. Compare with Problem 3 of 
Section 3.4. 

4. Solve. Maximize IOX3 + 3x4 
subject to 
x\ + IOX3 + 2x4 = 20 

X2 — X3 + X4 = 12 

Xi,X2,X3,X4 > 0 

(If in your first iteration you put X3 into the basis, you will have an example 
of a variable inserted into the basis in one step of the simplex algorithm being 
removed from the basis in the very next step.) 

5. Consider the problem of Example 3.5.3. The minimum value of the objective 
function is —230 and is attained at ( | ,0,0, y , 0 , -y,0). However, this optimal 
value is attained at other solution points to the system of constraints. 

(a) The previous tableau for the solution to this problem suggests that optimal 
basic feasible solutions exist with either X2 orx7 in the basis. Why? 

(b) Use the previous tableau to determine an optimal basic feasible solution 
withx7 in the basis. 

(c) Find an optimal solution with xj in the basis. 

6. For each of the following, determine two distinct basic feasible solutions at 
which the optimal value of the objective function is attained. 

(a) Maximize Ax\ + 12x2 + 8x3 
subject to 
3xi + 2x2 — 6x3 < 20 
3x! + 6x2 + 4x3 < 30 
X\,X2,X-j > 0 
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(b) Minimize x\ — 3x2 — 6x3 
subject to 
2xi — X2 + XT, + X4 < 60 
3xi + 4x2 + 2x3 — 2x4 < 150 
x\, X2, X3, X4 > 0 

7. Consider the problem of Example 3.5.2. 

(a) Show that any point of the form (t,0, t), for t > 0, is a feasible solution. 

(b) Using this, show that the objective function is unbounded. 

8. Compute the solution to Problem 11 of Section 2.3. 

9. Compute the solution to Problem 7 of Section 2.6. 

10. Compute the solution to Problem 5 of Section 2.6 

3.6 ARTIFICIAL VARIABLES 

As we have seen, many linear programming problems can be put into canonical form 
with little or no effort. For example, the addition of slack variables with positive 
coefficients can provide the basic variables necessary for the initial basic feasible 
solution. On the other hand, the system of constraints for many other problems con-
tains no obvious basic feasible solutions. Problems of this type occur, for example, 
in production models involving output requirements and therefore (>) inequalities in 
the constraint set, such as we saw in Example 2.3.4 on page 24, or in transportation 
problems involving fixed demands and therefore equalities in the constraint set, such 
as in Example 2.4.1 on page 34. In fact, in any application of linear programming to 
a real-world problem, it would be rare to find the original formulation of the problem 
in canonical form. 

What must be developed is a technique for determining an initial basic feasible 
solution for an arbitrary system of equations. This technique must also be capable of 
handling problems having no feasible solution. Such a problem could arise, for ex-
ample, in a model containing an error in formulation or in a complicated production 
model where it is not obvious that the various output requirements can be met with 
the limited resources available. In this section we will introduce such a technique; in 
the next section we will discuss some of the complications that can occur. 

The basic idea behind the method used to find an initial basic feasible solution 
is simple. We introduce into the problem a sufficient number of variables, called 
artificial variables, to put the system of constraints into canonical form with these 
variables as the basic variables. Then we apply the simplex method, not to the objec-
tive function of the original problem, but to a new function defined in such a way that 
its minimal value is attained at a feasible solution to the original problem. Thus the 
method of the previous three sections applied to this new function drives the original 
problem to a basic feasible solution. 

Consider the standard linear programming problem of (3.1.1) of finding a non-
negative solution to the system 
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a\\x\ + anX2 + ... + a\nxn = b\ (3.6.1) 
021*1 + an*! + ■ ■ ■ + a2„x„ = b2 

^ml*l i ^m2*2 ~"r • • • "T &mnXn ~ ^m 

that minimizes the function z = c\X\ + C2X2 + ■ ■ ■ + cnxn. By multiplication of an equa-
tion by (— 1 ) if necessary, we may assume that all the constant terms bi,i= 1,.. . , m, 
are nonnegative. Now introduce into the system of constraints m new variables, x„+\, 
..., x„+m, called artificial variables, one to each equation. The resulting system is 

a\\x\ + a\2x2 + ... + a\nxn + xn+\ = b\ (3.6.2) 

021*1 + ^22*2 + ■ • • + a2nXn + Xn+2 = b2 

®m\X\ T~ ̂ m2*2 i ■ • - H~ amnXn -\- Xm+n = um 

Note that this system is in canonical form with basic variables xn+\, ..., xm+n, and 
that the associated basic solution is feasible, since we have assumed that the fy's are 
nonnegative. 

Now consider the problem of determining the minimal value of the function 
w = xn+\ +xn+2 -\ h xn+m on the set of all nonnegative solutions to the system 
of equations in (3.6.2). Since all variables are nonnegative, w can never be nega-
tive. The function w would assume the value zero at any feasible solution to (3.6.2) 
in which all the artificial variables are at zero level. Thus the simplex method ap-
plied to this function should replace the artificial variables as basic variables with 
the variables from the original problem and will hopefully drive the system in (3.6.2) 
into canonical form with basic variables from the original set XJ, j — 1,... ,n. The 
value of w at the associated basic feasible solution would be zero, its minimal value, 
and the simplex method could then be initiated on the original problem as stated in 
(3.6.1). Furthermore, if the system of constraints in (3.6.1) does have at least one 
feasible solution, the system in (3.6.2) must have feasible solutions in which all the 
artificial variables equal zero. In this case the minimal value of w would be, in fact, 
zero. Thus, when applying the simplex method to the function w, if we reach a step 
at which we can pivot no more but the associated value of w is greater than zero, we 
can conclude that the original problem has no feasible solutions. 

Before we present examples, some remarks of a technical nature are in order. 
First, before the simplex method can be applied to the function w = xn+\ +xn+2 + 

\-xn+m, the problem must be in canonical form. The system of constraints in 
(3.6.2) is in canonical form with the artificial variables as basic variables and the 
associated basic solution is feasible, but the function w is not expressed in terms of 
only the nonbasic variables. To rectify this, we subtract from the equation defining 
w each constraining equation containing an artificial variable. (In the general prob-
lem above, artificial variables have been introduced into every constraint. However, 
this need not always be the case. In some instances, some of the original problem 
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variables may be used in the initial basic variable set. An example will be seen in 
Example 3.6.2 shortly.) 

Second, if the pivot operations dictated by the problem of minimizing w are also 
simultaneously performed on the equation c\X\+ c2x2 H h cnxn = z which defines 
the original objective function, this function will be expressed in terms of nonbasic 
variables at each step. Thus, if an initial basic feasible solution is found for the 
original problem, the simplex method can be initiated immediately on z. Therefore 
we incorporate this z equation into the notation and operations of the problem of 
minimizing w. 

In the sum, the first step in solving the general problem of (3.6.1) is to consider 
the problem of minimizing w with 

(3.6.3) a\\X\ + a\2x2 + .. 

^21*1 + 022*2 + •■ 

am\x\ + am2x2 + .. 
C\X\ + C2X2 + . . 

d\x\ + d2x2 + .. 

. + a\nxn + xn+\ = b\ 
■ + a2nx„ + xn+2 = b2 

■ • ~r G-mn^n ^~ Xm+n = L>m 

. ~T~ CnXn Z 

. + d„Xn = WQ + W 

whered,- = -(aij + a2j-\ \-amJ) and wo = ~{b\ +b2-\ Vbm). 

Example 3.6.1. Consider the problem to 

Minimize 2x\ — 3x2 +X3+X4 (3.6.4) 

subject to 

x\ — 2x2 — 3x3 — 2x4 = 3 

X\ — X2 + 2X3 + X4 = 11 

Xi,X2,X3,X4 > 0 

Introducing artificial variables X5 and Xß, we now instead consider the problem of 
minimizing w where 

x\ — 2x2 ~ 3x3 — 2x4 + *5 = 3 (3.6.5) 

X\ — X2 + 2X3 + X4 + X(, = 11 

2xi — 3x2 + X3 + X4 = z 

X5 + Xß = W 

Xi,X2,X3,X4,X5,X6 > 0 

Subtracting the first two equations from the w equation gives the system 

x\ — 2x2 — 3x3 — 2x4 + X5 = 3 

X\ — X2 + 2X3 + X4 + X6 = 11 

2xi — 3x2 + X3 + X4 = z 

—2x\ + 3x2 + X3 + X4 = — 14 + w 
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Table 3.7 

X5 

X6 

XX 

1 

1 

2 

-2 

X2 

-2 

-1 

-3 

3 

*3 

-3 

2 

1 

1 

X4 

-2 

1 

1 

1 

*5 

1 

0 

0 

0 

X6 

0 

1 

0 

0 

3 

11 

0 

-14 

Table 3.8 

*5 

*6 

x\ 

X6 

x\ 

*3 

x\ 

© 
1 

2 

-2 

1 

0 

0 

0 

1 

0 

0 

0 

XI 

-2 

-1 

-3 

3 

-2 

-1 

-; 

3 
2 
5 

0 

*3 

-3 

2 

1 

1 

-3 

© 
7 

-5 

0 

1 

0 

0 

X4 

-2 

1 

1 

1 

-2 

3 

5 

-3 
l 
5 
3 
5 
4 
5 

0 

*5 

1 

0 

0 

0 

1 

-1 

-2 

2 
2 
5 
1 
5 
3 
5 

1 

X6 

0 

1 

0 

0 

0 

1 

0 

0 
3 
5 
] 
5 
7 
5 

1 

3 

11 

0 

-14 

3 

8 

-6 

-8 
39 
5 
8 
5 
86 
5 

0 

This information can be recorded in tableau form by simply augmenting the no-
tation of the previous section (see Table 3.7). The last row corresponds to the w 
equation, with the w suppressed from the notation. Now the simplex method is ini-
tiated, with the entries in the last row determining the pivoting column at each step. 
The second to last row, the z row, is operated on at each pivot operation but is other-
wise ignored for the time being. Table 3.8 gives the resulting tableaux. 

Thus the minimal value of w is 0, and one point at which this value is attained is 
( y , 0 , | ,0 ,0,0) . Since this point is a solution to the system of constraints in (3.6.5) 
and has as its last two coordinates zero, ( ̂ , 0, | , 0) is a basic feasible solution to the 
system in (3.6.4), and the data for the tableau corresponding to the original problem 
expressed in canonical form with basic variables x\ and xj are contained in the last 
tableau. In fact, translating these data back into equation form gives the following 
system, equivalent to (3.6.4). 

7 1 
X\ — jX2 — 5X4 

\x2 + x3 + |x4 

- §*2 + 3*4 

39 
5 

86 
" 5 
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Table 3.9 

XI 

X 3 

x2 

X\ X2 XT, X4 

1 -I 0 - I 

o CD i i 
o -1 o | 
1 0 7 4 

0 1 5 3 

0 0 2 2 

39 
5 
8 
5 

86 
5 

19 

8 

-14 

The second stage of the problem, the application of the simplex process to the 
problem of minimizing z, can be initiated immediately (Table 3.9). The minimal 
value of zis 14 and is attained at the point (19,8,0,0). 

The above computational procedure can be streamlined somewhat. First, there is 
no need to make a formal break in the tableau notation when passing from the first 
stage of a linear programming problem, the minimization of the w function, to the 
second stage, the minimization of the z function. Once a basic feasible solution to 
the original problem has been found, the w row of the augmented tableau notation 
can be dropped and the problem continued directly using the z row. 

Second, once an artificial variable is extracted from the basis, there is no need to 
reenter it in any future step. To see this, consider the above example after the first 
pivot operation. The data of the first two rows of the second tableau of Table 3.8 
correspond to the following two equations: 

x\ — 2x2 — 3x3 — 2x4 + *5 = 3 (3.6.6) 
X2 + 5X3 + 3X4 — X5 + X6 = 8 

Setting X5, the artificial variable removed from the basis in the first iteration, equal 
to zero yields the system of equations 

x\ — 2x2 — 3x3 — 2x4 = 3 (3.6.7) 
X2 + 5X3 + 3X4 + X6 = 8 

a system equivalent to the constraints of (3.6.5) with X5 = 0, that is, the system of 
equations 

x\ — 2x2 — 3x3 — 2x4 = 3 (3.6.8) 
X\ — X2 + 2X3 + X4 + X6 = 11 

Now the constraints of the original problem (3.6.4) have feasible solutions if and only 
if (3.6.8) has feasible solutions with x^ = 0 if and only if (3.6.7) has feasible solutions 
with X6 = 0. Thus, if (3.6.4) has feasible solutions, the simplex algorithm applied the 
problem of minimizing the function "w" = Xß subject to the constraints of (3.6.7) 
would drive this modified w function to zero using only the variables of (3.6.7). 
(Notice that to apply the algorithm to the function "w" = X(, subject to the constraints 
of (3.6.7), the basic variables of (3.6.7), xj and X6, would first need to be extracted 
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from the expression for the objective function. Thus the second equation of (3.6.7) 
would be subtracted from this expression; the resulting form is exactly that of the 
bottom row of the second tableau of Table 3.8, with X5 set equal to zero.) Hence the 
artificial variable X5 need never return to the basis after the first iteration. As a result, 
in applying the simplex algorithm, it is never necessary to use the information in the 
artificial variable columns of the tableau, and so these data need not be calculated at 
each pivot step. 

Example 3.6.2. Minimize x\ + X2 + X3 = z subject to 

—X\ + 2x2 + JC3 < 1 
-x\ + 2x3 > 4 

X\ — X2 + 2X3 = 4 

*1,.*2,*3 > 0 

Adding two slack variables, the problem in standard form becomes 

Minimize x\ +X2 +X3 = z 
subject to 
—X[ + 2X2 + X3 + X4 = 1 
—X] + 2x3 — *5 = 4 

X\ — X2 + 2X3 = 4 
Xi,X2,X3,X4,X5 > 0 

Note that the X4 variable can serve as a basic variable. Thus it is sufficient to add only 
two artificial variables, say xg and X7, to the problem and at the first stage minimize 
the function w = X(, +X7. The problem is then 

—X\ + 2X2 + X3 + X4 = 1 

—X\ + 2X3 — X5 + X6 = 4 

X\ — X2 + 2X3 + X7 = 4 

Xi + X2 + X3 = Z 

Xß + X-l = W 

Subtracting the second and third equations from the w equation gives the equation 
X2 — 4x3 +X5 = — 8 + w. Now the expression for w does not contain the initial basic 
variables X4, X6, and X7, and the simplex method can be initiated. The resulting 
tableaux are given in Table 3.10. The minimal value for the function w = x^+xj 
is j , and this value is attained at the point ( | ,0 , 5,0,0, | ,0 ) . Therefore we can 
conclude that the original problem has no feasible solution. 

Problem Set 3.6 

Note: Again the use of the LP Assistant software is strongly recommended. The 
program provides easy designation of artificial variables and automatically computes 
the relevant w-function data into the working tableau. 
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Table 3.10 

Xi, 

x6 

x-i 

X3 

x6 

x-i 

X3 

X(, 

XI 

x\ 

-1 

-1 

1 

1 

0 

-1 

1 

® 
2 

-4 

0 

0 

1 

0 

0 

X2 

2 

0 

-1 

1 

1 

2 

-4 

-5 

-1 

9 
l 
3 
7 
3 
5 
3 
7 
3 
7 
3 

*3 

0 
2 

2 

1 

-4 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

X4 

1 

0 

0 

0 

0 

1 

-2 

-2 

-1 

4 
l 
3 
4 
3 
2 
3 
1 
3 
4 
3 

*5 

0 

-1 

0 

0 

1 

0 

1 

0 

0 

1 

0 

-1 

0 

0 

1 

x6 

0 

1 

0 

Xl 

0 

0 

1 

1 

4 

4 

0 

-8 

1 

2 

2 

-1 

-4 
5 
3 
4 
3 
2 
3 
7 
3 
4 

~3 

1. Using the technique described in this section, find solutions with nonnegative 
coordinates to the following systems of equations. 

(a) x\ — X2 = 1 

2xi + X2 — X3 = 3 

(b) x\ + x2 = 1 

2xi + X2 — XT, = 3 

2. Solve the following. 

(a) Minimize 2xi + 2x2 — 5x3 

subject to 

3xi + 2x2 — 4x3 = 7 

xi — X2 + 3x3 = 2 

X\,X2,X3 > 0 

(b) Minimize x\ — 3x3 

subject to 

Xl + 2X2 — X3 < 6 

X] — X2 + 3X3 = 3 

X\,X2,X3 > 0 
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(c) Minimize x\ + X2—X4 

subject to 

Ax\ + X2 + X3 + 4x4 = 8 

x\ — 3x2 + X3 + 2x4 = 16 

Xi,X2,X3,X4 > 0 

(d) Maximize 3xj — X2 

subject to 

X\ — X2 < 3 

2xi < X2 

X\ + X2 > 12 

Xi,X2 > 0 

(e) Maximize x\ + 2x2 + 3x3 + 4x4 

subject to 

x\ + X3 — 4x4 = 2 

X2 — X3 + 3X4 = 9 

X\ + X2 — 2X3 ~ 3X4 = 21 

X],X2,X3,X4 > 0 

(f) Minimize 8x1 — 2x2 —x$ — 6x4 

subject to 

X\ + X2 — X3 + X4 = 12 

- 2 x i + 3x2 + 2x4 = 42 

X],X2,X3,X4 > 0 

(g) Minimize 3xi — X2 + 2x3 + 5x4 + 6x5 

subject to 

12xi — 3x2 + 5x3 — 2x4 + 4x5 = 100 

8x1 - 2x2 - 4x3 + 5x5 = 150 

X],X2,X3,X4,X5 > 0 

3. Using a combination of birdseed mixtures A, B, and C, a blend of minimum 
cost which is at least 20% thistle and 30% corn is desired. Given the data which 
follow, determine the percentages of each of the mixtures in the final blend. 

A 
B 
C 

% Thistle 

25 
0 

10 

% Corn 

40 
30 
15 

Cost (cents/lb) 

57 
13 
20 

4. Consider the tableaux for the first stage of the problem discussed in Example 
3.6.1. The very last row, the w row after the second pivot step in Table 3.8, 
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contains four 0's, two 1 's, and one 0. This row corresponds to what function? 
Why was this result expected? 

5. Suppose that the objective function z for a linear programming problem is un-
bounded. Show that this can be learned from the simplex method only after the 
first stage of the method is completed. 

6. Show that at each step of the first stage of the simplex method, the coefficients 
d*- of the w function are equal to — J2alj> where the sum is over those rows i 
that isolate the remaining artificial variables. 

7. Prove that Theorem 3.4.2 can never apply to the w function (i.e., if any d* < 0, 
there must exist an a*s > 0). 

8. Compute the solution to Problem 12 of Section 2.3. 

9. In the first tableau for the problem of Example 3.6.1, the second column contains 
three negative entries: the au and «22 entries and the ci entry. Evidently the 
objective function of the problem is bounded below and Theorem 3.4.2 does not 
apply. Why not? 

3.7 REDUNDANT SYSTEMS 

In the previous section it was seen that by introducing artificial variables, a linear 
programming problem could be put into canonical form by means of the simplex 
method applied to the function w, defined to be the sum of the artificial variables. If 
the original problem has no feasible solutions, this method would also make evident 
that fact. In this section we will discuss one minor complication, the problem of 
redundancy, that could occur with the original system of constraints. 

It could very well be that an equation or some equations in the original system of 
constraints are linear combinations of the remaining equations in the system. This 
often occurs when, for ease of formulation, more than the minimal number of nec-
essary equations are introduced into a problem. For example, the five constraints of 
the transportation problem formulated in Section 2.4 (Example 2.4.1) contain one 
redundant equation. Now the simplex method described in Sections 3.3-3.5 could 
begin only with the original problem in canonical form. Clearly, however, if a system 
of equations is in canonical form, there can be no redundant equations because of the 
isolated nature of the basic variables. It would seem at first glance that it would be 
necessary to ferret out redundant equations from the system of constraints before the 
machinery of the simplex method could be applied to a linear programming problem. 
Fortunately, this is not the case. In this section we will show that from the first stage 
of the simplex method using artificial variables, redundancies in the original system 
of constraints can be discovered and deficiencies caused by the lack of a complete 
set of basic variables from the original set of variables can be compensated for by 
the presence of artificial variables. 

Suppose we now apply the two-stage simplex method to an arbitrary linear pro-
gramming problem. We have already shown that if the simplex process applied to 
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the w function stops without driving w to zero (i.e., we reach a step in which Theo-
rem 3.4.1 applies to the w function but WQ > 0), the original problem has no feasible 
solution. Thus suppose that after several pivot operations, the minimal value of w is 
determined to be zero. If at this time no artificial variables remain in the basis, the 
original system of constraints must be in canonical form and so contains no redun-
dant equations. Stage two of the simplex method can now begin. 

Consider the remaining case: the value of w is driven to zero, but artificial vari-
ables remain as basic variables. Note that since w is the sum of the artificial variables, 
and since we have reached a point in the simplex process at which the value of w at 
the associated basic feasible solution is zero, those artificial variables remaining in 
the basis must be at zero level; that is, the constant terms b* in those constraining 
equations containing the artificial variables must be zero. We now attempt to replace 
these artificial variables in the basis with variables from the original set. 

Suppose the i'th equation in the set of constraints defined by this tableau we have 
reached contains one of the remaining artificial variables. Consider the coefficients, 
say a*j, 1 < j < n, in this rth row. If any a*- ^ 0, pivot at this term, replacing the 
artificial variable associated with that row in the basis with a variable from the orig-
inal set. Since the artificial variable was at zero level, this pivot operation leaves 
the constant-term column, the right-hand column, unchanged (see Problem 6 of Sec-
tion 3.4). Continue this process wherever possible. If, however, a point is reached 
at which the fth row contains a remaining artificial variable but a*- = 0 for all j , 
1 < j < n, we can conclude that because of redundancies, it is impossible to find 
a complete set of m basic variables from the original set. In fact, the number of 
redundant equations would equal the number of artificial variables remaining with 
coefficient row zero. However, stage two of the simplex method can still be initi-
ated on the tableau at hand, and the rows of zeros corresponding to the remaining 
artificial variables can be ignored. In essence, this tableau, ignoring the zero rows, 
corresponds to an independent system of equations in canonical form and equivalent 
to the original system of constraints. 

We now summarize the procedure for driving a linear programming problem in 
standard form to a problem in canonical form. 

1. Add artificial variables to each constraint where necessary. 
2. Define the auxiliary objective function w equal to the sum of the artificial 

variables. 
3. Using the constraints of the problem, express w in terms of the nonartificial 

variables. 
4. Apply the simplex algorithm to find the minimum value of the w function. 
5. If Minw > 0, stop; the original problem has no feasible solution. 
6. (a) If Minw = 0 and no artificial variables remain in the basis, the original 

problem is in canonical form; apply the simplex algorithm to the prob-
lem. 

(b) If Minw = 0 but artificial variables remain in the basis, use the pivot 
operation to replace with variables from the original set all those artificial 
variables which have suitable nonzero aij coefficients. After replacing all 
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that can be replaced, the original problem is in canonical form and the 
simplex algorithm can be applied. 

Example 3.7.1. Minimize z = 2x\ — X2 + X3 subject to 

x\ — 2xi + 3x3 
—x\ + X2 + 2x3 

X\,X2,X3,X4 > 0 

XA, = Ö 

1x4 = 4 

Adding two artificial variables, x$ and x^, for initial basic variables and expressing 
w = X5 +X6 in terms of the original variables, we have the system 

X\ 

X\ 

,X\ 

-

+ 
-

2X2 + 3X3 + 

X2 + 2X3 + 

X2 + X3 

X2 — 5X3 — 

X4 + X5 

3 X 4 

3 X 4 

+ x6 

= 6 
= 4 

= z 
— - 10 + w 

From the tableaux of Table 3.11, we see that the minimal value of the objective func-
tion z is zero, and is attained at the point (0,0,0,6). Notice that the first pivot term 
could have been either the 3 or 2 of the X3 column (or either term in the X4 column, 
for that matter). The purpose of the second pivot step is to eliminate the artificial 
variable X(, from the basis, and this pivot could have been made at either nonzero en-
try in the X(, row of the second tableau. Since both artificial variables were extracted 
from the basis, the original system of constraints contained no redundancies. 

X5 

x6 

X3 

x6 

* 3 

X2 

XA 

X'2 

X\ 

1 

- 1 

2 

0 
1 
3 
5 
3 
5 
3 
5 
3 
1 
7 
5 
7 

10 
7 

0 
3 
7 
5 
7 
9 
7 

x2 

- 2 

1 

- 1 

1 
2 
3 

G) 
1 
3 
7 
3 

0 

1 

0 

0 

0 

1 

0 

Table 3.11 

* 3 

© 
2 

1 

- 5 

1 

0 

0 

0 

1 

0 

0 

0 

3 

0 

1 

X4 

1 
2 
3 

0 
5 
3 
1 
3 

0 
1 
3 

0 

® 
0 
1 
3 

0 

1 

0 

0 

X5 

1 

0 

X6 

0 

1 

6 

4 

0 

- 1 0 

2 

0 

- 2 

0 

2 

0 

- 2 

0 

6 

0 

0 
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Example 3.7.2. Minimize z = x\+ 4x2 + 3x3 + 2x4 subject to 

X\ + 2X2 + X4 = 20 
2xi + X2 + X3 = 1 0 
—x\ + 4x2 — 2x3 + 3x4 = 40 
Xi,X2,X3,X4 > 0 

Adding artificial variables X5, x^, and x-j and expressing w = x$ + X(, +X7 in terms of 
x\, X2, X3, and X4, the system becomes 

x\ + 2x2 + X4 + X5 = 2 0 
2xi + X2 + X3 + X6 = 1 0 
—X) + 4x2 — 2x3 + 3x4 + X7 = 40 

Xi + 4X2 + 3X3 + 2X4 = Z 
—2xi — 7x2 + xj — 4x4 = —70 + vv 

The steps of the simplex method are displayed in the tableaux of Table 3.12. The 
minimal value of the objective function z is 35, and this value is attained at the 

Table 3.12 

X5 

x6 

X-J 

X5 

X2 

XI 

X4 

x2 

xi 

X4 

X\ 

x-i 

x\ 

1 

2 

- 1 

1 

- 2 

- 3 

2 

- 9 

- 7 

12 

- 3 

© 
0 

- 1 

0 

0 

1 

0 

0 

x2 

2 

CD 
4 

4 

- 7 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 
3 
2 
1 
2 

0 
1 
2 

x3 

0 

1 

- 2 

3 
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point (5,0,0,15). Since an artificial variable cannot be removed from the basis, 
the original system of constraints contains one redundant equation. Notice that any 
nonzero term in the x$ or xq row of the second tableau could have been used as the 
pivot term of the second step. 

Problem Set 3.7 

1. Show that the third equation in the set of constraints for the problem of Example 
3.7.2 is a linear combination of the other two equations. 

2. Show that the system of constraints for the transportation problem formulated in 
Example 2.4.1 on page 34 is redundant by: 

(a) Exhibiting a relationship between the equations. 
(b) Solving the problem using the simplex method. 

3. For each of the following, determine the optimal value of the objective function, 
an optimal solution point, and whether or not the system of constraints contains 
any redundancies. 

(a) Minimize x\ + X2 + X3 + 3x4 
subject to 
3xi — X2 + 3x3 + 6x4 = 150 
2xi + 2x2 — X3 + 4x4 = 100 
Xi,X2,X3,X4 > 0 

(b) 

(c) 

(d) 

Maximize 5xi + 3x2 + 3x3 

subject to 

2xi + X2 + X3 = 12 

3xi + X2 + 2x3 = 18 

*1,*2,*3 > 0 

Minimize x\ + 2x2 — M 

subject to 

Xi — X2 + 3X3 = 1 

X2 — 2X3 + X4 = 1 

3xi + X2 + X3 + X4 = 7 

xi ,x2 ,x3 ,x4 > 0 

Maximize 3xi — 2x2 — 2x3 -

subject to 

—Xi + 3X2 — XT, + 2X4 

—2x] + 4x3 — M 

2xi — 2x2 + 2x3 + X4 

X],X2,X3,X4 > 0 
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(e) Minimize x\ + 2x2 + 3x3 + 4x4 

subject to 

X\ — X2 + 2X3 + X4 — 6 

x\ + 2x2 + 2x3 = 12 
3xi + 3x2 + 6x3 + X4 = 30 

Xi,X2,X3,X4 > 0 

(f) Minimize x\ + 3x2 + 2x3 + M 

subject to 

— lOxi + 5x2 + 5x3 + X4 = 30 

X\ + X3 = 1 

2x2 + X4 = 16 

(g) Minimize x\ + 6x2 +X3+X4 

subject to 

x\ + 3x2 — x-i = 1 5 

X\ + X2 + 2X3 — X4 = 5 

xi + 7x2 — 7x3 + 2x4 = 35 

Xi,X2,X3,X4 > 0 

(h) Maximize x\ + X2 + X3 

subject to 

xi + 2x2 + 3x3 = 42 

3xi + X3 = 6 

xi + 4x2 + 7x3 = 90 

Xl,X2,X3 > 0 

4. True or false: Suppose that the system of constraints for a linear programming 
problem in standard form is not redundant and has no degenerate solutions. Then 
at that step in the first stage of the simplex method when the w function first 
attains a value of zero, no artificial variables can remain in the basis. 

5. (Requires linear algebra.) Show that when applying the simplex method to a 
linear programming problem with m constraining equations and n unknowns, if, 
after driving w to zero, it is impossible to drive r artificial variables from the 
basis, then the rank of the coefficient matrix of the original system of constraints 
is m — r. 

3.8 A CONVERGENCE PROOF 

Consider a linear programming problem presented in canonical form, as in (3.4.1) on 
page 78. We proved in Section 3.4 that, under the assumption that no basic feasible 
solution to the problem was degenerate, the simplex process must terminate after a 
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finite number of steps, with the process driving to either the minimal value of the 
objective function (Theorem 3.4.1 applying) or a set of feasible solutions on which 
the objective function is unbounded below (Theorem 3.4.2 applying). However, the 
proof breaks down if degeneracy is present because there could exist a sequence of 
pivot steps for which the associated value of the objective function remains fixed and 
the basic feasible solutions repeat, that is, the process cycles. An example of such a 
problem is given in Appendix B. 

However, as already shown in our examples, at any step in the simplex process 
there may be more than one term qualified to serve as the pivot term. For example, 
pivoting can occur in any column with a negative Cj (and a positive aif), and if cs 

is negative and the minimum of {b,/a« : a,> > 0} is not attained in a unique row, 
pivoting can occur in the 5 column at any row attaining this minimum. We will 
show in this section that for any problem, degenerate or not, it is always possible to 
select a finite sequence of pivot steps that leads either to the minimal value of the 
objective function or to a set of feasible solutions on which the objective function is 
unbounded. Thus we will prove that although cycling is possible, by a proper choice 
of pivot terms it can be avoided and a step reached in the simplex process where 
either Theorem 3.4.1 or 3.4.2 applies. The proof that we give is by induction on m, 
the number of equations in the system of constraints, and is due to Dantzig [6] (or 
see also [7]). 

In the following, we will continue our present use of the notation. Thus the con-
stants atj, b{, and cj, l<i<m,l<j<n, refer to the coefficients of the constraining 
equations, the constant terms for these equations, and the coefficients for the objec-
tive function, as in (3.4.1). After the system has been modified by the application of 
the simplex method, the corresponding constants will be denoted by a*-, b*, and c*-, 
respectively. 

Theorem 3.8.1. For any linear programming problem presented in canonical form, 
there exists a finite sequence of pivot steps that leads to either of the following: 

(a) The minimal value of the objective function with Theorem 3.4.1 applying. 
(b) A set of feasible solutions on which the objective function is unbounded be-

low, with Theorem 3.4.2 applying applying. 
That is, the sequence leads to a presentation of the problem in canonical form with 
either of the following: 

(a) All the coefficients c*, of the nonbasic variables in the expression for the 
objective function are nonnegative. 

(b) For some column index s, c* < 0 and a*is < Ofor all i. 

Before proving the theorem, we state two lemmas. The proofs are left to the 
reader. 

Lemma 3.8.1. If all the constant terms bu 1 < i < m, of the system of constraints 
for a linear programming problem equal zero, then after a pivot operation, all the 
b* = 0. If initially at least one bt ^ 0, then after a pivot operation at least one b* ^ 0. 

Lemma 3.8.2. Given a linear programming problem with at least one nonzero term 
bj, if there exists a sequence of pivot steps leading to the completion of the problem 
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(reaching either (a) or (b) of the above theorem), this same sequence of pivot steps 
leads to the completion of that problem derived from the given problem by replacing 
all the nonzero bt 's with zero. 

Proof of Theorem 3.8.1. The proof proceeds by induction on m, the number of equa-
tions in the system of constraints. For the case m = 1, we have a problem with only 
one constraining equation. If the constant term b\ is initially nonzero, Lemma 3.8.1 
guarantees that this constant term will remain nonzero after a pivot step. Thus the 
former argument, valid in the nondegenerate case (see the discussion which follows 
Theorem 3.4.3 and its proof on page 81), applies here and shows that the simplex 
process must terminate after a finite number of steps. Now if b\ = 0, we can replace 
it with any positive constant and then apply Lemma 3.8.2. 

Now we prove the induction step. Thus assume that the theorem is valid for any 
problem with a system of constraints containing m — 1 or fewer equations. With this 
assumption, the theorem will be proven for a system with m constraining equations. 

Consider first any linear programming problem with m constraints and at least 
one bi ^ 0. We apply the simplex process until, due to degeneracy, it is not possible 
to find a pivot operation that reduces the value of the objective function at that step. 
Rearrange the constraints so that the constant terms for exactly the first r equations 
are zero, that is, bt — 0, 1 < i < r, and b, > 0, r + 1 < i <m. Note that from Lemma 
3.8.1, r < m. Let us call this canonical form of the problem Form I. 

Consider the linear programming problem derived from the problem of Form I 
by deleting the last m — r equations in the system of constraints. Notice that the 
last m — r basic variables from Form I do not appear anywhere in this problem, and 
the problem is in canonical form with basic variables consisting of the first r basic 
variables of Form I. To this problem we can apply the induction assumption. Using 
it, we find a sequence of pivot steps that leads to a canonical form of the problem 
with either of the following: 

(a) All c* > 0, 1 < j < n. 
(b) At least one c* < 0 and all a*s < 0, 1 < i < r. 

Now apply these same pivot steps to the full problem in Form I. The resulting 
problem will be in canonical form because, first, the last m — r basic variables from 
Form I combine with the r basic variables from the first r equations to give m distinct 
basic variables and, second, since each pivot term is in a row with a zero constant 
term, the constant-term column remains unchanged and the associated basic solu-
tion feasible. Notice also that the effect of these pivot operations on the c*j row is 
completely independent of the addition of the m — r constraints. There are now three 
possibilities. 

1. If the sequence of pivot steps on the r equations reached condition (a) above, 
then all c*, > 0 implies that the minimal value of the objective function on the 
full constraint set has been attained. 

2. If condition (b) was reached and a*s < 0 also for r + 1 <i <m, the objective 
function is unbounded below on the full system of constraints. 
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3. If condition (b) was reached but a*s > 0 for some i, r+l <i<m, then a new 
pivot term can be found in the s column at that row where 

Mm\-i-:ais>o\ 

is attained. Since b* > 0, pivoting here reduces the value of the objective 
function at the associated basic feasible solution. 

In sum we have shown that, for any problem with at least one b, ^ 0, at a given 
step of the simplex process, either: 

1. The minimum value of the objective function or a set on which the objective 
function is unbounded is attained, or 

2. A single pivot term or a sequence of pivot steps can be found that leads to a 
reduced value for the objective function. 

Since there are only a finite number of basic feasible solutions and the reduced 
value for the objective function guarantees that they cannot repeat, the simplex pro-
cess must eventually terminate. 

Finally, to complete the proof, we must prove the theorem for a problem with 
m constraints and all constant terms equal to zero. But in this case we can simply 
replace a constant term with any positive constant and use what we have already 
proven and Lemma 3.8.2. D 

Corollary 3.8.1. Given a linear programming problem with a system of constraints 
that has feasible solutions and an objective function to be minimized that is bounded 
below, there exists at least one feasible solution (in fact, a basic feasible solution) at 
which the objective function attains its minimal value. 

Thus we have shown that a bounded objective function of a linear programming 
problem with feasible solutions must attain its optimal value, a property shared by 
continuous functions on closed and bounded sets (compact sets) and in contrast to 
the problem of optimizing f(x) = x on the set 0 < x < 1. Moreover, we know that 
this optimal value can be attained at a point with, at most, m nonzero coordinates, 
where m is the number of equations in the constraints. 

One final note in passing. The proof of convergence of the simplex algorithm 
given in this section is an existence proof but not a constructive proof. The proof, by 
induction, only demonstrates the existence of a sequence of pivot steps leading to the 
termination of the simplex algorithm applied to any linear programming problem and 
does not prescribe a constructive method to use to actually determine this sequence. 
However, constructive proofs certainly do exist. In fact, a constructive procedure 
that is related to the inductive proof of this section and involves the modification 
(perturbation) of the constant terms of the problem has been developed by Philip 
Wolfe [8]. Another constructive technique to prevent cycling, and one of the most 
curious, is a simple pivoting rule stated in terms of only the indices of the involved 
variables. It was developed by R. Bland [9]. His algorithm: to avoid cycling, at each 
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pivot step to determine both the exiting and entering variables, when there is more 
than one eligible variable, use the variable with the smallest index. 

Although these procedures solve the cycling problem in theory, cycling in prac-
tice is another question. Various factors influencing cycling can be involved in a 
computer implementation of the simplex algorithm, such as roundoff errors, special 
pivoting rules, data scaling, and built-in perturbation techniques; and in fact, some 
linear programming problems have caused cycling in some programmed versions of 
the algorithm (see, e.g., [10]). However, the issue of cycling in practice is just part 
of the broader question of the efficiency of a given solution algorithm being imple-
mented on a particular computer system to resolve the specific class of problems 
under consideration. 

Problem Set 3.8 

1. Prove Lemma 3.8.1. 

2. Prove Lemma 3.8.2. Hint. Consider the effect or noneffect of these pivot opera-
tions on the bi column and the cj row. 

3. Prove Corollary 3.8.1. Note that Theorem 3.8.1 applies only to a problem pre-
sented in canonical form. 

4. True or false: Suppose the simplex method is applied to a linear programming 
problem presented in canonical form and that, at each step, there is at most 
one term that could serve as a pivot term. Then for this problem, cycling is 
impossible. 

5. True or false: Given a linear programming problem with n = m+l and presented 
in canonical form, at most one step in the simplex method is necessary to drive 
the process to termination. 

6. Using Lemma 3.8.2, solve the linear programming problem of: 

(a) Example 3.5.1, but with the constant terms 60, 10, and 50 replaced with 
zeros. 

(b) Example 3.5.2, but with the constant terms 7 and 3 replaced with zeros. 

7. True or false: Given a linear programming problem with all the constant terms 
of the system of constraints equal to zero, either the objective function is un-
bounded or it attains its optimal value at the point zero. 

3.9 LINEAR PROGRAMMING AND CONVEXITY 

In Section 2.2 we considered a linear programming problem involving only two vari-
ables. We were able to graph the set of feasible solutions to the set of constraints 
(Figure 2.3) and, by a geometric argument, show that the optimal value of the linear 
objective function must be attained at a corner or vertex to this solution set. This 
result generalizes, as suggested at the end of Section 3.2. In this section we will 
first define the concept of convexity and show that the solution set to a system of 



3.9. LINEAR PROGRAMMING AND CONVEXITY 111 

Figure 3.4 

equations and inequalities is convex. Then we will define the concept of a vertex of 
a convex set and relate the basic feasible solutions of a system of constraints to the 
vertices of the solution set to this system. The corollary of the previous section will 
then give directly the generalization of the above result. 

Only the concept of convexity will be used later in the book, and then not until 
Section 8.3 and Chapter 10. We present these ideas here primarily to initiate an 
appreciation of some of the geometry underlying the linear programming problem. 

For two points P and Q in W, the line segment between P and Q is that set of 
points in R" of the form tP + ( 1 - t ) Q for 0 < t < 1 (see Problem 1). A subset S of 
R" is said to be convex if, for any two points of S, the line segment between these 
two points is also in S. 

Example 3.9.1. Of the six subsets of E2 shown in Figure 3.4, each of the three on 
the left is convex, while none of the three on the right is convex. 

Example 3.9.2. Let S = {(x\,x2) G R2 : x\ + x2 > 2}. Then S is convex, a fact 
obvious from a graph of S. To prove this algebraically using only our definitions, take 
any two points P = (pi,p2) and Q = (qi,q2) inS. Thenpi + p2> 2andgi + q2 > 2. 
Take any point 

tP+(l-t)Q=(tpl + (l-t)qi,tp2 + {l-t)q2), wifh0<f < 1 

on the line segment between P and Q. We have 

tp\ +{\-t)q\ +tp2 + (1 -t)q2 = t(p\ +pi) + (1 -0(<7i +12) 

>2t + 2(l-t) 

= 2 

using the fact that t and 1 — t are nonnegative. Thus tP + (1 — t)Q is in S, and we 
have an algebraic proof that S is convex. 

The set of feasible solutions to a linear programming problem is convex, since 
it is the intersection of a collection of hyperplanes and half-spaces. We state these 
results in the following, leaving the proofs of the theorems for the reader. 

Definition 3.9.1. A subset of E" of the form 

X = {(xi,... ,xn) : a\x\ + a2x2 H hanxn = b} 

for constants a\,a2,...,an and b is called a hyperplane. 
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A subset of the form 

X = {(xi,...,x„) :a\x\ + ß2*2-\ \-a„x„ <b} 

for constants a\,a2,...,an and b is called a half-space. 

Theorem 3.9.1. A half-space is convex. 

Theorem 3.9.2. The intersection of two convex sets is convex. 

Corollary 3.9.1. The set of feasible solutions to a linear programming problem is 
convex. 

Intuitively, the corners or vertices of a convex set are those points of the set that 
do not lie on the interior of a line segment contained in the set. This suggests the 
following. 

Definition 3.9.2. A point P of a convex set S is a vertex of S if P is not the midpoint 
of a line segment connecting two other points of S. 

Example 3.9.3. For the three convex figures of Example 3.9.1, the line segment has 
two vertices (the two end points), the triangle has three (the three corners), and the 
home plate has five. 

Theorem 3.9.3. Let S be the set of feasible solutions to the system of constraints of 
a linear programming problem in a standard form. Then any basic feasible solution 
to the problem is a vertex ofS. 

Proof. Let X be a basic feasible solution, and suppose the first m variables are the 
basic variables, with n the total number of variables. Assume X = (P + Q)/2, where 
P= (pi,...,p„) a n d g = (qi,...,q„) are in S. Then 

X = (xi,.. . ,x„,0,... ,0) 

= ~(Pl +q\,---,Pm + qm,Pm+l +qm+\,---,Pn+qn)-

Since all the coordinates of P and Q are nonnegative, 

Pj = qj = 0 for j = m + 1,..., n 

But there is only one basic feasible solution, X, with all these coordinates equal to 
zero (see Problem 10 of Section 3.2). Thus P = Q = X. Hence X is a vertex of S. D 

Corollary 3.9.2. If the objective function of a linear programming problem has a 
finite optimal value, this value is assumed by at least one vertex of the set of feasible 
solutions to the system of constraints. 

Proof. This follows directly from Theorem 3.9.3 and Corollary 3.8.1. D 
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In the simplex algorithm we move from basic feasible solution to basic feasible 
solution by replacing at each step one variable in the basis. From Theorem 3.9.3, 
we see that we are simply moving from vertex to vertex in the convex set of fea-
sible solutions to the system of constraints. In fact, since at each step exactly one 
basic variable is replaced, we are actually moving between adjacent vertices. See 
Problem 10 for a development of these ideas. 

By using the corollary of the previous section in the proof of the above corollary, 
we have made use of the central theorems of this chapter, theorems that have been 
proved algebraically. In fact, the above result can also be proved independently using 
only the theory of convex sets. (See, for example, Problem 11.) This suggests an 
alternative, theoretically sound approach to the linear optimization problem. First, 
compute all the basic feasible solutions to the problem; second, compare the value of 
the objective function at each of these points. As long as we know that the function 
has an optimal value, it must be the optimal value in this set. However, this technique 
is far from practical; if the constraint system has m equations and n unknowns, there 
could be up to (") basic feasible solutions, where 

\mj m\(n — rn)\ 

is the binomial coefficient. For example, 

( 1 5 ] = 3003 and yZ\ = 184,756 

Problem Set 3.9 

1. Suppose P and Q are points in M". Show geometrically that the set tP+ (1 — 
t)Q = Q + t(P — Q), 0 < r < 1, is the line segment connecting P and Q. 

2. Prove Theorem 3.9.1. (Hint. Use Example 3.9.2 as a model.) 

3. Prove Theorem 3.9.2. 

4. Prove Corollary 3.9.1. 

5. Theorems 3.9.1 and 3.9.2 imply immediately that a hyperplane is convex. Why? 

6. True or false: 

(a) The union of two convex sets is convex. 
(b) The complement of a convex set is convex. 

7. True or false: A point P is a vertex of a convex set S if and only if P is not the 
interior point of any line segment in S. (An interior point of a line segment L is 
any point of L other than the two end points.) 

8. Prove that if P and Q are vertices of a convex set S and X = P + t(Q — P) is a 
point of S, then 0 < t < 1. 

9. Consider the general linear programming problem (3.4.1) on page 78. Suppose 
P = (bi,...,bm,0,...,0) and Q = (0,b*2,...,b*m,b*m+v...,0i) are distinct basic 
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feasible solutions, and X = {x\,X2, ■ ■ ■ ,xm,xm+\,0,... ,0) is a feasible solution. 
Show that X = P + t(Q — P) for some t, 0 < t < 1. (Hints. For each solution 
Q and X, use the equations of (3.4.1) to express the first m coordinates of the 
solution in terms of the (m + 1) coordinate. Problem 8 is also of use.) 

10. Let S be the set of feasible solutions to a linear programming problem. A line 
segment L joining two vertices of S is an edge of S if no point of L is the midpoint 
of a line segment between two points in S but not on L. Two such vertices of S 
joined by an edge are said to be adjacent vertices. Show that in each step of the 
simplex algorithm, we move from a vertex of S to an adjacent vertex. (Hint. Use 
Problem 9.) 

11. Define a function f(X) = c ■ X = c\X\ + ^2^2 ~l~ ■ • • + cnxn for X — (x\,... ,xn) G 
R", where c = (c\,...,c„) G M" is a constant 

(a) Show that for any P and g in W and t e K, 0 < t < 1, f(tP+ (1 -t)Q) = 
tf(P) + (l-t)f(Q). Note that tf(P) + (1 -t)f(Q) is a real number between 
/ ( P ) a n d / ( ß ) . 

(b) What does this suggest about the optimal value of / on a convex set S in 
E"? 

12. Suppose T is the set of those feasible solutions to a linear programming problem 
at which the objective function of the problem attains its optimal value. What 
does Problem 11(a) say about Tl 

13. Let S be the set of solutions to 

x\ + al,k+lxk+l + al.k+2xk+2 + ■ • ■ + d\nXn = b\ 

xk + ak,k+lxk+\ + ak,k+2xk+2 + 

ak+l,k+2xk+2 + 

am,k+2xk+2 + • • ■ + &m,nxn = 

xi,...,xn > 0 

where k < m < n and at least one a^+i ^ 0, 1 < i < k. Now suppose that 
P = {p\,.. .,Pn) G S and pi > 0 for 1 < i < k+l. Show that P is not a vertex of 
S. (Hint. Use the system of equations to generate points P+ and P~ of S with 
the (k+l) coordinate equal to pk+\ ±e, e > 0 and such that P = (P+ +P~)/2.) 

14. Converse to Theorem 3.9.3. Let S be the set of feasible solutions to the system 
of constraints of a linear programming problem in standard form. Show that 
any vertex of S is a basic feasible solution to the problem. (Hint. Given any 
vertex P of S, by rearranging variables if necessary, we can assume that P = 
(pi,...,pe,0,...,0) with pi > 0 for 1 < i < l. Now try to makexi,...,xg basic 
variables using Problem 13.) 

• + atnXn = bk 

■ + aic+l.nXn = bk+i 
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3.10 SPREADSHEET SOLUTION OF A LINEAR 

PROGRAMMING PROBLEM 

While the simplex method can be used to solve linear programming problems of any 
size, if we are restricted to working by hand or with LP Assistant, large problems can 
easily become unmanageable. However, there are many commercial products that 
can solve large and realistic problems. In this section we demonstrate via examples 
the use of one such product, Microsoft Excel's spreadsheet tool Solver. A description 
of this application and an outline of how to use it are presented in Appendix E. Here 
we present only the final spreadsheet resolution using Solver for three examples. In 
subsequent chapters we will discuss Solver's associated sensitivity report. 

Example 3.10.1. Using units of the component materials A, B, C, and D, Company 
Zeta produces Products 1, 2, and 3. The input (units of each component material) 
and profit per unit produced of the products, and the available supplies for the next 
month of the component materials, are as follows. 

Component 

A 
B 
C 
D 

Profit/unit 

1 

16 
24 
30 
10 

$78 

Product 

2 

30 
40 
50 
20 

$136 

3 

28 
36 
32 
15 

$104 

Supply (units) 

1550 
2044 
2438 
975 

To determine the optimal production schedule and profit for the next month, the 
company analyst defines variables x\,X2, X3 to be the number of units of product i to 
be produced, i= 1,2,3, and formulates the following model: 

Maximize profit z (in $), z = 78xi + 136x2 + 104x3 
subject to 
16x, + 30x2 + 28x3 < 1550 
24xi + 40x2 + 36x3 < 2044 
30xi + 50x2 + 32x3 < 2438 
10xi + 20x2 + 15x3 < 975 

-Xl,*2,*3 > 0 

The spreadsheet resolution appears in Figure 3.5. Company Zeta's optimal profit for 
next month is $6,748, attained by making 10 units of Product 1, 37 units of Product 
2, and 9 units of Product 3. The component materials constraints show that with this 
production schedule, surplus units remain only for material A. However, with this, as 
with any spreadsheet resolution of a problem, much of the action is behind the scenes. 
For example, besides what is seen on the spreadsheet, formulas define the values of 
the objective function cell and the cells for the left-hand and right-hand sides of the 
constraints. Furthermore, beyond the spreadsheet, the actual mathematical problem 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

A | B 
Company Zeta 

Component 
A 
B 
C 
D 

Profit/unit 

Product # 
Units made 

Maximize Profit 

Comp. Materials 
A 
B 
C 
D 

c 

1 
16 
24 
30 
10 

$78 

1 
10 

$6,748 

LHS 
1522 
2044 
2438 
975 

I D | 

Product 
2 

30 
40 
50 
20 

$136 

Variables 
2 

37 

I 

S 
S 
<, 
<. 

E 

3 
28 
36 
32 
15 

$104 

3 
9 

RHS 
1550 
2044 
2438 
975 

F 

Supply 
1550 
2044 
2438 
975 

Figure 3.5 

is established on the tool Solver, and then Solver is invoked to resolve the problem. 
This is all explained in Appendix E. 

Example 3.10.2 (Similar to Example 2.2.3). A landscaper has two fields to maintain, 
Field X and Field Y, with each field requiring grass seed mixtures of specified per-
centages of bluegrass and fescue. To meet these needs, the landscaper has three grass 
seed blends with which to work. The relevant data are summarized in the following 
table. 

Composition 

Requirements 

Blend I 
Blend II 
Blend III 

Field X 
Field Y 

Bluegrass 

60% 
20% 
25% 

>30% 
>25% 

Fescue 

10% 
50% 
15% 

> 10% 
>45% 

Cost (cents/lb) 

80 
95 
35 

The landscaper has an order for 200 lb of seed for Field X and 180 lb of seed for 
Field Y; and on hand to fill the order there are unlimited amounts of Blends I and II 
but only 125 lb of Blend III. 

To determine the minimum cost to meet these demands, the following model is 
formulated. Let x\, X2, X3 be the number of pounds of Blends I, II, and III, respec-
tively, used for Field X, and let y\, y2, 3*3 be the number of pounds of each used for 
Field Y. The problem: 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

21 
22 
23 
24 
25 
26 
27 
28 

A | B 
Landscaper 

Blend 1 
Blend II 
Blend III 

Field X 
Field Y 

Blend 1 
Blend II 
Blend III 

Minimize Cost 

Constraints 
Field X Bluegrass 

Field X Fescue 
Field X Total 

Field Y Bluegrass 
Field Y Fescue 

Field Y Total 
Blend III Maximum 

C | D | E 

Composition Data for Blends 
Bluegrass Fescue Cost (cents/lb' 

60% 10% $0.80 
20% 50% $0.95 
25% 15% $0.35 

Min Requirements Data for Fields 
Bluegrass Fescue Pounds 

30% 10% 200 
25% 45% 180 

Variables (lb by Blend and Field) 
Field X Field Y 

75 
0 

125 

$271.38 

22.5 
157.5 
0.00 

LHS RHS 
76.25 a 60 
26.25 a 20 
200 = 200 
45 a 45 
81 a 81 
180 = 180 
125 s 125 

F 

Figure 3.6 

To minimize the function (80xi 
subject to 
x\ +X2+X-} = 200 
.6x1 + -2x2 + .25x3 > 0.3(200) = 60 
. lx i+ .5x2+ .15x3 > 0.1 (200) = 2 0 

95x2 + 35x3 ) + (80yi + 95y2 + 35y3) 

xi,x2,x3 > 0 

yi+y2+y3 = 180 
.6yi + .2y2 + .25y3 > .25(180) 
.lyi + .5y2 + -l5y3 > .45(180) 

X3+V3<125 

y\,yi,yi > o 

45 
81 

The spreadsheet resolution is shown in Figure 3.6. The minimum cost for the 
landscaper is $271.38, attained by using 75 lb of Blend I and 125 lb of Blend III in 
preparing the 200-lb mix for Field X and using 22.5 lb of Blend I and 157.5 lb of 
Blend II in preparing the 180-lb mix for Field Y. All of the available 125 pounds of 
Blend III are utilized. 

This suggests an obvious question. How much money might be saved if more of 
Blend III were available? The answer to this question, and similar ones, is available 
from the final tableau of the simplex algorithm resolution of the problem and on 
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Solver's associated sensitivity report accompanying the spreadsheet of Figure 3.6. 
We shall see all this in the next two chapters. 

Example 3.10.3 (A second look at Example 2.3.3). A cabinet shop makes and sells 
two types of cabinets: type 1, for the kitchen, and type 2, for the bathroom. Man-
ufacture of the cabinets consists of two steps, making the frames and drawers, and 
then assembling and finishing the units. Labor requirements, in hours/unit, are as 
follows: 

Cabinet Frame/Drawers (hr) Assembly/Finishing (hr) 

Type I (kitchen) 2.6 2.1 
Type 2 (bathroom ) 1.5 1.8 

Each week the shop has 480 hr of labor available for the manufacture of the cabinets. 
Frames and drawers, completed and ready for assembly and finishing, can also be 
bought from a local dealer at a cost of $200 for a kitchen frame/drawer set and $110 
for a bathroom frame/drawer set. The kitchen cabinets sell for $350 each; the first 70 
bathroom cabinets sell for $250 per unit, but any more produced sell for only $225 
per unit. All units produced can be sold. 

To determine a production schedule that maximizes net income, and noting that 
the total number of each type of cabinet produced is the sum of the corresponding 
number of frames made and the number bought, we define the primary decision 
variables 

m, = number of frame/drawers made of type i,i= 1,2 

bi = number of frames/drawers bought of type i,i= 1,2 

and the auxiliary quantities 

u = number of bathroom cabinets sold up to 70 

v = number of bathroom cabinets sold over 70 

and formulate the following model: 

Maximize 350(«i +bx)+ 250w + 225v-200£i - 1 \0b2 

subject to 
2.6mi +1.5m2 + 2.1(mi+£1) + 1.8(m2+62) < 480 
OT2 + &2 = U + V 

M < 7 0 
m\,ni2,bi,b2,u,v > 0 

The spreadsheet resolution is shown in Figure 3.7. The optimal production sched-
ule calls for the shop to produce 75.32 kitchen cabinets, making all the component 
frames and doors in the shop, while producing 70 bathroom cabinets, buying the 
component frames and doors from the local dealer. The associated net revenue is 
$36,161.69. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

A| B 
Cabinet Shop 

Frame/Drawers 
Assembly/Finishing 

Labor Available (hr): 

Selling Price 
of Cabinets 

Cost of Frames 
at the Local Dealer 

Frames Made 
Frames Bought 

Bath Cabinets Sold Up to 70 
Bath Cabinets Sold After 70 

(Total Frames Sold) 

Maximize Net Revenue 

Constraints 
Labor 

Bath Frames Made/Bought = u+v 
u s 70 

c D 

Time Required (hr) 
Kitchen Bathroom 

2.6 
2.1 

480 

All 
Kitchen 
$350 

Kitchen 
$200 

1.5 
1.8 

First 70 
Bathroom 

$250 

Bathroom 
$110 

Variables 
Kitchen Bathroom 
75.32 
0.00 

Kitchen 
75.32 

$36,161.69 

LHS 
480.00 
70.00 
70.00 

0.00 
70.00 

70 
0 

Bathroom 
70.00 

s 

E 

All Other 
Bathroom 

$225 

<- u 
<- V 

RHS 
480 
70 
70 

Figure 3.7 

To implement this program, the shop manager could round down and produce 
75 kitchen units, frames and all, and 70 bathroom units, buying the associated com-
ponents. This would generate a profit of $36,050, $111.69 less than the absolute 
maximum (and use 1.5 fewer hours of labor). This may be the optimal integral so-
lution, or maybe not. Integer programming could be used to resolve the issue. (See 
also Problem 2.) 

Problem Set 3.10 
1. For readers with access to and facility with Microsoft Excel and Solver, enter 

into Microsoft Excel the problem of Example 3.10.1. 

(a) Confirm that your model generates the same solution as in the text. 
(b) Decrease the number of available units of component material A by 20 to 

1530 and solve the problem. Note that nothing changes. But this was ex-
pected. Why? 

(c) Returning the number of available units of A to 1550, show that if the num-
ber of units of material B is increased by 20 to 2064, profit increases $25, 
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and if the number is increased by 40 to 2084, profit increases by $50; but 
if the number is increased by 60 to 2104, profit increases by less than $75. 
(This too was expected, but only with the sensitivity report for the original 
problem in hand, as we will see in Chapter 5.) 

2. For the model of Example 3.10.3, show that it is feasible to produce 75 kitchen 
cabinets and 70 bathroom cabinets if all the required kitchen frames and doors 
are made along with exactly one bathroom frame and door. What is the associ-
ated net revenue? 



CHAPTER 4 

DUALITY 

4.1 INTRODUCTION TO DUALITY 

Frequently in mathematics there exist relationships between concepts, systems, or 
problems that are not immediately apparent but, once understood, reap many divi-
dends. For example, consider in calculus the relationship between the integral and 
the derivative expressed in the Fundamental Theorem of Calculus, or in linear al-
gebra, the relationship between linear transformations and matrices. Relationships 
such as these not only can be used for practical or computational purposes, but also 
can provide a unified and coherent theory, so that insights and techniques from one 
system can contribute to the understanding and usefulness of another. 

In this chapter we will develop one such unifying notion, the concept of dual-
ity. For any linear programming problem, the associated dual linear programming 
problem will be defined. In Section 4.3 it will be shown that in certain optimization 
situations, the dual problem arises quite naturally; and in Sections 4.4 and 4.5 im-
portant theoretical results relating the two problems will be developed. In particular, 
in Section 4.4 the fundamental Duality Theorem will be proved. 

The concept of duality plays an important role in the remainder of the text. In 
Section 5.1, we will expand upon the ideas in Sections 4.3 and 4.4 to yield a sensi-
tivity analysis procedure useful in a variety of applications. In Section 5.6 the Dual 
Simplex Algorithm will be developed, and in Section 7.2 the Transportation Problem 
Algorithm, a primal-dual algorithm, will be developed. Later, in Chapter 9, when we 
consider two-person zero-sum games, we will see that the problem of solving such 
a game is equivalent to solving a linear programming problem and its dual problem, 
and that the question of the existence of a solution to these games is answered using 
the Duality Theorem. 

We conclude this section with an example that should provide some motivation 
for the definitions to follow in Section 4.2. 

Example 4.1.1. To obtain favorable bulk rates, a soft ice cream producer negotiates 
6-month contracts in early summer with distant wholesalers for the weekly purchase 
of fixed quantities of cream, skim milk, and chocolate syrup. However, in the fall, 
when the demand for soft ice cream decreases, the producer will be left with a surplus 
of these three quantities. In particular, suppose that in the fall there is weekly 100 
gal of cream unused in the production of the ice cream, 300 gal of skim milk, and 60 
lb of chocolate syrup. 

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, Inc. 
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To utilize this surplus, the producer bottles and delivers cases of whole and 
chocolate milk to a local school. A case of whole milk uses 1 gal of cream and 
2 gal of skim milk and yields a net gain of $3 (selling price less bottling and delivery 
costs); a case of chocolate milk uses 0.4 gal of cream, 2.5 gal of skim milk, and 0.6 
lb of chocolate syrup and yields a gain of $4. Hoping to maximize the net gain at-
tainable with this surplus, the producer formulates the following linear programming 
problem, with x\ the number of cases of whole milk and X2 the number of cases of 
chocolate milk to be produced each week. 

Maximize 3xi + 4x2 (4.1.1) 
subject to 
xi + 0.4x2 < 100 

2xi + 2.5x2 < 300 
0.6x2 < 60 

xi,x2 > 0 

However, before this problem is solved and contracts are signed with the local 
school, the producer is contacted by the manager of the town dairy. The dairy also 
supplies milk to the local school system and, in fact, strives to be the sole such 
supplier. This would increase the dairy's presence in the town and would also allow 
the dairy some freedom in negotiating prices for the school contract. To accomplish 
this, the manager of the dairy offers to simply buy from the ice cream producer his 
surplus milk and syrup, which the dairy would then use in its own bottling plant. 

The offer intrigues the ice cream producer. It would allow him to focus his com-
pany on the making and selling of ice cream and, if the dairy's offer is financially 
sound, to continue the economical bulk rate contracts with the distant wholesalers. 
But what prices for the surplus ingredients are financially sound to the producer? 

To attempt to answer this question, the dairy manager notes that the only value 
to the producer that the surplus milk and syrup have is in bottling and selling cases 
of whole milk and chocolate milk. In particular, suppose the manager offers the 
producer yi dollars for each gallon of surplus cream, y2 dollars for each gallon of 
skim, and y3 dollars for each pound of chocolate syrup. Then, since the bottling 
and delivery of a case of whole milk requires 1 gal of cream and 2 gal of skim milk 
and yields a gain of $3, the dairy manager realizes that to be competitive, y\ and 
y2 must be set so that y\ +2y2 > 3. Similarly, consideration of the input and gain 
associated with a case of chocolate milk yields the inequality 0.4yi + 2.5y2 + 0.6y3 > 
4. Of course, the dairy manager also wants to keep her total costs down and so, in 
determining these prices, she is led to the following linear programming problem: 

Minimize lOOyi + 300y2 + 60y3 (4.1.2) 
subject to 

vi + 2y2 > 3 
0.4yi + 2.5y2 + 0.6y3 > 4 
yi,y2,y3 > 0 
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The linear programming problem (4.1.2) is the dual of the problem (4.1.1). We 
have been led to these problems by considering the disposal of surplus goods from 
two different but related perspectives. Other examples in which the dual arises quite 
naturally will be discussed in Section 4.3. For the time being, let us note some 
relationships between the two problems (4.1.1) and (4.1.2). (As we will see, these 
relationships constitute the definition of the dual linear programming problem.) 

1. Problem (4.1.2) is a minimization problem with (>) constraints; (4.1.1) is a 
maximization problem with (<) constraints. 

2. The number of nonnegative variables in (4.1.2) equals the number of con-
straints in (4.1.1). (A price was to be set using (4.1.2) for each limited re-
source in (4.1.1).) 

3. The number of constraints in (4.1.2) equals the number of nonnegative vari-
ables in (4.1.1). (The vi,y2,y3 had to compare favorably with each of the two 
processes of (4.1.1).) 

4. (a) The coefficients of the objective function of (4.1.2) are the constant terms 
of the constraints of (4.1.1). 

(b) The constant terms of the constraints of (4.1.2) are the coefficients of the 
objective function of (4.1.1). 

(c) The coefficients of the constraints of (4.1.2) are the coefficients of the 
constraints of (4.1.1), with the rows and columns interchanged (trans-
posed). 

Problem Set 4.1 

The following problems refer to the example of this section. 

1. Solve (4.1.1) graphically. What is the maximum the ice cream producer can earn 
each week with his surplus? 

2. (a) Solve (4.1.2) using the simplex algorithm. 
(b) How much should the dairy manager offer the producer for each gallon of 

cream? Each gallon of skim? Each pound of syrup? 
(c) What is the total amount the dairy manager would be paying the producer 

each week? Would he accept the offer? 

4.2 DEFINITION OF THE DUAL PROBLEM 

The definition of the dual problem will initially be given in terms of a linear pro-
gramming problem expressed in a special form, called the max form of the problem. 
Problems in another special form, a min form, are equally useful. We first define 
these terms. 

Definition 4.2.1. A linear programming problem stated in the following form is said 
to be in max form: 
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Maximize z, = c\X\ + C2X2~\ \-cnxn (4.2.1) 
subject to 
a\\x\ + anX2 + ... + a\nxn < b\ 
a2\X\ + 022^2 + • • • + a2„Xn < 02 

@m\X] i ^rnl^l T • • • T amnXn _ ®m 

X17 X2 , ■ • • , Xfi ^_ U 

Thus the max form of a linear programming problem, called simply the max problem, 
is a maximization problem with nonnegative variables and a system of constraints 
consisting of only (<) inequalities. Note that there are no restrictions on the signs of 
the coefficients a,;, constant terms £>,-, and coefficients Cj. 

Definition 4.2.2. A linear programming problem stated in the following form is said 
to be in min form: 

Minimize z = c\X\ + C2X2 + • • • + cnxn (4.2.2) 
subject to 
a\\x\ + a\2X2 + ••• + a\nxn > b\ 

021*1 + «22*2 + • • . + Cl2nXn > h 

<2ml*l T~ am2X2 i • • • i O-mn^n ^_ &m 

X\,X2,. ■ ■ ,Xn > 0 

The min problem is a minimization problem with nonnegative variables and a system 
of constraints consisting of only (>) inequalities. Again, no restrictions have been 
placed on the signs of the a\j, £>,, and Cj. 

We now define the dual to the max problem (4.2.1). Then we will build on this 
definition to extend the definition of duality to an arbitrary linear programming prob-
lem. As we will see, both the max problem and the min problem (4.2.2) will play 
equal roles in the summarizing definitions. 

Definition 4.2.3. The dual of the max problem (4.2.1) is the following linear pro-
gramming problem: 

Minimize v = b\y\ + b2y2 H h bmym (4.2.3) 
subject to 
a\iy\ + a2\y2 + ••• + am\ym > c\ 
a\iy\ + aiiyi + ••• + am2ym > cn 

a\ny\ + a2„y2 + ••• + amnym > cn 

y\,y2,---,yn > o 



4.2. DEFINITION OF THE DUAL PROBLEM 125 

Thus the dual to the max problem (4.2.1) with m (<) constraints and n nonneg-
ative variables is a minimization problem with m nonnegative variables and n (>) 
constraints. For each i, 1 < i <m, variable y,- of the dual corresponds to the ith con-
straint of the max problem. The coefficients of y,- in the ith column of the constraints 
of (4.2.3) are the coefficients of the ith constraint in (4.2.1). Reciprocally, for each j , 
1 < j <n, the jth constraint in the dual corresponds to the jth variable xj in (4.2.1); 
the coefficients of the variables in the jth constraint in the dual are the coefficients 
of xj in the constraints of (4.2.1). Note also the interchange between the constant 
terms of the constraints and the coefficients of the objective functions for the two 
problems. (Compare the above with the list of relationships given at the end of the 
example of the previous section.) 

Example 4.2.1. The linear programming problem of 

Maximizing 6xj +X2 +4x3 
subject to 
3xi + 7x2 + *3 < 15 
xi — 2x2 + 3x3 < 20 

Xi,X2,X3 > 0 

(4.2.4) 

has as its dual the problem of 

Minimizing 15yi 
subject to 
3yi + y2 > 6 
7yi - 2y2 > 1 

y\ + 3y2 > 4 
yi,y2 > 0 

-20y2 (4.2.5) 

Matrix notation can be used to express any linear programming problem and, in 
particular, the max problem and its dual problem, succinctly. Using (4.2.1), we will 
define the coefficient matrix A and column vectors b, c, and X as follows: 

an 
Û21 

am\ 

an ■ 
an ■ 

ami ■ 

■ a\n 

■ a2„ 

amn 

, b = 

\ bl 1 
b2 

. bm . 

, c = 

C\ 

C2 

. C « . 

, x = 

Xl 

X2 

%n 

Let A' denote the transpose of matrix A, and let c ■ X denote the dot or scalar product 
of the vectors c and X. Then 

A': 

a\\ Ö21 ••• am\ 
a\2 Ö22 • • ■ a„a 

a\n a2n • • • amn 
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and 
c■ X = c\X\ + C2X2-\ hcnxn = c'X = X'c = X c 

The max problem of (4.2.1 ) is simply to maximize z = c ■ X subject to AX < 
b,X > 0, where AX < b means that each component of the column vector AX is 
less than or equal to the corresponding component of the vector b, and X > 0 is 
defined similarly, with 0 in this case being the n-dimensional zero vector. Let Y be 
the m-dimensional column vector (yi,y2,--- ,ym)'- Then the problem of (4.2.3) is to 
minimize v = b-Y subject to A' Y >c,Y> 0. 

In summary, we have the following: 

Max problem: Maximize z = c ■ X subject to AX < b, X > 0 
Dual problem: Minimize v = b ■ Y subject to A'Y >c,Y >0 

To extend the definition of duality to an arbitrary problem, first note that any 
linear programming problem is equivalent to a problem stated in max form. For ex-
ample, we have already seen how a minimization problem can be transformed into 
an equivalent maximization problem and unrestricted variables replaced by variables 
restricted in sign. A constraint involving an equality can be replaced by two inequal-
ities in opposite directions. For example, the set of points (xi,X2) 6 K2 such that 
3*1 + 2x2 = 5 equals the set of {x\,X2) such that 3xi + 2%2 > 5 and 3x\ + 2x2 < 5. 
Finally, the direction of an inequality can be changed by multiplication by (—1). 

With this, the dual to any linear programming problem can be constructed. To 
determine this dual, first express the given problem as an equivalent linear program-
ming problem in max form and then use the above definition. 

As an application, let us determine the dual to the min problem of (4.2.3), the 
dual of (4.2.1). The problem as stated is to minimize b-Y subject to A'Y >c,Y>0. 
Letting — M denote the matrix found by multiplying all the entries of a matrix M by 
(—1), the problem of (4.2.3) is equivalent to the problem of 

Maximizing (-b) ■ Y subject to (-A')Y <-c,Y>0 

But this problem is in max form, and its dual is, using (4.2.6), to 

Minimize (-c) X subject to (-A')'X > -b, X > 0 

Using the fact that for any matrix M, (M')' = M, this problem is equivalent to the 
problem of 

Maximizing c ■ X subject to AX < b, X > 0 

Note that this is precisely the problem of (4.2.1 ). We have proven that the dual of the 
min problem is a max problem and that for any linear programming problem, the dual 
of the dual is the original problem. Hence, repeated application of this operation of 
constructing the dual problem to a given problem does not lead to a chain of distinct 
problems but, instead, cycles after two steps, resulting in exactly two problems, each 
the dual of the other. 
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Example 4.2.2. The linear programming problem of 

Minimizing 12xi + 9x2 — 2x3 

subject to 

8xi + 3x2 + 5x3 > 6 

x\ — 3x3 > ~ 4 

X),X2,x3 > 0 

is in min form, and thus, from the above, we can write immediately that its dual is to 

Maximize 6y\ — Ay 2 

subject to 

8yi + yi < 12 

3yi < 9 
5yi - 3y2 < - 2 

y\,yi > 0 

We consider now the steps involved in the construction of the dual of a problem 
first, having an equality constraint, and second, having an unrestricted variable. 

Example 4.2.3. To determine the dual of the problem of 

Maximizing 6x1 + X2 + 4x3 (4.2.7) 

subject to 

3xi + 7x2 + JC3 < 15 

X) — 2x2 + 3x3 = 20 

•Xl,-*2,*3 > 0 

notice that this is the problem of Example 4.2.1 with the second constraint changed 
to an equality. We replace the equality constraint by two inequalities and multiply 
the resulting (>) inequality by (— 1) to find the equivalent problem in max form of 

Maximizing 6x1 + X2 + 4x3 (4.2.8) 

subject to 

3xi + 7x2 + xj, < 15 

x\ — 2x2 + 3x3 < 20 

—x\ + 2x2 — 3x3 < — 20 

xi ,x2 ,x 3 > 0 

Using variables y\, y2, y3, the dual to (4.2.8) is to 

Minimize 15yi + 20y2 - 20y3 (4.2.9) 

subject to 

3yi + J2 - W > 6 

1y\ - 2y2 + 2y3 > 1 

y\ + 3y2 - 3y3 > 4 

y\,yi,y3 > 0 
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which can be rewritten as 

Minimize 15yi + 20(y2 - y 3 ) (4.2.10) 
subject to 

3yi + {y2-ys) > 6 
7yi - 2(y2-y3) > 1 
yi + 3(y2-y3) > 4 

y\,y2,y3 > o 

which is equivalent to 
Minimize 15vi +20y4 (4.2.11) 
subject to 
3yi + y4 > 6 
7y, - 2y4 > 1 
yi + 3y4 > 4 

yi > 0, y4 unrestricted 

Note that (4.2.11), the dual to (4.2.7), is almost (4.2.5), the dual to (4.2.4). The 
difference is that in (4.2.11), the variable v4 corresponding to the equality constraint 
in (4.2.7) is unrestricted. Clearly, the algebra above generalizes. When defining a 
dual, any variable in the dual corresponding to an equality constraint in the original 
problem is unrestricted in sign. 

Example 4.2.4. To determine the dual of (4.2.11), a problem in min form except for 
an unrestricted variable, we first replace the unrestricted variable with the difference 
of two nonnegative variables (4.2.10), simplify to a problem in min form (4.2.9), 
write the dual (4.2.8), and replace the last two inequalities with the equivalent equal-
ity. This yields (4.2.7), the dual to (4.2.11); and the constraint in the dual generated 
by the unrestricted variable v4 in the original problem is an equality. Again, we 
can generalize. Constraints in a dual corresponding to unrestricted variables in the 
original problem are equality constraints. 

Combining these observations, we summarize the construction of the dual to an 
arbitrary linear programming problem. First, express the problem, using nonnegative 
and unrestricted variables, as either a maximization problem with (<) and equality 
constraints or a minimization problem with (>) and equality constraints. The dual 
can then be immediately formulated. 

The dual to a maximization problem is a minimization problem with (>) and 
equality constraints, and the dual to a minimization problem is a maximization prob-
lem with (<) and equality constraints. In both cases, unrestricted variables in the 
original problem generate equality constraints in the associated dual; and recipro-
cally, equality constraints in the original generate unrestricted variables in the dual 
problem. Table 4.1 summarizes the relationships. 
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Table 4.1 

Max Problem dual Min Problem 

fth (<) inequality 
fth ( = ) constraint 
jth nonnegative variable 
jth unrestricted variable 
Objective function coefficients 
Constant terms of constraints 
Coefficient matrix of 

constraints A 

rth nonnegative variable 
rth unrestricted variable 
jth (>) inequality 
jth ( = ) constraint 
Constant terms of constraints 
Objective function coefficients 
Coefficient matrix of 

constraints A' 

Example 4.2.5. The linear programming problem of 

Minimizing x\ — 2x2 + 3x3 

subject to 

4x\ + 5x2 — 6x3 = 7 

8x1 - 9x2 + 10x3 < 11 

x\ ,X2 > 0, X3 unrestricted 

is equivalent to the problem of 

Minimizing x\ — 2x2 + 3x3 

subject to 

4xi + 5x2 — 6x3 = 7 

-8x1 + 9x2 - 10x3 > - 1 1 

x\ ,X2 > 0, X3 unrestricted 

and therefore has as its dual the problem of 

Maximizing ly\ — 11J2 

subject to 

Ayi - %y2 < 1 

5yi + 9y2 < -2 

—6yi — 10^2 = 3 

y 1 unrestricted, y2 > 0 

Example 4.2.6. The linear programming problem of 

Maximizing 12xi +2x2 

subject to 

8x1 — X2 < 21 

x\ — 6x2 > 13 

3xi — 4x2 = —11 

xi unrestricted, X2 > 0 
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is equivalent to the problem of 

Maximizing 12xj + 2x2 
subject to 
8xi — X2 < 21 
—x\ + 6x2 < —13 
3xi - 4x2 = - H 

x\ unrestricted, X2 > 0 

and therefore has as its dual the problem of 

Minimizing 7Ay\ — 13y2 — Ü B 
subject to 
8yi - yi + 3y3 = 12 
-yi + 6y2 - 4y3 > 2 
y\,)>2 > 0,yi unrestricted 

Problem Set 4.2 

1. Determine the dual of each of the following linear programming problems. 

(a) Maximize 20xi + 30x2 
subject to 
5xi - 4x2 < 100 
-xi + 12x2 < 90 

x2 < 500 
Xi,X2 > 0 

(b) Minimize 4xi — 3x2 
subject to 
6x, + llx2 > -30 
2xi — 7x2 < 50 

x2 < 80 
X] ,X2 > 0 

(c) Maximize —x\ + 2x2 
subject to 
5x] + X2 < 60 
3xi - 8x2 > 10 
xi + 7x2 = 20 

xj ,X2 > 0 
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(d) Minimize 6x1 + 12^2 — 18x3 
subject to 
x\ — 3x2 + 6x3 = 30 

2x] + 8x2 — 16x3 = 70 
x 1 ,X2 > 0, X3 unrestricted 

(e) Maximize x\ — 7x2 + 3x3 
subject to 

2x2 + 5x3 = 20 
8x1 - 3x3 = 40 

x2 + 4x3 > 60 
x\ ,X3 > 0, X2 unrestricted 

(f) Minimize 2yi — 3y2 + 4y3 
subject to 
8V! - y3 = 50 

6̂ 2 + J3 < 60 
yi,y2>0,-l5<y3<0 

(a) Determine the dual to the problem of 
Maximizing xi — 2x2 
subject to 

x2 > 1 
x, < 2 
Xi,X2 > 0 

(b) Rewrite your answer to part (a) as an equivalent maximization problem. 
(c) Compare your response in part (b) to the original problem of part (a). Ob-

servation? 
(d) Show that the following problem is also its own dual. 

Maximizing x\ — 2x2 — 3x3 
subject to 

X2 + 2X3 > 1 
x\ + 3x3 < 2 

2xi — 3x2 = 3 

xi,X2 > 0,X3 unrestricted 

Consider the linear programming problem of Example 4.2.1 of this section. 
(a) Show that the objective function of the dual problem is bounded below. 
(b) Solve the dual problem graphically. 
(c) Solve the maximization problem using the simplex method. Note that the 

optimal values of the objective functions are equal. 
(d) Compare the bottom two entries in the slack variable columns of the last 

simplex tableau of part (c) with the point in part (b) that yielded the minimal 
value. 
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4.3 EXAMPLES AND INTERPRETATIONS 

In Section 4.1, the dual to a production problem involving profits to be maximized 
was developed. In this section the dual problems to other specific linear program-
ming examples will be defined and discussed. The examples, using the categories of 
Chapter 2, are from the classes of blending problems, production problems (minimiz-
ing costs while meeting given demands), and transportation problems. Additional 
examples are contained in the problems at the end of this section. 

Example 4.3.1 (A Blending Problem). The diet problems that we have already seen 
lead to dual problems that have a standard but still extremely interesting interpre-
tation. Consider, for example, the situation described in Example 2.2.1 on page 10 
of the farmer wishing to feed her stock. The farmer's problem was to determine a 
diet using two feeds that minimized cost and satisfied three nutritional requirements. 
Here, letting x\ and xi denote the amounts in pounds of Feeds 1 and 2 to use, respec-
tively, the mathematical problem was to 

Minimize 10xi +4x2 (4.3.1) 
subject to 
3xi + 2x2 > 60 
7xi + 2x2 > 84 
3xi + 6x2 > 72 
* l i*2 > 0 

The three inequalities in the system of constraints result from the requirement 
that the diet provide specified amounts of the nutritional elements A, B, and C. The 
dual to this problem is the problem of 

Maximizing 60yi + 84v2 + 72y3 (4.3.2) 
subject to 
3yi + 7y2 + 3y3 < 10 
2yi + 2y2 + 6y3 < 4 

yi,y2,yj > o 

To provide an interpretation of the dual, consider the problem of a traveling salesman 
dealing in nutrition tablets for cattle. Suppose the salesman has to offer the farmer 
three types of pure tablet: one type containing 1 unit of nutritional element A and 
nothing else, one containing 1 unit of B and nothing else, and the last containing 1 
unit of C and nothing else. Now the salesman hopes to convince the farmer that it is to 
her advantage to nourish her cattle by using these tablets instead of any combination 
of Feeds 1 and 2. Although the farmer is probably somewhat set in her ways, the 
salesman believes that due to the problems of maintaining a small farm today, he 
can still appeal to her frugality. Thus the salesman attempts to set the prices for the 
three types of tablets in such a way that the tablets can compete favorably with the 
two feeds and he can realize the greatest income. To do this, he lets yi, y2, and y3 
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Table 4.2 

y4 

y4 

y\ 

yi 

y\ 

y\ yi >3 y\ ys 

3 7 3 1 0 

(5) 2 6 0 1 
-60 -84 - 7 2 0 0 

0 0 -6 1 - 1 
1 1 3 0 £ 

0 -24 108 0 30 
0 1 _ 3 1 _ 1 
u l 2 4 8 
1 0 2 _ I 7 1 u 2 4 8 

0 0 72 6 21 

10 

4 

0 

4 

2 

120 

1 

1 

144 

denote the cost in cents to the farmer of one tablet of nutritional elements A, B, and 
C, respectively. 

Now 1 lb of Feed 1 provides 3, 7, and 3 units of A, B, and C, respectively, and 
costs 10 cents. To replace 1 lb of this feed with tablets, the farmer would need three 
tablets each of the first and third types and seven of the second type. This would cost 
3)>i + 7y2 + 3y3 cents and so, to be competitive, the salesman must have 

3yi+7y2 + 3y3< 10 

Similarly, 1 lb of Feed 2 provides 2, 2, and 6 units of A, B, and C, respectively, and 
cost 4 cents. Thus we have the inequality 

2yi + 2y2 + 6y3 < 4 

Since the farmer has determined that the daily requirements of elements A, B, and C 
are 60, 84, and 72 units, respectively, the cost of meeting these requirements by using 
the tablets would be 60yi + 84y2 + 72y3. Thus the salesman wishes to maximize this 
function subject to the above two inequalities. This problem is precisely the dual of 
the original problem. 

Being a former mathematician, the salesman does not stop here but sets out to 
solve the linear programming problem (4.3.2). Adding two slack variables and using 
the simplex method, he generates the tableaux of Table 4.2. From the final tableau, 
in which we see that yi = y2 = 1 and y3 = 0, the salesman notes that he should charge 
the farmer 1 cent for each of the tablets of A and B and nothing for the tablets of C 
("Place your order today and receive the C tablets at no extra charge"), and in doing 
this, he will realize his maximum income of $1.44. Observe that this maximum 
income of $1.44 equals the minimum cost to the farmer of an adequate diet using 
Feeds 1 and 2, as determined in Section 2.2. 

In the next section, we will show that the above result is not just coincidental. 
The Duality Theorem, as we will see, states that the min problem of (4.3.1) and 
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its dual, the max problem of (4.3.2), must have a common optimal value (as long 
as at least one of the problems has a finite optimal value). The alert reader may 
have already noticed another curious fact here. The minimal value of the objective 
function of (4.3.1), determined graphically in Section 2.2, was attained at the point 
x\ =6,X2 = 21 (see Figure 2.5 on page 13). Note that these values are the last entries 
in the slack variable columns of the final tableau of the dual problem (Table 4.2). 
This is also not coincidental and, in fact, it is this relationship on which our proof of 
the Duality Theorem will rest. 

Example 4.3.2. Consider the situation described in Problem 12 of Section 2.3 (see 
also Problem 8 of Section 3.6). An oil refinery, with three processes, produces three 
grades of gasoline. The problem is to determine the operation that minimizes cost 
and satisfies specified demands. Using the data from the problem of Section 2.3 and 
letting Xj denote the number of hours of operation of Process j , j = 1,2, and 3, the 
resulting linear programming problem is to 

Minimize 16(ki + 400x2 + 300x3 

subject to 
3xi + 6x2 + 6x3 > 36 
4xi + 6x2 + 3x3 > 20 
2xi + 8x2 + 4x3 > 30 
Xi,X2,X3 > 0 

(As determined in Problem 8 of Section 3.6, the minimal cost is $1950 and is attained 
by using Process 2 for 1 ^ hr and Process 3 for 41 hr.) 

The dual of this minimization problem is to 

Maximize 36y 1 + 20y2 + 30y3 
subject to 
3)>i + 4y2 + 2y3 < 160 
6yi + 6y2 + 8y3 < 400 
6yi + 3y2 + 4y3 < 300 

yuyi,y3 > o 

To provide an interpretation of the dual, suppose that the management of the refinery 
wishes to determine a market price for each grade of gasoline. Although the market 
prices certainly should reflect the level of the grade, another factor to be considered 
is the actual cost of production. Thus, with the refinery operating to meet these 
specified demands, some estimate of the cost of each grade of gasoline must be 
made. Let yi, y2, and y3 denote the cost in dollars of 100 gal of regular, special, 
and super gasoline, respectively. Now 1 hr of operation of Process 1 produces 300, 
400, and 200 gal of regular, special, and super gasoline and costs $160. Thus it is 
reasonable to demand that these estimated production costs satisfy the inequality 

3yi+4y2 + 2y3 < 160 
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(We have an inequality here instead of an equality because one or both of the other 
processes might produce comparable output at less cost.) Similarly, considering the 
output and costs of Processes 2 and 3, we see that y\,y>2, and y?, must satisfy 

6yi + 6y2 + 8y3 < 400 

6yi+3y2+4y3 < 300 

To justify a price increase to the government, say, the management would desire 
that these operational costs be as high as possible. More precisely, since the refinery 
is delivering weekly 3600, 2000, and 3000 gal of regular, special, and super gaso-
lines, it should choose y\, yi, and yj to maximize the function 36yi + 20y2 + 30y3. 
Thus we have the dual problem. 

Example 4.3.3. Consider the transportation problem in Problem 2 of Section 2.4. 
Letting x\j denote the number of cases shipped from the Eastern Warehouse to Outlet 
j , 1 < j < 4, and letting xjj be the number shipped from the Western Warehouse, the 
resulting mathematical problem is to 

Minimize z = 20xn + 16xn + 30xi3 + 20xi4 
+45X21 + 39x22 + 50X23 + 44X24 

subject to 

X\\ + X\2 + *13 + Xu < 

X2\ + *22 + -*23 + *24 < 

Xu + X 2 1 = 

X12 + X22 = 

Xi3 + X23 = 

Xu + X2A = 

xij > 0,1 < i < 2,1 < j < 4 

600 
1000 
300 
350 
400 
450 

To construct the dual, we first change the direction of the two inequalities by 
multiplying each by ( — 1 ). The dual then is to 

350y4 + 400y5 + 450y6 (4.3.3) Maxin 
subjeci 

-y\ 
-y\ 
-y\ 
-y\ 

-

-

lize 

tto 

yi 

yi 

yi 

yi 

-600v! 

+ J3 

+ 

+ J3 

+ 

- 1000y2 + 300y3 + 

J4 

+ ys 

yA 

+ ys 

< 20 
< 16 
< 30 

+ y6 < 20 
< 4 5 
< 39 
< 50 

+ y6 < 44 
yi,y2> 0; y 3,y 4,y s,y 6 unrestricted 

Suppose now that a national shipping Company, wanting to expand, offers to de-
liver the canned goods for the supplier. Instead of charging normal transportation 
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costs, however, the shipper proposes to buy from the supplier all the available cases 
of canned goods, paying y\ cents/case for those cases at the Eastern Warehouse and 
y2 cents for the cases at the Western Warehouse. He guarantees delivery of the re-
quired number of cases at each of the four outlets, selling the cases back to the 
supplier at a cost of y,-+2 cents/case at Outlet i, 1 < / < 4. 

Now the shipper must determine these six prices in such a way that they are 
competitive and realize the maximum income. To be competitive, for example, since 
it costs the supplier 20 cents to ship a case from the Eastern Warehouse to Outlet 
1, yi and y3 must be chosen so that y3 — yi < 20. Consideration of the other seven 
shipping costs of the supplier leads to the other seven inequalities in the above dual 
problem. And as long as the y,- satisfy these inequalities, the shipper can assure the 
supplier that his offer certainly can cost the supplier no more than she is already 
paying for transportation and may save her money. 

The income the shipper will realize from this venture is simply the difference 
between the total amount he pays at the two warehouses and the total amount he 
receives at the four outlets. But this difference is precisely the quantity measured by 
the objective function in the above problem. Thus, in determining the values of the 
variables y(, the shipper encounters the dual of the original transportation problem. 

Problem Set 4.3 

1. Using the simplex method, show that the dual problem of Example 4.3.2 has 
as solution a maximum value of 1950 attained at the point yi = 33^, y2 = 0, 
y3 = 25. Interpret the fact that the production cost of special gasoline is zero. 
How would the vice president in charge of sales react? 

2. (a) The shipper of Example 4.3.3 is concerned about the four unrestricted vari-
ables y3, y4, ys, and yg of (4.3.3). If he determines an optimal solution point 
to (4.3.3) with negative values for any of these four components, it would 
mean that he would also pay the supplier for the supplier taking delivery at 
the corresponding outlets. He wonders if this is the best way to run a ship-
ping business. Relieve his anxieties. Show that any optimal solution point 
(yi,...,y6) to (4.3.3) must have y3,y4,y5,y6 > 0. 

(b) In this example, if the supplier lets the shipper transport the canned goods 
as described, there will result 100 extra cases in the hands of the shipper. 
How might the two parties resolve this difficulty? 

3. Consider the problem of Example 2.3.1 on page 21, a production problem of 
maximizing profits using limited resources. 

(a) Show that the dual problem is to 

Minimize 2000yi + 300y2 + 200y3 

subject to 
50yi + 6y2 + 3y3 > 50 
30yi + 5y2 + 5y3 > 60 

yi,yi,y3 > o 
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Now suppose a competitor approaches the boat manufacturer, offering to operate 
the small boat division under a lease agreement. The competitor claims that she 
will pay the manufacturer y\ dollars for each pound of aluminum available, y 2 
dollars for each minute of machine time, and J3 dollars/hr for the finishing labor, 
and that these prices will guarantee that the manufacturer realize at least as much 
income as he could by operating the plant himself. Thus the competitor offers 
the manufacturer an income comparable to any profit the manufacturer could 
realize himself while freeing him from determining optimal schedules, running 
the plant, and selling the boats. 

(b) Considering separately the profit the manufacturer realizes from the sale 
of a rowboat and a canoe, construct two inequalities that the prices y\, yi, 
and )?3 should satisfy. Considering the total amount the competitor pays the 
manufacturer, compare the problem of determining yi, j2> and y3 with the 
problem of part (a). 

(c) Solve the dual minimization problem of part (a) by the simplex method. 
Comparing the solution of this problem to the solution to the original prob-
lem (see Problem 1 of Section 2.3), show that the competitor's offer of a 
comparable, if not favorable, income will be realized. 

(d) Compare the entries in the slack variable columns in the bottom row of 
the last tableau computed in part (c) with the values for R and C found in 
Problem 1 of Section 2.3. 

4. Consider Problem 13 of Section 2.3. Letting x\ and X2 denote the number of 
hours of operation of Systems 1 and 2, the resulting mathematical problem is to 

Minimize 2x\ + 1 ljt2 
subject to 
x\ + 4x2 < 100 

4JCI + 20x2 > 480 
2xi + 40x2 > 800 
Xi,X2 > 0 

(a) Show that the dual problem is to 

Maximize - lOOyi + 480y2 + 800y3 

subject to 

-y\ + 4j2 + 2y3 < 2 
-4yi + 20j2 + 40>>3 < 11 
yi,y2,y3 > 0 

(b) A college student, working for the fruit grower for the summer, believes 
she can have the fruit picked more efficiently than the grower by using her 
own system and equipment. Fearing that she has nothing to gain financially 
by simply revealing her plan to the grower, she suggests to the grower that 
she will supervise the picking of the crop, paying the grower a set amount 
for each available hour of labor and then selling back to the grower the 
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fruit, using two prices: one for a bushel of choice produce and the other 
for regular produce. Considering that the student must convince the grower 
that it is to his advantage to let her supervise the harvest, how should she set 
these three costs? 

5. Consider Problem 11 of Section 2.3. 

(a) Formulate the associated linear programming problem. 
(b) Determine the dual problem. 
(c) Suppose the manager of the electronics firm wants to assess the value of a 

unit of material and a unit of labor in the production and sale of the circuits. 
To do this, she lets $yi and $y2 denote these two values. The circuit for a 
radio requires 2 units of material and 1 unit of labor and sells for $8. The 
manager reasons, therefore, that 2 units of material plus 1 unit of labor must 
be worth at least $8, but could be worth more if these units can be used 
in the production of other types of circuits that are more profitable. Thus 
she sets 2yi +y2 > 8. The manager continues in this manner. Compare 
the resulting problem with the problem determined in part (b). (Note that 
the Duality Theorem guarantees that the optimal values for the problems of 
parts (a) and (b) are equal.) 

4.4 THE DUALITY THEOREM 

In this section we prove the celebrated Duality Theorem. It is generally accepted 
that John von Neumann was the first mathematician to recognize the significance of 
the duality principle in this setting and endeavor to develop a proof of the Duality 
Theorem. 

We start with the max problem of (4.2.1), the problem of maximizing z = c ■ X 
subject to AX <b,X>0. The dual to this problem is to minimize v = b-Y subject 
to AY > c, Y > 0. We will show first that the set of possible values for the objective 
function z of the max problem lies to the left of the set of possible values for the 
function v. Then, with this result, we will prove the Duality Theorem using the 
simplex method and, in particular, Theorem 3.8.1. 

Theorem 4.4.1. Suppose Xo is a feasible solution to the problem of maximizing 
c ■ X subject to AX < b, X > 0 and YQ is a feasible solution to the dual problem of 
minimizing b ■ Y subject to AY > c, Y > 0. Then 

c-X0<b-Y0 

Proof. Since Xo is a feasible solution to the max problem with constraints AX < 
b, where A is an m x n matrix, the m x 1 vector u = b— AX$ > 0. In fact, the m 
components of u are the slack in the m inequalities of AXo < b. Similarly, YQ a 
feasible solution to the dual implies that A'YQ > c, and so the column vector v = 
A'YQ — C of slack in this set of n inequalities also has nonnegative components. Using 
these vectors, we can write 

AXQ = b~u and A'YQ = c + v 
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Now since the product YQ A XQ is a real number, we have YQAXQ = (Y^AXQ)' = 

l xm mxn « x l 

X^'YQ, and so 

Y0'AX0 = Y0'(AX0) = Y0'(b-u) equalsX^4% = *o(^%) = Ag(c + v) 

that is, 

Thus, since u,v,Xo,Yo > 0, 

è-Fo-c-Xo = M-r0 + v-Xo>0 D 

>0 >0 

We state the first corollary below for future reference in Section 4.5. The two 
subsequent corollaries are for immediate use in this section. 

Corollary 4.4.1. IfXo is a feasible solution to the problem of maximizing c ■ X subject 
to AX < b, X > 0 and YQ is a feasible solution to the problem of minimizing A'Y >c, 
Y>0, then 

b-Y0-c-X0 = (b-AX0)-Y0 + {A% ~c)-X0 

Proof. This is the equality statement of the last line of the above proof. D 

Corollary 4.4.2. IfXo and YQ are feasible solutions to the max and min problems, 
respectively, and if c ■ XQ = b • YQ, then the optimal values of the objective functions 
z andv equal this common value; that is, maximum z = c-XQ = b-Yo = minimum v 
and Xo and YQ are optimal solution points for their respective problems. 

Proof. Suppose X\ is any feasible solution to the max problem. Then, from the 
theorem, c • X] <b-Yo, so c-X\ <c-Xo. Thus the maximum value of the function 
z = c ■ X is c ■ Xo- Similarly for the dual problem. D 

Corollary 4.4.3. If the objective function z of the max problem is not bounded above, 
the min problem has no feasible solutions. Similarly, if the objective function v of the 
min problem is not bounded below, the max problem has no feasible solutions. 

The proof of Corollary 4.4.3 is left to the reader (Problem 1). The converse to this 
corollary is false. Examples can be constructed for which neither the max problem 
nor its dual, the min problem, have feasible solutions (see Problem 2). 

Theorem 4.4.2 (Duality Theorem). Suppose either the problem of 

Maximizing z = c-X subject to AX <b,X>0 

or the problem of 

Minimizing v — b-Y subject to A'Y >c, Y > 0 
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has a finite optimal solution. Then so does the other problem, and the optimal values 
of the objective functions are equal, that is, 

Maxz = Minv 

Proof. Assume first that the max problem has a finite optimal solution. Thus we 
assume the existence of an XQ such that AXQ < b, XQ > 0 and, for any other X with 
AX < b, X > 0, we have c-X< c-X0. 

Now the solution to the min problem will be found by applying the simplex 
method to the max problem. To do this, we first write the max problem in standard 
form by adding m slack variables xj, n + 1 < j <n + m, and multiply the objective 
function by — 1. This gives the problem of 

Minimizing — c\X\ — c^xi cnxn = — z (4.4.1) 
subject to 
a\\x\ + ai2*2 + •■• + a\nxn + x„+1 = b\ 
Ü2\X\ + 022*2 + • • • + a2nXn + Xn+2 = i>2 

am\X\ -\- am2X2 T ... + amnxn -t- xm^.n = om 

Xj > 0,1 < j <n + m 

We now assume in our proof that the constants b-t, 1 < ; < m, are nonnegative. If this 
is the case, the above problem is in canonical form with basic variables ;t„+i, x„+2> 

the associated basic solution is feasible, and the simplex method can 
be initiated directly commencing with the second stage. 

(Recall that in Section 4.2 when the max and min problems were defined, no 
restrictions were placed on the constants. Thus, with this assumption, our proof 
loses some generality. The extension of the proof to the general case is developed in 
Problem 8.) 

From Theorem 3.8.1, we know that there is a finite sequence of pivot operations 
driving the problem of (4.4.1) to the optimal value of the objective function. The 
initial tableaux for such a sequence would have a form such as 

xn+\ 
xn+2 

Xn+m 

X\ 

au 

Ö21 

0-m\ 

~C\ 

x2 

a\2 

Û22 

am2 

~c2 . 

Xfi 

a\n 

fl2n 

@mn 

-c„ 

xn+\ 
1 
0 

0 
0 

0 
1 

0 

Xn+m 

l 
0 

h 
b2 

bm 

0 

and the final tableau would assume the form 

X\ X2 . . . Xn Xn+\ . . . Xn+m 

r\ r2 ... rn. ^ . . . sm c-X0 
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Since our concern will be with only the bottom row of this last tableau, we have 
used the symbols rj, 1 < j: < n and s,, 1 < i < m to denote the numbers appearing 
in these positions and have left the other positions of the tableau blank. Since this 
tableau represents the final step of the simplex process in the problem of (4.4.1), we 
have rj > 0 and s; > 0 for 1 < j < n, 1 < / < m, and the minimum of — z is — c ■ XQ. 

Let YQ be the column vector {s\ ,s2, ■ ■ ■ ,SmY- We will show that 
(a) Y0 > 0 
(b) A% > c 
(c) b-Y0 = c-X0 

As has already been mentioned, YQ > 0. To show (b) and (c), consider the equa-
tion represented by the bottom row of the final tableau: 

r\x\ H Yrnxn+S]_xn+\ -\ Vsmxn+m =c-X0+ (-z) 

This equation represents the result of all the pivot operations on the initial equation 
for the objective function 

-c\x\ - c2x2 cnxn = 0 + (-z) 

And, at each pivot step, some linear combination of the original constraining equa-
tions was added to this equation for the objective function. Thus there exist m con-
stants, ti, 1 <i<m, such that when the (m + 1) equations 

h(anxi + ai2x2 + ... + a\nxn + xn+\ = b{) 
t2(a2\xl + a22x2 + ... + a2nxn + xn+2 = b2) 

*m\&m\X\ i &m2X2 ~r • • • ~r ClmnXn -|- Xm+n = OmJ 

{-C]X\ - C2X2 - . . . - CnXn = -z) 

are added together, the result is the equation 

r\xi H hrnxn + sixn+1 -\ hsmxn+m =c-X0 + (-z) 

Comparing the coefficients of the slack variables, we see that s, = /, for 1 < i < m. 
Using this result and comparing the coefficients of x\, we have 

sian +s2a2\ -\ Ysmam\ — c\ = r\ > 0 

and so 
sian +s2a2i H \-smami >c\ 

Similarly, comparing the coefficients of Xj for any j , 1 < j < n, we have 

s\a\j + s2a2j H hsmamj ~Cj = r/ > 0 

and so 
siaij + s2a2j H hsmamj > Cj 
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Thus 
A'Y0 > c 

To show (c), consider the constant terms in the above equations. We must have 

sibi +s2b2 H \-smbm = c-X0 

that is, 
b-Y0 = c-X0 

Since Fo > 0 and A'YQ > c, the point Fo is a feasible solution to the min problem. 
The value of the objective function v at Yo, b ■ YQ, is equal to the value of the objective 
function z at XQ. Thus, from Corollary 4.4.2, the minimal value of v is b ■ YQ, so the 
optimal values of both problems are equal. 

Finally, suppose that we know initially that it is the min problem that has the finite 
optimal solution. But in Section 4.2 it was shown that this problem is equivalent to 
a problem expressed in max form. Thus we can apply what we have already proved 
to this equivalent problem and conclude that the dual to the min problem, the max 
problem, has the same optimal solution. D 

Corollary 4.4.4. If both the max and min problems have feasible solutions, then both 
objective functions have optimal solutions and Maxz = Min v. 

Proof. Since both problems have feasible solutions, it follows from Theorem 4.4.1 
that the objective function z is bounded above and the objective function v is bounded 
below. From Corollary 3.8.1, both objective functions attain their optimal values and, 
from the Duality Theorem, these optimal values must be equal. D 

In summary, we have shown that there are exactly four different categories into 
which solutions to the max and min problems can fall. 

1. Both problems have feasible solutions. Then the sets of possible values for 
the objective functions z and v relate on the real line as follows: 

Z = c-X | v = b-Y 

I 
optimal value for both 

2. The objective function z is unbounded above and the min problem has no 
feasible solutions. 

3. The objective function v is unbounded below and the max problem has no 
feasible solutions. 

4. Both problems have no feasible solutions. 

The following example demonstrates an important application of the duality the-
orem. 
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Example 4.4.1. Suppose we apply the simplex algorithm to the problem of 

Maximizing —5xi + 18^2 + 6x3 — X4 (4.4.2) 
subject to 

2xi — X3 + 3x4 < 20 
X2 — 2X3 — X4 < 30 

-3xi + 6x2 + 3x3 + 4x4 < 24 
Xj,X2,X3,X4 > 0 

and the resulting final tableau suggests a maximum value of 112 for the objective 
function attained at the point (10,9,0,0) (and an optimal solution point of (2,0,3) 
for the dual). We can now easily check the accuracy of our calculations. 

First, is the point (10,9,0,0) a feasible solution to (4.4.2), and is the value of 
the objective function at this point 112? (It might be hoped that this part of the test 
procedure is already standard practice.) 

Second, consider the dual to (4.4.2) 

Minimize 20yi + 30y2 + 24y3 

subject to 
2ji - 3y3 > - 5 

y2 + 6y3 > 18 

-y\ - 2j2 + 3y3 > 6 
3yi - yi + 4>>3 > - 1 

yuyiM >o 

Now we determine whether the point (2,0,3) is a feasible solution to this problem 
and whether the value of the associated objective function at (2,0,3) is also 112. 

The answers to the above questions are all positive, as the reader may confirm. 
Corollary 4.4.2 guarantees then that we have calculated accurately and that our pro-
posed optimal value and solution points are correct. The Duality Theorem guarantees 
that this test procedure is always available. 

From the proof of the Duality Theorem, we know that when the simplex algo-
rithm is applied to a maximization problem with (<) constraints, the entries in the 
bottom row of the final tableau in the slack variable columns give the optimal solu-
tion point to the corresponding dual minimization problem. (We had already seen an 
example of this in the tableau solution of the maximization problem of (4.3.2), the 
dual problem constructed in Example 4.3.1.) The following example exploits this 
result. 
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Example 4.4.2. Consider the linear programming problem of 

Minimizing 20xi + 15x2 + 54x3 
subject to 
x\ — 2x2 + 6x3 > 30 

X2 + 2X3 > 6 
2xi — 3*3 > —5 
X\ — X2 > 18 

Xj,X2,X3 > 0 

To solve this problem using the simplex method, we would first add 4 slack variables, 
then 3 artificial variables (the slack variable in the third constraint could serve as a 
basic variable), and use the full two stages of the algorithm on the resulting problem 
of 4 constraints and 10 variables. However, the dual to this problem is to 

Maximize 30y\ + 63*2 — 5j3 + I8V4 
subject to 

V! + 2y3 + y4 < 20 
-2yi + y2 - y4 < 15 

6yi + 2j2 — 3y3 < 54 

y\,yi,y3,y4 > 0 

Applying the simplex algorithm to this dual problem is somewhat easier. Adding 
three slack variables and solving, we have the tableaux of Table 4.3. The maximum 
value of the objective function 30yi + 6j2 — 5j3 +18V4 is 522, and therefore the min-
imum value of the objective function of the original problem also is 522. Moreover, 
from the bottom row of the final tableau, we see that the point (18,0,3) is an optimal 
solution point to the original problem. (Of course, the application of the simplex 
algorithm to the dual of the minimization problem is facilitated here by the fact that 
the coefficients in the original objective function, 20, 15, and 54, are all nonnegative. 
If this had not been the case, computing the solution to the dual with the simplex 
algorithm would also have required the use of artificial variables.) 

These observations suggest a general question. If we solve any linear program-
ming problem with a finite optimal solution using the simplex algorithm, can we 
always find in the final tableau an optimal solution point to the dual? We address this 
issue in the following examples, considering first the resolution of a minimization 
problem. 

Example 4.4.3. Consider the problem of Example 4.3.1 of 

Minimizing 10xi +4x2 
subject to 
3xi + 2x2 > 60 
7xi + 2x2 > 84 
3xi + 6x2 > 72 
Xj,X2 > 0 
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Table 4.3 

^5 

>'6 

yi 

ys 

J6 

>'i 

y\ 

ye 

y\ 

J 4 

ye 

yi 

y\ 

l 

- 2 

© 
-30 

0 

0 

1 

0 

0 

0 

1 

0 

1 

- 4 

3 

6 

J 2 

0 

1 

2 

- 6 
l 
3 
5 
3 
1 
3 

4 
1 
3 
4 
3 

Q) 
- 2 

0 

0 

1 

0 

J 3 

2 

0 

- 3 

5 
5 
2 

- 1 
1 
2 

- 1 0 
5 
2 
3 
2 
1 
2 

35 

2 
7 
2 
3 
2 

32 

J 4 

1 

- 1 

0 

- 1 8 

( ! ) 
- 1 

0 

- 1 8 

1 

0 

0 

0 

1 

0 

0 

0 

ys 

l 

0 

0 

0 

1 

0 

0 

0 

1 

1 

0 

18 

1 

1 

0 

18 

y6 

0 

l 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

yi 

0 

0 

1 

0 
1 
6 
1 
3 
1 
6 

5 
l 
6 
1 
6 
1 
6 

2 

0 
l 
2 
1 
2 

3 

20 

15 

54 

0 

11 

33 

9 

270 

11 

44 

9 

468 

20 

8 

27 

522 

Table 4.4 

x6 

x-i 

xg 

*5 

X\ 

X2 

X\ 

3 

7 

3 

10 

- 1 3 

0 

1 

0 

0 

XI 

2 

2 

6 

4 

-10 

0 

0 

1 

0 

x3 

- 1 

0 

0 

0 

1 
9 
2 
1 
4 
7 
8 

1 

X4 

0 

- 1 

0 

0 

1 
3 
2 
1 
4 
3 
8 

1 

X5 

0 

0 

- 1 

0 

1 

1 

0 

0 

0 

X6 

1 

0 

0 

0 

0 
9 
2 
1 
4 
7 
8 

- 1 

x1 

0 

1 

0 

0 

0 
3 
2 
1 
4 
3 
8 

- 1 

x& 

0 

0 

1 

0 

0 

- 1 

0 

0 

0 

60 

84 

72 

0 

-216 

72 

6 

21 

-144 

Subtracting three slack variables, adding three artificial variables, and then using the 
simplex algorithm yields the initial and final tableaux of Table 4.4. 

We know from Example 4.3.1 that the optimal solution point for the correspond-
ing dual maximization problem is yi = 1, yj = 1, ^3 = 0. Note that these values 
are precisely the numbers in the bottom row of the final tableau in the slack variable 
columns for the first, second, and third constraints, respectively. 
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This is always the case when starting with a minimization problem with (>) con-
straints: a solution point to the dual is given in the bottom row of the final tableau 
in the slack variable columns. A proof of this fact is called for in Problem 11. The 
proof essentially duplicates the proof in the Duality Theorem, with some minor ad-
justments (here, for example, Sj = —tj, 1 < j < m). 

These results can be generalized. In a final tableau presenting the optimal value 
and an optimal solution point for a linear programming problem, the values of the 
variables in an optimal solution point to the dual for those variables that correspond 
to inequalities in the original problem are found in the bottom row of the final tableau 
in the associated slack variable columns. 

Example 4.4.4. The dual to the problem of 

Maximizing 3xi +X2 — X3 

subject to 

X\ + X2 + 5X3 + X4 < 200 

—x\ + 2x3 > 20 

2x2 — X3 + 5x4 > 50 

Xi,X2,X3,X4 > 0 

is the problem of 

Minimizing 200yi — 20y2 — 50}>3 

subject to 

y\ + yi > 3 

y\ - 2y3 > 1 

5y\ - 2y2 + y3 > - 1 

yi - 5y3 > 0 

yi,y2,y3 > o 

The initial and final tableau resolution of the maximization problem is in Table 4.5. 
The dual variables y\, y2, and 3̂3 correspond to the first, second, and third in-

equalities, with slack variables X5, x^, and xj, respectively, of the original problem. 
Thus an optimal solution point to the dual is y\ = 1, j2 = 3, y3 = 0. This is easy to 
verify. Note that the point (1,3,0) satisfies the dual constraints and has the required 
optimal value of 140 at the objective function. 

The last two examples in this section contain equality constraints in the original 
problem and thus unrestricted variables in the dual. 

Example 4.4.5. The problem of 

Maximizing 3xi + 5x2 + 9x3 

subject to 

4xi + 12x2 + 15x3 = 900 

-xi + 2x2 + 3x3 = 120 

^1,^2,^3 > 0 
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Table 4.5 

x5 

x& 

Xg 

x-, 

X3 

x2 

x\ 

1 

- 1 

0 

- 3 

1 
15 
2 
1 
2 
7 
2 

1 

X2 

1 

0 

2 

- 1 

- 2 

0 

0 

1 

0 

X3 

5 

2 

- 1 

1 

- 1 

0 

1 

0 

0 

*4 

1 

0 

5 

0 

- 5 

- 3 

0 

1 

1 

X5 

1 

0 

0 

0 

0 

2 

0 

1 

1 

x6 

0 

- 1 

0 

0 

1 
11 
■2 

1 
2 
5 
2 

3 

*7 

0 

0 

- 1 

0 

1 

1 

0 

0 

0 

*8 

0 

1 

0 

0 

0 
11 
2 
1 
2 
5 
2 

- 3 

Xg 

0 

0 

1 

0 

0 

- 1 

0 

0 

0 

200 

20 

50 

0 

-70 

240 

10 

150 

140 

Table 4.6 

X4 

*5 

X\ 

X3 

X\ 

4 

- 1 

- 3 

- 3 

1 

0 

0 

X2 

12 

2 

- 5 

-14 
2 
9 

20 
27 
7 
3 

*3 

15 

3 

- 9 

- 1 8 

0 

1 

0 

X4 

1 

0 

0 

0 
1 
9 
1 

27 
2 
3 

*5 

0 

1 

0 

0 
5 
9 

4 
27 

1 
3 

900 

120 

0 

-1020 
100 
3 

460 
9 

560 

with the dual problem of 

Minimizing 900yi + 120v2 
subject to 

fyi - y2 > 3 
12ji + 2y2 > 5 
15yi + 3y2 > 9 
yi,y>2 unrestricted 

has a maximum value of 560 and an optimal solution point of (-^p,0., ^p) , as seen 
in what we'll refer to as the reduced tableaux resolution of the problem in Table 4.6, 
where only the first and last tableaux are displayed. The unrestricted variables y\ and 
j2 of the dual correspond to the two equalities in the constraints of the maximization 
problem, and to initiate the simplex algorithm for this problem, artificial variables 
needed to be introduced. As the reader may have guessed, these artificial variable 
columns provide the data for the optimal solution point of the dual. Indeed, the 
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required value for the dual objective function of 560 is attained at the point (§, —5), 
a feasible solution point to the dual, as the reader may confirm. 

In general, when solving a maximization problem containing equality constraints, 
the coordinates of the unrestricted dual variables at an optimal solution point to the 
dual are in the bottom row of the final tableau resolution of the maximization problem 
in the corresponding artificial variable columns. Problem 12 addresses the proof of 
this statement. 

However, when solving a minimization problem containing equality constraints, 
a sign change adjustment is necessary when determining an optimal solution point to 
the dual. The value of each unrestricted variable in the optimal solution point to the 
dual is the negative of the entry in the bottom row of the associated artificial variable 
column. (Why this difference, one might ask? But note that the situations are not 
identical. For example, our algorithm has been designed for minimization problems; 
for such a problem, the coefficients of the objective function are entered directly 
into the initial tableau. To adapt the algorithm to a maximization problem, the cor-
responding minimization problem is considered, which necessitates an initial sign 
change in the objective function coefficients when entered into the initial tableau.) 

Example 4.4.6. The reduced tableaux resolution for the problem of 

Minimizing z = 16xi + 32x2 + 12x3 
subject to 
Xi + 5X2 + *3 > 2 

4xi + 4x2 — 2x3 = 1 
xi,x2,x3 > 0 

is in Table 4.7. We have Min z = 14 attained at (0, j%, j ^ ) . The dual problem is to 

Table 4.7 

X5 

x6 

X3 

x2 

X\ 

1 

4 

16 

-5 
8 
7 
3 
7 

16 

X2 

5 

4 

32 

-9 

0 

1 

0 

X3 

1 

-2 

12 

1 

1 

0 

0 

X4 

-1 

0 

0 

1 
2 
7 
1 
7 

8 

*5 

1 

0 

0 

0 
2 
7 
1 
7 

-8 

x6 

0 

1 

0 

0 
5 
14 
1 
14 
2 

2 

1 

0 

-3 
3 
14 
5 
14 

-14 
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Maximize v = 2y\ + J 2 

subject to 

yi + 4y2 < 16 
5yx + 4y2 < 32 

y\ - 2yi < 12 

y\ > 0, y2 unrestricted 

From the final tableau, the point y\ = 8 (using the slack variable X4 column) and 
j2 = — (2) = —2 (using the artificial variable x^ column) is an optimal solution point 
of the dual, as the reader may easily verify. 

Problem Set 4.4 

1. Prove Corollary 4.4.3. 

2. Show that both the following linear programming problem and its dual do not 
have any feasible solutions. 

Maximize x\ 

subject to 

*i — *2 < 1 

—Xy + Xj < —2 

X\,X2 > 0 

3. Consider the linear programming problem of 

Maximizing 4x\ + 10x2 — 3^3 + 2x4 

subject to 

3xi — 2x2 + 7x3 + X4 < 26 

xi + 6x2 — X3 + 5x4 < 30 

—4xi + 8x2 — 2x3 — X4 < 10 

Xj,X2,X3,X4 > 0 

(a) Show that ( f , f ,0,0) is a feasible solution to this problem. Compute the 
value of the objective function at this point. 

(b) Write out the dual problem. Show that (j^, j ^ , 0 ) is a feasible solution to 
this problem. What is the value of the objective function of the dual at this 
point? 

(c) Using Corollary 4.4.2, what can you conclude? 

4. Verify that ( 0 , 5 | , 8 5 , 5) is an optimal solution point to the problem of 
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Minimizing 7x\ + 11x2 — 3x3 — *4 

subject to 

2xj + 2x2 — X3 — 3x4 > 2 

—X\ + 5X2 — 2X3 + X4 > 12 

x\ — 4x2 + 3x3 + 5x4 > 4 

Xi,X2,X3,X4 > 0 

a n d ( 3 | , 2 , l ± ) is an optimal solution point to the dual. 

5. Verify that (0,3,2±,0, i f ) is an optimal solution point to the problem of 

Maximizing 3xi + 2x2 + 5x3 ~ 2x4 +*s 

subject to 

4x] + X2 — X3 + 2x4 + 4X5 < 6 

3xi + 3X2 + 2X3 — X4 — X5 < 12 

X\ — 2X2 + 5X3 — X4 + X5 < 6 

Xl,X2,X3,X4,X5 > 0 

and that ( | , 1, | ) is an optimal solution point to the dual. 

6. Consider the problem of 

Minimizing z = 13*1 + 15x2 + 12x3 + 8x4 

subject to 

4xi + 8x2 — 5x3 + 3x4 = 32 

3xi — 2x2 + 6x3 — X4 > 3 

Xi,X2,X3,X4 > 0 

Determine which of the following points are feasible solutions to this min 
problem: (9,0,2,2), ( 4 , 1 , - 1 , 1 ) , and (5,1,1,3). 
Evaluate the function z at those points in part (a) that are feasible solutions 
to the problem. 
Write out the dual to the min problem. 
Determine which of the following points are feasible solutions to this dual 
problem: ( - 1 , 1 ) , (0,2), and (1,3). 
Evaluate the dual objective function at those points in part (d) that are fea-
sible solutions to the problem. 
Using the information above, and only this information, what can you say 
about the minimum value of z? 

7. Solve the following by applying the simplex algorithm to the dual: 

150 

150 

150 

150 

150 

150 
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Minimize 8x1 + 13.*2 + 20x3 
subject to 

3xi + 2x2 + X3 > 2 
X\ — X2 + 2X3 > 4 

2X2 + 2X3 > — 1 
—2x\ + 3x2 > 0 

4xi - *3 > - 2 
Xi,X2,X3 > 0 

8. Generalization of the proof of the Duality Theorem. Suppose some of the con-
stant terms bj in (4.4.1) are negative. By rearranging the constraining equations 
if necessary, assume that b{ < 0 for 1 < i < k and bi > 0 for k+ 1 < i < m. Then, 
to apply the simplex method to (4.4.1), the first k equations must be multiplied 
by (—1), resulting in all nonnegative terms in the right column. However, now 
an initial basic feasible solution may not be apparent; if not, artificial variables 
must be introduced and the simplex method initiated at stage one. Thus the 
initial tableau would look something like the following: 

x\ 
-an . 

- « * l ■ 

öjt+1,1 ■ 

<Zm,l • 

- C l . 

Xfi Xn+\ 

. - f l l „ - 1 . 

• -akn 0 . 
• ak+l,n 0 • 

@m,n U 

. -cn 0 . 

Xn+k 
. 0 

. - 1 

. 0 

. 0 

. 0 

xn+k+\ 
0 . 

0 . 
1 . 

0 . 
0 . 

Xn-\-m 

. 0 

. 0 

. 0 

. 1 

. 0 

Art. 
1 

0 . 
0 . 

0 . 

Wars. 
.. 0 

.. 1 

.. 0 

.. 0 

-b\ 

-bk 

bk+\ 

bm 
0 

Since we have assumed that the problem of (4.4.1) has feasible solutions, the 
simplex method initiated on the above tableau will first drive the artificial vari-
ables from the basis and then drive to the optimal value of the objective function. 
Let rj, st, and f, be defined as in the proof of the Duality Theorem for 1 < j <n 
and 1 <i<m. Show that the proof given there can be extended to this case, with 
the only difference being that here s, = —f(- for 1 < i < k. 

9. Show that the r / s as defined in the proof of the Duality Theorem measure the 
slack in the constraints of the dual problem at the io = («i ,^2, ■ • -,sn)' solution 
point. 

10. The simplex algorithm has been used to resolve the following problems, and the 
corresponding initial and final tableaux are given (with the w row omitted). For 
each, construct the dual, determine an optimal solution point to the dual using 
the data from the tableaux, and verify that your solution point is feasible and 
optimal. 
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(a) Minimize lOOxi + 150x2 

subject to 

2xi + x2 > 13 

6xi — 9x2 < 2 

7xi — 8x2 > 5 

xi ,x 2 > 0 

x6 

X4 

XI 

x5 

x\ 

x2 

x\ 

2 

6 

7 

100 

0 

1 

0 

0 

*2 

1 

-9 

-8 

150 

0 

0 

1 

0 

X3 

-1 

0 

0 

0 
5 
8 
3 
8 
1 
4 

75 

X4 

0 

1 

0 

0 
23 
24 
1 
24 
1 
12 
25 
3 

X5 

0 

0 

-1 

0 

1 

0 

0 

0 

x6 

1 

0 

0 

0 
5 
8 
3 
8 
1 
4 

-75 

x-i 

0 

0 

1 

0 

-1 

0 

0 

0 

13 

2 

5 

0 
121 
24 
119 
24 
37 
12 

2875 
3 

(b) Maximize 3xi — 4x2 + 5x3 

subject to 

4xi — X2 + 6x3 < 9 

xi + 2x2 — xj, = 54 

*1,*2,*3 > 0 

x4 

X5 

x\ 

x2 

X\ 

4 

1 

-3 

1 

0 

0 

Xl 

-1 

2 

4 

0 

1 

0 

x3 

6 

-1 

-5 
11 
9 
10 
9 
28 
9 

X4 

1 

0 

0 
2 
9 
1 
9 
10 
9 

*5 

0 

1 

0 
1 
9 
4 
9 
13 
9 

9 

54 

0 

8 

23 

-68 

(c) Minimize —2xj + 5x2 + 9x3 

subject to 

2X2 + 5X3 > 1 

3xi — X2 — X3 < 6 

2xi — 4x2 + *3 = 3 

Xl,X2,X3 > 0 
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x6 

x5 

XI 

* 3 

X2 

x\ 

x\ 

0 

3 

2 

- 2 

0 

0 

1 

0 

X2 

2 

- 1 

- 4 

5 

0 

1 

0 

0 

X3 

5 

- 1 

1 

9 

1 

0 

0 

0 

X4 

- 1 

0 

0 

0 
1 
6 

1 
12 

1 
12 

7 
4 

X5 

0 

1 

0 

0 
1 

15 

1 
6 

11 
30 

1 
2 

X6 

1 

0 

0 

0 
l 
6 

1 
12 

1 
12 

7 
4 

* 7 

0 

0 

1 

0 
1 

10 

l 
4 

1 
20 

1 
4 

1 

6 

3 

0 
1 

15 
1 
3 

32 
15 

2 

(d) Minimize lOxi + 20x2 + 15x3 + 21x4 + 5x5 

subject to 
7xi — 10x2 + 8x3 — 5x4 + 3x5 = 730 
3xi + X2 + 4x3 — 2x4 — xs = 350 
Xl,X2,X3,X4,X5 > 0 

x6 

Xl 

x\ 

X3 

x\ 

1 

3 

10 

1 

0 

0 

x2 

-10 

1 

20 

-12 
37 
4 

5 
4 

X3 

8 

4 

15 

0 

1 

0 

X4 

- 5 

2 

21 

- 9 
29 
4 

9 
4 

x5 

3 

- 1 

5 

5 

- 4 

15 

x6 

1 

0 

0 

1 
3 
4 

5 
4 

*7 

0 

1 

0 

- 2 
7 
4 

25 
4 

730 

350 

0 

30 

65 

-1275 

(e) Maximize lOxi — 12x2 + 11*3 
subject to 
6x1 - 7x2 + 8x3 = 90 
-x i + 3x3 > 42 
Xi,X2.X3 > 0 

* 5 

X6 

X3 

X2 

x\ 

6 

- 1 

-10 
1 
3 

26 
21 

25 
21 

x2 

-1 

0 

12 

0 

1 

0 

X3 

8 

3 

-11 

1 

0 
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11. (a) Consider the linear programming problem of 

Minimizing c\X\ + C2X2 -\ h cnxn 

subject to 
an.*i + «12*2 + ... + a\nx„ > b\ 

021*1 + 022*2 + • • • + Û2A > t>2 

am\x\ + am2X2 + ... + amnxn > bm 

Xi,X2,...,Xn > 0 

Assume that bt >0,l<i<m, and that the problem has a finite optimal 
solution. To find this solution, suppose the simplex method is used, first 
adding m slack variables to the problem (each with coefficient (—1)) and 
then m artificial variables. Let si,S2,..-,sm denote the m entries in the bot-
tom row of the final tableau in the m slack variable columns. Show that 
(si,S2, ..., sm) is an optimal solution point to the dual, modeling your proof 
on the proof of the Duality Theorem. 

(b) Show that the above result also follows from Problem 8. 

12. Consider the linear programming problem of 

Maximizing c\x\ + C2X2 H V Cn*n 
subject to 

a\\x\ + ... + a\„x„ < b\ 

akxx\ + ... + aknxn < bk 

ßfc+i,i*i + ••• + ak+\nxn = bjc+i 

®m\X\ ~r • • • ~r ^mn^n = ^m 

Xl,X2,...,X„ > 0 

Assume that bi > 0 for 1 < i < m. Suppose k slack variables and m — k artificial 
variables are added to the problem and the simplex algorithm is applied, driving 
to a finite optimal solution. Denote by s,-, 1 < i < m, the entries in the bottom 
row (the z row) of the final tableau in the slack variable (1 <i<k) and artificial 
variable (£+1 < i<m) columns. Show that (s\,S2,- ■■ ,sm) is an optimal solution 
point to the dual. 

4.5 THE COMPLEMENTARY SLACKNESS THEOREM 

In this section we discuss the Complementary Slackness Theorem. The theorem 
relates optimal solution points of a linear programming problem and its dual. The 
theorem will not be needed in any further theoretical developments in the text. How-
ever, the relationships prescribed by the theorem are certainly interesting and useful, 
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and will be referred to occasionally in the problem sets and in the development of 
the transportation problem algorithm in Chapter 7. Those readers who continue their 
studies in linear programming at a more advanced level may well encounter comple-
mentary slackness again. 

In Example 4.4.1 of the previous section, it was verified that the point (10,9,0,0) 
is an optimal solution point to the problem of 

Maximizing f(x\ ,X2,X3,X4) = —5x\ + 18x2 + 6x3 —X4 (4.5.1) 
subject to 

2*i — X3 + 3x4 < 20 
X2 — 2X3 ~■ X4 < 30 

-3xi + 6x2 + 3x3 + 4x4 < 24 
Xi,X2,X3,X4 > 0 

and the point (2,0,3) is an optimal solution point to the dual, 

Minimize g(y, ,y2,y3) = 20yi + 30y2 + 24y3 (4.5.2) 
subject to 
2yi - 3y3 > - 5 

y2 + 6y3 > 18 
-y i - 2y2 + 3y3 > 6 
3yi - yi + 4y3 > - 1 

yi,y2,y3 > 0 

Since (10,9,0,0) is an optimal solution to (4.5.1), it certainly satisfies the constraints 
of (4.5.1). In fact, evaluating the three constraints at this point, we find slack of 0, 
21, and 0 at the first, second, and third inequalities, respectively. Now the three 
dual variables y\,y2,ys of (4.5.2) correspond to these three constraints; and note that 
where there is positive slack in the constraints of (4.5.1) at the point (10,9,0,0), the 
value of the corresponding dual variable at the optimal solution point (2,0,3) is 0. 

Conversely, evaluating the four constraints of (4.5.2) at (2,0,3) yields slack of 0, 
0, 1, and 19. Again, for each inequality at which the slack is positive, the value of 
the corresponding dual variable at the optimal solution point (10,9,0,0) is 0. 

These results are guaranteed by the Complementary Slackness Theorem. More-
over, the converse is also true. In terms of (4.5.1) and (4.5.2), this means that if X* 
and Y* are feasible solutions to (4.5.1) and (4.5.2), respectively, and satisfy the com-
plementary slackness conditions described, they are optimal solution points to their 
respective problems. 

The statement and proof of the general theorem follow. 

Theorem 4.5.1 (Complementary Slackness Theorem). Suppose X* = (x\,... ,x*) is 
a feasible solution to the problem of 

Maximizing c -X subject to AX < b,X > 0 (4.5.3) 
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and Y* = (y\,.-. ,y*m) is a feasible solution to the dual problem of 

Minimizing b ■ Y subject to A'Y >C,Y>0 (4.5.4) 

Then X* and Y* are optimal solution points to their respective problems if and only 
if for each i, 1 < i <m, either 

(slack in the ith constraint of (4.5.3) evaluated at X*) = bi — \^aijx) = 0 
j 

or 
y*=0 

and, for each j , I < j <n, either 

(slack in the jth constraint of (4.5.4) evaluated at Y*) = Na(/.y,* — cj = 0 
i 

or 
x*j=0 

Proof. Corollary 4.4.1 says it all, essentially. Since X* is a feasible solution to the 
max problem (4.5.3) and Y* is a feasible solution to the min problem (4.5.4), from 
the corollary we have 

b-Y*-c-X* = (b-AX*)-Y* + (A'Y*-c)-X* 

If X* and Y* satisfy the complementary slackness hypothesis, then for each i, with 
1 < i < n, the product 

y*[bi-Y/jaijXj)=0 

that is, each multiplication in the dot product (b — AX') ■ Y* equals 0, and so (b — 
AX') ■ Y* = 0. Similarly, from complementary slackness, (AT* -c) -X* = 0 . Thus 
b ■ Y* = c-X*, and so, from Corollary 4.4.2, X* and Y* are optimal solution points 
for their respective problems. 

Conversely, if X* and Y* are optimal solution points for their respective problems, 
we have 

0 = b ■ Y* ~ c ■ X* = (b - AX*) ■ Y* + (A'Y* -c)-X* 

But each dot product on the right side of the equation consists of a sum of prod-
ucts of nonnegative numbers, and so each dot product is nonnegative. Hence both 
(b - AX*) ■ Y* = 0 and (A'Y* ~ c) -X* = 0, that is, the points X* and Y* satisfy the 
complementary slackness conditions. D 
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Example 4.5.1. The problem of 

Minimizing 12;q + 5x2 + 10^3 (4.5.5) 
subject to 

X\ — Xj + 2X3 > 

^ 3 x j + X2 + 4X3 > 

—X] + 2X2 + 3X3 > 

2xi — 3x2 > 

7xi — X2 — 5X3 > 

Xi,X2,X3 > 0 

10 
- 9 

1 
- 2 
34 

has (7,0,3) as an optimal solution point. To determine an optimal solution point to 
the dual, 

Maximize lOyi - 9y2 +y3 - 2y4 + 34y5 (4.5.6) 
subject to 

y\ - 3y2 - J3 + 2y4 + 7y5 < 12 
-y\ + yi + 2y3 - 3y4 - y5 < 5 
2yi + 4y2 + 3y3 - 5y5 < 10 

yuy2,y3,y4,y5 > 0 

we can use complementary slackness. Evaluating the inequalities of (4.5.5) at the 
point (7,0,3), we find positive slack in the first, third, and fourth constraints (and 
zero slack in the other two). Thus any optimal solution Y* = (ylty^y^y^yl) t 0 

(4.5.6) must have y\ = y"^ = y*4 = 0. And the first and third components of (7,0,3) 
positive implies that Y* must yield zero slack in the first and third constraints of 
(4.5.6). Hence Y* = (0 ,^ ,0 ,0 ,^ ) and 

-3yî + 7y* = 12 2 5 (4 5 7) 
4y* - 5y| = 10 ' 

The (unique) solution to (4.5.7) is y*2 = 10, y*5 = 6, and so Y* = (0,10,0,0,6) is an 
(and the only) optimal solution point to (4.5.6). (In fact, the existence of this feasible 
solution to (4.5.6) satisfying complementary slackness now certifies the optimality 
of (7,0,3).) 

Example 4.5.2. Suppose it is claimed that the point (3,0,1,0) is an optimal solution 
to the problem of 

Maximizing 9xi + 3x2 + 5x3 + 22x4 (4.5.8) 
subject to 
2xi — X2 + 2x3 + 6x4 < 8 
5xi + 3x2 + *3 + 2x4 < 16 
4xi + X2 — X3 + 3x4 < 12 
Xi,X2,X3,X4 > 0 

We can use complementary slackness to attempt to ratify the claim. First, we verify 
that (3,0,1,0) is a feasible solution to (4.5.8), noting that the point yields zero slack 
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in the first two constraints of (4.5.8) and positive slack in the third. Now consider the 
dual. 

Minimize 8yi + 16y2 + 12y3 (4.5.9) 
subject to 
2yi + 5y2 + 4y3 > 9 
-y\ + 3>>2 + j3 > 3 
2ji + y2 - y-i > 5 
6ji + 2y2 + 3j3 > 22 

3'i,)'2,3'3 > 0 

If (4.5.8) has a finite optimal solution, so does (4.5.9), and any optimal solution 
point Y* — {y\,y2,y"Ç) must satisfy the complementary slackness conditions with 
(3,0,1,0). Thus, }>3=0, and 

2y\ + 5y*2 = 9 
2y\ + y*2 = 5 

yielding Y* = (2,1,0). But this point is not a feasible solution to (4.5.9), as the reader 
may verify. Hence (3,0,1,0) cannot be an optimal solution to (4.5.8). 

Problem Set 4.5 
1. Consider the linear programming problem of 

Maximizing x\ + 2x2 

subject to 
2x\ + x2 < 3 
x\ + 2x2 < 3 

xi,x2 > 0 

(a) Determine the dual problem. 
(b) Show that X* = (1,1) and Y* = (0,1) are optimal solutions for the original 

and dual problems, respectively, by using the Complementary Slackness 
Theorem. 

(c) Note that at these solution points, both >>j and the slack in the corresponding 
first constraint of the max problem are zero. 

2. Consider the linear programming problem of 

Maximizing 2x\ + 2x2 
subject to 
X\ + X3 + X4 < 1 

X2 + X3 — X4 < 1 

Xl + X2 + 2X3 < 3 

Xi,X2,X3,X4 > 0 
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(a) Determine the dual problem. 
(b) Show that X* = (1,1,0,0) and Y* = (1,1,1) are feasible solutions to the 

original and dual problems, respectively. 
(c) Show that for this pair of solutions, for each j , x*= > 0 implies that the slack 

in the corresponding dual constraint is zero. 
(d) Show that Y* is not an optimal solution to the dual. 
(e) Does this contradict the Complementary Slackness Theorem? 

3. Prove or disprove each of the following, using complementary slackness. 

(a) ( 1,1,0,0) is an optimal solution point to the maximization problem of Prob-
lem 2. 

(b) (0,4,0,2) is an optimal solution point to (4.5.8) on page 157. 
(c) (3,0,1,0,5) is an optimal solution point to the problem of 

Maximizing 5x\ + 16x2 — 4x3 ~M +1*5 

subject to 

8xi — 2x2 + 3x3 — 2x5 < 18 

2xi + 4x2 — 7x3 + 3x4 + *5 < 4 

X\ + 3X2 + X$ — X4 + 2X5 < 14 

Xl,X2,X3,X4,X5 > 0 

(d) ( 1,0,1,0) is an optimal solution point to the problem of 

Minimizing 5xj + 8x2 + 4x3 + 2x4 

subject to 

x\ + 2x2 — X3 + X4 > 0 

2xi + 3x2 + X3 — X4 > 3 

Xi,X2,X3,X4 > 0 

(e) (0,3,12) is an optimal solution point to the problem of 

Minimizing 2yi — 5j2 — 3y3 

subject to 

- 3 y j - 6y2 + 2y3 > 6 

y\ + 3y2 + V3 > 20 

4yi + 7y2 - 3y3 > - 1 5 

y\,y2,y3 > o 

(f) (0,3,0,0,4) is an optimal solution point to the problem of 

Maximizing 5xi + 4x2 + 8x3 + 9x4 + 15xs 

subject to 

Xi + X2 + 2X3 + X4 + 2X5 < H 

X] — 2X2 ~ X3 + 2X4 + 3X5 < 6 

Xl,X2,X3,X4,X5 > 0 



160 CHAPTER 4. DUALITY 

(g) (0,8) is an optimal solution point to the problem of 

Maximizing 3xi + 4x2 
subject to 
x\ + 2x2 S 16 
X\ + X2 < 8 

Xj,X2 > 0 

(h) ( 1,0,3) is an optimal solution point to the problem of 

Maximizing 6xi + 9x2 + 5x3 
subject to 
3xi + 3x2 + 2x3 < 9 

X\ + 2X2 + *3 < 4 

Xl,X2,X3 > 0 

(i) (2,1,0) is an optimal solution point to the problem of part (h). 
(j) (60,4,25) is an optimal solution point to the problem of 

Maximizing lOxj + 3x2 — 23x3 
subject to 
7xi + 2x2 - 16x3 < 28 
3xi + X2 — 7x3 < 9 
Xi,X2,X3 > 0 



CHAPTER 5 

SENSITIVITY 

ANALYSIS 

5.1 EXAMPLES IN SENSITIVITY ANALYSIS 

In some applications of linear programming there may be a need not only to optimize 
a given function under specified conditions, but also to evaluate the effects changes in 
the conditions of the problem have on the optimal solution. For example, it could be 
that some of the coefficients a,-7- of the coefficient matrix A are just approximations, 
and it would be desirable to know how their variance affects the optimal solution. 
Or it could be that the results of purchasing raw materials from other sources, yield-
ing altered cost coefficients Cj, or of expanding one's storage capacities, yielding 
altered constants Z?,-, are to be measured. The study of techniques used to handle such 
problems is called sensitivity analysis or postoptimality analysis. 

In this section we introduce, through three examples, some concepts involved in 
such an analysis. In the first example, we work with a linear programming problem 
with only two variables and two constraints. Our analysis of this problem is based 
on graphs in the plane, available because of the limited size of the problem, and 
the Duality Theorem. In the other examples, involving problems with more than 
two constraints, our analyses use only the Duality Theorem. Sensitivity analysis 
techniques for more general problems are developed in the subsequent sections of 
the chapter. 

Example 5.1.1. Consider the problem of the poultry producer in Problem 7 of Sec-
tion 2.2. The producer's stock requires daily at least 124 units of nutritional element 
A and 60 units of nutritional element B. Two feeds are available for use. One pound 
of Feed 1 costs 16 cents and contains 10 units of A and 3 units of B; 1 lb of Feed 2 
costs 14 cents and contains 4 units of A and 5 units of B. Wishing to determine an 
adequate diet for the stock at minimal costs, the producer defines x\ and X2 to be the 
number of pounds of Feeds 1 and 2, respectively, used in the diet and formulates the 
following linear programming problem. 

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, Inc. 
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Minimize 16xi +1%2 
subject to 
lOxi + 4x2 > 124 
3xi + 5x2 > 60 

Xi,X2 > 0 

The graph of the set of feasible solutions and one line from the family of lines 
{16xi + 14x2 = c : c a constant} are sketched in Figure 5.1. From the geometry, 
it is clear that the minimal value of 16xj + 14x2 on the set of feasible solutions is 
attained at the point (10,6). Thus the minimum daily cost for the poultry producer 
is $2.44, attained by using 10 lb of Feed 1 and 6 lb of Feed 2. 

Suppose, however, that the costs of the two feeds vary due to market conditions, 
weather patterns, labor negotiations, and the like, and the poultry producer would like 
some guidance on when to use what diet. We address this concern. As discussed in 
Section 2.2, using the slopes of the lines involved, the above result can be extended. 
If the costs of 1 lb of Feeds 1 and 2 are c\ and cj cents {c\, C2 > 0), respectively, and 
thus the objective function is given by cixi + C2*2> the minimum-cost diet is attained 
at (10,6) if - f < - ^ < - § , that is, if | < ^ < f, and at (20,0) if ^ < 5, and at 

(0,31 ) if I < I1. Thus, in terms of the ratio ^ , the minimum daily cost, in cents, of 
a feasible diet is 

10ci+6c2, ! < ! < § 

20ci, | < ! (5.1.1) 

31c2, I < a 

Figure 5.1 
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Using these results, we have, for example, that if the cost of 1 lb of Feed 2 were 
increased by 50% to 21 cents while the cost of Feed 1 remained at 16 cents/lb, the 
producer's daily minimal cost would be $2.86, but that if the cost of Feed 2 were 
doubled, the optimal diet would change and the daily cost would be $3.20, as the 
reader may verify. 

For this problem with only two variables, we have been able to completely char-
acterize the solution of the problem in terms of coefficients of the objective function. 
Suppose now that the poultry producer questions the effect of varying the daily nutri-
tional requirements on the minimal cost of an adequate diet. It could be that the 124 
units and 60 units required of elements A and B were estimates, and the producer 
would like to know what might be saved by decreasing these amounts. Or maybe 
the producer has discovered that by increasing the amounts of one or both of the 
nutrients, the stock has a higher market value, and wonders how this increased value 
compares with the increased feeding costs. 

In responding to these queries, we cannot proceed directly as above; changing the 
constant terms of the constraints changes the set of feasible solutions and makes the 
sketch in Figure 5.1 obsolete. However, using duality, the queries can be addressed. 

Assuming that the costs of the two feeds are 16 and 14 cents/lb, as originally 
stated, the dual to the original problem is to 

Maximize 124vi +60j2 
subject to 
IQyi + 3y2 < 16 
4yi + 5y2 < 14 

y\,y2 > 0 

From the graph in Figure 5.2, we see that the dual objective function 124yi +60j2 
on the set of feasible solutions to the dual is maximized at the point (1,2), with a 
maximum value equal to the minimum daily cost, in cents, of 244, as guaranteed 
by the Duality Theorem. In fact, using the Duality Theorem and Figure 5.2, we can 
proceed just as above to estimate the effect of varying the required amounts of the 
nutritional elements on the minimum cost. 

Let b\ and bj denote the minimal amounts of elements A and B required daily, 
with the dual objective function equal to b\y\ +^2^2- Then, using slopes, we find 
that the optimal solution point to the dual is (1,2) if | < ^ < ^ , and is (0,14/5) if 

g1 < | , and is (8/5,0) if y < -£-■ Therefore, in terms of the ratio g1, the maximum 
value of the dual objective function, and thus the producer's minimum daily cost, in 
cents, is 

61+2*2, * < £ < ¥ 

^ 2 , | < I 

5 ° ' ' 3 — b2 

In the second part of the above example, we were able to measure the conse-
quence of variations in the daily nutritional requirements for the stock on the minimal 
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Figure 5.2 

cost of an adequate diet; that is, we measured the effect of changes in the constant 
terms of the constraints of the problem on the optimal value of the objective function. 
We used the Duality Theorem along with the graph of the set of feasible solutions 
to the dual problem. Actually, for a given linear programming problem, even if the 
associated dual problem has more than two variables and graphing techniques are 
unavailable, we can still derive, using the Duality Theorem, useful information re-
lating changes in the constant terms of the constraints of the original problem to the 
optimal value of the objective function. We illustrate with two examples. 

Example 5.1.2. Consider the problem of the boat manufacturer in Example 2.3.1 
on page 21. The problem is to determine a maximal profit production schedule in 
the manufacturing and selling of rowboats and canoes utilizing limited resources of 
aluminum, machine time, and labor. Letting R and C denote the number of rowboats 
and canoes, respectively, to be manufactured, the linear programming problem is to 

Maximize z = 50/? + 60C (5.1.2) 
subject to 
50R + 30C < 2000 

6R+ 5C < 300 
3R + 5C < 200 

R,C>0 
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The constant terms of the constraints come from the limits on the resources of alu-
minum (2000 lb), machine time (300 min), and labor (200 hr). As determined in 
Problem 1 of Section 2.3 (or see Section 8.1), the maximum possible profit is $2750 
earned in the production of 25 rowboats and 25 canoes. 

Suppose that the boat manufacturer has the opportunity to purchase more alu-
minum. With additional aluminum available, (possibly) more boats can be produced. 
But the manufacturer needs to know how the profits from the additional sales would 
compare with the cost of the extra aluminum. In other words, how much should he 
be willing to pay for more aluminum? 

In terms of the original problem of (5.1.2), what we need is a measure of the 
effect of a change in the constant of the first inequality on the maximum value of the 
objective function. To determine this, consider the dual to the problem of (5.1.2) and 
its solution. The dual is to 

Minimize v = 2000yi + 300^2 + 200y3 

subject to 
50yi + 6y2 + 3y3 > 50 
30yi + 5y2 + 5y3 > 60 

yi,yi,y3 > o 

The optimal value of v is 2750 attained at y i = je > W = 0> y3 = Y (see Problem 3 
of Section 4.3, or verify the optimality of both the points (25,25) and (7/16,0,75/8) 
using either Corollary 4.4.2 or Theorem 4.5.1). Note that the coefficients of the 
dual objective function v are, by definition, the constant terms from the original 
constraints. In fact, from the Duality Theorem, we have that 

Maxz = Min v = 2000 (-^) + 300(0) +200 ( f ) 

It follows that as long as (^ ,0 , ^ ) is an optimal solution point for the dual, the 
minimum of v and therefore the maximum profit will increase by $ ( j^ ) « 44 cents for 
each available pound of aluminum above the original 2000 lb. We can now answer 
the original question. Since the profit figures of $50 for a rowboat and $60 for a canoe 
would be determined by subtracting the cost of the required aluminum, machine 
time, and labor for each from the selling price, the manufacturer should be willing 
to pay for additional aluminum up to about 44 cents/lb more than was paid for the 
original 2000 lb of aluminum. For example, if 48 lb can be purchased for only 
$15 more than the original cost of 48 lb of aluminum, sales can be increased by 
$( j^)48 = $21 and, therefore, a net gain of $6 realized. 

Obviously, we can extend this analysis to the other resources. Since y3 ■= ~ ~ 
9.38 in the optimal solution to the dual, each additional hour of finishing labor would 
increase profits by $9.38. Similarly, y2 = 0 implies that an increase in available 
machine time over the original 300 min will provide no increase in profits. Actually, 
this last fact is also apparent from the original optimal solution to (5.1.2). As can 
be easily calculated, the production schedule of R = C = 25 utilizes all 2000 lb of 
aluminum and 200 hr of labor but only 275 of the available 300 min of machine 
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time. (The Complementary Slackness Theorem of Section 4.5 is relevant here.) Thus 
production is restricted by the limited amounts of aluminum and labor available. 
Machine time is an underutilized resource, so increasing its availability has no effect 
on profits. 

In sum, the solution (^ ,0 , ^ ) to the dual has provided estimates on the effects 
that changes in the constant terms of the problem have on the optimal value of the ob-
jective function. These numbers are sometimes called the shadow prices or marginal 
values of the constraints, since each provides some indication of the worth or cost on 
the optimal value of the objective function of a unit of the resource or demand gen-
erating the associated constraint. Certainly, however, there are limitations on their 
use. For example, the boat manufacturer would not be able to make unlimited prof-
its even if an unlimited supply of aluminum were available, because the other two 
constraints would still restrict the total production. Thus the estimate of an increased 
profit of 44 cents/lb for each additional pound of aluminum available is accurate only 
to some upper limit. Once the change or changes in the constant terms of the origi-
nal problem effect a change in the optimal solution point to the dual, these marginal 
values will change. In fact, in Example 5.1.1, by using geometry, we were able to 
state precisely, in terms of the ratio of the two constant terms, when a change in 
these constant terms would alter the optimal solution point to the dual. For a general 
problem this question can be much more involved. Techniques for dealing with it are 
developed in the subsequent sections of this chapter. 

Example 5.1.3. An aluminum can company must produce monthly at least 2400 
cases of a can of Type A and 2800 cases of a can of Type B. The company has three 
processes available for production. The first uses a special pure grade aluminum; the 
other two allow for some use of recycled aluminum. (Because of government regula-
tions, the company must use 600 lb of recycled aluminum in its monthly production.) 
The input, output, and cost of 1 hr of operation of each process are as follows: 

Process 1 
Process 2 
Process 3 

Input 
Recycled 
Al (lb) 

0 
2 
3 

Output 
Type A 
(cases) 

6 
12 
10 

Type B 
(cases) 

8 
12 
15 

Cost 
($) 

65 
150 
200 

Obviously, the company manager would want to know the most economical op-
eration of the plant. But other information, such as some estimate on the actual cost 
of meeting each of the two demands, and of utilizing the recycled aluminum, could 
be very helpful. 

To respond to the first question, we formulate and solve the associated linear 
programming problem. Defining *,• to be the number of hours that Process i is used, 
1 ■ < i■ < 3, the problem is to 
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Minimize 65xt + 150x2 + 200x3 (5.1.3) 
subject to 
6xi + 12x2 + 10x3 > 2400 
8xi + 12x2 + 15x3 > 2800 

2x2 + 3x3 = 600 
xi,x2,x3 > 0 

Subtracting slack variables X4 and X5 from the first two constraints, adding three 
artificial variables, and applying the simplex algorithm yields the reduced tableaux 
resolution in Table 5.1. (The first and last tableaux only are listed, and the artificial 
variable data are retained for future reference.) The company can meet its demands 
at a monthly cost of $41,250 by using Process 2 for 75 hr and Process 3 for 150 hr. 
An extra 350 cases of Type B cans would be produced. 

Now to respond to the second set of questions, we consider the dual to (5.1.3): 

Maximize v = 2400vi + 2800y2 + 600y3 (5.1.4) 
subject to 
6yi + 8y2 < 65 

I2yi + 12y2 + 2y3 < 150 
lOyi + 15y2 + 3y3 < 200 
yi,y2 > 0, y3 unrestricted 

From the data in the last row of Table 5.1, we see that (3 g, 0,56 \ ) is an optimal solu-
tion to this problem. (See Section 4.4, or verify that this point satisfies the constraints 
of (5.1.4) and that v evaluated at the point is 41,250.) Thus, 

Min cost (in $) = Maxv = 2400(3|) +2800(0) +600(56^) 

As long as this point remains an optimal solution point to (5.1.4), the shadow 
price for a case of Type A can is about $3.13 and $0 for a case of Type B (com-
pare with the surplus production). The cost associated with using 1 lb of recycled 
aluminum is $56.25. 

Table 5.1 

x6 

X-J 

x% 

x2 

X3 

X5 

x\ 

6 

8 

0 

65 
9 
8 
3 
4 

23 
4 

461 

x2 

12 

12 

2 

150 

1 

0 

0 

0 

X3 

10 

15 

3 

200 

0 

1 

0 

0 

X4 

- 1 

0 

0 

0 
3 
16 

1 
8 
3 
8 

J 8 

*5 

0 

- 1 

0 

0 

0 

0 

1 

0 

x6 

1 

0 

0 

0 
3 
16 

1 
8 
3 
8 

- 3 i 

x1 

0 

1 

0 

0 

0 

0 

- 1 

0 

x% 

0 

0 

1 

0 
5 
8 
3 
4 

15 
4 

- 5 6 l 

2,400 

2,800 

600 

0 

75 

150 

350 

-41,250 
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Given this information, it would be obvious to the company manager that the 
major cost factor in the present operation is the use of the recycled aluminum. Pro-
duction costs could be reduced, for example, by having the mandated amount of 
such aluminum to be used decreased or by investing in a can-producing process that 
utilizes more recycled aluminum. 

The above examples demonstrate the practical value of both the solution of a 
linear programming problem and the solution of the associated dual problem. This 
suggests an obvious question. Can the solution of the dual always be determined 
from the solution of a given linear programming problem? We saw in Section 4.4 
that the answer to that question is "yes" if the simplex algorithm is used to solve 
the initial problem and the tableau resolution of the problem is at hand. But what if 
Microsoft Excel's spreadsheet tool Solver is used? The answer here is also "yes," 
although the solution to the dual is not contained in the original spreadsheet. The 
solution to the dual (and much more) is available in the accompanying Sensitivity 
Report (see Appendix E). We demonstrate using Example 5.1.3. 

A spreadsheet solution of the can company's problem of (5.1.3) is shown in Fig-
ure 5.3 and the associated Sensitivity Report is in Figure 5.4. The spreadsheet dis-
plays the original data of the problem, the optimal operation and associated minimal 
cost, and, with a little subtraction, the values of the slack variables, but no more. 

The sensitivity report for the problem contains various related data. In particular, 
the solution point of (3 g, 0,56 \ ) for the dual problem is in the lower half of the dis-
play, the Constraints half, in the Shadow Price column, as can be seen. Concerning 
the other columns in this half of the display, columns 1 and 2 (the Cell and Name 
columns) identify the rows of that part of the table, column 3 lists the final values of 
the left-hand sides of the constraints, and column 5 lists the initial constant terms. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

A| B 
Can Company 

Output: Type A (cases/hr) 
Output: Type B (cases/hr) 

Input: AI (lb/hr) 
Cost (per hr of operation) 

Process 
Hours to Be Used 

Minimize Cost 

Constraints 
Minimum Type A cases 
Minimum Type B cases 

Aluminum Usage (lb) 

C 

1 
6 
8 
0 

$65 

1 
0 

$41,250 

LHS 
2400 
3150 
600 

I D | 

Process 
2 
12 
12 
2 

$150 

Variables 
2 

75 

I 

E | F | G 

3 
10 
15 
3 

$200 

3 
150 

RHS 
2400 
2800 
600 

Required 
Total 

a 
2 

2400 
2800 
600 

Figure 5.3 
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Can Company 
Sensitivity Report 

Figure 5.4 

These data can also be read off the spreadsheet. The last two columns, however, 
provide, as with the shadow price column, data of import. 

We know that the use of the dual to provide estimates on the effect on the optimal 
value of the objective function if there is a change in a constraint's constant term is 
contingent upon the given solution point to the dual remaining optimal. The data 
in the table's last two columns address this concern. For example, the 120 in the 
Allowable Increase column and the 931 in the Allowable Decrease column of the 
aluminum constraint row are bounds on the range of values for the constant term 
600 of the constraint to ensure that (3 g, 0,56^) remains the solution to the dual. 
In other words, as long as the required use of aluminum is between 506.667 and 
720 lb, and no other data of the problem are changed, $56.25/lb is the shadow price 
or marginal cost of meeting the aluminum requirement; increase the requirement 
to 700 lb, and minimal costs increase to $41,250+ 100($56.25) = $46,875, but 
decrease the requirement to 500 lb and costs decrease, but the exact amount cannot 
be determined from the data of the spreadsheet and sensitivity report. In Section 5.5 
we will show how these bounds are determined from a final tableau (in this example, 
from Table 5.1). Actually, our perspective will be broader. In Section 5.5 we will 
consider the effects of any change in the data of the constant-term column on the 
final solution of a problem. 

In Section 5.3 we will discuss the meaning and origins of the data of the upper 
half, the Adjustable Cells half, of the sensitivity report. 

Problem Set 5.1 

Problems 1-4 refer to Example 5.1.1, with costs and requirements as in the 
original problem.. 

1. (a) Show that if the ratio ^ = \, the two formulas of (5.1.1) eligible for calcu-
lating the daily minimal cost yield the same value. 
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(b) As in part (a), with ^ = §. 

2. (a) Verify that if the element A requirement were increased by 2 units for every 
1-unit decrease in the element B requirement, the producer's daily minimal 
cost remains unchanged, up to some upper limit. 

(b) Determine the upper limit. 

3. Suppose that the value of the poultry producer's stock increases by 15 cents for 
each 10-unit increase in the daily requirement for either nutritional element A 
or element B. Should the producer increase one of the daily requirements, and if 
so, which one and up to what limit? Explain. 

4. Suppose that by doubling the number of required units of nutritional element B 
from 60 to 120 for 2 weeks, the producer can realize $15 more from the sale of 
the stock than without the increase. Is this worthwhile? 

5. Suppose the minimal value of the objective function c\X\ H h cnxn of a linear 
programming problem is attained at the point XQ with the first m variables as 
basic variables. True or false: 

(a) If acj,m+l < j < n, is increased, the minimal value is still attained at XQ. 
(b) If a Cj, 1 <j< m, is decreased, the minimal value is still attained at XQ. 

6. Consider the example in Problem 11 of Section 2.3. (See also Problem 8 of Sec-
tion 3.5 and Problem 5 of Section 4.3.) Suppose the manager of the electronics 
firm wants an estimate on how altering the input of material and labor affects the 
maximum income earned from the sale of the circuits. Show that if b\ and bi 
denote the number of units of material and labor, respectively, committed to the 
production of the circuits, then if b\/b2 < §, the maximum attainable income 
in dollars is 5b \\ if | < b\/b2 < 2, the maximum income is b\ +6b2', and if 
bi/b2 > 2, the maximum income is 8^2-

7. Using two raw materials, a firm can produce up to three different products. In-
puts and profit per unit of production of each of the products are given in the 
following table. 

Product 1 
Product 2 
Product 3 

Input 
Raw Material Bi Raw Material B\ 

4 3 
2 1 
2 9 

Profit ($) 

45 
17 
30 

Suppose b\ units of Bi and &2 units of B2 are available. 

(a) Formulate the mathematical model for the problem of determining a pro-
duction schedule that maximizes profit. 

(b) Write out the dual problem. 
(c) Using the dual problem, express as a function of the ratio of b\ to £2 the 

maximum profit function. 



5.1. EXAMPLES IN SENSITIVITY ANALYSIS 171 

8. A bakery, using flour and sugar, makes cakes and pastries. Requirements and 
profits for making and selling a unit of each are as follows: 

Flour (lb) Sugar (lb) Profit ($) 

Cake 10 15 40 
Pastry 3 2 9 

The bakery has available b\ lb flour and 02 lb of sugar. Assuming that all items 
made can be sold, express the maximum profit attainable as a function of the 
ratio of b\ to bi-

9. Determine the marginal values for the resources of fabric, wood, and labor in 
Problem 23 of Section 2.3. (Complementary slackness and the solution point 
given in part (b) of the problem could be used to solve the dual.) 

10. Determine the shadow prices for the bluegrass and fescue seed requirements in 
Example 2.2.2 on page 14. In particular, estimate the effect on cost of a 1% 
increase in the bluegrass requirement for the final composition and also for the 
fescue requirement. 

11. Determine the marginal costs for the manufacture of Products A and B of Prob-
lem 7 of Section 2.3. 

12. For Problem 8 of Section 2.3, determine the marginal values of 1 hr of labor and 
1 unit of plastic, and of the market restrictions on the sale of the elephants and 
donkeys. 

13. Consider the transportation problem of Problem 2 of Section 2.4 and Exam-
ple 4.3.3 on page 135. 

(a) Show that 
xn = 300,xi2 = 0,xi3 = 0,xi4 = 300 

X21 = 0,X22 = 350,X23 = 400,X24 = 150 

and 
V! = 24,y2 = 0,;y3 = 44,y4 = 39,y5 = 50,y6 = 44 

are optimal solutions for the original and dual problems. (You could use 
either Corollary 4.4.2 or the Complementary Slackness Theorem.) 

(b) In the optimal shipping schedule, Outlet 1 is supplied by Warehouse 1 at a 
cost of 20 cents/case. But an increase in demand at Outlet 1 would increase 
the total shipping cost by more than 20 cents/case for each additional case 
required. Explain why this follows from the optimal solution to the dual 
problem. 

14. Consider the linear programming problem of (2.3.1) on page 25. 

(a) Show that (19.55,17.256,9.132,0) is a feasible solution. 
(b) Determine the dual to the problem of (2.3.1). 
(c) Show that (20.483,0,0,17.497,8.86) is a feasible solution to the dual. 
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(d) Show that these solutions are, in fact, optimal solution points for their re-
spective problems. 

(e) Referring to the last paragraph of Section 2.3 on page 26, assist the division 
manager in responding to the vice president's questions. 

(f) What does the marginal value for the first constraint of the original problem 
suggest about the use of overtime? 

15. Combining raw materials Mj and M2 and labor, a company produces units of 
A, B, and C. The requirements and profit (excluding the cost of labor) for the 
production and sale of a unit of each are as follows: 

A 
B 
C 

M, (lb) 

6 
12 
4 

M2 (lb) 

16 
25 
7 

Labor (hr) 

2 
3 
1 

Profit ($) 

105 
165 
60 

For the next month, the company has available 1 ton of Mi, 2.5 tons of M2, 500 
hr of labor at $18/hr, and up to an additional 120 hr of overtime at $24/hr. (The 
company pays only for the labor used.) 

To determine an optimal production schedule, the company manager defines x\, 
X2, and XT, to be the number of A's, B's, and C's to be produced and x\ to be the 
number of hours of overtime to be used and formulates the following model: 

Maximize z = I05xi + 165x2 + 60*3 — 18(2xi + 3̂ 2 +X3) — 6x4 
= 69xi +111x2 + 42x3 ~ 6x4 

subject to 
6x1 + 12x2 + 4x3 < 2000 

16xi + 25x2 + 7x3 < 5000 
2xi + 3x2 + X3 < 500+ X4 

x4 < 120 
Xi,X2,X3,X4 > 0 

Adding four slack variables and applying the simplex algorithm, the reduced 
tableaux resolution (initial and final tableaux only) are shown in Table 5.2. 

(a) What is the optimal production schedule, and what profit does it yield? 
(b) Write out the dual problem and determine an optimal solution point. 
(c) Several employees offer to work additional hours of overtime (at the same 

$24/hr rate). Should the manager accept their offer? 
(d) Suppose additional pounds of Mj could be purchased, at a cost of $7.75/lb 

over what the company now pays for the raw material. Should more be 
purchased? 

16. In Example 5.1.1 it was determined that (1,2) is the optimal solution point to 
the dual of the poultry producer's diet problem as long as the ratio y of the 
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*5 

x6 

x-i 

x% 

x6 

X4 

Xl 

*3 

X\ 

6 

16 

2 

0 

-69 

0 

0 

1 

0 

0 

Xl 

12 

25 

3 

0 

-111 

4 

0 

0 

3 

15 

*3 

4 

7 

1 

0 

-42 

0 

0 

0 

1 

0 

Table 5.2 

X4 

0 

0 

- 1 

1 

6 

0 

1 

0 

0 

0 

x5 

1 

0 

0 

0 

0 

1 

0 
1 
2 

1 

7± 
' 2 

x6 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

x1 

0 

0 

1 

0 

0 

-11 

0 

2 

- 3 

12 

xs 
0 

0 

0 

1 

0 

-11 

1 

2 

- 3 

6 

2000 

5000 

500 

120 

0 

180 

120 

240 

140 

21,720 

two nutritional requirements A and B is between | and y . (Thus, for the orig-
inal problem, with J- = | | , the marginal cost/shadow price of the element A 
requirement is 1 cent/unit and that of the element B requirement is 2 cents/unit.) 
Solver's Sensitivity Report for the original problem is shown in Figure 5.5. The 
data in the Shadow Price column confirms these marginal costs. We consider 
now the bounds listed in this part of the report. 

(a) The entry of 95 in the bottom row of the Allowable Increase column sug-
gests that shadow prices could change (i.e., the solution to the dual could 
change) if the nutritional requirement for element B increased by more than 
95 units, with all other data (in particular, the 124-unit requirement for el-
ement A) remaining fixed. Using the results stated in the last paragraph of 
Example 5.1.1, verify that this is indeed the case. 

(b) Proceeding as in part (a), verify Solver's Allowable Decrease entry of 22.8 
units for the element B requirement. 

Poultry Producer Problem 
Sensitivity Report 

Figure 5.5 
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(c) Corroborate Solver's two bounds for the element A requirement. 
(d) Construct an example in which both nutritional element requirements are 

changed, each within Solver's stated bound, but the solution to the dual 
changes. 

17. You are production supervisor of a section of a large plant. Your section is 
responsible for delivering at least 100 units of A and 320 units of B each week 
for plant utilization. The B's can be bought externally for $300/unit, and the A's 
and B's can be manufactured in your section using one or some combination of 
two different processes. Each process converts a rare metal and labor into A's 
and B's, with input and output for 1 hr of operation of each as follows: 

Process 1 
Process 2 

Rare Metal 
(lb) 

11 
10 

Input 
Labor 

(worker-hours) 

6 
12 

Output 

A's B's 

3 7 
4 9 

Each week , you can purchase up to 350 lb of rare metal at $150/lb and have 
available up to 250 hr of labor at $20/hr. (You pay only for what is used.) 

To determine an optimal production schedule, you define x,- to be the number 
of hours to use Process i, i = 1,2, and X3 to be the number of B's purchased 
externally and formulate the following model: 

Minimize z = 150(1lxi + 10x2) + 20(6x, + 12x2) + 300x3 

= 1770xi + 1740x2 + 300x3 
subject to 
1lx! +10x2 < 350 
6x, + 12x2 < 250 
3xi + 4x2 > 100 
7xi + 9x2 + x3 > 320 

Xi ,X2,X3 > 0 

Adding slack variables to each inequality and artificial variables to the last two, 
and applying the simplex algorithm, you obtain the reduced tableaux resolution 
shown in Table 5.3. 

You are called to the plant manager's office. The manager would like an estimate 
on the present cost of supplying a unit of A and a unit of B, and the manager 
suggests that labor from another section of the plant (at the same $20/hr pay 
rate) could be transferred to your section if this would help reduce your weekly 
production costs. With your printout in hand, how do you respond? 
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Table 5.3 

X4 

X5 

x& 

Xt) 

X\ 

X2 

X] 

X3 

X\ 

11 

6 

3 

7 

1770 

0 

0 

1 

0 

0 

x2 

10 

12 

4 

9 

1740 

0 

1 

0 

0 

0 

X3 

0 

0 

0 

1 

300 

0 

0 

0 

1 

0 

X4 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

X5 

0 

1 

0 

0 

0 
7 
6 
1 
4 
1 
3 
1 

12 

130 

x6 

0 

0 

- 1 

0 

0 

6 
l 
2 

- 1 
5 
2 

150 

x-, 

0 

0 

0 

- 1 

0 

0 

0 

0 

- 1 

300 

X% 

0 

0 

1 

0 

0 

- 6 
l 
2 

1 
5 
2 

-150 

Xg 

0 

0 

0 

1 

0 

0 

0 

0 

1 

-300 

350 

250 

100 

320 

0 

4 1 | 

\2\ 

16§ 

9 0 | 

-78,500 

5.2 MATRIX REPRESENTATION OF THE SIMPLEX 

ALGORITHM 

In this section, we will show that any tableau representation of a linear program-
ming problem is completely determined once an ordered set of basic variables for 
the tableau is specified. In fact, we will develop formulas yielding these tableau 
data in terms of the original problem data. In the following sections, we will use 
these formulas to analyze the effects of an alteration in the original data of a linear 
programming problem on an already determined optimal solution to the problem. 
We will consider changes in the objective function coefficient vector c and in the 
constant term column vector b, and will consider additions of a new variable (an ad-
ditional column in the coefficient matrix A) and a new constraint (an additional row 
in A). Our primary goal is not to provide a complete catalog of sensitivity analysis 
tools (notice, for example, that we will not consider the effects of a change in the 
entries of the coefficient matrix A); however, what follows should provide a deeper 
understanding of the questions that can be raised in postoptimality analysis and how 
the tools that we have at our disposal (and will have after this section and Section 
5.6) can be used to answer these questions. 

In matrix notation the standard form of the linear programming problem (Section 
3.1 ) is to minimize c • X — ZQ subj ect to AX — b, X > 0, where matrix A and vectors c, 
b, and X are defined in the obvious manner (in fact, just as in Section 4.2). Let A"' 
denote the jth column of the coefficient matrix A for j = 1,.. . , n. Then the matrix 
equation AX = b is equivalent to the vector equation 

±XjAU)=b 

in the m-dimensional column vectors A"' and b. We have already discussed the 
equivalence in Example 3.2.3 on page 67. 
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We denote the initial tableau presentation of this problem in standard form as 
follows: 

Suppose the pivot operation is applied several times, with the resulting equivalent lin-
ear programming problem being in canonical form and having the following tableau 
representation: 

A* 

Denote the basic variables in this representation by XjtUfXjm,. ■ ■ >-*/(m)> a nd define 
the m x m matrix B = [AUW\AW\...,AUW>] and the 1 x m row vector cB = 
[c;-(i),c;-(2),---,c_,-(m)]. Considering c and c* as row vectors, in this section we will 
show that 

A*=B~lA, b*=B-lb 
c* = c-cBB~lA, zl=zo-cBB-xb 

Thus the above tableau representation can be calculated from the original tableau 
data and these auxiliary terms B and cB, with the resulting tableau given by 

B~lA 

c-cBB-lA 

B~[b 

zo~cBB lb 

Before these results are proved, we give an example. 

Example 5.2.1. Consider the linear programming problem discussed in Sections 3.3 
and 3.5. The problem is, from (3.3.4) on page 73, to 

Minimize z = 5*i + 3x4 - 2x5 + 21 (5.2.1) 
subject to 
—6x\ + X3 — 2*4 + 2x5 = 6 
—3xi + *2 + 6x4 + 3x5 = 15 
Xl,X2,X3,X4,X5 > 0 

Applying the simplex algorithm generates, from Tables 3.1 and 3.3 of Section 3.5, 
the initial and final tableaux in Table 5.4. 

Here j ( l ) = 5 and j(2) = 1 and so 

B=[A^,A (i) andcB = [c5,ci] - [-2,5]. 

Hence 
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Table 5.4 

x3 

X2 

X5 

x\ 

x\ x2 x3 x4 x5 

-6 0 1 - 2 2 

-3 1 0 6 3 

5 0 0 3 - 2 

0 I _i 1 t 
u 2 4 2 ' 
1 1 __1 3 n 
1 6 4 2 u 

0 i 5 ^ 0 u 6 4 2 u 

6 

15 

-21 

6 

1 

-14 

and 

c-cBB'lb 

zo~cBB lb 

Note how effective these formulas might be in sensitivity analysis on a linear pro-
gramming problem. Suppose a given problem is solved using the simplex algorithm, 
but then changes are made on some of the original data (on A, b, c, or zo)- Using 
the formulas, we can determine the effect the changes would have on the previously 
calculated final tableaux, that is, on A*, b*, c*, and zj$. (As we will see, this is espe-
cially easy if the changes do not involve B.) From this modified final tableau, we can 
determine if the former optimal solution remains optimal; if not, we can work from 
this tableau to resolve the modified problem. 

We conclude this section with the verification of the formulas. 

Definition 5.2.1. Let £/,■ denote the ith unit vector of Rm. 

Lemma 5.2.1. The inverse of the matrix B always exists. 

Proof. Define Y = \y\ ,y2,... ,ym]'- For fixed i, 1 < i < m, consider the system BY = 
U{ of m equations in the m unknowns y\ ,y2, ■ ■ ■ ,ym. By applying the same sequence 
of pivot steps to go from the original tableau 

A 
c 

b 

zo 

I I 
"4 2 
I I 
4 6 

I 
2 
I 
6 

-6 0 
-3 1 

I 1 
I 0 

= A* 

I i 
"4 2 

l l 
"4 6 

6 
15 

= c-cBA* = [5,0,0,3, - 2 ] - [-2,5}A* 

= [ 5 , 0 , 0 , 3 , - 2 ] - [ 5 , - i , - | , i , - 2 ] 

= [0,i,f,§,0]=c* 
= zo~-cBb* = -21 -7) = - 1 4 
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to the tableau 

*o 

to this system of equations, one obtains an equivalent system through this application 
of elementary row operations. (At each pivot step of the original simplex operation, 
multiples of one fixed row of the system of equations AX = b were added to the 
remaining rows. Here we apply these same elementary row operations to the system 
of equations BY = [/,-.) Since, in the final tableau, Xjn\,Xjn\,. ■ ■ ,Xjtm) are the basic 
variables, this equivalent system will be in canonical form with the m basic variables 
yi ,y2, ■ ■ ■ ,ym. Thus this system of m equations and m unknowns has a solution, the 
results of these row operations on the column vector {/,. Denote this solution by the 
column vector Y^'* for each ;', 1 < i < m. Then 

B[Y^,Y^,...,Y^] = [Ul,U2,...,Um]=I 

the mxm identity matrix. Therefore 

B~l = [Y (1) v (2 ) ■,Y(I D 

Example 5.2.2 (Continuation of Example 5.2.1). Consider the system of equations 
BY = U\ ; that is, 

y\ 
V2 

We can see from Table 5.4 that the sequence of row operations utilized to go from the 

initial to the final tableaux in that table takes the column vector to and 

the column vector 
- 6 
- 3 to . Thus, applying this sequence to the above sys-

tem must generate a solution. In fact, in the standard detached coefficients notation, 
applying the sequence yields (as seen in the tables of Section 3.5) 

Therefore y\ 

2 - 6 , 1 
3 - 3 ' 0 

i .W 

1 
0 6 ' -3-

; \ 

, andyO 

1 0 I 4 

o i ! -\ 

The first formula that we prove is that b* = B lb, that is, that Bb* = b. In the 
example Bb* = b means that 

6 
15 : b = Bb* = [Ai5\A (i) : 6A« + 1Â« 

But this is equivalent to saying that the point (1,0,0,0,6) is a solution to the con-
straints of (5.2.1), which we already know. The proof in the general case is just as 
above. It consists of observing that a basic feasible solution of a system of constraints 
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is a solution to the system, corresponding to an expression for the constant-term col-
umn vector b as a linear combination of m of the column vectors from the coefficient 
matrix A. 

Theorem 5.2.1. b* =B~lborBb* = b. 

Proof. The two systems of equations AX = b and A*X = b* are equivalent and so 
have the same solution set. Define X* = [x\,x\,... ,x*]', a column vector in W, by 

^ J b*k, Xj is the basic variable in the fcth equation of the final tableau 
1 10, Xj is a nonbasic variable in the final tableau 

Then X* is the basic feasible solution associated with the final tableau, and A*X = b*. 
Therefore 

m 

AX* = b; that is, ̂ A Ü W ) ^ = b; that is,Bb* =b D 
k=\ 

Next, we show that A* = ß_1A or, equivalently, for each j , 1 < j < n, A*^ = 
B~1A^\ In our example, if we let j = 4, this would mean that 

A .(4) 
■■B~lA 14(4) B~ (5.2.2) 

Suppose that in the example the original b was 

Then the b* would be 

1*(4) 

as the result of our pivot operations on the column vector 

have been recorded in the fourth column of the tableaux. But from Theorem 5.2.1, 
we know that b* = B~lb, and applying that here would give us (5.2.2). 

Theorem 5.2.2. For any j , l<j<n, A*W = B~xA{j\ 

Proof. Fix j , 1 < j < n. Suppose the initial column vector b of Theorem 5.2.1 is 
A W. Then the resulting b* would simply be A*^', the result of the sequence of pivot 
steps on A ^ . Thus Theorem 5.2.1 implies that A*^ = B~lA^\ (Note that some of 
the entries of A ^ and A*W may be negative but that this has no effect on the proof 
of Theorem 5.2.1.) D 
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Corollary 5.2.1. A* =B~lA 

Note that if A ^ is Uk, the kth unit vector in Em, then ß _ 1 A ^ = B~lUk = the Mi 
column of B~l. Thus, if all the unit vectors U],...,Um are represented in the initial 
coefficient matrix A and the matrix A* is available, all the columns of the matrix B~l 

can be read off immediately from the columns of A*. In our example, A^2' = Ui and 
A'3) = U\. Hence the third column of A* will be the first column of B~l, and the 
second column of A* will be the second column of B~ '. The reader should verify 
this. 

Example 5.2.3. Similarly, using the data from the corresponding tables, the reader 
should confirm that B and B l for the final tableau of Example 3.5.2 on page 88 and 
Table 3.5 on page 88 are 

B 
1 1 

- 3 1 
and 5 ' = 1 

and for the final tableau of Example 3.5.3 and Table 3.6 are 

1 
B 

2 
4 
0 

2 
1 
3 

- 3 
- 1 
- 1 

andß" 1 = 
24 

1 - 1 
3 1 

i.6 are 

2 -
- 4 

-12 

5 

-7 
2 
6 

1 
10 
6 

To demonstrate the idea behind the proofs involving the data of the bottom rows 
of the tableaux, consider first the meaning of these data in our example. The third 
and sixth rows in Table 5.4 correspond to two expressions for the objective function 
of that example, namely, 

z = 5xi + 3x4 — 2x5 + 21 

and w ■ 4X3 + 5X4 - 14 

We know that these two expressions must deliver the same value when evaluated 
at any solution to the constraints of (5.2.1), and in particular, when evaluated at 
(1,0,0,0,6). Thus 

5(l) + 3(0) -2(6)+21 = ±(0)- - | ( 0 ) + | ( 0 ) + 14 

Clearing zeros, we have 
5 (1 ) -2 (6 )+ 21 

cBb* 

Theorem 5.2.3. zjj = z 0 - c B B lb = zo-cBb* 

Proof. The original linear programming problem is to minimize z with z = — zo + 
c\X\ + • • • + cnxn subject to AX = b, X > 0. After applying a sequence of pivot 
operations, we have the equivalent problem of minimizing z with z = — z$ + c\x\ + 
••• +c*x„ subject to A*X = b*, X > 0. These two expressions for the objective 
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function, say F(X) — -zo + c\x\ -\ h cnxn and G(X) = -ZQ + c\x\ H \- c*xn, 
although different expressions, have the same value at any point that satisfies the 
equivalent systems of equations AX = b or A*X = b* (see the discussion on the 
representation of the objective function in Section 3.2). Now X*, as defined in the 
proof of Theorem 5.2.1, is a solution to the system of constraints, and so F{X*) = 
G(X*). But F(X*) = -zo + cBb*, G(X*) = -z*0. Therefore, -z*0 = -zo + cBb* or 
z*0 = zo - cBb*. D 

One formula remains to be verified, namely, that c* = c — cBB~1A = c — cBA*, 
or, equivalently, for each j , 1 < j < n, c*- = Cj — cBA*^\ Returning to our example, 
with j = 4, suppose, as before, that the original b were A^, and also that the original 
zo were 3 = C4. Then not only would b* of the final tableau be A*'4', as before, but 
ZQ would be j = C4, and Theorem 5.2.3, applied here, would yield 

C*4 = Z5 = ZO - CBb* = C4 - Q j A * ( 4 ) 

Theorem 5.2.4. For any j , l<j<n,c* = cj - cBB~lA^ = cj - cBA<J\ 

Proof. Fix j , 1 < j < n. Suppose the initial column vector b in Theorem 5.2.3 is 
A^\ and the initial constant zo equals Cj. Then the resulting b* would be A*^\ and 
the resulting ZQ would be c*. Thus Theorem 5.2.3, applied to the linear programming 

problem of minimizing z with z = — Cj + c\X\ H Y c„x„ subject to AX =^A^\X> 0, 
implies that c*j = Cj — cBA*^\ (Note again that negative entries in either A ^ or A*^ 
will not affect the proof of Theorem 5.2.3.) D 

Corollary5.2.2. c* =c-cBA* =c-cBB~lA. 

The formulas in this section show that at any step of the simplex algorithm, all 
the relevant data can be calculated easily from the original data of the problem, as 
long as we know the corresponding matrix B~x. This suggests another approach to 
the simplex process. Instead of using the full tableau, as we do to record the results 
of each step of the algorithm, suppose we simply record the original data along with 
the B _ 1 matrix. In fact, note that at each step of the simplex algorithm exactly one 
column of the B matrix is altered as exactly one variable in the basis is replaced by 
another variable. Rules can be given that prescribe the effects of this alteration on 
the B~l matrix, and this leads to a modification of the simplex process known as the 
revised simplex method. For large problems, this technique for recording the simplex 
process has the advantage of requiring less computer time, calculation, and memory, 
and therefore enables one to handle larger problems with fixed computer facilities. 
We will not develop the revised simplex method in this text; refer to the books of 
Chvatal [11], Dantzig [7], or Hadley [12]. 

Problem Set 5.2 

1. Consider the problem of Example 3.5.1 on page 87. 
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(a) Determine B,B , and CB for the final tableau. Note that ß is contained 
in the final tableau. 

(b) Verify the formulas of this section for this tableau. 

2. Consider the problem of Example 3.6.1 on page 95. 

(a) Determine the matrix B~[ for the third tableau of Table 3.8. 
(b) Determine B~l for the final tableau of Table 3.9 on page 97, the completion 

of the problem of Table 3.8. 
(c) What does this suggest about the data in the artificial variable columns of 

the coefficient matrix? 

3. Consider the linear programming problem of 

Minimizing z = 3xi + 2x2 + 5x3 — 4x4 
subject to 

X\ — X2 + 3X3 + 2X4 + 7X5 = 31 
—2xi + 3x2 — 6x3 + 4x4 — *5 = 2 
Xl,X2,X3,X4,X5 > 0 

(a) Determine the B, ß _ 1 , and CB for the tableau presentation of this problem 
with basic variables X3 and X4. 

(b) Express b = [31,2]' as a linear combination of A^ = [3,—6]r and A^ = 
[2,4]' using Theorem 5.2.1. 

(c) Show that this solution to the system of constraints is an optimal solution to 
the linear programming problem. (Compute c* using Corollary 5.2.2.) 

4. In the linear programming problem of Problem 3, suppose we select x\ and X3 as 
potential basic variables. Determine the corresponding matrix B. Does B have 
an inverse? Why does this not contradict Lemma 5.2.1? 

5. For the linear programming problem of 

Minimizing z = —6x1 + 2x2 — 9x3 + 12x4 + 8x5 
subject to 

x\ + 6x2 — 5x3 + 2x4 — 7x5 = 15 
—xi — 4x2 + 3x3 — X4 + 5x5 = 25 
Xi,X2,X3,X4,X5 > 0 

show, using the formulas in this section, that X2 and X5 can serve as basic vari-
ables in an optimal solution. What is this optimal solution point and the mini-
mum of z? 
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6. For the linear programming problem of 

Minimizing z = 4xi + 6x2 + X3 — 2x4 
subject to 
3xi + 4x2 — 3x3 + X4 = 60 
x\ + 2x2 + 2x3 — X4 = 25 

Xi,X2,X3,X4 > 0 

show that X2 and X4 can serve as basic variables for a basic feasible solution. 
Compute the associated A^ and c\. What is your conclusion? 

7. Given the problem of maximizing c-X subject to AX < b, X > 0, with b > 0, 
suppose slack variables are added and the simplex algorithm is applied, leading 
to a finite optimal solution. Define B and eg using the basic variables from the 
final tableau. Show that —cg5~' is an optimal solution point to the dual problem. 
(Hint. Recall where in the final tableau the solution to the dual can be found.) 

5.3 CHANGES IN THE OBJECTIVE FUNCTION 

Suppose the simplex method has been used to solve the problem of minimizing z, 
z = c ■ X — zo, subject to AX = b, X > 0 with the final tableau given by 

A* 
c* 

b* 

4 
and with X* the associated optimal basic feasible solution, but that now one or 
more of the original coefficients of the objective function, the components of c, are 
changed. How does this affect the already computed solution to the problem? 

From the formulas in the previous section, it follows that changes in c can induce 
changes only in c* and ZQ, and in fact, the new c* can be determined using c* = c — 
CBA*. If the modified c* remains nonnegative, X* would remain an optimal solution 
point; if not, more iterations of the simplex algorithm may be necessary to complete 
the modified problem. However, we could initiate the algorithm on the modified, 
previously final tableau. We illustrate. 

Example 5.3.1. Consider the linear programming problem of 

Maximizing z = llxi +4x2 +*3 + 15x4 (5.3.1) 
subject to 
3xi + X2 + 2x3 + 4x4 < 28 
8x1 + 2x2 — X3 + 7x4 < 50 
Xi,X2,X3,X4 > 0 

Adding slack variables and then applying the simplex algorithm yields the reduced 
tableaux resolution shown in Table 5.5. The maximum value of z is 106, attained at 
the point (0,4,0,6). 



184 CHAPTER 5. SENSITIVITY ANALYSIS 

Table 5.5 

X5 

x6 

X\ 

x2 

X\ 

3 

8 

-11 

- 2 

11 

3 

X2 

1 

2 

- 4 

0 

1 

0 

x3 

2 

- 1 

- 1 

5 

- 1 8 

2 

XA 

4 

7 

-15 

1 

0 

0 

*5 

1 

0 

0 

2 

- 7 

2 

*6 

0 

1 

0 

- 1 

4 

1 

28 

50 

0 

6 

4 

106 

Table 5.6 

X4 

X2 

X4 

x\ 

x\ 

- 2 

('•) 
- 1 

0 

1 

0 

x2 

0 

1 

0 
2 
11 
1 

11 
1 

11 

*3 

5 

- 1 8 

2 
19 
11 
18 
11 
4 
11 

X4 

1 

0 

0 

1 

0 

0 

X5 

2 

- 7 

2 
8 
11 
7 
11 
15 
11 

*6 

- 1 

4 

1 
3 
11 
4 
11 
7 
11 

6 

4 

106 

6£ 
4 
11 

106^ 

Suppose we now change the coefficient of x\ in the objective function, the 11. 
Since x\ is not a basic variable in the final tableau, a change in the 11 would not 
alter c# = [—15, —4]. (Note that in this example the c/s of the initial tableau are the 
negatives of the coefficients of the objective function of (5.3.1).) The only change 
would be in the first component of c and therefore in the first component of c*. In 
particular, we presently have 

3 = c*1=c1-cBA*w 

and any increase or decrease in c\ would generate the exact same change in c\. Thus 
adding a constant X to the 11 would decrease c\ by X and so decrease c\ by A. c\ 
will remain nonnegative, and (0,4,0,6) would remain the optimal solution point, as 
long as the 11 is not increased by more than 3 units. However, if the 11 is increased 
by more than 3 units, the modified c\ would become negative, and more iterations of 
the algorithm would be necessary to complete the modified problem. Computations 
could begin in the final tableau of Table 5.5, with c\ modified. For example, if the 11 
is increased to 15, the maximum of z would then be 106^-, attained at (yj-,0,0,6yy) 
(see Table 5.6). 

Clearly, this argument generalizes. Changes in the coefficients of the nonbasic 
variables translate directly into the corresponding changes in the appropriate compo-
nents of c*. In this example, with c^ = 2, C3 can be decreased by up to 2 units, and 
the coefficient of X3 in z increased by up to 2 units, before (0,4,0,6) would no longer 
be optimal. 
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Suppose now that the only change in the objective function z is in the coefficient 
of X4, from 15 to 15 + A. Such a change would alter eg, so we recalculate c*. 

c* ~c~- cBA* 

= [ - 1 1 , - 4 , - 1 , - 1 5 - A , 0 , 0 ] - [ - 1 5 - A , - 4 ] A * 

= [ -11, -4 , -1 , -15,0 ,0]- [ -15, -4]A*+[0,0 ,0 , -A,0 ,0]- [ -A,0]A* 
V 

the former c* 

= [3,0,2,0,2, l] + [-2A,0,5A,0,2A,-A] 

= [3-2A,0,2 + 5A,0,2 + 2A, l -A] 

c* will be nonnegative if 3 - 2A > 0, 2 + 5A > 0, 2 + 2A > 0, and 1 - A > 0, that is, 
if — I < A < 1. Thus, as long as A is in this interval, the maximum of z will remain 
at (0,4,0,6), with 

Maxz = 4(4) + (15 + A)6=106 + 6A 

Similarly, the coefficient of xj in z can range between 4 — | and 4 + 5 before (0,4,0,6) 
would no longer be optimal, as the reader may verify (Problem 1). 

Example 5.3.2. Consider the operation of the can-producing company of Example 
5.1.3. The optimal production schedule calls for the use of Process 2 for 75 hr 
and Process 3 for 150 hr. Suppose, however, that the hourly cost of Process 3 may 
fluctuate because of the changing costs of the special materials used in this process, 
and management wants to know the limits on the range of change of this cost before 
the present (0,75,150) operating schedule is no longer optimal. To respond, assume 
the operating cost of Process 3, in dollars/hr, is C3 = 200 + A, and A is a constant, 
not necessarily positive. Then, using the data of Table 5.1, we have 

c* — c — CBA* 

= [65,150,200 + A,0,0] - [150,200 + A,0]A* 

= [65,150,200,0,0] + [0,0,A,0,0]-[150,200,0]A*-A[0,1,0]A* 

= ([65,150,200,0,0]-[150,200,0]A*) +[0,0,A,0,0]-A[0,1,0]A* 

= [ 4 6 | , 0 , 0 , 3 i , 0 ] - A [ - | , 0 , 0 , i , 0 ] 

46i + f ,0,0,3i-|,0 

Thus the optimal production schedule remains (0,75,150) as long as 

46^ + ^ > 0 a n d 3 ± - § > 0, that i s , - 6 1 § < A < 25 

The information determined above is also contained in Solver's Sensitivity Report 
for the can-producing problem, the report of Figure 5.4. We outline the upper half, 
the Adjustable Cells half, of the report. This half deals with the variables of the 
problem and their coefficients in the objective function. The first two columns of 
the section identify the rows. The third column lists the final values of the variables, 
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and the fifth column the variables' initial coefficients in the objective function. The 
data in the last two columns are the most useful data in this half of the report. The 
values in a given row are bounds on how much the associated variable's coefficient in 
the objective function (the number in the fifth column) can change before the stated 
optimal solution changes, assuming no other changes in the data of the problem. In 
particular, in the X3-Process 3 row in Figure 5.4 we see the bounds calculated above 
of —611 and 25, thus verifying our calculations (or those of Microsoft Excel/Solver). 

We can also easily confirm the data in the Reduced Cost column of the report. In 
general, the magnitude of the entries in this column indicates by how much the asso-
ciated variable's coefficient in the objective function needs to change in order for the 
variable to enter the basis. In the solution of the can company's problem, Processes 2 
and 3 are used in the optimal solution, hence the zeros in the corresponding xi and X3 
rows. Process 1 is not used in the optimal solution, and that certainly will not change 
if its hourly cost increases. However since x\ is a nonbasic variable, decreasing its 
operating cost by c\ =46.25 dollars (using Table 5.1) will allow x\ into the basis, 
hence the (duplicate) information in the x\ row. 

The arithmetic associated with determining the bounds on allowable changes in 
the objective function coefficients can be reduced to routine calculations using the 
data in a final tableau resolution of a linear programming problem, as specified in 
Problem 7 of this section. Thus Solver's bounds can come immediately from a com-
puter solution of the problem. But the formula for the bounds is dependent upon the 
fact that there is only one coefficient change in the objective function. If more than 
one coefficient were changed, Solver's data would not be immediately applicable 
and our computations in Example 5.3.2 would need revision. However, the theory 
that we have developed provides considerable flexibility. Using Corollary 5.2.2 we 
can simply calculate the new c* and work from there. 

Example 5.3.3. Considering again the operation of the can-producing company of 
the preceding example, suppose that labor is negotiating a new contract that would 
include a pay increase. While bargaining with labor, management needs to know how 
the tentative increase would influence the monthly production costs and if the present 
optimal production schedule would need to be modified. (Such a modification could 
necessitate some major one-time expenses.) 

In particular, suppose that an increase of $A/hr in the pay of the workforce would 
change the cost in dollars of 1 hr of operation of Processes 1,2, and 3 to 65 + X, 150 + 
4A, and 200 + 8A, respectively. (The amounts of labor required in the operation of 
the processes vary.) Using the data of Table 5.1, we have 

c* =c — CBA* 

= [65 + Â,150 + 4Â,200 + 8A,0,0] 

= [46i,0,0,3|,0] + [A,4A,8A,0,0] 

= [46i,0,0,3i,0] + [A,4A,8A,0,0] 

[150 + 4A,200 + 8A,0]A* 

[4A,8A,0]A* 

3/L X 
~,4A,8A,- ,0 
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5X X 
46i + T , 0 , 0 , 3 i - - , 0 

Thus, as long as the increase X does not exceed ™ = 12.50, the optimal production 
schedule will remain 75 hr for Process 2 and 150 hr for Process 3 at a monthly cost 
in dollars of 75(150 + 4A) + 150(200+ 8A) = 41,250+ 1500A. 

Problem Set 5.3 

1. Verify that (0,4,0,6) is an optimal solution to (5.3.1) if the coefficient of xj in z 
is between -^ and ^ and all the other coefficients are as given in (5.3.1). 

2. Suppose two changes are made in the coefficients of z in (5.3.1): the coefficient 
of xi is increased from 11 to 13 and the coefficient of xj is increased from 15 to 
151. While each of these changes is within the corresponding allowable range 
for the coefficient as discussed in the text, show that (0,4,0,6) is no longer 
optimal. Solve the modified problem. 

3. Starting from the final tableau of Table 5.5, complete the problem of (5.3.1) if 
the objective function coefficient of 

(a) X3 is increased from 1 to 4. 
(b) X4 is increased from 15 to 16^. 
(c) X4 is decreased from 15 to 14 and the coefficient of XT, is decreased from 1 

to-2. 

4. Consider the linear programming problem of Example 5.2.1 on page 176. 

(a) Determine the range on each of the coefficients in z such that if all the other 
coefficients of z remain fixed at the original values, the point (1,0,0,0,6), 
as determined from the second tableau of Table 5.4, remains an optimal 
solution point. 

(b) Solve the modified problem, starting from the second tableau of Table 5.4, 
if z is changed as follows: 
(i) The coefficient of x\ is increased to 7. 

(ii) The coefficient of x\ is increased to 9 and the coefficient of X5 is de-
creased to -3. 

(iii) The coefficients of both x\ and X5 are decreased by 2. 

5. In the poultry producer's problem of Example 5.1.1 on page 161, with the initial 
cost/lb of Feeds 1 and 2 at 16 cents and 14 cents, respectively, the optimal diet 
is to use 10 lb of Feed 1 and 6 lb of Feed 2 daily. From (5.1.1), if the ratio — 

of these costs remains between \ and | and (10,6) remains the optimal diet. 
From Solver's sensitivity report (Figure 5.5), if only one cost is changed from 
its original value, (10,6) remains the optimal diet if the change is in c\ and is 
between —l\ and 19, or if the change is in C2 and is between —7| and 12| . 
Show that Solver's data can be determined by the bounds on the ratio — from 
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6. Consider the diet problem of Example 2.2.1 (page 10) and Example 4.3.1 (page 
132). The shadow prices for the three nutritional requirements, from the final 
tableau of Table 4.2 (page 133), are 1 cent/unit for nutritional elements A and B 
and 0 cents/unit for C. Using the final tableau of Table 4.2, determine the range 
on the required number of units of A such that for any nutritional requirement 
of A within this range, with the requirements for B and C fixed at 84 and 72, 
respectively, the above shadow prices remain accurate. Similarly, determine the 
corresponding ranges for the requirements for B and C. 

7. Suppose the simplex algorithm applied to the problem of minimizing z — c ■ X — 
zo subject to AX = b, X > 0 leads to a finite optimal value attained at the point 
X*, with xs serving as the basic variable of the sth row of the final tableau (with 
data A* and c*). Show that if the coefficient cs of xs in z is changed to cs + X, 
then X* remains optimal as long as 

Max{c*/a*rj : a*rj < 0} < A < Mm{c*/a*rj : a*rj >0J^ s} 

8. Consider the operation of the aluminum can company of Example 5.1.3 on 
page 166. 

(a) Verify the bounds stated in the associated Sensitivity Report (Figure 5.4) 
on the allowable changes in C2, the cost of 1 hr of operation of Process 2, 
before the optimal solution point would change. 

(b) As discussed in Example 5.3.3, suppose labor negotiates a $15/hr increase 
in pay. Determine the new optimal production schedule. 

9. Monthly profits are maximized for the company described in Problem 15 of 
Section 5.1 by the making and selling of 240 A's and 140 Cs. 

(a) Using the data from Table 5.2, determine by how much the profit on the sale 
of a unit of A (the $140) can vary before the optimal production schedule 
would change. 

(b) By how much do we need to increase the profit on the B's for them to be 
part of the optimal production schedule? 

(c) By how much can the profit on the sale of a unit of C (the $60) vary before 
the optimal production schedule would change? 

(d) Suppose labor requests a pay raise, from $18/hr to $(18 + A)/hr, with over-
time pay to be $(24 +A)/hr. How large can X be before the optimal produc-
tion schedule would change? 

10. The sensitivity report accompanying Microsoft Excel/Solver's solution of the 
problem considered above, that of Problem 15 of Section 5.1, is in Figure 5.6. 

(a) Use the report to verify your answers to parts (a), (b), and (c) of Problem 9. 
(b) Can you use the data of the report in responding to the question raised in 

part (d) of Problem 9? Why or why not? 
(c) Verify the entries in the shadow price column of the report. 

11. Consider the situation described in Problem 17 of Section 5.1. You are called 
into the plant manager's office again. This time the manager wants to know how 
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Problem 15 of Section 5.1 
Sensitivity Report 

Figure 5.6 

contingent your optimal production schedule is on the price of the B's bought 
externally and on labor's pay rate. How do you respond? 

12. (a) Suppose the coefficient of x\ in the second constraint of the problem of 
(5.3.1) (the Ö21 = 8) is replaced by a constant a. Show that the optimal 
solution of the second tableau of Table 5.5 is not altered if a > 5. (Hint. 
Compute Cj in terms of a.) 

(b) Suppose the coefficient of X2 in the second constraint of the problem (the 
«22 = 2) were changed. Would your analysis in this situation be any differ-
ent than your approach in part (a)? 

13. It is possible that Process 1, as described in Example 5.1.3 on page 166, could 
be modified to utilize some recycled aluminum, with no accompanying changes 
in output or operating cost. How much would need to be used for Process 1 to 
become part of the optimal production schedule? 

14. In Problem 15 of Section 5.1, suppose the amount of raw material Mi used in 
the manufacture of a unit of B can be reduced, causing no other changes in the 
data of the problem. By how much does the 12 lb/unit requirement need to be 
decreased to have the B's introduced into the optimal production schedule? 

5.4 ADDITION OF A NEW VARIABLE 

Suppose that the simplex process has been used to solve the problem of minimizing 
the objective function z = c-X — zo subject to AX = b, X > 0, with the final tableau 
given by 

A* 
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[A)A(«+i) 

and with X* the associated basic feasible solution, but that now we need to add an-
other variable in the formulation of the original problem. For example, this variable 
could measure the amount of goods to be shipped by means of a newly opened ship-
ping line, or it could measure the amount of production of a new product for which a 
market has just been developed. Let xn+\ be this new variable, with cost coefficient 
cn+\ and column vector of coefficients for the constraining equations A^n+l\ Then 
the expanded, modified problem is to minimize z, with z = c -X + cn+\xn+\ subject 
to 

X =b, X>0, x„+ i>0 (5.4.1) 
xn+\ J 

X* remains a basic feasible solution to (5.4.1) if we simply set the value of the 
nonbasic variable xn+\ equal to zero. Moreover, this point will provide an optimal 
solution if c*+1 > 0. And c*+1 = cn+]_ - cfi5"1A("+1) from Theorem 5.2.4. Thus this 
quantity can be easily calculated. If cn+\ > 0, the original optimal solution remains 
optimal. If cn+\ < 0, the data for the new (n+ 1) column in the system of constraints, 
A*(«+i) ^g n e e ( ied to proceed with the simplex algorithm. Buti4*("+1) = B~xA^n+^ 
from Theorem 5.2.2, so this information can also be easily calculated. 

Example 5.4.1. Consider the problem of Example 5.3.1 in the previous section. 
Suppose we wish to introduce a new variable X7, with the problem becoming the 
following: 

Maximize z = 1 lxi + 4x2 + X3 + 15x4 + 12x7 (5.4.2) 
subject to 
3xi + X2 + 2x3 + 4x4 + 3x7 < 28 
8x1 + 2x2 — X3 + 7x4 + 5x7 < 50 
Xi,X2,X3,X4,X7 > 0 

The optimal solution point for the original problem is (0,4,0,6), and so X2 = 4, 
X4 = 6, X] = X3 = X7 = 0 is a feasible solution to the expanded problem. This solution 
is optimal if c^ > 0. Using the data of Table 5.5 on page 184 (note that the B~l is 
contained in the second tableau), we have 

c7 = c-i — CBB A I4P) 

-12- -15,-4] -1 

A * ( 7 ) = Z r l A ( 7 ) 

Thus this point is not an optimal solution point. To complete the problem, we deter-
mine A*(7\ 

2 - 1 1 r 3 1 _ r 1 
- 7 4 j [ 5 J ~ [ _ 1 

and expand the second tableau of Table 5.5 to include the new column. One itera-
tion of the simplex algorithm (Table 5.7) shows that the maximum of z is now 112, 
attained at X2 = 10, X7 = 6, x\ = X3 = X4 = 0. 

Actually, we could have also used the dual to determine if the new variable X7 is 
to enter the basis. The dual constraint corresponding to the new variable is 

3 y i + 5 v 2 > 1 2 (5.4.3) 
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Table 5.7 

X4 

x2 

XI 

X2 

XI 

- 2 

11 

3 

- 2 

9 

1 

xi 

0 

1 

0 

0 

1 

0 

X3 

5 

-18 

2 

5 

- 1 3 

7 

X4 

1 

0 

0 

1 

1 

1 

X5 

2 

- 7 

2 

2 

- 5 

4 

x6 

- 1 

4 

1 

- 1 

3 

0 

x-, 

© 
- 1 

- 1 

1 

0 

0 

6 

4 

106 

6 

10 

112 

and the solution to the dual of the original problem is (2,1), from the bottom row, 
slack variable columns, of Table 5.5. But the point (2,1) does not satisfy this in-
equality, and so more iterations on the previously final tableau must be necessary to 
determine the optimal solution point to the dual of the expanded problem. In fact, 
the slack in this dual constraint (5.4.3) when evaluated at (2,1) is equal to Cy, from 
Problem 9 of Section 4.4 (or from Theorem 5.2.4 and Problem 7 of Section 5.2). 

In terms of marginal values, this is all quite plausible. Suppose the problem of 
(5.4.2) models a problem of maximizing profits through an operation consisting of 
up to five activities (the x,'s) using two limited resources (the constraints). Allowing 
the use of only the first four activities gives marginal values to the first and second 
resources of 2 and 1. If the new activity can more profitably utilize these resources 
(it delivers a return of 12 on an investment of 11 = 3 • 2 + 5 • 1 ), it will be incorporated 
into the optimal production schedule. 

Example 5.4.2. Suppose the aluminum can company of Example 5.1.3 on page 166 
could invest in a fourth can-producing process. Operation of this process for 1 hr 
would produce 14 cases of the Type A can and 16 cases of the Type B can, use 1 lb 
of recycled aluminum, and cost $110. To determine if this process would be utilized, 
consider the total marginal value of 1 hr of operation, 

14(3|) +16(0)+ 1(56±) = $100 

This value is $10 less than the cost of 1 hr of operation; the process would not be 
used. Only if the hourly cost could be reduced to less than $100 would the process 
be included in the operation of the plant (see Problem 4). 

Problem Set 5.4 

1. Solve the problem of (5.3.1) of Section 5.3, starting from the second tableau of 
Table 5.5, if a variable xq > 0 is added to the problem as stated in (5.3.1), with: 

(a) A^ = [2,5]', coefficient of x-, in z. = 9 
(b) A^ = [2,5]', coefficient of x7 in z = 10 
(c) A ^ = [-6,-11] ' , coefficient of x7 in z = 15 
(d) A<7) = 7,12]', coefficient of x-, in z = 27 
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2. Solve the problem of (5.2.1) of Section 5.2, using the data of Table 5.4, if a 
variable X(, > 0 is added to the problem as stated in (5.2.1), with: 

(a) A^ = [2, l]f, coefficient of x6 in z = - 1 
(b) A^ = [2,1]', coefficient of x6 in z = - 2 
(c) A^ = [8,6]', coefficient of x6 in z = - 9 
(d) A^ = [8,6]r, coefficient of x6 in z = -11 

3. Suppose a variable X5 is added to the problem of Example 3.6.1 on page 95, with 

the problem becoming 

Minimize 2x\ — 3x2 +x3 +x4 + 5xs 
subject to 
X\ — 2X2 — 3X3 — 2X4 + 4X5 = 3 

X\ — X2 + 2X3 + X4 + 3X5 = 11 

Xi,X2,X3,X4,X5 > 0 

Starting from the second tableau of Table 3.9, solve the problem. 

4. (a) Using c*j = cj — CßB~lA^\ verify that the c*j for the final tableau of Ta-
ble 5.1 corresponding to the new process described in Example 5.4.2 is 
+ 10. 

(b) Suppose the cost of the new process could be reduced to $90/hr. Determine 
the new monthly operating schedule and cost. 

5. Reconsider Problem 13 of Section 5.3 using marginal values. 

6. The company in Problem 15 of Section 5.1 could also make D's, with a unit of 
D requiring 8 lb of Mi, 10 lb of M2, and 1.5 hr of labor. What minimum profit, 
excluding labor costs (i.e., selling price less cost of raw materials), is necessary 
before the company would produce and sell D's? 

7. You, the production supervisor in Problem 17 of Section 5.1, have access to a 
Process 3, which turns out in 1 hr 6 A's and 10 B's using 16 lb of rare metal and 
9 hr of labor. Should you use the process? 

5.5 CHANGES IN THE CONSTANT-TERM COLUMN 

VECTOR 

Suppose that the minimum of z, z = c ■ X — zo subject to AX = b, X > 0 has been de-
termined, but that now the constant term column vector b must be altered. Changing 
the original b will affect b* (and ZQ) of the final tableau but not c* (andA*). The mod-
ified b* =B~lb can be calculated. If the entries remain nonnegative, since c* > 0, 
the optimal solution point to the modified problem will have the same basic variables 
as the solution point to the original problem, with values given by the adjusted b*, 
and evaluating z at this solution point will give the adjusted optimal value for the 
objective function. 
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Example 5.5.1. Suppose i>2 = 50 in the problem of (5.3.1) on page 183 is changed 
to 53. Using the data of Table 5.5, we have 

b*=B'lb-
2 - 1 

-7 2 
28 
53 

3 
16 >0 

Thus the second tableau of Table 5.5, with b* now given by [3,16]' (and the z$ value 
to be corrected), provides the final tableau for the modified problem. The optimal 
value of the objective function is attained at the point (0,16,0,3). Evaluating z at 
this point gives 

Maxz = 4-16+15-3 = 109 

(and so the corrected z$ = 109). 
In fact, we can generalize. Suppose £>2 = 50 is to be changed to 50 -

constant. Then 
-A, A a 

b* BH 

Bx 

= B~ 

' 28 ' 
50 

1 28 
50 + A 

+B-1 0 
X = 

' 6 ' 
4 

thefc rmer b* 

+ 
' -A ' 

AX = 
L -1 

6-X 
4 + 4A 

As long as 6 — X > 0 and 4 + 4X > 0, that is, as long as — 1 < X < 6, the optimal 
solution point to the more general problem is (0,4 + 4X,0,6 — X), with 

Maxz = 4(4 + 4A) + 15(6-A) = 106 + A 

Note that the coefficient of A here, the +1 , is the marginal value for the second 
constraint. Of course, this is to be expected. As long as X4 and X2 remain the basic 
variables in the optimal solution, the second tableau of Table 5.5 functions as the 
final tableau, the optimal solution point to the dual remains (2,1), and 

Maxz = Min of dual objective function 

= 2(28) + l(50 + A) = 106 + A 

Finally, suppose Z?2 = 50 is increased to 57. Then b* would be (—1,32)' and 
the point (0,32,0,-1) would be a solution to the modified constraints. But it is 
not a feasible solution, and it is not at all clear how to proceed at this point. Since 
the simplex algorithm as we have developed it must move from feasible solution to 
feasible solution, it would seem that here we would be forced to initiate the algorithm 
on the original problem with the constant term column vector now (28,57)' and that 
we could not make use of the data in the final tableau of Table 5.5. However, there 
is a variation of the simplex algorithm that can be used with negative entries in the 
constant-term column and that, in this case, would save considerable effort. In the 
next section we will develop the algorithm; then, with this new tool at our disposal, 
we will come back to the above problem. 
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In Section 5.1 we noted that for a linear programming problem, the components 
of the solution to the corresponding dual problem provide useful information relating 
the effects on the optimal value of the original objective function to changes in the 
constant terms of the constraints. When used in this context, we introduced the labels 
shadow price or marginal value or cost for the components. However, it was also 
noted that their use as shadow prices or marginal values/costs was restricted. If the 
changes in the original problem's constant-term data (and therefore the changes in 
the coefficients of the dual objective function) brought about a change in the optimal 
solution point to the dual, shadow prices could change. 

We can now be more precise on the range of validity for the original set of shadow 
prices. As we have seen in this section, if the changes in the constant-term column 
b do not introduce any negative entries in the adjusted column vector b*, the previ-
ously final tableau, with the modified b* now in the constant-term column, serves 
as the final tableau for the modified problem. Thus the final tableaux for the origi-
nal problem and for the modified problem are identical except for the constant-term 
columns. They share the same bottom row and hence have the same solution to their 
respective dual problems. Shadow prices have not changed. On the other hand, if 
changes in b introduce negative entries in the adjusted column vector b*, additional 
action is required to solve the modified problem, leaving us with no information on 
the solution to its dual. 

Example 5.5.2. Solver's Sensitivity Report of Figure 5.4 states that the shadow 
prices for the can company problem of Example 5.1.3 on page 166 remain un-
changed if the demand for Type A cases does not decrease from the original 2400 
cases by more than 400 cases or increase by more than 1200 cases, with no other 
data of the problem changing. To verify this claim, let the demand for a Type A case 
be 2400 + A cases. Then b = [2400 + A, 2800,600]', and using the data of Table 5.1, 
we have 

" 2400 " 
2800 
600 

+ 2T1 
r A i 

0 
0 

= 
75 " 

150 
350 

+ A 

" 3 " 
16 

1 
8 
3 
8 . 

Thusfc* > 0 i f 7 5 + ^ | > 0 , 1 5 0 - | >0 ,and350+f^ > 0, that is, i f -400 < A < 
1200, as expected. 

(Note that for X in this range, the optimal operating schedule is x\ =Q,X2=b\ = 
75 + H , xj, = b\ = 150 — \ , and the value of the objective function at this point is 

65(0) + 1 5 0 ( 7 5 + § ) + 2 0 0 ( l 5 0 - § ) = 41,250 + 3^ A, 

original optimal shadow price 
value ofTypeAcan 

as it should be.) 



5.5. CHANGES IN THE CONSTANT-TERM COLUMN VECTOR 195 

Problem Set 5.5 

1. Considertheproblemof Example 3.6.1 on page 95. Determine both the minimal 
value of z and a point at which this value is attained if: 

(a) b\ is increased from 3 to 7 and &2 is decreased from 11 to 8. 
(b) b\ is increased from 3 to 8 and bi is decreased from 11 to 8. 

2. Consider the linear programming problem of Example 3.5.1 on page 87. De-
termine the maximum value of the objective function and a point at which this 
value is attained if 

(a) &2 is increased from 10 to 30 units, b\ and b^ remaining unchanged. 
(b) b\,b2, and bj, are each decreased by 10 units from their original values. 

3. For the problem of (5.3.1) in Section 5.3 on page 183, suppose b\ = 28 is 
changed to 28 + A (with bt fixed at 50). Determine the range on A so that X4 
and X2 remain as basic variables in an optimal solution. What would the optimal 
solution point be and the maximum of z be? 

4. Consider the problem of (5.2.1) in Section 5.2 on page 176. 

(a) Determine the range on Ai such that if X\ is added to b\ = 6 (£>2 remaining 
at 15), x$ and x\ still serve as basic variables in an optimal solution. What 
is this optimal solution, and what is the minimum of z? 

(b) Make a similar analysis assuming X2 is added to £2 = 15, with b\ remaining 
at 6. 

(c) Make a similar analysis with b = [6 + A3,15 + A3 ] '. 

5. Consider the operation of the aluminum can company of Example 5.1.3 on page 
166. 

(a) Determine the optimal production schedule if the monthly requirement for 
Type B cans is reduced to 2500 cases. 

(b) Determine the optimal production schedule if the monthly requirement for 
each type of can is increased by 400. 

(c) The company, wishing to offset the present surplus production of the Type 
B can (with requirements at the original 2400 and 2800 cases), negotiates 
a contract with another cannery. The cannery would need A cases of the 
Type A can and 3A cases of the Type B can monthly, but the A would vary 
from month to month. The can company agrees to the contract, but limits 
the amount A to no more than the maximum allowed, with the (modified) 
second tableau of Table 5.1 still the final tableau. Determine this limit and 
the revised optimal production schedule (as a function of A). 

(d) Suppose the monthly can requirements are fixed at the original 2400 and 
2800 values, but the amount of recycled aluminum that must be used can 
vary. Determine the range on this requirement so that the (modified) second 
tableau of Table 5.1 can serve as the final tableau, and thus confirm the 
corresponding data in Solver's Sensitivity Report in Figure 5.4. 



196 CHAPTER 5. SENSITIVITY ANALYSIS 

6. For the poultry producer's problem of Example 5.1.1 on page 161, use the results 
developed in that example relating the solution to the dual and the ratio y- of the 
daily required amounts of elements A and B to verify the bounds in Solver's 
Sensitivity Report (Figure 5.5 on page 173) concerning the shadow prices and 
the allowable 

(a) deviation from the original 124 units in element A's daily requirement 
(b) deviation from the original 60 units in element B's daily requirement 

7. Consider the situation described in Problem 15 of Section 5.1. 

(a) Suppose (500 + A) hr of labor at $18/hr can be used for production, —16 < 
X < 16, with no other change in the data of the problem. Determine the 
optimal production schedule and profit. 

(b) Suppose the amount of available raw material Mj is somewhat flexible. 
With 1 ton available, its marginal value is $7.50/lb. For what interval around 
2000 lb does Mi retain this marginal value (with all other data as in the orig-
inal problem)? 

(c) Use Solver's Sensitivity Report for Problem 15 of Section 5.1 (see Fig-
ure 5.6 on page 189) to verify your answer to part (b). 

(d) Verify the validity of the data in the sensitivity report on the bounds on 
changes in the available hours of labor and labor's marginal value of $12/hr. 

(e) As in part (d), but for the data on changes in the available amount of M2. 

8. The plant manager in Problem 17 of Section 5.1 was impressed with your esti-
mate on the present cost of supplying a unit of A. However, the plant's use of the 
A's may vary, and the manager wants to know by how much this weekly require-
ment of 100 units can change before your estimate on the cost of production of 
a unit of A would need to be revised. How do you respond? 

5.6 THE DUAL SIMPLEX ALGORITHM 

In the previous section, we saw that changes in the initial values of the constant-term 
column vector b can bring about a linear programming problem in the following 
form. The system of constraints is in canonical form with a specified set of basic 
variables, the objective function is expressed in terms of the nonbasic variables, and 
the corresponding coefficients Cj are nonnegative, but the associated basic solution 
is not feasible; that is, the constant-term column contains negative entries. With the 
simplex method as we have developed it, the only way to handle such a problem 
would be to multiply the equations with negative constant terms by (—1), add artifi-
cial variables if necessary to put the problem into canonical form, and proceed with 
the two-stage simplex process. 
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Example 5.6.1. 
Minimize z = lOxi +5x2+4x3 (5.6.1) 
subject to 
3xi + 2x2 — 3x3 > 3 
4xi + 2x3 > 10 
xi,x2,x3 > 0 

Adding slack variables X4 and X5, we have 

3xi + 2x2 — 3x3 — X4 = 3 
4xi + 2x3 — X5 = 10 

lOxi + 5x2 + 4x3 = z 

To apply the simplex process to this problem, we would now add two artificial vari-
ables and proceed. On the other hand, by multiplying the two constraints by (—1), 
we have the following: 

—3xi — 2x2 + 3x3 + X4 = —3 (5.6.2) 
—4xi — 2x3 + *5 = —10 
lOxi + 5x2 + 4x3 = z 

The problem expressed in this way is in the form described above - the system of 
constraints is in canonical form with basic variables X4 and X5 ; the objective function 
is expressed in terms of the nonbasic variables x\, x%, and X3; and the associated 
coefficients 10, 5, and 4 are nonnegative, but the associated basic solution x\ = X2 = 
X3 = 0, X4 = —3, X5 = —10 is not feasible. 

In this section, we will develop an algorithm for resolving problems in this form. 
The algorithm, called the Dual Simplex Algorithm, is intimately related to the dual 
problem of the linear programming problem under consideration. We will develop 
this relationship after describing the steps of the algorithm by means of the above 
example. 

The basic step of the Dual Simplex Algorithm is the pivot operation that we have 
already seen. However, this algorithm differs from the standard simplex process by 
the rules used to determine the pivot term at each step. In this algorithm, at each 
step, first the row in which to pivot is determined and then the column is determined. 
Thus here we determine first what variable to extract from the basis and then what 
variable to enter into the basis. 

Example 5.6.2 (Continuation of Example 5.6.1). Consider the tableau presentation 
in Table 5.8 of the problem as stated in (5.6.2). To apply the Dual Simplex Algorithm, 
we determine first the row in which to pivot. According to the algorithm, the pivot 
term can be in any row with a negative constant term. In this tableau, b\ = —3 and 
bi = —10; therefore the pivot term can come from either row. An arbitrary rule to 
use in such a case is to pivot in the row with the smallest /?,- term; so, here, we pivot 
in the second row, extracting X5 from the basis. 
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Table 5.8 

x4 

*5 

x\ 

- 3 

- 4 

10 

x2 

-2 

0 

5 

*3 

3 

- 2 

4 

JC4 

1 

0 

0 

*5 

0 

1 

0 

- 3 

-10 

0 

Table 5.9 

X\ 

X5 

Xi\ 

X3 

X\ X2 X3 X4 X5 

- 3 - 2 3 1 0 

- 4 0 Ç2) 0 1 

10 5 4 0 0 

- 9 - 2 0 1 \ 

2 0 1 0 - 4 

2 5 0 0 2 

- 3 

- 1 0 

0 

-18 

5 

- 2 0 

Next, we determine the column in which to pivot. The algorithm dictates that 
the pivot term be at a negative atj entry; so, here, the pivot term will be either at 
a2i = —4 or Ö23 = —2. To determine at which entry we pivot, the ratios cj/arj must 
be considered for those arj < 0 (where r is the pivoting row), and the pivot term must 
be in that column, say column s, for which 

£ i = M a x { - ^ - : a r , - < o } 
ars y arj ) 

In this case, we compare c\/ai\ = -^ = — | with 03/023 = 35 = —2. The maximum 
occurs in the third column, and therefore we pivot at 023 = — 2. (Note that here we 
are comparing two nonpositive ratios and seeking the maximum, and therefore are 
actually seeking the ratio of minimum absolute value. By the nature of the algorithm, 
this will always be the case.) 

Pivoting here, we have the tableaux of Table 5.9. Notice that the c*: entries, here 2, 
5, 0,0, and 2, have remained nonnegative. Our choice of pivoting column guarantees 
this. In the second tableau, b\ = —18 is the only negative constant term, so we must 
pivot in the first row. Comparing those ratios corresponding to negative a* ■ terms, 

we have c\/a*n = — 5 > c\la*n = — 5, and so we pivot at the a*n — -9 term. The 
resulting tableau is in Table 5.10. 

Again, after this step, the constant-term column entries are nonnegative. In fact, 
with the original problem presented in this form, we have reached the solution of the 
problem, as Theorem 3.4.1 applies. The minimum value of the objective function is 
24 and is attained at the point (2,0,1,0,0). 
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X4 

*3 

X\ 

XI 

X\ 

© 
2 

2 

1 

0 

0 

Table 5.10 

X2 

- 2 

0 

5 
2 
9 
4 
9 

41 
9 

*3 

0 

1 

0 

0 

1 

0 

x4 

1 

0 

0 
1 
9 
2 
9 
2 
9 

*5 

3 
2 
1 
2 

2 
1 
6 
1 
6 
7 
3 

-18 

5 

-20 

2 

1 

-24 

We summarize the steps of the Dual Simplex Algorithm. Consider the linear 
programming problem of minimizing z = c ■ X — zo subject to AX = b,X>0 (with b 
not necessarily > 0). 

0. Assume that 
(a) The system of constraints is in canonical form with a specified set of 

basic variables. 
(b) The objective function z is expressed in terms of the nonbasic variables 

only, and the corresponding coefficients cj are all nonnegative. 
1. If all bi > 0, the minimum value of the objective function has been attained 

(Theorem 3.4.1 applies). 
2. If there exists an r such that br < 0 and arj > 0 for all j , the system of con-

straints has no feasible solutions. 
3. Otherwise, pivot. To determine the pivot term: 

(a) Pivot in any row with a negative ft, term. If there are several negative 
bi terms, pivoting in the row with the smallest bi may reduce the total 
number of steps necessary to complete the problem. Assume we pivot in 
row r. 

(b) To determine the column of the pivot term, find that column, say column 
s, such that 

cs Max fö:"^0} 
4. After pivoting, the problem will remain in the form described in Step 0. Now 

return to Step 1. 

There are some obvious questions associated with the algorithm. We list some of 
them here. (See also Problems 1 and 2.) 

1. If the problem initially is not in the form described in Step 0, is there a sys-
tematic way of driving the problem into this form? 

2. If the pivoting term is chosen as in Step 3, why will the problem remain in the 
form described in Step 0? 

3. Will this algorithm always terminate, that is, will we always reach a point 
where either Step 1 or Step 2 applies? 
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The answer to the first question is "yes." However, for our purposes, we will need 
and use the algorithm only for problems already in the form described in Step 0, and 
we will not develop here any of the techniques for putting a problem into the desired 
form. Refer to Dantzig [7] and Lemke [13]. 

The answers to the other two questions follow from the relationship between the 
Dual Simplex Algorithm and the standard simplex algorithm applied to the dual of 
the original problem. To see this, consider the linear programming problem in the 
form described above in Step 0. To determine its dual, we do the following: 

1. Consider the basic variables of the system of constraints as slack variables 
with coefficients +1 . Drop them from the problem, replacing the equations 
of the constraints with (<) inequalities. 

2. Multiply each constraint by (—1), creating a minimization problem with (>) 
inequalities for constraints. 

The dual of this equivalent problem is readily determined. The dual would be a 
maximization problem with (<) inequalities as constraints, with the coefficients of 
the objective function corresponding to the negative of the £>,- terms of the original 
problem and the constant terms of the dual corresponding to the cj terms of the 
original problem. 

To apply the simplex process to this dual problem, it must first be put into canon-
ical form. The slack variables added to the (<) inequalities in the system of con-
straints can serve as the basic variables, and the associated basic solution is feasible, 
as the coefficients c, of the original objective function were assumed to be nonnega-
tive. Finally, multiplication of the coefficient of the dual objective function by (—1) 
produces the required minimization problem. 

The simplex algorithm can now be applied. Notice that the coefficients of the 
nonbasic variables of the objective function are precisely the bt terms of the original 
problem, so that determining the pivoting column corresponds directly to Step 3(a) of 
the Dual Simplex Algorithm. And the a,; entries in this pivoting column correspond 
to the negative of the aij entries in the pivoting row determined by Step 3(a) of the 
Dual Simplex Algorithm. Thus determination of the pivoting row here corresponds 
directly to Step 3(b) of the Dual Simplex Algorithm. 

Instead of attempting to write out in precise terms the relationship between the 
algorithms for a general linear programming problem and its dual, we will demon-
strate the relationships by means of the example of this section. 

Example 5.6.3 (Continuation of Example 5.6.1). The problem, as stated in (5.6.2), 
is to minimize z with 

—3xi — 2x2 + 3x3 + M = —3 
-4xi - 2x3 + x5 = -10 
lOxi + 5x2 + 4x3 = z 

Dropping the basic variables, the constraints become 

—3xi — 2x2 + 3x3 < —3 
-4xi - 2x3 < - 1 0 
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Table 5.11 

yA 

ys 

yi 

y\ 

J4 

yi 

y\ yi ys yA ys 

3 4 1 0 0 

2 0 0 1 0 

- 3 ( 5 ) 0 0 1 

- 3 -10 0 0 0 

( ? ) 0 1 0 - 2 

2 0 0 1 0 

- 2 1 0 0 2 

-18 0 0 0 5 

1 0 i 0 - 2 

0 0 - § 1 1 

0 1 è 0 è 

0 0 2 0 1 

10 

5 

4 

0 

2 

5 

2 

20 
2 
9 

41 
9 
7 
3 

24 

Multiplying each by (— 1), we have the equivalent problem of minimizing z with 

3xi + 2^2 — 3x3 > 3 

4xi + 2x3 > 10 

lOxi + 5X2 + 4X3 = Z 

(Note that this is simply the problem in (5.6.1).) The dual problem is to maximize v 
with 

3y{ + 4y2 < 10 

2ji < 5 

- 3 j i + 2y2 < 4 

3ji + 10)>2 = v 

y\,yi > o 

The equivalent problem in canonical form is to minimize — v with 

3yi + 4y2 + y3 = 1 0 

2ji + yA = 5 

- 3 y i + 2y2 + y5 = 4 

- 3 y i - 10y2 = ( -v) 

y\,yi,y3,yA,ys > o 

Now compare the steps of the simplex algorithm applied to this problem (Table 5.11) 
with the steps of the Dual Simplex Algorithm applied to the original problem (Tables 
5.9 and 5.10). 

We conclude this section with some applications of the algorithm. 
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Xä, 

x2 

x6 

x2 

x\ 

- 2 

11 

3 

2 

3 

1 

X2 

0 

1 

0 

0 

1 

0 

Table 5.12 

X3 

5 

-18 

2 

- 5 

2 

7 

X\ 

1 

0 

0 

- 1 

4 

1 

x5 

2 

- 7 

2 

- 2 

1 

4 

x6 

0 
4 

1 

1 

0 

0 

- 1 

32 

113 

1 

28 

112 

Example 5.6.4. In Example 5.5.1, the final change proposed for the b2 = 50 in the 
problem of (5.3.1) of Section 5.3 was an increase to 57. This change generated a neg-
ative b\ in the modified final tableau for the original problem (the second tableau of 
Table 5.5 on page 184). Now we can easily handle the proposed change. Modifying 
the previously final tableau (now b* = (-1,32)r and z*0 = 4(32) +15( -1 ) = 113) and 
applying the Dual Simplex Algorithm, we see, from Table 5.12, that the maximum 
of z is 112, attained at (0,28,0,0). 

Example 5.6.5. New government regulations require that the aluminum can com-
pany of Example 5.1.3 on page 166 increase its monthly use of recycled aluminum 
by 28%, from 600 lb to 768 lb, and the company manager wants to know how this in-
crease affects the company's operation and the marginal costs of producing the cans 
and using the recycled aluminum. 

To respond, we first calculate the modified b* for the second tableau of Table 5.1. 
(Note that B^1 is contained in the artificial variable column data of the tableau.) We 
have 

b* = B-lb = B~l 

= 

= 

75 " 
150 
350 

75 " 
150 
350 

+ 

+ 

" 2400 " 
2800 

600 
+ B-1 

" -1 0 - ^ 
16 U 8 

- I 0 2 
8 u 4 3 i 15 

. 8 l 4 

" - 1 0 5 " 
126 
630 

— 

( 3 ' 
0 

168 

0 " 
0 

168 

" - 3 0 " 
276 
980 

Now b\ is negative. Thus we modify the constant-term column of the second 
tableau of Table 5.1 (zg = -(150(-30) +200(176)) = -50,700) and apply the Dual 
Simplex Algorithm (Table 5.13). Monthly demands can now be met by using Process 
3 for 256 hr. An extra 160 cases of Type A cans and 1040 cases of Type B cans are 
produced. The marginal cost for meeting each of the requirements is zero; and the 
marginal cost of using the recycled aluminum is increased to $66.67/lb. 
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Table 5.13 

x2 

X3 

X5 

M 

X3 

X5 

x\ 
9 
8 
3 
4 

23 
4 

46i 

- 6 

0 

- 8 

65 

X2 

1 

0 

0 

0 
16 
3 
2 
3 

- 2 

16f 

X3 

0 

1 

0 

0 

0 

1 

0 

0 

X4 

a) 
8 
3 
8 

3± 
J 8 

1 

0 

0 

0 

x5 

0 

0 

1 

0 

0 

0 

1 

0 

x6 

3 
16 
1 
8 
3 
8 

-3± ■>8 

- 1 

0 

0 

0 

x-i 

0 

0 

- 1 

0 

0 

0 

- 1 

0 

*8 

5 
8 
3 
4 

15 
4 

-56$ 
10 
3 
1 
3 

5 

-66§ 

- 3 0 

276 

980 

-50,700 

160 

256 

1,040 

-51,200 

Problem Set 5.6 

1. Explain the conclusion of Step 2 in the Dual Simplex Algorithm. 

2. If a linear programming problem is presented in the form described in Step 0 
of the Dual Simplex Algorithm, there cannot exist a set of feasible solutions to 
the system of constraints on which the objective function is unbounded below. 
Prove this. 

3. Using the second tableau of Table 5.5, find the optimal value of the objective 
function and a point at which the value is attained Mb— [28,50]' in the problem 
of (5.3.1) of Section 5.3 is changed to 

(a) [28,49]'. 
(b) [29,50]'. 
(c) [28,-23]'. 

4. Solve the problem of Example 3.5.3 on page 88 if b = [20,10,60]' is changed to 

(a) [18,13,60]'. 
(b) [18,14,60]'. 
(c) [20 - A, 10 + 2A, 60] ' for-15/2 < A < 20. 

5. Solve the problem of Example 3.6.1 on page 95 if b = [3,11]' is changed to 
[9,8]'. 

6. In Example 4.3.1 on page 132, the shadow prices for the three nutritional re-
quirements in the diet problem of Example 2.2.1 on page 10 were determined to 
be 1 cent/unit for nutritional elements A and B, and 0 cents/unit for C. Suppose 
that the cost per pound of each feed has been increased by 10 cents, so that Feed 
1 now costs 20 cents/lb and Feed 2 costs 14 cents/lb. Determine the new shadow 
prices for the constraints. 

7. The aluminum can company of Example 5.1.3 on page 166 has just signed a 
contract calling for the delivery of an additional 1800 cases of the Type A can 
per month (with all other data as stated in the original example). Determine 
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the revised optimal operating schedule and monthly costs, and the new marginal 
costs for the constraints. 

8. The company in Problem 15 of Section 5.1 has access to an additional 600 lb 
of raw material Mi How should the optimal monthly production schedule and 
profit be revised, and how much would additional hours of overtime be worth to 
the company now? 

9. Accepting your estimate that new workers for your section would save the plant 
weekly operating costs of $ 130 for each additional hour available, the plant man-
ager in Problem 17 of Section 5.1 provides you with two new workers (a total of 
80 additional hr/week) at the standard pay rate of $20/hr. You revise the operat-
ing schedule of your section accordingly (which becomes?), but note that your 
weekly costs (which now are?) are reduced by less than $130(80) = $10,400. 
How do you explain this to the plant manager? 

5.7 ADDITION OF A CONSTRAINT 

Suppose that after the optimal value for a linear programming problem has been 
found by means of the simplex method, we wish to alter the original problem by 
adding a new constraint. It could be that the optimal solution found previously satis-
fies the new constraint. If this is the case, the solution is also optimal for the expanded 
problem, because clearly, by the addition of a constraint, we have not changed the 
objective function or increased the set of feasible solutions to the system of con-
straints. On the other hand, if the previous optimal solution does not satisfy the 
new constraint, we must find a new optimal solution. Under certain circumstances, 
however, this problem may be resolved quite easily by the application of the Dual 
Simplex Algorithm to data determined from the final tableau solution to the original 
problem. 

Example 5.7.1. Consider the problem of Example 5.3.1 on page 183. Using the 
second tableau of Table 5.5 on page 184, the problem, with slack variables X5 and X(, 
added, is to minimize (—z) (originally to maximize z) with 

—2xi + 5x3 + X4 + 2x5 — *6 = 6 (5.7.1) 
llxi + x2 - 18x3 - 7x5 + 4x6 = 4 
3xi + 2x3 + 2x5 + x6 = 106+(-z) 

Xl,X2,X3,X4,X5,X6 > 0 

The maximum value of z is 106, attained at the point (0,4,0,6,0,0). 
Suppose now that we also demand that the solution satisfy the (<) inequality 

3xi+x2 + 3x 4 <20 (5.7.2) 

The point (0,4,0,6,0,0) does not satisfy this constraint. Thus we add the constraint 
to the problem and attempt to put this expanded problem into a form to which we 
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can apply a solution algorithm. Adding the slack variable xj to the new constraint 
gives the equation 

3xi + X2 + 3X4 + X7 = 2 0 

Next, we seek a set of basic variables for this system of three equations and 
seven unknowns. An obvious choice, as long as the added constraint introduces a 
slack variable, is this slack variable along with the basic variables from the final 
tableau of the original problem. Here then we can use as basic variables X4, x2, and 
X7. The only operation that must be considered is the removal of the basic variables 
of the previous problem from the new constraint; clearly, this can always be done by 
simply adding appropriate multiples of the original constraints to the new constraint. 
Here we subtract the second equation and three times the first equation from the new 
constraint, 

3xi + x2 + 3x4 + x-i = 20 (5.7.3) 

- ( l l x ) + x2 - 18x3 - 7x5 + 4x6 = 4) 

—3(—2xi + 5x3 + X4 + 2x5 — X(> = 6 ) 

— 2xi + 3X3 + -*5 — X6 + X7 = —2 

yielding an equivalent system of equations in canonical form. Moreover, the expres-
sion for the objective function from the last tableau still contains no basic variables, 
since the added basic variable X7 is a slack variable with a zero cost coefficient; and 
the associated coefficients of the objective function are nonnegative, corresponding 
to a terminating tableau in the simplex algorithm. The modified problem, with the 
equation of (5.7.3) added to the constraints of (5.7.1), is in a form to which we can 
apply the Dual Simplex Algorithm (Table 5.14). The maximum of z is now 1 0 0 | 
attained at (0,0, 5 ,65,0 ,4 ,0) . 

Example 5.7.2 (Continuation of Example 5.7.1). Suppose that instead of the in-
equality (5.7.2) we add to the problem of (5.7.1) the (>) inequality 

4 x i + x 2 + 4x4 > 2 9 (5.7.4) 

Again, the point (0,4,0,6,0,0) does not satisfy the additional constraint. Introducing 
the slack variable X7 to (5.7.4) gives 

4xi +X2 + 4x4 - x 7 = 29 (5.7.5) 

To use X7 along with x2 and X4 as basic variables, we multiply (5.7.5) by (—1), then 
add to the result the second constraint of (5.7.1) and four times the first constraint. 
This yields the equation 

—X] +2x3 +*5 +*7 = —1 (5.7.6) 

The Dual Simplex Algorithm applied to the problem of (5.7.1), with the addi-
tional constraint (5.7.6), is given in Table 5.15. The problem now has no feasible 
solutions. 
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Table 5.14 

X4 

X2 

x-, 

X4 

x2 

x6 

X4 

XT, 

x6 

x\ 

- 2 

11 

- 2 

3 

0 

3 

2 

1 

1 
l 
2 
1 
2 
7 
2 

x2 

0 

1 

0 

0 

0 

1 

0 

0 
1 
3 
1 
6 
1 
2 
5 
6 

*3 

5 

- 1 8 

3 

2 

2 

@ 
- 3 

5 

0 

1 

0 

0 

x4 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

*5 

2 

- 7 

1 

2 

1 

- 3 

- 1 

3 

0 
l 
2 
1 
2 
1 
2 

*6 

- 1 

4 

(->) 
1 

0 

0 

1 

0 

0 

0 

1 

0 

Xl 

0 

0 

1 

0 

- 1 

4 

- 1 

1 
l 
3 
2 
3 

- 3 
13 
3 

6 

4 

- 2 

106 

8 

- 4 

2 

104 

6f 
2 
3 

4 

lOOf 

Table 5.15 

X4 

*2 

X7 

X4 

XI 

x\ 

x\ 

- 2 

11 

® 
3 

0 

0 

1 

0 

X2 

0 

1 

0 

0 

0 

1 

0 

0 

X3 

5 

- 1 8 

2 

2 

1 

4 

- 2 

8 

X4 

1 

0 

0 

0 

1 

0 

0 

0 

X5 

2 

- 7 

1 

2 

0 

4 

- 1 

5 

*6 

- 1 

4 

0 

1 

- 1 

4 

0 

1 

Xl 

0 

0 

1 

0 

- 2 

11 

- 1 

3 

6 

4 

- 1 

106 

8 

- 7 

1 

103 

Example 5.7.3 (Continuation of the previous two examples). Suppose we add to the 
problem of (5.7.1) the equality constraint 

X\ + 3xj, +X4— 4X5 — X6 = — 18 

a constraint also not satisfied by the point (0,4,0,6,0,0). When we add to the final 
tableau of the original problem the above equality, the problem is completed in three 
pivot steps (Table 5.16). The first pivot step renews the status of X4 as a basic variable, 
removing the variable from the new constraint. The purpose of the second pivot step 
is to introduce a basic variable into the new constraint row, necessary here, as no 
slack variable came with the equality constraint. To determine the pivoting term for 
this row, we use the pivoting rules for the Dual Simplex Algorithm. Thus we pivot 
at the —6 term ( ^ > ^ or, using absolute values, 5 < 1). 
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Table 5.16 

X 

X2 

X 

X4 

X2 

X 

X\ 

X2 

x5 

x6 

X2 

X5 

X\ X2 Xi, X4 X$ X(, 

- 2 0 5 (T ) 2 - 1 

11 1 -18 0 - 7 4 

1 0 3 1 - 4 - 1 

3 0 2 0 2 1 

- 2 0 5 1 2 - 1 

11 1 -18 0 - 7 4 

3 0 - 2 0 Q) 0 

3 0 2 0 2 1 

- 1 0 ^ 1 0 Q) 

% 1 - f 0 0 4 

- ^ 0 ^ 0 1 0 

4 0 f 0 0 1 

1 0 - ^ - 1 0 1 

\ \ § 4 0 0 

- ^ 0 ^ 0 1 0 

3 0 - ^ 1 0 0 

6 

4 

-18 

106 

6 

4 

-24 

106 

- 2 

32 

4 

98 

2 

24 

4 

96 

The Dual Simplex Algorithm can now be properly applied; the bottom row co-
efficients have remained nonnegative, and the system of constraints is in canonical 
form. One more iteration of the algorithm completes the problem. The maximum of 
z is 96, attained at (0,24,0,0,4,2). 

Example 5.7.4. The directors of the aluminum can company of Example 5.1.3 on 
page 166 find the optimal operating schedule suggested in that example unaccept-
able; they want each of their processes to be used at least 16 hr/month. 

To satisfy this requirement, we append to the previously completed problem, for 
the time being, the single constraint x\ > 16. (In the original solution, the other two 
processes were each used for far more than 16 hr/month.) Introducing a slack vari-
able xg and multiplying by (—1), we have —x\ +X9 = —16. Adding this equation to 
the second tableau of Table 5.1 and applying the Dual Simplex Algorithm generates 
the tableaux of Table 5.17. The corresponding optimal solution point calls for using 
Process 1 for 16 hr, Process 2 for 57 hr, and Process 3 for 162 hr. This production 
schedule uses all three processes for at least 16 hr and thus is an optimal operating 
schedule. 
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Table 5.17 

x2 

X3 

x5 

x9 

x2 

x3 

X5 

Xl 

X\ 

9 
8 

3 
4 

23 
4 

("O 
46 i 

0 

0 

0 

1 

0 

x2 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

* 3 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

X4 

3 
16 

1 
8 

3 
8 

0 

3 ! 
J 8 

3 
16 

1 
8 

3 
8 

0 

3± 
J 8 

*5 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

X9 

0 

0 

0 

1 

0 
9 
8 

3 
4 

23 
4 

- 1 

46 i 

* 6 

3 
16 

1 
8 

3 
8 

0 

-3± 
J 8 

3 
16 

1 
8 

3 
8 

0 

-3± 
J 8 

Xl 

0 

0 

- 1 

0 

0 

0 

0 

- 1 

0 

0 

XS 

5 
8 

3 
4 

15 
4 

0 

- 5 6 i 
5 
8 

3 
4 

15 
4 

0 

- 5 6 | 

75 

150 

350 

-16 

-41,250 

57 

162 

442 

16 

-41,990 

Problem Set 5.7 

1. In Example 5.7.1, a (<) inequality was added to the set of constraints of a linear 
programming problem. The solution point to the original problem did not satisfy 
this new constraint, so the inequality was modified by the addition of a slack 
variable (xj) and the elimination of the basic variables (x2 and X4). This resulted 
in a negative constant term (here —2), and so the Dual Simplex Algorithm could 
be used on the expanded problem. What would we have done if this resulting 
constant term were nonnegative? 

2. Solve the problem of Example 3.6.1 on page 95 after adding the constraint 

(a) X] +x2 + 2xj + 2x4 < 37 
(b) x\ +x2 + 2x3 + 2x4 < 17 
(c) Xl — X2 < 7 

(d) xi + 2x2 + 20x3 — 2x4 > 38 

3. Starting with the data from the second tableau of Table 5.4, solve the problem 
of (5.2.1) of Section 5.2 with the following constraints added: 

(a) X4 + xs = 5 
(b) X4 + X5 = 7 

In each, follow the steps used in Example 5.7.3. (Note that in the second pivot 
in that example, the fact that the constant term in the pivoting row, the —24, was 
negative was not relevant at that point.) 

4. Solve the problem of Example 3.5.1 on page 87 after expanding the problem by 
adding the constraint 

(a) 2xi —x2 — 5x3 > 12 
(b) X3 > 6 

(c) 2xi +x2 > 39 
(d) xi +X2 +X3 = 20 
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(e) x\ +X2 +X3 = 27 

5. Consider the situation described in Example 5.7.4 

(a) What is the marginal cost (in $/hr required) of using each process at least 
16 hr/month? 

(b) By how much can this monthly minimum use requirement increase before 
the marginal cost in part (a) changes? 

(c) Determine the optimal production schedule if each process must be used at 
least 40 hr/month. What is the marginal cost of the monthly minimum use 
requirement now? 

6. (a) To maintain its visibility in the marketplace, the company in Problem 15 of 
Section 5.1 considers producing and selling each month at least 25 units of 
each of its three products. What would the corresponding optimal produc-
tion schedule be, and what would this visibility factor cost? 

(b) The company decides against setting minimal sales requirements for its 
products. But now the Sales Department claims it can sell at most 200 
A's in any month. Determine the revised optimal production schedule. 

7. The plant manager in Problem 17 of Section 5.1 wants the dependence on the ex-
ternal source of the B's to be reduced to no more than 70/week. (From Table 5.3, 
the present operating schedule calls for the weekly purchase of 901 units.) 

(a) After doing some calculations based on the second tableau of Table 5.3, 
what do you tell the plant manager? 

(b) A compromise is offered - no more than 80/week. Do you accept the re-
striction, and if so, how do you implement it? 
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CHAPTER 6 

INTEGER PROGRAMMING 

6.1 INTRODUCTION TO INTEGER PROGRAMMING 

The term integer programming (or mixed integer programming) refers to the study of 
linear programming problems for which the domains of all (or some) of the variables 
of the problem are restricted to be integral. Models leading to such problems readily 
occur. For example, suppose we are considering a transportation problem, where the 
units to be shipped are automobiles, refrigerators, or soldiers, or a production prob-
lem, where the units to be produced are homes, swimming pools, or submarines. 
Certainly the optimal solution to such a problem cannot contain fractional values. 
But the use of integer programming is not restricted to obvious situations such as 
these. Many other optimization problems involving, for example, fixed charges, fa-
vorable objective function shifts, alternative constraints, "on" or "off" variables, and 
so on, can be modeled using integer programming techniques. We will see examples 
of such problems in Section 6.2. 

In Sections 6.3 and 6.4, we will develop two different algorithms that can be used 
to calculate optimal solutions to integrally restricted problems. The first algorithm 
uses a cutting plane method of solution; the second uses a branch and bound ap-
proach. Both algorithms make use of the Dual Simplex Algorithm. In Section 6.5 
we demonstrate the use of Solver in resolving integer programming problems. 

In this section, we illustrate some of the difficulties involved in determining the 
solution to an integrally restricted linear programming problem. The most obvious 
possible solution technique for such a problem would be initially to ignore the inte-
gral restrictions, solve the corresponding linear programming problem using what-
ever algorithm or means is suitable, and round off this calculated solution to integral 
values. However, this method fails, as the following example demonstrates. 

Example 6.1.1. Consider the problem of 

Maximizing f{x\,X2) = 3xi + 13x2 
subject to 
2*i + 9x2 < 40 

11*1 - 8x2 < 82 
x\ ,X2 > 0 and integral 

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, Inc. 



212 CHAPTER 6. INTEGER PROGRAMMING 

Table 6.1 

*3 

X4 

X2 

X4 

x2 

X\ 

X\ X2 XT, X4 

2 (T) 1 0 
1 1 - 8 0 1 

- 3 - 1 3 0 0 

2 1 i 0 
9 1 9 U 

( f ) 0 | 1 
4 0 % 0 

n 1 JJ- 2-
u J 115 115 
1 0 ^ - -2-
1 u 115 115 
0 0 ^ _J_ 
u u 115 115 

40 

82 

0 

4^ 

117§ 

571 

2 | 

9 5 

5 8 | 

If we ignore the integral restrictions, we can apply the simplex algorithm (after 
adding slack variables X3 and X4). From the tableaux of Table 6.1, the maximum 
value of / for the simple linear programming problem is 581 and is attained at the 
point (95,2|) . As for the original problem with the integrally restricted variables, 
it would seem reasonable that we should simply round off the above solution point 
(9±,2§) to (9,2) or maybe (10,2), (10,3), or (9,3). However, none of these four 
points is feasible; the first three do not satisfy the second inequality, and the last two 
do not satisfy the first. Thus the simplex algorithm has provided us with no useful 
information, and it is not at all clear how one could proceed, at least in general. 

Actually, for this simple example with only two variables, we can graph the so-
lution set to the system of constraints and work from there. This graph is sketched 
in Figure 6.1. There are 36 lattice points (points with both coordinates integral) in 
the region bounded by the constraints. Since the coefficients of the objective func-

* 2 

Figure 6.1 
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tion are positive, there can be no lattice points in the feasible region that are to the 
right or above the point at which the maximal value of the objective function is at-
tained, andso the optimal value of /must occur at either (2,4), (6,3), or (8,2). Now 
/(2,4) = 58, /(6,3) = 57, and /(8,2) = 50, so the maximal value of / is 58 and is 
attained at the point (2,4). 

Note the distance between the integer programming solution point (2,4) and the 
linear programming solution point (9^,2|) and contrast this distance to the prox-
imity of the feasible lattice point (8,2) to (9^,2 | ) . Compare also the value of/ of 
50 at this closest lattice point to its value of 58, a 16% increase, at (2,4). Clearly, 
integer programming problems may require special techniques. 

Problem Set 6.1 

1. Consider the problem of 

Maximizing 5xi + 2x2 
subject to 

6xi + 2x2 < 13 
-6xi + 7x2 < 14 
xi ,X2 > 0 and integral 

(a) Using the simplex algorithm, show that the optimal value of the objective 
function of the problem with the integral restrictions ignored is 11 g and is 
attained at the point ( 1 g, 3). 

(b) Show graphically that the optimal solution to the original restricted variable 
problem is at (2,0). 

Conclusion. Given an integer programming problem, the fact that some (but 
not all of the restricted) coordinates of the solution point of the corresponding 
linear programming problem are integral is of little value in solving the integer 
programming problem. 

2. Consider the problem of 

Maximizing 2xi + 9x2 
subject to 
2xi + x2 < 20 
xi + 5x2 < 24 

X] ,X2 > 0 and integral 

(a) Using the simplex algorithm, show that the optimal value of the problem 
without the integral constraints is attained at (8 | ,3^) . 

(b) Show that the lattice point (8,3) is a feasible solution to the system of con-
straints. 
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(c) Show graphically (or algebraically) that the optimal solution to the original 
integrally restricted variable problem is at (4,4). 

Conclusion. Given an integer programming problem, the fact that the coordi-
nates of the solution point of the corresponding linear programming problem 
round off to a feasible solution to the system of constraints is of little value in 
solving the original problem. 

3. Consider the problem of 

Maximizing x\ +X2 
subject to 
3x2 > 1 
3x2 < 2 
X[ ,X2 > 0 and integral 

(a) Solve the problem, ignoring the integral restrictions. 
(b) Solve the problem with the integral restrictions. 
(c) Can you demonstrate any greater a difference between the solutions to an 

integrally restricted problem and the corresponding nonintegrally restricted 
problem? 

4. Given an integer programming problem, suppose the optimal value of the corre-
sponding linear programming problem is attained at a point with all coordinates 
integral. Ts this point the solution point to the original problem? 

6.2 MODELS WITH INTEGER PROGRAMMING 

FORMULATIONS 

In this section, we will discuss various problem situations that can be formulated as 
integer (or mixed integer) programming models. Three general areas will be dis-
cussed: the allocation of discrete commodities, modifications of the objective func-
tion, and problems with alternative constraints. Many other application areas exist. 
These applications show that restricting the domains of some of the variables of a 
problem to a discrete set can be an effective tool in the formulation of mathematical 
models. However, solution algorithms for integer programming problems may re-
quire many computationally heavy iterations. The size and type of a given problem 
are critical factors in determining if the computer system and the software at hand 
have the capacity to solve the problem. Integer programming is an active area in 
theoretical and computational research. 

The Allocation of Discrete Commodities 

Suppose we have a fixed amount of a resource, such as capital, space, or machine 
time, that we wish to utilize in a way that maximizes profit or gain. Suppose also 
that the alternative methods through which our resource can be utilized are such that 
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only multiples of fixed-size lots can be allocated to each. By introducing integrally 
restricted variables to correspond to the allotment made to each of the alternatives, 
such problems can be formulated as integer programming problems. 

Example 6.2.1. An investment firm, wishing to maximize profit, has $100,000 to 
invest in a construction project requiring an investment of $48,000 and providing 
a profit of $2900; in any number of units of a portfolio of stocks requiring an in-
vestment of $19,000/unit and yielding a profit of $l,100/unit; and in any number of 
shares of a certain stock costing $1750/share and yielding a profit of $95/share. 

To formulate a mathematical model, introduce three variables x\, X2, and X3, 
defined as follows: x\ will be 1 if the construction project is utilized and 0 if not, 
X2 will be the number of units of the portfolio utilized, and X3 will be the number of 
units of the stock utilized. The integer programming model is 

Maximize 2900xi + 1100x2 + 95x3 

subject to 
48,000xi + 19,000x2 + 1750x3 < 100,000 
0 < x\ < 1, X2,X3 > 0 and x\, X2, X3 integral 

Example 6.2.2. An airplane can carry up to W lb of extra cargo on a scheduled 
flight. There are n different items that could be transported, with Item i weighing a, 
lb and providing a profit of c, dollars if transported. What items should be shipped 
so as to maximize profit? 

Define n variables x,-, 

{1 if the 2'th item is to be shipped 

0 if not 

The corresponding integer programming problem is 

n 

Maximize 2_\ cix' 

subject to 
n 

Y^aiXi < W 
i=l 

0 < x,■ < 1 and integral, i= l,...,n 
Suppose that two restrictions are now added to the problem: Item 2 cannot be 

shipped unless Item 1 is also shipped, and Items 3 and 4 cannot be shipped together. 
These restrictions can be easily expressed in terms of the integrally restricted vari-
ables; we add to the constraints the inequalities 

X2 < x\ and X3 + X4 < 1 

Note that the final models in these two examples are simple integer programming 
problems. This is our goal for each of the examples of this section, that is, to trans-
late the problem at hand into a linear programming problem with integral restrictions 
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on (possibly some of) the variables of the problem so that the problem can be solved 
by the use of available integer programming solution techniques. Remember that the 
introduction and interpretation of the variables for the problem is just an intermediate 
(but often the most difficult) step, and that it is contingent on the problem formula-
tor's ascertaining whether the final integer programming problem adequately reflects 
the situation at hand and, in particular, the desired interpretation of the variables. 

Modifications of the Objective Function 

A simple example of a model that requires modification of the objective function 
is the Fixed Charge Problem. Consider an operation in which the costs or profits 
associated can involve lump sum quantities, depending on whether or not certain 
processes, facilities, or whatever are utilized, that is, situations in which there is a 
fixed charge or cost for the use of a process only if that process is used. For example, 
if a machine is to be used in the manufacture of a product, there could be a setup cost 
to prepare the equipment for the run. Or if a new market is to be opened for selling 
a product, there could be an initial market development cost totally independent of 
the number of units eventually sold in that market. In a transportation problem, there 
could be rental costs for the warehouses utilized. 

To formulate models for such operations, we introduce, for each fixed charge, an 
auxiliary variable, restricted to either 0 or 1, with the interpretation that the variable 
will be 1 only if the corresponding fixed charge is to be assessed. Then the product of 
the fixed charge times the variable is added to the objective function of the model, and 
inequalities are added to the constraints so that this "on or off" role of the auxiliary 
variable is maintained. 

Example 6.2.3. Suppose a machine shop has three processes that it can use to man-
ufacture two different parts, with each process combining various amounts of raw 
material and labor to produce different quantities of the two parts. Suppose the shop 
has weekly limits on its raw material and labor and must meet weekly fixed demands 
for the two parts. Assume that with each process there is both a setup and a main-
tenance charge d, if the process is utilized, and also a cost c, for every hour of its 
operation. We wish to determine the weekly operation of the shop that minimizes 
total cost while meeting the given demands for the parts. 

Define variables: 

xi = number of hours per week that Process i is used 

(o, xx = 0 

Then the restrictions on the available raw material and labor would be reflected in (<) 
inequalities involving the x,'s, the weekly demands for the parts would correspond 
to (>) inequalities in the x,'s, and the objective function for the model would be 

c\x\ + c2x2 + c3x3 + d\y\ + d2y2 + fayi 
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Now all we need do is add constraints to regulate the y^s. Suppose that there are 
known upper bounds on the x,'s independent of the final operation of the plant. In 
this problem, let us assume that each x, must be less than or equal to 40. Then, to the 
constraints we add the inequalities 

. xt 
y'-4Ö 
0 < y, < 1 and integral, i= 1,2,3 

Notice that if the optimal operation calls for the use of Process i, the restrictions on 
yt force it to be 1, since x,/40 will be greater than 0, whereas if Process i is not to 
be used, the constraints would permit y, to be 0 or 1, but the minimization of the 
objective function would lead to yi = 0. Thus the desired role of these auxiliary 
variables is achieved. 

Example 6.2.4. A distributor supplies n retail outlets, with Outlet j requiring dj 
units monthly. The distributor can rent storage facilities in up to m warehouses, 
with Warehouse i having a storage capacity of s,- units and a monthly rental fee of 
r, dollars. There is a cost of c,; dollars to ship 1 unit from Warehouse i to Outlet 
j . Determine what warehouses are to be utilized in the implementation of a feasible 
shipping schedule that minimizes total costs. (This problem would be a standard 
transportation problem if it were not for the rental fees of the occupied warehouses.) 

Define variables: 

Xjj — number of units shipped monthly from Warehouse i to Outlet j 

{0 if Warehouse i is not utilized 

1 if Warehouse i is utilized 

Then an integer programming model for this problem is to 

Minimize J ^ c 
Ux'j + X/.?.- (6.2.1) 

subject to 

y^Xjj <st,i= l,...,m 
j 

^2xij>dj,j= \,...,n 
i 

yt> y2—,i= l,...,m 
^ Si 

j 

0 < x,y, 0 < y, < 1 and integral 
In a solution to this problem, the y,-'s would indicate what warehouses are to be used, 
and the x,/s would provide a corresponding minimal-cost shipping schedule. 

If the "fixed charge" is in fact a rebate, that is, a benefit to be provided as long 
as certain conditions are fulfilled, the problem can be handled in the same fashion as 
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the above, only now the associated auxiliary variable would need to be forced "off" 
if the required conditions are not fulfilled. 

Example 6.2.5 (Continuation of Example 6.2.4). Suppose the distributor of Example 
6.2.4 is entitled to a monthly rent reduction of $R if both Warehouses 1 and 2 are 
utilized. 

Define 
z (°> yi+y2<2 

\ l , yi+y2 = 2 

Then we add to the objective function of (6.2.1) the term (—Rz) and to the constraints 
the restrictions 

z<(yi+y2)/2 

0 < z < 1 and integral 

Now minimization of the objective function would require z to be 1 whenever possi-
ble, but the restrictions on z constrain it to be 0 unless both y\ and y2 are 1. 

Another situation that can require modifications in the objective function is when 
there are sliding or changing costs, depending on how much of a quantity is used. 
The modeling problems of Chapter 2 that involved the use of labor, with overtime at 
a premium price, are examples of this type. 

Example 6.2.6. Processing a material M through a machine, a company can produce 
A's and fi's. The requirements and selling price of a unit of each are as follows: 

M (units) Machine Time (min) Selling Price ($) 

A 5 2 25 
ß 8 4 45 

The company has available 110 min of machine time weekly at no cost. The material 
M, however, must be purchased from an outside vendor. The company can purchase 
weekly 150 units at $2/unit and an additional 100 units at $3/unit. 

Assuming that there are no other expenses associated with the production and sale 
of the A's and B's, one possible model for this problem is the following. Define x\ 
and X2 to be the number of A's and B's, respectively, to be produced and sold weekly, 
XT, the number of units of M purchased at $2/unit, and x\ the number purchased at 
$3/unit. The problem then is to 

Maximize 25xi + 45x2 - 2x3 - 3x4 (6.2.2) 
subject to 
5X] + 8x2 = *3 + M 
2xx +4x 2 < HO 

X3 < 150 
x4 < 100 

Xt,X2,X3,X4 > 0 
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For this problem, as stated, we have used no auxiliary discrete variables. By the 
nature of the objective function, we are guaranteed that in any optimal solution, X4 
will be positive only if X3 equals 150. 

Now we alter the circumstances of the problem. 

Example 6.2.7 (Continuation of Example 6.2.6). Suppose that new sources of ma-
terial M become available to the outside vendor, and so the vendor changes the price 
of M as follows: still $2/unit for the first 150 units but only $1.75/unit for the next 
100 units. 

Letting X4 now be the number of units purchased at $1.75/unit, one approach here 
might be to simply change the coefficient of X4 in the objective function of (6.2.2) 
from —3 to —1.75. However, that alone would not suffice; nothing in the model 
would force the use of the first 150 units of M before the use of the less expensive 
last 100 units. We need to introduce an auxiliary variable. 

Define 
_ JO, x3 < 150 

y i - \ l , x3 = 150 

and, in the problem of (6.2.2), change the —3x4 term of the objective function to 
— 1.75x4 and add the constraints 

yi<x3/\50 
X4 < lOOyi 

0 < yi < 1 and integral 

Then X4 can be positive only if the discrete variable y\ is 1, and y\ can equal 1 only 
whenx3 = 150. 

We can extend this technique to handle various shifts in cost. 

Example 6.2.8 (Continuation of Example 6.2.7). Suppose the vendor offers an un-
limited amount of material M to the company, priced at $2/unit for the first 150 units, 
$1.75/unit for the next 100, and only $l/unit for any number of units purchased over 
the first 250. 

Define X3, X4, and X5 to be the number of units of M purchased at $2, $ 1.75, and 
$l/unit, respectively, and define x\ and X2 as before. Introduce 

_ Jo , x3 < 150 _ f 0, X4 < 100 
y i [ 1 , x3 = 150 y 2 ~ \ l , x4 = 100 

The problem: 
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Maximize 25xi + 45x2 — 2x3 — 1 -75x4 — 1x5 
subject to 
5xi + 8x2 = X3 +X4 +X5 
2X! + 4x2 < 110 

x3 < 150 
3>i<x3/150 3'2<x4/100 
x4 < lOOji x5 < 245y2 

Xi,X2,X3,X4,X5 > 0 
0 < y\ ,yi < 1 and integral 

(The constraint X5 < 245^2, which restricts the X5 to 0 until y2 is 1 and X4 is 100, 
requires an upper bound on the X5. Here 2xi + 4x2 < 110 implies x\ < 55 and X2 < 
27.5, and so, in any feasible production schedule, 5xi +8x2 < 5(55)+8(27.5) =495 
(see Problem 4).) 

The Problem of Alternative Constraints 

Consider a situation in which the amounts of the quantities involved, represented by 
the variables of the problem, must satisfy one (or more) set(s) from two (or more) 
alternative sets of constraints. For example, in the manufacture of a certain product, 
it may be economically feasible to produce either none at all or an amount exceeding 
some minimal batch size. Or, in the bidding for various contracts, those bids sub-
mitted must exceed certain minimal operating costs, and so the bids are either 0 or 
greater than or equal to some lower bound. Or, in the utilization of the resources of 
a plant, one of several methods may be employed, and associated with each method 
is a corresponding system of constraints reflecting the limited supplies and required 
demands. 

To formulate models for problems of this type, we again introduce auxiliary on 
or off variables equal to either 0 or 1 and use the variables to modify the system of 
constraints. 

Example 6.2.9. Suppose a variable x,-, representing the amount of an item to be 
produced, must be either 0 or greater than or equal to a minimal batch size £,-, and 
assume also that in any feasible solution, x, is bounded above by m/. To model this, 
we introduce a discrete variable y,-, adding to the constraints the restrictions 

xi < niiyi 
xi > btyt 
0 < y 1: < 1 and integral 

Then yt can equal only 0 or 1. If yt = 0, the two inequalities force x, = 0, and if 
yi — \, the first inequality has no significance but the second demands x, > £>,. Thus 
x, is properly restricted. 
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Figure 6.2 

Example 6.2.10. Suppose nonnegative variables x\ and X2 must satisfy either 2xi + 
9x2 < 18 or x\ +X2 < 6. The graph of the set of feasible points (xi ,X2) is illustrated 
in Figure 6.2. (Notice that this set is not convex.) Introduce variables j i and y2, with 

{0 if the first inequality is not satisfied 

1 if the first inequality is satisfied 

and similarly for j2 and the second inequality. 
To formulate an integer programming model to reflect these interpretations, we 

need to determine upper bounds to use in the constraints in order to render the as-
sociated inequalities nonrestrictive when they are off. Here, if (xi ,X2) is a feasible 
solution to the either/or constraints, we must have x\ < 9 and X2 < 6 (see Figure 6.2). 
Thus, for any feasible point (xi ,X2), 

2 x i + 9 x 2 - 1 8 < 18 + 5 4 - 1 8 = 54 

and 
x i + x 2 - 6 < 9 + 6 - 6 = 9 

Using these bounds, one can express the either/or restrictions as follows: 

2xi + 9x2 - 18 < 54(1 -y{) (6.2.3) 
xi + x2 - 6 < 9(1-y 2 ) 
y\ + J2 > 1 

Xi,X2 > 0 

0 < Ji,y2 < 1 and integral 

To ascertain that this system properly reflects the original conditions of the prob-
lem, observe first that the inequality yi + y2 > 1 demands that at least one of the 
y,-'s will be 1. If yi = 1, the first inequality reduces to the original 2xi +9x2 < 18, 
and so, if (xi,X2,yi,y2) is a solution to (6.2.3) with yi = 1, the point (xi,X2) must 
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satisfy this inequality. Similarly, if 3̂2 = 1, a solution point must satisfy the origi-
nal second inequality. Finally, when y\ = 0, the first constraint places no meaning-
ful restrictions on the solution set, because all feasible points (x\,X2) must satisfy 
2xi +9x2 - 18 < 54. Similarly when y2 = 0. (See Problem 1.) 

Notice the nature of the end product in the above example. We have a simple 
collection of linear inequalities involving nonnegative variables, with some of the 
variables restricted to be integral. Thus, unless other difficulties were present, inte-
ger programming techniques could be used with these constraints. Of course, if the 
optimization problem were simply to maximize, say f(x\,X2) = 4xi +X2 subject to 
either x\ + xi < 6 or 2x\ + 9x2 < 18, with x\ and X2 nonnegative, one could consider 
each constraint separately, solve the corresponding linear programming problem, and 
compare the two optimal values. The larger value would be the solution to the prob-
lem with the either/or constraints. However, the techniques of the example do show 
some of the range of integer programming and also generalize quite easily to encom-
pass more complicated situations. 

Example 6.2.11. Consider the problem of finding all points (x\ ,X2,x$) satisfying 

X\ + 2X2 + 3X3 < 600, X\ ,X2,X3 > 0 

and at least three of the following five alternative sets of constraints: 

{5x! + 10x2 < 500}, {xi - x 2 +x3 < 450}, {x2 +x3 > 100}, 

{2x! - 3x2 > 100 and x3 > 50}, {x\ +x3 = 150} 

Introduce discrete variables v,-, with 

{0, the j'th set of constraints is not satisfied 

1, the ith set is satisfied 

To determine bounds to render the constraints redundant when the j , ' s equal 0, note 
first that x\ + 2x2 + 3x3 < 600 implies that x\ < 600, X2 < 300, X3 < 200 for any 
solution point. Thus, for any feasible point (xi ,X2,X3), we have 

500 < 5(600) + 10(300) - 500 = 5500 
450 < 600 - 0 + 200 - 450 = 350 
100 > 0 + 0 - 100= -100 
100 > 0 - 9 0 0 - 1 0 0 = -1000 
50 > 0 - 5 0 = - 5 0 

150 < 600 + 200-150 = 650 
150 > 0 + 0 - 1 5 0 = - 1 5 0 

5xi + 

x\ -

2x\ — 

xi 

X\ 

10x2 
X2 + X3 

X2 + X3 

3X2 

X3 

+ X3 

+ x3 

The problem then becomes one of determining all (xi,X2,X3) and (y\,y2,y3,y4,ys) 
satisfying 
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X\ 

5xi 

Xl 

2xi 

x\ 
Xl 

+ 2X2 + 3X3 

+ 10x2 
- X2 + 

X2 + 

— 3X2 

+ 
+ 

x3 
X3 

X3 

X3 

X3 

>'l+3'2+3'3+y4 + 

< 600 
500 < 5500(1 -yi) 
450 < 350(1 -y2) 
100 > -100(1 -y3) 
100 > -1000(1 -y4) 
50 > -50(1 -y4) 
150 < 650(1 -y5) 
150 > -150(1 -j5) 

- y 5 > 3 

0 <yuy2,y3,y4,y5 < 1 and integral 
Xi,X2,X3 > 0 

Problem Set 6.2 

1. In working with auxiliary variables in problems with alternative constraints, we 
used upper and lower bounds in the inequalities associated with these variables 
so that these inequalities were rendered redundant when the corresponding aux-
iliary variables were off (i.e., usually equal to 0). To show the need for these 
bounds, consider Example 6.2.10. Suppose we attempt to replace the either/or 
constraints of that example with the following: 

2xi + 9x2 - 18 < 1-yi (6.2.4) 
xi + X2 — 6 < 1 —y2 

yi +yi > l 
Xi,X2 > 0 
0 < y\ ,yi < 1 and integral 

(This is simply (6.2.3), with the upper bounds of 54 and 9 omitted from the first 
two inequalities.) 

(a) Show that if (xi,X2,3'i,>'2) satisfies (6.2.4), then either 2xi +9x2 < 18 or 
xi +X2 < 6. 

(b) Show that for some (xi ,X2) that satisfy either 2xi + 9x2 < 18 or xi +X2 < 6, 
we cannot find y\ and y2 such that (xi,X2,y\,yi) is a solution to (6.2.4). (Try 
finding }>i and y2 for the point (3,3), for example.) 

(c) In fact, show that if (xi ,X2,yi,y2) is a solution to (6.2.4), then (xi,X2) satis-
fies 

f 2xi +9x2 < 18 1 f 2xi +9x2 < 19 \ 
\ Xl + X2 < 7 J \ Xl + X2 < 6 J 

2. (a) Show that replacing the inequality y\ -\-y2 > 1 in (6.2.3) with the equal-
ity y\ +J2 = 1 yields an equivalent system of constraints (with respect to 
(xi,x2)). 

(b) Express the either/or constraints of Example 6.2.10 with linear restrictions 
using only one discrete variable. 
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3. Show that the optimal production schedules for the problems of Examples 6.2.6, 
6.2.7, and 6.2.8 are all distinct. 

(Hint. The simplex algorithm can be used in 6.2.6. The solution suggests that in 
any optimal solution to 6.2.7, at least 150 units of M will be used, and with this 
assumption, 6.2.7 can be formulated as a linear programming problem without 
discrete variables.) 

4. Show that in Example 6.2.8, the 495 upper bound on the number of M's used 
could be replaced by 275. (Hint. 5JCI + 8x2 = 2(2*i + 4x2) + x\ ■) 

5. For each of the shaded regions in Figures 6.3, 6.4, and 6.5, determine an equiv-
alent system of linear constraints. 

Figure 6.5 
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Formulate integer (or mixed integer) programming models for the following. 
(Do not attempt to solve the problems.) 

6. An investment firm, wanting to maximize profit, has $500,000 to invest in the 
following: 

• A development project, requiring a lump sum investment of $390,000 and 
yielding a return of 6.7%. 

• A construction project, requiring a lump sum investment of $220,000 and 
yielding a return of 6.5%. 

• Any number of units in a portfolio of stocks, costing $25,000/unit and 
yielding a return of 6.3%. 

• Any number of units of a certain stock, costing $1300/share and yielding a 
return of 5.7%. 

7. A construction firm has available M dollars in capital to be used for the develop-
ment of up to n different sites, with Site i costing a, dollars for development and 
returning an expected profit of c,- dollars upon completion. However, J ] a, > M. 
What sites should be selected to optimize the expected profit? 

8. (a) {The Knapsack Problem) A backpacker's knapsack has a volume of V in.3 

and can hold up to W lb of gear. The backpacker has a choice of n items to 
carry in it, with the i\h item requiring a, in.3 of space, weighing w,- lb, and 
providing c, units of value for the trip. What items should be taken in the 
knapsack? 

(b) Refine part (a) to include the following considerations: Item 1, a can of tuna 
fish, Item 2, a can of corn, and Item 3, a can of stew, have no value unless 
Item 4, the can opener, is taken; and only one snack, either Item 5, potato 
chips (light but bulky), or Item 6, unpopped popcorn (small but heavy), is 
to go. Of course Items 2, 3, and 6 all use Item 7, the cooking pot. 

9. A road construction firm seeks to assign its force optimally over the next 28-
week period. They can be assigned to any combination of the following: 

• For any number of 10-week periods, working for the state, and earning a 
profit of $3200/week. 

• For any number of 6-week periods, working for the county, and earning a 
profit of $2900/week. 

• For any number of 3-week periods, working for a private land developer, 
and earning $2750/week. 

• For any number of weeks, working on parking lot construction, and earning 
$2550/week. 

• However, if the firm does any work at all for either the state or county (or 
both), it is expected to contribute $7500 to the campaign fund of a certain 
anonymous political figure. 

10. (a) A manufacturer supplies six outlets and has a choice of renting space in up 
to three warehouses to maintain stocks to deliver to the outlets. Determine 
the minimal-cost renting and shipping schedule using the following data: 
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Shipping Costs 
per Unit 

Warehouse 
1 
2 
3 

Monthly Demands 

1 

12 
10 
13 

70 

2 

9 
13 
12 

45 

Outlets 
3 4 

16 
12 
14 

35 

13 
7 

10 

50 

5 

11 
12 
17 

75 

6 

23 
26 
21 

60 

Storage 
Capacity 

150 
200 
300 

Monthly 
Rent 

300 
500 
700 

(b) As above, but with the added condition that the carrier that would be used 
to deliver units from Warehouse 2 to Outlets 4, 5, and 6 offers a shipping 
cost reduction of 1/unit for each unit shipped after the first 80. 

(c) As in part (b), except that the carrier is more generous, offering the cost 
reduction on all units shipped if this number exceeds 80. 

11. (a) A firm has M units of a new product to be sold in up to n different new 
market areas. To develop the ith market for sales, there is an initial research 
and advertising cost of di dollars. Once opened, the (th market can sell up 
to ui units at a profit of c, dollars/unit. What areas should be developed and 
how many units should each of these areas receive so as to maximize profit? 

(b) Suppose also that because of personnel limitations, at most k market areas 
(k < ri) can be developed. 

(c) Suppose also that if both Markets 1 and 2 are developed, the firm must pay a 
tax of T dollars; but if both Markets 3 and 4 are developed, the firm receives 
tax credits worth R dollars. 

12. (a) A small division of an automobile plant manufactures two parts to meet the 
monthly demands of the major assembly plant. Three different machines 
can be used in the process, each having varying input and output capacities 
and setup and maintenance costs if used. Determine the most economical 
monthly operation of the division, using the following data: 

Machine 1 
Machine 2 
Machine 3 

Labor 
(hr) 

12 
9 

14 

One Hour of Operation 
Input Output 
Raw Material 

(lb) 

95 
70 
75 

Part A 
(units) 

16 
10 
5 

PartB 
(units) 

15 
12 
17 

Monthly 
Maintenance 

$1350 
$ 950 
$1575 

Monthly demands: Part A - 400 units 
Part B - 500 units 

Monthly supplies: Labor - 550 hours 
Raw material - unlimited 

Costs: Labor -$19.50/hr 
Raw material - $12.50/lb 

(b) Assume in addition that the division has available 55 hr of overtime labor at 
$29.25/hr, and 1000 lb of raw material at $10/lb. 
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13. An ice cream plant can make up to 28 different flavors of ice cream each month. 
Flavor i requires a, lb of sugar/gal and earns c, dollars/gal sold, but at least w, gal 
must be made per month if the flavor is to sell. With M lb of sugar available for 
the month, what flavors should be made to optimize profit? 

14. Maximize 5x\ + 12x2 subject to 

7xi + 3x2 < 16 or 3xi + 10x2 < 20 with x\ ,X2 > 0 

15. Maximize 3xi + 5x2 + 7x3 subject to 

5xi +4x2+2x3 < 300,xi,X2,X3 > 0, and 

x i + x 3 < 1 0 0 l f 2xi-4x2 + 5x3 < 250 
xi —X2 > 0 ( 1 X2 ~ 2x3 > 50 

16. Maximize 9xi + 8x2 + 7x3 subject to 

X) +X2+X3 < 500 

X\,X2,X3 > 0 

and such that (xi ,X2,xj) satisfies at least two of the following three constraints: 

3xi - 3x2 + 4x3 < 1000, xi - 2x3 > 200, and xi + x2 = 300. 

17. (a) In spring, in preparation for the summer trade, a shop makes outdoor tables. 
Four types can be made, with input (wood and labor) and selling price for a 
table of each type as follows: 

Type 

A 
B 
C 
D 

Wood (units) 

7 
5 
4 
8 

Labor (hr) 

3 
2 
4 

12 

Selling Price ($) 

90 
68 
85 

175 

For the project, the shop has available up to 2000 hr of labor at $8/hr. The 
wood is purchased from a mill and costs $5/unit for the first 1600 units, 
$4.75/unit for the next 900 units, and $4.50/unit for any number above 2500. 
Assuming that all tables made now will be sold in the coming summer, how 
many of each type should be made to maximize profit? 

(b) It is next spring, and the mill has changed its prices: $5/unit of wood if 
the shop purchases no more than 2500 units and $4.65/unit for all units 
purchased if the shop wants more than 2500. 

18. A company must produce weekly either 1500 A's and 1000 fi's or 1000 A's and 
1500 B's. Three different processes can be used in production, with input (labor 
and raw material M) and output (A's and B's) of 1 hr of operation of each as 
follows: 
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Process 1 
Process 2 
Process 3 

Input 
Labor (hr) 

20 
12 
25 

M's (units) 

35 
12 
28 

Output 
A's (units) 

40 
45 
36 

B 's (units) 

42 
35 
44 

An unlimited number of M's are available weekly at $15/unit and up to 600 hr of 
labor at $12/hr. How many A's and B's should be made, using what production 
schedule, to minimize weekly costs? 

19. A microbrewery can brew three different beers: a light, a dark, and an ale. The 
requirements (grain and hops) and revenue (selling price less normal costs) for 
a batch of each are as follows: 

Grain (lb) Hops (lb) Revenue ($) 

Light 25 10 395 
Dark 40 8 440 
Ale 30 16 475 

The brewery has available each week 800 lb of grain and 250 lb of hops. It 
can make a total of 20 batches weekly with its regular labor force and up to 
an additional 4 batches using overtime. (Batches made on overtime cost an 
additional $95/batch.) 

The brewery wants to market exactly two types and make at least five batches 
of each. There is also a weekly equipment preparation/conversion cost that is a 
function of the two beers being brewed. 

Products Cost ($) 

Light and Dark 250 
Light and Ale 150 
Dark and Ale 225 

What beers should the brewery make, and how many batches of each should be 
made to maximize net revenue? 

6.3 GOMORY'S CUTTING PLANE ALGORITHM 

There are various algorithms available for the solution of integer programming prob-
lems. The reason for this abundance is that no one algorithm has proved to be com-
putationally efficient for all problems, and thus the search continues for more effec-
tive algorithms. To introduce some of the methods used for solving these problems, 
we will present in this section and the next two integer programming algorithms. 
Specifically, in this section we will develop one version of Gomory's Cutting Plane 
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Algorithm. This algorithm was one of the first of its kind, published in 1958 ([14]), 
and is still an effective tool for solving certain integer programming problems. 

Consider a pure integer programming problem, that is, a standard linear program-
ming problem with integral restrictions on all of the variables. The fundamental idea 
underlying Gomory's Cutting Plane Algorithm is to add constraints to the problem 
one at a time so that we eventually have a linear programming problem with an 
optimal solution with integral coordinates. The algorithm works as follows. First, 
we solve the original linear programming problem, ignoring the integral restrictions. 
Then, if this solution has all integral coordinates, it is also an optimal solution to the 
integer programming problem, and we are done. If not, we generate a new constraint 
to be added to the problem. This constraint will have two fundamental properties: 
first, the nonintegral optimal solution to the original linear programming problem 
will not satisfy this constraint; and second, all integral feasible solutions to the orig-
inal problem will satisfy the new constraint. Thus this constraint essentially cuts off 
a subset of the set of feasible solutions to the linear programming problem, but a 
subset that contains no feasible integral solutions. We add this constraint to the prob-
lem and proceed to solve the expanded problem as before, first ignoring the integral 
restrictions and continuing on. We demonstrate the algorithm first by an example. 

Example 6.3.1. Consider the problem of 

Minimizing x\ — 3x2 
subject to 
x\ — X2 < 2 

2xi + 4x2 < 15 
xi ,X2 > 0 and integral 

Adding integrally restricted slack variables X3 and X4 and using the simplex algo-
rithm on the associated linear programming problem, we have the tableaux of Table 
6.2. The minimal value of the objective function, ignoring the integral constraints, 
is attained at x\ = 0, X2 = -^ = 3 | (and X3 = 5 | , X4 = 0). Since this point has non-
integral coordinates, we need to generate a new constraint. To do this, we can work 
with any constraining equation from the final tableau that has a nonintegral constant 

Table 6.2 

*3 

X4 

X3 

X2 

X\ X2 X3 X4 

1 - 1 1 0 

2 (T) 0 1 
1 - 3 0 0 

2 0 1 i 
2 u ' 4 
i 1 0 i 2 1 u 4 

5 0 0 ^ 2 u u 4 

2 

15 

0 
23 
4 
15 
4 
45 
4 
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term, and so, in this case, we could use either equation. Let us consider the equation 
defined by the first row of the final tableau: 

Separating all constants into their integral and fractional parts, we have 

(l + {)Xi+x3 + lx4 = 5 + l 

Therefore we must have 

\x\ + 5X4 - | = 5 -X\ -X3 

Since we want only integral solutions, the right side and therefore the left side of this 
equation must be integral. And, since all variables are nonnegative, \x\ + \xa, > 0, 
and so the smallest integer the left side can equal is 0. Thus we want solutions such 
that 

2xl "t" 4*4 — 4 

is a nonnegative integer, say X5. It is this constraint that we add to the two original 
constraints, giving us the expanded problem of 

Minimizing |xi + \x$ - ^ 
subject to 
\x{ + X3 + \xA = X 
\x\ + X2 + \XA = ^ 
1 1 3 
2xl "l~ 4 X 4 ~~ x 5 — 4 
xi,X2,x3,X4,x$ > 0 and integral 

Here we have used the final tableau data of Table 6.2 in expressing the original 
problem. Notice that the optimal solution found above, x\ = X4 = 0, xj = -^, x3 = ^ , 
does not satisfy the new constraint. 

Now we proceed as before, solving the corresponding linear programming prob-
lem. To do this, since we have simply added a constraint to a completed problem, 
we can use the Dual Simplex Algorithm (Sections 5.6 and 5.7). After multiplying 
the new constraint by (—1), we have as basic variables for the first tableau the ba-
sic variables of the previous final tableau (x3 and X2) along with the new variable, 
JC5. The tableaux are presented in Table 6.3. The solution point here has all integral 
coordinates, and therefore we have the solution to the original integer programming 
problem. The minimal value of the objective function is —9 and is attained at the 
point xi = 0 , X2 = 3. 

The geometry of this example explains the name of the algorithm. The feasible 
points for the original system of constraints are the lattice points of the shaded region 
in Figure 6.6. The constraint added can be expressed as ^x\ + ^xa, — | > 0. Using 
X4 = 15 — 2x\ — 4x2, this inequality reduces to 

2x( + (15 - 2xi - 4x2) > 3 or 4x2 < 12 or x2 < 3 
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*3 

x2 

X5 

x3 

x2 

X4 

X\ 

3 
2 
1 
2 
1 
2 
5 
2 

1 

0 

2 

1 

Table 6.3 

x2 

0 

1 

0 

0 

0 

1 

0 

0 

*3 

1 

0 

0 

0 

1 

0 

0 

0 

XA, 

1 
4 
1 
4 

(4) 
3 
4 

0 

0 

1 

0 

X5 

0 

0 

1 

0 

1 

1 

- 4 

3 

23 
4 
15 
4 
3 
4 

45 
4 

5 

3 

3 

9 

Figure 6.7 

As can be seen in Figure 6.7, the new constraint is equivalent to an inequality 
that cuts off from the feasible set the original nonintegral optimal solution (0,3|) 
but does not exclude from consideration any feasible lattice points. 
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We now describe in detail how these new constraints are generated. Suppose, 
after solving the associated linear programming problem, the constant term of the 
ith row of the final tableau is not an integer. Then, in the optimal basic solution 
corresponding to this final tableau, the value of the basic variable isolated in the ith 
row will not be integral, and so we need to add a new constraint. 

Attaching back the variables, suppose this ith constraint is 

y^atjXj =bj (6.3.1) 
j 

Letting [a] denote the greatest integer in a (i.e., the greatest integer less than or equal 
to a, and so [3|] = 3, [1] = 1, [—3|] = —4), define the fractional part of any number 
a to be a — [a]. Thus the fractional part of 3 | is | , that of 1 is 0, and that of — 3 | is 
—31 — (—4) = | . Note that the fractional part of a number must be nonnegative and 
less than 1. Let fij and f denote the fractional parts of a,; and £>,, respectively, that 
is, 

fij = a'j ~ \-aij\ a n d fi = bi ~ \bi\ 

Then we can rewrite (6.3.1) as 

^2([aij}+fij)xj = [bi]+fi or ^fjXj - f = [bt] - ^[a^Xj (6.3.2) 
j J J 

Notice that all the constant terms on the right side of (6.3.2) are integral. Thus, 
for any integral solution to the original system of constraints, the right side, and 
therefore the left side of (6.3.2), must be integral. Moreover, since all variables are 
nonnegative and f is less than 1, the left side of (6.3.2) must be greater than or equal 
to the integer 0. Hence the new constraint: 

2_\fijxi ~ f: — 0 a nd integral (6.3.3) 
j 

We have developed (6.3.3) so that any feasible integral solution to the original 
system of constraints will satisfy this new constraint, and so that by adding this 
constraint, we still have a pure integer programming problem. Furthermore, the 
optimal basic feasible solution from the final tableau of the corresponding linear 
programming problem does not satisfy this constraint. We have chosen i such that bi 
was not an integer, and so f > 0. Now the only variables xj that can appear in (6.3.3) 
are the nonbasic variables of the final tableau; the coefficients of the basic variables 
are either 0 or 1, and so have fractional part 0. (In Example 6.3.1, the variables 
of the added constraint were x\ and X4, the nonbasic variables of the final tableau 
solution of the original problem.) Hence the corresponding basic feasible solution, 
with Xj = 0 for all nonbasic variables xj, does not satisfy (6.3.3). 

If, in the final tableau for the corresponding linear programming problem, sev-
eral of the constant terms bi are not integral, we have a choice of what row to use 
to generate the new constraint. In fact, rules governing the choice of row to use can 
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be given (Gomory [15] or Hadley [16]) that will guarantee in theory at least the con-
vergence of the algorithm to an optimal integral solution in a finite number of steps. 
However, after many iterations and several hours of computer time with no feasible 
solution in sight, a vice-president of computer affairs would probably be somewhat 
unimpressed with theoretical convergence arguments. In practice, the simple rule of 
using the row containing the constant term bi with the largest fractional value is easy 
to apply and is usually quite effective. 

We summarize the steps of Gomory's Cutting Plane Algorithm for pure integer 
programming problems. Consider the integer programming problem of optimizing 
c ■ X subject to AX = b, X > 0 and integral. 

1. Solve the corresponding linear programming problem, ignoring the integral 
restrictions on X. If this solution has all integral coordinates, then it is an 
optimal solution to the original problem. 

2. Otherwise, a new constraint is added to the problem. 
(a) To construct this constraint, select any row from the final optimal tableau 

solution of the linear programming problem with a nonintegral constant 
term b{. (Using the row containing the constant term with the largest 
fractional value may reduce the total number of iterations necessary to 
complete the problem.) 

(b) Suppose the rth row is selected and the corresponding equation is 

Y^aijXj=bi 
j 

Then form the constraint 

-Y^fiJxJ+x=-fi 
i 

where 

fij = aij — [aij] = fractional part of aij 

fi = bj — [bi] = fractional part of bi 

x = a new slack variable, restricted to be nonnegative and integral 

(c) Add this constraint to the problem and return to Step 1. Note that now, 
when solving the corresponding linear programming problem, the Dual 
Simplex Algorithm can be used. 

Example 6.3.2. Consider the programming problem to 

Minimize x\ — 2x2 
subject to 

2xi + X2 < 5 
-4xi + 4x2 < 5 
x\ ,X2 > 0 and integral 
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Table 6.4 

x-i 

X4 

*3 

X2 

Xl 

x2 

X\ X2 X?, X4 

2 1 1 0 

-4 (7) 0 1 
1 - 2 0 0 

® o i - i 
-1 1 0 1 

-1 0 0 \ 

1 0 A -i 1 u 3 12 

0 1 i I 
U 1 3 6 
0 0 A -5-
" u 3 12 

5 

5 

0 
15 
4 
5 
4 
5 
2 
5 
4 
5 
2 
15 
4 

Table 6.5 

Xl 

X2 

X5 

Xl 

Xl 

X3 

Xl X2 XT, X4 X$ 

1 0 1 - ^ 0 

0 1 A 1 0 

0 0 G) -I i 
0 0 A 5_ 0 

1 0 0 -A 1 

0 1 0 0 1 

0 0 1 A _3 

0 0 0 A 1 

5 
4 
5 
2 
1 
2 

15 
4 
3 
4 

2 
3 
2 
13 
4 

Adding integrally restricted slack variables X3 and X4 and applying the simplex algo-
rithm, we have the tableaux of Table 6.4. 

Both constant terms of the final tableau are nonintegral, but | has the larger 
fractional value. The second row of this tableau generates the constraint 

— 3 x 3 — 6*4 + *5 = ~ 2 

where x$ is a new slack variable. Adding this equation and using the Dual Simplex 
Algorithm leads to the tableaux of Table 6.5. The first row of the final tableau of this 
table generates the constraint 

— 4X4 + X(, = — 4 

where xg is a new slack variable. (Note that —5 — [—5] = — \ — (—1 ) = | . In general, 
be careful when working with the fractional part of a negative number.) Adding this 
constraint, we have the tableaux of Table 6.6. Thus the minimal value of the objective 
function is —3 and is attained at xi — 1, X2 — 2. 
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Table 6.6 

x\ 

x2 

*3 

*6 

x\ 

x2 

X4 

X\ X2 XT, X4 X$ X(, 

1 0 0 - | 1 0 

0 1 0 0 1 0 

0 0 1 2 ~ 3 0 

0 0 0 ( j ) 0 1 

0 0 0 I 1 0 

1 0 0 0 1 - | 

0 1 0 0 1 0 

0 0 1 0 - 3 § 

0 0 0 1 0 —| 

0 0 0 0 1 ^ 

3 
4 

2 
3 
2 
3 
4 

13 
4 

1 

2 

1 

1 

3 

With the problem complete, we illustrate the action of the cutting planes geomet-
rically. The first constraint added corresponds to 

jX3 + gX4 — \ > 0 

that is, 
| (5 -2x i -x2) + | ( 5 + 4xi - 4 * 2 ) - 5 > 0 

This reduces to X2 < 2. Similarly, the second additional constraint reduces from 
f*4 — I > 0 to —x\ +X2 < 1. The graph is sketched in Figure 6.8. 

Figure 6.8 



236 CHAPTER 6. INTEGER PROGRAMMING 

Problem Set 6.3 

1. Solve each of the following problems using the Cutting Plane Algorithm and 
then sketch the graph of the original feasible region and the cutting plane. (In 
each, it should be necessary to add only one additional constraint before reaching 
an optimal integral solution.) 

(a) Minimize x\ — X2 
subject to 
3x, + 4x2 < 6 
X\ — X2 < 1 

x\,X2 > 0 and integral 

(b) Maximize x\ + 2x2 
subject to 
x\ + 3x2 < 13 

2xi — X2 < 6 
x\,X2 > 0 and integral 

2. Solve the following using the Cutting Plane Algorithm. 

(a) Maximize x\ + 3x2 
subject to 
—x\ + 3x2 < 6 
2xi + X2 < 12 

x\,x% > 0 and integral 

(b) Maximize 3xi + 8x2 
subject to 
x\ + 2x2 < 9 

2x2 < 5 
X] ,X2 > 0 and integral 

(c) Maximize 2xi — 4x2 +*3 
subject to 
Xi — X2 < 12 

2x2 + 3x3 < 28 
xi,X2,X3 > 0 and integral 

(d) Maximize 2xi — 4x2 +^3 
subject to 
X\ — X2 = 12 

2x2 + 3x3 = 28 
xi,X2,X3 > 0 and integral 
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3. Is it possible, after several iterations of the Cutting Plane Algorithm, to arrive 
at an optimal solution to the corresponding linear programming problem with 
the property that only the slack variables defined by the appended constraints 
assume nonintegral values and all the variables of the original problem assume 
integer values? 

4. What do you suppose would happen if the Cutting Plane Algorithm were applied 
to an integer programming problem with the property that the corresponding 
linear programming problem had feasible nonintegral solutions but no feasible 
integral solutions? 

5. Test your answer to Problem 4 on the following: 

Maximize x\ + 2x2 
subject to 
3x] + 3̂ 2 < 2 
3xi > 1 
x\ ,X2 > 0 and integral 

6. Solve the following problem using the Cutting Plane Algorithm: 

Maximize x\ + 2x2 +-Q 
subject to 

x\ + 4x2 + 2x3 < 7 
—X] + 3x2 > 4 
xi,X2,X3 > 0 and integral 

6.4 A BRANCH AND BOUND ALGORITHM 

In the previous section, we developed a version of Gomory's Cutting Plane Algo-
rithm. In this section, we will demonstrate the basic idea underlying another im-
portant class of algorithms, branch and bound algorithms, used to solve integer 
programming problems. These algorithms originate from the work of Land and 
Doig [17], published in 1960, and the version we demonstrate is a modification by 
Dakin [18]. Branch and bound algorithms, along with their refinements and exten-
sions, form a constructive set of solution techniques for integer programming prob-
lems. 

Given an integer programming problem, the first step in the branch and bound 
approach is to ignore the integral restrictions and solve the corresponding linear pro-
gramming problem. If this problem does not have an integral optimal solution, then, 
as in the Cutting Plane Algorithm, new constraints are generated to cut off this opti-
mal nonintegral solution. But here, instead of expanding the original problem by the 
addition of a single constraint, we create two distinct problems, each coming about 
by the addition of a new constraint to the original set of constraints. 

These two new constraints are generated from the nonintegral optimal solution to 
the original problem as follows. Select a variable, say Xj, that assumes a nonintegral 
value in this optimal solution. Suppose xj = bi in this solution. Then the two new 
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problems are created by adding to the original constraint set for one problem the 
constraint xj < [bt] and for the other the constraint Xj > \bj\ + 1. For example, if in 
the original problem the optimal solution has the variable X3 = 8 | , the constraint sets 
for the two new problems would contain the original set of constraints plus, for one, 
the constraint xj, < 8 and, for the other, the constraint XT, > 9. 

Note that the original nonintegral optimal solution is not a feasible solution to 
either new problem, but that any integral feasible solution to the original problem 
would be a solution to one of these new problems. However, in contrast to the Cut-
ting Plane Algorithm, there are now two integer programming problems to deal with, 
and the integral optimal solution to the original problem could be contained in either 
problem. We continue, considering the two new problems just as before. For each, 
we initially ignore the integral restrictions, solve, and, if the problem has a nonin-
tegral optimal solution, we again branch from that problem, formulating two new 
problems using the above method. 

It may seem that with this branching process we are compounding our difficul-
ties by continually expanding the set of problems to be solved. However, this is not 
quite the case for two reasons. First, some of the newly formed problems may have 
no feasible solutions as a result of the increased restrictions from the additional con-
straints. Second, some of these problems may have integral optimal solutions. Such 
a solution would certainly satisfy the constraints of the original problem and would 
provide a bound for the optimal value to the original integer programming problem. 
This bound would allow us to eliminate from consideration any problems generated 
through the branching process from a problem with an optimal value not better than 
this bound. By making use of such arguments based on bounds, we can eliminate 
problems to consider and will eventually be left with the optimal integral solution to 
the original problem. 

We illustrate with an example. 

Example 6.4.1. Consider the integer programming problem of Example 6.3.2. The 
problem is to 

Minimize x\ — 2x2 
subject to 

2xj + X2 < 5 
-4xi + 4x2 < 5 
xi ,X2 > 0 and integral 

The solution found in the previous section to the problem with the integral restric-
tions ignored is Minz = — 3 | , attained at xi = 1^, X2 = 2 | . Using the branch and 
bound algorithm, we formulate two new problems here by restricting either the xi or 
the X2 variable. We arbitrarily select the xi variable and use the constraints xi < 1 and 
xi > 2 to form two new problems. We denote this branching process in Figure 6.9. 

Box 1 in the figure corresponds to the original problem: its solution, with the 
integral restrictions ignored, is inside. Boxes 2A and 2B correspond to the two new 
problems, with the new constraints indicated on the branches leading to the respec-
tive boxes. The solutions to these problems, again with the integral restrictions ig-
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2A 

z = x\ - 2x2 

Minz = 2xi + X2 < 5 

-4xi +4x2 < 5 
x\,xi > 0 

> 2 

M i n z = - 3 ± 
X\ = 1 

x2 =2\ 

2B 
Min z = 0 

xi = 2 

X 2 = l 

Figure 6.9 

nored, could be determined by using the Dual Simplex Algorithm in conjunction 
with the final tableau solution to the original problem, because in each we have 
simply added a constraint to a completed problem. The solutions are listed in the ap-
propriate boxes. (Finding these solutions can require some effort. But note that LP 
Assistant does allow for the duplication and expansion of an existing (final) tableau, 
a useful tool when implementing a branch and bound algorithm.) Problem 2A has an 
optimal solution of Minz = —3j atxi = 1, X2 = 2 | . The optimal value for this prob-
lem is greater than the optimal value for Problem 1, as would be expected, because 
we have added a constraint and therefore reduced the solution set of feasible points 
on which to minimize the objective function. Problem 2B provides a feasible integral 
solution xi = 2, X2 = 1 to the constraints of the original problem and an upper bound 
of 0 for the optimal value of the integrally restricted problem. Since better integral 
solutions may be contained in Problem 2A, we branch again off Problem 2A using 
the X2 variable, as illustrated in Figure 6.10. 

Problem 3B, to 

Minimize x\ — 2x2 
subject to 

2xi + X2 < 5 
-4xi + 4x2 < 5 

Xl < 1 
x2 > 3 

xi ,X2 > 0 and integral 

has no feasible solutions, as the reader may verify (consider the bounds on x\ and 
X2 and the second constraint), and so this branch terminates. However, we must 
continue by branching at Problem 3A. See Figure 6.11. 

Problem 4A yields the integral feasible solution of xi = 1, X2 = 2 with the optimal 
value of z = —3. The optimal value for Problem 4B is —2j, and so further branching 
here can lead only to solutions with a value greater than — 2j. Since we already 
have an integral solution to the constraints of the original problem at which the value 



240 CHAPTER 6. INTEGER PROGRAMMING 

Z = X\-2X2 

2x\+ X2 < 5 
-4*i + 4 J 2 < 5 

xi,X2 > 0 

2A 
Minz = - 3 5 

xi = 1 
^ 2 = 2 | 

2B 
Min z = 0 

xi = 2 
x2 = l 

No 
feasible 
solutions 

Figure 6.10 

of the objective function is —3, there is no need to branch at Problem 4B. No other 
problems remain to be considered, so we are done. The original integer programming 
problem must have an optimal value of —3 attained at x\ = 1, X2 = 2, the optimal 
solution to Problem 4A. Note that here, in fact, we could have ceased calculations 
once the solution to Problem 4A had been found. Because the objective function 
has integral coefficients, it follows from the optimal solution to Problem 1 that the 
smallest value the objective function can possibly attain at a feasible integral solution 
is —3, and the solution to Problem 4A provides a lattice point at which this value is 
attained. 

In using this branch and bound algorithm, there are three possible reasons for 
not continuing a branch at a particular problem. The problem under consideration 
may have no feasible solutions, it may have an optimal integral solution, or bounds 
from previously determined integral solutions may render further consideration of 
the problem unnecessary. In fact, one advantage of this algorithm over the Cutting 
Plane Algorithm in the previous section is that this algorithm generates feasible in-
tegral solutions to the constraints of the problem as it proceeds, along with estimates 
on how close to the optimal value these solutions might be. Thus, in a large and 
complicated problem, if we are unable to complete the problem using the branch and 
bound algorithm, maybe because of limited computer capacity, the algorithm may 
still provide an integral feasible solution not necessarily optimal but adequate for our 
purposes. 

In the quest for increased efficiency of the algorithm, questions such as what 
problem to examine next if two or more branches remain open and what variable to 
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Z = X\ - 2X2 

Minz=-3ä 
x \ ■■ 

x2 ■-

2xi + xi < 5 
-4xi +4x2 < 5 

x\,X2 > 0 

2A 
Min z = - 3 

X\ — \ 

xi=l\ 

X2 < 

3A 
Minz = 

X\ = 4 

X2 = 2 

4A 

No 
feasible 
solutions 

Min? = —3 
XI = 1 

X2 = 2 

415 
Minz=-2 i 

xi = 0 
' 2 = | 

Figure 6.11 

use when defining the new constraints if more than one variable takes on nonintegral 
values in the optimal solution to the problem at hand must be considered. There 
are no universally accepted answers to these questions. The rules to follow when 
selecting the variable to use in defining the new constraints can be rather involved. 
When selecting the problem from which to branch, one possible rule is to select the 
problem with the most favorable optimal value; another frequently used rule is to 
select the problem most recently generated. (See Example 6.4.3 for an application 
of this first rule.) 

We conclude this section with two more examples. 

Example 6.4.2. Consider the problem of 

Maximizing z = 8xi + 15^2 
subject to 
lOxi + 21x2 < 156 
2xi + X2 < 22 

x\ ,X2 > 0 and integral 
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z = 8*1 + 15A:2 

Maxz = 119| 10xi+21x2 < 156 

2xi + *2 < 22 
-*l,-*2 > 0 

Max z = 117 

xi = 9 

X2 = 3 

3B 
Maxz=117§ 

xi = 7 j 

x2 = 4 

3A 

Figure 6.12 

Figure 6.12 contains the completed branch and bound diagram. Upon solving the 
original problem, Problem 1 in the diagram, we know that the optimal value of z 
restricted to integral feasible solutions is at most 119. Arbitrarily selecting the x\ 
variable, we create Problems 2A and 2B. Problem 2B provides a feasible integral 
solution to the original constraints and a lower bound of 110 for the final maximal 
value of z. 

Restrictions on xi lead to Problems 3A and 3B from Problem 2A. The integral 
solution to Problem 3A yields the improved lower bound of 117 for the optimal value 
of z. The optimal value for Problem 3B exceeds 117, but only by a fraction, and so 
the value of z at any integral solution to the constraints of Problem 3B cannot exceed 
117. Thus the algorithm terminates. The optimal value for the objective function of 
the integrally restricted problem is 117, and one point at which this value is attained 
isxi = 9, X2 = 3. 

Example 6.4.3. Consider the problem of Example 6.1.1. The problem is to 

Maximize z = 3x\ + 13x2 
subject to 
2xi + 9x2 < 40 

lbti - 8x2 < 82 
xi, X2 > 0 and integral 

Figure 6.13 contains the completed branch and bound diagram. Note that after 
branching from Problem 1 to Problems 2A and 2B and solving these problems, we 
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z = 3xi + 13x2 

2A 

2xi+9x2 <40 
1 l*i - 8x2 < 82 

Xi,X2 > 0 

Max z = 52-^-

r, - 8 1 0 
X) — Syy 

X2 = 2 

2B 
Maxz = 58± 

Xl = 6 5 

X2 = 3 

3A 
Maxz 

Xl 

> 7 

x2 = 3g 

* 2 < : 

4A 
Min z = 57 

X] = 6 

X2 = 3 

No 
feasible 
solutions 

> 4 

Min z = 58 
xi = 2 
x2 = 4 

Figure 6.13 

have an option of which problem to investigate. Here, however, the choice seems 
obvious. The maximal value of the objective function under the constraints of Prob-
lem 2B is 58j , but under the constraints of Problem 2A it is only 52yy. Thus, at 
this time, we work from Problem 2B and hold Problem 2A in abeyance for future 
consideration. But then the optimal value for z of 58 in Problem 4B, attained at the 
feasible integral solution x\ — 2, X2 = 4, makes further consideration of Problem 2A 
unnecessary, and the algorithm terminates with this solution as the optimal solution 
to the integer programming problem. 

Problem Set 6.4 

1. Solve the integer programming problems of the following using the branch and 
bound algorithm. 

(a) Section 6.1, Problem 1. 
(b) Section 6.1, Problem 2. 
(c) Section 6.3, Problem 2(a). 
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(d) Section 6.3, Problem 2(c). 
(e) Section 6.3, Problem 6. 

2. Solve the following using the branch and bound approach. 

(a) Maximize 4xi + 5x2 + 3x3 
subject to 
3xi — 2x2 + *3 < 15 
X\ + 2X2 + X3 < 8 

x\ ,X2,X3 > 0 and integral 

(b) Maximize 9x\ + 2x2 + 3x3 
subject to 

X\ + X2 — X3 < 5 

2xi — X2 + 3x3 < 8 
xi,X2,X3 > 0 and integral 

(c) Maximize 32xj +21x2 + 12x3 
subject to 
3xi + 7x2 + 3x3 < 14 
9xi + 5x2 + 3x3 < 37 
Xl,X2,X3 > 0 
Xi,X2 integral 

3. Construct a flow chart for the branch and bound algorithm. 

6.5 SPREADSHEET SOLUTION OF AN INTEGER 

PROGRAMMING PROBLEM 

Microsoft Excel's Solver uses a branch and bound method for integer programming 
problems. We illustrate it in action with several examples. 

Example 6.5.1. Company Zeta of Example 3.10.1 on page 115 produces Products 
1, 2, and 3 combining units of the component materials A, B, C, and D. An optimal 
production schedule was determined for the given month using Solver. The solution 
appears in Figure 3.5 on page 116. 

Now, 1 month later, Company Zeta is faced with the same problem of optimizing 
profits. But the available supplies of the component materials for this month have 
changed; the four quantities have been rounded off to the nearest 100. The associated 
mathematical model now is to 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

A 1 B 
Company Zêta 

Component Material 
A 
B 
C 
D 

Profit ($/unit) 

Product 
Units to Be Made 

Linear Programming S 
Maximize Profit 

Constraints 
Component A 
Component B 
Component C 
Component D 

c 

1 
16 
24 
30 
10 

$78 

1 

o 
alution 

$6,658 

LHS 
1507.69 

2000 
2400 

976.92 

o I 

Product 
2 

30 
40 
50 
20 

$136 

Variables 
2 

43.08 

I 

< 

< 

E 

3 
28 
36 
32 
15 

$104 

3 
7.69 

RHS 
1600 
2000 
2400 
1000 

u_ 
Supply (units) 

1600 
2000 
2400 
1000 

Figure 6.14 

Maximize profit z (in $), z = 78;q + 136x2 + 104*3 (6.5.1) 
subject to 
16xi + 30x2 + 28*3 < 1600 
24xi + 40x2 + 36x3 < 2000 
30xi + 50x2 + 32x3 < 2400 
10xi + 20x2 + 15x3 < 1000 

Using Solver on this linear programming problem generates the solution in Fig-
ure 6.14, but here the optimal production schedule of (0,43.08,7.69) is not integral 
and thus is not practical. An integral solution is required. 

To achieve this, the variables in Solver's "constraints" frame are set to be integer 
(int), and in the "options" frame the tolerance is set to 0. (The tolerance is the per-
centage by which the value of the objective function at a feasible integral solution can 
differ from the optimal value for the corresponding unrestricted linear programming 
problem and still be acceptable.) 

Solver now generates a viable optimal production schedule (see Figure 6.15). 
Maximum profit this month is $6642, attained by producing 3 units of Product 1,41 
units of Product 2, and 8 units of Product 3. There remain surplus units of materials 
A, C, and D. (There is no sensitivity report available for integer programming prob-
lems, as there is no single last tableau —just think of the branch and bound displays 
for the elementary problems in the previous section.) 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

A | B 
Company Zeta 

Component Material 
A 
B 
C 
D 

Profit ($/unit) 

Product 
Units to Be Made 

Integer Programming S 
Maximize Profit 

Constraints 
Component A 
Component B 
Component C 
Component D 

C 

1 
16 
24 
30 
10 

$78 

1 
3 

olution 
$6,642 

LHS 
1502 
2000 
2396 
970 

I D | 

Product 
2 
30 
40 
50 
20 

$136 

Variables 
2 
41 

I 

S 
<, 

E 

3 
28 
36 
32 
15 

$104 

3 
8 

RHS 
1600 
2000 
2400 
1000 

F 

Supply (units) 
1600 
2000 
2400 
1000 

Figure 6.15 

Example 6.5.2. Consider the problem of (6.5.1), except that now fixed charges are to 
be included in the model. In particular, assume that a fixed cost of $75 is assessed if 
any units of Product 1 are produced; likewise, any units of Products 2 or 3 produced 
have fixed costs of $350 and $120, respectively. 

To formulate a mathematical model, we define binary variables 

/O, x; = 0 . 

[1 , X{>0 

and establish upper bounds for the x,'s. We have 

Maxxi = 80 = Min{1600/16,2000/24,2400/30,1000/10}, 

and similarly Maxx2 = 48 and Maxx3 = 56. Using these variables and bounds, our 
problem here is to 

Maximize profit z (in $), 
z = 78JCI + 136JC2 + 104x3 

subject to 
16xi + 30x2 + 28x3 < 1600 
24xi + 40x2 + 36x3 < 2000 
30xi + 50x2 + 32x3 < 2400 
lux, + 20x2 + 15x3 < 1000 

(6.5.2) 

- 75^1-350^2-120^3 

y\ > 
Xi 

80 
Xi,X2,X3 > 0. 

. X2 . X3 

yi > T5' w > 48 " 5 6 
y 1,3*2,W binary 

(or simply y, > —, / = 1,2,3) 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

21 
22 
23 
24 
25 
26 
27 
28 

A | B 
Company Zeta (w/ fixed charqes) 

Component Material 
A 
B 
C 
D 

Profit ($/unit) 

Fixed Charge If Used 
Bound on Units Produced 

Product 
Units to Be Made 

1 If Units Are Made, Else 0 

Integer Programming Resoultion 
Maximize Profit 

Constraints 
Component A 
Component B 
Component C 
Component D 
y1 a x1/max 
y2 a x2/max 
y3 a x3/max 

c 

1 
16 
24 
30 
10 

$78 

$75 
80 

1 
0 
0 

$6,178 

LHS 
1440 
1920 
2400 
960 

0 
1 
0 

I D | 

Product 
2 

30 
40 
50 
20 

$136 

$350 
48 

Variables 
2 

48 
1 

I 

< 
£ 

£ 

£ 

a 
a 
a 

E 

3 
28 
36 
32 
15 

$104 

$120 
56 

3 
0 
0 

RHS 
1600 
2000 
2400 
1000 

0 
1 
0 

Li-

Supply (units) 
1600 
2000 
2400 
1000 

<-- binary y's 

Figure 6.16 

The spreadsheet for the model is displayed in Figure 6.16. (The y,-'s, the variables of 
cells C16:E16, are designated as binary (bin) in Solver's "constraints" frame.) Now 
only Product 2 is utilized. Producing 48 units realizes an income of $6528 and a 
$350 fixed charge for a net profit of $6178. 

Interestingly, if the fixed charge for Product 3 production is reduced by $5 from 
$120 to $115, the optimal production schedule changes dramatically: from produc-
ing 48 units of Product 2 to producing 71 units of Product 1 and 8 units of Product 3, 
as the reader with Solver at hand may verify (see Problem 1). Of course, there is no 
reason to expect continuity in the optimal solution point of an integer programming 
problem. 

Example 6.5.3. In Problem 19 of Section 6.2, a microbrewery that can brew up 
to three different beers, a light, a dark, and an ale, needs to determine what beers, 
and how many batches of each, to make in order to maximize weekly net revenue. 
Production is restricted by the limited resources of grain and hops. There are also 
restrictions on batch size and the number of types of beer brewed, as well as costs 
involving overtime and equipment conversion. 
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To formulate a mathematical model, we define the variables: 

x\ = number of batches of beer of type 1 (light) brewed 

X2 = number of batches of beer of type 2 (dark) brewed and 

*3 = number of batches of beer of type 3 (ale) brewed 

f l , *«>0 . . , . . 
K = n „ for; =1 ,2 ,3 

[0, x,=0 

v = the number of batches brewed with overtime 

The mircobrewery's problem, then, in terms of these variables, is to 

Maximize profit z (in $), 

z= 395x1+440x2+475^3 
- [250(1 -y3) + 150(1 ̂ y 2) +225(1 -yi) + 95v] 

subject to 
25xi + 40x2 + 30x3 < 800 (grain restriction) 
10*1 + 8*2 + 16x3 < 250 (hops restriction) 

x\ + X2 + X3 < 20 + v, v < 4 (batch and overtime restriction) 
5yi < X! < 25ji 
5v2 < X2 < 20j2 CVi's on/off; minimum batch size) 

5y3 <*3 < 15x3 
y i + y>2 + J3 = 2 (number of types) 
xi,X2,X3 > 0 and integral, y\,y2,y3 binary 

A spreadsheet representation of the problem, and Solver's solution, is in Figure 6.17. 
Optimal net profit is $9580, attained by brewing 13 batches of dark beer and 9 
batches of ale. Two batches are brewed using overtime. 

We conclude with a toast to Solver. 

Problem Set 6.5 

1. (a) Change the coefficient of yj, in the objective function of (6.5.2) from 120 
to 115, run Solver on the modified problem, and verify that (71,0,8) is the 
optimal production schedule, as discussed in the last paragraph of Exam-
ple 6.5.2. By how much does the optimal profit increase over the profit in 
the original fixed charge problem? 

(b) On your spreadsheet for the modified problem of part (a), set the six variable 
cells equal to 0 and the tolerance in Solver's "options" frame to 5 and run 
Solver. Do you get the correct answer? 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

A| B 
Microbrewery 

Requirements+Revenue 
Grain (lb) 
Hops (lb) 

Revenue/Batch 
(Max Batches Possible) 

PrepVConv. Cost 

Other Restrictions 
Labor Available (hr) 

Min Batch Size 
Overtime per Batch 

Beers Brewed < 

Beer Type 
Number of Batches Made 
1 If Batch Is Made, Else 0 
(Batches Using Overtime) 

Maximize Profit 

Constraints 
Grain (lb) 
Hops (lb) 

Overtime Batches 
Overtime Bound 

x1 s 25 y1 
x2 s 20 y2 
x3 s 15 y3 
5 y1 < x1 
5 y2 s x2 
5 y3 <; x3 

Number of Beers Brewed 

c 

1 (Light) 
25 
10 

$395 
25 

Light & Dark 
$250 

Regular 
20 
5 

$95 
2 

1 (Light) 
0 
0 
2 

$9,580 

LHS 
790 
248 

2 
2 
0 
13 
9 
0 
5 
5 
2 

D 

Beer Type 
2 (Dark) 

40 
8 

$440 
20 

Light & Ale 
$150 

Overtime 
4 

Variables 
2 (Dark) 

13 
1 
0 

s 
s 
< 
£ 

< 
< 
S 

< 
S 

< 
= 

E 

3 (Ale) 
30 
16 

$475 
15 

Dark & Ale 
$225 

3 (Ale) 
9 
1 
0 

RHS 
800 
250 

2 
4 
0 
20 
15 
0 
13 
9 
2 

F 

Available 
Supply (lb) 

800 
250 

Figure 6.17 

For each of the following, formulate a mathematical model for the problem, and 
then solve the problem using Solver. 

2. Using Feeds 1, 2, and 3, a blend which contains at least 1375 units of component 
A and 1800 units of component B is desired; the data are as follows: 

Feeds (units/lb) 
Components 1 2 3 Units Required 

A 5 10 20 1375 
B 8 6 24 1800 

Cost (cents/lb) 60 80 200 
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(a) Verify that a minimal-cost blend is attained by using 75 lb of Feed 1 and 50 
lb of Feed 3 and costs $145. 

(b) For each of the following, determine a minimal-cost blend with the stated 
restrictions added (the parts are independent). 
(i) Feed 1 can be bought only in 20-lb bags; Feed 2 in 10-lb bags; Feed 3 

in 12-lbbags. 
(ii) There is a change in cost: the 60 cents/lb cost of Feed 1 is valid only 

for the first 40 lb; the cost thereafter is 45 cents/lb. 
(iii) The cost changes again: cost of the first 40 lb of Feed 1 is 60 cents/lb 

and that of the next 50 lb is 45 cents/lb; cost thereafter is 30 cents/lb. 

3. Problem 9 of Set 6.2 

4. (a) Problem 12(a) of Set 6.2 
(b) Problem 12(b) of Set 6.2 

5. Problem 17(a) of Set 6.2 



CHAPTER 7 

THE TRANSPORTATION 

PROBLEM 

7.1 A DISTRIBUTION PROBLEM 

In Section 2.4 we formulated a mathematical model for the standard transporta-
tion problem, the problem of determining a minimal-cost shipping schedule between 
sources and destinations. The model is a linear programming problem, and so the 
simplex method of Chapter 3 can be used to solve it. However, one would have 
a formidable linear programming problem in trying to determine an optimal ship-
ping schedule between, say, 100 warehouses and 300 retail outlets. There would be 
30,000 variables and 400 constraints. Fortunately, other more efficient algorithms 
exist for solving the transportation problem - algorithms that can solve large-scale 
problems with only moderate computer effort. We will develop one such algorithm 
in Section 7.2. Then, in Section 7.3, we will consider other optimization models to 
which we can apply the transportation problem algorithm. 

In this section, we will develop an algorithm to solve the following distribution 
problem. Suppose a single commodity is produced in varying amounts at a set of 
plants or origins and is in demand at a set of markets or destinations, with varying 
demands at the different destinations. To meet the demands, the commodity must be 
shipped through links connecting the sources with the destinations, but there is an 
upper limit on the amount of the commodity that can be shipped through each link. 
Is it possible to meet the demands of the destinations with the supplies at the sources 
using a shipping schedule that does not exceed the capacities of the links? Although 
this problem is of interest in its own right, the computational technique we develop 
here will be used in the transportation problem algorithm we develop in Section 7.2, 
and it is primarily for this reason that we consider the problem. 

Specifically, suppose there are m origins or plants and n destinations or markets. 
Let a, denote the supply at the «th origin, bj the demand at the jfh destination, and fc,7 

the maximum amount that can be shipped from the j'-th origin to the y'th destination, 
where kij is a nonnegative integer, 1 < i < m, 1 < j < n. Letting xtj denote the 
amount to be shipped from the zth origin to the jth destination, we want to determine 
if there exists a shipping flow {xtj} satisfying 

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, Inc. 
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n 

2_\xij ^ a;, for each i,\ < i <m 

m 

2~2XU — bjjov each j , \ < j <n 
1=1 

0 < X{j < kjj, for 1 < / < m, 1 < j < n 

and if such a flow exists, a method for finding it. The first set of inequalities requires 
that the flow out of each origin does not exceed its supply, and the second set requires 
that the demand at each destination is met. Clearly, to have a. feasible solution to the 
problem, we must have 

n m 

i=i y=i 

Note that this distribution problem is not an optimization problem; there is no func-
tion to be optimized. The question to be answered here is whether a feasible flow 
exists, and if so, how to find it. The approach we use to answer the question is 
straightforward. We begin at the first origin and assign flow values xij within the link 
capacities and meeting the demands, as much as possible, at the destinations. Then 
we move on to the next origin, and so on. If the initial assignments do not meet all 
the demands, and they probably will not, then we simply rearrange the flow, "return-
ing" units to origins from destinations that can be supplied by surplus from other 
origins, and then shipping these returned units to points where there is still demand. 
We illustrate with a simple example. 

Example 7.1.1. Consider the distribution problem with three origins, four destina-
tions, and the following data: 

Origin 1 
Origin 2 
Origin 3 

Destination Demands 

Destinations 
1 

4 
2 
5 

3 

2 

1 
2 
1 

3 

3 

5 
6 
4 

9 

4 

1 
5 
0 

4 

Origin Supplies 

5 
7 
7 

Here the entries in the right column represent the supplies available at each origin, 
the entries in the bottom row the demands at each destination, and the entry in the 
main body of the table for Origin i and Destination j the shipping capacity kij. 

Throughout this chapter, we propose using a more compact data presentation for 
such a problem by eliminating the labeling; thus we will summarize the relevant data 
for supplies, demands, and shipping capacities as 
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4 

2 

5 

3 

1 

2 

1 

3 

5 

6 

4 

9 

1 

5 

0 

4 

5 

7 

7 

In this problem, the total supply equals the total demand, equal to 19, and so it is 
possible that feasible solutions exist. 

Starting with the first row and moving from left to right, we ship units to the 
destinations, the amounts shipped limited only by the destination demands, the link 
capacities, and the supply. Thus, from the first origin we send 3 units to the first 
destination, 1 to the second, and 1 to the third. We now expand the columns of our 
previously reduced table to include these initial x-tj values alongside the correspond-
ing kij as follows: 

4 i 3 

2 

5 

3 | 

1 i 1 

2 

1 ' 

3 

5 i 1 

6 | 

4 ' 

9 | 

1 i 

5 

0 ' 

4 | 

5 

7 

7 

We continue in this manner, shipping the 7 units from the second row and 3 units 
from the third, again keeping in mind that the amounts shipped are limited by the 
destination demands, link capacities, and supply available. This brings us to the 
following situation: 

4 i 3 

2 

5 

3 | 

1 i 1 

2 \ 2 

1 ' 

3 

5 i 1 

6 5 

4 ' 3 

9 | 

1 i 

5 

0 ' 

4 4 

5 , 

7 : 

7 i S 

In this simple manner we have constructed an initial shipping flow. However, the 
flow is not feasible, since a demand for 4 units remains in the fourth column. We 
denote this unmet demand with the auxiliary entry in the bottom row. This demand 
cannot be met directly with the surplus from the third row, the only row with a 
surplus. We label this row with an "5." 

We now begin the more complicated part of the solution process, readjusting this 
flow in an attempt to increase it. For example, 1 unit of the demand for 3 units 
in the second column could be met by the third row. This would free the 1 unit 
presently assigned to the second column from the first row, and this unit could then 
be reassigned to the fourth column. We illustrate as follows: 

4 i 3 

2 

5 

3 i 

1 

2 

1 

3 

/o 
2 

fa 

5 i 1 

6 5 

4 3 

9 ' 

1 i )Z(l 

5 \ 

0 

4 | / 3 

5 i 

7 [ 

7 ' S 
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Table 7.1 

4 i 3 

2 ] 

5 | 

3 | 

1 i 0 

2 2 

1 1 

3 | 

5 i 1 

6 / 4 

4 / 4 

9 | 

1 i 1 

5 01 
0 ' 

4 | ^2 

5 i 

? : 

7 i S 

4 

2 

5 

3 

Xi 

02 

1 

2 

1 

3 

2 

1 

Table 7.2 

5 

6 

4 

9 

/3 

/ 2 

4 

1 

5 

0 

4 

1 

/ 3 

Xo 

5 

7 

7 * 

Similarly, we increase the flow to the fourth column through the third row, the 
third column, and the second row. See Table 7.1. 

Unfortunately, we still have an unmet demand for 2 units in the fourth column 
and a surplus of 2 units in the third row. However, the 2 units in the third row can be 
shipped only to the first column, since all the other links from this source are used 
to full capacity. Shipping these units to the first column frees 2 units in the first row. 
Although these units cannot be shipped directly to the fourth column, they can be 
shipped to the third column, freeing 2 units from the second row that can be used to 
meet the fourth-column demand. Thus we have the following chain: 

row 3 —> column 1 —» row 1 —> column 3 —► row 2 —> column 4 

With this adjustment, illustrated in Table 7.2, we have constructed a feasible shipping 
schedule, and the problem is solved. 

In larger problems, the construction of such chains that enable the flow to be 
readjusted and thereby increased might be rather complicated. Thus we will intro-
duce a labeling scheme for the rows and columns of the table to facilitate the finding 
and tracing back of these chains. When units can be shipped to a column, we will 
record in that column the row number from which the units can come. Similarly, if a 
row has units that can be reassigned, we will record in that row the column number 
that allows the reassignment. Then, if we reach a column with an unmet demand, we 
can use these numbers to trace the chain back to the source with a surplus. 

We illustrate this procedure with the above example. Consider the problem with 
the flow given in Table 7.1 (see Table 7.3). The surplus in row 3 can be sent to 
column 1, and so we place a 3 at the bottom of column 1, indicating the source of 

Table 7.3 

4 3 

2 : 

5 ! 

3 

1 

2 

1 

3 

2 

1 

5 

6 

4 

9 

1 

4 

4 

1 

5 

0 

4 

1 

1 

2 

5 , 

^ : 
7 1 S 
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Table 7.4 

4 

2 

5 

3 

3 1 

2 

1 

3 

2 

1 

5 

6 

4 

9 

1 

4 

4 

1 

5 

0 

4 

1 

1 

2 

5 i 1 

^ : 
7 1 S 

4 i 3 

2 

5 ' 

3 ; 

1 

2 

1 

3 

2 

1 

Table 7 

5 i 1 

6 | 4 

4 ' 4 

9 ; 

5 

1 

5 

0 

4 

1 

1 

2 

5 

7 

7 

i 1 

| 2 or 3 
1 S 

3 1 1 2 

supply. Continuing, column 1 is receiving units from row 1, so these units in row 1 
can be reassigned. We label row 1 with a 1, indicating that from this row, units can 
be reassigned, and that this is possible because of a readjustment in column 1. The 
augmented table is illustrated in Table 7.4. 

Now the units of row 1 could be sent to columns 2 or 3, so we append columns 
2 and 3 with a 1. From either of these columns row 2 units can be reassigned, so we 
append row 2 with a 2 or 3. But now column 4 could be sent reassigned units from 
row 2, so column 4 is labeled with a 2. See Table 7.5. We have labeled a column 
with an unmet demand, so we readjust and increase the flow. We can use the row and 
column labels to trace back from column 4 the route of supply. 

column 4 <— row 2 <— columns 2 or 3 <— row 1 <— column 1 <— row 3 

If we use column 3, we see that we can adjust the flow by 2 units, and thus we can 
solve the problem, as previously done. 

The numbers used in the labeling scheme play a double role. The fact that a row 
is labeled indicates that there are free units in that row that can be assigned to any 
column for which the corresponding shipping link is not being used to full capacity. 
And the source of these free units is the column number used as the label. Similarly, 
a labeled column indicates that any row shipping units to that column can reassign 
these units elsewhere, and the alternate row source for this column is the number used 
as the label. This scheme is a compromise between simplicity and completeness. We 
could introduce into the scheme a second index indicating at each step the maximum 
number of units that could flow to that point through the chain already constructed. 
For our textbook problems, such an index is not necessary. However, if this algorithm 
were to be programmed to handle large-scale problems, this second index should be 
incorporated into the program in order to systematize the determination of the flow 
increase and the readjustment of the flow. For a discussion of this expanded scheme, 
see Ford and Fulkerson [19]. 
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We summarize the steps of the distribution problem algorithm. Consider a dis-
tribution problem with m sources, n destinations, supplies a,, demands bj, capacities 
kij, andj>; >J2bJ-

1. Construct an initial flow {x,7} by shipping as much as possible without ex-
ceeding demands or capacities first from row 1, then row 2, and so on. 

2. Calculate the unmet demand bj — X^X(/ f°r e a c n column. If this is zero for 
all columns, we have a feasible flow and the problem is solved. 

3. Otherwise, initiate the labeling procedure. 
(a) Label all rows with surplus units, that is, rows with Yljxij < ai> w i m a n 

"S." Let / denote this set of rows. 
(b) For each i G /, determine all unlabeled columns j for which xij < kij. 

Label these columns with the corresponding row number i G /. Let J 
denote this set of columns. 

(c) For each j G / , determine all unlabeled rows i for which x-tj > 0. Label 
these rows with the corresponding column number j G / . Let / denote 
this new set of labeled rows. Return to Step 3(b). 

4. Continue this labeling procedure, moving from rows to columns to rows to 
columns, and so on, until either: 
(a) In Step 3(b), a column with an unmet demand is labeled. Then increase 

the flow into this column by readjusting the flow values Xtj. Erase all 
labels and return to Step 2. 

or 
(b) In either Step 3(b) or 3(c), no previously unlabeled column or row, re-

spectively, is labeled. Then the problem has no feasible solution. 

Before discussing the convergence of the algorithm and the claim of nonfeasibility 
made in Step 4(b), we illustrate the algorithm with two additional examples. 

Example 7.1.2. Consider the distribution problem having the following data: 

5 

4 

3 

7 

8 

0 

4 

3 

5 

5 

4 

4 

4 

0 

6 

4 

0 

5 

4 

8 

0 

1 

7 

3 

10 

6 

9 

6 

17 

The total supply of 38 exceeds the total demand for 37, so we begin the algorithm by 
constructing the initial flow and determining the unmet demands. See Table 7.6. At 
this point, there are various routes that can be used to ship units from the surplus in 
row 4 to help meet the unmet demands in columns 4 and 5. For example, we can ship 
2 units through row 4 —> column 1 —»■ row 1 —> column 4 (meeting completely the 
unmet demand in column 4), 1 unit through row 4 —> column 1 —> row 2 —> column 
5, and 1 unit through row 4 —> column 2 —+ row 3 —> column 4. We record these 
changes in Table 7.7, and since an unmet demand remains in column 5 (and since 
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Table 7.6 
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4 

3 

5 

5 

4 

1 

4 

4 

4 

0 

6 

1 

2 

3 

4 

0 

5 

4 

8 

2 

4 

2 

0 

1 

7 

3 

10 

3 

7 

6 

9 

6 

17 S 

5 

4 

3 

7 

8 

^3 

n 

03 

0 

4 

3 

5 

5 

4 

/o 
01 

4 

4 

4 

0 

6 

1 

2 

3 

4 

0 

5 

4 

8 

Jfe 

2 

4 

0 

1 

7 

3 

10 

01 
01 

3 

5 

6 

9 

6 

17 

1 

lor 2 

3 or 4 

S 

4 4 lor 2 1 3 

Table 7.8 
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7 

8 

^0 

2 

# 

0 

4 

3 

5 

5 

4 

1 

4 

4 

4 

0 

6 

/ 4 

2 

Xo 

4 

0 

5 

4 

8 

2 

2 

4 

0 

1 

7 

3 

10 

1 

/ 4 

3 

2 

6 

9 

6 

17 

3 

lo r 2 

4 

5 

4 4 2 1 3 

there are no other "short" routes from row 4 to column 5), we initiate the labeling 
procedure. Column 5 is labeled, and working backward, we can construct the chain 

column 5 <— row 3 <— column 3 <— row 1 <— column 1 <— row 4 

A maximum of 3 units can be shipped through this chain, the limit coming from 
*n = #13 — *13 = *33 = 3- The adjusted flow is represented in Table 7.8. (Other 
chains from row 4 to column 5 could be constructed from Table 7.7, such as 

column 5 <— row 3 <— column 3 <— row 2 <— column 2 <— row 4, 

with capacity 2 = &23 —^23- When several routes exist, augmenting the flow with one 
of greater capacity may lead to a quicker solution of the problem.) 

The flow of Table 7.8 leaves an unmet demand for 2 units in column 5, and so 
we again label. Several chains from the surplus to column 5 can be constructed. In 
particular, the route 

column 5 <— row 3 <— column 4 <— row 1 <— column 3 <— row 2 <— column 2 <— row 4 

allows a flow increase of 2 units. The resulting feasible flow is shown in Table 7.9. 
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Table 7.9 
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0 
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3 

5 

5 

£ 

/3 

4 

4 

4 

0 

6 

£ 
24 

4 

0 

5 

4 

8 

24 

2b 
4 

0 

1 

7 

3 

10 

1 

/6 

3 

6 

9 

6 

17 

Example 7.1.3. Consider the following distribution problem. 

4 

5 

3 

0 

6 

3 

3 

0 

2 

6 

1 

2 

1 

4 

6 

4 

0 

10 

6 

9 

0 

4 

0 

4 

5 

8 

6 

13 

5 

Supply equals demand, and so we construct the initial flow, determine unmet de-
mands, and label (Table 7.10). Thus 2 units can flow through row 3 —> column 1 
—► row 2 —> column 4. Recording this adjustment, deleting old labels, and labeling 
anew, we are led to Table 7.11. Now, however, we reach a point where Step 4(b) 
of the algorithm applies. The surplus in row 3 can be sent to columns 1 or 4, and 
so the units assigned to column 1 from row 1 can be reassigned. But the only link 
out of row 1 not being used to capacity is to column 4, an already labeled column. 
Thus our labeling procedure terminates and, since we have been unable to label the 

Table 7.10 

4 

5 

3 

0 

6 

4 

2 

3 

3 

0 

2 

6 

3 

3 

1 

2 

1 

4 

6 

1 

1 

1 

3 

4 i 

0 i 

10 9 

6 ' 

9 ] 
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4 

0 
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5 

2 

3 

8 

6 

13 

5 

1 

1 

S 

3 2 3 2 

Table 7.11 
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3 

3 

0 

2 

6 

3 

3 

1 

2 

1 

4 

6 

1 

1 

1 

3 

4 i 

0 i 

10 \ 9 

6 ' 

9 | 

0 

4 

0 

4 

5 

2 

2 

1 

8 

6 

13 

5 

1 

5 

3 3 
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column with the unmet demand, we can conclude that the problem has no feasible 
solution. 

Actually, we do not need to apply the algorithm to demonstrate that this problem 
has no feasible solution. Consider the total demand of columns 2, 3, and 5 (the 
unlabeled columns), that is, 17. The demand can be partially met with the supply 
from rows 2 and 4 (the unlabeled rows). However, the total supply of these two rows 
is 11, and so, in any feasible solution to the problem, at least 6 = 17 — 11 units must 
flow from rows 1 and 3 (the labeled rows) to columns 2, 3, and 5. But the sum of 
the capacities of the six links connecting these two rows with these three columns is 
only 5 = 3 + 0 + 1 + 1+0 + 0. Thus there can be no feasible solutions. 

It is precisely the generalization of this argument that we will use to prove the 
nonfeasibility claim of Step 4(b) of the algorithm. Clearly, however, the rows and 
columns to consider will come from the labeling procedure. Before we do this, 
we will prove a theorem stated primarily for its application to the transportation 
problem algorithm of the next section. The theoretical questions of convergence and 
nonfeasibility of the distribution problem algorithm will then be discussed. 

Theorem 7.1.1. Suppose the distribution problem algorithm is applied to a distri-
bution problem, generating a flow {x,j}, but that, with this flow, Step 4(b) of the 
algorithm is reached. Let R denote the set of all the labeled rows and C the set of all 
the labeled columns. Then 

(a) i G R, j ^ C implies that xtj = kij. 
(b) For any j G C, x,j > 0 implies that i G R. 

(c) Y,jeCbJ<EieRai-

Proof. To prove part (a), suppose that i G R. Then either row / has a surplus or units 
in row / can be reassigned. If x;7 < £,-_,-, this shipping link could be used to send units 
from row i to column j , and j would be in C. Thus j £ C implies that xy = ktj. 

For part (b), let j G C. Then column j has an alternate source of supply, and units 
assigned to column j can be reassigned. Thus, if x,; > 0, row i has such units and so 
ieR. 

Finally, for any j G C, YL7=\ xij ~ bj', otherwise, Step 4(a) of the algorithm would 
have been implemented. Therefore 

Y,bJ = J2 \J2XiJ = Y,[ & 7 (f r o m Pa r t (b» 
jec jec \i=i / jec \ieR ) 

ieR \jec ) ieR \jeC ) ieR \j<£c 

ieR \j=i 
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But for any i, X)/=i xij ^ ai> a nd there is at least one row in R with a surplus, that is, 
at least one i S R with Yl"i=ixij < a<- Therefore Xlie«(Xl/=i ^O') < Z~2ieRai- ^ 

Theorem 7.1.2. Le? R and C be as defined in Theorem 7.1.1, and let R' and C' denote 
their complements. Then 

£*;>£«.-+£ ( E M 
jeC ieR' jeC \ieR / 

That is, the total demand in the C' columns is strictly greater than the total supply in 
the R' rows plus the sum of the capacities of the links from the remaining rows to the 
C' columns. 

Proof. For any j , Y^7=ixU — /̂> anc^ f°r a t ^east o n e J e C' Y17=\xij < ^i- Also, 
from part (b) of Theorem 7.1.1, i G R' and j EC implies that x,; = 0. Thus 

£ bj > £ I £*> ) = £ £*«/+£ £xo' 
jeC jeC \i=l / jeC'ieR' jeC ieR 

=££x<-;+££*'■> 
ieR' jeC jeC ieR 

= ££*</+ ££^7 
ieR' 7=1 jeC ieR 

= £a< +££^7 
ieR' jeC ieR 

since / e R' implies that row i has no surplus. D 

Corollary 7.1.1. If Step 4(b) is reached in the application of the distribution problem 
algorithm, the associated problem has no feasible solutions. 

Corollary 7.1.2. If the distribution problem algorithm is applied to a distribution 
problem with integral supplies, demands, and capacities, the solution process must 
terminate in a finite number of iterations, either at Step 2 with the construction of a 
feasible integral solution or at Step 4(b) with the determination of nonfeasibility. 

Proof. Notice first that the initial flow and all subsequent modified flows will be 
integral. In fact, every readjustment of the flow must increase the total flow by at 
least 1 unit. Since the total demand is finite, the algorithm must therefore terminate 
after a finite number of iterations. D 
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Problem Set 7.1 

1. For each of the following distribution problems, determine either a feasible ship-
ping schedule or the set of rows R1 and columns C' of Theorem 7.1.2, and verify 
that these rows and columns satisfy the inequality of that theorem. (A capacity 
of oo means that there is no limit on the number of units that can be shipped 
through the corresponding link.) 

20 

15 

2 

10 

5 

1 

12 

13 

8 

8 

10 

21 

0 

4 

5 

6 

12 

23 

15 

3 

1 

1 

0 

4 

2 

0 

2 

1 

3 

0 

3 

3 

4 

6 

1 

2 

3 

4 

5 

5 

2 

0 

1 

6 

4 

6 

7 

8 

8 

6 

10 

10 

14 

0 

18 

15 

1 

26 

5 

10 

3 

20 

18 

2 

4 

20 

2 

22 

10 

20 

22 

28 
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0 

0 

OO 

21 

0 

OO 

oo 

0 

12 

OO 

0 

oo 

0 

24 

0 

OO 

0 

OO 

9 

0 

OO 

oo 

0 

18 

OO 

0 

oo 

0 

15 

31 

23 

17 

29 

OO 

OO 

0 

OO 

21 
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OO 

OO 

12 

0 

OO 

OO 
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24 
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31 

23 
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4 

8 

10 
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10 

10 

10 

0 

15 

10 

8 

6 

20 

20 

15 

20 

22 

15 

20 
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2 

8 

3 
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0 

4 

7 

0 

5 

6 

5 

2 

8 

13 

2 

0 

3 

3 

5 

1 

2 

2 
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12 

7 
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CO 
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CO 
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0 
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12 
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0 
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5 
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10 
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10 

20 

15 
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4 
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5 
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CO 
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0 

CO 
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0 
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(1) 
10 

3 

0 

10 

8 

21 

10 
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5 

10 

14 

1 
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5 

10 

5 

10 

0 

15 

10 
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20 
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3 

2 
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5 
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2 

20 

23 

19 

18 

30 

26 

2. Suppose Step 4(b) is reached in the application of the distribution problem algo-
rithm to a problem for which each kjj is equal to either 0 or °°. Let R and C be 
the labeled rows and columns. Explain why i 6 R and j' ^ C implies that kij = 0. 

3. Suppose there is a column j of a distribution problem for which Y17=\ hj < bj. 
Then the problem has no feasible solution. Determine sets R' and C* for which 
the inequality of Theorem 7.1.2 applies. 

4. Prove that the distribution problem algorithm will terminate after a finite number 
of steps if applied to a problem with all data rational and not necessarily integral. 

5. Consider the following assignment problem. Suppose there are n jobs to be 
assigned to n individuals, but each individual is capable of doing only some of 
the jobs. The problem is to determine if there is an assignment of individuals to 
jobs so that all individuals are assigned jobs for which they are qualified. 

(a) Formulate this assignment problem as a distribution problem. (Hint. Asso-
ciate individuals with sources and jobs with destinations, and let each of the 
a,'s andb/s equal 1.) 

(b) Apply the distribution problem algorithm to determine if proper assign-
ments can be made for the following assignment problems. (An "x" in the 
ijih entry indicates that individual /,- is qualified for job /,.) 

(i) 

h 
h 
h 
h 
h 
h 
h 
h 

h 
X 

X 

X 

X 

h 
X 

X 

X 

h 

X 

X 
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X 

X 
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X 

X 

h 

X 

X 

X 
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8̂ 

X 

X 
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(ii) 

h 
h 
h 
h 
h 
h 
h 
h 

h 
X 

X 

X 

X 

X 

h 

X 

X 

X 

h 

X 

X 

X 

h 
X 

X 

X 

X 

^5 

X 

X 

X 

h 
X 

X 

X 

X 

X 

h 

X 

X 

./g 

X 

X 

X 

(c) For any set / of individuals, let / ( / ) denote the set of all jobs Jj for which 
at least one individual in / is qualified. Prove that a proper assignment 
of individuals and jobs exists if and only if for every set /, the number 
of elements in J(I) is greater than or equal to the number of elements in /. 
(Hint. To prove that the condition is sufficient, use Corollary 7.1.2, Theorem 
7.1.1, and Problem 2.) 

6. Determine a way of using the distribution problem algorithm to solve the prob-
lem of assigning to all individuals jobs for which they are qualified as described 
in Problem 5, but under the assumption that there are more jobs than individuals. 

7.2 THE TRANSPORTATION PROBLEM 

The transportation problem is one of determining a minimal-cost shipping schedule 
of a commodity between plants or sources or origins and markets or distribution cen-
ters or destinations. Specifically, suppose that there are m origins and n destinations, 
and that a, units of the commodity are available at the rth origin and a demand for 
bj units is to be met at the jth destination. Suppose the cost of shipping a unit from 
origin i to destination j is c(;. Then a mathematical model of the problem is to 

Minimize V_, /_! c'jxü 

subject to 

E 
. 7 = 1 

m 

E 

X-ij — &i-)l — -A j ■ 

bjJ = l> 

(7.2.1) 

Xij > 0,1 < i < m, 1 < j <n 

where xtj denotes the number of units to be shipped from origin / to destination j . 
Clearly, this problem would have no feasible solutions if the total supply ]P; a, 

were less than the total demand ]T\- bj. In fact, in the rest of this section, we will as-
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sume that X^fli = J2jbj and> with this assumption, the above problem is equivalent 
to the problem of 

m n 

Minimizing \ , / ^ cijxij 
i= i j=\ 

subject to 
n 

~s^2lXij = ai,i=\,...,m (7.2.2) 
7 = 1 

m 

Y,Xij = bj,j=l,...,n 
i=i 

*y > 0 

We lose no generality here by assuming equality of supply and demand; if we en-
counter a problem with ^,-a,- > S;^./> w e c a n simply create an additional destina-
tion, with demand X^,fli ~~ Y^jbj anc* shipping costs of zero from each origin. The 
formulation of this expanded problem would then have total supply equal to total de-
mand, and any solution to the problem would give a solution to the original problem, 
with the interpretation that all units scheduled to be sent to the additional destination 
are surplus units that would remain at their respective origins. We emphasize here 
in passing that with the assumption that Yliai = S ; ^ i ' since there are no capacity 
restrictions on the shipping links, all of our transportation problems have feasible so-
lutions, and the problem is solely to determine a minimal-cost feasible solution. This 
is in contrast to the distribution problem of the previous section, where the existence 
of feasible solutions to the problem was the primary consideration. 

The algorithm developed in this section to solve the transportation problem of 
(7.2.2) is due essentially to Ford and Fulkerson ([20] or [19]). It is based on the dual 
to the problem of (7.2.2). Recall that in each iteration of the standard simplex algo-
rithm developed in Chapter 3, we moved from feasible solution to feasible solution 
of the problem, attempting to improve the value of the objective function at each 
step. In the algorithm that we develop now, in each iteration we will move from fea-
sible solution to feasible solution of the dual problem to (7.2.2), improving at each 
step the dual objective function. 

(In fact, the algorithm is a primal-dual algorithm. At each iteration, associated 
with this (not necessarily basic) feasible solution to the dual of (7.2.2) will be a flow 
{xij}, a partial solution to the constraints of (7.2.2). While moving from feasible 
solution to feasible solution of the dual, we will also be building upon these flows. 
Moreover, at each iteration, the feasible solution to the dual and the associated flow 
will maintain complementary slackness, that is, an x,y will be allowed to be positive 
only if the slack in the corresponding dual constraint is zero.) 

The dual to the problem of (7.2.2), from the definition developed in Section 4.2, is 
a maximization problem with m+n unrestricted variables, corresponding to the m+n 
equality constraints of (7.2.2), and mn (<) inequality constraints, corresponding to 
the mn x,/s. To formulate the problem, we introduce dual variables u\,...,um to 



266 CHAPTER 7. THE TRANSPORTATION PROBLEM 

associate with the m origin constraints of (7.2.2) and variables vi , . . . , v„ to associate 
with the n destination constraints. With these variables the dual of (7.2.2) is to 

Maximize 2 , aiui + / , bjVj 
1=1 7 = 1 

subject to 

«i + vj < ctj, 1 <i<m,\ < j <n 

Ui,Vj unrestricted 

(7.2.3) 

The mn constraints of (7.2.3) are especially simple in form. Each xtj of (7.2.2) ap-
pears with coefficient 1 in only two constraints of (7.2.2), the rth origin constraint 
and the _/th destination constraint. 

Example 7.2.1. Consider the transportation problem with two origins, three desti-
nations, and data given as follows: 

3 

4 

20 

5 

7 

25 

7 

11 

35 

30 

50 

As in Section 7.1, the entries in the right column represent the supplies and the entries 
of the bottom row the demands but now, the ij-th entry in the body of the table is the 
cost Cjj. Supply equals demand, and the associated linear programming problem is 

Minimizing 3xn + 5xn + 7xu + 4x2i + 7x22 + 11*23 
subject to 

*11 + X\2 + *13 — 30 
*21 + *22 + *23 = 50 

Xll + *21 = 20 
X12 + *22 = 25 

*13 + *23 = 35 

xij > 0 

The dual is to 

Minimize 30wi + 50a2 + 20vi + 25v2 + 35v3 

subject to 

Ml + Vl < 3 

U\ + V2 < 5 

M] + V3 < 7 

U2 + Vl < 4 
M2 + V2 < 7 

«2 + V3 < 11 

U],U2,V],V2,V3 unrestricted 
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The fundamental step in the solution algorithm to the transportation problem of 
(7.2.2) involves a distribution problem. In the algorithm, we start with a feasible 
solution {uj,Vj} to (7.2.3), the dual of (7.2.2). Then a distribution problem between 
the given origins and destinations is defined as follows: supplies and demands as 
given in the original transportation problem, and capacities kjj defined to be either 
infinite or 0, depending on whether M, + Vj = Cjj or Uj + Vj < c,7. If this distribution 
problem has a feasible solution, such a solution is also a minimal-cost solution to the 
transportation problem, as we will prove in Theorem 7.2.2 later in this section. If the 
distribution problem is not feasible, a better solution to the dual problem (7.2.3) is 
constructed by changing the values of some of the M,'S and v / s . The variables with 
value changes correspond to the labeled rows and columns of Theorem 7.1.1 of the 
previous section. With this new solution to the dual, we begin again, considering the 
associated distribution problem, and so on. We outline the steps of the algorithm. 

The Transportation Problem Algorithm 

Consider a transportation problem as in (7.2.2) with m origins, n destinations, sup-
plies au demands bj, transportation costs Cjj, and total supply X^ai equ al to total 
demand J2jbj-

1. Construct an initial solution to the dual problem (7.2.3) by defining 

u; = Min{cij},i= l , . . . ,m 
./ 

and then 
Vj = Min{c,7 -Uj}J=l,...,n 

i 

2. Associate with {M,, VJ} a distribution problem: origins and their supplies and 
destinations and their demands as in the transportation problem, and link ca-
pacities 

kr=l°°> ui + vJ = cH 
u | 0 , Ui + vj<Cij 

3. Attempt to solve this distribution problem. 
(a) If there are feasible solutions to the distribution problem, then any such 

solution is a minimal-cost shipping schedule for the original transporta-
tion problem. 

(b) If the distribution problem has no feasible solutions, determine the la-
beled rows R and columns C of Theorem 7.1.1. 

4. Define a new solution {u'^v1■} to the dual. Let 

d = Min{cij — {ut + Vj)} 

and define 

He 

Ui+d, ieR , , \vi—d, j£C 
and V: = < 

U{, i£R [Vj, j^C 
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Return to Step 2, now using this solution {«-, v'} to the dual. 

Before discussing convergence and proving the claims of the algorithm, namely, 
that in Step 3(a), a feasible solution to the associated distribution problem will be 
a minimal-cost solution to the transportation problem, and that in Step 4, a better 
feasible solution to the dual is defined, we illustrate the algorithm with two examples. 
The table that we use for recording the steps of the algorithm will be an expansion 
on the table suggested in Example 7.2.1. To record the present values of the dual 
variables, we introduce a new left-hand column for the u, values and a new top row 
for the Vj values. Since the capacities for the associated distribution problem can 
be only 0 or °°, we can denote the existence of a shipping link from an origin / to 
a destination j by simply placing a circle next to the cost c/y in the main body of 
the table. Then the x,j values calculated when attempting to solve the corresponding 
distribution problem can be placed in these circles. 

Example 7.2.2 (Continuation of Example 7.2.1). The data are 

3 

4 

20 

5 

7 

25 

7 

11 

35 

30 

50 

We first construct an initial solution to the dual, letting u\ = 3, the minimal cost in the 
first row, and u% = 4, the minimal cost in the second row. Since we need M, + v; < c,-/ 
for all i and j , the largest value v\ could have is 

Min{ci i - u\, C2i - ui} = Min{0,0} = 0 

and similarly 

v 2 = M i n { 5 - 3 , 7 - 4 } = 2 

v 3 = M i n { 7 - 3 , l l - 4 } = 4 

See Table 7.12. Next, we indicate with circles the usable shipping links for the 
associated distribution problem, that is, those entries for which M, + Vj = Cij (Table 
7.13). Note that in attempting to solve this distribution problem, the only data from 
the tableau that are used are the supplies 30 and 50, the demands 20, 25, and 35, and 
the presence of the circles. This particular distribution problem is not feasible, but a 
partial solution found by using the algorithm in the previous section is indicated in 
Table 7.14. There is a surplus in the second row, and these units can be sent to the 

Table 7.12 

«1=3 

u2 =4 

vi = 0 

3 

4 

20 

V2 = 2 

5 

7 

25 

v3=4 

7 

11 

35 

30 

50 
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3 

4 

0 

'O 
<o 

20 

Table 7.13 

2 

sO 
7 

25 

4 

' O 
11 

35 

30 

50 

Table 7.14 

3 

4 

0 

= o 
4 (20) 

20 

2 

5 (S) 
7 

25 

4 

' © 
11 

35 30 

30 1 

50 S 

3 

¥ 

0-1 
3 

4 

20 

Table 7.15 

2 

5 

7 

25 

4 

7 

11 

35 

30 

50 

first column only (as /Q2 = &23 = 0 and X21 = 20 < °° = £21). But the first column 
is not receiving units from any other row, and so the flow cannot be increased. Thus 
row 2 is the labeled row and column 1 is the labeled column; that is, R = {2} and 
C = { 1 } . 

To construct a better solution to the dual, calculate 

d= Mm{aj-(ui + Vj)} 
i—2 

7=2,3 

= Min{7-(2 + 4 ) , l l - ( 4 + 4)} = 1 

and so increase «2 by 1 and decrease vi by 1, leaving u\, V2, and V3 unchanged. See 
Table 7.15. Now we proceed just as before, circling the existing shipping links and 
attempting to solve the associated distribution problem (Table 7.16). Again the dis-
tribution problem is not feasible, and we are led to the sets R = {2}, corresponding 
to the row with surplus, and C = {1,2}, corresponding to the columns from which 
units could be reassigned. Note that in the application of the transportation problem 
algorithm, when Step 3(b) is encountered, not only do we determine that the asso-
ciated distribution problem is not feasible, but we must also determine the sets of 
labeled rows R and columns C to which Theorem 7.1.1 applies. 
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Table 7.16 

3 

5 

-1 

3 

4 (20) 

20 

2 

= 0 
7 (S) 
25 

4 

7 (30) 

11 

35 5 

30 1 

50 S 

3 

7/ 

-̂r-3 

3 

4 

20 

Xo 
5 

7 

25 

4 

7 

11 

35 

30 

50 

Table 7.18 

3 

7 

-3 

3 

4 (20) 

20 

0 

5 

7 (S) 
25 

4 

7 (30) 

»0 
35 

30 1 

50 1 S 

For the problem of Table 7.16, 

d = Min{cjj — (u; + v,)} 
i—2 
7=3 

= M i n { l l - ( 4 + 5)} = 2 

and so we increase «2 by 2, decrease vi and V2 by 2, and leave «i and V3 unchanged 
(Table 7.17). Circling and considering the associated distribution problem, we have 
Table 7.18. 

But now the distribution problem is feasible, and so the indicated solution, x\ \ = 
x\2 = 0, x\3 = 30, JC21 = 20, X22 = 25, X23 = 5, is a minimal-cost shipping schedule 
for the original transportation problem. The actual shipping cost would be 520 = 
7-30 + 4-20 + 7-25+11-5. 

Example 7.2.3. Consider the transportation problem with four origins, six destina-
tions, and data as follows: 
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7 

2 

2 

1 

5 

6 

5 

2 

3 

11 

5 

6 

1 

4 

3 

8 

7 

3 

3 

13 

7 

4 

3 

2 

7 

8 

6 

1 

5 

17 

16 

12 

10 

18 

Constructing the initial solution to the dual and circling to indicate the associated dis-
tribution problem, we have Table 7.19. Attempting to solve the distribution problem 
leads to Table 7.20. From that table, we have R = {1,2}, C = {1,2,3}, and d = 1. 
We record the new solution to the dual and the associated distribution problem in 
Table 7.21. 

Notice that while we have gained three new shipping links (row 1 to columns 
4 and 5 and row 2 to column 5), we have lost three from the previous distribution 
problem (row 3 to columns 2 and 3 and row 4 to column 1). However, none of these 
lost links were being used in the final attempted solution to the first distribution 
problem (and this is always the case - see Problem 13), and so, in attempting to 
solve the new distribution problem, we need not start with Step 1 in the distribution 
problem algorithm of the previous section but, instead, can use the flow already 
constructed from the first iteration as the initial flow here. 

Table 7.19 

5 

2 

1 

1 

0 

7 

'O 
2 

■ o 
5 

1 

« o 
5 

» o 
3 

11 

0 

>o 
6 

>o 
4 

3 

2 

8 

7 

3 O 
3 O 
13 

1 

7 

4 

3 

2 ( 0 
7 

0 

8 

6 

■ o 
5 

17 

16 

12 

10 

18 

Table 7.20 

5 

2 

1 

1 

0 

7 

20 
2 

■O 
5 

1 

,0 
5 

2 < 0 
3 

11 

0 

5 (?) 
6 

■ o 
4 

3 

2 

8 

7 

3 Q 
3 0 
13 

1 

7 

4 

3 

2 

7 
(J) 

2 

0 

8 

6 

' ® 
5 

17 7 

16 i 5 

12 i S 

10 i 

18 i 

2 1 1 
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Table 7.21 

6^ 

3 / 

1 

1 

0-1 
7 

>0 
2 

1 

5 

/O 

*o 
5 

2 

3 

11 

0-1 

5o 
6 

1 

4 

3 

2 

S0 
7 

30 
= 0 
13 

1 

'O 
♦ o 
3 

0 
7 

0 

8 

6 

■ 0 
5 

17 

16 

12 

10 

18 

Table 7.22 

6 

3 

1 

1 

- 1 

7 

2 0 
2 

1 

5 

6 

0 

0 
5 

2 

3 

11 

- 1 

= 0 
6 

1 

4 

3 

2 

8 (7) 
7 

3 0 
3 0 
13 

1 

'O 
40 
3 

* 0 
7 

0 

8 

6 

> 0 
5 

17 7 

16 

12 

10 

18 

4 

5 

5 

1 4 

Table 7.23 

86" 

5* 

1 

3 / 

^r-3 

7 

2 ( 5 ) 
2 

1 

5 

0-2 

6 (n) 

5 

2 

3 

11 

^-r-3 

30 
6 

1 

4 

3 

Xo 
8 ( 2 ) 

7 

3 

3 0 
13 

/ - I 

^O 
4 (7) 

3 

0̂ 
7 

0 

s0 
6 

> 0 
5 

17 

16 

12 

10 

18 

Building on this flow, we are led to the flow in Table 7.22. Here R = {1,2,4}, 
C = {1,2,3,4,5}, and d = 2. Table 7.23 records the new solution to the dual along 
with the last flow. Using the surplus of the fourth row to increase the flow, we are led 
to Table 7.24. Here R = {2,4}, C = {1,4,5}, and d = 1, leading to Table 7.25. The 
last flow has been retained. But now the flow can be increased and, in fact, the given 
distribution problem has a feasible solution. Table 7.26, the final table, provides a 
minimal-cost flow. 

We now consider the theoretical questions raised after the statement of the trans-
portation problem algorithm. 
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Table 7.24 

8 

5 

1 

3 

- 3 

7 

2 ( i ) 
2 

1 

5 

- 2 

6 (ÏÏ) 
5 

2 

3 

11 

- 3 

5 (?) 
6 

1 

4 

3 

0 

«o 
7 

3 

3 (13) 

13 

- 1 

'O 
4(7) 
3 

■ o 
7 

0 

• © 
6 

• ® 
5 

17 5 

16 i 

12 i 5 

10 i 

18 i S 

Table 7.25 

8 

6^ 

1 

4 

^S-A 

1 

2(1) 
2 

1 

5 

- 2 

6 © 
5 

2 

3 

11 

- 3 

»© 
6 

1 

4 

3 

0-1 
8 

7 

3 

3 (p) 
13 

^r-2 

7 

4(7) 
3 

2<D 
7 

0 

8 (7) 

«o 
' (S) 
5 

17 5 

16 

12 

10 

18 

5 

S 

Table 7.26 

8 

6 

1 

4 

- 4 

7 

2 (7 ) 
2 

1 

5 

- 2 

«(H) 
5 

2 

3 

11 

- 3 

s® 
6 

1 

4 

3 

- 1 

8 

7 

3 

3 (p) 
13 

- 2 

7 

4 (T) 
3 

2 (7) 
7 

0 

8 (T) 

« ( i ) 
1 (W) 

5 

17 

16 

12 

10 

18 

Theorem 7.2.1. When Step 4 of the transportation problem algorithm is imple-
mented, the {u'j,v'A constructed is a new, feasible solution to the dual problem 
(7.2.3), and the value of the objective function of (7.2.3) at this point is strictly 
greater than the value of the function at the {w,-, vf\ solution point. 

Proof. First, from Problem 2 of Section 7.1, for all i G R and j ^ C, c^ > M, + Vj, and 
so d > 0. Thus the point {wj, v''■} is distinct from the point {w,-, v,-}. 

Next, we can see that u • + v' < c,-7- for all i and y by considering each of the four 
possibilities: 

(a) If i eR,je C, u\ + v'j = (ut + d) + (VJ -d)= ut + Vj < ctj. 
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(b) If i $R,Ji C, u't + v'- = ui + Vj < Cij. 
(c) If i <£R, j e C, u't + v ■ = Uj + (VJ — d)< ui + Vj < Cjj. 
(d) If i eR, j $L C, «'■ + Vj = (ut + d) + Vj < Cij by the choice of d. 

Thus {u'j, v'j} is a feasible solution to (7.2.3). 
Finally, 

m n 

J2 am'i + YJ bJv'j = Y aiU'i + Y UiU'i+ Y bJv)+ Y bJ v'i 
i=\ 7 = 1 ''eÄ i<£R jeC j£C 

= ^2ai(ui + d) + ̂ 2aiui + YbJ(VJ ~d"> + YbJvJ 
ieR i<£R jeC fêc 

m n I ' 

= J2aiui + J2bJvJ + d\Ylai ~ YbJ 
i=\ j=\ \ieR jeC 

m n 

>Y,atUi + Y,bJvJ 
<=i j=\ 

(This last inequality is guaranteed by Theorem 7.1.1, which showed that J2ieRai — 

E;ec*y>0.) □ 

Theorem 7.2.2. Suppose that in the implementation of the transportation problem 
algorithm, the distribution problem associated with a solution {w,-,v;} of (7.2.3) has 
a feasible flow solution {xif\. Then this flow {x,j} is an optimal solution to (7.2.2). 

Proof. Since the problems of (7.2.2) and (7.2.3) are dual, from Corollary 4.4.2, all 
we need show is that the value of the objective function of (7.2.2) at {x;;} equals the 
value of the objective function of (7.2.3) at {w,-, vy}. And, using the fact that xi; can 
be nonzero only if c,7 = M, + Vj, we have 

m n m n 

Y Y CiiXii = Y Y^Ui + vi)Xii 
(=1 j=\ i= l 7=1 

m n m n 

= YYUiXiJ+YYvJXiJ 
( = 1 7 = 1 ' = 1 7 = 1 

= YUi\ YXiJ \+Yvj[ YXiJ 
i=l \ 7 = 1 / 7=1 \ i = l / 

But the flow {xij} is a feasible solution to the distribution problem, and so YHLixU = 

bj for each j and, since YL7=\a' = YTj=i bj> X)/=i XU = a' f°r e a c n '■ Thus 

m n m n 

Y Y ciJXij= YaiUi+Y bJvj D 

, = 1 7 = 1 . , = 1 7 = 1 
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Theorem 7.2.3. Suppose the data for the transportation problem of (7.2.2) are all 
integral. Then the transportation problem algorithm applied to (7.2.2) will terminate 
after a finite number of steps to a minimal-cost flow with all integral values. 

Proof. The objective function of (7.2.2), J2iJ2jcijxij> is bounded below by cJ2iai 
where c = Min,-j{cy}, and so (7.2.2) and therefore its dual (7.2.3) have finite op-
timal solutions (Duality Theorem 4.4.2). Now, in each iteration of the transporta-
tion problem algorithm, the dual objective function is increased by the quantity 
d(Yli£Rai ~ 2~2jec^j) (Proof of Theorem 7.2.1), and this quantity must be at least 1 
if the data are integral. Since the dual objective function is bounded, the algorithm 
must therefore eventually terminate at Step 3(a), at a distribution problem with a fea-
sible solution. And this distribution problem will have integral solutions {*,•_/}, from 
Corollary 7.1.2. D 

The proof of Theorem 7.2.2 shows that when the transportation problem algo-
rithm terminates, the associated {ut,Vj} point is an optimal solution to the dual prob-
lem. This can provide useful information about the original transportation problem. 

Example 7.2.4. Consider the transportation problem with three origins, four desti-
nations, and the following data: 

13 

15 

11 

10 

18 

20 

14 

15 

32 

35 

29 

20 

27 

28 

30 

25 

25 

25 

25 

The total demand of 70 is five less than the total supply of 75, so before we apply the 
transportation problem algorithm, we add a fifth column with demand 5 and costs 0. 

The four iterations necessary to solve the modified problem are presented in Ta-
bles 7.27-7.30. The optimal shipping schedule of Table 7.30 leaves the surplus 5 
units at row 2. The minimum shipping cost is 

1645 = 13 -10 + 32 -10 + 27 -5 + 28 -20+ 14 -15 + 29 -10 

0 

0 

0 

11 

13 

15 

11 (w) 

10 

14 

18 

20 

14 (5) 

15 

Table 7.27 

29 

32 

35 

»o 
20 

27 

27 (25) 

28 

30 

25 

0 

»O 
o(ï) 
»O 

5 

25 

25 

25 

R = {2},C={5},d=l 
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0 

1 

0 

11 

13 

15 

ii (jq) 

10 

14 

18 

20 

14 (l?) 

15 

Table 7.28 

29 

32 

35 

»o 
20 

27 

27 (25) 

»O 
30 

25 

-1 

0 

0© 
0 

5 

25 

25 

25 

R = {l,2},C={4,5},d = 2 

2 

3 

0 

11 

13 (lO) 

15 

" « 
10 

14 

18 

20 

14 (p) 

15 

Table 7.29 

29 

32 

35 

29 (To) 

20 

25 

27 (l5) 

28 (lo) 

30 

25 

-3 

0 

0© 
0 

5 

25 

25 

25 

Ä = {l,2})C = {l,4,5},d=l 

3 

4 

0 

10 

13 (w) 

15 

11 

10 

14 

18 

20 

14 (is) 

15 

Table 7.30 

29 

32 (lO) 

35 

29 (w) 

20 

24 

27 (T) 

28 (20) 

30 

25 

-4 

0 

»© 
0 

5 

25 

25 

25 

This is also the value of the dual objective function at the associated dual solution 
point, that is, 

1645 = 3-25 + 4-25 + 0-25+10-10+14-15 + 29-20 + 24-25+ (-4)5 (7.2.4) 

In fact, from duality, these calculations certify the correctness of our solution, 
since the {x,y} flow and the {w,-,v/} point of Table 7.30 are feasible solutions to 
their respective problems. (We do not even need to calculate the values of the cor-
responding objective functions. The Complementary Slackness Theorem guarantees 
optimality as long as «,- + Vj < C{j for all i and j , the associated flow {XJJ} is feasible, 
and the x(/s are positive only where M, + vy — c(J.) 

The reader may also verify that the flow of the final table is the only feasible flow 
that can be constructed using the circled links of that table. From this it follows that 
the optimal flow for this transportation problem is unique. (See Problem 16.) 

Now, returning to the original problem, suppose we wish to increase the demand 
in column 2 by 3 units, from 15 to 18. Obviously, this new problem has feasible 
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solutions. For example, we could modify the flow of Table 7.30 by shipping 3 units 
from the surplus of 5 in row 2 directly to column 2, at an additional cost of 60. 
However, the optimal solution to the dual from Table 7.30 suggests that we can do 
better. We are changing the value of &2 of that table from 15 to 18 and the value of b$ 
from 5 to 2. The net effect of these changes on the dual objective function, evaluated 
in (7.2.4), would be 

14 ( + 3 ) + ( - 4 ) (-3) = 54 

15-+18 5 ^ 2 

Thus, as long as the {K,-, v/} point remains an optimal solution to the dual, the altered 
problem has an optimal flow with a cost increase of only 54. (In fact, such a flow 
exists. To find it, modify the flow of Table 7.30 using the circled links.) 

Problem Set 7.2 

1. Solve the transportation problems with the following data tables: 

5 

9 

3 

9 

6 

10 

4 

8 

7 

9 

4 

11 

5 

6 

2 

8 

12 

14 

10 

4 

6 

5 

8 

3 

7 

5 

4 

5 

5 

7 

6 

2 

5 

3 

10 

2 

4 

4 

12 

15 

15 

10 

8 

9 

10 

5 

10 

5 

8 

6 

9 

4 

5 

4 

8 

6 

8 

8 

7 

9 

8 

7 

8 

10 

12 

12 

10 

13 

15 

25 

15 

13 

16 

15 

35 

21 

20 

25 

19 

45 

8 

8 

12 

13 

55 

17 

16 

20 

18 

65 

50 

60 

75 

40 
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(e) 
4 

9 

2 

5 

13 

12 

13 

10 

7 

17 

6 

7 

1 

5 

15 

5 

7 

3 

6 

19 

2 

3 

1 

2 

21 

10 

10 

9 

5 

11 

20 

26 

28 

22 

2. (a) Solve the following transportation problem. (Note that supply exceeds de-
mand, and so before the transportation problem algorithm can be properly 
applied, a fifth column for the surplus must be added.) 

1 

5 

4 

6 

4 

5 

4 

6 

3 

5 

2 

6 

4 

5 

1 

6 

10 

10 

10 

(b) Apply the transportation problem algorithm directly to the data of the above 
table without first adding a column for the surplus. Compare the cost of the 
final flow with your answer in part (a). 

(c) True or false: The assumption that total supply equals total demand in the 
transportation problem algorithm is critical. 

3. Solve the transportation problems defined by the following tables. (c,; = °° in-
dicates the impossibility of shipping between the corresponding origin and des-
tination, and ci] < 0 indicates the effects of government subsidies.) 

(a) 
5 

9 

3 

9 

6 

10 

4 

8 

7 

9 

4 

11 

5 

6 

2 

8 

15 

10 

15 

(b) 
13 

17 

19 

6 

OO 

12 

14 

7 

18 

oo 

23 

9 

-3 

-2 

-4 

7 

9 

11 

13 

(c) 
5 

14 

OO 

12 

10 

-2 

1 

-I 

-2 

9 

-1 

~6 

0 

-9 

15 

6 

16 

OO 

14 

20 

4 

OO 

13 

12 

11 

20 

10 

25 

20 
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4. Suppose the demand in column 1 in the transportation problem of 3(a) is in-
creased from 9 to 9 + A, for 0 < A < 4. 

(a) Estimate the corresponding change on the total shipping cost using the so-
lution to the dual from Problem 3(a). 

(b) Determine an optimal flow when A = 2. What is the increase in cost? 
(c) Determine an optimal flow when A = 3. What is the increase in cost now? 

5. (a) Solve the following transportation problem: 

5 

12 

3 

20 

6 

15 

5 

40 

3 

10 

7 

60 

6 

14 

4 

80 

25 

75 

100 

(b) Suppose now the demand at column 3 is to be increased to 65, and to meet it, 
5 additional units are to be added to the supply at one of the rows. Estimate 
to which row the 5 units should be added so that the increase in shipping 
cost would be minimized, basing your estimate on: 
(i) what row is presently supplying column 3 

(ii) the costs C13, C23, and C33. 
(iii) the optimal solution to the dual. 

(c) Determine in fact where the 5 units should be placed so that the increase in 
cost is minimized. 

6. (a) Using the optimal solution to the dual from Table 7.18, estimate the change 
in shipping costs if, for the transportation problem of Example 7.2.1, the 
supply in row 1 is increased to 30 + X and the demand in column 1 is in-
creased to 20 +A. 

(b) For what range on X > 0 is this estimate in fact precise? 

7. (a) Solve the following transportation problem: 

29 

10 

22 

11 

45 

31 

18 

31 

16 

85 

32 

35 

37 

34 

55 

28 

12 

20 

17 

65 

30 

19 

30 

13 

75 

50 

75 

100 

125 

(b) Estimate using the solution to the dual the net increase in shipping cost if 
the demand in column 5 is increased to 90. 

(c) Verify the accuracy of your estimate in part (b). 
(d) Solve the problem of part (a) under the assumption that no surplus can re-

main in row 3. Start with your final table of part (a) after adjusting C36 (and 
V6). 

8. Solve the transportation problem of 3(a) under the added condition that no sur-
plus can remain in row 2. 
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9. (a) Solve the following transportation problem using the transportation problem 
algorithm. 

5 

5 

1 

2 

1 

5 

5 

2 

5 

1 

5 

2 

3 

3 

2 

(b) Suppose the demand at column 1 is increased by 1 unit. Estimate, using the 
above solution to the dual, the effect on the total shipping cost. 

(c) Determine the actual change in cost when the demand at column 1 is in-
creased by 1. 

(d) Explain. 

10. Determine the value of the minimal-cost shipping schedule for the transportation 
problem given by 

2 

12 

15 

12 

2 

15 

5 

25 

2 

12 

15 

12 

2 

25 

15 

25 

Note that in part (b), we are simply shipping 10 more units through the same 
network. Is this what is meant by the term economies of scale! 

11. True or false: At each iteration of the transportation problem algorithm, the 
flow is increased. (Hint. Look at Example 7.2.4, or apply the algorithm to the 
following problem.) 

1 

5 

5 

5 

1 

5 

1 

5 

5 

1 

5 

2 

1 

5 

1 

5 | 1 

3 

5 

1 

1 

4 

5 

5 

1 

1 

2 

1 

1 

12. Prove that under the assumption that Yliai = Yljbj> a n v feasible solution to the 
problem of (7.2.1) is also a feasible solution to the problem of (7.2.2); that is, 
prove that the problems of (7.2.1) and (7.2.2) are equivalent. 

13. Prove that when going from Step 4 to Step 2 in the transportation problem algo-
rithm, any shipping link that was being used (i.e., the x,7 > 0) in the attempted 
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solution to the first distribution problem will remain open in the distribution 
problem of the next iteration (i.e., the u't + v' = c,y). (Hint. Use part (b) of 
Theorem 7.1.1). 

14. Verify for the first two examples in this section that at the final iteration when 
a distribution problem with feasible solutions is constructed, the value of the 
cost function J2i jcijxU a t m e feasible flow {XJJ} equals the value of the dual 
objective function at the corresponding solution point {M,-, V,} to the dual. 

15. Prove Theorem 7.2.2 using the Complementary Slackness Theorem. 

16. Given a transportation problem, let {w,, v/} be any optimal feasible solution to its 
dual, the problem of (7.2.3). Show then that if {xij} is any minimal-cost solution 
to the transportation problem, x,7 > 0 implies that w, + VJ = Cjj. In other words, 
suppose the transportation problem algorithm is used to solve a transportation 
problem. Then any minimal-cost flow solution to the problem, no matter how 
it is found, can use only the circled links from the final table of the algorithm 
solution to the problem. (Hint. Use the Complementary Slackness Theorem.) 

17. True or false: If {M,-, V/} is an optimal solution to the problem of (7.2.3), then so 
also is the point {u,■ + X, Vj■ — X} for any constant X. 

18. Prove that the transportation problem algorithm will lead to an optimal solution 
after a finite number of steps if the algorithm is applied to a problem with all 
data rational. 

19. Suppose a minimal-cost shipping flow {x,-7} is determined for a standard trans-
portation problem with total supply equal to total demand. Does this solution 
remain optimal if 

(a) All the costs c,y from an origin i are altered by a fixed amount q? 
(b) All the costs Cjj to a destination j are altered by a fixed amount ql 

Suppose in the initial transportation problem Yliai > Yli^j- Would your an-
swers to the above be the same? 

20. Consider Problem 2 of Section 2.4. 

(a) Solve the problem using the transportation problem algorithm. 
(b) Suppose shipping costs from the East Coast Warehouse to Outlet 3 could be 

reduced from 30 to 30 — X cents/case. How large does X need to be in order 
to reduce total shipping costs? 

(c) Let X equal 7 in part (b) and solve the modified problem. 

21. Consider Problem 3 of Section 2.4. 

(a) Solve the problem using the transportation problem algorithm. 
(b) A private shipper offers to transport cases from Plant 1 to Outlet 2. At what 

cost/case shipped would the beverage company be interested? 

22. Solve Problem 5 of Section 2.4. 

23. Consider Problem 11 of Section 2.6. 
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(a) Solve the problem using the transportation problem algorithm. 
(b) Suppose the supply at Plant 2 can be increased from 600 to 600 + X units. 

Estimate, using the solution to the dual found above, the effect this increase 
would have on total costs. For what upper bound on X is this estimate in 
fact precise? 

(c) Solve the original problem (supply at Plant 2 equal to 600), but with the 
added condition that because of contractual obligations, the firm must buy 
300 units from the outside source. 

24. Solve each of the following problems using the transportation problem algo-
rithm. 

(a) The transportation problem with data given by 

5 

4 

6 

6 

4 

7 

6 

6 

1 

2 

2 

5 

3 

5 

4 

4 

4 

6 

5 

3 

5 

8 

7 

has total supply of 20 and total demand of 24. Determine a minimal-cost 
shipping schedule that distributes the entire 20 units among the five desti-
nations so that no demand is exceeded. 

(b) As above, but suppose now that there is also a cost of qj per unit of unmet 
demand at the j'th destination, with q\ = 4, qi = qA = 5, q$ = 1, and qs = 7. 

25. Solve the following problems using the transportation problem algorithm. 

(a) Suppose that in the data table in Problem 24(a), the a,'s represent the avail-
able supplies, the b/s represent the number of units that can be sold at the 
7th destination, and the c,/s represent the net profit from the sale of 1 unit 
shipped from the /th origin and sold at the y'th destination. How should the 
supply be distributed so that profit is maximized? 

(b) As above, using the data in Problem 1(c). 

7.3 APPLICATIONS 

In each of the examples we consider in this section, under a suitable interpretation 
or structural modification, we will be able to formulate the problem at hand as a 
standard transportation problem (the problem of (7.2.2) on page 265) and therefore 
solve the problem using the transportation problem algorithm. However, the reader 
should consider the presentation as primarily a demonstration of how the mathemat-
ical model of a particular situation or problem may be adjusted to make use of an 
already available solution technique. We do not mean to imply that the transporta-
tion problem algorithm is the only technique for solving the types of problems that 
follow. In several of the examples the problems have a special structure, and more 
efficient algorithms exist to take advantage of that structure. Indeed, the study of 
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Table 7.31 

8 

12 

6 

15 

6 

4 

7 

20 

5 

3 

4 

25 

7 

9 

6 

35 

20 

30 

50 

Table 7.32 

8 

12 

6 

6 

15 

6 

4 

7 

7 

20 

5 

3 

4 

4 

25 

7 

9 

6 

OO 

35 

0 

0 

0 

0 

5 

20 

30 

12 

38 

network flow problems, of which the transportation problem can be considered an 
example, is a major area of mathematical programming. 

Example 7.3.1 (A Capacitated Transportation Problem). Consider the transporta-
tion problem with three origins, four destinations, and the data given in Table 7.31. 
Suppose also that the shipping link between Origin 3 and Destination 4 has an upper 
bound capacity of 12 units, that is, at most 12 units can flow from Origin 3 to Desti-
nation 4. With this restriction, we cannot apply the transportation problem algorithm 
directly to the problem; the final optimal flow may (in fact, would) have X34 greater 
than 12. 

However, if we divide the supply at Origin 3 into two parts, one part with 12 
units and shipping links to all the destinations and the other part with 38 units but 
no shipping link to Destination 4, the algorithm can be applied. The initial data, so 
modified, are in Table 7.32. The flow out of Origin 3 corresponds to the entries in 
rows 3 and 4, and C44 = °° limits Origin 3's flow to Destination 4 to the supply of 
row 3. The computation of an optimal flow is left as an exercise (Problem 1(a)). 

This technique can be extended. Other minor modifications of a simple trans-
portation problem sometimes can be handled by the addition of another row and/or 
column, with suitable associated costs. Here, for example, if the capacity of the 
shipping link from Origin 3 to Destination 3 were also restricted to, say, 15 units, 
we could divide Origin 3's supply of 50 into three parts (see Problem 1(b)). Clearly, 
however, if all 12 shipping links were capacitated, other, more general solution tech-
niques would be necessary. 

Example 7.3.2 (A Transshipment Problem). Suppose two sources supply three des-
tinations, with supplies, demands, and direct shipping costs as follows: 
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20 

15 

25 

30 

28 

50 

12 

13 

75 

50 

100 

Suppose units may also be shipped from the sources to the destinations through two 
transshipment nodes. A transshipment node has no supply or demand, but units may 
be shipped from the sources to the destinations through these nodes. (For example, 
suppose goods can be shipped not only from Washington and New York directly 
to Portland, Seattle, and Spokane, but also from the East Coast cities to St. Louis 
and Chicago, and then from St. Louis and Chicago to the West Coast cities.) Sup-
pose also that the number of units that can flow through each transshipment node is 
bounded (e.g., St. Louis and Chicago have limited transfer and/or storage facilities). 
Here suppose transshipment Node 1 has a capacity of 60 units and Node 2 a capacity 
of 70 units, with shipping costs given as follows: 

Nodes 
1 
2 

Destinations 
1 2 3 

16 25 8 
12 20 6 

We wish to determine a minimal-cost shipping schedule. 
If the transshipment nodes did not have capacity restrictions, we might simply 

determine, for each source and destination, the least expensive way of shipping units 
via the three routes (directly, through Node 1, and through Node 2) and use these 
data in a standard transportation problem model. However, we can still use the trans-
portation problem algorithm here if we include in both our sources and destinations 
the two transshipment nodes, setting supplies and demands equal to capacities and 
allowing no shipping between the two nodes. The following would be the modified 
data for such an application of the algorithm: 

Origins 

Nodes 

1 

2 

1 

2 

Demand 

Nodes 

1 

3 

4 

0 

oo 

60 

2 

6 

5 

0 

70 

Destinations 

1 

20 

15 

16 

12 

25 

2 

30 

28 

25 

20 

50 

3 

12 

13 

8 

6 

75 

Supply 

50 

100 

60 

70 

The first two rows and last three columns correspond to the two sources and three 
destinations, with the direct flow between them to be noted in the upper right corner 
of the table. Rows 3 and 4 and columns 1 and 2 provide the auxiliary sources and 
destinations associated with the transshipment nodes. Entries in the upper left corner 
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of the table would correspond to units shipped from the sources to the nodes, and 
entries in the lower right corner to units shipped from the nodes to the destinations. 
These later quantities are properly limited by the row supplies of 60 and 70, and the 
availability of these 60 and 70 units for the last three columns is contingent upon 
how much of the 60-unit and 70-unit demands of the first two columns is met by 
shipment from the two sources through rows 1 and 2. The x^\ and X42 entries would 
correspond to unused node capacity at Nodes 1 and 2, respectively. Completion of 
the problem is left to the reader (Problem 2). 

Example 7.3.3 (A Dynamic Scheduling Problem). An automobile company makes 
transmissions at two plants to meet the needs at three of its assembly centers. For 
the next 2 months, the output at each plant and the requirements at each center are as 
follows: 

Month 1 
Month 2 

Output 
Plant 1 Plant 2 

225 275 
260 240 

Requirements 
Center 1 Center 2 Center 3 

150 200 100 
175 225 125 

Delivery costs, which do not vary from month to month, are (in $/unit shipped): 

Plant 1 
Plant 2 

Centers 
1 2 3 

12 13 10 
21 19 18 

The monthly requirements of the assembly centers must be met exactly. Any trans-
mission made at a plant but not delivered may be stored at that plant for delivery next 
month, with a storage cost of $4/unit at Plant 1 and $5/unit at Plant 2, or such units 
may be sold to local parts companies, at a profit of $27 at Plant 1 and $20 at Plant 2. 

The translation of the problem of determining a distribution plan that minimizes 
net expenses into a standard transportation problem is straightforward. We have in 
fact four sources (the output of each plant over each month) and six primary des-
tinations (the monthly requirements of each assembly center). There are shipping 
restrictions: units produced in Month 2 cannot be used to meet the Month 1 require-
ments. There are also some additional shipping costs: units produced in Month 1 
and used to meet Month 2 requirements incur storage costs. But these factors can all 
be accounted for with appropriate c,/s. See Table 7.33 (and Problem 3). 

Example 7.3.4 (An Assignment Problem). Suppose a plant manager has six differ-
ent jobs to be performed daily and six different machines to do the jobs. Suppose 
also that for each machine and job, there is a known cost to be incurred if the given 
machine is assigned to perform the given job. These cost factors could include setup 
time expenses, production costs, expected costs due to breakdowns, and so on. Ob-
viously, the manager seeks an assignment of machines to jobs that would minimize 
the total daily costs. 
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Table 7.33 

„, , in Month 1 
Plant! 

in Month 2 

„, , in Month 1 
Plant 2 

in Month 2 

Requirements 

Center 1 
in Month 
1 

12 
oo 

21 
OO 

150 

2 

16 
12 

26 
21 

175 

Center 2 
in Month 
1 2 

13 
OO 

19 
OO 

200 

17 
13 

24 
19 

225 

Center 3 
in Month 
1 

10 
OO 

18 
OO 

100 

2 

14 
10 

23 
18 

125 

Surplus 

-27 
-27 

- 2 0 
- 2 0 

25 

Output 

225 
260 

275 
240 

To formulate a mathematical model of this assignment problem, let c!y be the 
cost to be incurred if machine M, is assigned to job Jj, and introduce 36 variables x,j, 
1 < i, j < 6, with the interpretation that 

J 1, M{ is assigned Jj 
lJ 1 0, Mi is not assigned Jj 

Now consider the integer programming problem of 

6 6 

Minimizing 2_2z-2c'Jx'J (7.3.1) 
i=i i=i 

subject to 
6 

i=i 
6 

^Xij = l , i = 1,...,6 

0 < x,j < 1 and integral, 1 <i,j<6 

Each variable xy can be only 0 or 1. The first set of constraints in (7.3.1) demand 
that for each j , there is exactly one i for which x-tj = 1, that is, for each job there 
is exactly one machine assigned the job. Similarly, the second set of constraints in 
(7.3.1) demand that for each i, there is exactly one j for which XJJ = 1, that is, each 
machine is assigned exactly one job. Our desired interpretation of the x^ variables as 
designating an assignment of machines to jobs is accomplished. Moreover, the ob-
jective function of (7.3.1) properly measures the cost associated with an assignment 
{xjj}, and so we have an appropriate mathematical model for the original assignment 
problem. 

This integer programming problem closely resembles a transportation problem 
with six sources (with each a,- = 1) and six destinations (with each bj = 1). But 
(7.3.1) differs from a transportation problem in that the *,-_,■ variables are restricted 
to be both integral and not greater than 1. The latter restriction, that the Xjj < 1, 
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Table 7.34 

Mx 

M2 

M3 

M4 

M5 

M6 

h 
14 

8 

3 

7 

11 

6 

■*2 

13 

12 

4 

8 

17 

7 

■ * ) 

12 

9 

2 

6 

14 

8 

74 

17 

11 

6 

9 

15 

7 

4s 
15 

12 

7 

11 

16 

9 

4 
10 

9 

5 

6 

oo 

6 

11 >CT 

9 j * 

3 X 

7 t 

12 X 

6 

0-1 
14 

*C0 
3 

7 

H (T) 
6 

1 

1 

13 

12 

' O . co 
17 

' O 
1 

0-1 

12 

9 

» CO *o 
14 

8 

1 

1 

17 

11 

6 

9 

15 

'CO 
1 

3 

15 

«CO 
7 

11 

16 

»O 
1 

0-1 

10(1) 
9 

5 

' O 
oo 

6 

1 

can be ignored; the equations of (7.3.1) and the nonnegativity of the x//s make the 
upper bound constraints redundant. Let us now assume that the c,-/s are all integral. 
Then Theorem 7.2.3 in the previous section guarantees that if we consider (7.3.1) 
a transportation problem and apply the transportation problem algorithm, we will 
construct an optimal flow with all x,/s integral. Thus the transportation problem 
algorithm applied to this assignment problem will generate an optimal assignment 

{Xij}-
For example, if the c,/s are as in Table 7.34, the application of the transportation 

problem algorithm would lead to the solution of the problem in two iterations (Table 
7.35). One possible optimal assignment is M\ to Jß, M2 to J$, M3 to 73, M4 to J%, M$ 
to J\, and M6 to J4, at the minimal cost of 50 = 10 + 12 + 2 + 8 + 11 + 7. 

Other, more general assignment problems can be solved in the same manner. 
If the number of machines and the number of jobs are not equal, either additional 
machines or jobs can be added to the problem to provide the necessary equality, 
associating with these auxiliary rows or columns cost factors of zero. If the c;/s are 
rational but not all integral, there exists a constant c ^ 0 such that cctj is integral for 
all i and j , and the assignment problem with costs CCJJ would be equivalent to the 
original. If some c,/s are irrational, they can be approximated by rationals. Other 
variations are left to the problems. 
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Problem Set 7.3 

All problems in this set that ask for the determination of some optimal scheme can 
be modeled as standard transportation problems and solved using the transportation 
problem algorithm. 

1. Solve the problem of Example 7.3.1 

(a) as stated (Table 7.32). 
(b) with the additional restriction that the capacity of the shipping link from 

Origin 3 to Destination 3 is 15. 

2. (a) Determine a minimal-cost shipping schedule for the problem of Example 
7.3.2. 

(b) Using the associated solution to the dual found in part (a), estimate the 
change in total shipping cost if the capacity of 
(i) Node 1 is reduced to 60 — A. 

(ii) Node 2 is reduced to 70 — A. 

3. (a) Solve the problem of Example 7.3.3 (Table 7.33). 
(b) Suppose the production of Plant 1 could be increased for either Month 1 

or Month 2, but not for both months. Using the solution to the dual found 
above, determine in which month production should be increased to achieve 
the greater savings and estimate this savings. 

4. Consider the transportation problem with the following data: 

6 

12 

5 

12 

7 

14 

3 

14 

3 

10 

2 

16 

2 

12 

2 

18 

20 

20 

20 

(a) Solve the problem as stated. 
(b) Solve the problem assuming that the capacity of the shipping link from 

Origin 1 to Destination 4 is 8. 
(c) Solve the problem assuming that any number of units can be shipped from 

Origin 1 to Destination 4, but that the first 8 shipped cost 2/unit and any 
over 8 cost 4/unit. 

(d) Solve the original problem, with the one additional condition that at least 
one-half of the supply at Origin 1 must be shipped to Destination 2. 

(e) Solve the original problem, with the one additional condition that at least 
one-half of the supply at Origin 1 must be shipped to the first two destina-
tions. 

5. Compute a minimal-cost shipping schedule for Problem 6 of Section 2.4. 

6. Consider a transportation problem having three origins and four destinations in 
which production at both Origins 1 and 2 is fixed at 60 units but surplus units 
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may be sold at each of these origins, at 6/unit above cost at Origin 1 and at 
16/unit above cost at Origin 2. Also suppose that there is no market for surplus 
at Origin 3 — and although the cost of any surplus production here would have 
to be absorbed at a significant loss, production capacity is somewhat flexible. At 
least 50 units must be produced at Origin 3, but no more than 65. Complete cost 
data are as follows: 

32 

33 

28 

65 

24 

22 

16 

25 

35 

20 

30 

60 

28 

25 

20 

30 

60 

60 

50-65 

How many units should be made at Origin 3, and how should the output of the 
three origins be distributed so that net costs are minimized? 

7. For the transportation problem with three origins, five destinations, and the fol-
lowing data 

15 

18 

16 

8 

17 

19 

18 

10 

18 

16 

15 

12 

16 

20 

15 

14 

21 

22 

17 

16 

25 

15-25 

15-25 

suppose production at Origin 1 is fixed at 25 and surplus units at this origin have 
a net value of zero. Production at Origins 2 and 3 can be adjusted between 15 
and 25 units each so that production and distribution costs are minimized. A 
surplus at these two origins, however, must be avoided. Determine how many 
units should be produced at Origins 2 and 3, and how the total demand should 
be met, to minimize costs. 

8. Solve the transportation problem of Problem 7(a) of Section 7.2, but with the 
added condition that the combined flow from Origins 1 and 2 to Destination 5 
be at least 40 units. 

9. Solve the transportation problem of Problem 1(d) of Section 7.2, but with the 
added requirement that the combined flow from Origins 1 and 2 to Destinations 
1 and 2 be at least 20 units. (Hint. Add an additional row and column, with 
supply and demand each 20, and with shipping links from Origins 1 and 2 to the 
additional column and from the additional row to Destinations 1 and 2. Use the 
fact that c\\ — C2\ = cu — en in setting costs.) 

10. Solve the transportation problem of Problem 1(e) of Section 7.2, but with the 
added requirement that the combined flow from Origins 1 and 2 to Destinations 
2 and 3 be at least 12 units. 
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11. (a) Determine an optimal shipping schedule for the transshipment problem with 
two sources (supplies of 80 and 120), three destinations (demands of 45, 
60, and 75), one transshipment node (capacity of 55), and shipping costs as 
follows: 

From 
Source 1 
Source 2 

Node 

To Destination 
Node 

7 
6 

1 

21 
17 
10 

2 3 

28 16 
20 12 
15 7 

(b) Suppose the capacity of the transshipment node could be increased to 55 + 
A. Estimate the effect this would have on total shipping costs using the 
solution to the dual found above. 

(c) For what range on X > 0 is your estimate in part (b) accurate? 
(d) Solve the original problem, but with the following change in status of the 

transshipment node: namely, that instead of having an upper bound capacity 
of 55, it is required that in any solution exactly 65 units flow through the 
node. 

12. (a) Determine an optimal shipping schedule for the transshipment problem with 
two sources, four destinations, three transshipment nodes, and data as fol-
lows: 

Shipping To Node To Destination 
Costs From Supplies 1 2 3 1 2 3 4 

Source 1 120 8 4 5 10 12 31 15 
Source 2 200 5 6 3 8 13 33 20 

Shipping To Destination 
Costs From Capacities 1 2 3 4 

Nodel 100 1 6 25 11 
Node 2 50 5 7 28 14 
Node 3 75 4 4 27 15 

Demands by Destination 
1 2 3 4 

65 85 50 90 

(b) Suppose the capacity of one of the transshipment nodes could be increased 
by a small amount. Using the solution to the dual found above, estimate at 
which node the increase should be made to achieve the greatest savings. 

13. Determine an optimal shipping schedule for the transshipment problem of Ex-
ample 7.3.2 with the modification that each transshipment node must be used to 
its full capacity. 
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14. A firm with two plants must supply three outlets over the next three time periods. 
The supplies and demands over the three periods and the shipping costs for any 
period are given in the following tables. 

Period 

1 
2 

3 

Plant 
Supplies 
1 2 

15 
15 
10 

25 
25 
20 

Outlet 
Demands 

1 

10 
10 
10 

2 

5 
10 
15 

3 

20 
10 
10 

Shipping 
Costs 

From Plant 1 
From Plant 2 

To Outlet 
1 2 3 

7 9 12 
10 11 16 

15. 

The period demands at each outlet must be met exactly. Any units produced but 
undelivered at a plant may be stored at the plant for later delivery with a storage 
cost of 3/unit/period at Plant 1 and 2/unit/period at Plant 2, or such units may be 
sold at a profit of 5/unit at Plant 1 and 8/unit at Plant 2. How should the units be 
distributed so that net expenses are minimized? 

Reconsider Problem 14 using the following data: 

Period 

1 
2 

3 

Plant 
Supplies 
1 2 

15 
15 
10 

15 
10 
5 

Outlet 
Demands 

1 2 

5 6 
8 10 
10 7 

3 

2 
4 
6 

Storage Cost/Unit/Period 
Profit/Unit Sold 

Shipping 
Costs 

From Plant 1 
From Plant 2 

Plant 1 Plant 2 

3 1 
10 8 

To 
1 

2 
6 

Outlet 
2 3 

1 3 
4 5 

16. Two plants supply four outlets weekly, with supplies, demands, and production 
and transportation costs as follows: 

53 

50 

250 

50 

47 

200 

43 

42 

150 

44 

44 

75 

200 

400 

17. 

The total supply of 600, which must be distributed, represents output using reg-
ular time. Plant 1 can produce up to another 40 units weekly using overtime 
at a cost of 5/unit over the costs given in the above table; Plant 2 can produce 
up to another 80 units weekly using overtime, at an increase in cost of 7/unit. 
Determine a minimal-cost production and delivery schedule. 

(a) Solve Problem 9 of Section 2.6. 
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(b) Suppose the monthly demand for differentials is increased from 225 to 
225 + X units. Using the solution to the dual, estimate the effect this in-
crease would have on costs. 

18. (a) Solve Problem 8 of Section 2.5. 
(b) Suppose 25 more engines need to be produced, but we are free to choose 

the quarter in which they are delivered. Using the solution to the dual, 
determine in which quarter they should be delivered so as to minimize the 
increase in production costs and estimate this increase. 

19. (a) Solve Problem 5 of Section 2.5. 
(b) Suppose the capacity of the storage facility is reduced from 300 to 300 — X 

units. Estimate, using the solution to the dual, the effect on profits. 

20. (a) Solve Problem 3 of Section 2.5. 
(b) Using the associated solution to the dual, estimate: 

(i) the effect on profits if the capacity of the storage facility is reduced 
from 45 to 45 — X units. 

(ii) in which month it would be most profitable to increase sales poten-
tial, and the effect this increase would have on the total profit (storage 
capacity for the original 45 units). 

21. The Caterer Problem (Jacobs [21]). A caterer must supply 110 napkins on 
Monday, 90 on Tuesday, 130 on Wednesday, and 170 on Thursday. The caterer 
initially has no napkins on hand. New napkins can be bought for 7 cents each. 
Used napkins can be laundered for use the next day at 4 cents/napkin or laun-
dered for use in 2 days or more at 2 cents/napkin. At the end of the week, all 
used napkins have no value. How can the caterer meet these demands at minimal 
cost? {Hint. Consider this as a transportation problem with four sources - the 
new-napkin outlet and the first 3 days' collections of used napkins.) 

22. Reconsider Problem 21, with demands of 70 for Monday, 60 for Tuesday, 80 for 
Wednesday, 100 for Thursday, and 90 for Friday, and new-napkins costs of 12 
cents, next-day laundry service of 5 cents, 2-day laundry service of 3 cents, and 
3-day or more service of 2 cents. Furthermore, assume that all used napkins are 
worth 1 cent at the end of the week. 

23. Determine optimal assignments and total minimal costs for the assignment prob-
lems defined by the following rating matrices: 

17 

23 

11 

27 

25 

18 

20 

19 

13 
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6 

2 

6 

1 

6 

4 

9 

3 

7 

2 

8 

2 

8 

1 

9 

3 

3 

3 

7 

0 

12 

8 

13 

20 

13 

6 

1 

11 

16 

6 

18 

18 

15 

5 

4 

9 

14 

7 

16 

17 

12 

8 

7 

10 

10 

9 

14 

19 

10 

9 

6 

12 

5 

8 

9 

12 

6 

8 

3 

7 

12 

11 

11 

13 

18 

7 

3 

5 

18 

10 

14 

15 

13 

4 

2 

7 

13 

12 

17 

14 

13 

7 

5 

11 

24. (a) Is the optimal assignment of Problem 23(b) unique? (See Problem 16 of 
Section 7.2.) 

(b) Solve Problem 23(b) with the added condition that the job corresponding to 
column 2 of the matrix must be assigned. 

25. (a) Determine an optimal assignment (which leaves one job unassigned) for the 
assignment problem with the following rating matrix: 

8 

4 

13 

23 

9 

3 

20 

26 

12 

6 

17 

25 

11 

7 

18 

33 

8 

5 

12 

20 

(b) Is the above solution unique? 
(c) Solve this assignment problem with the restriction that the jobs correspond-

ing to columns 3 and 4 must be assigned. 

26. (a) Determine an optimal assignment for the assignment problem with the fol-
lowing rating matrix: 

4 

7 

5 

2 

9 

3 

8 

9 

10 

6 

8 

8 

7 

10 

11 

9 

7 

6 

2 

3 

6 

1 

5 

4 

5 

7 

6 

8 

9 

8 
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(b) Determine an optimal assignment for these six machines to the five jobs, 
with the added condition that there is also a savings to be earned, the amount 
of which depends upon which machine is unassigned. In particular, if either 
Mi or M2 is unassigned, 2 units are saved; M3 or M4, 3 units; and M$ or M^, 
5 units. 

27. Solve the following assignment problems, but assume that the c,-/s represent 
profit and so the objective function ^ ■ ■ c^x^ is to be maximized. 

(a) 

(b) 

7 

6 

5 

6 

8 

5 

6 

5 

3 

0 

2 

1 

10 

11 

12 

9 

6 

3 

2 

5 

9 

8 

7 

6 

5 

4 

3 

5 

7 

5 

4 

7 

4 

7 

6 

5 

28. Each of six individuals is to be assigned to one of six different jobs, and all 
six jobs must be completed. The individuals have ranked the jobs in order of 
preference, giving a 1 to the most desirable job, and so on. These rankings are 
given in the following table: 

h 
h 
h 
h 
h 
h 

J\ 

3 

1 

3 

2 

4 

1 

h 
2 

2 

1 

1 

4 

3 

h 
1 

2 

2 

4 

1 

2 

J4 

6 

4 

OO 

3 

2 

6 

-/s 
4 

6 

OO 

5 

6 

4 

h 
4 

5 

4 

6 

3 

5 

Note that the rankings include some ties and that I3 is not qualified for two jobs. 
How should the assignments be made? 

29. Two jobs, the first requiring three workers and the second two workers, must be 
completed. There are seven workers who are qualified for the jobs. The wages 
a worker would receive depend on both the worker and the job assigned and are 
as follows: 
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w] w2 w3 w4 w5 w6 w-i 
Ji 105 90 85 95 80 65 80 
h 125 105 135 115 100 105 95 

Furthermore, each of the first four workers must still be paid 50 units if unas-
signed, whereas each of the last three workers receives only 25 units if unas-
signed. Determine a minimal-cost assignment. 

30. (a) The shop of Problem 29 is given an order to be completed in 2 weeks. The 
order requires 9 man-weeks of labor for a /i-type job and 4 man-weeks 
of labor for a /2-type job. Assuming that the wages listed in Problem 29 
represent wages per week for the workers, how should the seven workers be 
assigned over the 2-week period so that the order is completed and the costs 
are minimized? 

(b) As in part (a), but assume now that the shop has 3 weeks to complete the 
order. 

31. A machine shop is given six orders. However, the shop has only five machines 
and therefore cannot fulfill one order. The profits realized from assigning a 
machine to an order, and the penalty costs incurred if an order is not completed, 
are as follows: 

Machines 
(profit) 

1 
2 
3 
4 
5 

Penalty Cost 

1 

75 
56 
20 
50 
65 

20 

2 

80 
55 
35 
46 
62 

25 

Orders 
3 

85 
65 
30 
42 
48 

5 

4 

70 
50 
X 

38 
55 

15 

5 

70 
48 
24 
42 
52 

24 

6 

X 

48 
X 

32 
45 

18 

An "x" in the table indicates that a machine is not suited for the associated job. 
Determine an assignment that optimizes net profit. 

32. The Tanker Scheduling Problem (Dantzig and Fulkerson [22]). A shipping com-
pany has contractual obligations to provide oil tankers for service over the fol-
lowing routes: 

Route 1, from Port A to Port B, two tankers daily 
Route 2, from Port C to Port B, three tankers daily 
Route 3, from Port C to Port D, one tanker daily 
Route 4, from Port B to Port E, four tankers daily 

The time in days for a tanker (laden or empty) to travel between ports is as 
follows: 
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A 
B 
C 
D 

B 

23 

C 

12 
16 

D 

30 
10 
19 

E 

28 
8 

20 
5 

A tanker requires 1 day in port to load and 1 day to unload. Once unloaded, a 
tanker is reassigned. If the next route does not originate at the present port of de-
livery, the tanker sails empty to the originating port of the next route. Determine 
how the 10 tankers completing assignments daily should be reassigned so that 
the total number of tankers necessary to meet these requirements is minimized. 

(Hint. The daily requirements of 10 ships are at four "destinations," the origi-
nating ports of the four routes, with demands of 2, 3, 1, and 4; and the "sources," 
the terminal ports of the four routes, provide the supplies of 2, 3, 1, and 4. To 
determine a c,-_/, suppose a ship completing Route 1 is assigned to Route 3. Then 
a total of 41 ships would be required to maintain this part of the steady-state 
flow: 1 ship loading in Port A, 23 in transit to Port B, 1 unloading in Port B, and 
16 empty ships in transit to Port C.) 

33. (a) Reconsider Problem 32, now with an additional port and the following route 
requirements: 

Route From To Daily Requirement 

1 Port A Port E 3 tankers 
2 B C 5 
3 C A 1 
4 D F 1 
5 B F 1 

Travel time between Port F and the other ports is: 

To A ToB ToC To D To E 

From F 21 18 7 22 25 

(b) Using the solution to the dual, estimate the number of new ships needed 
to accommodate doubling Route 3's requirement to two ships daily. Is this 
estimate accurate? 

34. True or false: In the final tableau corresponding to the solution of an assignment 
problem, the sum of the dual variables, J^i ui + S ; vi> equals the total cost of an 
optimal assignment. 

35. Given an assignment problem, prove that for any optimal assignment, at least 
one machine is assigned to a job for which the machine's cost factor is minimal, 
that is, at least one machine is assigned its best job. 

36. Suppose a rating matrix of an assignment problem is altered by the addition of a 
fixed constant to all the entries of either a row or a column of the matrix. Show 
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that an assignment is optimal for the original problem if and only if it is optimal 
for the altered problem. 

37. Given an assignment problem with an n x n rating matrix (c,;), show that there 
are n numbers r\,...,rn such that the assignment problem with rating matrix 
(cij + r,) (i.e., r, is added to the /th row of (c!;) for each i) has the property that 
the cost of an optimal assignment is Xw=i Min,{c,y + r,-} (i.e., the sum of the 
minimal entries from each column). (Hint. Make use of the w,'s from the final 
table of a solution to the original problem.) 

38. Given an assignment problem with rating matrix (c,y), show that there are num-
bers r, and Sj such that the assignment problem with ranking matrix (c- ■), where 
c\ ■ = cij + r, + Sj (i.e., r, is added to the j'th row of (c,y) and Sj to the y'th column), 
has the property that all the c,-/s are nonnegative and the cost of an optimal as-
signment is zero. 

39. From Problem 16 of Section 7.2, it follows that if the transportation problem 
algorithm is used to solve an assignment problem, then for any optimal assign-
ment, no matter how it is found, if M,- is assigned Jj, then w, + vj = cij, where w,-
and vj are the dual variables of the final table corresponding to the original so-
lution of the problem. Provide an alternate proof of this using Problems 36-38. 

40. A private high school with 368 students has classified its aid packages to stu-
dents as low, mid-range, or high, and using these categories, the following cross-
classification table was constructed. 

Aid Package 

Low 
Mid-range 
High 

Column sums 

Freshman 

34 
12 
46 

92 

Class 

Sophomore 

52 
43 
15 

110 

Junior 

3 
34 
24 

61 

Senior 

38 
27 
40 

105 

Row Sums 

127 
116 
125 

368 

The school's recruitment officer would like to tell prospective students and their 
parents the total number of students receiving aid in each of the three categories. 
However, the size of each class is public information, and the school fears that 
with both the row and column sums of the above table known, the specific num-
ber of students in a given category might be determined, or at least closely ap-
proximated, compromising individual privacy. The school is especially con-
cerned when the number in a cross-classification category is low, such as in the 
juniors/low-aid category. 

Focusing on this cell, the question then is: In the set of all possible ways of 
reconstructing a cross-classification table from the above row and column sums 
alone, what are the lower and upper bounds for the entries in the junior/low-aid 
cell? If the difference in the bounds is small, privacy could be compromised; if 
the difference is large, fears on this issue for this category are unfounded. 
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In fact, the two bounds can be easily determined using linear programming and, 
in particular, using the transportation problem algorithm. Consider the trans-
portation problem with three sources with supplies equal to the row sums of the 
table, four destinations with demands the table's corresponding column sums, 
and with all costs c,-7- = 0 except cu = —l (notation as in (7.2.1 )). The following 
is a solution of the problem: 

0 

0 

0 

0 

0 (66) 

0 (26) 

0 (V) 

92 

0 

»o 
o (pq) 
o (20) 

110 

-1 

->© 
0 

0 

61 

0 

»O 
»O 
0 (K)5) 

105 

127 

116 

125 

We see that the minimal cost is —61, that is, the minimum of — xu and therefore 
the maximum of X13 is 61, with this value attained at the indicated shipping 
flow. In part (b) below, you are asked to verify that 0 is the attainable lower 
bound for xu in a reconstructed cross-classification table with these specified 
row and column sums. With the difference in bounds of 61, we can conclude 
that the privacy of the junior/low-aid individuals is well protected if the row and 
column sums data are known. 

(a) What modification of the above transportation problem could be used to 
determine the lower bound for feasible values of X13? 

(b) Use your answer to part (a) to verify that the lower bound for X13 is 0. 
(c) The fact that 52 sophomores are receiving only a low amount of aid may, if 

known, upset some members of the sophomore class. Determine if this is a 
realizable fear if the table's row and column sums are public knowledge. 

Note. In most applications, practitioners would want assurances that the data 
in each cell would remain reasonably protected before the row and column sum 
data were made public. For an m x n table, this would mean that 2mn linear 
programming problems, each with mn variables and m + n constraints, would 
need to be solved. But since in fact the problems can be formulated as quickly-
solved simple transportation problems, the procedure outlined above remains a 
practical tool even when m and n are large. 



CHAPTER O 

OTHER TOPICS IN 

LINEAR PROGRAMMING 

8.1 AN EXAMPLE INVOLVING UNCERTAINTY 

In the first three sections of this chapter, we consider by means of examples variations 
in the decision problems with which we have been working and how these variations 
might be handled using the machinery of linear programming. In Section 8.4, an 
application of linear programming in a setting quite distinct from that of the general 
optimization problem model is presented. The four sections are independent of each 
other and may be read in any order. 

Our first example involves the element of probability. In Chapter 5 we developed 
techniques for measuring the effects changes in the constants of a linear program-
ming problem had on an optimal solution to the problem. In this section, we con-
sider a way of working with uncertainty in the values of these constant terms. As a 
secondary result, in the solution of the problem in this section, a special technique 
that can be used to solve linear programming problems with upper bounds on many 
of its variables is illustrated. 

For many applications, it is more realistic to assume that the terms of the problem 
are not fixed but, instead, can range over sets of values subject to estimated probabil-
ity distributions. For example, consider the problem of a manufacturer of goods to 
be sold in the market. In general, the manufacturer seeks to determine a production 
schedule that maximizes profits and/or minimizes costs. But first, the problem of 
estimating the demand for the product must be addressed. It may be that the manu-
facturer cannot assume that everything produced will be sold, but that unpredictable 
conditions such as weather, strength of the competition, whims of the public, and 
so on, influence the salability of the product. However, it could be that from past 
records, a probability distribution for the number of units sold can be estimated with 
some degree of accuracy. 

The example that follows demonstrates one possible technique by which infor-
mation such as this can be incorporated into a linear programming problem. The 
basic idea behind the approach is set forth in a paper by A. Ferguson and G. Dantzig 
[23] (see also Chapter 28 of Dantzig's book [7]), in which the realistic problem of 
the allocation of commercial aircraft to meet uncertain demands is discussed. 

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, Inc. 
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Example 8.1.1. Consider the problem of the boat manufacturer described in Exam-
ple 2.3.1 on page 21 (see also Problem 3 of Section 4.3 and Example 5.1.2). The 
manufacturer produces two types of small boats, a rowboat and a canoe, with the 
total number produced restricted by the availability of aluminum, machine time, and 
finishing labor. With a profit of $50 on the sale of a rowboat and $60 on the sale 
of a canoe, the specific linear programming problem is concerned with optimizing 
profits, and is to 

Maximize 50R + 60C (8.1.1) 
subject to 
50R + 30C < 2000 

6R+ 5C < 300 
3R+ 5C < 200 

where R > 0 and C > 0 are the number of rowboats and canoes produced, respec-
tively. Of course, in this formulation of the problem, we are assuming that all boats 
produced are sold. With this assumption, an optimal production schedule can be eas-
ily determined geometrically. The graph of the set of feasible solutions is sketched 
in Figure 8.1. The value of the objective function 50̂ ? + 60C can be computed at the 
four vertices of this set, and the maximum value, $2750, attained at the point (25, 25) 
easily determined. Thus, if all boats produced can be sold, the manufacturer realizes 
a maximal profit of $2750 by making 25 boats of each type. 

Let us suppose now that the market for the boats is not fixed but is contingent 
on various factors, the primary one being the weather conditions in early summer. 

Figure 8.1 
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Also assume that the manufacturer is attempting to meet these summer demands 
by spring production and thus must estimate from past experience the demands for 
boats. It is known that the family rowboat market is more variable than the sports 
canoe market. More specifically, assume it is equiprobable that there will be either 20 
potential rowboat buyers or 50 potential rowboat buyers, and that there will be either 
20, 30, or 40 people wanting canoes, with probabilities | , | , and | , respectively. 
Our problem is to develop a model that takes this new information into account. 

One somewhat simplistic approach would be to restrict the number of rowboats 
and canoes produced to the average or expected number of potential buyers. (In a 
finite probability space, the expected value of an event is defined to be the sum of 
the values of each of the possible outcomes of the event times the probability that the 
outcome occurs.) The expected number of rowboat buyers is 20(j) +50( j ) = 35, 
and the expected number of canoe buyers is 20(j) + 3 0 ( | ) + 4 0 ( | ) = 30. Thus, 
using this approach, the manufacturer would simply add two new constraints to the 
set in (8.1.1), that R < 35 and C < 30. Since the optimal value of the objective 
function of (8.1.1) is attained at a point that also satisfies these new constraints, it 
follows that the point (25,25) also provides the solution to this modified problem. 
However, the profit expected from this production schedule is not the $2750 of the 
original problem, but is less because it is no longer certain that all boats produced 
will be sold. In fact, we are certain that only the first 20 of each type of boat will be 
sold. Since the probability that 50 people will desire rowboats is | , the probability 
that the last five rowboats produced will be sold is \. Similarly, the probability that 
the last five canoes produced will be sold is | (the probability that there will be at 
least 30 buyers is 3 + | ) - Thus the expected profit is 

$50-20 + $50-5-±+$60-20 + $60-5-f =$2550 

This computation of the expected profit suggests a way of refining our model that 
may lead to another production schedule with a higher expected profit. Our model 
should take into consideration the differences in expected profit associated with the 
sale of the first 20 rowboats and the next 30, and the differences associated with the 
sale of the first 20 canoes, the next 10, and the next 10. We can do this as follows. 

Consider the total number R of rowboats produced as divided into two incre-
ments, the number between 0 and 20, denoted by R\, and the number between 20 
and 50, denoted by R2- Note that no more than 50 such boats can be sold, and so 
we restrict our attention to only these profitable increments. Similarly, consider the 
number C of canoes produced to be divided into three increments, C\, C2, and C3, 
where C\ denotes the number between 0 and 20, C2 the number between 20 and 
30, and C3 the number between 30 and 40. For example, corresponding to the above 
(25,25) production schedule, we have Ri = 20, R2 = 5,Ci= 20, C2 = 5, and C3 = 0. 
For these five new variables we have the following constraints. 

Ri+R2=R 0 < C i < 2 0 
0 < Ri < 20 0 < C2 < 10 
0 < R2 < 30 0 < C3 < 10 

C i + C 2 + C 3 = C 
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R and C must still satisfy the original three production constraints given in (8.1.1). 
However, the expected profit function can now be expressed precisely using the new 
variables. The expected profit associated with the sale of R = R\ + R2 rowboats is 
$50 • Ri + $50 -R2-\,

 s m c e m e probability of selling the first 20 boats is 1 and the 
probability of selling the next 30 is j . Similarly, the sale of C = C\ + C2 + C3 canoes, 
with the Cj's restricted as above, will realize an expected profit of $60■ C\ + $60 • C2 • 
I + $60 • C3 • \, since the probability of selling the first 20 canoes is 1, selling the next 
10 is | , and selling the last 10 is \. Combining all of this, we have the following 
linear programming problem: 

Maximize 50Ä! +25^2 +6OC1 +45C2+ 15C3 (8.1.2) 
subject to 
507? + 30C < 2000 

6R + 5C < 300 
3R+ 5C < 200 

Ri+R2=R 
Ci+C2 + C3=C 
Ri <20 
Ä 2 < 3 0 
Ci <20 
C 2 < 1 0 
C 3 < 1 0 
R,C,RuR2,CuC2,C3>0 

One problem that may have occurred to the reader is that if our interpretation of 
the variables i?i and R2 and of C\, C2, and C3 is to be valid, we should consider 
only those solutions to the above problem for which R2 = 0 whenever Ri < 20, 
C2 = C3 — 0 whenever C\ < 20, and C3 = 0 whenever C\ = 20 and C2 < 10. However, 
the objective function of (8.1.2) forces any optimal solution to have this property — 
the coefficient of jf?i in the objective function is greater than the coefficient of R2, 
and a similar relationship holds for the coefficients of C\,C2, and C3. 

We now proceed to solve the problem of (8.1.2). Although the simplex method 
could be applied to the problem as it stands, frequently problems such as this, with 
upper bounds on many of the variables, can be solved without the introduction of a 
full set of slack variables. We will solve this problem in such a manner. 

First, note that from the graph in Figure 8.1 of the solution set to the constraints 
of (8.1.1), it is obvious that the inequality 6R + 5C < 300 is satisfied by any point 
satisfying the other two constraints of (8.1.1), and so this inequality can be dropped 
from (8.1.2). Introducing slack variables X[ and X2 in the first and third inequalities 
of (8.1.2), we have 

5R + 3C + Xi = 200 (8.1.3) 
3R + 5C +X2 = 200 

Pivoting at the R term of the first equation and then at the C term of the second, 
(8.1.3) is equivalent to 
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R + f * " T6X2 = 25 
C ~ T6X1 + T6X2 = 25 

Using these two equations and eliminating the variables R and C from the constraints 
in (8.1.2), we see that the problem of (8.1.2) is equivalent to the problem of 

Maximizing 50Ri + 25R2 + 60Q + 45C2 + 15C3 =z (8.1.4) 
subject to 

Ri+R2 + &i - ±X2 = 25 
Ci + C2 + C3 - ^Xi + ^X 2 = 25 

0 < 7?i < 20 0 < d < 20 
0 < R2 < 30 0 < C2 < 10 
Xi > 0 0 < C3 < 10 

x2>o 
We know from our previous work that R\ = 20,R2 = 5,C\ = 20, C2 = 5, C$ = Xi = 
X2 — 0 is a solution to the constraints of (8.1.4) with z = 2550. Notice that the values 
of the variables R2 and C2 in this solution are strictly between their upper and lower 
bounds. Thus we use the two equations of (8.1.4) to eliminate R2 and C2 from the 
equation in (8.1.4) defining z. Subtracting 25 times the first equation plus 45 times 
the second, we have 

25Ri + 15Ci -30C 3 + |Xi - f X2 = -1750 + z (8.1.5) 

In (8.1.5), the coefficients of R\, C\, and X\ are positive and the coefficients of C3 

and X2 are negative. This suggests that the value of z can be increased by moving to 
another solution of the constraints in (8.1.4) for which either R\, C\, or X\ is larger 
or C3 or X2 is smaller. But in the R\ = 20, R2 = 5, C\ = 20, C2 = 5, C3 = Xi = X2 = 0 
solution, the values of R\ and Ci are at their maximum and the values of C3 and X2 

are at their minimum. Consider, however, X\. Letting R\ = 20, C\ = 20, C3 = X2 = 0, 
the equations of (8.1.4) become 

f ^ - 2 5 or ^ = 5 - f Z > (8.L6) 
^ X 1 = 2 5 c 2 = 5 + ^X! 

Since R2 > 0, the first equality implies that X\ < 16. Since C2 < 10, the second 
equality implies that X\ < y . Thus, under these conditions, the largest possible 
value for X\ is 16. Using (8.1.6) to solve for R2 and C2, the corresponding solution 
to the constraints of (8.1.4) is 

R\ = 20, R2 = 0,Ci = 20,C2 = 8,C3 = 0,Xi = 16,X2 = 0 

with z = 2560 at this point. Moreover, in this solution, only the values of the variables 
C2 and X\ are not equal to one of the limits of their bounds. Thus we eliminate 
these two variables from the expression for the objective function. Using the first 
constraining equation in (8.1.4) and equation (8.1.5), we have 

23/?i - 2 ^ 2 + l5Ci -30C3 -9X2 = -1800 + z (8.1.7) 
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From (8.1.7), we see that the maximum value of z will be attained when Ri and C\ 
assume their maximum values and Ri, C3, and X2 assume their minimum values. But 
this is precisely the situation in the above solution. 

Thus the maximum expected profit for the boat manufacturer is $2560 and is re-
alized by producing 20 rowboats and 28 canoes. Note that this approach has led us to 
a solution with an expected profit $10 greater than the expected profit corresponding 
to the solution that used only expected values for the demands. 

Problem Set 8.1 

1. In the example of this section, show that if the probabilities of there being 20 or 
50 rowboat buyers are changed to | and | , respectively, the maximum expected 
profit is attained at the R = C = 25 solution. 

2. Suppose that in this example the probabilities of potential boat buyers are given 
by the following table: 

Rowboat Canoe 
Buyers Probability Buyers Probability 

30 1 30 i 

(a) Compute the optimal production schedule using only expected values for 
the demands. 

(b) Compute the optimal production schedule using the approach of this sec-
tion. 

(c) Do the two above answers agree? 

Consider the situation of the dealer of home heating oil described in Example 
2.5.1 on page 39. Reformulate the problem using the approach of this section 
to incorporate the following information on the probability distributions for the 
demands of oil for the three time periods. 

Gallons of Oil That 
Can Be Sold Probability 

First 
Month 

4000 
6000 
8000 

Second 6000 
Month 8000 

Third 
Month 

8000 
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4. Consider the linear programming problem of 

Maximizing z = 3x2 — 5x3 — 2x4 + 8x5 

subject to 

X\ + X2 — X3 + 3X5 = 16 

2xi + 2x3 + X4. — X5 = 24 

0 < xi < 10, 0 < X2 < 10, 0 < X3 < 5, 0 < x4 < 5, 0 < x5 

(a) Show that xi = 10, X3 = 0, X5 — 0, X2 = 6, X4 = 4 is a feasible solution. 
(b) In this solution, only the variables X2 and X4 are strictly between their re-

spective bounds. Use the two equations to express the objective function 
in terms of the remaining variables x\, X3, and X5. Note that this resulting 
expression suggests that we try to increase the value of either x\ or X3, or 
decrease the value of X5. Thus we work with X3. Why? 

(c) For x\ = 10 and X5 = 0, show that the two equations and the bounds force 
X3 < 2, leading to the solution x\ = 10, X4 = 0, X5 = 0, X2 = 8, X3 = 2. 

(d) In this solution X2 and X3 are strictly between their respective bounds. Put 
the system of two equations into canonical form with these as basic vari-
ables and use these equations to express z in terms of x\, X4, and X5. 

(e) Note that the resulting expression for z suggests that x\ enter the basis. With 
X4 = X5 = 0, determine the lower bound value for x\ and the corresponding 
solution point. 

(f) At this solution point, what variables are strictly between their bounds? Ex-
pressing z in terms of the remaining variables, show that the optimal solu-
tion point has been attained and that the maximum value of z is 15. 

5. Using the solution technique outlined in this section (and in the above problem), 
solve the following linear programming problems. 

(a) Maximize 4xi + X2 + X3 

subject to 

3xi + X2 — X3 = 1 4 

2xi + 2x3 + X4 = 10 

0 < Xi,X2 < 4, 0 <X3,X4 < 6 
Start with the solution (4,2,0,2) . 

(b) Minimize x i + X 2 + 3x3—2x4 + 7x5 

subject to 

xi + 2x3 — X4 + 8x5 = 10 

X2 — X3 + 2X4 — 3X5 = 20 

0 <X\, 0 < X2,X3 < 8, 0 <X4,X5 < 12 
Start with the solution (6,4,8,12,0). 



306 CHAPTER 8. OTHER TOPICS IN LINEAR PROGRAMMING 

8.2 AN EXAMPLE WITH MULTIPLE GOALS 

Our general linear programming model allows for the optimization of a single lin-
ear function, the objective function of the problem. However, a decision maker, in 
attempting to determine the policy of operation for a complex system, may have a 
multitude of objectives to consider. These objectives may be conflicting (e.g., in-
creasing profits versus reducing pollution) and incommensurate (e.g., maintaining a 
stable workforce versus reducing losses during periods of market stagnation). One 
tool that has been useful in such situations is goal programming. In this approach the 
objectives of the project at hand are defined, and specific goals are established for 
each. Auxiliary variables are introduced to measure the deviation of each objective 
from its stated goal, and then a plan of operation is determined that minimizes in 
some sense these deviations. The function to be minimized could be a weighted sum 
of the deviations, for example, or, as in the method we demonstrate in this section, a 
set of objectives ordered by priority. (For further discussion see the texts of Ignizio 
[24] or Lee [25].) 

Example 8.2.1. Consider again the situation of the boat manufacturer described in 
Example 2.3.1 on page 21 and the example in the previous section. Using aluminum, 
machine time, and labor, the company produces rowboats and canoes. The data are 
as follows. 

Aluminum (lb) Machine Time (min) Labor (hr) Profit ($) 

Rowboat 50 6 3 50 
Canoe 30 5 5 60 

Suppose the company is having difficulty obtaining aluminum of sufficient quantity 
and quality for its overall operation, and because of this, management is considering 
reducing its commitment to the small boat division. In particular, suppose that for 
the next quarter only 1500 lb of usable aluminum are available to the division. In this 
situation, management questions whether the company can also reduce the machine 
time devoted to boat production to 215 min and the labor to 160 hr and still maintain a 
viable operation, which they define as meeting the needs of their long-term customers 
(this requires 10 rowboats and 20 canoes) and generating a profit of at least $2500. 
Thus the question: does the following set of inequalities have a feasible solution 
(where R and C are the number of rowboats and canoes to be produced)? 

50R + 30C < 1500 (8.2.1) 
6R + 5C < 215 
3R + 5C < 160 
R > 10 

C > 20 
5QR + 60C > 2500 
R7C>0 
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The answer to this question is "no"; (8.2.1) has no feasible solutions (as we will 
see shortly). Given this information, all management knows is that all the prescribed 
goals cannot be attained simultaneously. But some of the constraints are fixed (e.g., 
the supply of aluminum), some are probably somewhat flexible (e.g., the profit mar-
gin), and others may be of low priority (e.g., the labor restrictions). Management 
asks: is it possible that some adjustment of these goals could lead to an acceptable 
plan of operation? 

To respond to this question, management considers the restrictions and goals that 
have been set. The supply of aluminum is limited by external factors; the company 
has no control over it. However, all the other considerations are internal, and so 
management can establish an order of priority for them. Suppose it is decided that 
the goal of highest priority is the restriction of machine time to 215 min, because 
this machine is very heavily used in other operations. Management sets as its second 
goal meeting the needs of its traditional customers and, as its third goal, maintaining 
a profit margin of $2500. Since it may be possible to shift other workers to the boat 
division if necessary, the goal of lowest priority is the restriction of labor to 160 hr. 

Now, to measure deviations from the goals (and to allow flexibility in meeting a 
goal of lower priority in order to meet a goal of higher priority), we introduce for 
each goal a pair of nonnegative variables, one (u) to measure underachievement and 
one (v) to measure overachievement. For example, we can state the restriction on 
machine time as 

67? + 5 C + M I - V I =215 

The value u\ plays the role of the traditional slack variable, and vi allows and mea-
sures machine time above 215 min. Our first priority would be to reduce vi to zero, 
that is, to minimize vi. 

With these variables then, management's second question can be stated as the 
problem of 

Minimizing {VI;K2 + «3;«4;V5} (8.2.2) 
subject to 
50/? + 30C + u0 

6/? + 5C + u\ ■ 
R + u2 

C + «3 ■ 
50/? + 60C + M4 

3R + 5C + u5 

R,C,Ui,vi > 0 

= 
- vi = 
- V 2 = 

- V 3 = 

- V4 = 

- V5 = 

1500 
215 

10 
20 

2500 
160 

(aluminum) 
(machine time) 
(production requirements) 

(profit) 
(labor) 

The expression for the objective function defines and displays the priority levels. 
It is interpreted as follows: we first minimize vi; then, with our variables set to 
maintain this minimum, we minimize U2 + U3; and so on. (The goals of producing 
10 rowboats and 20 canoes have been placed at the same priority level.) 

Several solution techniques exist for working with an ordered set of objective 
functions such as this. In our example, we will simply consider the objective func-
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tions one by one. This approach has the advantage that at each step we have a stan-
dard linear programming problem, which can be solved using our already developed 
techniques. 

To begin the solution process, we must consider the function vi subject to the 
constraints of (8.2.2). However, only the first two constraints are relevant here; with-
out limits on the M, and v„ 2 < i < 5, the last four equations place no restrictions on 
the R and C (and the u\ and vi). Thus our first problem: 

Minimize vi 
subject to 
50/? + 30C + u0 = 1500 

6R + 5C + u\ - vi = 215 
R,C,UQ,UI,VI > 0 

This problem is trivial. The minimum of vi is 0 and is attained at many points (e.g., 
vi = R = C = 0, UQ = 1500, u\ = 215). Thus our first goal can be attained, and we 
set vi = 0. 

Next, consider the problem corresponding to the second level of priority. Letting 
vi = 0 in the relevant constraints of (8.2.2), we have the problem of 

Minimizing u2 + u^ (8.2.3) 
subject to 
50/? + 30C + wo = 1500 

6R + 5C + u\ = 215 
R + u2 - v2 = 10 

C + «3 — V3 = 20 
R,C,Uj,Vi > 0 

To solve this problem, we apply the simplex algorithm. The variables UQ, U\, U2, and 
M3 can serve as the initial basic variables for the constraints, and subtracting the last 
two equations from the expression for the objective function eliminates the u2 and 
«3 from this form (see Table 8.1). The minimum of u2 + UT, is 0, attained at R — 10, 
C = 20, and u2 = u^ — 0. The second goal is achieved, and to maintain it, we set u2 

and W3 equal to 0. 
The third level of priority is the restriction on the profit margin. From (8.2.2), 

omitting the last constraint and setting vi — u2 = w$ = 0 (alternatively, by building 
upon (8.2.3)), we have the problem of 
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Table 8.1 

"0 

U\ 

"2 

«3 

"0 

U\ 

«2 

c 

u0 

U\ 

R 

C 

R 

50 

6 

1 

0 

-1 

50 

6 

CO 
0 

-1 

0 

0 

1 

0 

0 

c 
30 

5 

0 

0) 
-1 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

"0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

U\ 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

«2 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

-50 

-6 

1 

0 

1 

V2 

0 

0 

-1 

0 

1 

0 

0 

-1 

0 

1 

50 

6 

-1 

0 

0 

«3 

0 

0 

0 

1 

0 

-30 

-5 

0 

1 

1 

-30 

-5 

0 

1 

1 

v3 

0 

0 

0 

1 

1 

30 

5 

0 

-1 

0 

30 

5 

0 

-1 

0 

1500 

215 

10 

20 

-30 

900 

115 

10 

20 

-10 

400 

55 

10 

20 

0 

Minimizing W4 (8.2.4) 
subject to 
507? + 30C + u0 = 1500 
67? + 5C + wi = 215 

7? - V2 = 10 
C - v3 = 20 

507? + 60C + u4 - v4 = 2500 
R,C,Ui,Vi > 0 

To determine a solution, we can make use of our previous work. The first four 
constraints of (8.2.4) are the constraints of (8.2.3), and therefore equivalent to the 
constraints of the last tableau of Table 8.1 (with «2 = «3 = 0 ) . Thus we add the 
last equation of (8.2.4) to this system, eliminate the variables 7? and C from the 
equation using multiples of the equations isolating R and C, and then extract the 
variable Uà, from the expression for the objective function. This equivalent problem 
is in canonical form with basic variables UQ, U\, R, C, and U4. One iteration of the 
simplex algorithm completes the problem (Table 8.2). The minimum of M4 is 140, 
attained at R = 10, C = 31. Thus, given the limits on the supply of aluminum and 
the restrictions established by meeting the first two goals, a profit margin of $2500 
cannot be attained; the maximum that can be earned is $2360. 

Moreover, from the last row of data in Table 8.2, 

«4 = 140 + 12wi + 22v2 + V4 
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Table 8.2 

«0 

U\ 

R 

C 

«4 

«0 

V3 

R 

C 

«4 

R 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

c 
0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

"0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

U\ 

0 

1 

0 

0 

0 

0 

- 6 
1 
5 

0 
1 
5 

-12 

12 

«2 

50 

6 

- 1 

0 

50 

- 5 0 

14 
6 
5 

- 1 
6 
5 

-22 

22 

v2 

30 

® 
0 

- 1 

60 

-60 

0 

1 

0 

0 

0 

0 

W3 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

V3 

0 

0 

0 

0 

- 1 

1 

0 

0 

0 

0 

- 1 

1 

400 

55 

10 

20 

800 

-800 

70 

11 

10 

31 

140 

-140 

and so the minimum of u^ can be achieved only with u\ = V2 = VA = 0. To come 
within $140 of the third goal, then, we must have 

R — 10, MO = 70, MI = 0 , U2= 0, uj, = 0, M4 = 140 
C = 31, vi = 0 , v2 = 0, v3 = l l , v4= 0 

Hence the last goal is also unattainable. Letting R — 10 and C — 31 in the last 
equation in (8.2.2) yields M5 = 0, V5 = 25. The boat division requires an additional 
25 hr of labor to meet its first two goals and maintain an (unacceptable) profit margin 
of $2360. 

Given this information, suppose management proposes some adjustments in the 
operation of the boat division. In particular, they estimate that they can shift up to 20 
hr more of labor into the division, but definitely no more (now making the restriction 
in labor to 180 hr their third priority); and they lower their profit margin expectation, 
now their last priority, to $2250. But before the determination of a feasible operation 
can be made, the Sales Department comes in with a discouraging report. The market 
for canoes is soft, and the profit return for the next quarter on any canoes sold after 
the first 24 must be reduced from $60 to $40. 

To formulate this modified problem in terms of goal programming, we first need 
to be able to measure the amount of canoe production over 24. The variable V3 of 
(8.2.2) already measures production over 20, and so, in keeping with the spirit of our 
notation, we introduce here Uß and vg and the constraint 

V3 + M6 - V6 = 4 

The goal programming problem then is to 
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Minimize {vi; 
subject to 
50R + 30C 
6R + 5C 
R 

C 
3R + 5C 

50R + 60C -
R,C,ut,Vi > 0 

U2 + W3 ; V5 ; «4 

+ «0 
+ u\ -
+ u2 -
+ W3 -

+ w5 -
V3 + U6 -

20vg + 114 — 

} 

= 
vi = 

v2 = 

V3 = 

V5 = 

V6 = 

V4 = 

1500 
215 

10 
20 

160 
4 

2250 

(8.2.5) 

As the reader is invited to show (Problem 1), the first three goals of (8.2.5) are attain-
able, and we can come within 20 of the last. The corresponding production schedule 
i s # = 1 5 , C = 25. 

Problem Set 8.2 

1. Show that the solution to the problem of (8.2.5) is as stated. 

2. Solve the following goal programming problems. 

(a) Minimize {vi ; ui ; u-$ ; V4 } 
subject to 
x + u\ — v\ = 6 

y + U2 — V2 = 8 
x - y + w3 - v3 = 1 
x + 2y + U4 — V4 — 20 
x,y,Ui,Vi > 0, 1 < i < 4 

(b) Minimize {vi ; vi ; M3 ; V4 } 
subject to 
x + 2y + u\ — v\ = 20 
x - y + u2 - V2 = 5 
x + y + W3 — V3 = 15 
X + «4 — V4 = 9 
x,y, Ui.Vi > 0, 1 < i < 4 



312 CHAPTER 8. OTHER TOPICS IN LINEAR PROGRAMMING 

Minimize {vi;v2;w3;w4} 
subject to 
x + 2y + u\ — v\ = 20 
x — y + U2 — V2 = 5 
x + y + W3 — V3 = 13 

y + u\ — V4 = 7 
x,y, ut,Vi > 0, 1 < i < 4 

Minimize {vi + V2',uy,vi, +AUA] 

subject to 
x + 2y + u\ — v\ = 20 
x — y + U2 — V2 = 5 

2x + J + U3 — V3 = 16 
X + «4 — V4 = 8 

x,)>, «/,v,- > 0, 1 < i < 4 

3. Formulate as a goal programming problem and then solve each of the following 
variations of Problem 7(a) of Section 2.2 (and Example 5.1.1). 

(a) The poultry producer establishes the following goals, listed in order of pri-
ority: 
(i) Meet the element B nutritional requirement (at least 60 units/day). 

(ii) Spend no more than $2.06 daily (with costs of 16 cents/lb and 14 
cents/lb for Feeds 1 and 2, respectively). 

(iii) Use at least 4 lb of Feed 1 daily. 
(iv) Meet the element A nutritional requirement (at least 124 units/day). 

(b) The producer sets two goals: 
(i) Spend no more than $2.06 daily. 

(ii) Meet the two nutritional requirements, but, if this is not possible, weigh 
the deviations so that the deviation from the element A requirement of 
124 units carries twice the penalty that the deviation from the element 
B requirement of 60 units carries. 

4. Formulate the following problem variations as goal programming problems. The 
goals for each are listed in order of priority. (Do not attempt to solve the prob-
lems.) 

(a) Problem 10 of Section 2.3, with a fixed constraint that the wood supply 
cannot exceed 1032 units and with these goals: 
(i) Use all the available labor (1750 hr). 

(ii) Purchase no more than 175 frames from the local mill. 
(iii) Maintain a profit margin of $9675. 

(b) Problem 15 of Section 2.3, with fixed constraints being the stated upper 
bounds on flowers available from the local wholesaler and the distant dealer, 
and with these goals: 
(i) Make at least 50 arrangements of each type. 
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(ii) Use all the flowers available from the local wholesaler. 
(iii) Maintain a profit margin of $350 (incorporating the following price 

change: the first 200 Type A arrangements sell for $2.75, but any over 
200 sell for $2.25). 

(iv) Purchase no carnations from the distant dealer. 
(c) Example 2.2.2 on page 14, with fixed data being the composition and cost 

of the two grass seed blends and the following goals: 
(i) Make 1000 lb of a combination seed that is at least 30% fescue. 

(ii) Do not exceed a budget of $675. 
(iii) Maintain the percentage of bluegrass in the combination at between 

25% and 28%. (Assume that deviation below 25% weighs the same as 
deviation above 28%.) 

5. (a) Another approach to problems with multiple goals is to consider minimizing 
the maximum deviation. For example, for the problem with goals 

2xi + X2 — X3 = 10 

X{ + X3 > 15 

X2 + 3X3 < 12 

xi ,x 2 ,x3 > 0 

we could 

Minimize the maximum of {u\, vi, «2> ^3} 

subject to 

2X1 + X2 — X3 + U\ — Vl = 10 

X\ + X3 + W2 — V2 = 15 

X2 + 3X3 + «3 — V3 = 12 

Xi,X2,X3,Mi,M2,M3,Vi,V2,V3 > 0 

Show that this problem is equivalent to the linear programming problem of 

Minimizing y 

subject to 

2xi + X2 — X3 + U] — V\ — 10 

Xi + X3 + «2 — V2 = 15 

X2 + 3X3 + «3 — V3 = 12 

y>u\,y>vuy>u2,y>V3 

Xl,X2,X3,Ml,M2,M3,Vl,V2,V3,y > 0 

(b) Solve using the simplex algorithm: 

Minimize the maximum of {u,v} 

subject to 

3xi + 2x2 + 4x3 + u = 9 

2x\ + X2 + 3x3 — v = 4 

Xl,X2,X3,W,V > 0 
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8.3 AN EXAMPLE USING DECOMPOSITION 

In theory, the simplex algorithm can be used to solve any linear programming prob-
lem. In practice, however, complications may arise. For example, the size of the 
problem to be solved could exceed the capacity of the computer system being used 
to implement the algorithm. There are various techniques, though, which can be used 
in working with large problems that may allow or at least facilitate their solution. 

One such technique is the decomposition principle. This approach is especially 
applicable if the primary problem has a special structure, such as a constraint set 
that can be divided into independent or partially independent subsystems, leading 
to subproblems that are easily solved. In practice, such a problem could occur in 
the management of a collection of divisions of a corporation. Each division inde-
pendently produces goods for profit utilizing its own labor and production facilities, 
along with the corporation's capital, raw materials, and marketing network. The sum 
of the division's profits is to be maximized, subject to the global constraints on cap-
ital, raw materials, and sales and the local constraints for each division on labor and 
production capacities (the subproblems). One benefit in applying the decomposition 
technique in this situation is the generation of important pricing factors for the global 
commodities. These prices allow the division managers to work quite independently 
of each other and of the corporate directors. The decomposition principle was first 
set out by G. Dantzig and P. Wolfe [26]. (See also Chapter 23 of Dantzig's book [7].) 

Example 8.3.1. Two plants are under the control of Company Z. Plant X, using raw 
materials M] and M2, labor, and a stamping machine, produces two products. Data 
for the manufacture and sale of a unit of each are as follows: 

Product Xi 
Product Xl 

M, 
(units) 

1 
3 

M2 

(units) 

1 
2 

Labor 
(hr) 

3 
5 

Machine Time 
(min) 

5 
1 

Profit 
($) 

2 
4 

The plant has available weekly 400 hr of labor and 300 min of machine time. 
Plant Y, using these same raw materials and its own labor, milling machine, and 

transportation network, also produces two products, with data as follows: 

Product y/] 
Product y/2 

Mi 
(units) 

4 
0 

M2 

(units) 

1 
1 

Labor 
(hr) 

1 
4 

Machine Time 
(min) 

1 
2 

Transportation 
(units) 

8 
3 

Profit 
($) 

3 
1 

Plant Y has available weekly 260 hr of labor, 140 min for milling, and 600 units of 
transportation. 

A total of 456 units of Mi and 260 units of M2 are at Company Z's disposal 
each week for distribution to the two plants. How should these supplies be divided, 
and what should the production schedule for each plant be, in order to maximize the 
company's total profits? 
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To formulate a mathematical model for this problem, let x, be the number of units 
of Xi produced by Plant X weekly and yt the number of units of (//,- produced by Plant 
Y, i = 1,2. Then the company's problem is to 

Maximize 2xi +4x2 + 3yi+y2 (8.3.1) 
subject to 
xi + 3x2 + 4)>i < 456 
xi + 2x2 + y\ + yi < 260 
3xi + 5x2 < 400 yx + 4 j 2 < 260 
5xi + x2 < 300 yi + 2y2 < 140 
x i , x 2 > 0 8yi + 3y2 < 600 

y\,yi >0 

Notice the special structure of the constraints. We have two global constraints in-
volving the x's and y's and two sets of independent constraints, one in the x's and the 
other in the y's. In the decomposition algorithm, we consider these two subproblems 
independently, then use the optimal points generated in the global problem. Consid-
eration of the global problem will generate prices for the raw materials, which we 
then use in reconsidering the local problems. Before we demonstrate the algorithm, 
we formulate a linear programming problem equivalent to (8.3.1), called the mas-
ter problem. Understanding the decomposition algorithm is much easier with this 
problem at hand. 

Suppose the manager of Plant X ignores, for the time being, the global restric-
tions on the raw materials. Then Manager X has the following optimization problem 
to solve: 

Maximize 2xi+4x2 (8.3.2) 
subject to 
3xi + 5x2 < 400 
5xi + x2< 300 
*1,X2 > 0 

The problem involves only two variables and can be solved geometrically. In Figure 
8.2, we see that the convex set Sx of feasible solutions has four vertices: XQ = (0,0), 
Xx* = (0,80), X2* = (50,50), andX4* = (60,0). Moreover, each point of Sx can be 
expressed as a convex combination of these vertices. In fact, we have 

Sx = < hXS + XiXt + A2X2* + A3X3* : 2 ^ A,- = 1, Â; > 0 

= J XiX{ + A2X2* + A3X3* : X ) A,- < 1, ̂  > 0 I 
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Figure 8.2 

This follows from the general theory of convex sets, although the reader should be 
able to verify the validity of this set equality in the plane using vector geometry. 
(Start with Problem 1 of Section 3.9.) 

Thus all feasible solutions to the constraints of (8.3.2) can be represented using 
Xj\ X|, and X3*. For future reference, we also note here the amounts of the two raw 
materials required by these three production schedules and the profit that each yields: 
XI uses 240 units of Mi and 160 units of M2 and delivers a profit of $320; X2*, 200 
units of Mi and 150 units of M2, with a profit of $300; and X3*, 60 units of M,, 60 
units of Mi, and a profit of $120. (If we define 

Mx 
1 3 
1 2 

and ex = [2,4] 

then, considering the X*'s as column vectors, these quantities are given simply by 
the matrix products MXX* and cxXf.) 

Similarly, the manager of Plant Y ignores the restrictions on the raw materials 
and considers the following optimization problem: 

Maximize 3yi + y2 (8.3.3) 
subject to 
y\ + 4y2 < 260 
y\ + 2y2 < 140 

8yi + 3y2 < 600 

yi,y2 > 0 

The set SY of feasible solutions to (8.3.3) has five vertices: YQ = (0,0), Fj* = 
(75,0), Y2* = (0,65), 73* = (60,40), and Y* = (20,60) (see Figure 8.3). Hence 
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Figure 8.3 

SY = I Hi Yl + P2Y2 + M3l? + M4J4 = X > ; < 1 > /f/ > 0 

Raw material requirements (in units) and profits (in dollars) are as follows: 

Y* Y* 

Units of Mi 300 0 240 80 
Units of M2 75 65 100 80 
Profit ($) 225 65 220 120 

(Again, if we define 

MY 

4 0 
1 1 

and CY = [3,1] 

and consider the y*'s as column vectors, these quantities are simply the products 
MYY* and cYYj.) 

Combining this information, we can reformulate the problem of (8.3.1) as fol-
lows: 

Maximize 320A! + 300A2 + 120A3 + 225/Xi + 65jU2 + 220^3 + 120^4 
subject to 
240Â1 + 200A2 + 150Ai + 300/ii + 240^3 + 8O/J4 < 456 

I6OÂ1 + 150A2 + 6OÀ3 + 75/ii + 65jU2 + 100^3 + 80jU4 < 260 

Xx+X2 + h< l , ^ - > 0 
jUl+j«2 + M3+jU4< 1,̂ 7 > 0 

(8.3.4) 
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This master problem can be stated in terms of the X*'s and Y*'s as 

3 4 

Maximize ^li(cxX*)+ Y^Vj{cyYj) (8.3.5) 
( = 1 ; = 1 

subject to 
3 4 

YsWMxXn + YtVÄMrY*) < [456,260]' 

3 

J]A,<1,A,>0 

4 

X>y<l,/*;>0 
;=i 

The roles of the X* 's and y*'s in the master problem are transparent in (8.3.5). We are 
seeking the convex combination of the X;*'s and the convex combination of the Yf's 
that maintains feasibility in the raw materials (the first two inequalities in (8.3.4) and 
(8.3.5)) and maximizes total profit. Given an optimal solution {X*,pL*A to (8.3.4), the 
company director would instruct Manager X to follow production scheme ]TX*X* 
and Manager Y the scheme Yl^jYJ-

The dual of (8.3.4) will also be of use. To define it, we introduce variables G\ and 
(72 to correspond to the two raw material constraints and Ox and oy to correspond to 
the upper bound constraints in the A's and ,u's. The dual then is to 

(8.3.6) Minimize 456ai + 260(72 + ax + aY 

subject to 

240(7i + 160c72 + 

200(71 + 150(72 + 

150(7i + 

300(7i + 
60(72 + 

75(72 
65(72 

240(7i + 100(72 

80(7i + 

<7l,<72,(7x 
80a2 

, ( 7 y > 0 

Ox 

ox 

ox 

> 320 

> 300 

> 120 

+ GY > 225 

+ oY 

+ oY 

+ oY 

> 65 

> 220 

> 120 

or, in terms of the X*'s and F*'s, 

Minimize 456(7i + 260o2 + ox + oY (8.3.7) 
subject to 
{MxX*)[ol,a2}

t + ax> cxX*, 1 < i < 3 
(Myy;)[<7,,a2}' + oY> CYY*, 1 < j < 4 
Ol,02,0X,0Y > 0 



8.3. AN EXAMPLE USING DECOMPOSITION 319 

While (8.3.4) is equivalent to (8.3.1), the reader may question whether or not we 
have constructed a problem that is easier to solve. Certainly (8.3.4) has fewer con-
straints, but it has more variables, and its construction involved the determination 
of the vertices to solution spaces of two subproblems. However, the decomposition 
algorithm, which is based on (8.3.4) and (8.3.6), does not require that all the X*'s 
and K*'s be determined initially. In fact, the algorithm proceeds by generating these 
vertices only as needed, as we now demonstrate. 

Decomposition Algorithm Applied to (8.3.1) 

STEP L0 (L for Local) 
Manager X ignores the global restrictions on raw materials and solves the problem 
of (8.3.2). He reports to the company director: 

• Maximum profit attained at X,* = (0,80) 
• Profit earned by Xf will be cxX*y = $320 
• Raw materials consumed = MXX{ = [240,160]' 

Similarly, Manager Y solves the problem of (8.3.3) and reports: 
• Maximum profit attained at Y* = (75,0) 
• Profit earned by Y{ will be cYYf = $225 
• Raw materials consumed = MyY* = [300,75]' 

(The reader should verify the optimality of these solution points.) 

STEPGi (G for Global) 
Director Z determines the optimal combination of these two policies, that is, the 
director considers the linear programming problem of 

Maximizing z.\ = 320Ai + 225^ (8.3.8) 
subject to 
240Ai + 300^! < 456 
I6OA1 + 75^i < 260 
0 < Ai < 1 

0 < Mi < 1 

and its dual of 

Minimizing vi = 456<7i + 260(72 + OX + OY (8.3.9) 
subject to 
240(7i + 160<72 + ox > 320 
300a! + 75 02 + oy > 225 
Ol,02,0X,0Y > 0 

The maximum of zi is 482 attained at Ai = 1, jUi = | | , with G\ = | , (72 = 0, ox = 
140, Oy = 0, an optimal solution point to the dual. Since 

MaxZl =Minvi = 456(f) +260(0) + 140 + 0 = 482 
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it follows that with this optimal solution, each unit of Mi has value $( | ) and each 
unit 0ÎM2 $0, that is, the <7\ and o~2 provide marginal prices for these resources. 

STEPLi 
The director sends this pricing information to the two managers. Manager X now 
reconsiders the operation of Plant X, subtracting from profits $( |) for every unit of 
Mi used and $0 for every unit of M2 used. His problem: 

Maximize 2xi + 4x2 - f(xi + 3x2) - (xi +2x2) (8.3.10) 
= i(5xi+7x2) 

subject to 
3xi + 5x2 < 400 
5xi + x2< 300 
xi,x2 > 0 

Notice that the only change here from the problem of (8.3.2) is in the objective 
function. Manager X solves (8.3.10) and reports: 

• Maximum profit attained at X2 = (50,50) 
• Profit earned by X2* will be cxX2* = $300 
• Raw materials consumed = MXX2 = [200,150]' 

Similarly, Manager Y reconsiders the operation of Plant Y, the problem of (8.3.3), 
but with objective function now 

3.yi+y2-!(4vi)-0(;yi+.y2) = y 2 

She reports: 
• Maximum profit attained at Y2 = (0,65) 
• Profit earned by Y2* will be cYY2* = $65 
• Raw materials consumed = MyY2 = [0,65]' 
(Observe that the profits reported for the X2 and Y2* are the profits earned on the 

market, without the deductions for the present marginal costs of the raw materials. 
Thus, for example, in (8.3.10), the optimal value of the objective function is actually 
150, (|)(200) +0(150) less than cxX2* = 300.) 

STEP G2 

Director Z adds these two new proposals to the set of active proposals and considers 
the problem of 

Maximizing 320At + 300A2 + 225^ + 65^i2 (8.3.11) 
subject to 
240À1 + 200A2 + 300/11 < 456 
I6OÂ1 + 150A2 + 75jUi + 65fi2 < 260 
Ai+A 2 < 1,A;>0 

and its dual, the problem of 
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Minimizing 456(7i + 260<72 + ox + oY (8.3.12) 
subject to 
240ai + 160cr2 + ox > 320 
200a! + 150O2 + ox > 300 
300ai + 7 5 C T 2 + oY > 225 

65(72 + Or > 65 
CTl,02,OX,Oy > 0 

The problem of (8.3.11) is the problem of (8.3.4) with A3 = ^3 = ^4 = 0, that is, the 
master problem without X3, 73*, and Y£. An optimal solution to (8.3.11) is 

Ai = 0, Hi = 75 

^2 = 1, M2 = 75 

and to (8.3.12), 

<Tl = £ , <* = 193± 

02 = 0, (7y = 65 

As before, the 0\ and 02 provide the marginal prices for the next iteration. 
Moreover, the values of Ox and Oy also provide useful information. In the op-

timal solution to (8.3.11), X\ = 1 > 0, and so, from complementary slackness, it 
follows that the slack in the second constraint of (8.3.12), when evaluated at the 
( G\, 02, Ox, Oy ) optimal solution point, is 0, that is, 

1931 = Ox = 300 - 200<7! - 150(72 

= 300-200(^ ) -150(0 ) 

= CXXÏ-(MXXÏ)[$.,0]' 

Thus Ox ~ 193 j is the value of Manager X's next objective function at X£. And 
from the first inequality in (8.3.12), we have 

193| = ox > 3 2 0 - 240(^) - 160(0) 

= cxXÏ-(MxXi)[&,0]' 

Hence, with these new marginal prices for the raw materials, Ox is the maximum that 
can be earned using the presently active policies from Plant X. Similarly, Oy = 65 is 
the maximum attainable from Plant Y using Y* and F2* with these new prices. 

STEPL2 

Director Z sends Manager X the revised prices of 185 and 0 for the raw materials 
and the present optimal value of 1931. The manager considers the problem of 

Maximizing 2xi + 4x2 — 75 (*i + 3x2 ) — 0(xi + 2x2) 
= j!

5(22x1+26x2) 
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subject to the constraints of (8.3.2). The maximum is 193 j , and so he reports back 
to the director that he has no new policies to add to the master list at this time. 

Manager Y is given the revised prices and the present optimal value of 65 for her 
plant and considers the problem of 

Maximizing 3yi+y2-jS(4yi)-0(yi+y2) 
= I3(3ji+15y2) 

subject to the constraints of (8.3.3). She determines that the maximum of this objec-
tive function is greater than 65 and is attained at F3* = (60,40). She reports: 

• Maximum profit attained at F3* = (60,40) 
• Profit earned by F3* will be cYY% = 220 
• Raw materials consumed = MyY^ = [240,100]' 

STEP G3 

Director Z considers the problem of 

Maximizing 320Ai + 300A2 + 225^1 + 65jU2 + 220ji3 (8.3.13) 
subject to 
240À1 + 200Â2 + 300^ii + 240^3 < 456 
I6OÂ1 + 150A2 + 75^1 + 65ju2 + 100^3 < 260 
Ai+A 2 < 1, A,- > 0 

Mi+M2 + M3< Upj>0 

and its dual, 
Minimizing 456<7i + 260o"2 + ox + &Y (8.3.14) 
subject to 
240CT! + 160a2 + ox > 320 
200dl + 150a2 + ox > 300 
300o"i + 75<72 + oY > 225 

65a2 + oy > 65 
240ai + 100CT2 + aY > 220 
oi,o2,ox,Oy > 0 

An optimal solution to (8.3.13) is 

0 

and to (8.3.14), 

h = \, Aii=M2 = < 

^2 = 5, M3 = 1 

CTi = i , ox =200 

02 = 0, Oy = 100 
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STEP L3 

Director Z relays to Manager X the prices of 5 and 0 and the optimal value for his 
plant of 200. The manager determines that the maximum of 

2xi + 4x2 — 3 (̂ 1 + 3x2) = 5 (3xi + 5x2) 

subject to the constraints of (8.3.2) does not exceed 200 and reports this information 
to the director. Similarly, Manager Y determines that the maximum of 

3 î +J2 — 2(4^1) =y\+yi 

subject to the constraints of (8.3.3) does not exceed 100 and reports this to the direc-
tor. 

STEP GF 

The director now concludes that the optimal operation of the company has been 
determined. The maximum profit ($528) is the optimal value of the latest version of 
the master problem, the problem of (8.3.13), and the A's and ju's in the solution of 
that problem provide the optimal operating schedules. Manager X is directed to the 
policy 

(3)** + (i)*2 =(30,62) 

and Manager Y to the policy 
Y; = (60,40) 

The fact that the original problem (8.3.4) has been completed follows from du-
ality. To see this, extend the optimal solution point of the latest master problem to a 
solution point of (8.3.4) by defining A, = 0 and /i ; = 0 for those Xf's and K*'s not 
included in the present master list (here, set A3 = ^4 = 0), and compare the value of 
the objective function of (8.3.4) at this point to the value of the objective function of 
(8.3.6) at the optimal solution point to (8.3.14), the point o"i = \, a2 = 0, ax = 200, 
Oy — 100. (They must both equal 528, the optimal value of the objective functions of 
(8.3.13) and (8.3.14).) That OÏ = I, CT2 = 0, ax = 200, aY = 100 provides a feasible 
solution to (8.3.6) follows from the results in Step L3. Manager X's final report to 
the director implies that 

200 = ox>cxX*-(MxX*)[±,0]>, l<i<3 

and Manager 7's final report implies that 

100 = oY > cYY* - {MYYj)[\,0]', 1 < j < 4 

Problem Set 8.3 
1. (a) In the example of this section, verify that the stated optimal solution points 

to the following problems are in fact optimal: 
(i) (8.3.8) and (8.3.9) of Step Gi. 
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(ii) The two local problems of Step L\. 
(iii) (8.3.11) and (8.3.12) of Step G2. 
(iv) The two local problems of Step Lj. 
(v) (8.3.13) and (8.3.14) of Step G3. 

(vi) The two local problems of Step L3. 
(b) Show that in Step L\, the optimal value of the objective function of (8.3.10) 

exceeds the value of Ox (140) in the optimal solution to (8.3.9); and simi-
larly, show that the optimal value of Manager F's objective function in Step 
L\ exceeds the previous öy value of 0. 

2. Suppose in the example of this section only 250 units of M2 are available weekly. 
Solve the problem with this change, using the decomposition algorithm. (Hint. 
The optimal solution points generated in the application of the algorithm in the 
original problem should work here through Step G2. In the dual problem for 
Step G3, the optimal solution has jU2 = 0, and the other four variables are posi-
tive. With this information, and complementary slackness, the optimal solution 
points for the Step G3 linear programming problems can be readily determined 
by solving systems of equations.) 

3. Solve the following using the decomposition algorithm. 

(a) Maximize 3x\ + 8x2 + 20yi + 7y2 

subject to 

x\ + 6x2 + 8yi + 4y2 < 22 

xi + 3x2 + 4j i + 3y2 < 14 

2 x i + 3 x 2 < 6 4 v i + j 2 < 4 

x i , x 2 > 0 y\,y2>0 

(b) Maximize 4x i+7x2 + 2 j i + 3 ^ 2 

subject to 

8x1 + 9x2 + 3y2 < 97 

x i + 2 x 2 < 10 3 y i + 2 y 2 < 1 8 

x , , x 2 > 0 5 y i + 4 y 2 < 3 2 

y\,y2 > 0 

(c) Maximize 5xi + 3x2 + 2x3 + 8yi + 7y2 

subject to 

3xi + x2 + 2x3 + 3yi + y2 < 40 

xi + X2 + X3 + 2yi + )>2 < 20 

3xi + 2x2 + x 3 < 18 4yi + 3y2 < 24 

x i , x 2 , x 3 > 0 y\,yi>0 
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(d) Maximize 3x\ +X2 + 2y\+ 5y2 
subject to 
2xi + J2 < 42 

x2 + vi + 2j2 < 48 
2 x i + x 2 < 3 6 y i + 2 ^ 2 < 4 0 
- x i + x 2 < 1 8 3y i+2y 2 <60 
x i , x 2 > 0 J i , j 2 > 0 

4. In spite of our efforts, the small boat division of Example 2.3.1 on page 21 
(which we revisited in Examples 5.1.2, 8.1.1, and 8.2.1) has been sold and is 
now a division of Water Sports Inc. The small boat group still makes rowboats 
and canoes using aluminum and their own pressing machine and labor (data as 
in Example 2.3.1), except that now WSI supplies the aluminum. WSI's other 
division makes two types of motorboats, with input and profit data for the man-
ufacture and sale of a boat of each type as follows: 

Turboboat 
Outboard 

Aluminum (lb) 

140 
60 

Trim (units) 

10 
4 

Labor (hr) 

12 
8 

Profit ($) 

200 
80 

For the next quarter, the motorboat division has available 240 units of trim and 
320 hr of labor; and WSI has 2 tons of aluminum to be shared by the two di-
visions. Determine, using the decomposition algorithm, the distribution of the 
supply of aluminum and the operating schedules of the two divisions that maxi-
mize WSI's total profit. 

8.4 AN EXAMPLE IN DATA ENVELOPMENT 

ANALYSIS 

The techniques of Data Envelopment Analysis (DEA) are used to measure the rel-
ative efficiency of a group of similar operating units with comparable inputs and 
outputs. DEA has been utilized to assess efficiency among hospitals, branch offices 
of a bank, schools, seaports, building supply outlets, dairy farms, and so on. The 
seminal paper by Charnes, Cooper and Rhodes [27] was published in 1978. Since 
then, the theory has evolved and the methods have been refined and expanded to en-
compass a variety of applications. We present here, via an elementary example, one 
approach to measuring efficiencies using DEA (and linear programming). 

Example 8.4.1. The state Board of Education has been requested to measure the ef-
ficiency of the four local community colleges. The schools, with input coming from 
faculty, staff, an operating budget, state support, and a physical plant, generate output 
involving full-time students, part-time students, associate degrees awarded, certifica-
tion program graduates, and so on. After some deliberation, the Board establishes 
two input categories and three output categories to compare the schools: 
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Input A — total staff size, in units of 10 
Input B — annual operating budget, in units of $20,000 

Output C — number of students enrolled per year, in units of 10 
Output D — number of associates degrees awarded per year, in units of 15 
Output E — number of certificates awarded per year, in units of 30 

(The unit measures chosen keep the data tractable. Since, for each input and output 
category, the unit of measurement is uniform throughout the four-college system, 
relative efficiencies are unaffected.) Using data from the last 8 years, the following 
input/output table of average annual values for the each category has been generated 
for the four colleges: 

Inputs 

Outputs 

A 
B 

C 
D 
E 

1 

30 
50 

150 
40 
25 

Colleges 
2 

20 
15 

100 
65 
20 

3 

55 
75 

600 
275 
30 

4 

45 
35 

225 
125 
10 

For example, from the table we see that College 3 is the largest, with an average 
annual staff of 550, an operating budget of $1.5 million, 6000 students, and 4125 
associate degrees and 900 certificates awarded. 

With these data at hand, to determine if a given college is inefficient compared 
to the others, we could attempt to find another college with less input and greater 
output, and if it exists, conclude that the given college is inefficient. But here, for 
each of the four schools, no simple comparison exists, as is easily seen. 

We refine our approach. For a given college, instead of restricting our search to a 
single more efficient college, we expand our set of competitors to include composite 
units consisting of weighted combinations of the other colleges. And it is linear 
programming that allows this search to be made effectively. We state the procedure 
for the general case. 

Suppose we have a system of n distinct operating units each with p inputs and q 
outputs. For unit k,k = 1,2,...,«, denote by [In k] the /^-dimensional column vector 
with components given by the p input quantities for unit k, and similarly by [Out k] 
the ^-dimensional column vector of output quantities. For example, in the above 
situation, for k = 4 <-► College 4, we would have 

[In 4] 45 
35 

and [Out 4] 
225 
125 
10 

Then, to measure the relative efficiency of a given unit, say unit k, we seek to deter-
mine if there exists n nonnegative numbers x\ :X2: • • ■ ^xn such that 

x\ [In l]+*2 [In 2]+ . . .+** [In &] + . . .+*„ [Inn] < [In A:] 
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and 

xi[Out l ]+x 2 [Out 2] + ...+X* [Out &] + . . .+x„ [Out n] > [Out*:] 

If such numbers exist, then the composite unit defined by the x's has input strictly 
less than unit k's input but output at least equal to if not greater than unit &'s output. 
We can conclude that unit k is inefficient. And to determine if such numbers exist 
for unit k, we solve the following linear programming problem: 

Minimize e subject to (8.4.1 ) 

xi[ln\}+x2[ln2} + ...+xk[lnk] + ...+xn[lnn} < e[lnk] 

x\ [Out l]+jc2[Out2]+ ...+**[Out&] + ...+*„[Outn] > [Outk] 

xi,x2,...,xn,e>0 

The problem has n +1 variables, an x for each of the operating units plus the vari-
able e, and p + q constraints, p constraints for the p input categories and q constraints 
for the q outputs categories. Note that the minimum value of e is at most 1, as setting 
e = Xji = 1 and the remaining x's to 0 is a feasible solution. If the minimum of e in 
fact proves to be 1, we can conclude that under this scheme unit k is efficient; and if 
the minimum is less than 1, then unit k is inefficient, with the value of e providing a 
measure of the inefficiency. 

To apply this scheme to the above four-college system, we need to consider four 
distinct but very similar linear programming problems, one for each college. The 
problems would have five variables and five constraints and would differ only in the 
constant-term column, with the numbers for that column determined by the data for 
the college being reviewed. We illustrate using College 4. 

Example 8.4.2 (Continuation of Example 8.4.1). To determine if College 4 is effi-
cient, consider the linear programming problem of 

Minimizing e subject to 

xx [In 1] + x2 [In 2] +x3 [In 3] +x4 [In 4] < e [In 4] 

xi [Out 1] + x2 [Out 2] + x3 [Out 3] + x4 [Out 4] > [Out 4] 

x\,x2,xi,X4,e > 0 

that is, the problem of 

Minimizing e subject to (8.4.2) 
30xi + 20x2 + 55x3 + 45x4 < 45e 
50xi + 15x2 + 75x3 + 35x4 < 35e 

150xi + 100x2 + 600x3 + 225x4 > 225 
40xi + 65x2 + 275x3 + 125x4 > 125 
25xi + 20x2 + 30x3 + 10x4 > 10 

Xi,X2,X3,X4,e > 0 
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The problem, small in size, can be solved using LP Assistant (use of the dual 
simplex algorithm is recommended), or Microsoft Excel and Solver. A major advan-
tage of Solver is that it allows a very easy transition from one problem to the next 
because of the similarities among the problems. 

The spreadsheet solution of (8.4.2) is in Figure 8.4, and the accompanying sen-
sitivity report appears in Figure 8.5. (Comment. To facilitate the later computation 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

A | B 
College 4 

Avg. Annual Values 
Input A 
Input B 

Output C 
Output D 
Output E 

Minimize Efficiency (e) 

Constraints 
Input A 
Input B 

Output C 
Output D 
Output E 

c 1 

1 
30 
50 
150 
40 
25 

1 
0.0000 

0.8851 | 

LHS 
32.9891 
30.9783 
225.0000 
125.0000 
28.3696 

D I E 

College 
2 3 
20 
15 
100 
65 
20 

2 
1.1413 

a 
> 

55 
75 

600 
275 
30 

Variables 
3 

0.1848 

RHS 
39.8292 
30.9783 
225.0000 
125.0000 
10.0000 

F 

4 
45 
35 
225 
125 
10 

4 
0.0000 

G 

Efficiency 
0.8851 

College 4 
Data 
45 
35 
225 
125 
10 

Figure 8.4 

Figure 8.5 
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of efficiencies for the other three colleges, we duplicate the data for College 4 at the 
lower right of the spreadsheet in Figure 8.4 and then base the constraints on these 
copied values.) We see that the operation of College 4 is inefficient, with an effi-
ciency rating of about 88.5% when compared to the composite college consisting of 
1.1413 times the input and output from College 2 plus 0.1814 times the input and 
output from College 3. For input B, the composite college uses only 88.5% of the 
35 units used by College 4 and even less for input A. Output values are the same for 
outputs C and D, but the composite college delivers almost three times the output of 
College 4 in category C. 

To provide information to College 4 on how to improve efficiency, we use the 
dual to the problem of (8.4.2), which has five variables corresponding to the two 
input and three output constraints. From the Shadow Price column of the sensitivity 
report (Figure 8.5), we note that the marginal values associated with outputs C and D 
are nonzero. Using these data, we see, for example, that if College 4 could increase 
output C from 225 to 250 (i.e., increase enrollment by 250 students), with no other 
changes made, the college's efficiency rating of 88.51% would increase to .8851 + 
25(.0019) = .9326 = 93.26%; if, instead, input D were decreased from 125 to 115 
(150 fewer associate degrees awarded), the efficiency rating would drop to .8851 — 
10(.0037) = .8481 = 84.81%. (Note that these changes of +25 and -10 are each 
within appropriate allowable ranges of validity for the associated marginal values.) 

Concerning inputs, from the spreadsheet solution of the problem, we see that 
there is positive slack in the input A constraint and no slack in the input B constraint. 
Thus decreasing input A would have no immediate effect on efficiency, but any de-
crease in input B would allow the value of e to increase, since the left side of the 
corresponding constraint would be unaffected as x\ = 0 (see Lemma 8.4.1). How-
ever, we cannot gauge the rate of increase with the dual variables. In (8.4.2), after 
the variable terms 45e and 35e are shifted to the main body of equations, the con-
stant terms of zero remain on the right; 45 and 35 do not serve as constant terms and 
therefore are not coefficients in the associated dual. The shadow prices from Solver 
of 0 and —0.0286 are not immediately applicable here. 

To complete the review of the community college operation, we proceed just as 
above for the other three community colleges. We find that Colleges 2 and 3 are 
efficient under this scheme. The spreadsheet for College 2 is in Figure 8.6; College 
3's is equivalent. However, College 1 is only 87.96% efficient when compared to 
the composite consisting of g of College 2 and yg of College 3. The corresponding 
spreadsheet and sensitivity report are in Figures 8.7 and 8.8. From these we see that 
College 1 should attempt to improve outputs in categories C (student enrollment) and 
especially E (certificates awarded) and decrease input in category A (staff size). 

In our model for each unit k, the competing composite unit constructed consisted 
of a sum of multiples of the units. The coefficients used were restricted only by 
nonnegativity. One variation in this procedure is to restrict the composite unit to be 
a weighted average of the units, that is, to add to the linear programming problem 
of (8.4.1) the constraint YH=ix> = 1- We do not address here which of the two 
methods is preferred (how does one measure?), but we do note that the methods 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

A | B 
College 2 

Avg. Annual Values 
Input A 
Input B 

Output C 
Output D 
Output E 

Minimize Efficiency (e) 

Constraints 
Input A 
Input B 

Output C 
Output D 
Output E 

c 1 

1 
30 
50 
150 
40 
25 

1 
0.0000 

1.0000 | 

LHS 
20.0000 
15.0000 
100.0000 
65.0000 
20.0000 

o E 

College 
2 3 

20 
15 
100 
65 
20 

2 
1.0000 

S 

a 

> 

55 
75 

600 
275 
30 

Variables 
3 

0.0000 

RHS 
20.0000 
15.0000 

100.0000 
65.0000 
20.0000 

F 

4 
45 
35 
225 
125 
10 

4 
0.0000 

G 

Efficiency 
1.0000 

College 2 
Data 
20 
15 

100 
65 
20 

Figure 8.6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

A | B 
College 1 

Avg. Annual Values 
Input A 
Input B 

Output C 
Output D 
Output E 

Minimize Efficiency (e) 

Constraints 
Input A 
Input B 

Output C 
Output D 
Output E 

c I 

1 
30 
50 
150 
40 
25 

1 
0.0000 

0.8796 | 

LHS 
26.3889 
21.6667 
150.0000 
91.1111 
25.0000 

D E 

College 
2 3 
20 
15 

100 
65 
20 

2 
1.1667 

> 

55 
75 

600 
275 
30 

Variables 
3 

0.0556 

RHS 
26.3889 
43.9815 
150.0000 
40.0000 
25.0000 

F 

4 
45 
35 

225 
125 
10 

4 
0.0000 

G 

Efficiency 
0.8796 

College 1 
Data 
30 
50 
150 
40 
25 

Figure 8.7 

are not equivalent. If the constraint Y11=ixi = 1 is added to (8.4.2) to determine 
the efficiency of College 4, and similarly for the other three colleges, we find that 
Colleges 2 and 3 remain efficient and College 4 remains inefficient, now with an 
efficiency rating of 91.84% (the relevant spreadsheet is in Figure 8.9). However, 
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Figure 8.8 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

A | B 
College 4 (sum = 1) 

Avg. Annual Values 
Input A 
Input B 

Output C 
Output D 
Output E 

Minimize Efficiency (e) 

Constraints 
Input A 
Input B 

Output C 
Output D 
Output E 

sum 

c I 

1 
30 
50 
150 
40 
25 

1 
0.0000 

0.9184 | 

LHS 
30.0000 
32.1429 
242.8571 
125.0000 
22.8571 
1.0000 

D E | 

College 
2 3 

20 
15 
100 
65 
20 

2 
0.7143 

< 

a 
a 
a 

55 
75 
600 
275 
30 

Variables 
3 

0.2857 

RHS 
41.3265 
32.1429 
225.0000 
125.0000 
10.0000 
1.0000 

F 

4 
45 
35 
225 
125 
10 

4 
0.0000 

G 

Efficiency 
0.9184 

College 4 
Data 
45 
35 
225 
125 
10 

Figure 8.9 

College 1 now joins the ranks of the efficient units, with an efficiency rating of 1. We 
ask the reader to verify this in Problem 2. 

Note that in our community college model we did not address the question of 
weighing or comparing the relative significance of the contributions from the differ-
ent output and input categories. For example, 1 unit of output C was treated the same 
way as 1 unit of output D when comparing outputs. As with many DEA procedures, 
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discussion of the relative merits of the different categories is precluded. This is es-
pecially helpful in applications where the bottom lines are not simply in monetary 
units, such as with nonprofit institutions. 

On the other hand, some methods do consider the use of relative weights in the 
determination of efficiency. One general approach is to allow each unit to use the 
most advantageous weights in determining that unit's efficiency. Thus if unit k's 
efficiency is being measured, a nonnegative weight for each input and each output 
category is computed (using linear programming) so that unit k's measure of effi-
ciency, defined as 

k' s total output value 
measure of efficiency = (8.4.3) 

k s total input value 

is maximized. Some restrictions apply on these weights: unit k's total input value 
must equal 1, and the measure of efficiency of each of the units, using unit k's 
weights, must be less than or equal to 1. Interestingly, this general procedure and 
the scheme defined in this section are related by duality. See Problem 7. 

We close the section with a proof of a result alluded to in the discussion for 
College 4 relating the effects that changes in input values have on the measure of 
efficiency. It was noted there that X4 = 0 in the solution of (8.4.2). Similarly, in the 
corresponding solution for the inefficient College 1 (Figure 8.7), we findxi — 0. This 
seems reasonable. A unit should not be used to help prove itself inefficient. 

Lemma 8.4.1. If the solution of (8.4.1) demonstrates that unit k is inefficient with 
Mine = eo < 1, then xk = 0. 

Proof. From the input and output constraints of (8.4.1) we have 

y ^ ,Xi[ln i] < e0[ln k] and ^ x,[Out i] > [Out k}. 

In particular, the first set of inequalities shows that x,t[In k] < eo[ln k], and thus xk < 
e0< 1. 

Assume now that xk > 0. Define x, = -pẑ - for i ^k,xk = 0, and e\ = e°I*k ■ Then 
e\ < eo as 

eo — xk 

e0<l=> ~xkeo > -xk =>• e0-xke0 >e0-xk=>e0> - = e\ 
\-xk 

We claim that setting x, = x, for 1 < i < n and e = e\ defines a feasible solution to 
(8.4.1). If so, then the minimum value of the objective function e is less than or equal 
to e\ < eo, a contradiction. To verify the claim, consider first the outputs. We have 

E x, [Out i] = ^ x,[Out ; 
all 1 l ' l-xk^¥k n 

xk 

1 
= T ^ — (y x< [°ut i] ) - 7 ^ [°ut *i 

1 - X * V-^alW n V \-Xk
 J 

> — — [Out k] - - ^ — [Out fc] = [Out it]. 
k k 
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Considering inputs, we have 

= -i—(y x.[Tn;])--^-[Infc] 
l-Xk V^alW n V \~Xk ' 

< 
1 e0[Ink]--^-[lnk] 

1 Xk l-xk l-xk 

ep-xk 

\-xk 

[Ink]. U 

Problem Set 8.4 

1. The efficiency rating for College 1 of the examples of this section is 87.96% from 
the spreadsheet in Figure 8.7. Using the data from the associated sensitivity 
report in Figure 8.8, for each part below (assume the parts are independent) 
determine the college's efficiency rating, when possible, if the described change 
in data is made. 

(a) Output C is increased from 150 to 180; 
(b) Output C is decreased from 150 to 120; 
(c) Output D is increased from 40 to 80; 
(d) 75 more certificates are awarded. 

2. Show that College 1 's efficiency becomes 1 if the competing composite college 
must be a weighted average of the colleges. 

3. (a) Write out the dual to the problem of (8.4.2), the problem used to determine 
the efficiency of College 4. The dual has five variables, two associated with 
the input constraints (use u\ and u-i) and three associated with the output 
constraints (use vi, V2, and V3). 

(b) From Solver's sensitivity report (Figure 8.5), the solution to the dual is u\ = 
0, u2 = .02857, vi = .00186, v2 = .00373, v3 = 0. Using these values: 
(i) Evaluate the dual objective function at this point. (You should get the 

college's efficiency rating.) 
(ii) Evaluate the constraint in the dual corresponding to the variable e. (You 

should find zero slack in the constraint at this point.) 

4. A system has three operational units, each utilizing one input and delivering two 
outputs, with data as follows: 

Input A 

1 

12 

Unit 
2 

16 

3 

9 

B 20 28 18 
°UtpUtS C 32 30 14 
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(a) Show that unit 1 is efficient. (The computations for this problem can be 
easily done using LP Assistant.) 

(b) Show that unit 2 is inefficient, with an efficiency rating of 93.75%. 
(c) Write out the linear programming problem used in part (b) and also its dual. 
(d) From your solution in part (b), determine the solution to the dual. 
(e) Verify that when evaluated at your solution in part (d), the dual objective 

function equals .9375, and that the dual constraint associated with the vari-
able x\ (the variable measuring unit 1 's contribution to the competing com-
posite unit) is an equality. 

(f) Determine the minimum amount by which unit 2's output B of 28 needs to 
increase, with no other changes made, so that unit 2 is efficient. 

5. Show that unit 2 of Problem 4 is efficient if the competing composite unit must 
be a weighted average of the units. 

6. Six of the city of Buffalo's eight branch libraries are under an efficiency review. 
With input categories involving number of holdings and staff size and output 
categories related to number of patrons, number of checkouts, and computer 
usage, the following data have been compiled: 

Inputs 

Outputs 

A 
B 

C 
D 
E 

1 

75 
60 

150 
80 
90 

2 

180 
120 

200 
155 
75 

Branch 
3 

210 
75 

185 
275 
40 

4 

120 
145 

225 
165 
100 

5 

45 
40 

95 
60 
25 

6 

160 
130 

225 
105 
50 

In fact, two of the branches are inefficient. Determine which two are inefficient, 
and with spreadsheets and sensitivity reports in hand, suggest how both branches 
can improve their efficiency. 

7. In the paragraph containing equation (8.4.3), an alternate procedure is described 
for defining relative efficiency based on the definition of efficiency in (8.4.3) and 
the use of weights assigned to the various input and output categories by the unit 
under review. 

(a) Using u\ and ui for the relative weights of inputs A and B, and V], V2, and 
V3 for the relative weights of outputs C, D, and E, show that the following 
linear programming problem corresponds to the problem of College 4 when 
using this procedure to determine its relative efficiency. 
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Maximize 225vi + 125v2 + 10v3 

subject to 
150vi + 40v2 + 25v3 < 30K i 
lOOvi + 65v2 + 20v3 < 20wi 
600v, + 275v2 + 30v3 < 55«i 
225v] + 125v2 + 10v3 < 45«! 

45«! + 35«2 = 1 
« l , K 2 , V l , V 2 , V 3 > 0 

+ 50«2 
+ 15«2 
+ 75«2 

+ 35w2 

(For general interest, note that if this procedure were used to determine the 
efficiency of each of the units, only the objective function and the terms in 
the one equality constraint would vary in the associated problems, similar 
to the commonality encountered in the procedure of (8.4.1).) 

(b) Show that the dual to the above problem is the problem of (8.4.2), the prob-
lem we used to determine College 4's efficiency rating. 

(c) The spreadsheet solution of the problem of part (a) appears in Figure 8.10, 
and the accompanying sensitivity report appears in Figure 8.11. Given this 
relationship, 
(i) find in the data in Figure 8.10 College 4's efficiency rating and marginal 

values (as listed in the sensitivity report in Figure 8.5), and 
(ii) find in the data of Figure 8.11 the solution point to (8.4.2). 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

A | B 
College 4 (sum = 1) 

Avg. Annual Values 
Input A 
Input B 

Output C 
Output D 
Output E 

Minimize Efficiency (e) 

Constraints 
Input A 
Input B 

Output C 
Output D 
Output E 

sum 

c | 

1 
30 
50 
150 
40 
25 

1 
0.0000 

0.9184 | 

LHS 
30.0000 
32.1429 
242.8571 
125.0000 
22.8571 
1.0000 

D E I 

College 
2 3 
20 
15 

100 
65 
20 

2 
0.7143 

< 

& 

55 
75 

600 
275 
30 

Variables 
3 

0.2857 

RHS 
41.3265 
32.1429 
225.0000 
125.0000 
10.0000 
1.0000 

F 

4 
45 
35 
225 
125 
10 

4 
0.0000 

G 

Efficiency 
0.9184 

College 4 
Data 
45 
35 
225 
125 
10 

Figure 8.10 
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Figure 8.11 



CHAPTER 9 

TWO-PERSON, 

ZERO-SUM GAMES 

9.1 INTRODUCTION TO GAME THEORY 

In this chapter and the next, some topics from the theory of games are discussed. 
In this section, the subject is introduced primarily by means of examples. The re-
mainder of the chapter is devoted to a special class of games: two-person, zero-sum 
games. For these games, a complete theory can be presented. Starting with the def-
inition of a two-person, zero-sum game, we will formulate some general principles 
on which to base our notion of a solution to the game. Then we will show, using 
the Duality Theorem of Chapter 4, that such games always have solutions, and we 
will develop techniques for finding these solutions. Thus, for these games, a math-
ematical model can be formulated precisely and analyzed completely. Although the 
applicability of this theory is limited due to the restrictive assumptions that we make, 
the theory does serve as the springboard for the study of the more general classes of 
games, some of which are introduced in the next chapter. 

By a game we mean roughly a situation of conflict between two or more people, 
in which each contestant, player, or participant has some, but not total, control over 
the outcome of the conflict. We assume that all players have complete knowledge 
of all actions, moves, or choices available to themselves and their opponents, and 
knowledge of the results of the conflict associated with any given selection of ac-
tions. Assuming that each player acts rationally to maximize his or her gain, our 
basic problem is to develop a theory that will help us to understand and predict hu-
man behavior or economic phenomena. As we will see, however, the translation of 
the statement "Each player acts rationally to maximize his or her gain" into mathe-
matical terms is not always straightforward, but can lead to various interpretations 
of, approaches to, and solutions of a game. This is in contrast to the situation in 
linear programming, in which the optimization problems lead to a well-defined and 
generally accepted theory. 

Parlor games such as poker, tic-tac-toe, and chess are of the type of game de-
scribed above. On the other hand, games such as roulette or craps are not, since 
one simply plays against certain odds. And even though some of our examples and 
problems are of the parlor game variety, the broader scope of the theory must be 
recognized and appreciated. Indeed, the book that established game theory as a 

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, Tnc. 
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mathematical theory of its own, with abundant potential applications, is the work of 
von Neumann and Morgenstern entitled Theory of Games and Economic Behavior, 
written in 1944 [28]. Since then, much work on the theory has been done by both 
mathematicians and social scientists, but its full range of applications is still being 
explored. 

We now give examples of some elementary games. 

Example 9.1.1. Two players each have two cards, a 1 (or ace) and a 2. Each player 
selects one of her cards, with her choice unknown to her opponent. They then com-
pare the two selected cards. If the sum of the face values of the two selected cards 
is even, Player 1, denoted by P\, wins that sum from Player 2, denoted by Pi. If the 
sum is odd, Pi wins that amount from Pi. 

This is an example of a two-person, zero-sum game: two-person, because there 
are exactly two participants, and zero-sum, because the sum of the payments made 
to the players at the end of the game (with a negative payment indicating a loss) is 
equal to zero. In a two-person game, zero-sum means simply that what one player 
wins, the other player loses. 

Each player has two possible courses of action or strategies, in this case, to play 
either a 1 or a 2. In general, by the term strategy we mean a rule of action or set of 
instructions that tells a player what to do under all possible circumstances. 

The information critical to this game can be recorded very easily using matrix 
notation. If we let s\ and si denote the two strategies for Pi, with si meaning that 
Pi plays card i and, similarly, let t\ and ti denote P2's two strategies, then all the 
possible outcomes for the game from Pi's point of view can be recorded by the 
following tableau: 

S2 

h t2 

2 ^3 
- 3 4 

In this tableau, the entry in the ith row and jth column represents the amount that 
Pi pays P] if Pi plays s, and Pi plays tj, with a negative sign indicating that Pi wins 
the associated amount from Pi. Note that since the game is zero sum, we need only 
record the outcomes for one player, and we fix that player to be Pi. The 2 x 2 matrix 

2 - 3 " 
- 3 4 

is called the payoff matrix of the above game. 

Example 9.1.2 (Extension of Example 9.1.1). Here the rules are just as in the game 
of Example 9.1.1, with the only difference being that P\ is given initially one addi-
tional card, a 3. Pi has now three strategies: to play either the 1, 2, or 3. Denoting 
these strategies by s\, si, and S3, respectively, the tableau associated with this game 
is the following: 
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Si 

S2 

•S3 

t\ 

2 
- 3 

4 

h 

- 3 
4 

- 5 

Example 9.1.3 (Extension of Example 9.1.1). The rules are as in Example 9.1.1, 
with each player receiving two cards — but after the players have selected their card 
and before the cards are compared, Pi declares "even" or "odd." Pi wins if and only 
if the sum of the face values of the selected cards is of the parity she has declared. 
Pi has now four strategies: to declare even and play the 1 or play the 2; or to declare 
odd and play the 1 or play the 2. Denote these strategies by (even; 1), (even; 2), (odd; 
1), and (odd; 2). P2 still has only the two strategies t\ and tj_. 

(even; 1) 
(even; 2) 
(odd; 1) 
(odd; 2) 

h 

2 
- 3 
- 2 

3 

h 

~3 
4 
3 

- 4 

Example 9.1.4 (Extension of Example 9.1.3). The rules are as in Example 9.1.3, 
except that now Pi must declare "even" or "odd" before P2 selects her card. Pi's set 
of strategies remain as in Example 9.1.3, but P2 has now the opportunity to react to 
Pi's declaration of parity. Since a strategy for P2 is a set of instructions telling P2 
what to do in all possible circumstances, here some possible strategies for P2 are to 
"play the 1 if Pi declares even and the 2 if Pi declares odd" or to "always play the 
1," etc. P2 has, in fact, a total of four strategies, and they can be denoted by the set of 
ordered pairs (i, j), 1 < i,j < 2, where strategy (i,j) is defined to mean to play card 
i if Pi declares even and card j if Pi declares odd. The payoff tableau is as follows: 

(even; 1) 
(even; 2) 
(odd; 1) 
(odd; 2) 

(1,1) 

2 
- 3 
- 2 

3 

(12) 

2 
- 3 

3 
- 4 

(2,1) 

- 3 
4 

- 2 
3 

(2,2) 

- 3 
4 
3 

- 4 

Example 9.1.5. Two players have two cards. Pi has a red 5 and a black 4; P2 has a 
red 7 and a black 8. Each player selects one of his cards, with his choice unknown to 
his opponent, and then the players compare the selected cards. If the selected cards 
are of the same color, Pi wins the difference in face values from P2; if the selected 
cards are of different colors, P2 wins the difference in face values from Pi. Denoting 
Pi's two strategies by R5 and B4, and P2's by R7 and B8, the game tableau is: 

R5 
B4 

R7 

2 
- 3 

B8 

- 3 
4 
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This payoff matrix is identical to the payoff matrix for the game of Example 9.1.1, 
and so the two games are essentially equivalent. Thus, to study both games, we 
simply need to consider the two-person game having two strategies for each player 
and payoff matrix 

r 2 - 3 " 
- 3 4 

Example 9.1.6. Pi has two cards, a 1 and a 2. Pi selects a card, and Pj attempts to 
guess the card selected. After hearing P2's guess, Pi can either "stop" or "double." If 
Pi elects to stop, he reveals his selected card. P\ wins from P2 the face value of this 
selected card if P2's guess was incorrect; and P2 wins 2 from Pi if P2's guess was cor-
rect. If Pi elects to double, then P2 must, before the selected card is revealed, either 
"accept" or "reject" the double. If P2 accepts the double, the winner is determined 
just as before, with the stakes doubled (Pi wins 2 or 4 on an incorrect guess; P2 wins 
4 with a correct guess). If P2 rejects the double, then Pi wins the face value of the 
selected card (as before) if P2's guess was incorrect, but now P2 wins only 1 if her 
guess of Pi's card was correct. 

If P] did not have the option of doubling the stakes, P2 would have a definite 
advantage — winning 2 with a correct guess but losing only 1 or 2 with an incorrect 
guess. However, Pi can increase the stakes, which seem especially propitious if P2 
has guessed incorrectly. To counter this, P2 can reject the increase. In fact, if Pi 
increases the stakes only when P2 has guessed incorrectly and P2 becomes aware 
of this strategy, she can always reject the increase and maintain her edge. Thus Pi 
should opt for doubling occasionally after a correct guess by P2 (a bluffing strategy), 
so that a constant rejection strategy by P2 could hurt her. (If P\ always doubles and 
P2 always rejects, P2's initial advantage has become Pi's — Pi winning 1 or 2 on an 
incorrect guess, P2 winning only 1 with a correct guess.) 

To construct the payoff matrix for this two-person, zero-sum game, we first need 
to describe the available strategies for the players. The game is played in a sequence 
of four moves: Pi selects a card; P2 states her guess; Pi opts to stop or double; and if 
Pi doubles, P2 accepts or rejects the increase. A strategy for a player must direct the 
player's action at each relevant point in this sequence, and must allow for reaction to 
information gained by the player up to each point. Thus a strategy for Pi must first 
prescribe his card selection and then, given his choice of card and the accuracy of 
P2's guess, the strategy must prescribe a betting action (either stopping or doubling). 
A strategy for P2 must include P2's guess and then, given her guess, the strategy must 
prescribe P2's reaction to the doubling of the stakes by Pi. 

Specifically, we can denote a strategy for Pi as an ordered triple of the form 
(n;Xc,Xi), where « G {1,2} directs Pi's card selection, Xc G {S,D} represents Pi's 
action (stop or double) to a correct guess by P2, andX, G {S,D} represents Pi's action 
to an incorrect guess by P2. There are eight such distinct strategies. P2's strategies 
can be represented by ordered pairs of the form (n;Y), where n G {1,2} represents 
P2's guess and Y equal to either A (accept) or R (reject) prescribes P2's reaction to a 
double by Pi. There are four distinct strategies for P2. 
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Actually, for this game, we can simplify our model. Note that if /Vs guess is 
incorrect, Pi has nothing to lose by increasing the stakes: he wins double if Pj accepts 
the increase and the same 1 or 2 if Pj rejects the increase. Thus Pi should always offer 
to double the stakes when P2's guess is incorrect, and so we can reduce Pi's viable 
strategy set to pairs of the form (n;Xc), where the second component Xc € {S,D} 
directs Pi's action to a correct guess by P2. The payoff tableau is as follows: 

(1;R) (1;A) (2;R) (2; A) 

(1;S) - 2 - 2 1 2 
(1;D) - 1 - 4 1 2 
(2;S) 2 4 - 2 - 2 
(2;D) 2 4 - 1 - 4 

These entries are easily computed. For example, if P\ uses strategy (1;5) and P2 
strategy (2;A), Pi selects the 1, P2 guesses 2, Pi automatically doubles, P2 accepts 
the increase, and Pi wins 2; if Pi uses (2;£)) and P2 uses (2;P), Pi selects the 2, 
P2 guesses 2, P\ doubles, P2 rejects the increase, and P2 wins 1. The reader should 
verify the accuracy of the other 14 entries. (See Problem 6 of Section 9.5 for a further 
analysis of this game.) 

Example 9.1.7. Two major automobile manufacturers compete for a fixed market 
of new-car buyers. The buyers in this group are attracted to a particular automobile 
for two reasons: the styling, features, and quality of the automobile and the intensity 
of the manufacturer's advertising campaign. Each of the manufacturers has fixed 
amounts of money, say M\ and M2 dollars, to divide between their Research and 
Development Division and their Product Promotion Division. Moreover, suppose 
the number of these new-car buyers attracted (or lost) to Manufacturer 1 because of 
product development is given the function f(x,y), where x and y are the amounts of 
money spent by Manufacturers 1 and 2, respectively, on research and development. 
Similarly, suppose the function g(x,y) measures the number of buyers attracted (or 
lost) to Manufacturer 1 because of advertising. Assuming that both manufacturers 
have the above information, how should they allocate their resources? 

This is an example of a two-person, infinite game. Each player, (i.e., each manu-
facturer) must decide how to divide her resources between the two critical divisions, 
and each player has essentially an infinite number of choices available. To determine 
the payoff for this game, suppose Manufacturer 1 allots x dollars to her Research 
and Development Division, 0<x<M\, and the remainder to her Product Promotion 
Division. Similarly, define y for Manufacturer 2, 0 < y < M2. Then the total number 
of car buyers attracted (or lost) to Manufacturer 1 is given by the function 

A(x,y) = f{x,y)+g{M1 -x,M2-y) 

Games of this type have been studied, and a complete theory can be developed as 
long as the payoff function A (x, y) is reasonably well behaved (e.g., when A is contin-
uous). However, we will say no more about them in this text. For more information, 
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see the books on game theory listed in the Bibliography, especially those by Dresher 
[29] and McKinsey [30]. 

Example 9.1.8. A town puts up for closed bidding its annual trash collection con-
tract. Three firms compete for the job by submitting sealed bids, with the job awarded 
to that firm submitting the lowest bid less than or equal to $50,000, since the town 
itself will manage the collection operation if all bids received exceed that figure. Be-
cause of the differences in costs of labor and efficiency of equipment, the actual cost 
of providing the service to the town varies from firm to firm, and these overhead costs 
are known to all the parties. Specifically, the cost to Firm 1 to provide the service 
would be $38,000, to Firm 2 $40,000, and to Firm 3 $44,000. Economic necessity 
demands that the bids submitted by each firm exceed their individual overhead costs. 
How should each of the firms bid? 

This is an example of a three-person game. Each of the firms must submit a bid 
determined by their overhead costs and the profit they wish to realize. The payoff 
(i.e., the profit actually realized by each of the firms as a result of the three bids) can 
then be easily determined. For example, if Firms 1, 2, and 3 bid $44,000, $43,000, 
and $48,000, respectively, Firm 2 would be awarded the contract and realize a profit 
of $3000, while the other two firms earn nothing. 

The distinguishing factor between two-person game theory and «-person theory 
(« > 3) is the existence of the potential for the players to form coalitions in «-person 
games. In fact, «-person games are usually described in terms of their characteristic 
function, a function that measures the strength of each of the possible coalitions of 
players. Suppose, for example, that it is possible for any subgroup of the three firms 
in this situation to agree beforehand on the bids to be set by the members of that 
subgroup. We can then define a function v that measures the maximum profit that the 
subgroup can guarantee itself if all members in the group cooperate. For example, if 
Firms 1 and 2 decide to form a coalition, Firm 1 can bid $44,000 and Firm 2 can bid 
anything greater. Since it is known that the bid of Firm 3 must exceed $44,000, Firm 
1 would be awarded the contract and realize a profit of $6000. Thus the coalition of 
Firms 1 and 2 is worth $6000, orv({l,2}) = $6000. The reader may verify that 

v({l}) = v({l,3}) = $2000 
v({l,2,3}) = $12,000 
v({2})=v({3}) = v({2,3}) = $0 

We have now seen examples of the major types of games. Examples 9.1.1-9.1.6 
are examples of finite, two-person, zero-sum games, the class of games that will be 
studied in this chapter. The games described in Section 1.3 are two-person, non-zero-
sum games, the class of games that will be considered in the next chapter. Example 
9.1.7 is an example of an infinite game, and Example 9.1.8 an example of an «-
person game. The theory of «-person games is still very much in the development 
stage; for more information refer again to the game theory books in the Bibliography, 
especially those by Luce and Raiffa [31] and by Owen [32]. 
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Problem Set 9.1 
1. Determine the payoff matrices for the following two-person, zero-sum games. 

(a) Pi has two cards, a red 1 and a black 7. Pi has three cards, a red 3, a red 8, 
and a black 9. Each selects a card, with his choice unknown to his opponent. 
The selected cards are then compared: if they are of the same color, Pi wins 
the sum in face values of the selected cards from Pi; otherwise, ft wins that 
amount from P]. 

(b) As in part (a), except that if the colors of the selected cards are not the same, 
?2 wins an amount x from Pi. 

(c) Pi selects a number n from A U B, where A = {1,2} and B = {3,4}, and Pi 
attempts to guess the selected number. If ft's guess is correct, ft wins 2« 
from Pi ; and if his guess is incorrect but in the same set A or B as n, the 
game is a draw. If P2's guess is not in the same set as n, Pi wins n from Pi. 

(d) Pi selects a number n from {1,2,3}, and Pi is given two guesses. (P2's 
guesses must be from {1,2,3} but need not be distinct.) After Pi makes her 
two guesses, Pi reveals his selected number n. If Pi did not guess n, Pi wins 
2« from Pi; if Pi did guess n, Pi wins from Pi an amount equal to P2's other 
guess. 

(e) Colonel Blotto. The Colonel has three divisions available to attempt to cap-
ture a town accessible by two different roads. The defender has four divi-
sions to divide between the two routes to defend the town. If the Colonel's 
forces outnumber the defender's along a route, the Colonel wins the num-
ber of enemy divisions on that road plus the town, equivalent to two enemy 
divisions. If the defender's forces outnumber the attacker's, the defender 
wins the attacker's divisions. If the numbers are equal, it is a draw. The 
total payoff is the sum of the results along the two routes. 

(f) Morra. Two players simultaneously show one or two fingers and shout out 
a number. If the number announced by a player is the same as the total 
number of fingers shown by both players, then she wins that amount from 
her opponent. If both players guess correctly, the game is a draw. 

2. For each of the following games, describe the strategies available to the players 
and state the size of the corresponding payoff matrix. 

(a) Pi and P2 each have three cards: a king, a queen, and a jack. They play 
their cards, one at a time, with the high card winning the trick (K > Q> J) 
and the playing of equal cards scoring a draw for that trick). The first and 
second tricks are each worth 1 point. The last cards are played only if there 
is a draw among the first two plays, and if so, the third trick is worth 2 
points. At the conclusion, the player with the greater number of points wins 
from the other player an amount equal to the difference in point totals. 

(b) Pi and P2 each ante $1 into the pot, and then Pi is dealt one card from a 
deck containing two red cards and one black card. Pi looks at her card, and 
then exercises the option of either "Increasing" the stakes or "Passing." If 
Pi opts to increase, each player must add another $3 to the pot; if Pi opts 
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to pass, nothing is added to the pot. Then P2 attempts to guess the color of 
Pi's card. If Pi's guess is correct, P2 wins the pot; if the guess is incorrect, 
P\ wins the pot. 

(c) P\ and P2 each ante an amount a into the pot. Then, from a single deck of 
four black cards and one red card, the players are each dealt a card, each 
seeing only his or her own card. P\ then can either "Pass" or "Raise." If Pi 
opts to pass, the players show their cards; Pi wins the pot if the red card has 
been dealt to either player, and P2 wins the pot if the red card has not been 
dealt out, that is, if both players have black cards. If Pi opts to raise, he adds 
an amount b to the pot, and now P2 can either "Fold" or "Call." If Pi folds, 
Pi wins the pot (and therefore the amount a from Pi), no matter what cards 
the players hold. If Pi calls, she too adds an amount b to the pot. Then, as 
before, the players show their cards, with Pi winning the pot if the red card 
has been dealt out and Pi winning if not. 

3. What would happen in the following situation? A stranger offers to possibly give 
either $120 or $150 to a group of three friends. If two members of the group can 
decide on how to divide the money between only themselves, the stranger will 
give $150 to these two. If all three can agree on a way of sharing the money, the 
stranger will give the three $120. If there is no agreement between any two or 
all three members of the group, the stranger keeps the money. 

4. A submarine has one attempt to intercept and destroy an enemy ship transporting 
strategic cargo while the ship passes through a small, unprotected area. The 
submarine is sailing directly at the enemy, and initially the two are 2000 yd apart. 
The submarine can fire a round of torpedoes at any time, but the probability of 
a hit increases as the ships come closer because of the increase in the accuracy 
of the weapon and the decrease in the available time for the enemy to evade the 
torpedoes. Suppose, in fact, that the probability of a hit is given by the function 
p(x) = (2000 — x)/2000,0 < x < 2000, where x is the distance in yards between 
the ships. However, the cargo ship has one antisubmarine missile at its disposal, 
and the ship's captain is aware of the approaching submarine. If the missile 
can be landed within 50 yd of the submarine, its effect would so disrupt the 
operation of the submarine that its torpedoes would not be able to be launched 
and safe passage through the unprotected waters would be guaranteed the cargo 
ship. However, the accuracy of this missile also increases as the target comes 
closer, with the probability of a hit given by the function 

[1 , y<5Q 

where y is again the distance in yards between the ships. 

Assume that the cargo ship's captain knows at all times the distance between 
the two ships and also whether or not the submarine has released its torpedoes. 
Similarly, assume that the submarine commander knows at all times whether or 
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not the missile has been fired from the ship, even if the missile does not land 
near the submarine. 

The captain and the commander must decide at what point to fire their weapons. 
The goal of the submarine commander is to prevent the passage of the cargo ship; 
the goal of the cargo ship's captain is to deliver the strategic cargo. Determine a 
payoff function, a function of the points at which the two weapons are fired, that 
measures the probability of the success of the submarine commander. 

9.2 SOME PRINCIPLES OF DECISION MAKING IN 

GAME THEORY 

All the problems discussed in this book fall into the general category of problems 
in decision making. By the term decision making we mean in general a situation in 
which, from a given set of possible courses of action, a specific course of action must 
be selected that is in some way preferred over the alternatives. The field of decision 
making is extremely broad, as is apparent from the not too restrictive definition given 
above. However, the field can be narrowed somewhat by partitioning according to 
whether a decision is made under conditions of certainty, risk, or uncertainty. 

A decision is made under conditions of certainty if all the available courses of 
action lead to specific, fixed outcomes. Linear programming is an example. For 
instance, in the standard diet problem, the cost and nutritional content of any given 
diet were known, and the decision problem was reduced to a problem of optimizing 
a linear function on a domain restricted by a system of linear constraints. The opti-
mization problems of freshman calculus are other examples of problems in decision 
making under conditions of certainty. 

A decision is made under conditions of risk if a given course of action can lead 
not to a unique outcome, but to a set of possible outcomes, each outcome in the set 
occurring with a specified probability known to the decision maker. For example, 
when playing roulette, one must decide on what color or number or combination 
of numbers to bet on. The possible outcomes for these actions, either winning an 
amount determined by the type and amount of the original bet or losing the original 
bet, occur with known, definite probabilities depending (presumably) only on the 
type of bet. 

A decision is made under conditions of uncertainty if a given course of action can 
lead to a set of possible outcomes but the probability of these outcomes occurring 
is unknown. In a general sense, game theory falls into this category, because the 
players in a game are ignorant of their opponents' moves. However, as we will see 
shortly, we strive to reduce this element of uncertainty in game theory by attempting 
to predict our opponents' courses of action, based on some reasonable principles. In 
fact, the phrase decision making under uncertainty is usually reserved for a definite 
theory that excludes game theory but includes a study of the experimentation and 
statistical analysis that can be used to reduce the element of uncertainty. 
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Our primary concern in the remainder of this chapter will be with two-person, 
zero-sum games, in which each player has only a finite number of possible courses 
of action (i.e., strategies). Let us agree to call these games matrix games since, as 
we have seen in the previous section, such a game can be represented by its payoff 
matrix. Recall that if {si,S2,---,sm} is Pi's strategy set and {fi,?2,- ■■ ,tn} is /Ys 
strategy set, the payoff matrix is that m x n matrix A = (aij) in which, for 1 <i<m 
and I <j <n, the entry a^ is the outcome of the game for Pi if Pi uses strategy s, and 
Pj uses strategy tj. In the examples we have seen so far, the numerical values of the 
ai/s translated immediately into dollars or some other monetary unit, and, in gen-
eral, in game theory we assume that the desirability of an outcome for a player can be 
measured by a real number. That this is always possible is not immediately obvious. 
Consider, for example, a game-type situation between two conglomerates where the 
outcome is either the successful elimination of the competition or an antitrust suit. 
However, the problem of translating the desirability of various alternatives into nu-
merical values has been studied, and the resulting theory is called utility theory. This 
topic is discussed in the next chapter, but for the time being, we will assume that the 
outcomes of all of our games can be expressed using numerical values. 

To illustrate the conditions of uncertainty present in these simple games, consider 
the game represented by the following payoff matrix: 

S\ 

ST. 

Si 

h 

0 
8 

- 5 

h 

2 
- 8 

5 

Here Pi has three strategies and Pi has two. Suppose now that we were in the position 
of Pi and about to play the game. What strategy should we choose to maximize our 
winnings? We have three courses of action, but clearly, the resulting outcome of 
these actions is uncertain, being contingent on the play of Pi. For example, playing 
strategy si will either win or lose for us 8 units, depending on whether P2 plays t\ or 
Î2- If we expect P2 to play t\, then S2 would be our obvious choice, but if we expect 
P2 to play ti, then playing S3 would realize our maximum gain. On the other hand, 
by playing s\, we are assured of not losing, and possibly of winning 2. But if we 
do play this strategy, P2 can simply play t\, with no one winning and our seemingly 
advantageous position nullified. But expecting P2 to play t\ suggests the response si, 
as mentioned above. 

We could go on and on with these circular arguments, leading us to no definite 
position. What we need are some reasonable and acceptable principles of play that, 
if followed, will enable us to predict our opponent's play and suggest our own play. 
Only with some such precise statement of the goals of the players can we hope to 
develop a mathematical model and, depending on the applicability of the principles, 
a theory that can assist in understanding and predicting human behavior. 

A very simple rule for play that we could consider is that each player choose a 
strategy that has as a possible outcome the most favorable outcome for the game for 
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that player. Thus P\ should choose strategy Si if the ith row of A contains the largest 
entry for A. For example, for the game with payoff matrix 

Sl 

S2 

h 

100 
6 

h 

- 5 0 
5 

P\ would play s\ if he is using this rule to guide his choice, because the largest entry 
of the payoff matrix, 100, is in the first row. Is this in any way a reasonable choice? 
Certainly for this game the answer must be "no!" Pi is going to play t2 and, by 
playing s\, P\ would lose 50 units, whereas by playing 52, Pi would win 5 units. 
Thus, this proposed rule of play is unacceptable. 

Another suggestion, somewhat similar to the first, is that each player choose that 
strategy for which the sum of the entries of the payoff matrix in the associated row 
or column is most favorable. However, in the above example, the sum of the entries 
in the first row of the payoff matrix is 50 and the sum in the second row is 11. Thus 
the use of this rule as a guide places Pi in the same untenable position as before, so 
this rule too must be rejected. 

The above suggested principles proved unacceptable because they represented a 
rather naive approach to the game. A player following one of these principles, while 
attempting to maximize his gain, would be completely ignoring the potential moves 
of his opponent, whose interests are strictly opposed to his own, as the game is zero-
sum — what one player wins, the other one loses. A more reasonable approach, 
especially for this type of game in which interests are in direct conflict, would be to 
use the strategy that can guarantee the largest gain regardless of what the opponent 
does. In other words, a player determines the least amount that he can gain from 
playing each of his strategies and then chooses that strategy corresponding to the 
maximum of these least amounts. 

For example, in the above 2 x 2 game, Pi could lose 50 by playing s\ but is 
certain of winning at least 5 by playing S2 Thus, using this principle as a guide, 
Pi should play S2, because this play guarantees the larger gain independent of P2's 
action. Similarly, P2 could lose as many as 100 units by playing t\, but no more than 
5 by playing ti, and so his choice would be ?2-

This principle represents a much more conservative approach to the game. By 
following it, each player is giving complete recognition to his opponent's capabili-
ties and then is acting to maximize his guaranteed gain, or better, his security level. 
The word gain indicates winnings, whereas we mean either maximized winnings 
or minimized losses, whichever the case may be. In a game with high stakes rep-
resenting some economic, military, or social situation, it seems realistic to expect 
the players to play conservatively, not take chances, and give full recognition to the 
capabilities of their opponent. Thus we establish this principle as a rule of action 
governing the play of the participants of a game, and we refer to it as Principle I of 
Game Theory. 

Principle I Each player acts to maximize his or her security level. 
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Example 9.2.1. Consider the game given by the tableau 

S\ 

S2 

■S3 

t\ 

- 1 
1 

- 1 

tl 

3 
2 

- 3 

h 

- 1 
0 
0 

u 
-2 

1 
2 

By playing si, P\ could lose up to 2 units; by playing S2, Pi would at least break 
even; and by playing S3, Pi could lose up to 3 units. Guided by Principle I, then, Pi 
would choose strategy S2- Similarly, P2 could lose up to 1, 3, or 2 units by playing 
t\, t2, and ?4, respectively, but by playing t$, she would at least break even. Thus P2 
is led to strategy ^. 

There is one obvious complication in using only this principle as a guide to the 
play of a game. Since we are assuming that both players are intelligent, the accep-
tance of this principle implies that each player can anticipate the opponent's move. 
Thus each player would certainly consider the possibility of improving his or her 
outcome for the game by changing strategies in anticipation of the expected move of 
the opponent. Consider, for example, the game of Example 9.2.1. Pi realizes that P2 
maximizes her security level by playing Î3, and he thus asks if playing S2 is the best 
response to strategy £3. In this case the answer is "yes," since he has nothing to gain 
by playing S3 and could lose 1 by playing si. Similarly, P2 would expect Pi to play 
52, but by considering all the entries in the second row of the payoff matrix, P2 would 
still choose strategy t$. However, this resulting stability with the strategy choices of 
S2 and tj need not always be present. 

Example 9.2.2. Consider the game given by the tableau 

Sl 

S2 

t\ 

-2 
1 

h 

4 
- 3 

Principle I leads Pi to choose si since, by playing s\, Pi could lose 2, but by playing 
S2, he could lose 3. Similarly, P2 is led to strategy t\, where her losses are at most 1. 
However, if Pj suspects that P2 will play t\, he should alter his strategy and play S2, 
since he would then win 1 instead of losing 2. But now we can go on. If P2 expects 
Pi to play S2, she should change her strategy from ?i to t2- And so forth. 

The above example shows that Principle I alone does not adequately reflect the 
behavior of rational players for all games. We must also seek in a prescription for 
playing a game strategies for the players that are stable or in equilibrium. A strategy 
pair (s,t) is in equilibrium if Pi, expecting P2 to play t, has nothing to gain by devi-
ating from playing s, and P2, expecting Pi to play s, has nothing to gain by deviating 
from playing t. In Example 9.2.1, the strategy pair (s2,h) is in equilibrium; in Ex-
ample 9.2.2, the pair {s\,t\) is not. Since any reasonable description of the play of 
rational players should include this element of potential reaction of a player to the 
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anticipated move of his opponent, we consider the need for stability in establishing 
Principle II of Game Theory. 

Principle II The players tend to use strategy pairs that are in equilibrium. 

In the next few sections, Principles I and II will be translated into precise mathe-
matical statements. Then, once we broaden our concept of strategy to include what 
will be called mixed strategies, we will show that for any matrix game there is a pair 
of strategies that satisfies these two principles, and the outcome of the game played 
with these strategies measures the value or worth of the game to the two players. 

Since we can find such a strategy pair, we say that matrix games are solved. But it 
must be emphasized that these games are completely determined and the play of the 
participants is accurately predicted only upon the acceptance of the two principles. 
Our model will provide a norm for human behavior and a measure of the value of a 
game only if the players use the two principles as a guide to play. In any mathemat-
ical model, the applicability of the theory is limited to those examples for which the 
underlying axioms of the theory are valid. 

Problem Set 9.2 

1. Find strategy pairs that satisfy Principles I and II for the games with the follow-
ing payoff matrices: 

3 1 2 
(a) 

(b) 

1 0 5 

7 1 5 9 
1 0 3 2 
6 3 6 4 

2. Consider the game with payoff matrix 

1 
- 1 

How would you play it? What do you think the term mixed strategy means? 
Does your suggested definition apply to possible strategies for the game 

3. We all have an intuitive idea of what it means to say that a game is fair. Would 
you accept the following definition for matrix games: A matrix game is fair if 
the sum of all the a,/s is zero? 

4. On a cloudy morning, a baseball fan must decide whether to travel 50 miles that 
day to see her favorite team play. Let us say that the fan feels that witnessing her 
team play is worth 20 units (of satisfaction?), but that traveling to the stadium 
only to have the game postponed on account of rain is worth —10 units. On the 
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other hand, by staying home and working on her book, she can accumulate up 
to 3 units. Is the fan making a decision under conditions of certainty, risk, or 
uncertainty? Is she playing a game with nature as the opponent? If so, should 
she accept our two principles as guides to her action? 

9.3 SADDLE POINTS 

In this section, we characterize games for which strategies of the form s; and tj can be 
found to satisfy the two principles set out in the previous section. (Strategies calling 
for the play of a single row or single column are called pure strategies, in contrast to 
a more general type of mixed strategy, which will be defined in Section 9.4.) 

Principle I states that the players seek to maximize their security levels. Guided 
by this principle, Player 1, as we have seen, should determine the minimum entry of 
each row of the payoff matrix and then consider playing that strategy corresponding 
to a row at which the maximum of these row minimums is attained. We define these 
terms precisely for a game with an m x n payoff matrix A = (a,;). 

Definition 9.3.1. The security level for the (pure) strategy s, is the minimum of the 
entries in the ith row of A, that is, 

Min a,-,-
\<j<n 

Suppose the maximum of these row minimums occurs in row h, and define u\ to 
be this maximum. Thus 

u\ = Max Min a,, = Min a/,, 
\<i<m\<j<n J \<j<n J 

Similarly, Player 2 should determine the maximum entry in each column and 
then consider using that strategy corresponding to a column at which the minimum 
of these column maximums is attained. 

Definition 9.3.2. The security level for the (pure) strategy tj is the maximum of the 
entries in the jth column of A, that is, 

Max an 
\<i<m 

Suppose the minimum of the column maximums is attained in column k, and 
define U2 to be this minimum. Thus 

W2 = Min Max a,; = Max <% 
\<j<nl<i<m \<i<m 

Example 9.3.1. In the following, the row minimums are written to the right of the 
payoff matrix, and the circled numbers are the maximum of these minimums. Sim-
ilarly, the column maximums are written below the matrix, and the smallest are cir-
cled. 
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(a) 

(b) 

"10 5 5 20 
10 15 10 17 
7 12 8 9 
5 13 9 10 

@) 15 @ 20 

" 1 3 ' 
4 2 © 

3 " 
25 
8 
5 

3 

® 
7 
5 

25 

U\ = 

U2 = 

2,h = 

3,k = 

--2 

= 2 

m = 10,h = 2 
U2 = 10, k = 1 or 3 

4 ( 3 ) 

The question we must next consider, given Principle II, is, "When is the strategy 
pair (sf,,tk) in equilibrium?" In Example 9.3.1(a), it can be seen that each of the 
pairs (s2,h) or (^2^3) is in equilibrium; if P2 expects Pi to play S2, her best response 
is either t\ or ?3, and if P\ anticipates P2 to play either t\ or t^, he can gain nothing 
by deviating from strategy S2- However, in Example 9.3.1(b), the pair ($2,̂ 2) is not 
in equilibrium, since P\ can benefit by deviating from S2, provided that P2 plays 
t2- Thus, only in Example 9.3.1(a) is it reasonable to say that we have a solution 
to the game. Notice that in the first game u\ = 10 = U2, but that in the second, 
u\ = 2 ^ 3 = «2-

In fact, equality of the u\ and «2 is the simple condition we seek for determining 
the existence of stability, as the corollary to the following theorem will imply. 

Theorem 9.3.1. u\ < «2-

Proof. By our definition of h and k, the maximum of the row minimums occurs in 
row h and the minimum of the column maximums occurs in column k. Suppose entry 
ahj is the minimum of row h and a^ is the maximum of column k. Since entry a^ is 
in row h and column k, we have ay < cihk and a^k < &ik- Thus 

u\ = ahj < ahk < cijic = «2 

Note that the possibility of j = k or / = h has not been excluded. 
A simple way to visualize this proof is to consider the payoff matrix 

«1 = ahj < O-hk 

IA 
Oik = «2 

D 

Corollary 9.3.1. Ifu\= «2, then ahj: 

of row h and a maximum of column k. 
■ ahk = fl«b and entry ahk is both a minimum 

Thus u\ = «2 implies that entry ahk is both a row minimum and a column max-
imum. It follows immediately that the strategy pair (sf,,tk) is in equilibrium, and 
so these strategies satisfy both of our principles. Thus, in this case, we say that the 
strategy pair (sh,tk) is a solution to the game and that the value of the game is this 
common value u\ = «2-
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We single out this property of the entry a^ by a special definition. It turns out that 
the existence of such an entry is not only a necessary but also a sufficient condition 
for equality of u\ and U2-

Definition 9.3.3. An entry a^k of a payoff matrix A is a saddle point if Mini <j<n ah] 
= cihj = Maxi <i<m üik> that is, if a^ is the minimum of row h and the maximum of 
column k. 

Theorem 9.3.2. u\ = UÏ if and only if the payoff matrix A has a saddle point. 

Proof. The above corollary proves that u\ = 112 implies the existence of a saddle 
point. Suppose now that A has a saddle point, say the entry a^k- Since a^ is a 
column maximum, all other entries in the Mi column must be less than or equal to 
a« . Thus the minimum values of all the rows other than row h must be less than 
or equal to a^, since the ftth entry in each row has this property. But since a « is 
also the minimum of row h, a^k equals the maximum of the row minimums; that is, 
o-hk = u\- Similarly, a^k = «2- Hence «i = W2. □ 

In summary, we have shown that the play of those matrix games for which u\=U2 
is completely determined by our two principles. Player 1 should play any row in 
which the maximum of the row minimums is attained, and Player 2 should play any 
column in which the minimum of the column maximums is attained. The value of 
such a game is u\ = 112, since this is the expected outcome. And a necessary and 
sufficient condition for u\ to equal «2 is that the payoff matrix A has a saddle point. 
In fact, if afik is a saddle point, Pi should play row h, P2 should play column k, and 
the value of the game is a^k = «i = U2-

Problem Set 9.3 
1. Do the following payoff matrices have saddle points? If they do, what is a 

solution and value of the corresponding game? 

9 7 8 10 
(a) 

(b) 

(c) 

(d) 

5 
10 

12 
5 

4 - 3 
5 - 2 
6 - 8 

2 6 1 2 
3 5 4 3 
1 0 2 4 

1 1 1 2 
1 2 0 0 
1 2 1 1 

- 4 9 
- 2 0 
- 2 - 3 
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2. For each of the following payoff matrices, determine the set of values of x for 
which the game has a saddle point, and for x in this set, determine the saddle 
point. 

(a) 

(b) 

1 
3 

" 1 
2 

X 

3 

" 2 
3 

" 2 
1 

" 3 
2 

2 
X 

3 " 
X 

1 " 
X 

1 " 
X 

3 " 
X 

1 " 
X 

(c) 

(d) 

(e) 

(f) 

3. Suppose a matrix has two saddle points. Prove that they have the same numerical 
value. (Hint. For a very short proof, use the result in the proof of Theorem 9.3.2.) 
Thus the value of any game with a saddle point is unique. 

4. Why is the word saddle used to describe a point of a matrix that is both a row 
minimum and a column maximum? 

5. Suppose entries a,; and a^k are saddle points of a matrix. What can you say 
about the entries a^ and a^p. 

6. Show that if the strategy pair (sf,,tk) is in equilibrium, the entry a^ of the payoff 
matrix is a saddle point. 

9.4 MIXED STRATEGIES 

As we have seen, games with saddle points are completely determined by the two 
principles set out in Section 9.2. For other games, however, we can use Principle I 
to lead us to suggested strategies for each player, but these strategies do not turn out 
to be in equilibrium. Thus, for these games, we are still faced with the problem of 
determining if strategies of some sort exist for the two players that satisfy Principles 
I and II and, if so, how to find them. 

Although the reader may think that we have placed ourselves in an impossible 
situation, because certainly no strategies that we know could be stable for, say, the 
game with payoff matrix 

1 - 1 
- 1 1 

the solution to our dilemma is both realistic and elementary and consists of simply 
broadening our concept of possible strategies. Consider, for example, the above 
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game. Even though each player has only two choices, it is intuitively clear that the 
players would choose either of their strategies with equal probability, and in a manner 
that would not give their opponent an opportunity to predict their move. Thus Player 
1, each time the game is played, would randomly select either s\ or S2, choosing 
s\ with probability j and S2 with probability j . This extension of the concept of 
strategy is called a mixed strategy. 

Definition 9.4.1. A mixed strategy for Pi is a vector X = (x\ ,X2, ■ ■ ■ ,xm) of nonneg-
ative real numbers satisfying the conditionx\ +X2 H \-xm= \, with the interpre-
tation that Pi plays strategy s, with probability x(, 1 < i <m. 

Similarly, a mixed strategy Y = (yi,y2,...,y„) f°r Pi is defined. The set of all 
mixed strategies for P\ will be denoted by S and those for P2 by T. A strategy 
calling for the play of only one row or column can be considered a special case in 
the set of mixed strategies. For example, the m-tuple ( 1,0,..., 0) is a mixed strategy 
corresponding to the pure strategy of P\ always playing si. 

The interpretation of a mixed strategy is important. For example, a mixed strategy 
of ( | , j ) for Pi does not mean that Pi should play s\ twice and then S2 once, but that 
at each play of the game Pi should play si with probability | and S2 with probability 
5. One way to implement this would be for Pi to roll a die at each play and use s\ if 
the 1, 2, 3, or 4 comes up and S2 if the 5 or 6 comes up. 

Since the notion of a mixed strategy does embody an idea that a player may 
realistically use in a game, we need a way of evaluating the outcome of games for 
which mixed strategies are employed. For this we use the concept of expected value 
from probability theory. The expected value of an event is defined simply to be the 
sum of the values of each possible outcome of the event times the probability that 
the outcome occurs. For example, if a fair die were to be rolled and you were to 
win an amount in dollars equal to the number rolled if that number were even, and 
otherwise you were to lose $3, the expected value to you would be $2(g) + $4(g) + 
$6(g) — $3(5) = $0.50. And for a game with payoff matrix A = (a*/), if Pi uses 
strategy X = (x\,X2, ■ ■ ■ ,xm) and P2 uses strategy Y = (yi ,3*2,...,y„), the outcome a,;-
will occur with probability x(-y;-, since this is the probability of both P\ playing s, and 
P2 playing tj. Thus the expected payoff for the game is the sum of all the products 
Xiüifyj that is, the sum 

' j 

It can be easily seen that this sum is simply the product XAY' by a direct computation 
of XAY'. (Note that since mixed strategies are expressed as row vectors, the transpose 
of the vector Y gives us the appropriate column vector for multiplication on the right 
of A.) 

Definition 9.4.2. The expected payoff for a game with payoff matrix A = (a,y), 
1 < / < m, 1 < j < n, in which Pi uses strategy X = (xi,X2,... ,xm) and P2 uses 
strategy Y = (yi,y2,...,y„), is 
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XAY' = E E VW 
\<i<m l<j<n 

Example 9.4.1. Consider the game with payoff matrix 

A - \ l 3 " A~ [ 4 0 

We have that u\ = 1, so Pi can secure 1 unit by always playing s\. Consider, however, 
the result for P\ of using the mixed strategy X = ( \, \ ). If P2 responds with t\, the 
expected payoff is 1 ( j ) + 4( | ) = § » ar>d if P2 responds with ?2> the expected payoff 
is j . In fact, if P2 uses strategy y = {y\,y2), the expected payoff is 

15'2) 

= \y\ + \n 
> \y\ + \n 
= \iy\+yi) 
_ 3 
~~ 2 

Thus, by using the strategy (5,5), Pi can secure an expected payoff of | because 
no matter what P2 plays, we have (5, ̂ )AY' > \. This is not to say that on any one 
play Pi would win no less than 5, but it means that by adhering to this particular 
mixed strategy, P| would win on the average at least | per game. Thus, by using this 
strategy, Pi's security level has increased from 1 to | . Can P] do better? What is the 
best that P\ can do? 

As suggested by this example, we must reconsider the application of the two 
basic principles in light of the fact that each player has at his or her disposal an 
infinite set of mixed strategies. Our development initially will follow the same steps 
as the development in Section 9.3, with the difference being that the sets of pure 
strategies are replaced with their generalization, the sets of mixed strategies. 

Definition 9.4.3. For a game with payoff matrix A, define the security level of a 
(mixed) strategy X\ for Pi to be 

MinXiAy' 
YeT 

and the security level of a (mixed) strategy Y\ for P2 to be 

MzxXAYl 
xes 

Thus the security level of a strategy Zi for Pi is the worst possible expected 
payoff if Pi uses X\, allowing that P2 has available the full set of mixed strategies 
T. According to Principle I, Pi should now seek a strategy that has the maximum 

1 3 
4 0 

y\ 
yi — V 2 ' 2 / 

y\ 
yi 
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security level, that is, the maximum of these guaranteed minimal gains. But before 
we consider these terms, we simplify the definition of the security level of a strategy. 

First, we need some notation. For a matrix A, let A^ denote the rth row of A and 
A^fi the jth column (as in Section 5.2). With this notation, for a game with payoff 
matrix A, the expected payoff XAY' can be expressed in two ways, as 

XAY' = (XA)Y' = Y^ (XAÜ))yj 
l<j<n 

= X(AY')= X>(A(|.)r') 
l<Km 

where X = (x\ ,X2,... ,xm) and Y = (ji,yj, ■.. ,yn)- Note that the term XA^ is sim-
ply the expected payoff if P\ uses strategy X and Pi uses the pure strategy tj, and 
similarly, the term A^Y' is the expected payoff if Pi uses the pure strategy s, and Pi 
the strategy Y. 

Theorem 9.4.1. For a fixed strategy X\ for P\, 

MinXiAy' = Min XiA(J) 

Y<ET l<j<n 

Similarly, for a fixed strategy Y\ for Pi, 

MaxXAY(= MaxAmK/ 

XeS \<i<m y> 

Proof Take a fixed strategy X\ for P\, Then, for each j , X\A^ is a real number. Let 

w = Min XiAU) 

Then, for any Y £T, 

XXAY! = J2 (XiAU))yj 

\<j<n 

= w ■ 1 =w 

But clearly, the outcomes X\A^ are contained in the set {X\AY' : Y e T}, since they 
correspond to the outcomes when ft uses her pure strategies. Thus 

MinZiAF' = Min XXAU) 

YeT \<j<n 

Similarly, 
MaxXAY! = Max A(i)Y! 
XeS \<i<m w 

for a fixed Y{eT. D 
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Thus, if P\ wishes to determine his security level for a strategy X\, he need not 
consider the set of all possible outcomes X\AY' for Y e T, but only those outcomes 
corresponding to the use of pure strategies by P2. Similarly, the security level for a 
strategy Y\ for P2 is the worst (for P2, and therefore the maximum) outcome of the 
game with P2 using Y\ and Pi restricted to using only pure strategies. 

Here we make two other observations. First, in our definitions of security level 
for a strategy X for P\ and a strategy Y for P2, we used the words minimum and 
maximum to be taken over the infinite sets T and S, respectively. Since these sets 
are infinite, to be precise we should have used the terms greatest lower bound and 
least upper bound and questioned the boundedness of the set of possible values of 
the XAY'. However, from Theorem 9.4.1 it follows that the use of minimum and 
maximum is completely justified. Determining the greatest lower bound and the 
least upper bound over the infinite sets is equivalent to determining a minimum and 
a maximum over finite sets. 

Second, in the previous section, when we defined the security level of a pure 
strategy, the response of the other player was limited to the use of pure strategies. In 
the above, more general definition of security level, we allow the use of the full set 
of mixed strategies. Theorem 9.4.1 shows that these two definitions agree on their 
common domain. 

Principle I suggests that the players seek strategies that deliver their optimal se-
curity levels. Thus we define: 

Definition 9.4.4. For a game with payoff matrix A, define P\\ and /Vs optimal 
security levels, denoted by vi and V2, respectively, by 

vi = Max{ security level of X } 

= MaxMinXAF' 
xeS YeT 

= Max Min XA^ 
xes \<j<n 

and 

V2 — Min{ security level of Y } 

= MinMaxXAF' 
YeT xes 

= Min Max A(i]Y' 
YeT \<i<m K ' 

Note that these terms are simply a generalization of the terms in the previous 
section, with the v\ and V2 comparing with the u\ and «2, and any mixed strategy 
XQ with security level vi corresponding to the s>„ and any mixed strategy Yo with 
security level V2 corresponding to the fy. However, as we will see in the next section, 
we will be able to develop, using mixed strategies, a complete theory for all games 
based on Principles I and II. (We will also show in the next section that the use of the 
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words minimum and maximum over the infinite sets T and S, respectively, is justified 
here also.) 

We conclude this section by calculating vi and V2 for the game of Example 9.4.1. 

Example 9.4.2 (Continuation of Example 9.4.1). Consider the game of Example 
9.4.1 with payoff matrix 

" 1 3 " 
. 4 0 

We have 

vi = Max Min XAW 

X=(xux2)eSl<j<2 

= Max Min{xi +4x2,3x\} 
{xux2)es 

Now, for any (x\,X2) G S, x\ +X2 = 1 and 0 < x\,X2 < 1. Hence S = {(x\ ,xj) '■ 
0 < x\ < 1 and X2 = 1 — x\}. Therefore 

Max Min{xi+4JC2,3XI} = Max Min{xi +4(1 —x\),3xi} 
(xi,x2)<ES 0<Ar !< l 

= Max Min{4-3xi,3x!} 
0<X] < 1 

Consider the graph in Figure 9.1. The heavy line segments represent Min{4 — 
3JC] , 3JCI }. The maximum of this function occurs at the point x\ = \ where the two 
lines intersect, and the value of the function at this point is 2. Thus vi = 2, and a 
strategy for P\ with security level vi = 2 is the mixed strategy ( | , j ) . Note that for 
any Y = (yuy2)eT, 

(li)AY' 2y\+2y2 = 2{y\+y2) = 2 

Figure 9.1 
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4 

3i 

1 

^ ^ 3 - 2 y, 

v2= 2 ^ ^ ^ ^ ^ ^ ^ 

/ ^ 

0 

Hy-^^r 

-

' (1,4) 

(1,1) 

Figure 9.2 

Similarly, 

V2 = Min Max A (A F* 
Y={yiJl)£T\<i<2 U 

= Min Max{yi +3 j 2 ,4 j i} 

= Min Max{vi+3( l -v i ) ,4 j !} 
0<yi<l 

= Min Max{3-2ji ,4yi} 
0<yi<l 

From the graph in Figure 9.2, we see that v% also equals 2. A strategy for Pi with 
security level V2 = 2 is the mixed strategy (y\}yi) with yi = | , that is, the strategy 
V.2' 2 > 

Problem Set 9.4 

1. For the matrix game A, 
1 2 3 4 
6 5 2 1 
7 0 1 8 

(a) Compute Pi ' s security level for Xi = (5,3,5) and for X2 = ( 5. 5,0). What 
can you now conclude about vi ? 

(b) Compute P2's security level for Y\ = ( | ,0 , | ,0) and for Y2 = (0, | , \, \). 
What can you now conclude about V2? 

2. For the matrix game A, 

-1 
4 
0 

(a) Compute Pi's security level for X\ = (1,4,0) and X2 = ( f,3,0)andX2 = ( 3 , | , 3 ) 
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(b) Compute P2 's security level for Y\ = { \, \, \, \ ) and Y2 = (0, \, 0, \ ) 
(c) What can you now conclude about vi and v2l 

3. For the game of Example 9.4.1, define XQ = (§, | ) and Fo = (3, j)- Show that 
the strategy pair (XQ,YO) is in equilibrium, that is, if P\ expects P2 to play YQ, 

he has no reason to deviate from XQ, and if P2 expects Pi to play XQ, she has no 
reason to deviate from YQ. 

4. Using the graphical technique introduced in the game of Example 9.4.2, deter-
mine vi, v2 and strategies that have these values as their security levels for the 
matrix game 

I" - 1 4 " 
3 - 6 

Is vi = v27 Which player, if either, has the advantage? 

5. Use the graphical approach of Example 9.4.2 to determine vi, v2, and strategies 
that have these values as their security levels for the matrix game 

" 1 6 " 
3 4 

Note that this game has a saddle point. Compare your answers to the above with 
the solution to the game as defined in Section 9.3. 

6. Prove that for any game u\ < v\ and v2 < u2. 

7. Suppose A = (aij) is an m x n game matrix such that the sum of the entries in 
each column is positive, that is, 

m 

2_]o-ij > 0 for each j , 1 < j <n. 
i=\ 

Show that vi > 0. 

8. Suppose A is a game matrix such that the sum of the entries in each row is zero. 
What can you say about v2l 

9. Suppose A = {aij) is a 3 x 4 game matrix such that 

6a\j + 3a2j + a^j > 2 for each j , 1 < j < 4 

Show that vi > 5. 

9.5 THE FUNDAMENTAL THEOREM 

In this section we prove the Fundamental Theorem of two-person, zero-sum game 
theory. The theorem states that there exists a (mixed) strategy XQ for Pi with security 
level the optimal value vi, a strategy >o for P2 with security level v2, and that these 
optimal security levels are equal, that is, vi = v2. Then, with the equality of vi and 
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\>2, we will be able to show that the strategy pair (XQ, YQ) is in equilibrium, and so we 
will have proved that for any two-person, zero-sum game, there exist strategies for 
the players satisfying our two principles. 

The proof of the Fundamental Theorem that we give is based on the Duality 
Theorem of linear programming and is due to G. Dantzig [33]. One advantage of 
this proof is that it is constructive; that is, the proof provides a practical technique 
for actually computing solution strategies XQ and YQ and the value vi = V2 for any 
game. The theorem was first proved by J. von Neumann [34] in 1928 using the 
fixed-point theorem of Brouwer. Since then, many other proofs, both topological 
and algebraic, have been developed. 

Theorem 9.5.1 (The Fundamental Theorem of Game Theory). For any matrix game 
A, there exist strategies Xofor P\ and Yofor Pi such that 

vi = Max Min XAU) = Min X0A
{j) 

XeS l<j<n \<j<n 

and 
V2 = Min Max A(i)Y' = Max A<i\Yk 

YeT \<i<m W \<i<m [> U 

and, moreover, v\ = vj. 

Proof. Suppose the game has payoff matrix A = (0,7), 1 < i < m, 1 < j < n. To 
apply linear programming techniques to the problem of determining vi, V2, and the 
strategies XQ and Yo, we need to assume that v\ and V2 are positive. This will certainly 
be the case if all the entries a;; are positive. Thus we divide our proof into two cases, 
considering first the case in which all a,7 > 0 and then the general case. The heart 
of the proof is contained in the first case since, as we will see, in the second case a 
minor modification of an arbitrary matrix A will allow us to apply the results from 
the first part. 

CASE 1. All a,-_,- > 0. 
Consider the game from Pi's point of view. P\ 's optimal security level is 

V! = Max Min XA{i) 

xes \<j<n 

To determine vi, for any strategy X G S the minimum of the XA^ must first be 
determined, that is, the minimum of the n quantities 

011*1 + <221*2 + ••■ + am\Xm 

a\2X\ + «22*2 + • • ■ + am2Xm 

Q\nX\ -\- a2n%2 ~t~ • • • ~r O-mn^m 

Notice that the minimum of these n quantities is less than or equal to each of the n 
quantities, and is in fact equal to at least one of them, the smallest one. Thus the 
minimum is the largest real number w satisfying the n inequalities 
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a\\x\ + 021*2 + ... + am\xm > w (9.5.1) 
a\2X\ + 022*2 + • • • + am2Xm > W 

a\nx\ + a2„x2 + ... + amnxm > w 

Hence, for each X € S, the maximum w satisfying (9.5.1) must first be determined. 
Next, consider vi, which is the maximum over all the X g S of these w's. Since 

S— {(x\,X2,...,xm) :x\ +x2-\ Vxm = l,x; > 0,1 < i <m\ 

it follows that vi is equal to the maximum w satisfying 

anxi + 021*2 + ... + am\xm > w (9.5.2) 

a\nx\ + a2nx2 + ... + amnxm > w 
x\ + x2 + ... + xm = 1 

xi > 0, 1 < i < m 

Moreover, a point X = (xi ,x2,... ,xm) at which this maximum is attained would be a 
strategy for P\ with a security level equal to this optimal value vi. 

Because we have assumed in this case that all a,; > 0, we know that vi must 
be positive, and so we can restrict our attention to those w > 0 that satisfy (9.5.2). 
Dividing the equation and the inequalities in (9.5.2) by w, we have the problem of 

Maximizing w (9.5.3) 
subject to 

an ( — ) + a2i ( — ) + ... + am\ ( — ) > 1 

a\n {— ) + a2n( — ) + ■■■ + amn ( — ) > 1 

(X-L)+ (-)+■■■+ ( - ) = V -
\w J Vvv/ Vvv/ 

- > 0, 1 < i < m 

Let x'i = Xi/w, 1 < i < m. Since the problem of maximizing w is equivalent to the 
problem of minimizing 1/w, the optimization problem of (9.5.3) is equivalent to the 
problem of 

Minimizing x\+x'2-\ h x'm (9.5.4) 
subject to 

ßllX^ + a2 l*2 + ••• + am\^m > 1 

ûln*l + Ö2n*2 + • • • + amnXm > 1 

*; > 0, 1 < i < m 
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To express this concisely in vector notation, we define X' = (x[,X2--..,x'm), b = 
( 1 ,1 , . . . , 1Y, and c = ( 1 ,1 , . . . , 1 ) ' , where b is an m-tuple and c is an «-tuple. Then 
(9.5.4) is simply the problem of 

Minimizing b ■ X' 

subject to 

A'X'>c,X'>0 

In summary, the reciprocal of the minimal value of the objective function b ■ 
X' of the linear programming problem of (9.5.4) is equal to vi. Moreover, since 
w(xl

l,x2,... ,x!m) = (x\ ,X2,.-. ,xm), multiplication of the coordinates of a point X' at 
which this minimum is attained by vi produces a strategy for Pi with security level 
vi. 

We now show, by a completely parallel development, that the problem of deter-
mining V2 and a strategy YQ G T with this value as its security level leads to the dual 
of the problem of (9.5.4). We have 

V2 = Min Max A(:\Y' 
YET \<i<m

 w 

For a fixed Y = (yi,y2, ■ ■ ■, J«) S T, the maximum of the m quantities A^Y' is the 
smallest real number z satisfying 

a i m + anyi + ■■■ + a\nyn < z 

ai\y\ + a22yi + ■ ■ ■ + a2nyn < z 

am\y\ + am2y2 + ■ ■ • + amnyn < z 

Since V2 is the minimum over all the Y G T of these z's, it follows that vi is equal to 
the minimum z satisfying 

a i m + anyi + ••• + ai„;y„ < z (9.5.5) 

am\y\ + am2.V2 + • • • + amnyn < z 

y\ + yi + ■■■ + yn = l 

yj>0,l<j<n 

and a point at which this minimal value is attained is a strategy for P2 with security 
level V2. Again, we know that V2 > 0, and therefore all z's satisfying the constraints 
of (9.5.5) must be positive. Dividing the inequalities and equation of (9.5.5) by z 
gives the problem of 
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Minimizing z (9.5.6) 
subject to 

au ( — ) + ai2 ( — j + ... + aln(—\ < 1 

am\ f — j + am2 ( — j + ... + amn ( — J < 1 

ê+ (i)+-+ ( in 
— > 0, 1 < 7 < M 
z 

Let y. = yj/z, 1 < j <n. Then (9.5.6) is equivalent to the problem of 
Maximizing y + y + - - - + y (9.5.7) 
subject to 
a\iy\ + any'2 + ••■ + a\ny'n < 1 

am\y\ + am2y'2 + ... + amny'n < 1 
y'j > 0, 1 < j < n 

In vector notation, with Y' = {y\y'2l ■ ■ ■ ,y'ny, this problem is to 

Maximize c • Y' 
subject to 
AY' <b,Y'>0 

And, as before, the reciprocal of the maximum value of the objective function c ■ Y' 
of (9.5.7) is equal to v2, and multiplication of the coordinates of a point Y' at which 
this maximum is attained by v2 yields a strategy for P2 with security level v2. 

But the problems of (9.5.4) and (9.5.7) are dual linear programming problems. 
Moreover, the problem of (9.5.4) must have a finite optimal solution, because the 
objective function b ■ X' = x\ H 1- x'm is bounded below by zero and, since all the 
entries of A are positive, there exist feasible solutions to the system of constraints 
A'X' > c. Thus it follows from the Duality Theorem of Section 4.4 that both prob-
lems have finite solutions attaining the same optimal value. Hence, the optimal se-
curity levels vi and v2 are equal, and there are strategies XQ for Pi and YQ for P2, each 
with a security level equal to this common value v\ =v2. 

CASE 2. The General Case. 
Suppose some entries a,j are nonpositive. Choose any constant r with the prop-

erty that aij + r > 0 for all i and j (e.g., r could equal 1 — Min,-ja,-y-)- Let E be the 
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m x n matrix with all entries equal to 1, and consider the game with payoff matrix 
A + rE. The expected payoff for any pair of strategies (X, Y) is 

X(A + rE)Y' = XAY' + rXEY' 

However, X and Y are strategies, and thus XE will be the «-vector (1,1,.. . ,1); 
further, ( l , l , . . . , l )F f = l. The expected payoff is XAY' + r, which is the expected 
payoff for the game with matrix A plus the constant r. Since these expected payoffs, 
XAY' and X[A + rE)Y', differ only by the constant r, it follows that the games with 
payoff matrices A and A + rE will have optimal security levels differing only by this 
constant, and that strategies delivering the optimal security level for one game will 
also deliver the optimal security level for the other. But all the entries of the matrix 
A + rE are positive, and so the results of Case 1 can be applied to the corresponding 
game. Thus, for the game with payoff matrix A, the players' optimal security levels 
are equal, and strategies delivering this optimal value exist. D 

Example 9.5.1. As an example of the technique developed in this proof, consider 
once again the game discussed in Example 9.4.1 (and then later in Example 9.4.2) 
with payoff matrix 

r i 3 " 
4 0 

Since both entries in the first row are positive, vi is positive, and so no constant 
needs to be added to the entries of the matrix. The two linear programming problems 
associated with this game are simply to 

Minimize x!x + x*2 and Maximize y\ + y2 

subject to subject to 
x[ + Ax'2 > 1 y\ + 3y'2 < 1 

3*; > i 4/j < i 

A A >o y\,y'2>o 
Suppose we wish to solve these problems using the simplex method. The maximiza-
tion problem associated with the determination of fy's optimal security level and 
associated strategy can be handled without using artificial variables. Introducing two 
slack variables, y'3 and y'4, the simplex method leads to the tableaux of Table 9.1. 
The maximum of y\ + y2 is | , and this value is attained at the point ( \, ^ ). Therefore 
V2 = 2, and a strategy for P2 with security level 2 is 2 ( | , ^) = (5,5). Furthermore, 
we know that v\ =2 and, using the entries in the bottom row of the slack variable 
columns, a strategy for Pi with security level 2 is 2 ( | , g) = ( | , | ) . 

While the game matrix in the above example is only 2 x 2, it should be clear that 
the simplex method can be applied to any matrix game. More will be said about 
this in the next section, in which computational techniques are discussed. In the 
remainder of this section, we consider some of the theoretical implications of the 
Fundamental Theorem. 
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Table 9.1 

y3 

y'4 

y'i 

y\ 

y[ 

y\ y'i y'i y\ 

1 ( 3 ) 1 0 

4 0 0 1 

- 1 - 1 0 0 

1 1 1 0 
3 1 3 U 

(4) 0 0 1 

- f o i 0 
0 1 i - i 
u x 3 12 
1 0 0 ± 

0 ° 3 5 

1 

1 

0 
1 

3 

1 
1 
3 
1 
4 
1 
4 
1 
2 

Principle I states that the players should act to maximize their security levels, and 
the Fundamental Theorem guarantees that this is always possible, that is, that there 
always exists a strategy XQ for Pi with security level vi and a strategy Yo for P2 with 
security level V2- Principle II states that the players use strategies in equilibrium, a 
concept not yet formally defined over the complete strategy sets S and T. 

Definition 9.5.1. For a matrix game A, a strategy pair (X\,Y\), with X\ e S and 
Y\ £ T, is in equilibrium if 

XAY[ < XiAY{ for all X £ S (9.5.8) 

and 
X\AY{ < XiAY' for all Y £ T (9.5.9) 

This definition is a direct translation of the suggested definition of equilibrium 
given in Section 9.2: (9.5.8) implies that Pi, expecting Pi to play Y\, has nothing 
to gain by deviating from the play of X\; and (9.5.9) implies that Yi is P2's best 
response to Pi playing Xi. As a corollary to the Fundamental Theorem, we show 
that the strategy pair (XQ7YQ) has this property. 

Corollary 9.5.1. Suppose for a matrix game A that XQ is a strategy for P\ with 
security level v\ and YQ is a strategy for P2 with security level vi- Then the pair 
(Xo,Fo) is in equilibrium. 

Proof. We have by definition 

vi = security level of XQ = MIUXQAY' 
YeT 

< XQAYQ1 

< MaxXAYn = security level of YQ = V2 
xes 
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But vi = V2. Therefore 

MaxXAYÂ = XoAYk = MmX0AY' 
Xes YET 

that is, 
XAY^ < XQAY^ for any XeS 

and 
XoAr0' < X0AK' for any Y G 7 D 

Thus this strategy pair (XQ, YQ) satisfies the two principles set out in Section 9.2. 
We have the solution to a matrix game. 

Definition 9.5.2. For a matrix game A, the common value v = vi = V2 is called the 
value of the game. Any strategy XQ for Pi with security level v is an optimal strategy 
for P\, and any strategy YQ for Pi with security level v is an optimal strategy for P2. 
Such a strategy pair (XQ,YO) along with the value of the game v = XQAYQ is called a 
solution to the game. The game is fair if v = 0. 

A solution is therefore a suggested course of play for both players given that their 
play is to be determined by Principles I and II. The value of the game is the optimal 
security level for both players and the expected outcome of the game if the players 
use the suggested strategies. Thus, for matrix games we have been able to develop a 
complete mathematical model based on the two principles. However, this model can 
be applied to a game-theoretic situation only if these principles are representative of 
the approach of the players to the situation. An excellent discussion of some of the 
limitations of the applicability of the theory from the viewpoint of a social scientist 
is presented in Games and Decisions by Luce and Raiffa [31]. 

Actually, for two-person, zero-sum games, the concept of equilibrium alone is 
sufficient to lead us to this solution of a game. This follows from the following 
theorem, a converse to the above corollary. 

Theorem 9.5.2. For the matrix game A, suppose that the strategy pair (X\, Y\ ) is in 
equilibrium. Then X\ and Y\ are optimal strategies, and X\AY[ is the value of the 
game. 

Proof. By the definition of equilibrium, we have, for any X G S and Y G T, 

XAY{ < XYAY\ < XXAY' 

Now, let v denote the value of the game. Then 

v = vi =MaxMinXAFr 

XeS YeT 
> MinXiAY' = X{AY! 

YeT 
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and 

v = V2 = MinMaxXAF' 
YeT xes 

< MaxXAYl = XXAY{ 
xeS 

Therefore v — X\AY\ and MinygrXiAF' = v, and so, by definition, X\ is an optimal 
strategy for Pi. Similarly, Maxx^sXAY^ = v implies that Y\ is an optimal strategy for 
Pi. □ 

Problem Set 9.5 

1. The following refer to the proof of Theorem 9.5.1. 

(a) In Case 1, it is claimed that feasible solutions exist for the linear program-
ming problem of minimizing b ■ X' subject to A'X' > c. Prove that this is 
true. 

(b) In Case 2, it is claimed that the security levels of the players differ only by 
the constant r for the two games with payoff matrices A and A + rE. Prove 
this using the definition of a security level. 

2. Suppose A is a matrix game with saddle point a/,*. Let X\ = Sf, and Yy = t^. 

(a) By considering the security levels of Xi and Y\, show that vi > a^k and 
V2 < Qhk- It follows from Theorem 9.5.1 that v = a^k and Xi and Y\ are 
optimal strategies. Why? (Thus the solution of a matrix game with a saddle 
point defined in Section 9.3 agrees with the more general definition in this 
section.) 

(b) Using only the definition of a saddle point, show that the strategy pair 
(X\, Y\ ) is in equilibrium, that is, for any X £ S and Y € T, 

XAY\ < X]AY[ < XXAY' 

Now invoke Theorem 9.5.2 to give another proof that v : 
are optimal. 

: a^k and Xi and Y\ 

3. For the matrix game 

(a) Compute the security level for Pi of X\ 
(b) Compute the security level for P2 of Y\ -
(c) What can you conclude? 

4. Intuitively, the game with payoff matrix 

1 
2 
0 

= (o,U). 
(0 i o,A). 
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should be fair and have optimal strategies XQ 
that this is the case. 

(5,2) and Y0 ( i , i ) . Prove 

5. For each of the following matrix games, prove or disprove that the given strategy 
pair is a solution to the game. 

- 1 
(a) A-

(b) A-

(c) A 

(d) A 

3 
-2 

- 1 
4 
0 

2 
- 9 
- 3 

5 
- 3 

1 

2 
4 
0 

1 
2 
3 

4 
1 
5 

2 
1 
4 

- 3 " 
2 
1 

2 
- 3 

1 

2 
1 

- 2 

4 
- 2 

8 

0 " 
2 

- 2 

- 1 
1 
0 

7 " 
- 5 

3 

y 1 

V5 ' 5 ' 5 ^ 

(L I I) 
U ' 2' 4̂  

X1 = £(18,7,2) 

Fi £(2,12,0,13) 

Xi — ( 2 , 0 , 5 ) 

iï = (è.o,o,t) 

X, = (§,|,0) 
Y _ Cl 2 I 1\ 
-M — 19 1 3 1 9 1 97 

6. (a) Show that for the payoff matrix of Example 9.1.6 on page 340, the strategies 
X0 = (£)(11,10,8,7) and Y0 = (^)(10,5,14,7) are optimal strategies for 
Pi and P2, respectively. What is the value of the game? (Does the game now 
favor P!?) 

(b) Pi's optimal strategy XQ translates as follows. Pi should select the 1 with 
probability ^ and the 2 with probability ^ . If P2's guess is correct, Pi 
should offer to double the stakes slightly less than one-half the time, with 
the exact probability depending on the card Pi holds. For example, if Pi has 
correctly guessed that Pi holds a 1, Pi should double with probability ^. 
Provide a similar translation of P2's optimal strategy YQ. 

7. Suppose that XQ and Fo are optimal strategies for a game with payoff matrix A 
and value v. Prove that for any i and j , XQA^ > v and A^YQ < v. 

8. Suppose that XQ = (x\ ,X2, ■ ■ ■ ,xm) and Jo = (yi ,)>2, ■ ■ ■ ,yn) a r e optimal strategies 
and v is the value of a matrix game A. Show that 

(a) XOAW > v implies that yk = 0. 
(b) xi > 0 implies that A^YQ = v. 

9. For the game of Problem 5(d), the given strategy X\ is in fact an optimal strategy 
for Pi. Use this fact and the results of Problem 8 to determine an optimal strategy 
for Pi and then verify the optimality of X\. 

10. Using the approach outlined in Problem 9, prove or disprove: 

(a) Y\ = (5,0, 5) is an optimal strategy for P2 for the game 

" 7 8 4 
1 3 6 
9 5 2 
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(b) X\ = (5,0, 5) is an optimal strategy for Pi for the game 

" 1 - 5 3 - 4 " 
- 1 0 - 3 1 
- 2 5 - 2 3 

11. True or false: If v is the value of a game and YQ is an optimal strategy for Pi, 
then X\ A7Q = v implies that X\ is an optimal strategy for P\. 

Hint. Let A 
1 0 
1 2 

12. True or false: Suppose XQ is an optimal strategy for P\ for a matrix game A. 
Then, for any X e S and Y e T, XAY' < X0AY'. (In other words, an optimal 
strategy is the best response to any strategy of the opponent.) 

13. True or false: A game has a pair of optimal strategies (Xo, YQ) that are both pure 
strategies if and only if the game has a saddle point. 

14. True or false: One player has an optimal pure strategy if and only if the game 
has a saddle point. 

15. True or false: u\ = v if and only if P\ has an optimal pure strategy. 

16. A matrix game A is said to be symmetric if A' = —A. Prove that the value of a 
symmetric game is 0. 

9.6 COMPUTATIONAL TECHNIQUES 

The solution of games with saddle points is straightforward, and the existence of 
saddle points can be easily determined by computing the u\ and ui defined in Section 
9.3. and using Corollary 9.3.1. For other games we list the following techniques. 

Linear Programming 

As seen in the previous section, the problem of determining optimal strategies and 
the value of a matrix game is equivalent to two dual linear programming problems 
that can be solved using the simplex method. However, this method is not directly 
applicable if the value of the game is not positive. For an arbitrary game, a constant 
must first be chosen such that when this constant is added to each entry of the orig-
inal payoff matrix, the game corresponding to this new matrix has a positive value. 
Then the simplex method can be applied to this new game, with the value of the 
original game equal to the value of the new game less the constant. Note that it 
may not be necessary to make all the entries in the modified payoff matrix positive; 
for example, if the matrix has at least one row with all positive entries, the value of 
the corresponding game is positive (the possibility of P\ using the pure strategy of 
playing that particular row shows that P\ 's security level is positive). 
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Example 9.6.1. Pi and P2 each extend either one, two, or three fingers, and the 
difference in the numbers put forth is computed. If this difference is 0, the payoff is 
0; if the difference is 1, the player putting forth the smaller amount wins 1; and if the 
difference is 2, the player putting forth the larger amount wins 2. 

Each player has three pure strategies. Let ,s, denote P\ 's pure strategy of extending 
i fingers, 1 < / < 3, and similarly define tj, 1 < j < 3, for Pi- The payoff tableau is 

s\ 
S2 

S3 

t\ 

0 
- 1 

2 

h 

1 
0 

- 1 

h 

-2 
1 
0 

By symmetry it is reasonable to expect the value of this game to be 0. To verify 
this and compute optimal strategies, we first add 2 to each entry of the above matrix, 
giving the following matrix, which corresponds to a game with value at least 1, as all 
the entries in the last two rows are greater than or equal to 1. 

" 2 3 0 " 
1 2 3 
4 1 2 

The associated linear programming problem corresponding to P^'s determination 
of an optimal strategy and security level is to 

Maximize y[ +y'2 + y'3 

subject to 

Vi + 3/ 2 < 1 
y\ + 2y>2 + 3y>3 < 1 

Ay\ + y'2 + 2/3 < 1 

y[,y'2,y3>0 

Adding three slack variables and solving leads to the tableaux of Table 9.2. 
The value of the modified game is 2, and so the value of the original game 

is 0, as suggested. Since the optimal value of the above problem is attained at 
(y'i,y^y'3) = (î>?>s)> a n optimal strategy for P2 is 2(±,±,±) = {\,\,\). Simi-
larly, the solution to the dual problem, found in the bottom row in the slack vari-
able columns, is (X[,XT,X3) = ( g , \ , \ ) , and so an optimal strategy for Pi is also 
2(1 i l ) = f i i i ) 
Z-V8'4'8'1 U ' 2 ' 4 ^ -

2 x 2 Games 

The solution of games with a 2 x 2 payoff matrix can be given by simple formulas. 
Before we state these, we state a theorem that enables one to immediately determine 
if a 2 x 2 game has a saddle point. The proof of this first theorem is outlined in 
Problem 3. 
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Table 9.2 

y\ 

y'5 

Ï6 

y\ 

y3 

y'e 

A 
y3 

y'e 

y2 

y 
y[ 

y\ 

2 

1 

4 

- 1 

2 

* 

f 
"I 

i 
-I 
(3) 
-1 

0 

0 

1 

0 

y2 
3 

2 

1 

- 1 

(D 
2 
3 
1 
3 
1 
3 

1 

0 

0 

0 

1 

0 

0 

0 

y3 
0 

(D 
2 

- 1 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

y4 
1 

0 

0 

0 

1 

0 

0 

0 
1 
3 
2 
9 
1 
9 
1 
9 
5 
16 
7 
32 
1 

32 
1 
8 

y5 

0 

1 

0 

0 

0 
1 
3 
2 
3 
1 
3 

0 
1 
3 
2 
3 
1 
3 
1 
8 
5 
16 
3 
16 
1 
4 

y6 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 
3 
16 
1 

32 
9 
32 

1 
8 

1 

1 

1 

0 

1 
1 
3 
1 
3 
1 
3 
1 
3 
1 
9 
4 
9 
4 
9 
1 
4 
1 
8 
1 
8 
1 
2 

Consider the game with payoff matrix 

A = b 
d 

Theorem 9.6.1. A has no saddle points if and only if a and d are both greater than 
or are both less than b and c, that is, if and only if either a> b, a> c, d > b, d > c 
or a < b, a < c, d < b, d < c. 

Theorem 9.6.2. Suppose A has no saddle points. Let r = a + d — b -
value v of the game is 

ad —be 

c. Then the 

and optimal strategies X$ and YQ for P\ and Pi are 

,'d — c a — b 
Xo ■ 

Yo--

r r 
'd — b a — c 

Proof. Note that by Theorem 9.6.1, r ^ 0 and XQ and Fo are strategies. By direct 
calculation, we have 

„ . ,'ad — bc ad — bc^ 
X0A-
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and 

AYk o 
ad — be ad — be 

r r 
Thus for any strategies X = {x\ ,X2) G S and Y = (yi, J2) € T, 

XQAY' 

and 

ad —be 
(>'l + J 2 j 

(Xi + X 2 ) 
-Z?c 

ad 

ad -

-be 

r 

-be 

r r 
From Theorem 9.5.2, it follows that XQ and YQ are optimal strategies, and the value 
of the game is 

, ad — be ,_, 
XQAYQ1 = — - D 

These formulas are easy to remember. Once r is determined, the value of the 
game is the determinant of A divided by r. The numerators in the optimal strategy 
for P\ are the differences between the entries in the rows of A, with the difference 
of the entries in the second row going into the first component. Moreover, since the 
components of a strategy are nonnegative, all that is critical is the magnitude of these 
quantities, and XQ can be remembered as 

In a similar manner, P2& optimal strategy lo c a n be interpreted, simply replacing 
the word row with the word column. The fact that the sum of the components of a 
strategy is 1 provides a partial check of one's calculations. 

Example 9.6.2. For the game with matrix 

A-- 1 3 
4 0 

we see that it has no saddle point, because 1 and 0 are both less than 3 and 4. Thus 
we can apply Theorem 9.6.2. We have r = —6, v = —12/(—6) = 2, and 

XQ-
-4 1 -3 
: 6 ' - 6 

2 1 

3 '3 
and YQ 

- 3 1 
^ 6 ' ~ 

1 1 
2 ' 2 

Example 9.6.3. For the game with matrix 

A = 10 
-7 

Theorem 9.6.2 once again applies directly, with r = 30, v = —6/30 = —1/5, 

13 17 
30'30 
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Dominance 

2 
3 
1 

0 
- 1 

7 

3 
- 4 

3 

Consider the game with payoff matrix 

0 

Notice that the four entries in the third row are all greater than or equal to the cor-
responding entries in the first row, and that the three entries in the third column are 
less than or equal to the corresponding entries in the first column. It follows intu-
itively that P\ would never use strategy s\, since P\ can do at least as well with .53 
and, similarly, that P2 would never use strategy t\. In fact, row 1, which is said to be 
dominated by row 3, and column 1, which is dominated by column 3, can be deleted 
from the payoff matrix and optimal strategies and a value for the original game com-
puted by using the resulting 2 x 3 matrix. We make this precise with the following 
definition. 

Definition 9.6.1. Consider a game with an m x n payoff matrix A = (0,7). Then row 
h is dominated by row i if a^j < atj for all j , 1 < j < n, and column k is dominated 
by column j if a^ > aij for all i, 1 < i <m. 

Theorem 9.6.3. Suppose row h of a payoff matrix A is dominated. Then there is 
an optimal strategy XQ = (x\, X2, ■ ■ ■ ,xm) for P\ with x^ = 0. An optimal strategy for 
Pi for the game with payoff matrix A but with the hth row removed is an optimal 
strategy for the original game (after the addition of an hth component equal to zero). 
Similarly for a dominated column. 

The proof of Theorem 9.6.3 is left to the reader (see Problem 4). Certainly if our 
definition of optimal strategy is to be at all reasonable, Theorem 9.6.3 must hold. 

Example 9.6.4. Consider the game with payoff matrix 

A = 

Column 1 is dominated by column 4; thus, finding a solution reduces to consideration 
of the game 

0 
3 
5 

- 2 
5 

- 1 

- 1 
6 

- 3 

0 
- 1 
- 2 

In this 3 x 3 game, row 3 is dominated by row 2, and so we consider 
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Now column 3 is dominated by column 2, leaving just a 2 x 2 matrix 

Using the formulas of Theorem 9.6.2, we find that the value of the game with this 
2 x 2 payoff matrix is —\, with (f, | ) and (g, | ) optimal strategies for Pi and P2, 
respectively. Thus the original game has value — \ and optimal strategies 

X0 = ( | , i ,0)andFo = ( 0 , | , 0 , | ) 

2 xn and mx 2 Games 

Games in which one player has only two pure strategies have several methods of 
solution. One method that uses a graph to determine the optimum of a set of linear 
functions was described in Example 9.4.2. To solve a game using this method, follow 
that example, using the definition of 

v = vi = Max Min XA^ 
xes \<j<n 

if it is Pi that has only the two pure strategies and the definition of 

v = V2 = Min Max Aii\Y 
YeT \<i<m w 

if it is P2. 
Another method makes use of the ease of determining solutions of 2 x 2 games. 

From Corollary 3.8.1 on page 109, it follows that for any game with an m x n payoff 
matrix, there are optimal strategies for both players with at most the minimum of 
m and n nonzero components. Thus, for games in which one player has only two 
pure strategies, there is an optimal strategy for the other player that has at most two 
nonzero components, and so the original game reduces to a 2 x 2 game. Moreover, 
that 2 x 2 game would correspond to the 2 x 2 submatrix of the original mx 2 or 2 
xn matrix that attains the most favorable value for the player who has more than two 
pure strategies. In other words, in an m x 2 game, Pi should compute the values of 
all the 2 x 2 subgames (there are (™) = m(m — 1 )/2 of them) and play the game that 
has the largest value. Similarly, in a 2 xn game, P2 would select the 2 x 2 subgame 
with the smallest value. 

Example 9.6.5. Consider the game with payoff matrix 

1 - 5 " 

0 -5 
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4. 

3 

2 

1 

-1 

-2 

- 3 

- 4 

- 5 

^ % . y\ 

/ / 

- y/ 

= 8/11 
1 

1 ^ ^ 

1 
1 
1 

1 
1 
1 1 

A 6yi - 5 
1 
1 
11 
1 
1 
1 

\ j -5yi + 3 

1 
1 

\ 1 
N -83-, + 4 

1 

1 

Figure 9.3 

It can be easily seen that there is no saddle point but that the last row is dominated 
by the first row. Thus, to find the solution, we need only consider the first three rows. 
Using the first technique described for mx 2 games, we have 

v? = Min Max A/A F 
YeT i<;<3 *■ ' 

= MinMaxjyi 

= Min Max{6v] 
0<>>i<l 

5y2, -4yi +4y2, ~2y\ + 3y2} 

5 , - 8 y ! + 4 , - 5 y i + 3 } 

Consider the graph in Figure 9.3. The heavy line represents the maximum of 
{6yi — 5, — 8yi + 4, — 5yi + 3}, and the minimum occurs when Y\ = yy at the in-
tersection of the lines determined by 6yi — 5 and — 5yi + 3. The common value of 
6yi —5 and —5yi + 3 atyi = jy is — yy. Thus the value of the game is —yy, and an 
optimal strategy for P2 is (yy, yy). The two intersecting lines determined by 6yi — 5 
and —5yi + 3 correspond to the first and third rows of the matrix. An optimal strategy 
for Pi for the associated 2 x 2 subgame with matrix 

is (n> ÏT) ' a n c*s o a n 0Ptimal strategy for Pi for the original game is (yy ,0, yy ,0). 
Using the second method described for mx 2 games, we consider the three pos-

sible 2 x 2 subgame and compute their values. 
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1 
- 4 

1 
- 2 

" - 4 
- 2 

- 5 
4 

- 5 " 
3 

4 ' 
3 

, value = 

, value = 

, value = 

4 - 2 0 
14 

3 - 1 0 
11 

= - 2 

8 
7 

7 

The second game corresponding to the first and third rows of A gives Pi the largest 
value. It has value -yy and optimal strategies (yy, yy) and (yy, yy) for Pi and P2, 

yy with optimal strategies respectively. Thus the value of the original game is — 

Xo = (yy,0,yy,0)andy0 = ( i l ' i l -

Problem Set 9.6 

1. The only technique discussed in this section that cannot be applied to matrix 
games with saddle points is the use of the formulas given in Theorem 9.6.2 for 
2 x 2 games. Consider the game with payoff matrix 

2 3 
1 4 

(a) Solve by using linear programming. 
(b) Solve by using only dominance. 
(c) Show that the formulas of Theorem 9.6.2 do not give the solution to this 

game. However, in this case the "r" does not equal 0. Where does the proof 
of Theorem 9.6.2 break down? 

2. As suggested by the proof of the Fundamental Theorem in the previous section, 
the simplex method cannot be applied directly to a game with a value less than 
or equal to 0. Convince yourself of this by trying to use the simplex method 
without altering the original matrix to the games with payoff matrices 

and 
2 

- 4 

3. Proof of Theorem 9.6.1. Consider the game with payoff matrix 

A a b 
c d 

(a) Prove that if a < b, a < c, d < b, d < c, then A has no saddle point. 
(b) Prove that if the two entries in any one row or column are equal, then A has 

a saddle point. 
(c) Prove that if A has no saddle point and a < b, then a<c,d <c,d <b. 
(d) Complete the proof of Theorem 9.6.1. 
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4. Prove Theorem 9.6.3. (Hint. We know that for any game, optimal strategies 
exist. Show that if one such optimal strategy for P\ does not have x/, = 0, it can 
be modified to a strategy with the hth component equal to 0 that also satisfies the 
definition of optimality.) 

5. True or false: A 2 x 2 game has a saddle point if and only if the game can be 
resolved using dominance. 

6. True or false: Suppose A is an m x m matrix. Then the two games, one with 
payoff matrix A and the other with payoff matrix A', have the same value, and 
an optimal strategy for Pi for one game is an optimal strategy for /*}_,- for the 
other game, i= 1,2. 

7. Determine the value, as a function of x, of each of the following games. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

8. (a) 

4 x 
6 2 

1 2 
x 3 

2x 9 1 
4 3 3 
0 5x 2 

x 
- 1 

3 2 
x 1 

x — 2 
x+l 

Solve the games with the following payoff matrices using both methods of 
solution for 2 xn and mx 2 games. 

(i) 

(ii) 

(iii) 

(iv) 

2 0 1 4 
1 3 2 0 

- 1 7 
4 - 1 
2 1 

5 -
- 2 

1 6 
5 2 
3 4 

-1 
0 

(b) Show that for the game in (i), PCs optimal strategy is not unique. In fact, 
when the game is solved graphically, it is found that the optimal security 
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level for P\ is attained at the intersection point of three of the relevant lines. 
Thus we have some freedom in selecting the associated 2 x 2 matrix to use 
to determine Pi's optimal strategy. However, we cannot arbitrarily use any 
two of the three columns corresponding to the intersecting lines. Explain 
why not. (This also occurs in the graphical analysis of the game in (iv).) 

9. Solve the game of Problem 1(a) of Section 9.1. 

10. For each of the following games, first determine x so that the game is fair, and 
then with x equal to this value, determine optimal strategies. 

(a) Problem 1(b) of Section 9.1. 
(b) P\ selects a number from {1,2} and Pj a number from {1,2,3}. If the sum 

of the selected numbers is even, P^ wins that amount from P\. If the sum of 
the selected numbers is 3, P\ wins 3 from P^, if the sum is 5, P\ wins the 
amount x (x > 0) from Pi. 

(c) Pi selects a number from {1,2} and P% a number n from {1,2,3}. If the 
sum of the selected numbers is even, Pi wins the amount nx (x > 0) from 
Pi. If the sum is odd, Pj wins the amount (2n — 1) from P\. 

11. P2 selects one of the following two games, A or B, to play. After making her 
selection, which is known to Pi, he sets the value of x, with the restriction that 
0 < x < 50. Which game should P2 select, and why? 

- 4 -2x 
or B 

x —7.x 
—x 3x 

12. Solve the games with the following payoff matrices. 

-12 9 - 5 0 
(a) 4 7 2 1 

0 - 5 10 - 3 

(b) 

(c) 

(d) 

(e) 

(f) 

8 
- 3 

3 

- 1 
2 
1 

4 
2 

- 1 

4 1 
6 4 
0 7 

5 
- 5 

3 

- 1 
10 

- 4 

0 
1 
3 

- 2 
3 
4 

2 
4 
3 

8 
- 3 

1 

- 3 
8 

- 5 

1 
- 2 
- 1 

5 
0 
2 

8 " 
5 
1 

6 
- 2 

8 

6 
- 4 

4 

1 
- 1 

0 

3 
- 2 
- 1 

- 2 
1 

- 4 
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13. For the game with payoff matrix 

2 
1 
0 

1 
-2 
1 

0 
1 

-2 

it seems reasonable to assume that any optimal strategy for P2 must use all three 
columns of A (and similarly for Pi and the rows of A). If this is so, then any 
optimal strategy XQ = (x\ ,X2,x$) for Pi must satisfy XQA^' — v for each j , 1 < 
j < 3, where v is the value of the game (see Problem 8 of Section 9.5). While 
we do not yet know v, this does imply that XßA^ = XQA^ = XQA^3\ Thus the 
(xi,X2,X3) should satisfy the system of equations 

2xi + X2 

2x\ + X2 

X\ + X2 + X3 

= x\ -
= 
= 1 

- 2̂ 2 + X3 

X2 ~ 2x3 

Solving, we find thatXQ = (xi,X2,X3) = ( 10 > 

Min{ — 5, — 5, — 5} = — 5, and so we know for a fact that v > 
)(3,4,3). The security level of Xo is 

Now we could go through the same procedure to determine a strategy YQ for P2. 
If the security level for this strategy were — j , we would have justified our origi-
nal assumption and solved the game. Verify that this is the case. (Actually, here 
the symmetry of A also suggests the strategy YQ to use to verify the optimality of 
X0.) 

14. (a) Use the procedure outlined in Problem 13 to solve the following games. 

-2 1 1 
(i) 

(ii) 

(iii) 

1 
1 

1 
2 
3 

1 
1 
0 

-4 
1 

1 
-2 
3 

-1 
2 

-1 

1 
-6 

1 
2 

-3 

-1 
0 

-1 

0 
-1 
3 

(b) If the assumption that the optimal strategies use all the rows or columns is 
false, this procedure breaks down. Verify this for the game 
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15. (a) Use the procedure outlined in Problem 13 to solve the following diagonal 
game, where the constants k\, A2, and A3 are all positive. 

" Ai 0 0 
0 A2 0 
0 0 A3 _ 

(b) Generalize. Solve the game 

Ai 
0 

0 

0 . 
A2 • 

0 . 

. 0 

. 0 

• A„ 

where A, > 0, 1 < i < n. 
(c) Analyze the following game. P2 has a $1 bill, a $5 bill, a $10 bill, and a $20 

bill. P2 selects one of the bills, and Pi attempts to guess its denomination. If 
Pi guesses correctly, P] wins the bill from Pi; if Pi guesses incorrectly, no 
money is exchanged. 

(d) Is Pi's position in the above game improved if P2 also has a $100 bill to use? 
A $1000 bill? 

Analyze the following games. 

16. (a) Pj selects a number from {1,2} and P2 a number from {1,2,3}. If the sum 
of the selected numbers is even, Pi wins that amount from P2; if the sum is 
odd, P2 wins the sum from Pi. 

(b) Example 9.1.2 of Section 9.1. 

17. Pi and P2 each select a number from {1,2,3}. If they select the same number, 
P2 wins an amount equal to the common selection from P\. If not, Pi wins an 
amount equal to the difference of the two selections. 

18. The games of 

(a) Problem 1(c) of Section 9.1. 
(b) Problem 1(d) of Section 9.1. 
(c) Problem 1(e) of Section 9.1. 
(d) Problem 1(f) of Section 9.1. 

19. (a) Pi and P2 each have two red cards and one black card. They play their cards, 
one by one, with Pi winning the trick if the colors of the played cards match 
and P2 winning if the colors do not match. Each trick is worth 1 point. At 
the completion of the play, the player with the greater number of points wins 
from the other an amount equal to the difference in point totals. 

(b) As in (a), but now assume that the last trick is worth 2 points. (If, at the end 
of the play, the players have the same number of points, the game is a draw.) 

20. Pi and P2 each have two cards, a red card and a black card. Each selects a card. 
If the colors of the selected cards do not match, P2 wins 1 from Pi, and if they 
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each selected their red card, Pi wins 2. If they each selected their black card, 
they pick up their cards and play the game again. In the second play, all payoffs 
are as before, except that now, if each player selects their black card, Pi wins 
3 from P}. (Hint. One way to analyze the game is to interpret the play as a 
sequence of two 2 x 2 games.) 

21. Pi has one red card and two black cards. Pi selects a card, and Pi attempts 
to guess its color. P\ reveals his card and then selects a second card from his 
remaining two. Pi attempts to guess the color of the second card. If both of P2's 
guesses are correct, Pi wins 4 from P\ ; if only one is correct, P\ wins 1 from Pi; 
and if both are wrong, Pi wins 11. (Hint. This game also can be considered to 
be a sequence of two 2 x 2 games.) 

9.7 GAMES PEOPLE PLAY 

In this section, we will consider several games modeled on the common card game 
of poker. Poker is an example of a zero-sum game in which the outcome of the 
game is determined by both chance and the skill of the players — the element of 
chance in determining the deal and the skill of the players in successfully balancing 
conservative play with bluffing. In fact, in the first book on game theory by von 
Neumann and Morgenstern [28], a section was devoted to a study of a form of poker; 
since then, various other articles on the game have appeared. 

The standard game of poker is beyond our analysis, even after restricting the 
game to two players, because of the many different hands a player can be dealt. In 
the examples we develop, the range of possible draws will be much more limited — 
in fact, one player will receive only one card, and that will be either a "high" or a 
"low" card. However, our examples will preserve the opportunity for the players to 
bluff or to play conservatively, and so will preserve the element of poker that makes 
the game interesting. 

Note, too, that these games are the first that we have encountered in which out-
comes are partially determined by chance. For such games, the entries in the payoff 
matrix are the expected value or weighted average for Player 1 of all possible out-
comes. 

Game 1 

Rules. Players 1 and 2 ante an amount a > 0 into the pot. One card is dealt to Pi 
from a deck containing an equal number of high and low cards. After looking at his 
card, Pi can either "pass" or "raise." If Pi passes, Pi wins the pot if he had been dealt 
a high card and loses the pot if he had been dealt a low card. If Pi raises, he adds an 
amount b > 0 to the pot, and then Player 2 has two options. Pi can either "fold" or 
"call." If Pi folds, Pi wins the pot (without revealing his hand). If Pi calls, she also 
adds the amount b to the pot, and then Pi wins or loses the pot if he has been dealt a 
high or low card, respectively. 
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Thus, if Pi is dealt a high card, he is guaranteed to win at least the amount a from 
P2, and he can win a + b if he raises and Pi elects to call. On the other hand, if Pi is 
dealt a low card, he can pass and lose the amount a or he can raise (i.e., bluff), with 
the hope that Pz will assume that Pi has a high card and elect to fold. If P2 folds, Pi 
wins a even though he has a low card. However, if Pi suspects that Pi does not have 
a high card but is bluffing, P2 can call, and now Pi loses not a but a + b. 

To apply our theory to this game, we must first list all the possible strategies for 
the two players. Recall that a strategy is a rule that tells a player what to do in any 
possible situation the player may encounter during the game. Consider Pi's situation. 
He is dealt either a high or low card, and so a strategy for him must tell him what to 
do in either case. Thus a possible strategy for Pi would be to raise if he has a high 
card and pass if he has a low card. We will denote this strategy by {R,P), where the 
first component of the ordered pair directs Pi if he has a high card and the second 
component if he has a low card, with R corresponding to raising and P to passing. 
It can be seen that Pi has four possible strategies, denoted by (R,R), (R,P), (P,R), 
and (P,P). Thus (P,P) directs Pi to pass no matter what he has been dealt, and (P.R) 
directs him to pass on a high card and raise on a low card. The strategy set for P2 is 
simpler because she is unaware of the card dealt Pi. If Pi elects to pass, P2 has no 
options and the game is terminated. If Pi elects to raise, P2 can either call or fold, 
and so a strategy for P2 is a rule that directs Pfs response to a raise by P\. Denote 
these two possible strategies by call and fold. 

Thus the payoff matrix associated with this game is 4 x 2. Since the outcome of 
the game is contingent not only on the strategies employed by the players but also 
on the card dealt Pi, the entries of the matrix are found by computing the expected 
value of the outcome to Pi for the eight possible strategy pairs. For example, suppose 
Pi uses strategy (P,R) and P2 uses strategy call. Then if Pj is dealt a high card, he 
passes and wins a, and if he is dealt a low card, he raises and P2 calls, and so Pi loses 
a + b. Since we are assuming that the deck contains an equal number of high and 
low cards and that the card dealt Pi is randomly chosen, the probabilities of both a 
high-card hand and a low-card hand are \. Thus the expected value of the outcome 
corresponding to this strategy pair is a/2 + (—a — b)/2 = —b/2. Similarly, if Pi uses 
strategy (R, P) and P2 uses strategy fold, on a high-card deal Pj raises, P2 folds, and 
Pi wins a, and on a low-card deal, Pi passes and loses a. The expected outcome is 
therefore a/2 + (—a)/2 = 0. 

The other six entries in the payoff matrix are similarly computed. The result is 

(R,R) 
(R,P) 
(PR) 
(PP) 

van 
0 

b/2 
-b/2 

0 

toia 
a 
0 
a 
0 

With this the translation of the game into a matrix game is complete, and we can 
apply the theory as developed in this chapter. Of course, we must assume that the 
decisions of the players are governed by the two principles set out in Section 9.2 in 
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order for our notion of a solution to the game to be meaningful and applicable. Is 
this reasonable? 

An initial inspection of the above game matrix indicates that the last two rows 
are dominated by the first row and so can be deleted without affecting the solution. 
Notice that the two associated strategies correspond to Pi passing if dealt a high card. 
Actually, we could have reasoned to the ineffectiveness of such an action by P\ by 
just considering the rules of the game. If P\ is dealt a high card, he is guaranteed to 
win at least the amount a regardless of P^'s play, and he could win a + b if he raises 
and P2 elects to call. Thus Pi, if dealt a high card, has nothing to lose and something 
to gain by raising, and so should always raise in this case. 

The game matrix is thus reduced to the 2 x 2 matrix 

Call Fold 

(R,R) 
(R,P) 

0 a 
b/2 0 

The first row corresponds to Pi raising with a low card (i.e., bluffing) and the second 
row to passing with a low card (i.e., conservative play). Similarly, the first column 
corresponds to P2 challenging a raise and the second to P2 playing conservatively. 
Since a and b are both positive, the solution to this game can be computed using the 
formulas of Theorem 9.6.2. The value v of the game and optimal strategies XQ and 
YQ are given by 

ab 

2a + b 

X^2aTb^2a) 

Y°=2aTb^b) 

Hence no matter what a and b are, the game favors P\. Both players should mix 
bluffing with conservative play, with the amounts of each in reverse order. For ex-
ample, if a = 1 and b = 1, the value of the game is | , and to realize this value, Pi 
must bluff I of the time and P2 must call | of the time. If a = 1 and b = 2, the value 
of the game is j and both players should play conservatively j of the time. 

Game 2 

Rules. The ante, the deal, and the options for Pi are just as in Game 1, and if Pi elects 
to raise, P2's options are also as in Game 1. However, if Pi elects to pass, the play is 
not terminated, but P2 can either pass or raise. If P2 elects to pass, play is terminated 
and the pot distributed as before. If P2 elects to raise, both she and Pi add an amount 
b to the pot, and men the pot is distributed as before. 

Thus the only difference between this game and Game 1 is that if Pi chooses to 
pass, P2 now has the opportunity to increase the pot to a + b, and Pi cannot with-
draw if P2 wishes to increase the pot. Pi's strategy set remains the same, but now a 
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strategy for P2 must direct her response to both possible plays of Pi. Thus a possible 
strategy for P2 would be to fold if Pi raises and raise if Pi passes. We will denote this 
strategy by (F,R), where the first component of the ordered pair is P2's response to 
a raise by Pi and the second component is her response to a pass, with the obvious 
abbreviations for fold, call, pass, and raise. P2 has four pure strategies, denoted by 
(C,R), {C,P), (F,R), and (F,P). For example, the strategy (C,P) directs P2 to call if 
Pi raises and pass if Pi passes. 

For this game the payoff matrix is 4 x 4. The entries again are expected values 
and are computed just as before. The following tableau results. 

(R,R) 
(R,P) 
(P,R) 
(PP) 

(C,R) 

0 
0 
0 
0 

(C,P) 

0 
b/2 

-b/2 
0 

(F,R) 

a 
-b/2 

{2a + b)/2 
0 

<FP) 

a 
0 
a 
0 

While seeming to offer more variety, this game is not as interesting as the first game; 
the payoff matrix has saddle points, the first and fourth entries of the first column. 
The game has value 0, and optimal strategies for Pi are either to raise all the time 
or pass all the time. The optimal strategy for P2 is to call if Pi raises and raise if P\ 
passes. Notice that this strategy for P2 ensures that the game is always played for 
the amount a + b and that the winner is determined by the deal, and so P\ 's threat of 
bluffing is effectively nullified. 

Game 3 

Rules. This game is played just like Game 2, with one minor difference. If Pi elects 
to pass and P2 elects to raise, both players must add the amount 2b to the pot before 
it is distributed in the usual manner. 

Thus, if Pi raises and P2 calls, the stakes are a + b; but if P] passes and P2 raises, 
the stakes are a + 2b. It is not at all obvious how Pi should proceed if he is dealt a 
high card. If he raises, he wins either a ox a + b, depending on P2's actions; if he 
passes, he wins at least a; and if P2 raises, he wins a + 2b. But if P2 expects Pj to 
always pass if he has a high card, then a raise by Pi indicates that he has a low card, 
and in such circumstances a raise by P2 will net P2 the amount a + 2b. Thus, to still 
bluff successfully with a low card by raising on a low-card hand, it seems that Pi 
must occasionally raise on a high-card hand. 

To develop a more precise analysis of this game, we need to consider the payoff 
matrix. The strategy sets for both players are identical to those in Game 2, and the 

off matrb 

(R,R) 
(R,P) 
(PR) 
(P,P) 

s. this time is given by 

(C, R) (C, P) (F, R) 

0 0 a 
-b/2 b/2 -b 

b/2 -b/2 a + b 
0 0 0 

(FP) 

a 
0 
a 
0 
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As can be seen, there are no saddle points, but the fourth row is dominated by 
the first. However, no other simplifications are possible unless the ratio of a to b 
is known (and then, the only case of domination occurs between the first and last 
columns if b/2 < a). Thus we have a game with essentially a 3 x 4 payoff matrix 
to evaluate. However, an analysis is not difficult in this case. Since all the entries 
in the first row are either 0 or a, Pi's security level v\ and therefore the value of the 
game is at least 0. Suppose now that Pi restricts her choice of mixed strategy to those 
strategies involving the pure strategies (C,R) and (C,P), that is, the two strategies 
corresponding to the first two columns of the payoff matrix. />2 would then be forcing 
Pi to play the game with the 3 x 2 payoff matrix, 

" 0 0 
-b/2 b/2 
b/2 -b/2 _ 

But as can be easily seen, the value of this game is 0, and so Z '̂s security level V2 
and therefore the value of the original game is at most 0. Hence the game has in fact 
value 0, and optimal strategies can be determined by considering the above 3 x 2 
game. For example, an optimal strategy for P2 would be (2,5,0,0), and optimal 
strategies for Pi would be either ( 1,0,0,0) or (0,5, 5,0) regardless of the value of b. 

Game 4 
Rules. This game is played just like Game 2, the only difference being the amounts 
bet. If Pi elects to raise, he must add 2b to the pot, and if P2 elects to call, she must 
add only b to the pot. Similarly, if Pi elects to pass and P2 elects to raise, P2 adds 2b 
to the pot and Pi only b. 

Thus, for this game, the player who wishes to increase the stakes must risk 2b 
and his or her opponent only b. Otherwise, Game 4 is identical to Game 2, with P2 
having the option of folding if Pi raises; but if Pi passes and P2 raises, Pi cannot 
withdraw (but only adds b to the pot, whereas P2 adds 2b). 

The strategy sets for the two players are the same as those in Games 2 and 3. The 
4 x 4 payoff matrix, which can be easily computed, is 

I (C,R) (C,P) (F,R) (F,P) 

(R,R) -b/2 -b/2 a a 
(R, P) 0 b/2 -b/2 0 
(PR) 0 -b a + b a 
(P,P) b/2 0 b/2 0 

This matrix has no saddle points, and there is no domination regardless of the 
ratio of a to b. The last row of the matrix indicates that the value of the game is at 
least 0, but further elementary analysis does not seem possible in this case. 

However, the simplex method can be used to solve this game, even in this general 
form with arbitrary positive values for a and b. See Problem 1. The value and optimal 
strategies for the game are given by 
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ab 
v = — 

c 

Xo = -(b,2a + b,Q,2a + b) 
c 

Y0 = -(2a,2a,0,3b) 

where c = 4a + 3b. 
Thus the value of the game is always positive, and therefore the game favors P\. 

For example, if a = 2 and b = 1, v = jy, X0 = (yp y\-,0, fj), and y0 = (fp TT'0' n ) -
In this case, then, in order to attain his maximum security level of jy, Pi should use 
strategy (R,R) with probability yy and strategies (R,P) and (P,P), both with proba-
bility yy. Hence Pi should raise with a high-card deal yy of the time and should raise 
with a low-card deal only yy of the time. Similarly, to keep her security level down 
to j \ , Pi should respond to a raise by Pi by calling with probability yy and folding 
with probability -jy, and should respond to a pass by Pi by raising with probability 
yj and passing with probability yy. 

Problem Set 9.7 

1. The following refers to Game 4. 

(a) Use the simplex method to solve the game when a = 1 and b = 2. 
(b) As in part (a), with a = 2 and b=\. 
(c) Do these two operations suggest a sequence of pivot operations that could 

be used in the general case (arbitrary a and b)? If they do, try them. (If not, 
try pivoting for the first step in the first row, fourth column; second step, 
second column; third step, first column.) 

2. (a) By computing security levels, verify that the strategies XQ and Fo of Game 
4 are optimal. 

(b) Suppose a = 1 and b = 2 in Game 4. Following his optimal strategy, with 
what probability should P\ raise with a high card? With a low card? Simi-
larly, interpret P2's optimal strategy. 

3. In the standard game of poker, the probability of getting a good hand is low. 
Analyze Game 1 under the assumption that the probability of Pi being dealt 
a high card is only 3. (The value of the game is (a/3)[(b ~2a)/(2a + b)].) 
Intuitively, why does this game become more favorable to Pi if a is increased 
and b fixed? 

4. In Game 1, suppose that a = b = 1 and that the probability of Pi drawing a high 
card is p. Determine p so that the game is fair. 

5. (a) Analyze the following variation of Game 1. Initially, one card is dealt to 
each player. Assume that each of the four possible deals (two high cards 
dealt; two low cards dealt; high card to P\ and low card to Pi; low card to Pi 
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and high card to Pi) are equiprobable. The options for the players and the 
betting are as in Game 1. However, the pot is won by the player with the 
higher card and, in the event of a tie, the pot is distributed equally. (Note 
that now a strategy for Pi must also include consideration of the card in / y s 
hand.) 

(b) You are Pi, playing the above game for big stakes in Las Vegas. The ante is 
one red chip ($1000), and the only permissible raise is one blue chip. It has 
been a while since you purchased your chips, and all you can remember is 
that the blue chips are worth either $999 or $1001. You are dealt a low card. 
What do you do? 

6. Consider the following card game. Initially, both players ante an amount a into 
the pot. 

From a three-card deck consisting of a king, queen, and jack, each player is dealt 
one card. After looking at his card, P\ can either raise or pass. If he passes, the 
player with the higher card wins the pot. If Pi raises, he adds an amount b to the 
pot, and then Pi, after looking at her card, can either call or fold. If she folds, 
Pi wins the pot. If Pi calls, she adds b to the pot, and then the player with the 
higher card wins the pot. 

(a) Show that there are six possible deals. 
(b) A strategy for Pi must instruct him to either raise or pass in the event that 

he has either a king, queen, or jack. Show that Pi has eight pure strategies. 
(c) Similarly, show that Pi has eight pure strategies. 
(d) Before constructing the game matrix, consider domination. Convince your-

self that Pi has nothing to gain by passing when he has a king, and Pi has 
nothing to gain by folding when she has a king. Thus the payoff matrix is 
essentially reduced to a 4 x 4 matrix. 

(e) Convince yourself that Pi has nothing to gain by calling when she has a 
jack, and that then, after these considerations, Pi has nothing to gain by 
raising when he has a queen. 

(f) The viable pure strategies for each player have been reduced to two: Pi 
raises on a king, passes on a queen, and either raises or passes on a jack; Pi, 
in response to a raise by P\, calls on a king, folds on a jack, and either calls 
or folds on a queen. Compute the associated 2 x 2 payoff matrix. 

(g) Solve the game. 
(h) Just as in 5(b), but you have moved to the table playing the three-card game 

of this problem. (The ante here is also one red chip, but the raise must be 
two blue chips.) You, as Pi, have made your ante and have been dealt a jack. 
What do you do? 

7. Analyze the game of Problem 2(a) of Section 9.1. (Hint. While each player has 
24 pure strategies, the value of the game is suggested by symmetry, and there 
are various strategies with this value as security level. In fact, each player's first 
play is irrelevant!) 
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8. Analyze the following. The only two clothing stores in a shopping center com-
pete for the weekend trade. On a clear day, the larger store gets 60% of the 
business; on a rainy day, the larger store, being closer to the parking lot, gets 
80% of the business. However, either or both retailers may hold a "sidewalk 
sale" on any given weekend, but the decision to hold such a sale must be made 
a week in advance and in ignorance of the competitor's plans. If both retailers 
conduct sidewalk sales, the breakdown in business is just as above. If, however, 
one holds the sale and the other does not, the one conducting the sale gets 90% 
of the business on a clear day and 10% on a rainy day. During the present season, 
it rains 40% of the time. How frequently should each retailer conduct sales? 

9. Consider the game in Problem 2(b) of Section 9.1. Without P\ 's option of rais-
ing, the game favors Pi. (Pi could always guess red, with an expected gain of 
j . ) To offset this, P\ is given the option of increasing the stakes significantly. 
This option would seem especially useful when he has been dealt the "less likely 
to be guessed" black card. (Of course, he must bluff occasionally. Otherwise, 
P2 automatically guesses black after a raise by Pi.) Analyze the game precisely, 
and in particular, determine by how much the option to raise has helped P\. 

10. Consider the game in Problem 2(c) of Section 9.1. P\ wins if either player 
holds the red card, but the probability of the red card being dealt is only | . 
To compensate for this disadvantage, P\ has the option of increasing the stakes, 
an obvious move when he has the red card and a (viable?) bluffing option when 
he has the black card. Analyze the game precisely. In particular, determine for 
what values of a and b, if any, the game is fair. 

11. Reconsider the game of Problem 2(c) in Section 9.1 (the game of Problem 10 
above), but with the following two modifications. First, suppose that the deck 
consists of three black cards and one red card; second, suppose that P2 wins if 
the red card is dealt. 

(Observation. The analysis here is a bit more difficult. The probability of the 
red card being out is 5, but Pi has the first move and so may have an advantage. 
Of course, if he never raises when he holds the losing red card, P2 gains the 
advantage by accepting P\ 's raise if she has the red card and rejecting the raise 
if she has a black card. Does this game in fact favor Pi ?) 

12. Analyze the following two-stage games. 

(a) Two players play Game 1, with the exception that if P\ elects to pass, he 
returns his card to the deck, no payments or additional antes are made, and 
Game 1 as originally described is played, but with the roles of Pi and P2 
interchanged. Thus, if Pj passes, the initial ante remains at a for each player, 
but now Pi draws the card and makes the first move. 

(b) As above, but suppose that now the deck contains only four cards, two high 
cards and two low cards, and that if Pi elects to pass, he shows the card he 
has drawn but does not return it to the deck before Pi draws her card. 



390 CHAPTER 9. TWO-PERSON, ZERO-SUM GAMES 

13. Can the following variations of Game 1 be analyzed using the theory of this 
chapter? 

(a) Game 1 played with a deck consisting of p% high cards, but with p un-
known to both players. 

(b) As in part (a), but with p known by only one player. 
(c) P2 is given a deck of four cards, two high cards and two low cards. She 

extracts a card of her choice without revealing her selection to Pi. Then 
Game 1 is played with this modified deck of the remaining three cards. 



CHAPTER 10 

OTHER TOPICS 

IN GAME THEORY 

10.1 UTILITY THEORY 

One of the basic assumptions that we have made in the study of game theory is 
that each of the possible outcomes of a game can be assigned a numerical value 
that represents the value or worth for a particular player of that outcome over the 
other possible outcomes. However, it is not immediately obvious that this is always 
possible, as was pointed out in Section 9.2. Even for parlor games in which the 
payoffs are in terms of money, it may be that these monetary payoffs cannot be used 
directly to measure a player's preferences. For example, one may derive much more 
satisfaction in a game of poker from winning $2 by bluffing an opponent as opposed 
to winning $5 with a hand of four aces. Or, would not the significance of a $5 loss 
be different for a player already up by $15 as opposed to a player already down by 
$15? These difficulties are not insurmountable, at least theoretically. The body of 
knowledge developed to deal with this problem is called utility theory. In this section, 
we provide a brief introduction to the theory. What we propose to do is to indicate 
how one might go about assigning appropriate values to three different outcomes, 
regardless of their nature. The intuitive ideas that we develop form the foundation of 
utility theory. 

Let us denote the three possible outcomes or events by the letters A, B, and C. We 
want to assign numerical values, or utilities, to each of these events that will in some 
way represent their relative desirability for an individual. Denote these numbers to 
be assigned by u(A), u(B), and «(C). Out first step is to order the events linearly, 
that is, to determine the order of preference between the events. It could be that 
we are indifferent to two of the events. For example, we may not be able to make 
any distinction between A and B, believing that we would derive the same amount 
of satisfaction from either. In that case u(A) should equal u(B), and our problem 
would reduce to the problem of assigning values to only two distinct events. Thus 
we assume that the events can be strictly ordered, and that A is preferred over B 
and B is preferred over C. (We therefore assume that A is preferred over C because, 
intuitively, an ordering of events by preference must be transitive.) This ordering 
demands that u{A) > u{B) > u(C). Our next task is to determine how our preference 
for A over B compares with our preference for B over C. 

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, Inc. 
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The key idea used to make this comparison is a lottery. Consider another event, a 
lottery, in which there are two possible outcomes, A and C. Suppose the lottery will 
result in A with probability r and C with probability \—r. For example, suppose the 
circumference of a wheel is divided into two arcs, one arc of length the fraction r 
of the entire circumference, and a pointer located at the center of the wheel spun. If 
the pointer comes to rest in the arc of length r of the whole, A occurs; otherwise, C 
occurs. This lottery is an event, and we can also assign to it a numerical value that 
measures its desirability. This value would depend on r. If r is near 0, the outcome 
of the lottery would more likely be C, and so the value of the lottery would be closer 
to u{C) than to M (A). And as r increases to 1, this value would approach u(A). 

The desirability of B must lie somewhere between the desirability of C and of A. 
It seems reasonable to assume that there exists a particular r, 0 < r < 1, such that we 
are indifferent to the events B and the lottery with outcomes A and C, A occurring 
with probability r and C with probability 1 — r. Let us denote this particular lottery 
by the symbol rA + (1 — r)C. 

Since we are indifferent to these two events, the utility of B, u(B), should equal 
the utility of the lottery, denoted by u(rA + (1 — r)C). We now make another ba-
sic assumption concerning the assignment of utilities, in this case, concerning the 
assignment of utilities to lotteries. Analogous to the definition of expected value 
in probability theory, as discussed in Section 9.4, it is reasonable to assume that 
the desirability of the lottery rA + (1 — r)C should be given by ru(A) + (1 — r)u(C), 
since this can be considered to be the expected utility value of the lottery. Thus, to 
determine u(B), all we need determine is u{A), u(C), and the above r, and then set 

u(B) = ru(A) + (1 - r)u(C) 

Next, consider assignment of the values u(A) and u(C). We have seen that the 
crucial quantity to be measured is how our preference for A over B compares with 
our preference for B over C. These preferences can be measured by the differences 
u(A) — u(B) and u(B) — u(C), suggesting that, unless otherwise restricted, arbitrary 
values can be assigned to u(A) and u(C) as long as u(A) > «(C). Once such values 
are chosen, the lottery system described above can be used to determine u(B). 

The phrase unless otherwise restricted deserves some elaboration. By this we 
mean that our three events A, B, and C exist by themselves and cannot be compared 
with any other events or standards, and so we can freely assign the numbers u(A) 
and u(C). However, in many situations, the values of the outcomes are compared, 
consciously or subconsciously, to some external standards. For example, if we are 
involved in a game in which we will either win $5 (event A) or lose $5 (event C), the 
demands of the obvious preferential ordering are satisfied by any assignment of u{A) 
and u(C) such that u(A) > u(C). In this case, though, we naturally compare A and 
C with the standard of not winning or losing anything (event B), intuitively setting 
u(B) = 0. Everything else being equal, we would want u(A) > 0 and u(C) = —u(A). 
Moreover, if the value of the game is to be directly translated into dollars, we would 
want u(A) = 5. 

In summary, if we have three events, with no external standards to be imposed, 
we can assign utilities to these events using the described method. If there are more 
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than three, it should be clear how this method can be extended. Once two events are 
assigned utilities, the lottery method can be applied to each of the remaining events 
separately until appropriate utilities have been assigned to all events. (It is not nec-
essary initially to single out the two events at the extremes of the linear preferential 
ordering. See Problem 1.) In case there are also external standards to be imposed on 
our system, these events and their associated utilities would simply be added to the 
set of possible outcomes, and those events with preassigned utilities would provide 
the starting point. 

Although the above discussion has been more suggestive than axiomatic, utility 
theory can be developed rigorously from a system of axioms. Refer to the books by 
von Neumann and Morgenstern [28], Luce and Raiffa [31], or Owen [32]. 

Example 10.1.1. You are involved in a game of chess with a grand master. There 
are three possible outcomes: you win, event A; you draw, event B; or you lose, event 
C. Setting u(A) = 1 and u(C) = — 1, what should u{B) be? Because of the abilities of 
your opponent, much satisfaction would be gained from a draw, and so clearly, u(B) 
should be positive. More precisely, suppose you feel equally disposed to a draw and 
a lottery in which you have a probability of ^ of winning over the grand master and 
a probability of ^ of losing. Then 

u{B)=u{%A+±C) 

= l^u(A) + ±u(C) 
_ 19 L 
— 20 20 
_ _9_ 
~~ 10 

Problem Set 10.1 

1. Utilities are to be assigned to four events, A, B, C, and D. Event A is preferred 
over B, B over C, and C over D. u{B) is to be set equal to 1 and u(C) 0. It is 
determined that B is indifferent to the lottery rA + ( 1 — r)C, and C is indifferent 
to the lottery sB + (1 — s)D. Compute u(A) and u(D). 

2. Let A be the event that you are given $100, B the event that your status quo is 
maintained, and C the event that you are elected president of the student body. 
Set u(A) = 1, u(B) = 0, and determine your personal utility for C. 

10.2 TWO-PERSON, NON-ZERO-SUM GAMES 

In the next four sections we will discuss two-person, non-zero-sum games, that is, 
two-person games for which the sum of the payoffs to the two players for each of 
the various possible outcomes of the game is not necessarily always zero. We have 
seen examples of such games in Section 1.3. Our primary purpose in studying these 
games is to demonstrate some of the difficulties that arise when attempting to develop 
mathematical models of more complex situations. Indeed, although non-zero-sum 
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games reflect the types of situations encountered much more frequently in real-world 
applications, the formulation of a widely-accepted, all-encompassing mathematical 
model is, as we will see, not at all straightforward. 

For non-zero-sum games, the payoff for one player is not necessarily the negative 
of the payoff for the other player. Thus, to express the payoffs for such games, 
ordered pairs will be used, where the first component represents the payoff to Player 
1 and the second the payoff to Player 2. 

Game 1 

In the first game described in Section 1.3, both players had two pure strategies and 
the payoff tableau was given by 

S2 

(0,0) (12,-12) 
(-12,12) (6,6) 

Thus, if Pi uses S2 and Pi uses t\, P\ would lose 12 units and Pi would gain 12 units. 
Note that the (6,6) payoff is the only non-zero-sum payoff. 

Zero-sum games are strictly competitive — what one gains, the other loses. How-
ever, this is not the case for non-zero-sum games. For these games, both players may 
be able to ensure for themselves an advantage by cooperating with the other player. 
Thus the possibility of preplay communication and cooperation adds a new dimen-
sion to the study of non-zero-sum games. For example, consider Game 2. 

Game 2 

S2 

h 

(0,0) (1,1) 
(1,1) (0,0) 

In Game 2, there is no reason for either player to choose one strategy over the 
other unless, of course, they can communicate beforehand. Permitted such commu-
nication, the players would coordinate their strategies to ensure a (1,1) payoff for 
themselves. 

Repeated playing of the same game may achieve the same effect as pregame 
communication. Certainly, if two people played Game 2 100 times without commu-
nication, after several turns a pattern would be established providing a constant (1,1) 
payoff. 

However, cooperation, achieved either through preplay communication or re-
peated play, does not begin to resolve the difficulties inherent in non-zero-sum games. 
Consider Game 3. 
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Game 3 
h h 

Sl (10,1) (2,2) 
s2 (2,2) (1,10) 

In Game 3, Pi would prefer the (10,1) payoff and P2 the (1,10) payoff. Follow-
ing these preferences, Pi would play si and P2 would play t2, resulting in a (2,2) 
payoff. It is not clear how preplay communications could resolve these conflicting 
preferences. However, if the game were played twice, the players might agree on 
using strategy pair {s\,t\) for the first game and (s2,t2) for the second. In this way, 
both players would gain 11 units. But, after the game is played once with outcome 
(10,1), what is to prevent Pi from disregarding the agreement and playing si again, 
gaining at least a total of 12 units? 

Game 1 provides another example of the problems arising from incoercible agree-
ments. In that game, as a result of preplay discussion, both players may agree to the 
strategy pair (s2,t2) with payoff (6,6). But if either player expects the other to abide 
by this agreement, that player can gain 12 units by breaking his part of the bargain 
and using his first strategy. In fact, notice that strategy s\ dominates s2 and t\ dom-
inates t2 (i.e., 0 > —12 and 12 > 6). Thus, no matter what the opponent does, each 
player has more to gain by using his or her first strategy. The concept of dominance, 
so reasonable for zero-sum games, leads to the somewhat unreasonable outcome of 
(0,0) in this case. In general, dominance plays a minor role in nonzero theory. (If 
you are not yet convinced, consider the game in Problem 1.) 

The above examples show that preplay communication can lead to other prob-
lems, but in some cases it may not even be desirable. Consider Game 4. 

Game 4 

s2 

h 

(1,10) 
(0,-10) 

H 

(10,1) 
(0,-9) 

In this game, P2 would prefer the (1,10) outcome and P\ the (10,1) outcome. 
However, without preplay discussion, Pi has no reason to use strategy s2, and so the 
game would probably result in the (1,10) payoff following the use of the strategy 
pair {s\,t\ ) . However, if the players can communicate, P\ could demand that P2 use 
strategy t2, threatening the use of s2 ifP2 does not agree to play t2. Thus, with preplay 
discussion, Pi can attempt to force P2 to the (10,1) outcome, and so the notion of a 
threat becomes a component in the theory of cooperative games. 

Another factor for consideration in non-zero-sum games is whether or not utility 
can be transferred; that is, can one player make a side payment to his opponent after 
the game is played? Consider Game 5. 
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Game 5 

si (50,0) (1,5) 
s2 (1,0) (1,5) 

Here, if side payments are not possible, Pi has no reason to do anything but play 
Î2, leading to the (1,5) outcome. However, if the players can cooperate and transfer 
utility, P\ could offer to share her 50 units in some way with P2 in return for P2 
using t\ (and Pi using 51). Of course, this assumes that the utility is divisible and 
transferable and that the utility scales are comparable. 

In fact, the comparison of utilities between the players raises various questions 
that can be critical in the solution of a game. Does one player derive as much satis-
faction from a gain of, say, 25 units as the other player does? Is one player concerned 
not only with his or her own payoff but also with that of the other player, attempting 
perhaps to make it as small as possible or, on the other hand, to ensure that it remain 
above a certain level? Are negative payoffs always undesirable and positive payoffs 
always desirable? In any application of the theory, these questions would have to 
be considered. In the remainder of our discussion of non-zero-sum games, we will 
assume that the payoffs represent monetary units, say dollars, or $10, and so on, to 
players in equivalent financial positions. 

Given the many difficulties with non-zero-sum games, how can we attempt to 
develop a mathematical model of these games that in some way reflects rational be-
havior (whatever that is)? To begin, any model needs a precise starting point. Thus, 
the conditions under which a game is to be played must be made precise. This sug-
gests that for non-zero-sum games, various types, such as cooperative games versus 
noncooperative games, should be considered separately. Moreover, mathematicians 
are inclined to study the extreme cases first since, on the one hand, these cases may 
be the most susceptible to a reasonable theory and, on the other hand, descriptions 
of the extreme cases may provide insights applicable to the intermediate cases. The 
study of non-zero-sum games thus contains two major divisions: the study of non-
cooperative games, in which no preplay communication is permitted, and the study 
of cooperative games, in which preplay communication and binding agreements are 
permitted. In the next section noncooperative games will be considered briefly, and 
in Sections 10.4 and 10.5 an introduction to cooperative games will be presented. 

Problem Set 10.2 
1. In the following, row and column dominance leads to what outcome? Is this 

outcome reasonable? 

S2 

( -99,-99) (100,-100) 
(-100,100) (99,99) 
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2. The following game appears at first glance to be symmetric. Show that this is 
not the case and that one of the players has a more favorable position. 

h h 

■si 

Si 

(0,5) (-1,1) 
(1,-1) (5,0) 

10.3 NONCOOPERATIVE TWO-PERSON GAMES 

In this section, we assume that no form of communication or cooperation is per-
mitted between the players of the non-zero-sum game. Situations such as business 
competition between bitter rivals or market competition between large companies 
restricted by antitrust legislation may fall into this category. 

In zero-sum games, the elements of communication and cooperation are not 
present. In this respect zero-sum and noncooperative non-zero-sum games are sim-
ilar, and so it would seem that a reasonable starting point for the study of non-zero-
sum games would be the two principles set forth in Section 9.2. These two princi-
ples, concerning the maximization of security levels and the tendency to equilibrium 
strategies, provided the foundation for a complete theory of zero-sum games. In this 
section, we will consider the role of security levels and equilibrium strategies in non-
cooperative non-zero-sum games. However, we will see that in this instance, these 
two principles alone are incapable of leading to a complete theory. 

To define equilibrium strategies and security levels for non-zero-sum games, it 
is easiest first to single out the two payoff matrices. For a non-zero-sum game with 
m pure strategies for P\ and n pure strategies for Pi, let A be the m x n matrix with 
entries equal to the payoffs to P\, and let B be the corresponding mxn matrix of 
payoffs for Pi. As before, by a (mixed) strategy for Pi (or Pi), we mean an m-
component (or «-component) vector with nonnegative coordinates, the sum of which 
is 1. Again, we will use S and T to denote the sets of strategies for P\ and Pi, 
respectively. 

A strategy pair is said to be in equilibrium if neither player can gain by deviating 
from his or her prescribed strategy as long as the opponent's strategy remains fixed. 
Formally, for non-zero-sum games, we have the following definition. 

Definition 10.3.1. The strategy pair (XO,YQ) is in equilibrium if, for all X G S and 
Y€T, 

XAY^ < X0AY^ and X0BY' < X0BY^ 

To determine the players' security levels, we can use the theory of zero-sum 
games. Consider the zero-sum game with payoff matrix A. The value of this game is 
the maximum amount Pi can be guaranteed regardless of the play of Pi since, as we 
saw in the previous chapter, the value of the game is equal to Pi's optimal security 
level \'i, as defined in Section 9.4. And an optimal strategy for the first player of the 
zero-sum matrix game A would provide Pi with a security level strategy, that is, a 
strategy that will enable Pi to realize this security level. 
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To define / y s security level, a minor adjustment in the above process must first be 
made. The matrix B represents the payoffs to P2, the column player in the non-zero-
sum game. Thus, in general, P2 seeks the larger entries and not the smaller entries, as 
the column player does in a zero-sum game. In fact, P^'s position is identical to that 
of the row player of the zero-sum game with matrix B', since the transpose operation 
simply interchanges the rows and columns. Hence i^'s security level is defined in 
terms of the matrix game B'. 

Definition 10.3.2. Pi's security level is the value of the zero-sum matrix game A, 
and an optimal strategy for the row player of that game provides Pi with a security 
level strategy. 

Similarly, Pi's security level is the value of the zero-sum matrix game B', and 
an optimal strategy for the row player of that game provides Pi with a security level 
strategy. 

Example 10.3.1. Consider Game 4 of the previous section. The payoff tableau was 

Si 

h 

(1,10) 
(0,-10) 

h 

(10,1) 
(0,-9) 

For this game 

1 10 
0 0 

,B-
10 

-10 
and B' = 10 

1 
10 

- 9 

Matrix A has a saddle point at the 1 entry. Therefore P\ 's security level is 1, and the 
associated security level strategy is XQ = (1,0). Matrix B' has a saddle point at - 9 , 
and so Pi's security level is —9 with the associated security level strategy YQ = (0,1), 
the optimal strategy for the row player of the matrix game B'. However, the pair 
(Xo,lo) is n ° t m equilibrium; if Pi uses s 1, Pi's gain is maximized by using only t\. 
That is, if Fi = (1,0), 

W = X0BY{-£X0BYt
0 = \ 

Moreover, the first row of A dominates the second, and so it follows that any equi-
librium strategy pair must have Pi's strategy equal to XQ. But P2's best response to 
this is Y\. Thus (Xo,Y\) is the only strategy pair in equilibrium. Notice that the pay-
off (1,10) associated with this pair maintains Pi's security level, provides Pi with 
19 units more than P2's security level, and seems to be a reasonable solution of the 
game if played without communication and cooperation. 

In this game, the pair of security level strategies is not in equilibrium, as con-
trasted with the situation in zero-sum games (see Corollary 9.5.1 in Section 9.5). So 
already differences in the results of the application of the two basic principles begin 
to appear. In the remainder of this section, we will consider games in which these 
differences inhibit the solution of the games. 



10.3. NONCOOPERATIVE TWO-PERSON GAMES 399 

Game 6 

51 (10,1) (0,0) 
52 (0,0) (1,10) 

For this game, both strategy pairs ((1,0), (1,0)) and ((0,1), (0,1)) are in equilib-
rium, as can be easily seen. However, the payoffs associated with these two equilib-
rium pairs are quite distinct, with Pi benefiting more from the (10,1) payoff and Pi 
from the (1,10) payoff. Thus we come to the major problem of equilibrium pairs: 
different pairs can provide different payoffs. (Again, this is in contrast to the zero-
sum case. See Theorem 9.5.2 on page 367.) 

This problem cannot be solved in general. Certainly in Game 6, if we know 
nothing about the nature of the players themselves, there is no reason to choose one 
of these equilibrium pairs over the other. The security level strategies for Pi and Pi 
are (YJ , |y ) and (jy, YT)> respectively, with both players having as security level | j . 
However, this pair of strategies is not in equilibrium; if P\ uses s2 with frequency j j , 
P2 would be better off using t2 more frequently than -^ of the time, and conversely. 
On the other hand, the strategy pair ( ( ] j , yr), (yj-, j j ) ) is in equilibrium, with the 
expected payoff of C TT ' TT )- Would the players tend to use this mixed strategy pair? 

Notice that if the players in Game 6 could communicate and cooperate, they 
might agree to coordinate their strategies so that half the time the payoff is (10,1) 
and the other half it is (1,10). For example, they could agree to flip a coin, and if 
it turns up heads they both play their first strategy, and if it is tails they play their 
second strategy. In this way the (0,0) payoffs would be completely avoided, and the 
expected outcome for each player then would be 5 | , a considerable improvement 

, to 

Game 7 

■si 

S2 

h 

(0,0) (10,-1) 
(-1,10) (9,9) 

This game is of the prisoner's dilemma type, as in Game 1 of the previous section. 
In Game 6, there were three different pairs of equilibrium strategies, and none of 
these pairs corresponded to the security level strategies. However, in this game there 
are no such complications. Strategy s\ dominates s2 (0 > — 1 and 10 > 9) and t\ 
dominates t2. Thus ( ( 1,0), ( 1,0) ) is the only equilibrium pair. The matrices A and B' 
associated with this game have saddle points at the 0 entries, so the strategies (1,0) 
and (1,0) are also the security level strategies, providing the security level of 0 for 
both players. Hence the two basic principles lead in this game to one unique strategy 
pair. However, even in this case, is this strategy pair a reasonable solution of the 
game, since the (9,9) payoff offers much more to the players? We emphasize this 
dilemma in the next game. 
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Game 8 

Si 

h h h 

(0,0) (0,-1) (9,-10) 
(-1,1) (9,9) (8,10) 

This game is quite similar to Game 7. As can be easily shown, the security level 
of both players is 0 with security level strategies of XQ = (1,0) and Yç> = (1,0,0). 
Moreover, the strategy pair (XO,YQ) is in equilibrium (see Problem 6). However, is 
not the (9,9) outcome much more likely, especially in this game? 

Even if Game 8 is played without cooperation repeatedly between the same two 
players, it would seem that the (si, t\ ) strategy pair would occur most infrequently, if 
ever. Suppose the players start by using the pair (si,ti) several times. If Pi attempts 
to increase her payoff by moving to £3, after several plays of {siJ?,), would not P\ 
move to penalize Pi by playing si? The pair (s\ ,tj) would result in a -10 payoff to 
Pi, and so would she not immediately move to ti in order to reestablish as quickly as 
possible the mutually beneficial outcome of (9,9)? 

To summarize, these examples show that different equilibrium strategy pairs may 
provide different payoffs, that a pair of security level strategies may not be in equi-
librium, and that in some cases, a solution of the game in terms of equilibrium pairs 
may not seem reasonable even when an equilibrium pair is unique and corresponds 
to the security level strategies. Thus, as adequate and reasonable as they were for 
zero-sum games, the two basic principles of Section 9.2 are incapable of providing a 
complete theory for noncooperative non-zero-sum games. 

Even with the above limitations, much of the existing analysis of noncooperative 
games employs the concept of equilibrium pairs. The role of the players security 
levels, however, is not critical in noncooperative theory. One reason for this is that 
the payoffs to the two players associated with any equilibrium pair of strategies are 
at least as great as their security levels, as proved by the following theorem. 

Theorem 10.3.1. Given a two-person, non-zero-sum game with payoff matrices A 
and B, let u and v denote the security levels of P\ and Pi, respectively. Let (XQ,YQ) 
be any strategy pair in equilibrium. Then 

u < X0AY^ and v < X0BY^ 

Proof. Let S and T denote the strategy sets of P\ and Pi, respectively. Then, for any 

xes, 
MinXAY' < XAYk and XAYÂ < X0AYk 
YET 

Thus 

w = MaxMinXAy' 
xes YeT 

< MaxXAKÎ 
XeS 

= XoAY^ 
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Similarly, 

v = MaxMinyß'X' 
YeT xes 

<MaxYB'X^ 
YeT 

= MaxXoBY' 
YeT 

= X0BY^ a 

While not significant, we know that security levels and security level strategies 
always exist in noncooperative two-person, non-zero-sum games. This suggests the 
more important question — do equilibrium strategy pairs always exist? The answer 
is "yes." J. Nash, in his 1950 dissertation at Princeton, proved the existence equilib-
rium strategy pairs using Brouwer's Fixed-Point Theorem ([35]; see also [36]). We 
outline a proof, stating first a version of Brouwer's Fixed Point Theorem. 

Theorem 10.3.2 (Brouwer's Fixed Point Theorem). Any continuous map F from the 
unit cube K" = {(xi,... ,x„) : 0 < x,- < 1, for all i} into K" has at least one fixed 
point, that is, a point X £ Kn such that F(X) = X. 

The proof of this often-used theorem is nontrivial. The theorem does extend to 
any set equivalent to (homeomorphic to) a unit cube. In particular, if S and T are 
the strategy sets for Pi and Pi, respectively, in a noncooperative non-zero-sum game, 
then any continuous map from SxT to SxT has at least one fixed point. It is in this 
context that we use the theorem. Also, one other result will be used, which we state 
in a preliminary lemma. 

Lemma 10.3.1. For an mxn non-zero-sum game with P\ 's game matrix A and 
strategy set S and Pi's game matrix B and strategy set T, the strategy pair (X\, Y\ ) is 
in equilibrium if and only ifA^Y^ <X\AY[for all 1 <i<m andX\B^> <X\BY{ for 
all 1 < j <n. 

Proof. By definition, (Xi, Y\ ) is in equilibrium if 

XAY{ < XiAY( for all X e S and XxBYl < XiBY{ for all Y e T 

Applying the first inequality to Pi's pure strategies yields A^Y{ < X\AY{ for all 
1 < i <m; and applying the second inequality to Pi's pure strategies gives X\B^> < 
XiBY[ for all 1 < j < n. 

Conversely, if A^Y{ < X\AY{ for all i, then for any X G S, 

XAY[ = J2 MA{i)Y{), 

being a weighted average of the {Ar^Yf}, is less than or equal to X\AY[. Similarly 
for YeT. D 

Theorem 10.3.3. For any noncooperative two-person, non-zero-sum matrix game 
there exists at least one strategy pair in equilibrium. 
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Proof. Let A, S, B, and T be defined as in the above lemma. To prove the theorem, 
we will first define a continuous map Q.SxT-^SxT, apply Brouwer's Fixed Point 
Theorem to Q, and then show that any fixed point of Q is an equilibrium strategy pair. 
The essence of the proof lies in the definition of Q. 

To define Q for a point (X,Y) G S x T, we must first introduce some auxiliary 
terms. For a strategy pair X e S and Y G T, and for a fixed i and j , we define 

ct = Max{A(()F
r -XAY',0} and ^- = Max{XÄw -XBF' ,0} 

Then 
• all c, > 0 and all dj > 0; 
• a = O&A^Y' -XAY' < 0<^A{i)Y' < XAY'; 

• dj= 0 ^> XB^ - XBY' < 0 <^ XB^ < XBY' ; 
• (X,Y) is in equilibrium if and only if all c, and dj are 0. 

Now define Q:SxT ^ S xT by 

Q(X,Y) = (X\Y') = ((x[,x'2,...),(y\,y/
2,...)) 

where 
v ■■"-"■ A i yj+dj 

and^ = TTË4 
Then 

• X' is a strategy ; 

5>; 
as each 

-£, 

i + E c t ' 

x'( > 0 and 

JCf + C; 

1 + V o . 
^ x , - -5>H i + E ^ V ^ 

• F' is a strategy; 
• Q is continuous. 

From Brouwer's Fixed Point Theorem, Q has at least one fixed point, that is, there 
is a strategy pair (X,Y) such that Q(X,Y) = (X,Y). We claim that the fixed point 
(X, F) of the map Q is in equilibrium. 

Since Q{X, Y) = (X, F), for any / we have 

and so x, + c, = jt,- + x,- E c£> which implies that c, = JC,- E Q ; and similarly, for any 
j , we have dj =yjY.dk-

Suppose that (X,Y) is not in equilibrium. Then there exists i such that A,*Y' > 

XAY' or / such that X ^ > XXBY{. Assume that A{T)Y' > XAY', and so q > 0. 
Then 

0 < c* = xj y j Cjt => x* > 0 and y j ĉ  > 0 

However, XAF' = ^;Xi(A(,iF') is a weighted average of the {A(,\Fr}; and since 
A^Y' > XAY' and x~t > 0, there is an Jsuch that xj > 0 and A^F ' < XAFr. Therefore 
cj = 0. But 

0 = Cj = Xi J^0^ 
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which is a contradiction. Conclusion: (X,Y) is in equilibrium. D 

Problem Set 10.3 
1. Why do we not consider the possibility of cooperation in zero-sum games? 

2. Prove that a strategy pair (XO,YQ) is in equilibrium if and only if 

^(0*0 < xoAYo for 1 < / < m 

and 
X0B

{j) < XQBY^ for 1 < j < n 

3. Consider the game with the payoff tableau 

h t2 

S2 

(0,5) (1,1) 
( - 1 , - 1 ) (5,0) 

(a) Show that both players have a security level of 0. 
(b) Show thatX = (1,0) and Y = (0,1) are security level strategies. Is this pair 

{X,Y) in equilibrium? 
(c) Find two obvious pairs of equilibrium strategies that employ pure strategies. 

Can you find the one other equilibrium pair that uses mixed strategies? 
(d) Compare the payoffs associated with the equilibrium pairs to the players' 

security levels. 

4. Consider the game of Problem 2 of Section 10.2. (It is identical to the above 
game if the 1 and — 1 payoffs for Pi are interchanged.) Show that P\ 's security 
level is greater than /ys security level and that the unique equilibrium strategy 
pair leads to the (5,0) payoff. Thus, for this game, these concepts demonstrate 
Pi's more favorable position. 

5. Consider the game with the payoff tableau 

S2 

(2,7) ( - 5 , - 1 ) 
(0,-2) (7,2) 

(a) Show that Pi's position is more favorable. 
(b) Compute the security levels. 
(c) Show that each of the three strategy pairs ( ( 1,0), ( 1,0) ), ( (0,1 ), (0,1 ) ) and 

( ( | , | ) , ( | , i)) is in equilibrium. Find the associated expected payoffs. 
(d) Show that there are no other equilibrium strategy pairs. 
(e) Do either of these concepts distinguish P\ 's more favorable position? 

6. Prove that Game 8 has three strategy pairs in equilibrium. {Hint. Use the results 
of Problem 2.) 



404 CHAPTER 10. OTHER TOPICS IN GAME THEORY 

Do the concepts of security levels and equilibrium strategy pairs assist in the 
solution of the following game? (There are three equilibrium strategy pairs.) 

S2 

(1,2) (0,0) 
( - 2 , - 1 ) (4,1) 

8. In the proof of Theorem 10.3.3, it was shown that if (X, Y) is a fixed point of Q, 
then (X,Y) is in equilibrium. Establish the converse of this conclusion, that is, 
that if (X, Y) is in equilibrium, then (X, Y) is a fixed point of Q. 

10.4 COOPERATIVE T W O - P E R S O N G A M E S 

In this and the next section, we assume that the two players of the non-zero-sum 
game can enter into preplay discussion and binding agreements. Conflict situations 
of this type could be encountered, for example, in the negotiations between labor and 
management over a labor contract or between two countries over a trade agreement. 

As pointed out in the discussion of Game 6 in the previous section, the players 
can usually expand the set of possible payoffs of the game by cooperating. In Game 
6, if the players coordinate the use of the strategy pairs (s\,t\) and (s2,t2), using 
each with probability 5, the expected payoff is (55,55). However, if each player 
independently uses the mixed strategy X = Y — (5, 5), the expected payoff is 

(XAY',XBY') = Ci,li) 

where A and B are defined in the usual manner. Note that the independent use of 
these strategies would result in a (0,0) payoff with frequency 5. 

In fact, since the players are now permitted to discuss the game beforehand and 
correlate their play, the question of what strategy to use is subordinate to the question 
of what mutually beneficial payoff the players can agree to. Thus we determine first 
the set of all payoffs possible with the use of cooperation. If the game tableau is 
mxn, then a payoff, a point in R2, is produced by the coordinated use of the pure 
strategy pairs (st,tj), 1 < i < m, 1 < j < n. With each pair (s{,tj) is associated the 
outcome (aij,by), where the ay's and by's are the entries of the payoff matrices A 
and B, respectively. If the players agree to use each pair (si,tj) with probability or 
frequency ry, where 0 < ry < 1, then the expected payoff is simply Y^rü(aij'^'j)-
Thus the set of all possible payoffs, denoted by M, is given by 

M = \ L. rtMM •0<rij<l, 2^ rtj = 
\<i<m \<i<m 

This set M, which we will call the cooperative payoff set, is the smallest convex 
region containing all the points (ay,by). It can be easily determined from the set of 
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points (aij,bij), and its boundary consists of line segments with terminal points from 
this set. 

Example 10.4.1. For Game 6, the cooperative payoff set M is the shaded region: 

Example 10.4.2. For the game in Problem 7 of Section 10.3, the set M is sketched 
as follows: 

If side payments are permitted, the cooperative payoff set can be easily altered 
to reflect this fact. For example, suppose the utility units are infinitely divisible and 
comparable between the players, and the payoff set without side payments contains 
points in the first quadrant. If (w', v') is such a point, then the total utility u' + v' can be 
divided in any way between the two players, and so the set of possible payoffs would 
contain all the points in the first quadrant of the form (u, v), where u + v = u' + v'. 

Example 10.4.3. For the game of Example 10.4.1, if side payments are permitted, 
the payoff set would be the shaded region of Figure 10.1. For the game of Example 
10.4.2, if side payments are permitted, the first quadrant of the payoff region would 
be the set illustrated in Figure 10.2. 

In either case, any cooperative two-person game has a corresponding cooperative 
payoff set M. The question we are faced with now is whether or not it is possible to 
develop a theory based on acceptable (to whom?) axioms that will lead to a point, or 
at least a subset of M, that represents a reasonable (to whom?) solution of the game. 
As we have seen in Section 10.2, the concepts of security levels and equilibrium 
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Figure 10.1 Figure 10.2 

strategies, which worked so well in the zero-sum case, are incapable of producing 
a conclusive theory for noncooperative non-zero-sum games, and it is reasonable to 
assume that they again are inadequate by themselves for cooperative games, which 
resemble the zero-sum games even less. Thus other principles must be introduced, 
and associated with them are always the problems of reasonableness and acceptabil-
ity. In remainder of this section we develop one possible solution of cooperative 
games, called the negotiation set. It is based on two very plausible principles (one 
concerning security levels) formulated by von Neumann and Morgenstern, but the 
solution leads in general only to a subset of M and not to a unique point. 

First, the point (M, v) of M is said to be dominated by the point (u',v') of M if 
both u' > u and v1 > v. Since the players, by acting jointly, can attain as a payoff 
any point in M, it is reasonable to assume that they would not find acceptable any 
dominated payoff. Thus we restrict our attention to the undominated points of M. 

Second, although the game is cooperative, each player, by using a security level 
strategy, can attain at least his or her security level payoff regardless of the play of 
the other player. From this it is reasonable to conclude that P\ would find acceptable 
only those payoffs (u,v) with the property that u is at least as large as Pi's security 
level, and similarly for Pi and / y s security level. 

These two principles together lead to that subset of M consisting of all undomi-
nated payoffs (w, v) of M such that u>P\$ security level and v > P2& security level. 
This subset is called the negotiation set. 

Example 10.4.4. Consider the game of Problem 2 of Section 10.2 (see also Problem 
4 in Section 10.3.) The security levels of Pi and P2 are 1 and 0, respectively. The 
graph, assuming that side payments are not permitted, is sketched in Figure 10.3. 
The set of undominated payoffs consists of the entire line segment between the points 
(0,5) and (5,0). The negotiation set, however, is the subset ofthat line between the 
points (1,4) and (5,0). 

A possible solution, then, of cooperative two-person games is to say that the 
solution is simply this negotiation set. It seems that any just or fair solution would 
certainly be contained in this set, but it seems also that we may be leaving too much 
to be decided by the bargaining powers of the two players. In the next section, we 
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outline procedures based on a family of axioms by J. Nash that lead to a unique point 
in the negotiation set for the solution of the cooperative game. 

Problem Set 10.4 

(Assume in the following problems that side payments are not permitted.) 

1. Determine the negotiation set of Game 4 of Section 10.2. (This game was also 
discussed in the example of Section 10.3.) Does the negotiation set in any way 
reflect P] 's stronger bargaining position? 

2. Determine the negotiation set of Game 8 of Section 10.3. 

3. Suppose preplay discussion between the players is permitted, but agreements 
reached are not enforceable. Does the negotiation set still provide a reasonable 
solution of the game? Consider this question for, say, Game 1 of Section 10.2. 

4. The negotiation set may be small. Determine this set for Game 2 of Section 
10.2. 

5. True or false: If (X,Y) is a strategy pair in equilibrium, then the associated 
expected payoff (XAY' ,XBY') is a point of the negotiation set. 

6. Show that if a two-person game is, in fact, zero-sum, the negotiation set consists 
of 1 point, the solution of the zero-sum game. 
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10.5 THE AXIOMS OF NASH 

The axioms of Nash provide a procedure for determining a unique solution to every 
cooperative two-person game. Mathematically, this solution of such games is quite 
attractive. The axioms seem reasonable enough, and a simple theorem shows that a 
unique point, easily determined by considering the maximal value on the set M of 
an elementary function, satisfies the axioms. A modification of the procedure leads 
to a scheme that incorporates the familiar notions of security levels and equilibrium 
strategies and reflects the threat potential of the players. In this section, we provide 
only an outline of the techniques. More details can be found in the papers of Nash 
[37, 38] and the books by Luce and Raiffa [31] and Owen [32]. 

As we have seen, with every cooperative two-person game we can associate its 
cooperative payoff set M. We can also associate a point (K*, v*) of M, a status quo 
point, consisting of the minimally acceptable payoffs for the two players. For exam-
ple, the security levels of the players could serve as the components of such a point. 
Now we propose to construct a function, denoted by F[M, (u*,v*)], that assigns to 
the set M and the point («*, v*) a "solution" of the game, a payoff point that is in 
some way a solution of the cooperative game. We ask initially, what sorts of prop-
erties should this function satisfy? The following axioms provide an answer to this 
question. 

Axioms of Nash ([37]) 

Denote the point F[M,(u*,v*)] by (u',v'). 

1. («', v') is an undominated point of M such that u' > u* and v' > v*. 
2. If L is a linear transformation from M2 to R2 of the form L(u,v) = {c\u + 

d\,C2V + d.2), where c\ and C2 are positive, then 

F[L{M),L{u*,v*)]=L{u',v') 

3. If N CM, (u*,v*) eN,and(u',v') <E N, then 

F[N,(u*,V*)}=F[M,(u\v*)] 

4. If (M, V) e M implies that (v, u) € M, and if u* = v*, then u! = V. 

The first axiom states that this bargaining solution F is a feasible payoff, dom-
inated by no other payoff, and at least as acceptable as the status quo point. The 
second axiom is concerned with changes in the utility functions. Recall that in Sec-
tion 10.1, it was pointed out that a utility function is determined once its value for 
two distinct outcomes is defined, but that the values for these two outcomes can be 
arbitrarily set as long as their linear preferential ordering is maintained. If different 
values are used, the resulting equivalent utility function will differ by a transforma-
tion of the form cu + d, where c > 0. 

The second axiom states that changes such as these should be reflected in the 
obvious manner in the payoff function F, so that F is essentially invariant under 
utility transformations. 
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The third axiom is called the independence of irrelevant alternatives axiom. It 
states that if the bargaining solution of a game [M, (u*,v*)] is also a point in the 
subset N of M, then this point is also the solution of the game [N, (M*,V*)]. Another 
way of saying this is that if (M',V') is the solution of the game [N,(u*,v*)] and if 
the set TV is enlarged to the set M containing other possible payoffs, the solution of 
[M, (u*, v*)] must be either the former solution («', v') or a new point in M, not in N. 

The fourth axiom is straightforward. If M is symmetric about the line u = v, and 
if u* = v*, then the positions of the players are equivalent and the payoff to Pi should 
equal the payoff to Pj. 

The remarkable thing about these four axioms is that for any given set M and 
point (w*, v*) G M, there exists a unique point of M satisfying the axioms. (Thus 
they work admirably!) This point can be easily determined. As long as M contains 
points (w, v) such that u > u* and v > v*, F[M, (u*,v*)] is the unique point of that 
subset of M with u> u* and v > v* at which the function (u — u*)(v — v*) attains 
its maximal value. (Notice that the level curves of the function (u — u*)(v — v*) are 
hyperbolic, and so uniqueness follows from the convexity of M.) A proof that this 
prescription provides the unique point satisfying the axioms is contained in [37] (see 
also [31] or [32]). 

We now give some examples illustrating this procedure. We again assume that 
side payments are not permitted and, for the status quo point (u*,v*), we use the 
security levels of the two players. 

Example 10.5.1. Consider Game 6 of Section 10.3. The security level for both 
players is jy, and the graph of set M, as described in Example 10.4.1, is sketched in 
Figure 10.4. On M, the maximum of the function uv is attained at the point (if, y ), 
and so we have F[M, (0,0)] = (-y, y ) . This seems to be a reasonable solution of the 
game. Note that the first and fourth axioms also imply in this case that F[M, (0,0)] 

" 11 
2 

is(-n n< 

Example 10.5.2. Consider the game in Problem 2 of Section 10.2. As determined in 
Problem 4 of Section 10.3, the security levels for Pj and Pi are 1 and 0, respectively. 
The set M, described in Example 10.4.4, is illustrated in Figure 10.5. 

10 

(11/2,11/2) 

10,1) 
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L ( 0, 5 ) 

. ( 1 , 4 ) 

The maximal value of the function [u — l)v on M is attained at the point (3,2). 
(See Problem 1.) Thus this solution also reflects Pi's stronger bargaining position. 

Example 10.5.3. Consider Game 4 of Section 10.2. The security levels are 1 and 
—9 (see Example 10.3.1), and the negotiation set M is depicted in Figure 10.6 (see 
also Problem 1 of Section 10.4). On M, the maximum of (u — l)(v + 9) is attained at 

. ( 1 , 1 0 ) 

( 0, - 9 ) 

Figure 10.6 
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Figure 10.7 

(10,1) (see Problem 2), and so this resolution of the game, in contrast to the concept 
of the negotiation set, clearly recognizes the strong bargaining position of P\. 

Example 10.5.4. Consider the game of Problem 5 of Section 10.3. The security 
level of both players is 1, and the set M is given in Figure 10.7. For this game, 
F[M, (1,1)] = (§, §). Note that the negotiation set is the line segment between the 
points (2,7) and (7,2). Moreover, as determined in Problem 5, the payoffs associated 
with the equilibrium strategy pairs do not distinguish the two players. Thus, for this 
game, all the concepts so far developed in no way distinguish Pi from P}. Do you 
still consider Pi 's position to be stronger? If so, read on. 

John Nash [38] has extended this bargaining procedure to a scheme that consid-
ers the full threat potential for the players. Suppose two players are about to play 
a fixed, non-zero-sum game in which discussion, cooperation, and binding agree-
ments are permitted. The payoff set M is fixed, determined by the payoff tableau. 
Assume further that the bargaining function F described above accurately represents 
the payoff mutually agreed on by the two players once a status quo point has been 
determined. But Pi questions the use of his security level for determining the sta-
tus quo point. Pi wonders, is there a strategy X, a threat strategy, say, such that no 
matter what strategy Y used by P2, if the expected payoff (XAY' ,XBY') correspond-
ing to the strategy pair (X,Y) is used as the status quo point in the function F, the 
payoff to Pi will be larger? Extending this, Pi asks, what strategy X will guaran-
tee the largest first component for the function F[M, (XAY' ,XBY')] regardless of the 
strategy Y employed by P2? 

Similarly, Pi considers her potential threat strategies. Hence each player desires 
to choose a strategy that he or she is willing to play and that will provide a status 
quo point (XAY',XBY') for the bargaining function F[M,(XAY',XBY')} that will 
guarantee for the player the most profitable outcome independent of the opponent's 
strategy. 
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We can indicate this process as follows. Since M is fixed, F[M, (XAY',XBY')} 
can be considered a two-step function depending only on X e S and Y e T. Given 
a strategy pair (X,Y), first, the expected payoff (XAY',XBY'), a point in M, is de-
termined; and second, the value of F is determined using this point as the status quo 
point. The first component of F[M, (XAY' ,XBY')} is the associated payoff to P\, 
and the second is the payoff to P2. Denote these two components by F\(X,Y) and 
F2{X,Y). Thus 

F[M,(XAY',XBY')} = (F\(X,Y),F2(X,Y)) 

The players certainly wish to maximize their security levels. (Principle I of Section 
9.2.) Paralleling the development for zero-sum games, the security levels of P\ and 
Pi are given by 

MaxMinF 1(X,y) and MaxMinF2(X,Y) 
XeS YeT YeT XeS 

Suppose XQ e S and YQ e T are strategies that realize these security levels; that is, 

MaxMinFi (X. Y) = MinFi (X0, Y) 
XeS YeT ' YeT 

and 

MaxMinF 2(Z,y) = MinF2(X,F0) 
YeT XeS XeS 

But now Pi expects P2 to use YQ, and P2 anticipates that P\ will use XQ. Thus each 
asks, is my choice of strategy the best against the strategy I anticipate my opponent 
will use? That is, is the pair (XQ,YQ) stable or in equilibrium, as defined using this 
scheme? (Principle II of Section 9.2.) In this context, the strategy pair (XQ, YQ) is in 
equilibrium if, for any XeS and YeT, 

Fi(X,Y0)<Fi(Xo,Yo) and F2(X0,Y) < F2(XQ,YQ) 

It can be shown (see [38]) that there always exist strategies XQ and YQ that realize 
these security levels (and the use of Max and Min is justified), and that any such 
strategy pair (XQ,YQ) is in equilibrium, as defined above. (Actually, the proof is 
somewhat reversed. It can be shown first that there are equilibrium strategy pairs and 
then that they deliver the maximal security levels.) Thus these security levels, the 
payoff point of F[M, (XQAYQ,XQBYQ)], provide another solution of the cooperative 
game, a solution that incorporates the full threat potential of the players. Moreover, 
in some cases, such as games permitting side payments, the zero-sum theory can 
be used to compute easily these strategies and the corresponding solution (see, for 
example, [32]). 

Example 10.5.5 (Continuation of Example 10.5.4). For the game of Example 10.5.4, 
the strategies corresponding to the above can be determined to be XQ = (0,1) and 
Y0 = (1,0). The associated status quo point (XQAY^XQBY^) is ( 0 , - 2 ) . Using the 
graph in Figure 10.7 (and Problem 1), we have F[M, (0,-2)} = (-y, \). Thus this 
solution of the game of Problem 5 of Section 10.3 distinguishes P\ 's stronger threat 
potential. 
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In fact, these results can be reasoned to by simply considering the game tableau 
and the corresponding set M. Note that if Pi threatens to use strategy S2, no mat-
ter what P2 does, the corresponding expected payoff would lie on the line segment 
between (0,-2) and (7,2). The bargaining function F maps these points onto the 
segment between ( y , j ) and (7,2). Thus Pi's security level is at least y , and P2's 
can be at most y If P2 threatens to use strategy t\, no matter what Pi does, the 
corresponding expected payoff would lie on the line segment between (0, —2) and 
(2,7). F maps these points onto the segment between ( y , j ) and (2,7). Hence P2's 
security level is at least | , and Pi's is at most y . It follows that the payoff ( y , 5) is 
the solution of the game under this scheme. Note also that this strategy pair (s2,t\) 
is in equilibrium under this scheme. 

In this section, we have outlined briefly two related methods for solving coop-
erative two-person games. There are other techniques. Some of these are described 
in the books by Luce and Raiffa [31] and Rapoport [39]. Although these two meth-
ods based on the seemingly plausible axioms of Nash lead to unique solutions, the 
reasonableness and relevance of these axioms must be studied closely. For a critical 
evaluation of the applicability of these schemes, refer to the excellent book by Luce 
and Raiffa [31]. 

Problem Set 10.5 

1. (a) Show that if the set M is of the form 

(u*,b) 

(u*y) 

the maximum of the function {u — u*)(v — v*) is attained at the point P = 
((u*+a)/2,(v*+b)/2). 

(b) Show thai if N is a subset of M containing the point P, the maximum of that 
same function on N is also attained at P. 

2. Show that in Example 10.5.3, the maximum of (u — l)(v + 9) is attained at the 
point (10,1). 

3. Show that for the game of Example 10.5.2, the pair of threat strategies (s2,t\) 
is in equilibrium according to the second scheme. What is the solution of this 
game using this scheme? 

4. Determine the solutions of Problem 7 of Section 10.3 (and Example 10.4.2 on 
page 405) under both schemes of this section. For the second, consider the 
results of Pi using S2 as the threat strategy. 
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10.6 AN EXAMPLE 

In this section, we will develop an example of a two-person game that will illustrate 
some of the concepts discussed in the previous two chapters. We hope that this 
example will help the reader understand how these concepts might be applied and 
realize the significance of the questions that have been raised. The model should 
also point out how tenuous the status of a solution to a game may be. 

Consider the position of two food wholesalers competing for the public dollar 
through their respective supermarket chains. Each fall the wholesalers must decide 
on whether or not they, through their supermarkets, will conduct a promotion cam-
paign the following winter. For example, their stores could offer their customers 
items such as dinnerware, silverware, computer games, DVDs, and so on, either free 
of charge or at reduced costs, or they could offer their customers participation in a 
game or contest with small cash prizes. In general, if only one chain of supermarkets 
has such a campaign, its business will be increased significantly. However, if both 
wholesalers decide on promotion campaigns, the effects are nullified. (Nevertheless, 
such campaigns would still provide an abundance of material for their advertising 
agencies.) Thus the decision to be made each fall by each wholesaler is to have or 
not have a promotion campaign that winter. 

One wholesaler, the larger of the two, attempts to formulate this decision problem 
in terms of a two-person game. From past records, the wholesaler knows that her 
chain handles approximately 60% of what she at first considers a fixed segment of 
the business and her competitor 40%. If she conducts a promotion campaign and the 
competitor does not, her business increases to 90%. If the situation is reversed, the 
competitor's volume is increased to 70%. If both offer sales gimmicks, the business 
breakdown ratio is again 60:40. The wholesaler initially considers this as a zero-
sum game, with 30% of the food-purchasing market to be gained or lost on account 
of promotion campaigns. Thus the wholesaler sets up the following tableau for the 
corresponding zero-sum game, with her firm represented by Player 1 : 

No Promotion Promotion 

No Promotion 0 —30 
Promotion 30 0 

Upon further reflection, the wholesaler realizes that this model is totally inade-
quate. There are two obvious reasons why the game is not zero-sum. On the one 
hand, she knows that it cannot be assumed that between these two major wholesalers 
there is one fixed market. It is true that they control the majority of the market, but 
there are other small, independent food stores from which business can be attracted 
by an effective promotion campaign. On the other hand, the cost of conducting a 
promotion campaign — the costs of the items involved, the associated advertising, 
and the labor administrating the campaign — must also be considered. 

Thus the wholesaler decides to formulate the problem as a non-zero-sum game. 
The wholesaler uses as utility units the volume of business, measured in thousands 
of dollars, less the cost of a promotion campaign if one is conducted. The result is 
the following tableau, where again her firm is represented by Player 1 : 
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No Promotion Promotion 

No Promotion (60,40) (40,70) 
Promotion (90,20) (50,30) 

The wholesaler believes that this table more accurately reflects the situation. If 
she conducts a promotion campaign and the competitor does not, she attracts busi-
ness not only from the competitor but also from the other independent food stores, 
and the combined volume of the two major wholesalers is increased by 10 units, 
with her volume increased 30 units and the competitor's volume decreased 20 units. 
A similar relationship holds if the competitor is the only one to conduct a campaign. 
Moreover, the futility of both wholesalers conducting campaigns is now measured. 
The increases in business, in this case coming only from the independent stores, is 
not adequate to compensate for the expense of such campaigns, and both wholesalers 
lose 10 units from their income under routine operations. 

The result is a two-person, non-zero-sum game of the prisoner's dilemma type. 
The "promotion" strategy of each player dominates the other strategy, and so the 
game has only one equilibrium strategy pair, and the outcome corresponding to this 
pair is the (50,30) payoff. This payoff also represents the security levels of the two 
players. Thus, if the game is played noncooperatively, the seemingly expected result 
favors the advertising agencies. 

The wholesaler notes, however, that the outcome (60,40) is more beneficial to 
both parties than the outcome (50,30). Can she bring about this outcome by at-
tempting to cooperate with her competitor? Since they are not yet bitter rivals, this 
possibility exists; if they could mutually agree not to hold promotion campaigns in 
the winter, they could realize this advantageous payoff. Note, however, the impor-
tance of entering into a binding agreement. If either wholesaler can convince the 
competitor not to conduct a promotion campaign, that wholesaler has much to gain, 
at least that winter, by being the only one to conduct a promotion campaign. Actu-
ally, legislation restricting the use of gimmicks by food retailers could have the same 
effect as the possibility of entering into binding agreements. 

Consider now the solution concepts applied to this game for cooperative two-
person games. Remember that this theory assumes the possibility of the players 
entering into binding agreements. The negotiation set for this game is the line seg-
ment in the plane connecting the points (80,30) and (50,60). The outcome (60,40) 
is not on this segment. Both solution concepts developed in the previous section lead 
to the outcome (65,45), which is also the midpoint of the negotiation set. To realize 
this outcome, the wholesalers must enter into an even more involved collusion, each 
agreeing to conduct promotion campaigns in alternate years and not in competition 
with each other. In this case such campaigns maintain their novelty potential, and 
the independent store owners are hurt the most. 

This suggests the possibility of the owners of the independent stores uniting and 
attempting to counteract their weaker position, either by promotion campaigns of 
their own or by adjustments in the selling prices of their products. But this leads to 
«-person game theory (in this case n = 3) and so is beyond the scope of this text. As is 
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frequently the case, models involving human behavior quickly become complicated. 
We refer the food wholesaler to the references. 



APPENDIX A 

VECTORS AND 

MATRICES 

This appendix provides a brief listing of the linear algebra topics used in this book. 
These topics include the basic concepts of vectors and matrices and the transpose of 
a matrix. 

A point X = (xi,X2,-..,x„)ofWis said to be an n-dimensional vector or simply 
a vector. Multiplication of vectors by real numbers is defined in the obvious manner; 
that is, for r G R, rX is defined to be the vector (rx\,rx2,...,rxn) in K". If X and 
Y = (yi,y2,---,y>n) n a v e the same dimension, then we define their sum X + Y = 
{x\ +y\ ,X2 +y2, ■■■,xn +yn) and dot product X ■ Y = x\y\ + X2J2 + ••• +xnyn. Note 
that the dot product of two vectors is simply a real number and that this operation is 
commutative, that is, X ■ Y = Y X. 

Example A.l. For X = (3,0,-1,5) and Y = (-2,6,7,0), we have 

3X = 3(3,0,-1,5) = (9,0,-3,15) 

X + Y = (3 - 2 , 0 + 6, - 1 + 7 , 5 + 0) = (1,6,6,5) 

X-y = 3(-2)+0(6) + ( - l ) (7)+5(0) = - 6 - 7 = -13 

An m x n matrix is simply a rectangular array of real numbers, with the array 
having m rows and n columns. The matrix 

ail 
au 
Ö22 

@ml @m2 

can be denoted by (a,;), where a^ is the element of matrix A appearing in the j'th row 
and yth column of the array. 

If A = (ay) and B = (bij) are matrices of the same dimensions, we define their 
sum A + B = (aij + bij), a matrix with the same dimension. Multiplication of 
a matrix by a real number is defined as follows: For r G l and A = (0,7), define 
rA — {raij). 

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, Inc. 
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Example A.2. For A 
3 0 1 

- 1 2 5 andß = 

and 

A+B 

3 A 

3 + 0 0 - 1 1 - 2 
-1+4 2 + 1 5 - 3 

3(3) 
3 ( - l ) 

3(0) 3(1) 
3(2) 3(5) 

- 1 - 2 " 
1 - 3 i w 

3 - 1 - 1 " 
3 3 2 

9 0 3 " 
3 6 15 

we have 

To define multiplication between matrices, suppose A = (aij) is an m x n matrix 
and B = {bij) is an n x p matrix. Then the product AB = C — (c;i) is defined to be 
that mx p matrix with the ijth element c,; = J2k=i aikbkj- Thus the ijth element of 
the product is the dot product of the ith row of A with the y'th column of B. 

By convention, we will allow ourselves to treat a single real number as a 1 x 
1 matrix, a matrix having just one row and one column — and vice versa. Thus 
an expression of the form [r], where r is a real number, will be written simply as 
r. (Such an extension of the matrix notation for real numbers is easily seen to be 
consistent with all of the definitions given so far.) 

Example A.3. We have 

[ 6 - 1 - 8 - 4 6 - ( - 2 ) - 8 - 5 

1x2 
2x2 

1x2 

1 - 2 
4 5 

[ -26 -52 ] 

[ -26 -52 ] 

1x2 

- 3 
1 

2x1 

(-26) -(-3) + (-52)- (1) ] 

26 

3 
- 1 

6 

0 
2 

- 3 

-2 3 
5 0 

l x l 

- 6 9 
12 - 3 

-27 18 

21 
-17 

57 

3x2 

However, the matrix product 

2x4 
3x4 

2x4 

3 
-1 
6 

3x2 

0 
2 

-3 

is undefined, since the number of columns in the first matrix (four) is not the same 
as the number of rows in the second matrix (three). 
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Let / be the nxn matrix with Is on the main diagonal and Os elsewhere; that is, 

1 0 
0 1 

0 0 

The matrix / is called the identity matrix (of order n). Notice that for any nxn matrix 
A, we have AI = IA. = A, and thus multiplication of an n x n matrix A by the matrix 
/ is the matrix version of multiplication of a real number by 1. 

An n x n matrix A is said to be invertible or nonsingular if there exists an nxn 
matrix B such that AB = BA — I. Such a matrix B is called the inverse of A and is 
denoted by A- 1 . Notice that a symmetry holds in this definition: if B is the inverse 
of A, then A must necessarily be the inverse of B. 

It can be shown that for square (n x ri) matrices A and B, if one of the equations 
AB = I or BA = I holds, then so does the other. Thus un nxn matrix A will be 
invertible if there exists B such that either AB = I or BA = I, in which case B =A~l 

(andA=ß" 1 ) . 

Example A.4. If A: and B i 1 
-2 3 , then 

AB = BA 
1 0 
0 1 

and so A B,B A. 

Let A = (ûty) be an m x n matrix. Then the transpose of A, denoted by A', is that 
n x m matrix with its ijth element equal to the jith element of A; that is, A' = (aß). 
Thus the rows of A' are simply the columns of A and the columns of A' are the rows 
of A. Notice that if this operation is performed twice, the resulting matrix will be the 
original matrix; that is, (A')' = A. 

Example A.5. 

1 
-4 

1 - 4 
-2 5 
3 - 6 

and [ 6 7 

Suppose X = (x\,X2,■ ■ ■ ,xn) and Y = (yi,y>2:---,yn) are «-dimensional vectors. 
Expressed this way, they can also be considered \xn matrices, and their transposes 
would thus be n x 1 matrices. In fact, we have 

XY = YX=XY' = YX\ 

where the last two products are ordinary matrix multiplications. 
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Example A.6. 

(3,1,-2) -(0,4,8) = (0,4,8) -(3,1,-2) 

= 3 1 - 2 

[ 0 4 8 ] 

-12 

0 
4 
8 

3 
1 

-2 

The following result concerning the transpose operator is used in Section 4.4. 

Theorem A.l. Suppose A is anmxn matrix and B is annx p matrix. Then the two 
products AB and B'A' are defined, and (AB)' = B'A*. 

Proof. Note first that AB is an m x p matrix, so its transpose is a p x m matrix. 
Further, B' is a p x n matrix while A' is an n x m matrix; thus the product B'A' is 
defined and is also apxm matrix. 

To show that these two pxm matrices are equal, consider the ijth entry of each 
(1 < i < p, 1 < j < m). Using only definitions and the fact that dot product multipli-
cation is commutative, we have 

ijth element of (AB)' jith element of AB 

■ {jth row of A) ■ {ith column of B) 

■ {jth column of A') ■ {ith row of B') 

{ith row of B') ■ {jth column of A') 

«y'th element of B'A' D 



APPENDIX ß 

AN EXAMPLE 

OF CYCLING 

The following linear programming problem, from Beale [40], has seven variables, 
three constraints, and two zero constant terms. 

Minimize — |x4 + 20x5 — 5*6 + 6x7 
subject to 
X\ + |x4 — 8x5 — X0 + 9X7 = 0 

X2 + 5X4 — 12X5 ~~ 2X6 + ^Xl = ^ 
X3 + X6 = 1 

If we apply the simplex algorithm to the problem, agreeing to always pivot in the 
column with the smallest Cj term and, when Min{£>,/<2!S : a,s > 0} is attained in more 
than one row, to pivot in the eligible row higher up in the tableau (or in the row with 
the basic variable of smallest index), we cycle after six iterations. See Table B. 1. We 
leave to the reader the determination of a sequence of pivot steps that completes the 
problem. 

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
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Table B.l 

X\ 

x2 

X3 

X4 

x2 

x3 

x4 

x5 

*3 

x6 

X5 

X3 

x6 

XI 

X3 

x\ 

x-i 

X3 

x\ 

x2 

X3 

x\ 

1 

0 

0 

0 

4 

- 2 

0 

3 

-12 
1 
2 

0 

1 
3 
2 

1 
16 

3 
2 

- 2 

© 
1 
3 

- 2 

- 1 

1 

0 

0 

0 

1 

0 

0 

0 

X2 

0 

1 

0 

0 

0 

1 

0 

0 

8 
1 
4 

0 

1 

1 
1 
8 

- 1 

3 

- 6 
2 
3 

6 

1 

- 3 

© 
0 

- 2 

0 

1 

0 

0 

X3 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

X4 

© 
1 
2 

0 
3 
4 

1 

0 

0 

0 

1 

0 

0 

0 
1 
8 

3 
64 

1 
8 

1 
4 

5 
2 

1 
4 

5 
2 

1 
2 

5 
4 

1 
6 

0 
7 
4 

1 
4 

1 
2 

0 
3 
4 

X5 

- 8 

- 1 2 

0 

20 

-32 

© 
0 

- 4 

0 

1 

0 

0 

0 

1 

0 

0 

56 
16 
3 

-56 

16 

28 

- 4 

0 

44 

- 8 

- 1 2 

0 

20 

x6 

1 
1 
2 

1 
1 
2 

- 4 
3 
2 

1 
7 
2 

CO 
3 
8 

1 

- 2 

1 

0 

0 

0 

1 

0 

0 

0 
1 
2 

1 
6 

1 
1 
2 

- 1 
1 
2 

1 
1 
2 

X-, 

9 

3 

0 

6 

36 

-15 

0 

33 

- 8 4 
15 
4 

0 

18 
21 
2 

(D 
21 
2 

- 3 

0 

1 

0 

0 

0 

1 

0 

0 

9 

3 

0 

6 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 



APPENDIX O 

EFFICIENCY OF THE 

SIMPLEX METHOD 

In Section 3.4 it was noted that a linear programming problem with m constraints and 
n variables has at most (") = ,,"! ,. basic solutions. Thus the simplex algorithm 

applied to such a problem must terminate in at most (^) iterations, as long as cycling 
is avoided and a basis is never repeated. However, the binomial coefficient grows 
very rapidly. For example, for a linear programming problem with 100 variables and 
50 constraints we have the binomial coefficient ( 50 ), which equals approximately 
1029. (To help put this number in perspective, note that the earth is only about 4 x 109 

years old.) Thus the question: can we improve upon the rate of convergence of the 
simplex algorithm? 

In considering this question, first we must make precise our meaning of the sim-
plex algorithm, that is, we must state precisely the rules used to select at each iter-
ation the pivoting term. For example, in selecting the column in which to pivot, we 
could choose the column with the smallest c*: term, or the column that would yield 
the greatest reduction in the value of the objective function, or enter the eligible vari-
able with the smallest index. Whatever set of rules we select must be unambiguous, 
directing our selection of pivot term when ties occur among the choices; and the rules 
must be such that cycling is impossible. (As mentioned in Section 3.8, pivoting rules 
exist that guarantee that cycling will not occur. One possible set of rules would be 
to combine procedures, using a simple and efficient rule for our primary prescription 
but invoking a cycling-prevention procedure when a basis is repeated.) 

Now the question in the first paragraph can be more precisely stated. Does there 
exist a well-defined, noncycling prescription for the simplex algorithm and a function 
f(m, n) such that, when used, the number of iterations to solve any linear program-
ming problem with n variables and m constraints is no more than f(m,n), where the 
growth rate of / is slower that that of (^) ? For example, can we characterize the 
"worst-case" behavior of the simplex method in terms of, say, a polynomial function 
in m and rfl Since the simplex method works so well in practice, it would seem 
that there should exist a version of the method that has a polynomial bound on the 
maximum number of iterations necessary to solve any problem. 

But in 1972, V. Klee and G. Minty [41 ] published an example of a linear program-
ming problem with n nonnegative variables and 2n inequality constraints that took 
2" — 1 iterations along the vertices of the feasible set to solve, each improving the 
An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, Inc. 
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value of the objective function. A modification showed that the worst-case behavior 
of the simplex algorithm using the simple rule "pivot in the column with the smallest 
c*:" is also exponential. Since then, comparable examples have been constructed for 
other variants of the simplex algorithm (see, for example, [42], [43], or [44]). Of 
course, these examples do not answer definitely the question raised above. There 
could still be a pivoting rule for the simplex algorithm that has a polynomial bound 
in its worst-case behavior, but the question of whether one exists has remained unan-
swered over the last five decades. (Progress, however, has been reported - see [45].) 
It is fitting that the simplex method, one of the top 10 algorithms "with the greatest 
influence on the development and practice of science and engineering in the 20th 
century" [46], would have an associated problem listed among the great problems 
for the 21st century [47]. 

Given these theoretical results, it is even more intriguing that the simplex method 
works so well in practice. In his 1963 book, G. Dantzig states ([7], p. 160): "For 
an ra-equation problem with m different variables in the final basic set, the number 
of iterations may run anywhere from m as a minimum, to 2m and rarely to 3m. The 
number is usually less than 3m/2 when there are less than 50 equations and 200 vari-
ables (to judge from informal empirical observations)." Experimental results support 
these observations. For example, D. Avis and V. Chvatal [48] record the average 
number of iterations (and mean time) necessary to complete 100 linear program-
ming problems (coefficients randomly selected) of various fixed sizes (m and n equal 
to 10, 20, 30, 40, and 50, with m <n) using three different pivoting rules (and the 
revised simplex algorithm). For the "pivot in the column with the smallest <r-" rule 
with n = 50, the mean number of iterations is very close to 2m for each of the five 
values of m. 

Work has been done on developing a theoretical explanation for this propitious 
average case behavior of the simplex method. By placing a probability measure 
on the space of coefficients for a linear programming problem, statements on the 
expected number of steps necessary to complete a problem using a well-defined ver-
sion of the simplex method can be made precise. See, for example, the articles by S. 
Smale [49], I. Adler and N. Megiddo [50], and M. Todd [51] and the monograph by 
H. K. Borgwardt [52]. 

Our story cannot end here. While we have not yet established a variant of the 
simplex method that can be proved to be polynomial time in its worst-case behavior, 
there are other algorithms that can solve a linear programming problem in poly-
nomial time. In a 1979 article, the Russian mathematician Leonid Khachian [53] 
announced a polynomial time algorithm for the solution of the linear programming 
problem. The algorithm is quite distinct from the simplex method. It uses a sequence 
of ellipsoids to drive to a solution point of a linear programming problem. The an-
nouncement of this polynomial time algorithm generated considerable excitement. 
(See, for example, the New York Times article by M. Browne [54] or the article by 
E. Lawler [55] which gives an account of some of the events and misconceptions as-
sociated with Khachian's announcement.) The ellipsoid algorithm was a major the-
oretical development; however, this algorithm has not replaced the simplex method 
as the practical tool for solving linear programming problems. It did not match the 
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simplex method's success in efficiently and effectively computing solutions to linear 
programming problems. 

In 1984, the mathematician Narendra Karmarkar [56], while working at AT&T 
Bell Laboratories, published another polynomial time algorithm for the linear pro-
gramming problem. (This announcement too received considerable attention; see, 
for example, [57] or [58].) Karmarkar's interior point algorithm uses spheres and 
projective geometry to construct a sequence of points converging to a solution of a 
linear programming problem. While this algorithm is not the successor to the sim-
plex method, work continues utilizing theses ideas and others to develop practical 
and efficient algorithms to solve the general linear programming problem and spe-
cific types of the problem. 
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APPENDIX D 

LP ASSISTANT 

Overview 

LP Assistant is software designed for use with this text that allows a student to cre-
ate an electronic representation of a simplex tableau, and then to easily manage the 
arithmetic associated with both pivoting and the introduction of artificial variables. 
The screen and the print format are essentially identical to those shown for tableaux 
throughout the text. Included among its features are: 

1. no fixed limits on the number of constraints or the number of variables; 
2. spreadsheet-like entry of coefficients and easy designation of basic variables; 
3. automatic management of artificial variables and the associated w-function; 
4. execution of pivot steps by clicking the mouse; 
5. display of the ratio necessary to help determine pivot terms, shown in real time 

as the mouse is moved over a tableau; and 
6. the ability to initiate a new problem from another, which allows not only the 

w-function coefficients and artificial variables to be removed (when deemed 
no longer necessary), but also easy implementation of the Gomory Plane Cut-
ting and Branch and Bound techniques developed in Chapter 6 (where new 
constraints must be added or problems subdivided). 

Complete documentation for using LP Assistant is available on the Internet and is 
accessible from within the program. Thus we will show only a worked example to 
demonstrate the basic capabilities and ease of use of LP Assistant and conclude with 
a few comments about using LP Assistant. 

Example D.I. We will work through Problem 3 of Problem Set 3.5 on page 92. 
However, LP Assistant should be used only for problems written in canonical form. 
Thus we will instead consider the problem for this exercise to be 

Minimize — X4 + x$ 
subject to 
X\ + X4 — 

X2 + X4 

X3 + 2X4 — 

X i , X 2 , X 3 , X 4 , X 5 > 0 

Upon opening LP Assistant, a Workspace Window appears on the user's desktop, 
and within this, a Problem Window is opened for a new, untitled problem having the 
An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
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default size of two constraints and three variables. Our problem has one additional 
constraint and two additional variables, so the user should once select Tableau —► 
Add Constraint and twice select Tableau —> Add Regular Variable from the menu 
bar displayed in the Problem Window. The LP Assistant Workspace Window now 
appears, as in Figure D. 1. 

The user is currently in Edit Mode, and can thus enter the problem coefficients 
at the desired locations using ordinary data entry techniques associated with spread-
sheets. The variables x\,X2, and xj can serve as basic variables, and the user indicates 
this by clicking the mouse on the appropriate X in the Basis column and selecting 
the intended variable from the pop-up menu, as shown in Figure D.2. 

Figure D.2 
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Figure D.3 

After all coefficients are entered and all basic variables designated, the user 
should then change to Pivot Mode (in the left panel of the Problem Window). The 
display will change slightly; but the user will now notice that as the mouse moves 
over certain coefficient locations in the tableau, numbers will appear below the word 
Ratio at the bottom of the left pane in the Problem Window. Here, the appropri-
ate pivot term to select to apply the simplex algorithm is in the XA, column, in the 
first row. The ratio shown when the mouse is positioned there is 1.000, which is 
b\/au = 1/1 = 1 (other ratios in the X4 column are 6.000 and 2.000, for the second 
and third rows, respectively). See Figure D.3. 

Clicking at the 1 in the first row, X4 column will execute a pivot at that point, 
extending the display to show the resulting tableau. After scrolling and resizing the 
Workspace Window and the Problem Window within it as needed, and executing 
subsequent pivots at the third row, x$ column, and then the second row, X[ column, 
the problem will reach its solution of Minz = — y , at x\ = | , X4 = 6 , and X5 = | . 
Figure D.4 shows the completed LP Assistant Problem Window. 

Notice, by the way, that the solution to Problem 3 of Problem Set 3.5 is that 
Maxz= Y occurs at atxi = \,X2 = 0, X3 = 0, X4 = 6, andxs = | . 

The example above demonstrates the ease of use of LP Assistant yet only touches 
upon the full capabilities of the program, which are completely described in the 
documentation included with the program. We end this Appendix by mentioning 
several points about the design of LP Assistant. 

1. LP Assistant is free (but copyrighted) software written for the Java 2 Platform 
Standard Edition version 1.4.2, using Swing and AWT, and thus will run on 
most platforms and under most operating systems. 

2. Source code can be made available upon request. In fact, we look forward to 
working with users to improve both the design and educational usefulness of 
this application. 
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Figure D.4 

3. Numerical values are maintained internally as rational numbers having numer-
ators and denominators of arbitrary precision. This allows for exact pivot com-
putations, and numerical roundoff errors are never introduced. Coefficients in 
the initial tableau are required to be rational (in practice, this restriction is not 
a limitation) and can be entered in any exact, rational format (e.g., | is "1/2" 
or "0.5;" j is "1/3," which is not the same as either "0.3" or "0.33"). 

4. LP Assistant is intended to be used by students to help them learn the mechan-
ics of the simplex algorithm and is designed to not be yet one more solver of 
linear programming problems. Many fine applications, both commercial and 
in the public domain, already exist for this task. 
Indeed, LP Assistant was created to provide only an interface and a reliable 
bookkeeping mechanism for executing the steps of the simplex algorithm. 
Consequently, the user has complete responsibility to: 
(a) formulate a given problem in canonical form, supplying slack variables as 

required to do so; 
(b) determine which variables are basic and whether artificial variables are 

needed (LP Assistant will manage the arithmetic associated with artificial 
variables); 

(c) indicate where to pivot according to the algorithm in use; 
(d) remove artificial variables when no longer needed; and 
(e) recognize when a problem has been completed. 



APPENDIX E 

MICROSOFT EXCEL 

AND SOLVER 

In this appendix, we demonstrate the procedure used to solve a linear programming 
problem with Microsoft Excel and Solver. We assume that the reader is familiar with 
the standard spreadsheet techniques and formulas. 

Implementing Microsoft Excel and Solver to solve a linear programming problem 
is accomplished in four basic steps: 

1. The data for the problem are entered on the spreadsheet. 
2. A representation of the mathematical model for the problem is constructed on 

the spreadsheet, usually below the data section. 
3. The representation of the problem is transferred to Solver. 
4. Using Solver, the problem is solved. 

Note that the problem is defined on the spreadsheet in the first two steps and that 
Solver is brought into the solution process only in the last two steps. We illustrate 
these steps in detail with the following example. 

Example E.l. Division P is responsible for the manufacture of two components of 
the parent company's final product. The division manager has available four different 
processes to produce the two parts. Each process uses varying amounts of labor and 
two raw materials, with inputs, outputs, and cost of 1 hr operation of each process 
given in the following table. 

Input 

Output 

Cost 

Labor (worker-hrs) 
Material A (lb) 
Material B (lb) 

Units of Part 1 
Units of Part 2 

($/hr) 

Process 1 

8 
160 
30 

35 
55 

400 

Process 2 

10 
100 
35 

45 
42 

575 

Process 3 

6 
200 

60 

70 
0 

620 

Process 4 

12 
75 
80 

0 
90 

590 

Each week the division is responsible for producing at least 1300 units of Part 1 
and 2600 units of Part 2. The division manager has at her disposal weekly up to 2.1 
tons of Raw Material A, 1 ton of Raw Material B, and 450 hr of labor. The manager 
An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, Inc. 
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can also purchase any number of units of Part 2 from an independent supplier at 
$18/unit. To determine the minimum cost of the weekly operation, the manager 
defines variables x, = number of hours that Process i is used, i— 1,2,3,4, and x$ 
= number of units of Part 2 purchased from the outside vendor, and formulates the 
following linear programming problem: 

Minimize 400xi + 575x2 + 620x3 + 590x4 + 18x5 

subject to 
8*i + 10x2 + 6x3 + 12X4 

160xi + 100x2 + 200x3 + V5x4 

30xi + 
35xi + 
55xi + 

X\ ,A^2,-^31' 

35x2 + 
45x2 + 
42x2 + 

*4,X5 > 0 

6OX3 + 80x4 

70X3 + 0X4 
0x3 + 90x4 

< 450 Labor (hr) 
< 4200 Material A (lb) 
< 2000 Material B (lb) 
> 1300 Units of Part 1 

x5 > 2600 Units of Part 2 

(E.l) 

Now, with the data and the linear programming problem at hand, we turn to 
Microsoft Excel. The initial spreadsheet representation for the problem, with steps 1 
and 2 already completed, is in Figure E. 1. The data are entered in the upper half of 
the spreadsheet, as the reader can see. The values of all the coefficients and constant 
terms of (E. 1 ) are contained in the tables, and the rows, columns, and cells are labeled 
for easy identification. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

A| B | C 
Division P 

Input 
Labor (hr) 

Material A (lb) 
Material B (lb) 

Output 
# units Part 1 
# units Part 2 
Cost ($/hr) 

1 
8 

160 
30 

35 
55 

$400 
Part 2 vendor cost/unit --> 

Process # 
Hours used 

# Units Part 2 purch 

Minimize cost 

1 

ased --> 

Constraints LHS 
Labor 0 

Material A 0 
Material B 0 

Part i 0 
Part 2 0 

D | E | 

Process 
2 3 
10 6 
100 200 
35 60 

45 70 
42 0 

$575 $620 
$18 

Variables 
2 3 

I 

RHS 
s 450 
s 4200 
s 2000 
a 1300 
£ 2600 

F 

4 
12 
75 
80 

0 
90 

$590 

4 

G 

Limit 
450 

4200 
2000 

# Required 
1300 
2600 

Figure E.l 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

A| B 1 C 
Division P 

Input 
Labor (hr) 

Material A (Ib) 
Material B (Ib) 

Output 
# units Part 1 
# units Part 2 
Cost ($/hr) 

Process # 
Hours used 

Minimize cost 

Constraints 
Labor 

Material A 
Material B 

Parti 
Part 2 

1 
8 
160 
30 

35 
55 
400 

Part 2 vendor cost/unit --> 

1 

# Units Part 2 purchased --> 

=SUMPRÔDUCt(C10:FÏ0,C15:F15)+t)11*D16 

LHS 
=SUMPRODUCT(C4:F4,C$15:F$15) 
=SUMPRODUCT(C5:F5,C$15:F$15) 
=SUMPRODUCT(C6:F6,C$15:F$15) 
=SUMPRODUCT(C8:F8,C$15:F$15) 
=SUMPRODUCT(C9:F9,C$15:F$15)+D16 

D I E | F | G 

Process 
2 3 4 
10 6 12 
100 200 75 
35 60 80 

45 70 0 
42 0 90 
575 620 590 
18 

Variables 
2 3 4 

I 

Limit 
450 
4200 
2000 
# Required 
1300 
2600 

£ 
> 
> 

RHS 
=G4 
=G5 
=G6 
=G8 
=G9 

Figure E.2 

The representation of the actual programming problem of (E.l) is contained in 
the lower half of the spreadsheet. The construction of this representation consists of 
three parts. 

(pi) The designation of the cells to be used as placeholders for the variables (here 
cells C15:F15 and D16), the objective function (cell C18), the left-hand sides 
of the constraints (cells C21:C25), and the right-hand sides of the constraints 
(cells E21:E25). 

(p2) The entering of the appropriate formulas in the objective function and con-
straints cells, usually through the use of Microsoft Excel's Formula Bar. The 
region of cells containing formulas for this example (columns C through F, 
rows 18 through 25) are shown in Figure E.2. Microsoft Excel's SUMPROD-
UCT function (read "dot product of row vectors" if you wish) is especially 
helpful in expressing the linear forms of mathematical programming problems, 
and frequently the formulas can be effectively drag-copied. 

(p3) The completion of the listing of the constraints, designating for each constraint 
the relationship between the left-hand and right-hand sides (cells D21:D25). 

The last two steps in solving the problem involve Solver. Clicking on Solver 
in the Tools pull-down menu superimposes the Solver Parameters window (shown 
in Figure E.3) on the initial spreadsheet. In this window we enter the spreadsheet 
locations of the components of the problem to be solved. To be designated in the 
window are the locations of the cells in the spreadsheet containing the following: 
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Figure E.4 

(si) The Target Cell, that is, the cell containing the objective function formula (with 
auxiliary buttons for designating the goal: to maximize or to minimize). 

(s2) The Changing Cells, that is, the cells designated for the decision variables. 
(s3) The Constraints Cells, both left- and right-hand sides and the type of the con-

straint. These are added, adjusted, or deleted in the "Subject to the Constraints" 
area in the lower, left of the Solver Parameters window, utilizing the corre-
sponding pop-up subwindow (the Add Constraint subwindow is shown in Fig-
ure E.4). As the reader will see, all the appropriate assignments are in place in 
the Solver Parameters window of Figure E.3.) 

After these steps are completed, a click on the Options button in the Solver Pa-
rameters window brings the Solver Options window to the screen, as displayed in 
Figure E.5. Here, for a linear programming problem we check the "Assume Linear 
Model" box; and checking the "Assume Non-Negative" box eliminates the need to 
enter in the constraints set window the nonnegativity restrictions on the variables (if 
called for in the problem). 

That completes the entering of the specifics of the problem into Solver. Clicking 
the Solve button in the Solver Parameters window will now generate the "Solver Re-
sults" window displayed in Figure E.6. Since a solution exists for this problem, the 
Solver Results window shows the message "Solver found a solution. All constraints 
and optimality conditions are satisfied." The solution values for the variables, objec-
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Figure E.6 

tive function, and constraints will be displayed on the original spreadsheet, as seen in 
Figure E.7. The user here also has the option of generating the associated Sensitivity 
Report by clicking the corresponding word in the Reports window. The nature of 
this report is discussed at some length in Sections 5.1 and 5.3. 

Two other messages can be displayed when the Solver Results window appears, 
indicating either that the objective function is unbounded ("The Set Cell values do 
not converge") or that the problem has no feasible solution ("Solver could not find 
a feasible solution"). One must carefully read the message in the Solver Results 
Window before clicking OK to dismiss it, since each of these outcomes may modify 
the data on the original spreadsheet; the hurried user might then unwittingly believe 
that a solution has been found upon returning to the spreadsheet. 

We close with some helpful comments on using Solver and Microsoft Excel: 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

A| B | C 
Division P 

Input 
Labor (hr) 

Material A (lb) 
Material B (Ib) 

Output 
# units Part 1 
# units Part 2 
Cost ($/hr) 

1 
8 

160 
30 

35 
55 

$400 
Part 2 vendor cost/unit --> 

Process # 
Hours used 

# Units Part 2 purch 

Minimize cost 

1 
4.82338 

ased --> 

$26,845 

Constraints LHS 
Labor 436 

Material A 4200 
Material B 2000 

Part i 1300 
Part 2 2600 

D I E 

Process 
2 3 
10 6 

100 200 
35 60 

45 70 
42 0 

$575 $620 
$18 

Variables 
2 3 

25.13737 
181.51766 

0 

RHS 
s 450 
s 4200 
< 2000 
a 1300 
a 2600 

I F 

4 
12 
75 
80 

0 
90 

$590 

4 
| 12.19363 

G 

Limit 
450 

4200 
2000 

# Required 
1300 
2600 

Figure E.7 

A factor to be considered when laying out the data tables is that the use of the 
SUMPRODUCT function requires that the arrays being combined flow in the 
same direction. For example, in the spreadsheet of Figure E.l, the variable 
cells and their associated coefficients in the constraints both read horizontally, 
allowing for the easy use of SUMPRODUCT. On the other hand, you may 
want to make layout adjustments to facilitate the use of the SUMPRODUCT 
(see, for example, Figure 8.10 of Section 8.4 on page 335, where the variable 
cells are placed vertically to accommodate the data table structure). 
Placing the characters (<) and (>) in Column D of the initial spreadsheet to 
indicate the direction of the inequality in each of the five constraints provides 
only a (very helpful) visual aid. (The entry of these characters is system-
dependent; you may instead prefer to write simply the two-character sequences 
<= or > = .) Solver makes no use of these entries, however; the appropriate in-
equality relations must still be entered directly in the Add Constraints window 
in step (s3) above. 

The solution to (E.l) on the spreadsheet in Figure E.7 calls for nonintegral 
values for the variables. If integral values are required, one could, on the 
spreadsheet, round off the value of each of the variables to the nearest integer 
and then note the feasibility or nonfeasibility of this set of integers using the 
spreadsheet's adjusted values for the left-hand sides of the constraints. Here, 
in fact, the results would show that feasibility is maintained for the first four 
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constraints and that the output of Part 2 is only 13 units short of the required 
2600. These can be purchased from the outside vendor, yielding an integral 
solution that costs only $120 more than the original minimum cost, as can be 
easily determined with the spreadsheet. Of course, this procedure in no way 
guarantees that the optimal integral solution has been found here or that, for a 
general problem, the procedures even leads to a feasible integral solution. In-
teger programming techniques may be required. Integer programming, along 
with applications using Solver, is discussed in Chapter 6. 
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Solutions to Selected Problems 

Problem Set 2.2 

5. There is no change in the optimal solution; all the points of the shaded region in 
Figure 2.3 satisfy the inequality 4x + 2y> 40. 

7. (a) See Example 5.1.1 on page 161. 
(b) There is no change in the optimal diet if | < the ratio of the cost of Feed 1 

to Feed 2 < ^. 

11. Let Xj denote the amount in pounds of Mineral i used in the production of 100 lb 
of paint. The problem: 

Minimize 4xi + 7.5x2 + 3%3 
subject to 

0.06x2 + 0.07x3 > 5 
0.05xi + 0.08x2 > 3 
0.30xi + 0.30x2 + 0.25x3 > 26 
0.20xi + 0.10x2 + 0.16x3 < 15 

Xi + X2 + X3 = 100 

*1,-X2,*3 > 0 

Problem Set 2.3 

1. See Example 8.1.1 on page 299. 

3. (a) The function to be maximized does not accurately measure profit when less 
than 2000 lb of aluminum is used. 

(b) The function to be maximized does not accurately measure profit when less 
than 1500 lb of aluminum is used. 

(c) The first constraint forces the use of at least 1500 lb of aluminum. 

5. Replace the function / in (2.3.1) with 

/(xi,X2,X3,X4) =690xi +545x2 + 1020x3+785x4 

- 3(35xi + 45x2 + 70x3 - 2100) 

- 2(55xi + 42x2 + 90x4 - 1800) 

6. Let X6 > 0 denote the amount in pounds of Raw Material A purchased and mod-
ify the problem of (2.3.2) as follows. Replace the function g with 

g(xi,X2,X3,X4,X5,X6) = 3 0 x s + 6 9 0 x i + 5 4 5 x 2 + 1020X3+785X4 + 4X6 

An Introduction to Linear Programming and Game Theory, Third Edition. By P. R. Thie and G. E. Keough. 
Copyright © 2008 John Wiley & Sons, Inc. 
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and the second constraint with 

160*! + 100x2 + 200x3 + 75x4 < 8000 + x6 

9. The maximum profit is $54, attained by making 108 dozen muffins and no 
brownies. 

12. See Example 4.3.2 on page 134. 

13. See Problem 4 of Section 4.3 on page 137. 

17. Let C, T, B, P, and K denote the number of acres planted of corn, tomatoes, 
beans, peas, and carrots, respectively; U the number of acres of unused land; 
L the hours of labor employed; and M the amount of money borrowed. The 
problem: 

Maximize (60 - 20)C + 8007 + 1455 +185P + 250K - 7.25L - W - 0.03M 
subject to 

C + T+B+P+K+U =100 
5C + 1207 + 25B + 35P + 40K + 2U =L 

20C + 2007 + 55ß + 40P + 15K + 9U + 3.25L < 3000 +M 
0 < L < 3600, 0 < M < 12000 
C,T,B,P,K,U>0 

Problem Set 2.4 

2. (a) See Example 4.3.3 on page 135. 

3. Let Xij denote the number of cases shipped from Plant i to Outlet j and x,6 the 
number of surplus cases at Plant i, 1 < i < 3, 1 < j < 5. The problem: 

Minimize 6.2xn + 5 . 1 X B +IO.IX14+ 8x15 

+6.5X21 + 10.5X22+4.3X23 + 11.3X24 + 6.5X25 

+6.3X31 + 9X32 + IO.8X34 

— 120xi6 — H0X26 — 114X36 

subject to 

£5=1 * U = 4000 (xi2 = 0) 

£";=1x2,. = 2000 

£5=1*3; = 3000 (X33=X35=0) 

YM=IXU = 1000> 1200,3000,400,2200 (; = 1,2,3,4,5, respectively) 

xu > 0 

Problem Set 2.5 

1. Equalities would force each D, to be at least 1000. 
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4. For month i (i = 1, Aug.; i = 2, Sept.; i = 3, Oct.), let 

Ri(Vi) = number of refrigerators (ovens) bought 

Si(W{) = number of refrigerators (ovens) sold 

Ti(Xi) = number of refrigerators (ovens) stored 

The problem: 

Minimize 90SY + 11QS2 + 105S3 + 200Wi + 250W2 + 240W3 

-(60Rl + 65R2 + 68fl3 + 150V\ + 175V2 + 200V3) 

-7(Tl+T2+Xi+X2) 

subject to 

25+Ri=Si+Ti Vi=Wi+Xi 

Ti+R2 = S2 + T2 Xl+V2=W2+X2 

T2+R3=S3 X2+V3=W3 

Ti+Xi <45,T2+X2<45 

0<R{<65 0<Vt<35 

0<Si< 100 0 < W,: < 55 

Ri^TiMMXi^O 

Problem Set 3.1 

1. (a) x\ — 4,x2 = 12,X3 = 0,X4 = —1 
(b) Any point (xi,x2,x3,x'4,x'l,X5,xe) of the form (1,3,5,2 +A,A,3,15) where 

A > 0 

3. (a) Minimize—3xi+2x2 
subject to 
5xi + 2X2 — 3X3 + M + X5 = 7 

3X2 — 4X3 + x6 = 6 
X\ + X3 — X4 — Xi = 11 

x\,...,xj > 0 

(b) Minimize — xl
2 + x3 — Xj' + x4 — x4' 

subject to 
X\ + X2 — X5 = 6 

X2 T X^ X3 X4 -r X4 -f~ X(y = 1 

5x, + 6x2 + 7x3 - 7x" - 8x4 + 8x4' - x7 = 2 

X{, X21X^ j X3 , X^, X^, X5 j X^, X7 ̂  U 
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(d) Minimize -6xj + 2x2 - 2x% - 9x3 - 300 
subject to 
2xi — 6x2 + 6x2 — X3 + X4 

Xi + X2 — X2 + 9X3 + *5 

X\ + X6 

x2 — x2 

X3 

Xi,X2,X/
2,X3,X4,X5,X6,X7,X8 > 0 

4. (a) {(0,0,A,0):A> 11} 
(b) {(5,0,6,0)} 
(c) 0 

- x-i 

= 100 
= 200 
= 50 
= -60 

- X8 = 5 

Problem Set 3.2 
1. (a) (1,2,-3) 

(b) Arbitrarily selecting x\ and X2 to use as basic variables, two pivot steps yield 
the following equivalent system: 

Thus the solution set is 

Xl 

X2 + YjXj, = 

17X3 

13 
17 
3 
17 

{(-T7 + Î7^'Ï7 - Ï 7 ^>^ ) : ^ e R l 

2. The system is equivalent to various systems of equations in canonical form. For 
example, an equivalent system with basic variables x\ and X3 is the system 

xi - 8x2 = -41 

—3x2 +X3 = —16 

4. (a) 

x2 = 9 

Xi - X 3 = 4 

(b) No 
(c) b = (17,4)' can be expressed as a linear combination of A^ = (2, 1)' and 

A^ = (1,0)', but not as a linear combination of AO andA^3' = ( - 2 , - 1 ) ' 

6. (b) (0,6,2,0) and (0,0,2,2) 

(d) The minimum value of the objective function is 8, attained at (0,0,2,2) 

7. M i n / = i5 attained a t ( f ,0,0, §) 
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Problem Set 3.3 

1. (a) X] = 8 — 2x4,X2 — 6 — 3x4,xj — 18 — 6x4 
(b) 0 < x4 < 2 
(c) x2 

(d) We should extract X2 from the basis; therefore, pivot at the 3x4 term of the 
second equation. Pivoting here yields: 

(e) x\ — 1*2 = 4 

5X2 + X4 = 2 

— 2x2 + X3 = 6 
The associated basic solution, (4,0,6,2), is feasible. 

(f) The minimum of | , f, and ^ is f, attained with the data from the second 
equation. 

4. Pivoting at the 2x4 term of the first constraint yields the equivalent problem of 
minimizing z with 

5X2 — 3x3 + X4 = 3 

x\ + 5X2 — X3 = 8 

3x2 - 14x3 = 18 + z 

Xi,X2,X3,X4 > 0 

The expression for z suggests putting X3 into the basis, but there is no positive X3 
coefficient in the constraints. In fact, from this representation of the constraints, 
we see that the set of feasible solutions contains the set 

{(8+x3,0,x3,3 + 3x 3 ) :*3>0} 

What happens to z on this set? 

Problem Set 3.4 

1. Minz = - 6 7 1 attained at (0, f ,0, ^ , f ) 

2. (a) Minz = 0 attained at (5,10,0,0). No pivots necessary. 
(b) Minz = 0 attained at (5,10,0,0). No pivots necessary. 
(c) Unbounded objective function. 
(d) Unbounded objective function. 
(e) Minz = - 5 attained at (5,0,5,0) 
(f) Minz = 0 attained at (0,10,0,0). One pivot necessary. 
(g) Unbounded objective function. No pivots necessary. 

5. When the Min{è,-/a,-,s : als > 0} is attained in more than one row. 

Problem Set 3.5 

2. (a) Minz = - 2 0 0 attained at (0,0,50,0) 
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(c) Unbounded objective function 

(d) Maxz = 90 attained at (250,10,0,40,0,0) 

3. See Example D.l on page 427. 

5. (a) In the final tableau, c\ = 0 and at least one a*2 > 0. Thus X2 can be inserted 
into the basis. Similarly forx7. 

(b) (0,0,0,25,0,15,15) 
(c) (10,30,0,20,0,0,0) 

8. Maximum income is $7020, attained by producing 240 radios, 85 televisions, 
and 0 stereos. 

Problem Set 3.6 

1. (a) Applying the simplex algorithm to the problem of 

Minimizing w — XA, + X5 
subject to 

X\ - X2 + X4 = 1 

2x\ + X2 — X3 + ^ 5 = 3 

Xi,X2,X3,X4,X5 > 0 

generates the solution point ( | , | , 0 ) to the original system. 

2. (a) Minz = \ attained at (0, ̂ , ^ ) 
(b) Minz = —^ attained at (0, ̂ , ^ ) . (Only one artificial variable required.) 
(c) No feasible solutions. 

4. The row corresponds to the expression for the function w = x^+x^ in terms of 
the nonbasic variables for that tableau, namely, X2, X4, x$, and X&. 

6. Follows from the definition of w and from Problem 9 of Section 3.4 on page 84. 

8. Minimal cost is $1950 attained by using Process 2 for | hr and Process 3 for | 
hr. 

Problem Set 3.7 

3. (a) Minz = 50 attained at (50,0,0,0). No redundant equations. 
(c) Minz = — I attained at (0,0, | , | ) . One redundant equation. 
(d) Maxz = —6 attained at (0,1,2,0). No redundant equations. 

4. True. If any artificial variables remained in the basis, they would be at zero level. 
The elimination of these variables from the basis would lead to a degenerate 
solution to the original system. 

Problem Set 3.8 

6. (a) Changing the constant-term column entries to 0 in the tableaux of Table 3.4, 
we have Maxz = 0 attained at (0,0,0). 
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(b) From the modified tableaux of Table 3.5, the objective function is unbounded. 

Problem Set 4.1 

1. Maximum gain is $475, attained at (25,100). 

2. (a) Minimum cost is $475, attained at (0, |,-j^). 

Problem Set 4.2 

1. (a) Minimize 100y, + 90y2 + 500j3 

subject to 

5yi - n > 20 
-4yi + \2y2 + y3 > 30 

yi,y2,y3 > o 

(b) Maximize -30yi - 50y2 - 80y3 

subject to 
6ji - 2y2 < 4 

1 lyi + lyi - yi < - 3 

y\,y2,y3 > o 

(c) Minimize 60yi — 10j2 + 20^3 
subject to 

5y\ - 3̂ 2 + w > - l 
y\ + 8̂ 2 + 7y3 > 2 

yi,3'2 > 0, )>3 unrestricted 

(f) Maximize 50xi — 70x2 — 15*3 
subject to 
4xi < 1 

2x2 > 1 
—X\ — X2 + X3 > 4 

x\ unrestricted, X2,x3 > 0, 

3. (b) Mine-F is 411, attained at ( | , | ) . 
(c) Maxc-X is 4 l | , attained at (^ ,0 , ^ ) . 

Problem Set 4.5 

3. (a) (1,1,0,0) optimal; complementary slackness generates (2,2,0), a feasible 
solution to the dual. 

(b) (0,4,0,2) optimal; complementary slackness generates (3,2,0), a feasible 
solution to the dual. 
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(c) (3,0,1,0,5) not optimal; complementary slackness generates (0,1,3), but 
this point is not a feasible solution to the dual. 

Problem Set 5.1 

2. (b) Upper limit equals 14.25. 

4. No. Since | < | |g < i°-, the daily minimum cost of an adequate diet would be 
124 + 2(120), that is, $3.64. This is an increase of $1.20 over the original daily 
minimum cost of $2.44 and so, over 2 weeks, would cost $16.80. 

10. An increase of 1 % in the bluegrass requirement should increase the cost of pro-
ducing 100 lb of the composition by $0.50; and an increase of 1% in the fescue 
requirement should have no effect on costs. 

Problem Set 5.2 

(a) 5 = 3 2 
- 6 4 

R - l 1 
> B - 24 

4 - 2 
6 3 

, cB 

(b) b*=B-lb=[5,8]'. Thereforeb = 5A^ + 8A<4' 
(c) c* = c — cgB v/ 1 - [4 55 H 0 

— 1-3 ' 12' ' ' 
4-]>0 

[5,-4] 

22-

Problem Set 5.3 

2. The modified c* = [—j,0, ^ , 0 , | , | ] . Starting from the adjusted second tableau 
of Table 5.5, one iteration of the simplex algorithm yields the new optimal solu-
tion point of (-n-,0,0, ^ ) and Maxz = HO15 

3. (a) Maxz = 107^ attained at (0,25§,| ,0) 
(b) Maxz = 115| attained at (0,0,0,7) 

(c) Maxz = 100 attained at (0,4,0,6) 

6. 44 < number of required units of A < 84 

60 < number of required units of B < 132 

number of required units of C < 144 

12. (a) c\=c\-cBB-lA{V 
2 - 1 -11 

-5 + 

-15,4] 
3 
a 

a 

Problem Set 5.4 

1 (a) Maxz =106 attained at (xi,X2,X3,X4;xy) 
(b) Maxz = 110 attained at (xi,X2,*3,*4;*7) 
(c) z unbounded 
(d) Maxz= 109 attained at (xi,X2,*3,*4;*7) = (0,7,0,0;3) 

(0,4,0,6;0) 

3 ' 
(0,0,4^, 0 ; ^ 
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4. (b) Minimum monthly cost is $40,875, attained by using Process 3 for 187.5 hr 
and the new process for 37.5 hr. 

Problem Set 5.5 

1. (a) Minz = 15 attained at (9,1,0,0) 
(b) Minz = 16 attained at (8,0,0,0) 

3. For—3 < À < j , the optimal solution point is (0,4-7A,0,6 + 2/1) andMaxz = 
106+ 2A 

Problem Set 5.6 

3. (a) Max = 105 attained at (0,0,0,7) 
(b) Max = 107f attained at (0,0, i , f ) 
(c) No feasible solutions 

6. Element A: -y cents; element B: 0 cents; element C: g cents. 

Problem Set 5.7 
1. Check our arithmetic for the error. (The constant term —2 measures the value 

of the slack variable xq when the new constraint is evaluated at (0,4,0,6,0,0) 
(Why?). If this slack were nonnegative, (0,4,0,6,0,0) would have satisfied the 
new constraint.) 

2. (a) The point (19,8,0,0) remains an optimal solution point 
(b) Minz = 16 attained at (12,3,1,0) 
(c) No feasible solutions 
(d) Minz = 16 attained at (12,3,1,0) 

Problem Set 6.2 

3. The optimal production schedule for Example 6.2.6 is 0 A's and 27.5 B's, with 
profit $727.50. For Example 6.2.7, producing 30 A's, and 12.5 5's is optimal, 
resulting in a profit of $862.50. Optimal production for Example 6.2.8 will be 
55 A's and 0 B's, from which the company earns a $900 profit. 

5. For Figure 6.3: 5*i + 4x2 - 20 < 40(1 -y\) 
3xi + 8jt2 - 24 < 40(1 - y 2 ) 

y\ +yi > 1 
0<x\,x2 

0 < y\ ,yi < 1 and integral 

Problem Set 6.3 

1. (a) Minz = - 1 attained at (0,1) 
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(b) Maxz = 10 attained at (4,3) 

2. (a) Maxz = 13 attained at (4,3) 

Problem Set 6.5 

2. (b) (i) Minimum cost is $152, attained by using four bags of Feed 1, one bag 
of Feed 2, and four bags of Feed 3. 

(ii) Minimum cost is $125.75, attained by using 195 lb of Feed 1 and 40 lb 
of Feed 2. 

Problem Set 7.1 

1. (a) Feasible flows exist. 
(b) Not feasible. R' = {1}, C* = {1,2,5} 
(c) Not feasible. R' = {2,3},C = {2,4} 
(d) Feasible 
(e) Not feasible. R' = {2,3},C = {3,5} 
(f) Feasible 
(g) Feasible 

Problem Set 7.2 

1. (a) Min cost = 205 
(b) Min cost = 146 
(c) Min cost = 199 

3. (a) Min cost = 173 
(b) Min cost = 322 

4. (a) Avi + (-A)v5=7A 
(b) Cost increase =14 
(c) Cost increase = 22 

6. (a) 3A + ( - 3 ) A = 0 
(b) A = 5 

8. Min cost = 183 

20. (a) Min cost = $522.50 
(b) A > c i 3 ^ ( w i + v 3 ) = 4 
(c) Min cost = $511.50 

Problem Set 7.3 

1. (a) Min cost = 502 
(b) Min cost = 508 

2. (a) Min cost = 2455 
(b) (i) Estimate = (-A)«3 + (-A)vi = 0 
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(ii) Estimate = A 

3. (a) Min cost = $14,345 
(b) Month 2; estimated savings of $32/unit produced. 

4. (a) Min cost = 320 
(b) Min cost = 338 
(c) Min cost = 334 
(d) Min cost = 358 
(e) Min cost = 342 

21. Min cost = $22.40 

23. (a) Min cost = 54 
(b) Min cost = 12 
(c) Min cost = 60 

24. (a) Yes 
(b) Min cost = 13 

32. The minimal number of tankers necessary is 295. One possible assignment is to 
assign the two Route 1 tankers to Route 4, one Route 2 tanker to Route 1 and 
two to Route 4, one Route 3 tanker to Route 3, and one Route 4 tanker to Route 
1 and three to Route 2 

Problem Set 8.1 
2. (a) Max expected profit = $2293.33 at R = 28, C = 20 

(b) Max expected profit = $2341.67 at R = 31, C = 15 

5. (a) Maxz = 2 0 | attained at (if,4, | ,0 ) 

Problem Set 8.2 
2. (a) Goals 1 and 2 achieved (vi = U2 = 0) and Minw3 = 3 at x = 6, y = 8. 

(b) Goals 1-3 achieved (vi = v2 = u?, = 0) and Min V4 = 1 at x = 10, y = 5. 
3. (a) Goals 1-3 achieved and within 38 units of Goal 4 using 5 lb of Feed 1 and 

9 lb of Feed 2. 

Problem Set 8.3 

2. Max profit is $525.50 attained at (xi,x2) = (37±,57±), (yi,y2) = (615,36) 

3. (a) Maxz = 3 8 | attained at (xi,X2) = (1 , | ) , (yi,y2) = ( | , f ) 
(b) Maxz = 63 attained at (xi,x2) = (8,1), (ji,j2) = (0,8) 

Problem Set 8.4 
1. (a) .8796 + 30(.0019) = .9366; efficiency increases to 93.66%. 
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(b) .8796 - 25(.0019) = .8321; efficiency now is at most 83.21%, but no more 
information can be derived from the data at hand. The decrease of 30 units 
is outside of the range of validity of the marginal value by 5 units. 

(c) No change in efficiency. 
(d) Efficiency is now 93.99%. 

Problem Set 9.1 

1. (a) 

Rl 
B7 

R3 

4 
-10 

R8 

9 
-15 

B9 

- 1 0 
16 

(c) 

1 
2 
3 
4 

1 

- 2 
0 
3 
4 

2 

0 
- 4 

3 
4 

3 

1 
2 

- 6 
0 

4 

1 
2 
0 

- 8 

2. (a) The strategies for each player can be denoted using ordered four-tuples 
(X;YK,YQ,YJ), where X G {K,Q,J} indicates the first card to be played, 
and the YK, YQ, and Yj denote the play on the second trick, given that the 
opponent played a K, Q, or J, respectively, on the first trick. The payoff 
matrix would be 24 x 24. 

Problem Set 9.3 

1. (a) No 
(b) Yes. Solution: (s2,t\); value: 3 

2. (a) For 2 < x < 3, saddle point x; for x > 3, saddle point 3 
(b) For x > 2, saddle point 2 
(c) For 1 < x < 3, saddle point at the x in row 2, column 2 

Problem Set 9.4 

1. (a) The security level of X\ is 2; the security level of Xi is | . Therefore vi > 
(b) Security level of Y\ is | ; security level of Yi is ^ ; V2 < f • 

4. vi = V2 = 7 ; a strategy for P\ with security level | is (-^, -^); for P2, (7,7) 

Problem Set 9.5 

3. (a) I 

(b) § 
(c) Value of the game is | ; and X\ and Fi are optimal strategies for Pi and Pi, 

respectively. 
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5. (a) Security level of X\ is — | ; of Y\, 0. (X\,Y\) is not a solution. 
(b) Security level of X\ = security level of Y\ = ̂ . (Xi,Yi) is a solution to the 

game, and the value of the game is ^ . 

Problem Set 9.6 

7. (a) 
x<2 

2 < x < 4 

- 8/JC, x > 4 

(c) v = 3 

8. (a) (i) v=\;Xo = {\,\)\ Y0 = XY{ + (1 -X)Y2 for any 0 < A < 1, where 
r1 = ( | , i ,0 ,0 )andy 2 = ( i ,0 , i , 0 ) 

(ii) v = f | ; X 0 = ( ^ , ^ , 0 ) ; F 0 = (-O'B) 

9. v = — JQ ; Pi should select the red 1 with probability ^ and the black 7 with 
probability ^,; P2 should select the red 3 with probability ^ and the black 9 
with probability ^ . 

12. (a) v = l ; Ab = (0,1,0); Ko = (0,0,0,1) 

(b) v = ^ ; X o = (^ , | ,0) ;F 0 = ( 0 , O j , i i ) 

(c) v = 0; Y0 = ( i ,0, i ,0);Xo = AXi + ( l - A ) X 2 f o r O < A < 1, where Xx = 
(i,0,|)andX2 = (f,i,0) 

14. (a) (i) v = - ^ ; X b = y0 = (^)(35,21,15) 

16. (a) v = — jlj ; P\ should select the 1 with probability ^ and the 2 with probabil-
ity YI\ ditto for P2. 

(b) v = jg ; -Pi should select the 2 with probability f^ and the 3 with probability 
•j^; P2 should select the 1 with probability -^ and the 2 with probability j ^ . 

Problem Set 9.7 

5. (a) 

4 
(b) Ascertain the value of the blue chips. (If they are worth $1001, you should 

pass; if they are worth $999, you should raise with probability 0.999 and 
pass with probability 0.001.) 

Problem Set 10.1 

1. u(A)=l/r;u(D)=s/(s-l) 
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Problem Set 10.3 

3. (c) (s i,/i), (s2,t2), and (X\, Y\) are in equilibrium, where X\ = (5,5) and l7] = 

5. See Example 10.5.4 on page 411 

Problem Set 10.4 

1. The line segment between the points (1,10) and (10,1) 

4. The point (1,1) 
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