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Series	Editor's	Introduction
As	this	series	of	volumes	in	quantitative	applications	has	grown,	we
have	begun	to	reach	out	to	those	in	economics	and	business	in	the
same	way	that	some	of	the	earlier	volumes	appealed	most	especially
to	those	in	political	science,	sociology,	and	psychology.	Our	goal,
however,	continues	to	be	the	same:	to	publish	readable,	up-to-date
introductions	to	quantitative	methodology	and	its	application	to
substantive	problems.

One	of	the	fastest-growing	areas	within	the	fields	of	operations
research	and	management	science,	in	terms	of	both	interest	as	well	as
actual	implementation,	is	the	methodology	known	as	goal
programming.	From	its	inception	in	the	early	1950s,	this	tool	has
rapidly	evolved	into	one	that	now	encompasses	nearly	all	classes	of
multiple	objective	programming	models.	Of	course,	it	has	also
undergone	a	significant	evolution	during	that	time.

In	An	Introduction	to	Linear	Goal	Programming,	James	Ignizio	(a
pioneer	and	major	contributor	to	the	field,	whose	first	application	of
goal	programming	was	in	1962	in	the	deployment	of	the	antenna
system	for	the	Saturn/Apollo	moon	landing	mission)	provides	a
concise,	lucid,	and	current	overview	of	(a)	the	linear	goal
programming	model,	(b)	a	computationally	efficient	algorithm	for
solution,	(c)	duality	and	sensitivity	analysis,	and	(d)	extensions	of	the
methodology	to	integer	as	well	as	nonlinear	models.	To	accomplish
this	extent	of	coverage	in	a	short	monograph,	Ignizio	uses	a	matrix-
based	presentation,	a	format	that	not	only	permits	a	concise	overview
but	one	that	is	also	most	compatible	with	the	manner	in	which	real-
world	mathematical	programmming	problems	are	solved.

The	text	is	intended	for	individuals	in	the	fields	of	operations



research,	management	science,	industrial	and	systems	engineering,
computer	science,	and	applied	mathematics	who	wish	to	become
familiar	with	linear	goal	programming	in	its	most	recent	form.
Prerequisites	for	the
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text	are	limited	to	some	background	in	linear	algebra	and	knowledge
of	the	more	elementary	operations	in	matrices	and	vectors.

RICHARD	G.	NIEMI
SERIES	CO-EDITOR
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1.
Introduction
Although	goal	programming	(GP)	is	itself	a	development	of	the
1950s,	it	has	only	been	since	the	mid-1970s	that	GP	has	finally
received	truly	substantial	and	widespread	attention.	Much	of	the
reason	for	such	interest	is	due	to	GP's	demonstrated	ability	to	serve	as
an	efficient	and	effective	tool	for	the	modeling,	solution,	and	analysis
of	mathematical	models	that	involve	multiple	and	conflicting	goals
and	objectivesthe	type	of	models	that	most	naturally	represent	real-
world	problems.	Yet	another	reason	for	the	interest	in	GP	is	a	result	of
a	growing	recognition	that	conventional	(i.e.,	single	objective)
mathematical	programming	methods	(e.g.,	linear	programming)	do
not	always	provide	reasonable	answers,	nor	do	they	typically	lead	to	a
true	understanding	of	and	insight	into	the	actual	problem.

Purpose

It	is	then	the	purpose	of	this	monograph	to	provide	for	the	reader	a
brief	but	reasonably	comprehensive	introduction	to	the	multiobjective
mathematical	programming	technique	known	as	goal	programming,
with	specific	focus	on	the	use	of	such	an	approach	in	dealing	with
linear	systems.	Further,	in	providing	such	an	introduction,	we	shall
attempt	to	minimize	both	the	amount	and	level	of	sophistication	of	the
associated	mathematics.	As	such,	the	only	prerequisite	for	the	reader
is	some	exposure	to	linear	algebra	and	a	knowledge	of	the	more
elementary	operations	on	matrices	and	vectors.	It	should	be
emphasized	that	a	familiarity	with	linear	programming	has	not	been
assumed,	although	it
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is	believed	likely	that	most	readers	will	have	had	some	previous	work
in	that	area.	It	has	been	my	attempt	to	provide	a	brief	and	concise,	but
reasonably	rigorous	treatment	of	linear	goal	programming.

What	Is	Goal	Programming?

At	this	point,	let	us	pause	and	reflect	upon	some	of	the	notions
expressed	above,	in	conjunction	with	a	few	new	ideas.	First,	let	us
note	that	goal	programming	has,	in	itself,	nothing	to	do	with	computer
programming	(e.g.,	FORTRAN,	Pascal,	LISP,	BASIC).	That	is,
although	any	GP	problem	of	meaningful	size	would	certainly	be
solved	on	the	computer,	the	notion	of	''programming"	in	GP	(or,	for
that	matter,	in	the	whole	of	mathematical	programming)	is	associated
with	the	development	of	solutions,	or	"programs,"	for	a	specific
problem.	Thus,	the	name	"goal	programming"	is	used	to	indicate	that
we	seek	to	find	the	(optimal)	program	(i.e.,	set	of	policies	that	are	to
be	implemented)	for	a	mathematical	model	that	is	composed	solely	of
goals.	Linear	goal	programming,	or	LGP,	in	turn	is	used	to	describe
the	methodology	employed	to	find	the	program	for	a	model	consisting
solely	of	linear	goals.

We	shall	wait	until	Chapter	3	to	rigorously	define	the	notion	of	a
"goal."	Here,	we	simply	note	that	any	mathematical	programming
model	may	find	an	alternate	representation	via	GP.	Further,	not	only
does	GP	provide	an	alternative	representation,	it	also	often	provides	a
representation	that	is	far	more	effective	in	capturing	the	nature	of	real-
world	problemsproblems	that	involve	multiple	and	conflicting	goals
and	objectives.

Finally,	we	note	that	conventional	(i.e.,	single	objective)	mathematical
programming	may	be	easily	and	effectively	treated	as	a	subset,	or
special	class,	of	GP.	For	example,	as	we	shall	see,	linear	programming
models	are	easily	and	conveniently	treated	as	"GP"	models.	In	fact,



and	although	the	idea	is	considered	radical	by	the	traditionalists,	it	is
not	really	necessary	to	study	linear	programming	(LP)	if	one	has	a
thorough	background	in	LGP.

On	the	Use	of	Matrix	Notation

As	mentioned	earlier,	one	of	the	prerequisites	of	this	text	is	that	the
reader	has	had	some	previous	exposure	to	matrices	and	vectors,	and
the	associated	notation,	terminology,	and	basic	operations	employed
in	such	areas.	Although	at	first	glance	the	matrix-based	approach	used
herein	may	appear	a	bit	formidable	to	some	of	the	readers,	be	assured
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that	its	purpose	is	not	to	complicate	the	issue.	Instead,	by	means	of
such	an	approach	we	are	able	to:

(1)	provide	a	presentation	that	is	typically	clearer,	more	concise,	and
less	ambiguous	than	if	a	nonmatrix-based	approach	were	employed;
and

(2)	provide	algorithms	in	a	form	far	closer	to	that	actually	employed
in	developing	efficient	computerized	algorithms.

Of	particular	importance	is	the	conciseness	provided	via	a	matrix-
based	approach.	Using	matrices	and	matrix	notation	we	are	able,	in
this	slim	volume,	to	still	cover	nearly	all	of	the	useful	features	of
linear	goal	programming	(e.g.,	a	reasonably	computationally	efficient
version	of	an	algorithm	for	linear	goal	programming,	a	comprehensive
presentation	of	duality,	an	introduction	to	sensitivity	analysis,	and
even	discussions	of	various	extensions	of	the	methodology).	Without
the	use	of	the	matrix-based	approach,	there	would	have	been	no
possibility	of	covering	this	amount	of	material	in	even	two	or	three
times	the	amount	of	pages	used	herein.

For	those	readers	whose	exposure	to	matrices	and	vectors	has	been
limited,	or	is	a	part	of	the	now	distant	past,	there	is	no	reason	for
apprehension.	The	level	of	the	matrix-based	presentation	employed
has	been	kept	quite	elementary.

2.
History	and	Applications
Although	there	exist	numerous	related	earlier	developments,	the	field
of	mathematical	programming	typically	is	traced	to	the	development
of	the	general	linear	programming	model	and	its	most	common
method	for	solution,	designated	as	"simplex."	LP	and	simplex	were,	in



turn,	developed	in	1947	by	a	team	of	scientists,	led	by	George
Dantzig,	under	the	sponsorship	of	the	U.S.	Air	Force	project	SCOOP
(Scientific	Computation	Of	Optimum	Programs).	The	LP	model
addressed	a	single,	linear	objective	function	that	was	to	be	optimized
subject	to	a	set	of	rigid,	linear	constraints.	One	of	the	best	discussions
of	this	radical	new	concept	is	given	by	Dantzig	himself	(Dantzig,
1982).

Within	but	a	few	years,	LP	had	received	substantial	international
exposure	and	attention,	and	was	hailed	as	one	of	the	major
developments	of	applied	mathematics.	Today,	LP	is	probably	the	most
widely
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known	and	certainly	one	of	the	most	widely	employed	of	the	methods
used	by	those	in	such	fields	as	operations	research	and	management
science.	However,	as	with	any	quantitative	approach	to	the	modeling
and	solution	of	real	problems,	LP	has	its	blemishes,	drawbacks,	and
limitations.	Of	these,	our	interest	is	focused	on	the	inabilityor	at	least
limited	abilityof	LP	to	directly	and	effectively	address	problems
involving	multiple	objectives	and	goals,	subject	to	soft	as	well	as	rigid
(or	hard)	constraints.

The	development	of	GPone	approach	for	eliminating	or	at	least
alleviating	the	above-mentioned	limitations	of	LPoriginated	in	the
early	1950s.	At	this	time,	Charnes	and	Cooper	addressed	a	problem
seemingly	unrelated	to	LP	(or	GP):	the	problem	of	(linear)	regression
with	side	conditions.	To	solve	this	problem,	Charnes	and	Cooper
employed	a	somewhat	modified	version	of	LP	and	termed	the
approach	"constrained	regression"	(Charnes	et	al.,	1955;	Charnes	and
Cooper,	1975).

Later,	in	their	1961	text,	Charnes	and	Cooper	described	a	more
general	version	of	constrained	regression,	one	that	was	intended	for
dealing	with	linear	models	involving	multiple	objectives	or	goals.
This	refined	approach	was	designated	as	goal	programming	and	is	the
concept	that	underlies	all	present-day	work	and	generalizations	of	GP.

In	the	same	1961	text,	Charnes	and	Cooper	also	addressed	the	not	so
insignificant	problem	of	attempting	to	measure	the	"goodness"	of	a
solution	for	a	multiple	objective	model.	They	proposed	three
approaches,	all	of	which	are	still	widely	employed	today.	These
approaches	were	each	based	on	the	transformation	of	all	objectives
into	goals	by	means	of	the	establishment	of	an	"aspiration	level,"	or
"target.''	For	example,	an	objective	such	as	"maximize	profit"	might
be	restated	as	the	goal:	"Obtain	x	or	more	units	of	profit."	Obviously,
any	solution	to	the	converted	model	will	either	be	under,	over,	or



exactly	satisfy	the	profit	aspiration.	Further,	any	profit	under	the
desired	x	units	represents	an	undesirable	or	unwanted	deviation	from
the	goal.	Consequently,	Charnes	and	Cooper	proposed	that	we	focus
on	the	"minimization	of	unwanted	deviations,"	a	concept	essentially
identical	to	the	notion	of	"satisficing"	as	proposed	by	March	and
Simon	(Morris,	1964).	Using	this	concept,	Charnes	and	Cooper
specified	the	following	three	forms	of	GP:

(1)	Archimedean	GP	(also	known	as	"minsum"	or	"weighted"	GP):
Here	we	seek	to	minimize	the	(weighted)	sum	of	all	unwanted,
absolute	deviations	from	the	goals;
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(2)	Chebyshev	GP	(also	known	as	"minimax"	GP):	Our	purpose	is	to
minimize	the	worst,	or	maximum	of	the	unwanted	goal	deviations;
and

(3)	non-Archimedean	GP	(also	known	as	"preemptive	priority"	GP	or
"lexicographic"	GP):	Here	we	seek	the	minimum	(more	precisely,	the
lexicographic	minimum)	of	an	ordered	vector	of	the	unwanted	goal
deviations.

It	is	of	particular	interest	that	LP	(or	any	single-objective
methodology)	as	well	as	Archimedean	and	Chebyshev	GP	may	all	be
considered	as	special	cases	of	non-Archimedean	GPand	thus	treated
by	the	same	general	model	and	algorithm	(Ignizio,	forthcoming).	As	a
result,	in	this	work	we	focus	our	attention	on	non-Archimedean	GP	or,
more	specifically,	on	lexicographic	linear	goal	programming.

In	addition	to	describing	the	linear	GP	concept	and	proposing	the
above	three	measures	for	evaluation,	Charnes	and	Cooper	also
outlined	(again,	in	their	1961	text)	algorithms	for	solution.	Evidently,
however,	actual	software	for	the	implementation	of	such	algorithms
was	not	developed	until	the	late	1960s.	In	fact,	to	the	author's
knowledge,	the	first	computer	code	for	GP	was	the	one	that	I
developed	in	1962	(Ignizio,	1963,	1976b,	1979b,	1981b)	for	the
solution	of	nonlinear	GP	modelsmore	specifically,	for	the	design	of
the	antenna	systems	for	the	Saturn/Apollo	moon	landing	program.

As	a	result	of	the	success	of	the	algorithm	and	software	for	nonlinear
GP,	or	NLGP,	I	gained	a	considerable	appreciation	of	and	interest	in
GP.	As	a	consequence,	in	1967,	when	faced	with	a	relatively	large-
scale	LGP	model	(one	that	included	the	lexicographic	minimum,	or
preemptive	priority	notions),	I	developed	a	computer	code	for
lexicographic	LGP	as	based	on	a	suggestion	by	Paul	Huss	(personal
communication,	1967).	In	a	telephone	conversation	with	me,	Huss
proposed	that	one	solve	the	lexicographic	LGP	model	as	a	sequence	of



conventional	LP	models.	This	suggestion	was	refined	and	software	for
the	procedure	was	developed	by	the	summer	of	1967.	This	specific
approach,	which	I	designate	as	sequential	goal	programming	(or	SGP;
or	SLGP	in	the	linear	case),	although	unsophisticated,

1	resulted	in	a	computer	program	capable	of	solving	an	LGP	model	of
sizes	equivalent	to	those	solved	via	LP	(Ignizio,	1967,	1982a;	Ignizio
and	Perlis,	1979).	In	fact,	until	quite	recently,	SLGP	(also	known	as
iterative	LGP	or	"decomposed"	LGP)	evidently	has	offered	the	best
performance	of	any	package	for	LGP	(having	now	been	supplanted	by
the	MULTIPLEX	codes	for	GP;	Ignizio,	1983a,	1983e,	1985a,	1985b,
forthcoming).
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Later,	in	1968	through	1969,	Veikko	Jääskeläinen	also	addressed	the
development	of	software	for	LGP.

2	Rather	than	employing	the	cruder	SLGP	approach	(Jääskeläinen	was
unaware	of	our	work	as	were	we	of	his),	Jääskeläinen	employed	the
algorithm	for	lexicographic	(i.e.,	non-Archimedean)	LGP	as	originally
outlined	by	Charnes	and	Cooper.	To	implement	this	algorithm,	he
modified	the	small	and	extremely	elementary	LP	code	as	published	in
the	text	by	Frazer	(1968).	The	result	was	a	simple	code	(e.g.,	it
required	a	full	tableau,	employed	elementary	textbook	pivoting
operations,	and	lacked	provisions	for	reinversion)	capable	of
efficiently	solving	only	problems	of	perhaps	30	to	50	variables	and	a
like	number	of	rows.	However,	inasmuch	as	Jääskeläinen's	intent	was
simply	to	use	the	code	on	small	problems	as	part	of	his	investigation
of	the	application	of	LGP	to	various	areas,	the	elementary	code
proved	sufficient	(Jääskeläinen,	1969,	1976).	(A	complete	discussion
of	this	effort	may	be	found	in	Jääskeläinen's	1969	work.)

One	of	the	more	intriguing	aspects	(and	one	that	is	both	frustrating
and	embarrassing	to	the	serious,	knowledgeable	advocates	of	GP)	of
the	Jääskeläinen	code	for	LGP	is	that	today,	this	code	is	the	most
widely	known	and	employed	of	all	LGP	software.	This	situation	is
particularly	true	in	the	case	of	many	U.S.	business	schools	where
some	investigators,	even	today,	are	under	the	illusion	that	this	code
represents	the	state	of	the	art	in	LGP	software.	To	compound	the
matter	further,	credit	to	Jääskeläinen	for	the	development	of	the	code
is	seldom	if	ever	given.	The	one	positive	aspect	of	the	situation	is	that
the	easy	availability	of	the	Jääskeläinen	code	(most	other	LGP
codesparticularly	those	for	truly	large-scale	modelsare	proprietary)
helped	encourage	a	substantially	increased	interest	in	GP.

In	the	late	1960s	and	early	1970s	I	continued	to	develop	GP



algorithms	and	software,	including	those	for	integer	and	nonlinear	GP
models	(Draus	et	al.,	1977;	Harnett	and	Ignizio,	1973;	Ignizio,	1963,
1967,	1976a,	1976b,	1976c,	1977a,	1978a,	1979a,	1979b,	1979c;
Ignizio	and	Satterfield,	1977;	Palmer	et	al.,	1982;	Wilson	and	Ignizio,
1977).	However,	a	much	more	important	contribution	resulted	as	a
consequence	of	my	interest	in	duality	in	LGP.	By	the	early	1970s,	a
relatively	complete	and	formal	exposition	of	this	topic	had	resulted
(Ignizio,	1974a,	1974b).	The	dual	of	the	LGP	model,	termed	the
"multidimensional	dual,"	rapidly	led	to	the	development	of	a	complete
methodology	for	sensitivity	analysis	in	LGP	models	and	in	the
development	of	substantially	improved	algorithms	and	software.	As	a
consequence,	today	one	has	available	a	fairly	wide	selection	of
computationally	efficient
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software	for	both	linear	as	well	as	integer	and	nonlinear	GP	models
(Charnes	and	Cooper,	1961,	1977;	Charnes	et	al.,	1975,	1976,	1979;
Draus	et	al.,	1977;	Garrod	and	Moores,	1978;	Harnett	and	Ignizio,
1973;	Ignizio,	1963,	1967,	1974b,	1976b,	1976c,	1977a,	1978b,
1979a,	1979b,	1980b,	1981a,	1981b,	1981c,	1981d,	1982a,	1983b,
1983c,	1983d,	1983e,	1983f,	1984,	1985a,	1985b,	forthcoming;
Ignizio	et	al.,	1982;	Keown	and	Taylor,	1980;	Masud	and	Hwang,
1981;	McCammon	and	Thompson,	1980;	Moore	et	al,	1980;	Murphy
and	Ignizio,	1984;	Perlis	and	Ignizio,	1980;	Price,	1978;	Taylor	et	al.,
1982;	Wilson	and	Ignizio,	1977).	One	may	state,	in	fact,	that	the
performance	of	modern	GP	software	is	equivalent	to	that	of	the	very
best	of	the	software	used	in	the	solution	of	conventional	single
objective	models.

Space	does	not	permit	a	discussion	of	GP	applications.	However,	we
do	provide	a	number	of	references	that	describe	a	variety	of
implementations	of	the	methodology	(Anderson	and	Earle,	1983;	Bres
et	al.,	1980;	Campbell	and	Ignizio,	1972;	Charnes	et	al.,	1955,	1976;
Charnes	and	Cooper,	1961,	1975,	1979;	Cook	1984;	De	Kluyver,
1978,	1979;	Draus	et	al.,	1977;	Freed	and	Glover,	1981;	Harnett	and
Ignizio,	1973;	Ignizio,	1963,	1976a,	1976c,	1977,	1978a,	1979a,
1979c,	1980b,	1981b,	1981c,	1981d,	1983b,	1983d,	1983f,	1984;
Ignizio	et	al.,	1982;	Ignizio	and	Daniels,	1983;	Ijiri,	1965;
Jääskeläinen,	1969,	1976;	Keown	and	Taylor,	1980;	McCammon	and
Thompson,	1980;	Moore	et	al.,	1978;	Ng,	1981;	Palmer	et	al.,	1982;
Perlis	and	Ignizio,	1980;	Pouraghabagher,	1983;	Price,	1978;	Sutcliffe
et	al.,	1984;	Taylor	et	al.,	1982;	Wilson	and	Ignizio,	1977;	Zanakis
and	Maret,	1981).	Obviously,	any	problem	that	may	be	approached
via	mathematical	programming	(optimization)	is	a	candidate	for	GP.

3.



Development	of	the	LGP	Model
In	this	chapter,	we	address	the	most	important	aspect,	by	far,	in	the	GP
methodology.	Specifically,	we	describe	a	straightforward,	rational,
and	systematic	approach	to	the	construction	of	the	mathematical
model	that	is	designated	as	the	LGP	model.

3

The	purpose	of	any	mathematical	programming	method	isor	at	least
should	beto	gain	increased	insight	and	understanding	of	the	real-world
problem	under	consideration.	We	hope	to	accomplish	this	by	forming
and	"solving"	a	quantitative	representation	(i.e.,	the	mathe-
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matical	model)	of	the	problem.	What	is	too	often	forgotten,	however,	is
that	the	numbers	so	derived	are	simply	solutions	to	the	abstract	model
and	not,	necessarily,	solutions	to	the	real	problem.	The	purpose	of	the
procedure	to	be	described	is	to	attempt	to	provide	a	mathematical	model
that	as	accurately	as	possible	reflects	the	problem.	In	this	way,	we
should	be	able	to	minimize	the	discrepancies	between	model	and
problem.	However,	prior	to	describing	the	modeling	process,	we	first
provide	a	summary	of	some	of	the	notation	that	shall	be	used	throughout
the	remainder	of	the	monograph.

Notation

Our	mathematical	models	shall	be,	for	the	most	part,	expressed	in	terms
of	matrix	notation.

Matrices

A	matrix	is	a	rectangular	array	of	real	numbers.	We	represent	the	matrix
via	boldface,	capital	letters	such	as	A,	D,	I.	However,	in	the	case	of,	say,
a	matrix	composed	solely	of	zeros,	we	denote	this	as	boldface	zero,	or	0.

Elements	and	Order	of	a	Matrix

The	i,	jth	element	of	matrix	A	is	designated	as	ai,j.	That	is,	ai,j	is	the
element	in	row	i	and	column	j	of	A.	The	order	of	a	matrix	is	given	as	(m
×	n)	where	m	is	the	number	of	rows	and	n	is	the	number	of	columns.

Special	Matrix	Types

In	the	monograph,	we	utilize	several	special	matrix	types,	which
include:

·AT =	the	transpose	of	A;
·	B1 =	the	inverse	of	B	(where,	of	course,	B	must	be	nonsingular);
·	I =	the	identity	matrix;	and
·	(A1	:	A2)=	the	partition	of	some	matrix,	say	A.



Vectors

A	vector	is	either	an	ordered	column	or	row	of	real	numbers.	In	this	text,
we	shall	assume	that	all	vectors	are	column	vectors.	Thus,	in	the	event
of	the	need	to	designate	a	row	vector,	we	will	denote	this	by	the
transpose	operator.	Typically,	we	shall	use	boldface,	lower	case	letters
for	a	vector,	such	as:	a,	b,	x.	As	mentioned,	these	are	column	vectors.
Thus,	a,T	bT	and	xT	would	be	row	vectors.
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Special	Vector	Types

Some	of	the	special	types	of	vectors	used	herein	are:

·	aj	=	the	jth	column	of	matrix	A;

	=	the	partition	of	some	vector,	say	v;

·	c(k)	=	a	vector	associated	with	the	kth	set	of	objects	of	c;	and

·	x	³	0;	this	indicates	that	the	column	vector	x	is	nonnegative.

Elements	of	a	Vector

Typically,	xj	shall	represent	the	jth	element	of	the	vector	x.	That	is,	the
subscript	shall	indicate	the	element's	position	within	the	vector.

The	Baseline	Model

The	first	phase	of	the	modeling	process	is	to	gain	as	much
appreciation	of	the	actual	problem	as	possible.	Typically,	this	is
accomplished	by	observing	(if	possible)	the	problem	situation,
discussing	the	problem	with	those	most	familiar	with	it,	and	simply
spending	a	great	deal	of	time	thinking	about	the	problem	and	its
possible	reasons	for	existence	and	potential	alternatives.	Once	one	has
gained	some	degree	of	familiarity	with	the	problem,	the	next	step	is	to
attempt	to	develop	an	accurate	mathematical	model	for	problem
representation.

It	is	in	the	initial	development	of	this	(preliminary)	mathematical
model	that	our	approach	differs	from	the	traditional	procedure.	That
is,	rather	than	immediately	developing	a	specific	(and	conventional)
mathematical	model	(e.g.,	a	linear	programming	model),	we	shall	first
develop	an	extremely	general,	as	well	as	useful,	problem
representation:	the	"baseline	model"	(Ignizio,	1982a).



The	general	form	of	the	baseline	model	is	given	below:

Find	xT	=	(x1,	x2,	,	xn
)	so	as	to

4
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The	components	of	this	model	then	include:	(a)	variables	(specifically,
structural	variables,	also	known	as	control	or	decision	variables),	(b)
objectives	(of	the	maximizing	and	minimizing	form),	and	(c)	goals
(either	"hard"	or	"soft").	Further,	in	some	cases	(including	the	case	of
either	LP	or	LGP	models	as	derived	from	the	baseline	model),	an
additional	restriction	typically	exists	in	regard	to	the	structural
variables.	Specifically,	the	structural	variables	may	be	restricted	to
only	nonnegative	values;	and	this	is	written	as:

Terminology

Before	proceeding	further,	let	us	first	more	precisely	define	the
terminology	associated	with	the	baseline	model.	This	terminology,	as
well	as	its	differences	from	that	used	in	conventional	mathematical
programming,	plays	an	important	part	in	the	appreciation	of	LGP,	or
multi-objective	mathematical	programming	in	general.

Structural	variable:	Typically	denoted	as	xj,	the	structural	variables	are
those	problem	variables	over	which	one	can	exercise	some	control.
Consequently,	they	are	also	known	as	control	or	decision	variables.

Objective:	In	mathematical	programming,	an	objective	is	a	function	that
we	seek	to	optimize,	via	changes	in	the	structural	variables.	The	two	most
common	(but	not	the	only)	forms	of	objectives	are	those	that	we	seek	to
maximize	and	those	we	wish	to	minimize	(i.e.,	maximize	or	minimize	their
respective	values).	The	functions	in	(3.1)	are	maximizing	objectives
whereas	those	in	(3.2)	are	minimizing	objectives.

Goal:	The	functions	of	(3.3)	are	goal	functions.	Specifically,	they	appear
as	objective	functions	in	conjunction	with	a	right-hand	side.	This	right-
hand	side	(e.g.,	bt)	is	the	"target	value"	or	"aspiration	level"	associated
with	the	goal.

To	further	clarify	the	last	definition,	that	of	a	"goal,"	note	first	the
relationship	between	a	goal	and	an	objective.	For	example,	if	we



"wish	to	maximize	profit,"	we	are	discussing	an	objective.	However,
if	we	say	that	we	"wish	to	achieve	a	profit	of	$1000	or	more,"	then	we
have	stated	a	goal.	Obviously,	then,	we	may	transform	any	objective
into	a	goal	by	means	of	citing	a	specific	target	value	($1000	in	the
previous	example).

Next,	note	that	goals	may	be	further	classified	as	either	"hard"	(i.e.,
rigid	or	inflexible)	or	"soft"	(i.e.,	flexible)	depending	upon	just	how
firm
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our	desire	is	to	achieve	the	target	value.	Examine,	for	example,	the	profit
goal	listed	as	follows:

Now,	if	we	absolutely	must	achieve	a	profit	of	$1000	(e.g.,	if	the	firm
will	not	survive	otherwise),	then	this	function	is	a	hard,	or	rigid,	or
inflexible	goal.	Or,	using	the	terminology	of	conventional	mathematical
programming,	the	expression	represents	a	rigid	constraint.

More	likely,	such	a	goal	would	not	be	inflexible.	That	is,	the	company
may	well	want	to	have	a	profit	of	$1000	but	will	still	survive	if	it	is	$999
or	$990	or	perhaps	even	less.	In	this	case,	the	goal	would	be	considered
soft	or	flexible.

Based	on	these	concepts	and	terminology,	let	us	now	consider	the
development	of	a	small,	simplified	numerical	example	of	a	baseline
model.	The	problem	we	consider	involves	the	construction	of	a	ground-
water	pumping	station	to	provide	potable	water	for	a	small	country
town.	The	site	of	the	station	is	fixed,	because	of	the	availability	of	well
water,	and	the	only	questions	remaining	(that	we	shall	consider)	are:

(1)	Which	of	two	types	of	monitoring	station	should	be	used?

(2)	Which	of	three	types	of	pumping	machinery	should	be	purchased?
The	town	wishes,	of	course,	to	minimize	the	total	initial	cost.	However,
as	there	is	a	high	level	of	unemployment	in	the	area,	they	also	wish	to
maximize	the	number	of	workers	gainfully	employed.	The	data
associated	with	this	particular	example	is	given	below:

Station	Type Pumping	Machinery	Type
A B I II III

Initial	costs
(in	millions)

2 1.5 5 4 3.5

Number	of	personnel 4 6 6 10 15



per	8-hour	shift

To	form	the	baseline	model	for	this	problem	we	first	let

j	=	1,	2,	3,	4,	and	5	representing	the	subscripts	associated	with	station
type	A,	station	type	B,	machinery	type	I.	machinery	type	II,	and
machinery	type	III,	respectively;
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then	letting

We	are	ready	to	form	the	objectives,	goals,	and	rigid	constraints.	Now,
exactly	one	of	the	monitoring	stations	and	exactly	one	of	the	pumping
machinery	types	must	be	purchased.	This	may	be	expressed	as

and

Next,	consider	the	initial	costs	that	are	to	be	minimized.	From	the	data
table	we	can	immediately	construct	the	cost	objective	as

Further,	it	is	desired	to	maximize	the	number	of	workers	gainfully
employed.	Again,	from	the	data	this	objective	is	written	as

In	addition,	we	may	write	the	nonnegative	conditions	as

Thus,	reviewing	the	model	we	see	that	we	have	two	objectives
(relationships	3.8	and	3.9),	two	goals	(relationships	3.6	and	3.7),	and	a
set	of	nonnegativity	conditions	(3.10).	However,	notice	that	for	this
model	the	nonnegativity	conditions	are	redundant	because	in	(3.5)	we
have	already	restricted	the	structural	variables	to	nonnegative	values
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specifically,	the	values	of	either	0	or	1.	As	such,	we	may	rewrite	this
model	in	the	standard	baseline	form	shown	below:

where	xj	=	0	or	1	for	all	j

Our	final	step	in	baseline	model	development	is	to	indicate	which	of
the	goals	are	to	be	considered	rigid.	As	the	station	must,	evidently,	be
built,	we	may	conclude	that	both	goals	in	the	above	model	are	to	be
considered	as	rigid	constraints.

In	reviewing	this	model	it	should	be	obvious	that,	even	though	it	has
been	simplified	(e.g.,	yearly	operating	costs	and	salaries	have	been
ignored),	the	problem	still	has	two	objectives	and	these	objectives	are
in	conflict.	That	is,	the	minimization	of	initial	costs	adversely	affects
the	desire	to	maximize	the	number	of	workers	employed,	and	vice
versa.	Further,	we	should	note	that	this	particular	model	is	known	as	a
"zero-one	programming"	model	because	of	the	restrictions	on	the
structural	variable	values.	In	this	text	we	shall	mainly	focus	on	models
with	strictly	continuous	variables.	However,	there	are	methods	to
solve	the	zero-one	model	as	is	briefly	discussed	in	Chapter	7.

Additional	Examples

Because	of	the	(rigid)	constraints	on	the	length	of	this	monograph,	we
shall	not	address	any	further	baseline	model	examples.	However,	the
reader	desiring	further	details	and	examples	may	review	Chapter	2	of
my	book	Linear	Programming	in	Single	and	Multiple	Objective
Systems	(Prentice-Hall,	1982).

Conversion	Process:	Linear	Programming



The	baseline	model	of	(3.1)-(3.4)	represents	the	quantitative	model
that,	if	properly	and	carefully	developed,	is	closest	to	representing	the
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significant	features	of	the	corresponding	real-world	problem.
Unfortunately,	in	the	general	case	it	is	usually	not	feasible	to	attack
directly	such	a	model.	This	is	because	the	available	methods	of
solution	are	simply	not	yet	adequate	for	dealing	with	such	a	general
representation.	As	a	consequence,	our	next	step	in	the	modeling
process	is	to	transform	the	baseline	model	into	a	''working	model,"	by
means	of	certain	assumptions.

As	many	readers	may	be	familiar	with	LP,	let	us	first	describe	the
conversion	of	the	baseline	model	into	an	LP	model.	First,	we	cite	the
general	form	of	the	LP	model:

Find	x	so	as	to

For	purpose	of	illustration,	we	have	selected	a	form	that	has	a
minimization	objective	(i.e.,	function	3.11).	However,	if	we	instead
wished	to	maximize	the	single	objective,	we	would	simply	multiply	it
by	negative	one	and	then	minimize	the	resultant	objective.	That	is,

maximize	z'	=	cTx

is	equivalent	to

minimize	z	=	cTx

Now,	comparing	the	LP	model	of	(3.11)-(3.13)	with	the	baseline
model	of	(3.1)-(3.4),	it	should	be	relatively	apparent	as	to	how	the
latter	was	converted	into	the	former.	The	process	itself	may	be
summarized	as	follows:



Step	1:	Select	one	objective	from	(3.1)	or	(3.2)	and	treat	it	as	the
single	LP	objective.	Typically,	this	is	the	objective	that	is	perceived	to
be	of	"most	significance."

Step	2:	Convert	all	remaining	objectives	into	goals	by	means	of
establishing	associated	aspiration	levels.	That	is,

max	fr(x)
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becomes

fr(x)	³	br

and

min	fs(x)

becomes

where	br	and	bs	are	the	respective	aspiration	levels	for	the	two
objective	types.

Step	3:	Treat	all	goals	(i.e.,	including	those	as	formed	in	step	2)	as
rigid	constraints.

Step	4:	Convert	each	inequality	goal	to	an	equation	(by	means	of
"slack"	or	"surplus"	variables.	(See,	for	example,	Chapter	6	of	Linear
Programming	in	Single	and	Multiple	Objective	Systems,	1982.)

Although	few	analysts	are	ever	trained	to	proceed	through	the	above
four	steps	in	forming	the	LP	model	(i.e.,	they	typically	proceed
directly	to	the	LP	model),	we	strongly	believe	that	the	assumptions
underlying	any	LP	model	are	made	far	more	apparent	via	this	process.

LGP	Conversion	Procedure:	Phase	One

We	now	consider	the	conversion	of	the	baseline	model	into	the
lexicographic	form	(i.e.,	non-Archimedean	or	preemptive	priority
form)	of	the	GP	model.	This	modelmost	specifically	in	its	linear
formis,	of	course,	the	focus	of	this	monograph.	This	conversion
process	proceeds	through	two	phases.	The	first	phase	consists	of	the
following	steps:

Step	1:	All	objectives	are	transformed	into	goals	(in	the	same	manner
as	treated	above	for	LP).	Thus,	the	baseline	model	of	(3.1)-(3.4)



becomes:

6

Note	that	each	goal	in	(3.14),	unlike	LP,	may	be	either	hard	or	soft,	as
deemed	appropriate	for	the	most	accurate	representation	of	the
problem	being	considered.

Step	2:	Each	goal	in	(3.14)	is	then	rank	ordered	according	to
importance.	As	a	result,	the	set	of	hard	goals	(i.e.,	rigid	constraints)	is
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TABLE	3.1
Inclusion	of	Deviation	Variables

Original	Goal	Form Converted	Form
"Unwanted"	Deviation	Variable
(the	Variable	to	be	Minimized)

fi	(x)	£	bi fi	(x)	+	hi	ri	=	bi ri
fi	(x)	³	bi fi	(x)	+	hi	ri	=	bi hi
fi	(x)	=	bi fi	(x)	+	hi	ri	=	bi hi	+	ri

always	assigned	the	top	priority	or	rank	(designated	typically	as	P1).
All	remaining	goals	are	then	ranked,	in	order	of	their	perceived
importance,	below	the	rigid	constraint	set.	Note	further	that
commensurable	goals	may	be	(and	should	be)	grouped	into	a	single
rank	(Ignizio,	1976b;	Ignizio,	1982a;	Knoll	and	Englebert,	1978).

Step	3:	Given	that	the	solution	procedure	used	in	solving	LGP	models
requires	a	set	of	simultaneous	linear	equations	(as	does	LP),	all	of	the
goals	of	(3.14)	must	be	converted	into	equations	through	the	addition	of
logical	variables.

In	LP,	such	logical	variables	are	known	as	slack	and	surplus	variables
(and,	when	needed,	artificial	variables).	In	GP,	these	logical	variables
are	termed	deviation	variables	or	goal	deviation	variables.	We
summarize	this	step	in	Table	3.1.

Having	concluded	the	first	phase	in	the	conversion	of	the	baseline
model	into	the	GP	model,	we	now	emphasize	that	we	seek	a	solution
(i.e.,	x)	that	serves	to	"minimize"	all	unwanted	deviations.	The	manner
by	which	we	measure	the	achievement	of	the	minimization	of	the
undesirable	goal	deviations	is	what	differentiates	the	various	types	of
GP.	Here,	we	shall	use	the	lexicographic	minimum	conceptan	approach
that,	as	mentioned	earlier,	will	also	permit	us	to	consider,	as	special
cases,	Archimedean	(i.e.,	minsum)	LGP	as	well	as	conventional	LP.
Before	proceeding	further,	let	us	define	the	lexicographic	minimum,	or



"lexmin,"	of	an	ordered	vector.

Lexicographic	Minimum:	Given	an	ordered	array,	say	a,	of	nonnegative
elements	(aks),	the	solution	given	by	a(1)	is	preferred	to	a(2)	if	 	and	all
higher	order	terms	(i.e.,	a1,	a2,	,	ak1)	are	equal.	If	no	other	solution	is
preferred	to	a,	then	a	is	the	lexicographic	minimum.
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Thus,	if	we	have	two	arrays,	say	a(r)	and	a(s),	where

a(r)	=	(0,	17,	500,	77)T

a(s)	=	(0,	18,	2,	9)T

then	a(r)	is	preferred	to	a(s).

LGP	Conversion	Process:	Phase	Two

We	now	address	the	completion	of	the	conversion	process,	a	process
that	will	lead	us	to	the	following	general	form	of	the	lexicographic
LGP	model:

Find	v	so	as	to

If	we	observe	that

then	we	may	note	that	(3.16)	is	simply	the	representation	of	all	the
goals,	including	their	deviation	variables	(i.e.,	see	Table	3.1)	for	the
problem.	It	is	now	left	only	to	explain	the	meaning	and	formation	of
(3.15).	The	ordered	vector	uT,	is	termed	the	"achievement"	function	in
GP.	Actually,	it	could	be	argued	that	a	more	appropriate	name	is	the
"unachievement"	function	as	it	really	represents	a	measure	of	the
unachievement	encountered	in	attempting	to	minimize	the	rank-
ordered	set	of	goal	deviations.	Thus:

uT	=	the	GP	achievement	function,	or	vector,



	

	



Page	26

uk	=	the	kth	term	of	uT;	the	term	associated	with	the	minimization	of
all	unwanted	deviations	associated	with	the	set	of	goals	at	rank,	or
priority	k,	and

c(k)T	=	the	(row	vector)	of	weights	associated	with	the	unwanted
deviation	variables	at	rank	k.

Note	in	Particular	the	Notation	Used	in	c(k)T

That	is,	the	"T"	superscript	simply	designates	the	transpose	of	the
column	vector	c(k).	The	superscript	(k)	refers,	however,	to	the	priority
level,	or	rank,	associated	with	the	respective	set	of	weights.	For	the
reader	still	uncertain	as	to	the	procedure,	we	now	describe	the
conversion	via	a	small	numerical	example.

An	Illustration

In	order	to	both	clarify	and	reinforce	the	concept	of	the	development
of	the	baseline	model,	we	shall	now	describe	a	specific,	numerical
example.	Although	far	simpler	and	less	complex	than	would	be	most
real-world	problems,	the	modeling	process	should	still	indicate	the
typical	procedure	used.

We	shall	assume	that	we	are	concerned	with	the	problems	of	a
specific,	high-tech	firm.	Although	this	firm	produces	numerous	items,
their	particular	problem	is	in	regard	to	the	manufacture	of	just	two	of
these	products.	These	products,	designated	for	security	as	"x1"	and
"x2,"	are	produced	in	one	isolated	sector	of	the	plant,	via	an	extremely
complex	process	as	carried	out	on	an	exceptionally	delicate	piece	of
machinery.	Once	an	item	is	produced,	we	have	just	24	hours,	at	the
maximum,	to	ship	and	install	the	item	at	a	remote	government
installation.	That	is,	unless	the	finished	unit	of	either	product	x1	or	x2
is	installed	within	24	hours	of	its	manufacture,	the	product	cannot	be
enhanced	chemically	and	must	be	scrappedvia	an	extraordinarily



expensive	and	time-consuming	process;	a	process	that	would,	in	fact,
drive	our	company	out	of	business.

The	firm	has	a	contract	with	the	government	to	supply	up	to	30	units
per	day	of	product	x1	and	up	to	15	units	per	day	of	product	x2.
However,	the	government	installation,	recognizing	the	delicate	nature
of	the	manufacturing	process,	realizes	that	receipt	of	exactly	30	and
15	units	of	x1	and	x2,	respectively,	is	unlikely.

The	firm	makes	an	estimated	profit	per	unit	of	$800	for	x1	and	$1200
for	x2.	They	state	that	they	certainly	wish	to	maximize	their	daily
profit.
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On	the	single,	specially	designed	processor,	it	takes	just	one	minute	to
produce	each	unit	of	x1	and	two	minutes	for	each	x2.	However,	due	to
the	delicate	nature	of	the	machine,	the	firm	would	like	to	run	it	no
more	than	40	minutes	per	every	24-hour	period.	In	the	time	during
which	the	machine	is	not	running,	it	may	be	adjusted	and	fine	tuned	so
as	to	satisfy	the	almost	critical	manufacturing	requirements.	Thus,
although	the	machine	could	conceivably	be	run	for	more	than	40
minutes	per	day,	this	would	not	be	highly	desirable	to	the	firm.

To	model	this	problem,	in	baseline	form,	we	shall	first	define	our
structural	variables:

x1	=	number	of	units	of	product	x1	produced	per	day;

x2	=	number	of	units	of	product	x2	produced	per	day.

We	next	form	our	objectives	and	goals,	as	a	function	of	the	structural
variables.

Our	first	set	of	goals	will	be	that	of	"market	demand,"	the	daily
(upper)	requirements	of	the	government	installation.	Thus:

Note	carefully	that	the	government,	although	wanting	the	upper	limits,
will	accept	somewhat	fewer	units.	Further,	recall	the	virtual	disaster
that	would	be	associated	with	producing	more	than	the	daily	demands.

The	profit	objective	may	be	written	as	follows:

maximize	800x1	+	1200x2	(daily	profit)

However,	this	would	be	poor	modeling	practice.	That	is,	in
mathematical	programming	one	should	always	attempt	to	scale	all
coefficients	so	that	the	difference	between	the	largest	and	smallest
coefficient	is	minimized.	Thus,	a	more	desirable	form	of	the	profit



objective	is

Next,	we	note	that	we	would	like	to	limit	production	time	per	day	to
40	minutes	total,	although	the	firm	does	indicate	some	flexibility
about	this	limit.	Thus,	we	write	this	goal	as
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Finally,	although	not	explicitly	mentioned	in	our	problem	description,
the	firm	would	obviously	like	to	produce	as	close	to	30	units	per	day
of	x1	and	15	units	per	day	of	x2.	In	doing	so,	they	not	only	increase
their	profits	but	also	keep	the	customer	happy.	We	shall	wait	for	a
moment	before	actually	formulating	these	last	goals.	However,	note
that	they	are	associated	with	(3.19)	and	(3.20).

Our	next	step	is	to	convert	any	objectives	into	goals.	The	only
objective	listed	in	(3.19)-(3.22)	is	that	of	maximizing	profit.
Assuming	that	the	firm's	aspired	daily	profit	from	these	two	products
is	$100,000,	we	convert

We	are	now	ready	to	rank	order	all	goals,	in	conjunction	with
discussions	with	the	firm's	decision	makers.	For	purpose	of
discussion,	we	shall	assume	that	the	order	of	presentation	coincides
with	the	order	of	preference.	Further,	it	is	obvious	that	the	first	two
goals	(daily	requirements)	are	the	only	ones	that	are	rigid	in	this
problem.	Thus,	letting	Pk	refer	to	the	kth	priority	or	rank:

P1:	produce	no	more	items	per	day	of	each	item	than	demanded.

P2:	achieve	a	profit	of	$100,000	per	day,	or	more.

P3:	attempt	to	keep	processing	time	to	40	minutes	or	less	per	day.

P4:	attempt	to	supply	as	close	to	30	units	and	15	units	of	x1	and	x2,
respectively,	per	day.	Further,	we	shall	assume	that	the	firm	considers
supply	x2	to	be	one	and	a	half	times	more	important	than	x1.

After	including	the	necessary	goal	deviation	variables	(i.e.,	ni	and	ri)
and	forming	the	achievement	function,	we	develop	the	final	form	of
the	lexicographic	LGP	model	as	shown	below:
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Notice,	in	particular,	that	two	(or	more)	goals	may	be	combined	in	one
priority	level	if	they	are	commensurable	(i.e.,	credible	weights	may	be
assigned	to	each	goal	so	that	they	may	be	expressed	in	a	single
performance	measure).	This	occurs	in	P4	(the	fourth	term	of	uT).
Further,	all	rigid	constraints	are	always	combined	in	P1,	even	if	not	in
the	same	units,	as	they	must	be	achieved	if	the	program	is	to	be
implementable.

The	model	of	(3.24)-(3.26)	may	be	rewritten,	in	a	more	general	form,
as

s.t.

Av	=	b

v	³	0

where
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As	we	shall	see	in	Chapter	5,	the	optimal	solution	to	this	model	is

v*	=	(30	15	:	0	0	580	0	:	0	0	0	20)T

u*	=	(0	580	20	0)T

From	v*,	we	note	that	 	and	 	and	thus	we	produce	exactly	the
daily	limits.	Observing	u*,	we	can	determine	how	well	our	goals	were
met.

thus	all	rigid	constraints	are	satisfied.
the	result	is	580	units	below	the	goal	of	1000.	Thus,	we	achieve	a
daily	profit	of	$42,000	rather	than	$100,000.
the	result	is	20	units	over	the	aspired	goal	of	40.	Consequently,
our	machine	must	be	run	for	60	minutes	per	day	rather	than	40.
the	last	set	of	goals	are	completely	satisfied.

Good	and	Poor	Modeling	Practices

Note	the	achievement	function	of	(3.24),	or	the	general	form	of	(3.15).
This	function	is	an	ordered	vector,	with	each	element	corresponding	to
the	measure	of	the	minimization	of	certain	unwanted	goal	deviations.
When	one	refers	back	to	the	earlier	definition	of	the	lexicographic
minimum,	we	note	that	this	definition	is,	in	fact,	based	upon	the	notion
of	an	ordered	vector.	Despite	this,	some	employ	a	GP	achievement
function	(which	they	typically	term	as	an	"objective	function")	that
indicates	a	summation	of	the	individual	elements	of	uT.	That	is,	they	will
write	uT	in	(3.24)	as	follows:

minimize	P1(r1)	+	r2)	+	P2(h3)	+	P3(r4)	+	P4(h1	+	1.5h2)

where	Pk	indicates	the	rank,	or	priority,	of	the	term	in	parentheses.
Although	in	common	use,	this	notation	is	exceptionally	poor	practice	as
it	totally	contradicts	the	very	definition	of	the	lexicographic	minimum
(or	of	"preemptive	priorities").	The	real	problem	appears,	however,



when	those	using	such	notation	attempt	to	develop	any	extensions	of	GP
or	supporting	proofs.	That	is,	the	invalid	summations	serve	to,	quite
often,	totally	confuse	those	pursuing	such	extensions.	Consequently,	it
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is	my	belief	that,	despite	the	"tradition"	of	such	a	form,	it	is
mathematical	nonsense	and	should	be	avoided.

Another	modeling	practice	sometimes	advocated	by	others	is	to
construct	goals	without	the	inclusion	of	any	structural	variables.	To
illustrate	this,	consider	the	following	example;

Here,	the	circled	deviation	variables	are	those	we	wish	to	minimize.
Thus,	G1	is	 	wherein	G2	is	an	attempt	to	state	that	in	G1	the
negative	deviation	from	40	should	be	10	units	or	less.	I	claim	that	the
following	representation	is	more	effective:

The	reader	should	note	that	both	representations	are	equivalent.
However,	the	first	representation	will	require,	when	solved	by	any
LGP	algorithm,	more	variables	than	the	second.	The	reason	for	this
will	become	clear	in	Chapter	4.	Here,	we	simply	note	that	the	so-
called	initial	basic	feasible	solution	in	LGP	always	consists	of	the
negative	deviation	variables	(nis).	As	such,	each	hi	must	appear	in
exactly	one	goal.	Such	is	not	the	case	in	G1	and	G2.	Consequently,	to
alleviate	this,	at	least	one	new	variable	must	be	added	to	the
formulation.	Thus,	although	G1	and	G2	mean	the	same	thing	as	G1'
and	G2',	the	latter	is	a	more	computationally	efficient	representation.
To	conclude,	we	simply	note	that	it	is	never	good	practice	to	form	a
goal	consisting	solely	of	deviation	variablesand	an	alternate,	proper
representation	may	always	be	found.

We	also	note	that	the	rigid	constraints	should	always	appear,



separately,	in	priority	level	one	(i.e.,	as	u1).	All	remaining	goals
should	be	ranked	below	them	but	may	appear	in	a	single	priority	level
(or	as	grouped	sets)	if	reasonable	weights	may	be	found	so	as	to
achieve	commensurability.	Further,	we	should	always	realize	the
implication	of	separate	priority	levels.	That	is,	the	achievement	of	Pr
always	preempts	that	of	Ps	if	s>r	and	thus	the	goals	at	Ps	can	be
achieved	only	to	the	point
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that	they	do	not	degrade	any	higher-order	goals.	It	is	for	this	reason
that	it	is	poor	practice	to	have	more	than	about	5	or	6	priority	levels.
That	is,	the	likelihood	of	being	able	to	deal	with	any	goals	at	a	priority
level	of,	say,	ten	is	virtually	nil.

A	good	GP	model	will	make	good	sense.	That	is,	it	should	be	logical
and	express	the	problem	accurately.	If	it	does	not,	one	should	seek	to
improve	the	model	so	that	it	does	make	sense.	Some	checks	that
should	always	be	made	include:

(1)	Are	all	the	rigid	constraints	(and	only	the	rigid	constraints)	at
priority	one?

(2)	Are	the	unwanted	deviations	those	that	appear	in	the	achievement
function?

(3)	Are	there	more	than	5	or	6	priority	levels	(real-world	problems
typically	have	no	more	than	2	to	5	priority	levels)?

(4)	Are	all	sets	of	commensurable	goals	grouped	within	the	same
priority	level?

(5)	Do	any	goals	consist	solely	of	deviation	variables?	If	so,	replace
them	as	discussed	earlier.

4.
An	Algorithm	for	Solution
As	discussed	in	Chapter	2,	a	number	of	different	algorithms	(and
associated	computer	software)	have	been	developed	for	the	solution	of
the	lexicographic	LGP	model.	Further,	the	best	of	these	algorithms
(e.g.,	MULTIPLEX;	Ignizio,	1983e,	1985a,	forthcoming)	are	capable
of	solving	models	of	comparable	sizes	(i.e.,	several	thousands	of	rows
by	tens	of	thousands	of	variables)	and	with	equivalent	computational



efficiency	as	that	found	in	commercial	simplex	software	(i.e.,	for
conventional	LP	models;	Ignizio,	1983e,	1984,	1985a,	forthcoming).

In	this	chapter	we	shall	address	just	one	version	of	the	many	LGP
algorithms,	a	version	using	multiphase	simplex.	For	those	with	a
familiarity	with	LP,	we	note	that	multiphase	simplex	is	simply	a
straightforward	and	rather	transparent	extension	of	the	well-known
''two	phase"	simplex	procedure	(Charnes	and	Cooper,	1961;	Ignizio,
1982a;	Lasdon,	1970;	Murtagh,	1981)	for	conventional	LP.
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The	Transformed	Model

In	Chapter	3,	we	presented	the	general	form	of	the	lexicographic	LGP
model	in	(3.15)-(3.18).	We	have	rewritten	this	model	below:

Find	v	so	as	to

where

Note	that	h	and	r	are	the	logical	(or	goal	deviation)	variables	whereas
x	is	the	structural	variable.

Further,	as	 	represents	the	weight	given	to	variable	j,	at	priority	or
rank	k,	then	all	 	are,	in	LGP,	nonnegative.	That	is,

Although	the	previous	model	represents	and	conveniently	summarizes
the	lexicographic	LGP	model,	we	shall	work	with	a	transformation	of
this	model.	This	"transformed	model"	is	also	known	as	the	"tabular"
model	or	''reduced	form"	model.	The	advantages	of	the	transformed
model	include	the	fact	that,	from	it,	various	LGP	conditions	may	be
easily	derived.	We	now	proceed	with	the	development	of	the
transformed	LGP	model.

We	first	note	that	the	set	of	goals	is	given	as:
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However,	the	mxn	matrix,	A,	may	be	partitioned	into:

A	=	(B:N)

where:

B	=	a	mxm	nonsingular	matrix,	designated	as	the	basis	matrix,	and

N	=	a	mx(n	m)	matrix

Further,	the	variable	set,	v,	may	be	similarly	partitioned	into:

where:

vB	=	the	set	of	basic	variablesthose	associated	with	B	and

vN	=	the	set	of	nonbasic	variablesthose	associated	with	N

Consequently,	we	may	rewrite	(4.6)	as

and,	as	B	is	nonsingular	(and	thus	has	an	inverse),	we	may
premultiply	each	term	in	(4.8)	by	B1	to	obtain

B1BvB	+	B1NvN	=	B1b

or

vB	+	B1NvN	=	B1b

and,	solving	for	vB:

Next,	examine	the	LGP	achievement	function	as	given	in	(4.1).	The
general,	or	kth	element	of	u	is	given	as

c(k)T	v



However,	recall	that	v	was	partitioned	according	to	(4.7)	and	thus	the
above	term	may	be	rewritten	as
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wherein	the	subscripts	for	c	reflect	those	coefficients	associated	with
the	set	of	basic	variables	or	those	associated	with	the	nonbasic
variables	"B"	or	N",	respectively.

We	may	now,	using	(4.9),	substitute	for	vB	in	(4.10)	to	obtain

Further,	let

where	aj	is	the	jth	column	of	A.

Using	the	above,	we	may	write	the	general	form	of	the	LGP	model
from	(4.1)-(4.3)	in	the	"transformed"	or	"reduced"	form	as	given
below.

Find	v	so	as	to

An	alternative	and	quite	convenient	way	in	which	we	may	summarize
(4.15)-(4.17)	is	by	means	of	a	tableau,	as	shown	in	Table	4.1.

Basic	Feasible	Solution

We	may	define	a	basic	solution	as	one	in	which	all	nonbasic	variables
are	set	at	their	bound.	For	our	purposes,	this	bound	shall	be	zero.
Thus,
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TABLE	4.1
LGP	Tableau

if	vN	=	0,	a	basic	solution	results.	More	specifically,	if	vN	=	0,	then
B1NvN	=	0	and	thus

Further,	a	basic	feasible	solution	is	one	wherein	all	terms	in	(4.18)	are
nonnegative.	Thus,	a	basic	feasible	solution	is:

In	LGP,	as	in	LP,	the	optimal	solution	may	always	be	found	as	a	basic
feasible	solution	(Charnes	and	Cooper,	1961).

Associated	Conditions

The	three	primary	conditions	associated	with	the	reduced	form	of	the
LGP	model	are	feasibility,	implementability,	and	optimality.	Given
that	vN	=	0,	these	terms	are	defined	as	follows:

Feasibility:	If	b	=	B1b³0,	the	resultant	solution,	or	program,	is	denoted	as
being	feasible.

Implementability:	If	 	then	the	resultant	program	(vB)	is
designated	as	being	an	implementable	solution.	That	is,	the	top	ranked	set
of	goals	(i.e.,	the	set	of	rigid	constraints)	are	all	satisfied.
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Now,	before	defining	the	conditions	for	the	optimality	of	a	given
program	for	an	LGP	model,	let	us	first	note	that,	in	(4.15),	the	terms

are	designated	as	the	vector	of	increased	costs	as	this	indicates	just
how	much	the	kth	term	of	the	achievement	function	will	increase	as
vN	changes.

We	shall	let	the	jth	element	of	(4.20)	be	designated	as

wherein

Consequently,	associated	with	each	nonbasic	variable	is	a	column
vector	of	 	elements.	This	vector	is	termed,	in	LGP,	as	the	vector	of
multidimensional	shadow	prices	or	as	simply	the	shadow	price	vector,
dj.

Optimality:	If	every	shadow	price	vector,	dj,	is	lexicographically
nonpositive,	the	associated	basic	feasible	solution	(vB)	is	optimal	for	the
given	LGP	model.	This	optimal	program	is	designated	as	

A	lexicographically	nonpositive	vector	is	one,	in	turn,	in	which	the
first	nonzero	element	is	negative.	Of	course,	a	vector	of	solely	zeros	is
also	lexicographically	nonpositive.

We	may	note	that	"implementability"	is	a	condition	that	is	unique	to
GP.	Further,	unlike	LP,	there	is	no	condition	of	unboundedness	in	GP.
This	may	be	observed	by	simply	examining	the	achievement	function
form	given	originally	in	(4.1)	and	repeated	below:

lexmin	

Now,	uT	could	only	be	unbounded	(in	the	case	of	seeking	the



lexicographic	minimum	of	uT)	if	one	or	more	elements	of	uT	could
decrease	to	minus	infinity.	This	is	obviously	impossible	because

v	³	0	and	c(k)	³	0	for	all	k
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Thus,	the	absolute	minimum	value	for	any	uk
is	zero.

7	Despite	this,	other	material	or	texts	on	GP	sometimes	discuss	the
unbounded	condition	for	LGP	as	if	it	were	actually	possible	and,	in
fact,	even	propose	checks	within	their	proposed	algorithms	for
solutions.	The	implementation	of	such	unnecessary	checks	simply
increases	computation	time.	Evidently,	those	proposing	such
conditions	and	checks	are	simply	copying,	without	thought	to	the
rationale,	the	checks	for	unboundedness	that	exist	in	LP.	This
situation,	as	well	as	numerous	others,	provides	ample	reason	to	not
blindly	treat	GP,	or	LGP,	as	simply	"an	extension	of	LP."	In	fact,	a
more	logical	view	would	be	to	consider	LP	as	but	a	special	subclass	of
LGP.

Algorithm	for	Solution:	A	Narrative	Description

Before	proceeding	to	a	listing	of	the	specific	steps	of	our	algorithm	for
solution	of	the	LGP	model,	let	us	first	attempt	to	describe	the	overall
nature	of	this	algorithm.	As	with	any	algorithm	for	mathematical
programming,	our	assumption	is	that	a	correct	mathematical	model
has	been	developed.

Initially,	we	focus	our	attention	on	priority	level	one,	the	achievement
of	the	complete	set	of	rigid	constraints.	Thus,	our	initial	motivation	is
to	develop	a	basic	solution	that	(if	possible)	simultaneously	satisfies
all	the	rigid	constraints.	This	is	accomplished	whenever	a1	=	0.	In	our
attempt	to	achieve	this,	we	initially	set	all	structural	variables	and
positive	deviation	variables	nonbasic.	Consequently,	our	first	basis
consists	solely	of	the	set	of	negative	deviation	variables.	Typically,
this	basis	(which,	in	essence,	is	the	"do	nothing"	solution)	will	not
satisfy	all	rigid	constraints	and	thus	we	initiate	the	simplex	pivoting



procedure.	Specifically,	we	exchange	one	basic	variable	for	one
nonbasic	variable	if	such	an	exchange	will:	(a)	retain	feasibility,	and
(b)	lead	to	an	improved	solutionone	that	more	closely	satisfies	the	set
of	rigid	constraints.	The	pivoting	step	is	then	repeated	until	all	rigid
constraints	are	satisfied	as	closely	as	is	possible	(i.e.,	until	a1	reaches
its	minimum	valuea	value	of	zero,	it	is	hoped).

Having	obtained	the	minimum	value	for	a1,	we	next	attempt	to
minimize	a2	without	degrading	the	value	previously	obtained	for	our
higher	priority	level	(i.e.,	a1).	Minimization	of	a2	is	accomplished,
once	again,	via	the	simplex	pivoting	process.	However,	in	addition	to
considering	the	feasibility	and	improvement	of	any	proposed
exchange,	we	must	also	not	permit	an	exchange	that	would	degrade
the	value	of	a1	(i.e.,	increase	its	value).
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The	procedure	continues	in	this	manner	until	the	lexicographic
minimum	of	a	is	finally	obtained.	Those	readers	with	a	previous
exposure	to	conventional	linear	programming	will	recognize	that	the
procedure	used	is	but	a	slightly	modified	version	of	the	well-known
simplex	algorithm;	specifically	the	two-phase	simplex	procedure	used
in	most	commercial	simplex	software	packages.

The	Revised	Multiphase	Simplex	Algorithm

The	algorithm	for	the	solution	of	the	LGP	model,	as	is	described	next,
is	termed	the	revised	multiphase	simplex	algorithm.	As	such,	it	is
basically	a	straightforward	modification	of	revised	simplex	for	LP
wherein	the	so-called	two-phase	simplex	process	is	utilized.	The
modification	itself	permits	multiple	"phases,"	rather	than	just	two	as	in
conventional	LP.

Under	the	assumption	that	the	algorithm	is	to	be	ultimately
implemented	via	a	computer,	the	information	maintained	in	computer
storage	must	consist	of	some	representation	of	the	original	LGP	model
as	given	in	(4.1)-(4.3).	Specifically,	we	store	A,	b,	and	c(k)T	for	all	k.

We	begin	the	algorithm	by	assuming	that	we	have	an	initial	basic
feasible	solution,	some	representation	of	B1	and	the	associated
program:	b	=	B1b	(with	the	latter	designated	as	the	"current	righthand
side").	When	employing	the	LGP	model,	these	are	trivial	requirements
because,	initially,	h	=	b	and	x,	r	=	0	will	always	provide	a	basic
feasible	solution	(we	assume	that	all	goals	are	written	with
nonnegative	righthand	sides).	Further,	the	basis	associated	with	vB	=	h
is	the	identity	matrix,	I,	and	thus	B1	=	I	initially.

We	may	then	generate	the	multidimensional	shadow	price	vectors,	dj
,	for	all	nonbasic	variables	and	determine	whether	or	not	the	present
basic	feasible	solution	is	optimal.



8	If	so,	we	may	stop.	Otherwise,	we	must	proceed	to	a	pivoting
operation.	Pivoting	involves	the	exchange	of	a	nonbasic	variable	for	a
basic	variable	in	a	manner	such	that:

(1)	the	new	solution	is	still	a	basic	feasible	solution,	and

(2)	the	resultant	value	of	uT	is	improved,	or	is	at	least	no	worse	than
before	the	pivot.

Once	we	have	pivoted,	we	simply	update	B1	and	b	and	repeat	the
process.	In	actual	practice,	we	may	augment	the	procedure	described
above	by	numerous	refinements	and	shortcuts	so	as	to	substantially
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improve	computational	performance.	We	now	list	the	steps	of	the
revised	simplex	procedure	for	LGP.

Step	1.	Initialization.	Let	vB	=	h.	Thus,	B	=	I,	B1	=	I	and	b	=	b.	Set	k
1.	Initially,	all	variables	are	unchecked.

Step	2.	Develop	the	pricing	vector.	Determine:

Step	3.	Price	out	all	UNCHECKED,	nonbasic	columns.	Compute:

where	 	is	the	set	of	nonbasic	and	unchecked	variables.

Step	4.	Selection	of	entering	nonbasic	variables.	Examine	those	 	as
computed	in	step	3.	If	none	are	positive,	proceed	to	step	8.	Otherwise,
select	the	nonbasic	variable	with	the	most	positive	 (ties	may	be
broken	arbitrarily)	as	the	entering	variable.	Designate	this	variable	as
vq.

Step	5.	Update	the	entering	column.	Evaluate:

Step	6.	Determine	the	leaving	basic	variable.	We	shall	designate	the
leaving	variable	row	as	i	=	p.	Using	the	present	representation	of	b
and	the	values	of	aq,	as	derived	in	step	5,	we	determine:

Again,	ties	may	be	broken	arbitrarily.	The	basic	variable	associated
with	row	i	=	p	is	the	leaving	variable,	vB,p.

Step	7.	Pivot.



9	We	replace	ap	in	B	by	aq	and	compute	the	new	basis	inverse,	B1.
Return	to	step	2.

Step	8.	Convergence	check.	If	either	one	(or	both)	of	the	following
conditions	holds,	STOP	as	we	have	found	the	optimal	solution:

(a)	if	all	 	as	computed	in	step	3	are	negative,	or
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(b)	if	k	=	K	(where	K	=	number	of	priority	levels,	or	terms	in	uT).
Otherwise,	"check"	all	nonbasic	variables	associated	with	a	negative
,	set	k	=	k	+	1	and	return	to	step	2.

The	above	eight	steps	represent	the	primary	elements	of	the	revised
multiphase	simplex	algorithm	for	LGP.	However,	it	must	be	realized
that	truly	efficient	computer	software	for	the	implementation	of	such
an	algorithm	will	typically	involve	numerous	modifications	and
refinements	tailored	about	the	specific	advantages	as	well	as
limitations	of	the	digital	computer.

In	the	following	chapter,	we	illustrate	the	implementation	of	the
described	algorithm	on	a	numerical	example.	However,	before
proceeding	to	that	discussion,	we	next	examine,	in	more	detail,	certain
steps	of	the	above	algorithm.

The	Pivoting	Procedure	in	LGP

The	heart	of	the	solution	algorithm	for	the	LGP	model	is	a	procedure
denoted	as	pivoting.	In	essence,	pivoting	involves	the	modification	of
a	prior	basic	feasible	solution.	Associated	with	every	basic	feasible
solution,	vB,	is	a	basis,	B.	This	basis	is	composed	of	a	set	of	m
linearly	independent	column	vectors	from	A,	the	matrix	of
"technological	coefficients"	that	appears	in	the	statement	of	the	LGP
goals	(i.e.,	Av	=	b).

In	its	most	elementary	form,	pivoting	involves	the	exchange	of	a
column	vector	of	B	(as	associated	with	a	present	basic	variable)	for	a
nonbasic	column	vector	from	N.	That	is,	a	nonbasic	variable	is	said	to
"enter"	the	basis	while	a	basic	variable	"leaves"	the	basis.	Such	an
exchange	is	made	if	it	results	in	an	improvement	in	the	lexicographic
minimum	of	uT;	or,	at	worst,	if	uT	is	not	degraded.

The	choice	of	the	nonbasic	vector	to	enter	the	basis	is	made	via	an



operation	termed	the	"price	out"	procedure.	Simply	put,	the	price	out
procedure	evaluates	the	potential	improvement	in	uT	for	each
candidate	nonbasic	variableand	selects	the	one	that	appears	to	provide
the	greatest	reduction.	The	determination	of	the	basic	variable	that	is
to	leave	the	basis	is	slightly	more	involved.	Given	that	a	new	variable
(i.e.,	a	presently	nonbasic	variable)	is	to	enter	the	basis,	a	basic
variable	must	obviously	leaveand	the	choice	of	the	basic	variable	that
departs	is	not	arbitrary.	Specifically,	the	choice	is	made	so	that	the
new	basis	is	associated	with	a	new	basic	feasible	solution.	This	may
be	illustrated	as	follows.	First,	observe	the	transformed	form	of	the
LGP	model	that	reflects	the	basic	feasible	solution,	for	example:

vB	=	B1b	B1NvN
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with	b=B1b	and	realizing	that	only	a	single	nonbasic	variable	is	to
enter	the	basis,	we	may	rewrite	the	above	expression	as

vB	=	b	B1	aq	vq

where	q	is	the	subscript	associated	with	the	entering	nonbasic
variable.	However,	we	may	replace	B1aq	with	aq.	Thus,

vB	=	b	aq	vq

Rewriting	vB	in	terms	of	each	of	its	components,	we	have

Thus,	as	vq	increases,	bi	decreases	if	ai,q	is	positive.	That	is,

where	 	is	the	new	value	of	bi.	In	order	that	vB	remain	feasible,	each
bi	must	remain	nonnegative.	As	such,	if	any	ai,q	is	positive,	the
corresponding	value	of	bi	will	decrease,	eventually	passing	through
zero.	Thus,	the	first	such	bi	that	would	reach	zero	determines	the	so-
called	blocking	basic	variablethe	basic	variable	that	must	leave	the
basis	if	vq	enters.	This	leads	directly	to	the	departing	basic	variable
rule	given	as	(4.26).	in	the	previous	algorithm.

The	operation	of	the	pivoting	procedure,	summarized	so	briefly	in
step	7	of	the	algorithm,	is	to	compute	the	new	inverse	as	a	result	of	the
pivot.	Nearly	all	present	day	commercial	software	for	the
conventional	simplex	method	(i.e.,	for	LP)	or	that	for	LGP	utilize	the
so-called	product	form	of	the	inverse	(Charnes	and	Cooper,	1961;
Ignizio,	1982a;	Lasdon,	1970;	Murtagh,	1981)	to	accomplish	this
evaluation.	There	are,	however,	several	alternate	approaches	and,	in



fact,	we	shall	present	one	of	these	in	the	chapter	to	follow	(in	the
discussion	of	the	tabular	simplex	process	for	LGP).	This	method	is
termed	the	"explicit	form	of	the	inverse"	and	it,	as	well	as	its
variations,	provides	a	reasonably	computationally	efficient	approach
to	LGP,	whether	performed	by	hand	or	on	the	computer.
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5.
Algorithm	Illustration
To	illustrate	the	implementation	of	the	algorithm	as	listed	in	Chapter
4,	we	apply	that	procedure	to	the	same	LGP	model	originally	formed
in	Chapter	3	and	given	in	(3.24)-(3.26).	Specifically,	the	problem
addressed	is	as	follows:

Find	x	so	as	to

s.t.

However,	the	above	form	of	the	model	is	not	convenient	to	work	with
and	thus	we	replace	it	by	the	more	general	form:

Find	v	so	as	to
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and

The	Tableau

In	Chapter	4,	Table	4.1,	we	presented	one	particular	form	of	the	LGP
tableau.	Specifically,	that	version	is	termed	the	''full"	or	"extended"
tableau	form.	Actually,	we	might	term	it	the	"too	full"	tableau	as	it
contains	far	more	information	than	is	actually	needed	to	perform	the
algorithm.	Although	the	full	tableau	is	often	used	in	textbook
presentations,	it	is	simply	not	suitable	for	realistic	computer
implementation.	Thus,	here	we	use	an	alternative	and	considerably
more	convenient	tableau	form.	We	advocate	the	use	of	this	tableau
whether	one	is	solving	the	problem	by	hand	or	developing	a	computer
program	for	reasonably	efficient	solution.	This	tableau	is	shown	in
Table	5.1.

Note	that	this	tableau	contains

B1the	inverse	of	the	present	basis;
b the	present	right-hand	side	(vB	=	B1	b),	or
program;



u the	achievement	vector;
and
P

the	matrix	of	 	elements.
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TABLE	5.1
LGP	Tableau,	Explicit	Form	of	Inverse

	
vB,1
.
.
.
vB,i B1 b
.
.
.
vB,m
p(1)T
.
. P u
.
p(k)T

	

Remarking	on	P,	we	note	that	each	row	in	P,	given	as	p(k)T	in	general,
is	the	pricing	vector	as	specified	in	step	2	of	the	algorithm	of	Chapter
4.

Actually,	the	section	of	this	tableau	that	contains	u	is	not	really	needed
in	performing	the	algorithm.	We	keep	it	merely	to	note	the	continuing
improvement	of	u	in	each	iteration.

We	may	now	write	the	associated	initial	tableau	for	the	problem	given
in	(5.4)-(5.6).
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Note	carefully	that	v3	through	v6	(which	correspond	to	h1	through	h4)
are	the	initial	set	of	basic	variables,	as	specified	in	step	1	of	the
algorithm.	That	is,

vB,1	=	v3	=	h1

vB,2	=	v4	=	h2

vB,3	=	v5	=	h3

vB,4	=	v6	=	h4

Further,	the	aj's	corresponding	to	this	set	of	variables	form	the
columns	of	the	basis	inversefor	the	intial	basis	as	well	as	for	any	other
basic	feasible	solution.

Because	the	initial	basis	is	equal	to	I,	the	associated	right-hand	side
(rhs),	or	b,	is

Each	element	of	P	is	then	given	by	(4.23),	that	is,

To	the	right	of	the	P	matrix	are	the	achievement	vector	values	as	given
by	(4.15).	Specifically,

In	practice,	there	is	no	need	to	list	all	the	rows	of	P.	That	is,	the
algorithm	presented	in	Chapter	4	permits	us	to	list	only	the	rows	of	P
corresponding	to	the	specific	priority	level	under	consideration.	Thus,
the	initial	tableau	used	in	the	solution	process	need	only	contain	the
first	row	of	P,	or	p(1)T.	We	are	now	ready	to	proceed	to	the	discussion



of	the	solution	procedure,	as	adapted	to	our	specific	tableau.

Steps	of	Solution	Procedure

Our	first	step	of	the	actual	solution	procedure	for	the	previous
example	combines	both	steps	1	and	2	of	the	8-step	alogrithm	of
Chapter	4.
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That	is,	we	construct	an	initial	tableau	wherein	our	initial	set	of	basic
variables	are	the	negative	deviation	variables	of	the	LGP	model	(i.e.,
h1,	h2,	h3	and	h4which	correspond	to	v3,	v4,	v5,	and	v6	of	the	general
form).	Corresponding	to	the	basis	is	a	basis	inverse	that	is	the	identity
matrix.	We	then	compute	b,	p(1)T	and	u1	as

As	a	result,	our	initial	tableau	is	given	as

v3 1 0 0 0 30
v4 0 1 0 0 15
v5 0 0 1 0 1000
v6 0 0 0 1 40
p(1)T 0 0 0 0 0

We	are	now	ready	to	proceed	to	step	3	and	compute	 	for	v1,	v2,	v7,
v8,	v9,	and	v10	(i.e.,	for	x1,	x2,	r1,	r2,	r3,	and	r4).	These	values	are	as
follows:
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Proceeding	to	step	4,	we	note	that	there	are	no	positive	valued	
elements	(i.e.,	for	the	set	of	nonbasic	and	unchecked	variables).	Thus,
we	move	to	step	8.

The	reader	is	now	advised	to	pay	particular	attention	to	how	step	8	is
carried	out,	as	it	is	especially	tailored	for	our	specific	tableau.	From
step	8,	we	first	note	that	neither	stopping	condition	holds.	Thus,	we
"check"	variables	v7	and	v8.

)

Checked	variables	shall	never	be	candidates	to	enter	any	subsequent
basis	(as	their	introduction	would	only	serve	to	degrade	the
achievement	of	higher-level	goals).	Next,	and	although	not
specifically	spelled	out	in	the	algorithm,	we	cross	out	the	entire
tableau	row	associated	with	p(k)T	(i.e.,	p(1)T	at	this	step).	Finally,	and
still	as	a	part	of	step	8,	we	set

k	=	k	+	1	=	2

and	then	compute	the	entire	new	bottom	row	of	the	tableau	as
associated	with	rank	or	priority	two.	That	is,	we	compute	p(2)T	and	u2
from	the	formulas	previously	specified.
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Returning	to	step	2,	the	tableau	now	associated	with	this	step	is	as
shown	below.

(Ö)
v3 1 0 0 0 30 v7
v4 0 1 0 0 15 v8
v5 0 0 1 0 1000
v6 0 0 0 1 40
p(2)T 0 0 1 0 1000

The	checked	variables	are	now	listed	to	the	right	of	the	tableau.

Moving	to	step	3,	we	compute	the	values	of	 	for	v1,	v2,	v9,	and	v10
(i.e.,	we	do	not	evaluate	these	values	for	the	checked	variables).	Thus:

Proceeding	to	step	4,	we	note	that	v2	is	selected	as	the	entering
variable.	That	is,

q	=	2

We	next	update	the	entering	column,	a2,	in	step	5:
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Moving	to	step	6,	the	leaving	basic	variable	is	determined.	That	is,

As	a	result,	we	see	that	p	=	2.	That	is,	the	second	basic	variable	(vB,2)
is	the	departing	basic	variable.	From	the	tableau,	we	note	that	vB,2
corresponds	to	v4.	Thus:

vB,2	=	v4,	the	departing	variable

vq	=	v2,	the	entering	variable

Before	proceeding	further,	note	that	the	previous	steps	4	though	6	may
be	more	conveniently	carried	out	directly	in	conjunction	with	the
tableau.	Specifically,	from	step	5,	we	enter	the	updated	aq	(a2	in	this
case)	directly	to	the	right	of	the	matrix,	as	shown	below.

Note	that	the	"12"	under	a2,	and	in	the	very	bottom	position,	is	the
value	of	 	as	computed	in	step	3.	Directly	to	the	right	of	the	a2
column	is	the	column	headed	by	"Q,"	where

That	is,	Q	is	simply	the	set	of	ratios	from	(4.26)	and	used	to	determine
the	departing	basic	variable.	The	Qi	with	the	minimum	ratio	is
denoted	by	an	asterisk.
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We	are	now	ready	for	step	7,	the	pivoting	operation.	To	accomplish
this,	we	use	the	last	tableau	as	listed	above	wherein	q	=	2,	p	=	2.	Our
so-called	pivot	element,	a2,2	=	1,	is	circled	in	this	tableau.	The	purely
mechanical	procedure	by	which	a	new	basis	inverse	may	be	formed	is
now	described.

First,	we	define	B	1	as	the	"old"	basis	inverse	and	bi,j	as	the	element
of	B	1	in	the	ith	row,	jth	column.	Correspondingly,	 	and	 	are	the
"new"	basis	inverse	and	new	elements,	respectively.	To	derive	the	new
basis	inverse,	we	use	the	following	formulas:

Using	these	formulas	plus	those	for	computing	uk,	b,	and	p(k)T,	we
develop	the	resultant	new	tableau,	as	shown	below,	and	return	to	step
2.

Basis	Inverse b (Ö)
v3 1 0 0 0 30 v7
v2 0 1 0 0 15 v8
v5 0 12 1 0 820
v6 0 2 0 1 10
p(2)T 0 12 1 0 820

Before	proceeding	to	step	3,	note	carefully	that	v2	has	replaced	v4	(in
the	position	of	the	second	basic	variable,	vB,2)	in	the	above	tableau.

Step	3.
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Step	4.	v1	is	the	entering	variable	and	q	=	1.

Steps	5	and	6	are	then	summarized	in	the	following	tableau:

Consequently,	v6	(the	smallest	Q	ratio)	is	the	departing	variable	and
v1	enters.	This	leads	to	the	next	tableau,	via	the	pivoting	process:

(Ö)
v3 1 2 0 1 20 v7
v2 0 1 0 0 15 v8
v5 0 4 1 8 740
v1 0 2 0 1 10
p(2)T 0 4 1 8 740

Step	3.	We	determine	that

Step	4.	The	entering	variable	is	v10,	thus	q	=	10.
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Steps	5	and	6	are	again	summarized	in	the	tableau:

Thus,	v10	enters	and	v3	departs.	The	pivoting	process	then	leads	to	the
following	tableau:

(Ö)
v10 1 2 0 1 20 v7
v2 0 1 0 0 15 v8
v5 -8 -12 1 0 580
v1 1 0 0 0 30
p(2)T -8 -12 1 0 580

Step	3.	We	determine	that

Step	4.	No	 	are	positive	so	we	go	to	step	8.

Step	8.	Neither	stopping	rule	is	met	so	we	check	the	variables	v3,	v4,
and	v9.	We	also	cross	out	the	p(2)T	row	and	set	k	=	k	+	1	=	3.
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Step	2.	The	tableau	now	associated	with	the	step	is	shown	below:

(Ö)
v10 1 2 0 1 20 v7
v2 0 1 0 0 15 v8
v5 8 12 1 0 580 v3
v1 1 0 0 0 30 v4

v9
p(3)T 1 2 0 1 20

Step	3.	We	next	evaluate	 	for	all	nonbasic,	unchecked	variables.
That	is,

Step	4.	Go	to	step	8.

Step	8.	The	first	stopping	condition	of	step	8	is	satisfied.	Thus,	we
stop	with	the	optimal	solution.

Listing	the	Results

Having	followed	the	algorithm	through	to	convergence,	we	are	now,
of	course,	concerned	with	determining	the	specific	values	associated
with	the	solution.	From	the	last	tableau	developed	we	may
immediately	read	off	the	optimal	program.	That	is,

Thus,	in	the	original	model
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and	all	other	variables	are	nonbasic,	or	zero	valued.	Alternatively,	we
could	have	computed	 	as

vB	=B1	b	=	b

and	vN	=	0	by	definition.

The	achievement	vector	is	thus	determined	by

uk	=	c(k)T	B1	b	''k

and	is

And,	in	fact,	all	other	information	of	interest	(e.g.,the	shadow	price
vectors)	may	be	similarly	derived	via	a	knowledge	of	B1.

Additional	Tableau	Information

In	Chapter	4,	we	discussed	certain	conditions	associated	with	a	basic
solution.	We	now	describe	how	these	conditions	may	be	detected	via
an	examination	of	the	tableaux	used	in	algorithmic	implementation.

Feasibility

The	basis	is	feasible	if	and	only	if	b³0.	With	LGP	(except	in	certain
special	cases	such	as	integer	LGP	and	sensitivity	analysis),	we	always
start	with	a	basic	feasible	solution,	and	via	the	examination	of	the	q
ratios	never	permit	the	basis	to	become	infeasible.	Consequently,	if
the	right-hand	side	(i.e.,	b)	of	the	tableau	ever	includes	a	negative



element,	an	error	in	computation	is	indicated.	Note,	however,	that
when	using	a	digital	computer,	a	bi	value	of	zero	(which	is
acceptable),	could
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be	delivered	as	some	very	small	negative	value.	Consequently,	certain
tolerances	about	zero	are	always	maintained	and	any	value	within
these	tolerances	is	treated	as	a	zero.

Implementability

As	long	as	 =0,	the	basic	feasible	solution	is	implementable.
However,	with	LGPand	quite	unlike	LPthe	solution	process	will
continue	even	if	u1>	0,	and	a	solution	as	close	to	implementable	as
possible	will	be	developed.

Optimality

In	Chapter	4,	we	noted	that	a	basic	feasible	solution	is	optimal
whenever	all	shadow	price	vectors	(dj),	for	nonbasic	variables,	are
lexicographically	nonpositive.	Although	this	is	true,	we	do	not
explicitly	examine	these	vectors	in	our	convergence	check.	Rather,
this	examination	is	achieved	implicitly	via	step	8.	As	such,	the
optimality	condition	cannot	directly	be	observed	by	simply	examining
the	tableau	we	use.

Alternate	Optimal	Solutions

An	alternate	optimal	solution	is	indicated	when,	in	the	last
implementation	of	step	3,	there	is	at	least	one	shadow	price	element
having	a	value	of	zero.	That	is,	if	some	dj(k)	=	0	for	an	unchecked	and
nonbasic	variable	in	the	last	cycle	through	step	3,	then	there	exists	an
alternate	optimal	solution	(actually,	an	infinite	number	of	alternate
optimal	solutionsand	a	finite	number	of	alternate	optimal	basic
feasible	solutions).	In	our	previous	example,	there	were	no	alternate
optimal	solutions.	Given	an	alternate	optimal	solution,	this	means	that
the	set	of	optimal	solutions	to	the	LGP	model	may	be	encompassed
within	a	region	rather	than	strictly	on	the	boundary	of	a	region	as	is
the	case	in	conventional	LP.	Such	a	result	is	unique	to	GP	and	(despite
certain	protests	by	theoreticians)	is,	in	fact,	an	advantage	in	the



practical	sense.	That	is,	if	a	region	exists	wherein	all	solutions	have
the	same	u*	,	we	have	a	variety	of	acceptable	solutions	to	present	to
our	decision	maker.	Further,	as	is	well	established,	interior	solutions
are	invariably	more	stable	(i.e.,	less	affected	by	variations	in	the
model	parameters)	then	are	those	on	the	boundaries.

Degeneracy

We	observe	a	degenerate	basic	solution	whenever	any	variable	in	the
basis	takes	on	a	value	of	zero.	Thus,	in	the	tableau,	we	simply	need	to
observe	b.	Examining	all	the	tableaux	associated	with	our	previous
example,	we	see	that	degeneracy	was	never	encountered.	The
importance	of	degeneracy	was,	until	relatively	recently,	felt	to	be
mainly	of	theoretical	interest.	Specifically,	a	few	pathological
examples	were	constructed	where	degeneracy	led	to	a	cycling
phenomenon	in	the
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pivoting	process.	However,	analysts	now	have	observed	such	cycling
in	some	real-world,	large-scale	problems	and,	in	particular,	in	integer
programming.	Fortunately,	there	are	practical	ways	to	avoid	or	at	least
alleviate	the	problems	associated	with	this	condition	(Charnes	and
Cooper,	1961;	Lasdon,	1970;	Murtagh,	1981).

Unbounded	Programs

As	discussed	in	Chapter	4,	the	LGP	achievement	vector,	uT,	can	never
be	unbounded.	However,	in	certain	cases	the	program	may	be	(i.e.,	the
value	of	some	vjthat	is,	nonbasic	and	uncheckedmay	approach
infinity).	This	instance	may	be	detected	in	the	final	tableau.	If,	for
some	vj	(where	vj	is	nonbasic	and	unchecked),	both	dj	=	0	(i.e.,	the	dj
computed	in	the	last	implementation	of	step	3)	and	aj	£	0,	then	an
unbounded	program	exists.	This	may	mean	that	the	right-hand	side	of
some	goal	could	be	increased	(or	decreased)	without	bound.	If	so,	this
situation	may	be	examined	via	LGP	sensitivity	analysis.

Some	Computational	Considerations

The	difference	between	the	manner	in	which	an	algorithm	is
implemented	by	hand	(i.e.,	as	in	the	previous	example	or	as	is	shown
in	virtually	all	textbook	discussions)	and	how	it	is	implemented	on	the
computer	can	be	quite	vast.	Only	the	most	naive	individual	would
expect	to	develop	an	efficient	computer	code	by	simply	employing	the
steps	outlined	in	a	textbook	algorithm.	Further,	the	development	of
truly	efficient	computer	software	for	LGP	(or	LP)	implementation
combines	a	great	deal	of	art	and	experience,	along	with	science.	In
this	section	we	merely	point	out	but	a	few	factors	to	consider	in
computer	implementation.

One	of	the	guidelines	typically	used	in	model	development	(and
which	was	employed	in	the	previous	example)	is	to	"scale"	the	model.
That	is,	the	difference	between	the	largest	and	smallest	elements	(i.e.,



c(k),	A,	b)	should	be	kept	as	small	as	possible.	This	serves	to	reduce
computer	rounding	errors.

The	actual	growth	of	rounding	errors	should	be	monitored.	One	way	is
to	simply,	on	some	periodic	basis,	check	the	relation

Av	=	b

We	compute	the	value	of	the	left-hand	side	(row	by	row)	by	using	the
original	values	of	A	in	conjunction	with	the	most	recently	computed
values	of	v.	These	results	are	then	compared	with	the	original	set	of	b.
If
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differences	are	"significant"	(that	is,	the	accumulation	of	rounding
errors	exceeds	certain	prescribed	limits),	then	the	basis	inverse,	B1,
must	be	"cleaned	up."	This	cleaning-up	process	is	accomplished	by	a
technique	known	as	"reinversion"	(Lasdon,	1970;	Murtagh,	1981).

The	pivoting	process,	particularly	an	unsophisticated	one	such	as
depicted	in	our	example	(see	formulas	5.8	and	5.9),	can	contribute	to
rounding	errors.	That	is,	if	ap,q	(the	pivot	element)	is	very	small,	its
division	into	a	relatively	large	numerator	can	create	an	extremely
large	number	whose	actual	value	must	be	substantially	rounded	off	in
the	computer's	representation	of	the	number.	As	such,	given	a	tie	in
entering	or	departing	variables,	one	way	to	break	the	tie	would	be	to
favor	the	pivot	having	the	largest	pivot	element.

Yet	another	consideration	in	the	pivoting	procedure	is	the	choice	of
entering	variables.	Here	we	are	not	referring	to	a	case	in	which	ties	for
the	most	positive	 	exist.	Rather,	the	entering	variable	could	be
selected	as	one	having	a	value	of	 	that	is	actually	not	the	largest
value.	Further,	such	a	choice	could	lead	to	convergence	in	fewer
iterations	and/or	with	less	rounding	error.	In	LP,	numerous	"pricing
methods"	(Murtagh,	1981)	have	been	developed	to	accomplish	such
improvements	and	they	could	be	used	(and,	in	some	cases,	are	being
used)	in	LGP	as	well.

As	one	further	comment	in	our	brief	survey	of	computational
refinements,	we	note	that	the	sometimes	dazzling	performance	of	LP
or	LGP	codes	is	based	on	a	critical	assumption,	that	the	matrix	A	is
sparse	(i.e.,most	elements	are	zeros).	In	fact,	folklore	amongst	the	LP
analysts	would	have	one	conclude	that	such	densities	rarely	exceed
5%	and	are,	in	most	cases,	less	(or	well	less)	than	1%.	This	myth
continues	to	be	perpetuated	because	most	mathematical	programming
analysts	(specifically	those	in	the	fields	of	operations	research	and
management	science)	seem	to	religiously	avoid	problems	in



engineering	design	(where	densities	of	20%	to	even	100%	may	exist).
However,	if	one	does	indeed	have	a	sparse	problem	(or	chooses	to
confine	his	or	her	interests	to	such	problems),	then	tremendous
advances	in	computational	performance	are	to	be	had.	The	most
immediate	of	these,	and	most	obvious,	is	in	the	realm	of	data	storage.
Commercial	LP	codes	routinely	use	sophisticated	data	"packing"	and
"unpacking"	algorithms	to	take	advantage	of	sparsity.	Taking	a	more
brute	force	point	of	view,	we	note	that	the	storage	of	the	A	matrix	is
usually	best	accomplished	(and	always	best	accomplished	if	the
matrix	is	sparse)	when	A	is	stored	column	by	column	and	only
nonzero	column	entries	are	actually	recorded.
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Examining	the	steps	of	the	algorithm,	as	listed	in	Chapter	4	(and	as
carried	out	in	the	example	of	this	chapter),	we	can	note	that	the	bulk
of	operations	are	those	in	steps	3	and	7.	However,	inasmuch	as	in	step
3	we	perform	the	following:

and	aj	is	assumed	sparse,	the	number	of	operations	(i.e.,	of	an	element
in	p(k)T	with	an	element	in	aj)	can	be	kept	quite	small	if	the	operations
are	restricted	to	only	those	that	involve	nonzero	elements	in	aj.	This
simple	observation	alone	can	provide	tremendous	reduction	in
computer	time.

Bounded	Variables

One	relatively	simple	computational	refinement,	and	one	not
discussed	in	the	previous	section,	may	be	had	if	one	is	dealing	with
bounded	variables	(and,	in	particular,	if	there	are	a	large	number	of
such	variables).	Specifically,	if	some	or	all	of	the	structural	variables
in	the	LGP	model	are	bounded	from	abovefor	example,	if

where	rj	is	the	upper	bound	on	 	then	one	may	take	advantage	of	a
slightly	modified	version	of	the	8-step	algorithm	and	possibly	achieve
substantial	savings	in	time	and	storage.

However,	if	one	decides	not	to	take	special	note	of	the	bounded
variables	then	 	must	be	included	in	 	Such	inclusion
increases	the	number	of	rows	in	A,	which	has	a	direct	impact	on	both
computation	time	and	computer	storage.	Thus,	in	this	section	we	shall
deal	directly	with	the	bounded	variable	situation.

Prior	to	describing	the	revisions	necessary	to	the	algorithm,	let	us	first
examine	the	effects	of	bounded	variables	on	the	basic	solutionif	such
bounds	are	not	included	in	A.	Recall	that	the	set	of	goals	may	be



written	as

BvB	+	NvN	=	b

Let	us	then	define	the	following:

s	=	the	set	of	nonbasic	variables	at	zero,	and

s'=	the	set	of	nonbasic	variables	at	their	upper	bound.
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Thus:

Ns	=	the	columns	of	A	associated	with	vNe	S

Ns'	=	the	columns	of	A	associated	with	vN	e	S'

Then:

BvB	+	Ns'	vN(s)	+NsvN(s)	=	b

and,	letting	vN(s)	=	0

vB	=	B1	bB1	Ns'	VN(s')

That	is,	vB	is	no	longer	simply	equal	to	B	=	B1	b	if	bounded	variables
are	explicitly	considered.

Not	only	is	there	a	change	in	the	way	we	compute	vB,	there	must	also
be	a	change	in	the	way	entering	and	departing	variables	are
determined.	Rather	than	deriving	these	new	rules,	we	shall	simply	list
them	in	our	modified	algorithm	steps.

The	procedure	to	follow	in	the	case	of	explicit	consideration	of
bounded	variables	is	as	follows:

(1)	Do	not	include	the	bounded	condition	in	the	goal	set.	That	is,	do
not	include	x'	£	r	in	A	v	=	b.

(2)	Modify	step	4	of	the	8-step	algorithm	of	Chapter	4	to	read	as
follows:

Step	4	(revised	for	bounded	variables).	Examine	those	 	as	computed
in	step	3.	If:

(a)	vj	=	0,	then	vj	is	a	candidate	to	enter	the	basis	if	

(b)	vj	=	rj,	then	vj	is	a	candidate	to	enter	the	basis	if	 .	If	there	are
no	candidates,	proceed	to	step	8.	Otherwise,	select	the	condidate	with
the	largest	absolute	value	of	 	to	enter	the	basis.	Designate	the



entering	variables	as	vq.

(3)	Finally,	we	modify	step	6	of	the	algorithm	as	listed	below:

Step	6	(revised	for	bounded	variables).	If	vq	=	0	then	go	to	(a),	below.
Otherwise,	if	vq	=	rq,	go	to	(b).

(a)	Determine	the	leaving	basic	variable	(vB,p)	by	computing	the
following	ratio	for	each	row:

If	ai,q	<	0	then	Qi	=	(rB,i)	vB,i)/ai,q
;

10

If	ai,q	³0	then	Qi	=	vB,i/ai,q.
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Let	row	p	be	the	row	with	the	minimum	Q	ratio.	If	Qp	³	rq,	then	vq
does	not	enter	the	basis	but	is	set	to	its	upper	bound.	Go	to	step	6(c).
Otherwise,	replace	vB,p	by	vq	in	the	basis	where

vq	=	Qp

and	vB	is	adjusted	according	to

Now	go	to	step	7.

(b)	Determine	the	leaving	basic	variable	by	computing	the	following
ratio	for	each	row:

If	ai,j	>	0	then	qi	=	(rB,i	vB,i)/ai,q;

If	ai,q	<	0	then	qi	=	vB,i/ai,q;

If	ai,q	=	0	then	qi	=	¥.

Let	row	p	be	the	row	with	the	minimum	Q	ratio.	If	Qp	³	rq,	then	vq
does	not	enter	the	basis	but	is	set	to	zero	and	we	proceed	to	step	6(c).
Otherwise,	replace	vB,p	by	vq	in	the	basis	where

vq	=	rq	Qp

and	vB	is	adjusted	according	to

Now	go	to	step	7.

(c)	Recompute	vB	where

vB	=	B1	b	B1	Ns'	v	N(s')

and	return	to	step	2.
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In	addition	to	following	the	procedure	listed	in	the	above	three	steps,
it	should	be	obvious	that	we	must	always	keep	a	record	of	those
variables	that	are	at	their	upper	bound.	With	these	considerations	in
mind,	one	may	employ	the	modified	algorithm	on	LGP	models	having
bounded	variables.

Solution	of	LP	and	Minsum	LGP	Models

Although	the	focus	of	this	work	is	on	the	lexicographic	LGP	model,	it
is	stressed	that	the	algorithm	presented	may	also	be	used	to	solve
numerous	other	multiobjective	models	as	well	as	conventional	LP
models	(Ignizio,	1976b,	1982,	1983c,	forthcoming).	As	such,	it
provides	a	single	approach	for	a	host	of	models.

To	use	our	algorithm	for	the	solution	of	alternate	models	(e.g.,	LP	and
minsum	LGP)	requires	that	such	models	first	be	placed	in	the	format
given	by	(4.1)-(4.4).	For	example,	the	general	form	of	the	LP	model,
as	shown	below:

s.t.

is	converted	to	the	form	of	(4.1)-(4.4)	via	the	following	steps:

(1)	Each	rigid	constraint	(of	5.11)	is	transformed	into	the	GP	format
via	the	procedure	summarized	in	Table	3.1	(i.e.,	negative	and	positive
deviation	variables	are	augmented	to	each	constraint).

(2)	The	achievement	vector	is	formed	with	the	rigid	constraints	having
first	priority	and	the	single	objective	having	second	priority.

As	a	result	(5.10)-(5.12)	becomes



Find	v	so	as	to
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where

	=	one	if	hi	is	to	be	minimized,	and	zero	otherwise.

	=	one	if	r8	is	to	be	minimized,	and	zero	otherwise.

Rather	obviously,	(5.13)-(5.15)	is	now	in	the	form	specified	via	(4.1)-
(4.4).

We	may	then	apply	the	8-step	algorithm	of	Chapter	4	to	the	model	by
simply	modifying	a	single	step.	Specifically,	step	6	is	changed	by
noting	that	if	there	are	no	Qi	ratios	wherein	ai,q	>	0,	we	stop	with	an
unbounded	solution.	That	is,	dT	x	is	then	unbounded.

Solution	of	the	minsum	(or	Archimedean)	LGP	model	is	even	more
straightforward.	Specifically,	if	the	lexicographic	LGP	model	has	but
two	terms	in	uT,	it	is	considered	a	minsum	LGP	model.	That	is:

u1	=	the	term	associated	with	all	rigid	constraints,

u2	=	the	term	associated	with	all	soft	goals,	wherein	they	are	weighted
according	to	importance.

6.
Duality	and	Sensitivity	Analysis
When	we	solve	a	modelwhatever	type	of	model	and	with	whatever
algorithmwe	are	typically	only	roughly	midphase	in	our	overall
process	of	analysis.	That	is,	the	solution	derived	for	our	lexicographic
LGP	model	is	only	guaranteed	to	be	valid	for	the	specific,
deterministic	representation	used.	However,	in	the	real	world,	the	data



collected	to	represent	the	model	coefficients	are	typically	only
estimates.	Further,	there	could	be	errors	in	the	modeling	process	or,
once	the	model	has	been	built,	the	system	it	represents	may	change.
As	such,	it	is	vital	to	at	least	examine	the	impact	of	such	changes,
errors,	and/or	estimates	on	the	solution	as	derived	via	our	algorithm.

In	conventional	linear	programming,	such	impact,	or	sensitivity
analysis,	may	be	conducted	in	a	straightforward	manner	via	a
systematic
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procedure.	This	ability	is	the	result	of	two	properties	of	LP:	the	fact
that	the	model	is	linear	and	the	existence	of	the	LP	dual.	Further,	this
ability	is	of	such	power	and	importance	that	it	alone	can	explain	much
of	the	reason	for	the	popularity	of	LP.	In	fact,	in	many	cases	we
transform	nonlinear	models	to	LP	models	(e.g.,	via	various
approximations)	so	as	to	take	full	advantage	of	the	abilities	of	LP,	and
in	particular	its	ability	to	provide	a	full	analysis	of	sensitivity.

All	of	the	abilities	inherent	in	conventional	LP	are	also	inherent	to
lexicographic	LGP,	including	the	ability	to	perform	a	complete	and
comprehensive	sensitivity	analysis.	Further,	as	is	the	case	with	LP,	the
existence	of	such	sensitivity	analysis	is	largely	based	upon	the
existence	and	exploitation	of	the	dual	of	the	lexicographic	LGP
model.	Consequently,	before	describing	sensitivity	analysis	in	LGP,
we	shall	first	discuss	the	development	of	the	LGP	dualthe
multidimensional	dual.

Formulation	of	the	Multidimensional	Dual

By	the	late	1960s,	I	had	developed	a	partial	set	of	tools	for	sensitivity
analysis	in	LGP.	However,	to	complete	the	approach,	it	was	necessary
to	construct	a	representation	of	the	dual	of	the	initial,	or	primal	LGP
model.	By	the	early	1970s,	this	dualwhich	I	denoted	as	the
"multidimensional	dual"was	established	(Ignizio,	1974a,	1974b).
However,	most	existing	papers	and	textbook	discussions	of	the
multidimensional	dual	have	been	at	a	rather	elementary	level.	As	a
consequence,	in	this	work	we	now	provide	a	concise	but	more
complete	and	somewhat	more	rigorous	development;	one	that	lends
itself	to	a	wide	range	of	both	theoretical	and	practical	extensions
(Ignizio,	1974a,	1974b,	1979b,	1982a,	1983b,	1985a;	Markowski	and
Ignizio,	1983a,	1983b).	This	development	is	based	on	the	transformed
form	of	the	lexicographic	LGP	model	(i.e.,	the	primal)	as	given	in
(4.15)-(4.17)	and	repeated	below.



LGP	primal:	Find	v	so	as	to
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If	we	recall	that	we	may	rewrite	(6.2)	as

then	the	dual	of	(6.1),	(6.4),	and	(6.3)	may	immediately	be	written	as
follows:

LGP	Multidimensional	Dual:	Find	Y	so	as	to

s.t.

Those	readers	with	a	familiarity	with	LP	will	recognize	that	the
development	of	the	multidimensional	dual,	or	MDD,	from	the	LGP
primal	follows	a	set	of	rules	similar	to	those	used	to	form	a
conventional	LP	dual.	However,	there	are	several	rather	unusual
features	of	the	MDD	that	we	shall	now	comment	on.

First,	note	that	the	set	of	dual	variables,	Y,	is	a	matrix	rather	than
simply	a	vector.	Further,	each	element	of	Y,	designated	as	 	is
unrestricted	in	sign.	We	thus	define	 	as	follows:

	=	the	ith	dual	variable	for	the	kth	right-hand	side.

That	is,	there	is	a	separate	set	(or	vector)	of	such	dual	variables	for
each	right-hand	side	of	(6.6).

Second,	we	see	that	(6.5),	the	MDD	''achievement	function,"	is	an
ordered	vector	for	which	we	seek	the	lexicographic	maximum.



Further,	the	"goal	set"	of	(6.6)	has	multiple	and	prioritized	right-hand
sides.	This
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last	feature	is	also	reflected	in	the	use	of	the	symbol	 	for	the
lexicographic	inequality,	in	(6.6).

Associated	with	the	MDD	is	a	set	of	conditions	that	encompass	all
those	existing	within	conventional	LP.	For	example,	the	dual	of	the
LGP	dual	is	the	primal.	(For	the	reader	desiring	further	details,	we
recommend	the	following	references:	Ignizio,	1976b,	1982a,	1985a,
forthcoming;	Markowski	and	Ignizio,	1983a,	1983b.)

A	Numerical	Example

The	mechanics	of	the	development	of	the	MDD	may	be	most	easily
illustrated	via	an	example.	We	thus	list	the	following	primal	LGP
model.

Find	x	so	as	to

s.t.

wherein:

and,	because	the	initial	basis	always	consists	of	the	negative	deviation
variables:
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Using	this,	we	may	thus	form	the	MDD	as	follows:

Find	Y	so	as	to

s.t.

The	reader	should	note	in	particular	that	the	following	relationships
were	used	to	construct	the	above	dual	form:

Using	any	algorithm	for	solution	to	the	MDD	(Ignizio,	1976b,	1982a,
1985a),	we	would	find	that	the	optimal	MDD	program	is	given	as
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That	is,	the	solution	to	the	model	for	the	first	right-hand	side	(i.e.,
priority)	is

For	the	second	right-hand	side,	we	have

In	a	subsequent	section,	we	shall	see	how	such	results	may	be
obtained.

Interpretation	of	the	Dual	Variables

The	dual	variables,	Y,	are	interpreted	in	a	manner	essentially	the	same
as	employed	in	conventional	linear	programming.	That	is,	the	solution
to	the	MDD	given	in	the	previous	section	was

If	we	were	to	solve	the	primal	of	the	above	problem,	we	would	find
that	the	shadow	price	vectors	for	each	original	basic	variable	(i.e.,	the
h	terms	or	v3	through	v6)	are

	



	



Page	69

Thus,	the	first	row	of	Y*	corresponds	to	the	shadow	price	vector	for
h1,	the	second	row	to	the	shadow	price	vector	for	h2,	and	so	on.

As	a	result,	we	see	that	 	is	the	per	unit	contribution	of	resource	i	(of
the	primal)	to	the	kth	term	of	the	achievement	function.	For	example,
by	noting	that

we	see	that	an	increase	of	one	unit	to	b1	(where	b1	=	12)	in	(6.9)	will
result	in

(a)	no	impact	on	u1,	or	implementability,	and

(b)	an	improvement	(i.e.,	reduction)	in	u2	of	75/3	for	every	unit	that
b1	is	increased.

These	observations	are	true	only	as	long	as	the	final	(optimal)	basis
remains	unchanged.	We	shall	discuss	how	such	ranges	may	be
determined	later	in	the	chapter.

Solving	the	Multidimensional	Dual

In	sensitivity	analysis	for	LGP,	it	is	not	absolutely	essential	that	one
know	how	to	solve	the	MDDto	obtain	the	solution	simply	listed	in	the
previous	section.	However,	for	completeness	in	presentation	we
provide,	in	this	section,	a	brief	description	of	one	relatively	recent	and
particularly	efficient	way	to	obtain	the	solution	to	the	MDD	(and,	as	a
result,	also	obtain	the	solution	to	the	primal).	I	have	designated	this
method	as	the	sequential	MDD	simplex	algorithm	(Ignizio,	1985a).



One	particularly	interesting	feature	of	this	approach	is	that	the	MDD
is	solved	via	the	solution	of	a	sequence	of	conventional	LP	models.
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Further,	each	LP	model	in	the	sequence	typically	is	considerably
smaller	than	its	predecessor.	We	list	the	steps	of	this	algorithm	as
follows:

Step	1.	Establish	the	multidimensional	dual	as	given	in	(6.5)-(6.7).	Set
k	=	1.

Step	2.	Form	the	LP	model	from	(6.5)-(6.7)	that	includes	only	the	kth
right-hand	side	vector	of	(6.6).	Solve	using	any	conventional	simplex
algorithm.	If	k	=	K,	go	to	step	4.	Otherwise,	go	to	step	3.

Step	3.	For	the	linear	programming	model	previously	solved,	remove
all	nonbinding	constraints	(this	is	analogous	to	the	nonbasic	variable
"checking"	procedure	in	the	algorithm	for	the	primal).	If	the
subsequent	model	has	no	constraints,	go	to	step	4.	Otherwise,	set	k	=
k	+	1	and	return	to	step	2.

Step	4.	The	present	solution	is	that	which	is	optimal	for	the	MDD	and
the	kth	right-hand	side.	The	corresponding	optimal	solution	to	the
primal	model	is	given	by	the	shadow	prices	as	associated	with	the
initial	set	of	basic	variables	for	the	kth	dual	model.

To	illustrate,	we	shall	solve	the	LGP	model	given	in	primal	form	in
(6.8)-(6.10)	and	in	MDD	form	in	(6.11)-(6.13).	The	first	LP	model	to
be	solved	is	thus:

s.t.



and	y(1)	unrestricted.
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We	may	note	that	the	first	four	constraints	in	conjunction	with	the	last
four	simply	denote	upper	and	lower	bounds	on	Y(1).	Solving	this
problem	via	any	conventional	LP	algorithm,	we	obtain

Further,	for	this	solution,	both	the	seventh	and	eighth	constraints	are
nonbinding	and	thus	may	be	dropped	from	the	LP	model	for	k	=	2.
The	next,	and	final	LP	model	in	the	sequence	is	thus:

s.t.

and	y(2)	unrestricted.

Again,	solving	via	any	LP	simplex	algorithm	we	obtain
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Further,	from	the	shadow	prices	for	the	final	LP	tableau,	we	may
determine	that	the	optimal	primal	program	is

In	actual	practice,	the	Sequential	MDD	Simplex	algorithm	may	be
enhanced	by	numerous	simplifications	(Ignizio,	1983a,	1985a,
forthcoming)	and	thus	the	algorithm	provides	exceptionally	good
computational	performance.	In	fact,	when	comparisons	were	made
with	the	very	latest	version	of	the	Sequential	LGP,	or	SLGP	method	(a
primal	based	method	discussed	briefly	in	Chapter	2),	the	dual	based
scheme	was	substantially	superior.

A	Special	MDD	Simplex	Algorithm

The	algorithm	discussed	above	may	be	used	to	solve	any	LGP	model
(i.e.,	in	its	MDD	form).	In	this	section	we	discuss	a	far	more	restricted
dual	based	algorithm	that	will	be	of	considerable	use	in	certain,	very
special	situations	(Ignizio,	1974a,	1974b,	1976b,	1982a).	Included
among	such	special	situations	is	that	of	LGP	sensitivity	analysis.

To	use	this	special	algorithm	we	must	satisfy	the	following	conditions
with	regard	to	the	LGP	primal:

(1)	at	least	one	element	in	vB	(i.e.,	b)	must	be	negative,	and

(2)	all	shadow	price	column	vectors,	dj,	must	be	lexicographically
nonpositive.

Given	these	conditions,	the	algorithm	listed	below	may	be	employed
so	as	to	regain	feasibility	while	maintaining	the	optimality	condition.

Step	1.	Select	the	row	with	the	most	negative	vB,i	element.	The	basic
variable	associated	with	this	row	is	the	departing	variable.	Denote	this
row	as	i	=	p.	Ties	may	be	arbitrarily	broken.



Step	2.	Develop	the	pricing	vectors	for	all	k:

Step	3.	Price	out	all	nonbasic	columns,	for	all	levels	of	k:
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Step	4.	Compute	ap,j	for	all	(nonbasic)	j:

where

b'p	=	the	pth	row	of	B1

aj	=	the	jth	column	of	A

Step	5.	Determine	the	nonbasic	variable	associated	with	the
lexicographically	minimum	"column	ratio"	where	this	column	ratio	is
given	by

Designate	the	nonbasic	variable	with	the	lexicographically	minimum
rj	as	being	column	j	=	q.	Ties	may	be	arbitrarily	broken.

Step	6.	Using	the	pivoting	procedure,	exchange	the	entering	variable
for	the	departing	variable	and	develop	the	new	tableau.

Step	7.	Repeat	steps	1	through	6	until	all	vB,i	are	nonnegative.

To	demonstrate	the	employment	of	the	above	algorithm,	we	shall	use
the	example	given	below:

lexmin	
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A	basic	solution	to	this	model	is	shown	in	the	tableau	below.	Note
carefully	that,	although	basic,	the	program	is	infeasible.

Basis	Inverse b
v2 1 1 0 0 2
v1 0 1 0 0 12
v5 3 2 1 0 2
v6 1 0 0 1 2
p(1)T 0 0 0 0 0
p(2)T 3 2 1 0 2
p(3)T 0 0 0 0 0

Using	p(k)T,	we	may	compute	all	dj	(for	j	e	N):

We	thus	note	that	this	tableau	does	satisfy	the	two	conditions	for	the
employment	of	the	special	MDD	simplex	algorithm.	That	is,	vB,1	=	v2
=	2	and	all	dj	are	lexicographically	nonpositive.

Proceeding	through	the	steps	of	the	algorithm,	we	note	that	vB,1	(i.e.,
b1	=	v2)	is	the	departing	variable	and	thus	i	=	p	=	1.	Moving	to	step	4
we	may	then	compute	all	ap,j	via	(6.14).	Step	4	leads	to:
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Because	a1,4	and	a1,7	are	the	only	a-values	that	are	negative,	we	need
only	compute	the	column	ratios	associated	with	v4	and	v7.	These	are
as	follows:

Thus,	r4	is	the	minimum	column	ratio	and	so	v4	(j	=	q	=	4)	is	the
entering	variable.	Letting	vB,1	=	v2	depart	and	v4	enter,	our	new
tableau	becomes

Basis	Inverse b
v4 1 1 0 0 2
v1 1 0 0 0 10
v5 5 0 1 0 6
v6 1 0 0 1 2

	

Since	b	³	0,	this	new	solution	is	now	feasible	and	optimal.

Discrete	Sensitivity	Analysis

We	are	now	ready	to	proceed	to	our	presentation	of	sensitivity
analysis	in	LGP	(Ignizio,	1982a).	We	begin	this	with	a	discussion	of
how	discrete	changes	in	the	original	LGP	model	are	dealt	with.	We
consider:

·	a	change	in	some	

·	a	change	in	some	bi,

·	a	change	in	some	ai,j,

·	the	inclusion	of	a	new	structural	variable,	and

·	the	inclusion	of	a	new	goal	or	rigid	constraint.



We	shall	consider,	in	turn,	how	each	one	of	these	changes	may	be
dealt	with.	However,	let	us	first	note	that	we	shall	place	a	caret	over
the	new	parameter	so	as	to	distinguish	its	new	value	from	its	original
value.
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A	change	in	some	

To	determine	the	impact	of	a	change	in	the	value	of	some	 	we	must
first	determine	if	xj	is	presently	a	basic	or	nonbasic	variable.	That	is,	if
xj	is	nonbasic	and	 	is	changed	to	 	then:

That	is,	the	only	result	of	such	a	change	is	its	impact	on	a	single
shadow	price	vector	element.	However,	this	could	result	in	a	solution
that	is	now	not	optimal	and	the	optimizing	algorithm	must	then	be
continued.

If,	however,	 	is	associated	with	some	xj	that	is	basic,	we	affect	an
entire	set	of	shadow	price	elements	(i.e.,	all	those	at	level	k)	plus	we
may	change	the	value	of	uk.	That	is,	if	xj	is	basic	and	 	is	changed	to
	then:

A	change	in	some	bi

The	change	of	some	element	of	the	original	right-hand	side	vector	is
felt	on	b	and	u.	That	is,	if	bi	is	changed	to	bi	then:

As	b	can	change,	it	can	actually	contain	one	or	more	negative
elements.	In	this	case,	our	special	MDD	simplex	algorithm	may	be
employed	to	regain	feasibility.

A	change	in	some	ai,j



The	manner	in	which	a	change	in	ai,j	(the	''technological	coefficients")
is	dealt	with	depends	on	whether	xj	is	basic	or	nonbasic.	If	xj	is	basic
we	can	proceed	through	a	long	and	rather	cumbersome	procedure	to
determine	the	impact.	Some	analysts	feel	that	it	may	be	better	simply
to	resolve	the	problem	from	the	beginning.	Consequently,	we	shall
only	describe	the	process	used	when	xj	is	nonbasic.	That	is,	if	xj	is
nonbasic	and	ai,j	is	changed	to	âi,j	then:
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Thus,	if	some	ai,j	(xj	nonbasic)	is	changed	the	entire	aj	vector	may
change	and,	in	addition,	an	entire	shadow	price	vector	could	also
change.	Thus,	a	change	in	ai,j	may	affect	the	optimality	of	a	solution.

Adding	a	New	Structural	Variable

The	addition	of	some	new	structural	variable,	xj,	has	an	impact
identical	to	that	of	a	change	in	an	ai,j	as	associated	with	a	nonbasic
variable.	That	is,	we	may	think	of	the	aj	vector	for	the	new	variable	as
having	previously	been	0.	We	then	compute	the	new	aj	and	 	values
as	noted	directly	above.	The	result	will	be	that	either	the	present	basis
is	still	optimal	or	that	it	is	not.	In	the	first	case	this	indicates	that	the
new	variable	should	not	enter	the	basis	whereas	in	the	second	we	note
that	the	new	variable	will	improve	the	present	solution.

Adding	a	New	Goal

The	addition	of	a	new	goal	(whether	it	is	flexible	or	a	rigid	constraint)
requires	somewhat	more	work	than	was	required	for	the	previous
changes.	First,	if	some	new	goal,	say	Gr,	is	added	to	the	lexicographic
LGP	model	we	must	make	sure	that	(for	other	than	the	case	of	rigid
constraints)	it	is	commensurable	with	all	other	goals	at	the	priority
level	in	which	it	is	included.	Second,	the	new	goal	will	increase	the
size	of	the	basis	by	one	row	and	column.	Third,	to	determine	the	new
basis,	we	must	first	"operate"	on	the	new	goal	so	as	to	eliminate	the
coefficients	of	any	basic	variable	from	the	goal.	This	can	be
accomplished	via	ordinary	row	operations.	Finally,	the	inclusion	of
the	new	goal	can	affect	both	the	feasibility	and/or	optimality	of	the
present	solution.

Parametric	LGP

The	previous	discussion	focused	solely	on	discrete	modifications	to
the	original	LGP	model.	In	this	section	we	shall	briefly	examine



parametric	LGP,	or	the	investigation	of	changes	over	a	continuous
range	(Ignizio,	1982a).	In	doing	so,	we	shall	confine	our	presentation
to	just	parametric	changes	in	bi	(i.e.,	the	original	right-hand-side	value
of	goal	i)	and	 	(the	original	weight	or	coefficient	of	variable	j	at	the
kth	priority	level).	We	shall	deal	with	this	latter	case	first.

A	Parameter	in	the	Achievement	Function

The	easiest	way	to	explain	the	approach	used	is	via	a	simple
numerical	example.	We	shall	use	the	following	LGP	model:
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Rewriting	this	model	in	general	form	we	have

where

	



Page	79

We	first	determine	the	optimal	solution	to	the	above	model.	The	result
is	given	in	the	tableau	below:

Basis	Inverse b
v3 1 0 0 0 20
v2 0 1 0 0 35
v5 0 3 1 0 115
v6 0 1 0 1 95
p(1)T 0 0 0 0 0
p(2)T 0 1 1 2 305
p(3)T 1 0 0 0 20

In	the	original	model	above,	the	coefficient	of	v6	(i.e.,h4)	at	priority
level	2	(k	=	2)	was	"2."	Let	us	now	determine	the	range	of	values	for
this	coefficient	over	which	the	above	program	is	still	optimal.	Thus,	in
place	of	 	we	shall	use	a	parameter,	say	"t."	This	results	in	a	change
in	 	for	the	above	tableau.	That	is,

or	

Using	the	new	value	of	 	we	may	compute	the	shadow	price	column
vectors	for	all	nonbasic	variables.	This	results	in
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Now,	in	order	for	the	previous	program	to	be	optimal,	all	dj	must	be
lexicographically	nonpositive,	or
5	+	t	<	0
3	+	5	£	0
t	£	0

And	these	three	relationships	are	simultaneously	satisfied	only	when

0	£	t	£	3

Thus,	as	long	as	all	other	parameters	remain	unchanged,	the	weight	on
h4	at	priority	level	2	may	vary	from	0	up	to	3	and	the	original	program
will	still	be	optimal.	Using	the	same	process,	we	could	examine,	one
at	a	time,	all	of	the	remaining	achievement	function	parameters.
However,	it	should	be	obvious	to	the	reader	that	the	only	other
parameter	of	interest	in	this	model	would	be	the	weight	associated
with	h3	at	priority	level	2.

A	Parameter	in	the	Right-Hand	Side

A	parameter	in	the	achievement	function	must	be	examined	for	that
range	over	which	the	original	program	is	still	optimal.	A	parameter	in
the	right-hand	side,	however,	will	be	examined	for	the	range	over
which	the	original	program	is	still	feasible.	To	demonstrate,	let	us
examine	the	range	of	values	of	b1	for	which	the	original	program
remains	feasible.	That	is,	we	replace	20	(i.e.,	the	value	of	b1)	by	"t".
Using	the	approach	discussed	earlier	to	investigate	a	discrete	change
in	bi,	we	find:

And	this	new	b	is	feasible	as	long	as	0	£	t	<	¥.



Next,	examine	the	range	on	b3.	That	is,	we	replace	b3	by	t	and
determine	the	new	right-hand	side:
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and	this	is	feasible	as	long	as	t	105	³	0.	Thus,	the	range	on	b3	is

105	£	t	<	¥

Again,	we	can	perform	such	an	analysis	on	any	or	all	of	the	right-hand
side	elements.

7.
Extensions
In	this	volume,	our	attention	has	been	focused,	at	least	for	the	most
part,	on	lexicographic	linear	goal	programming	(i.e.,	LGP	with	a
preemptive	priority	structure,	or	non-Archimedean	weights).
However,	even	with	this	seemingly	narrow	perspective,	we	have	seen
that	the	methodology	presented	may	also	be	directly	applied	to:

·	lexicographic	linear	goal	programming,

·	minsum	(or	Archimedean)	linear	goal	programming,	and

·	conventional	linear	programming.

In	addition,	with	but	minor	modification	we	may	extend	our	approach
to	encompass	even	further	alternative	methods	for	multiobjective
optimization	including	fuzzy	programming,	fuzzy	goal	programming,
and	the	generating	method	(Ignizio,	1979,	1981a,	1982b,	1983b;
Ignizio	and	Daniels,	1983;	Ignizio	and	Thomas,	1984;	Yu,	1977;
Zimmermann,	1978).	As	such,	the	methodology	thus	far	presented
provides	an	approach	to	either	single-objective	linear	programming	or
most	classes	of	multiple	objective	linear	mathematical	programming.

Goal	programming	(recall	our	discussion	in	Chapter	2)	is	not,
however,	limited	to	linear	systems.	Rather,	powerful	extensions	of	the
GP	concept	exist	and	find	real-world	application	in	both	integer	and



nonlinear	models.	In	this	section	we	shall	very	briefly	discuss	a	few	of
these	extensions	so	that	the	reader	has	at	least	some	familiarity	with
other	than	strictly	linear	GP	models.	In	addition,	to	conclude	this
chapter,	we	shall	describe	interactive	approaches	via	GP,	a	topic	of
some	considerable	recent	interest.

Integer	GP

Sequential	Integer	Goal	Programming

Among	the	first	approaches	to	integer	GP,	or	IGP,	was	the	so	called
sequential	GP	approach.	This
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sequential	approach	was	first	proposed	and	developed	by	Ignizio	and
Huss	in	1967	for	the	solution	of	strictly	linear	GP	models	(Ignizio,
1967,	1982a,	1983c;	Ignizio	and	Perlis,	1979;	Markowski	and	Ignizio,
1983b).	However,	there	is	no	reason	why	the	concept	cannot	be	used
in	IGP	or	even	in	nonlinear	GP	(NLGP)	and,	in	fact,	it	often	finds
such	application.	The	basic	thrust	of	sequential	GP	is	to	partition	the
GP	model	into	a	related	sequence	of	conventional,	or	single-objective
models.	The	general	algorithm	for	sequential	GP	is	given	below.

Step	1.	Establish	the	GP	formulation	of	the	model	and	set	k	=	1	(where
K	=	total	number	of	priority	levels	in	u).

Step	2.	Establish	the	mathematical	model	for	priority	level	1	only.
That	is,

Step	3.	Solve	the	single-objective	problem	associated	with	priority
level	k	via	any	appropriate	algorithm.

11	Let	the	optimal	solution	be	designated	as	 .

Step	4.	Set	k	=	k	+	1.	If	k	>	K,	go	to	step	6.	Otherwise,	go	to	step	5.

Step	5.	Establish	the	equivalent	single-objective	model	for	the	next
priority	level	(level	k).	This	model	is	given	as

minimize	uk	=	c(k)Tv

s.t.



and	then	proceed	to	step	3.
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Step	6.	The	solution	vector	v*,	as	associated	with	the	last	single-
objective	model	is	the	optimal	solution	to	the	original	GP	model.

Note	carefully	that	this	algorithm	as	presented	is	applicable	to	any
type	of	GP	model	(i.e.,	linear,	integer,	or	nonlinear).	A	number	of
organizations	utilize	this	approach	in	dealing	with	IGP	models	and
report	successful	results.	The	power	of	the	approach	is,	of	course,
directly	dependent	upon	the	power	of	the	specific	single-objective
algorithm	(or	associated	software)	as	employed	in	step	3.

Modifications	to	Classical	Approaches

An	alternative	approach	to	IGP	is	available	by	the	relatively
straightforward	means	of	modifying	"classical"	approaches	to	integer
programming;	such	as	the	cutting	plane	method	(Gomory,	1958),
branch	and	bound	(Land	and	Doig,	1960),	or	the	Balas	algorithm
(Balas,	1965).	I	developed	a	number	of	such	algorithms	in	the	late
1960s	and	early	1970s,	some	of	which	appear	as	Chapter	5	of	Goal
Programming	and	Extensions	(Ignizio,	1976b).	In	general,	however,
these	modified	algorithms	have	not	proven	very	effective.	They	have
all	the	limitations	and	problems	associated	with	their	single-objective
counterparts	and	typically	only	exhibit	adequate	performance	on
relatively	small	to	modest	size	models.	Further,	because	the	ultimate
performance	of	the	method	rests	primariliy	upon	the	efficiency	of	the
structure	of	the	algorithms	and	its	coding,	it	is	my	opinion	that	one	is
better	off	taking	advantage	of	already	developed	single-objective	IP
codessuch	as	are	available	via	sequential	IGPor	the	goal	aggregation
method,	as	described	next.

Goal	Aggregation

The	goal	aggregation	approach	proceeds	as	follows	(Ignizio,	1985b).
First,	one	solves	the	relaxed	linear	IGP	model	(i.e.,	the	integer
restrictions	are	ignored).	Next,	using	the	shadow	price	column	vectors



of	the	relaxed	model's	final	tableau,	we	construct	a	small	LP	model.
The	solution	to	this	LP	model	provides	a	set	of	weights	by	which	we
may	change	the	linear	IGP	model	into	a	conventional	IP	model,	and
then	solve	by	conventional	IP	software.

The	steps	of	the	goal	aggregation	algorithm	are	as	follows:

Step	1.	Form	the	linear	IGP	model.

Step	2.	Solve,	via	any	LGP	code,	the	relaxed	version	of	the	model
developed	in	step	1.	If	all	integer	variables	are	integer	valued,	stop.
Otherwise,	delete	any	deviation	variables	having	 	and	go	to	step
3.
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Step	3.	Determine	the	weights	for	the	modified	form	by	solving	the
following	LP	model:

s.t.

Step	4.	Use	the	weights	found	in	step	3	to	convert	the	linear	IGP
model	into	a	new,	equivalent,	linear	IP	model.	That	is,

Step	5.	Solve	the	model	developed	in	step	4	by	any	appropriate
conventional	linear	IP	algorithm.
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To	illustrate	the	approach,	consider	this	example:

x1	+	2x2	+	h1r1	=	1
x2	+	h2r2	=	3

8x1	+	10x2	+	h3r3	=	80
10x1	+	8x2	+	h4	r4	=	80

and	x1	and	x2	must	be	nonnegative	integers.

The	final	tableau	for	the	relaxed	version	of	this	model	is	given	in	the
following	table.	Also	listed	are	the	shadow	price	column	vectors	for
each	nonbasic	variable.

Basis	Inverse b
x2	=	v2 1/2 0 0 0 1/2
h2	=	v4 1/2 1 0 0 5/2
h3	=	v5 5 0 1 0 75
h4	=	v6 4 0 0 1 76
p(1)T 0 0 0 0 0
p(2)T 1/2 1 0 0 5/2
p(3)T 54 0 10 1 826
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From	step	2	we	see	we	must	proceed	as	not	all	integer	variables	have
integer	values	(i.e.,	x2	=	1/2).	Further,	r1	(or	v7)	must	be	deleted
because	

Moving	to	step	3,	our	LP	model	to	be	solved	is	as	follows:

Although	the	strict	inequality	constraints	are	unusual,	we	may
accommodate	them	by	adding	some	small	negative	amount,	say	e,	to
the	right-hand	sides.	Thus,	we	replace	<	0	by	£	e.	One	solution	to	this
model	is

Consequently,	the	aggregated	IP	model	is	given	as

This	last	model	may	be	solved	by	any	conventional	approach	to	linear
IP	and	the	resulting	program	 	must	be	optimal	for	the
original	IGP	models.
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Network	Simplex

Certain	conventional	integer	programming	problems	may	find
convenient	representation	as	networks.	If	so,	some	very	powerful
approaches	based	on	network	simplex	may	be	used	to	obtain	a
solution.	Further,	the	time	required	to	find	that	solution	may	be	only	a
fraction	of	that	required	by	more	''conventional"	approaches	(Glover
et	al.,	1974).

It	is	also	possible	to	treat	certain	integer	GP	problems	as	networks	and
then	apply	an	extension	of	conventional	network	simplex	to	develop	a
solution.	Just	as	in	the	conventional	(i.e.,	single-objective)	case,	when
this	is	possible	the	computational	efficiency	may	be	considerably
enhanced.	As	such,	for	those	IGP	problems	that	may	find	such
representation,	the	network	simplex	approach	should	certainly	be
considered	(Ignizio,	1983d,	1983f;	Ignizio	and	Daniels,	1983;	Price,
1978).

Heuristic	Programming

Despite	years	of	substantial	effort	in	IP,	it	is	still	true	that	many	real
world	IP	or	IGP	problems	are	simply	too	large	and/or	complex	for
solution	(or	at	least	solution	in	a	reasonable	amount	of	time)	by	exact
methods	(Ignizio,	1980a).	In	such	cases	we	typically	resort	to
specially	tailored	heuristic	methods.	With	these	methods	we	seek
acceptable	solutions	in	an	acceptable	amount	of	time.	The	references
provide	a	discussion	of	some	of	the	uses	of	heuristic	programming	in
IGP	(Harnett	and	Ignizio,	1973;	Ignizio,	1976c,	1979a,	1981d,	1984;
Ignizio	et	al.,	1982;	Murphy	and	Ignizio,	1984;	Palmer	et	al.,	1982).

Nonlinear	GP

Sequential	Nonlinear	Goal	Programming

Using	an	approach	analogous	to	that	described	for	sequential	integer



goal	programming	we	could,	if	we	wished,	solve	nonlinear	GP
models.	However,	although	this	is	possible	and	sometimes	done,	it	is
both	inefficient	and	unnecessary	in	the	case	of	nonlinear	GP.	The
reason	for	this	is	that	conventional	nonlinear	programming	algorithms
and	codes	may	easily	be	modified	to	handledirectlythe	nonlinear	GP
case.

Modifications	to	Classical	Approaches

The	very	first	approach	to	nonlinear	GP	(Ignizio,	1963)	was	based	on
the	modification	of	existing,	conventional	nonlinear	programming
methods.	Specifically,	the	"pattern	search"	method	of	Hooke	and
Jeeves	(1961)	was	converted	into	an	algorithm	and	code	for	nonlinear
GP.	The	success	of	this	result	led	me	to	investigate	such	conversions
for	virtually	all	other	conventional	nonlinear	programming	algorithms.
In	most	cases,	the	key	change	to	the	conventional	code	is	the	simple
replacement	of	the	scalar	objective
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function,	z,	with	the	achievement	vector,	u.	For	example,	a	typical
search	algorithm	for	conventional	nonlinear	programming	will
proceed	as	follows:

Step	1.	Formulate	the	model	and	set	t	=	1	(where	t	is	simply	a
counter).	Determine	some	trial	solution	and	denote	the	program	and
solution	as	xt	and	zt.

Step	2.	Define	a	region,	or	"neighborhood"	about	xt	and	then
determine	a	direction	of	improvement,	from	xt,	within	this
neighborhood.

Step	3.	Determine	a	"step	length"	along	the	direction	of	improvement
found	in	step	2	and	move	along	this	length	to	a	new	program,	xt+1.
Evaluate	zt+1.

Step	4.	Repeat	steps	2	and	3	until	one	converges	to	the	optimal
solution	(a	result	rarely	known	except	for	trivial	models)	or	must	stop
according	to	certain	stopping	rules	(e.g.,	too	many	iterations,	lack	of
significant	improvement).

Now,	to	modify	this	approach	so	as	to	handle	NLGP	models	we	may
simply	replace	zt	by	ut	in	steps	1	and	3.	Modification	of	most	search
algorithms	to	accommodate	the	resulting	evaluation	of	u	is	typically	a
minor	procedure.

Of	the	classical	algorithms	converted,	the	best	results,	by	far,	have
been	achieved	with	algorithms	based	upon:

·	pattern	search	(Hooke	and	Jeeves,	1961),

·	the	Gifffith/Stewart	technique	(1961),	and

·	generalized	reduced	gradient	methods	(Lasdon,	1970).

The	results	accomplished	with	the	modified	pattern	search	method	for
NLGP	(Draus	et	al.,	1977;	Ignizio,	1963,	1976a,	1979b,	1981b;



McCammon	and	Thompson,	1980;	Ng,	1981)	have	been	particularly
impressive.	Engineering	design	problems	(e.g.,	phased	arrays,
transducer	design)	with	thousands	of	variables	and	hundreds	of	rows
are	routinely	solved	with	the	latest	versions	of	NLGP/PS	(i.e.,
nonlinear	GP	via	modified	pattern	search).	Further,	not	only	are	such
problems	of	large	size,	they	are	also	typically	of	high	density	(in	fact,
densities	of	100%	are	not	uncommon).	Although	such	densities	alone
typically	defeat	simplex	based	nonlinear	algorithms,	the	NLGP/PS
codes	are	relatively	unaffected.
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Interactive	GP

In	the	past	several	years	there	has	been,	in	some	quarters,	an	intense
interest	in	so-called	interactive	methods	for	decision	support.	(Gass
and	Dror,	1983;	Ignizio,	1979a,	1979b,	1981a,	1981d,	1982a,	1983c;
Ignizio	et	al.,	1982;	Khorramshahgol	and	Ignizio,	1984;	Masud	and
Hwang,	1981).	By	interactive,	it	is	meant	that	one	encourages	and
utilizes	certain	direct	support	of	the	decision	maker	in	actually	solving
the	decision	model.	Such	approaches	have	received	particularly
favorable	reviews	by	many	of	those	in	the	fields	of	multicriteria
decision	making	(MCDM)	and	multiobjective	mathematical
programming.

Included	among	the	interactive	approaches	proposed	are	a	number
that	require	the	decision	maker	to	sit	in	front	of	a	CRT	(i.e.,	monitor)
and	react	to	a	set	of	alternatives.	That	is,	he	or	she	indicates	the	most
(or,	perhaps,	least)	preferred	alternative	from	a	small	group	of
alternatives.	Using	this	information,	the	procedure	moves	to	a	new
group	of	alternatives	and	again	the	decision	maker	is	asked	to
respond.	It	is	hoped	that	with	the	input	provided	by	the	decision
maker,	such	a	procedure	will	lead	to	either	the	"optimal"	result	or	at
least	one	that	is	acceptable.

Unfortunatelyat	least	for	those	who	would	hope	to	use	such	methods
on	real	problems	with	real	decision	makersmany	of	these	interactive
methods	are	based	on	a	rather	naive	view	of	the	world	and,	in
particular,	of	real-world	decision	makers.	That	is,	it	is	(at	least	from
my	experience)	rare	to	find	a	chief	executive	officer	who	is	willing	to
even	take	the	time	to	be	shown	how	such	methods	work,	much	less
spend	the	time	required	to	provide	the	necessary	interaction.	It	is	for
these	reasons	that	(successful)	interactive	versions	of	GP	typically	are
designed	to	minimize	the	time	and	effort	required	of	the	busy	decision
maker.	To	clarify,	we	shall	present	just	one	interactive	GP	approach,



the	technique	known	as	"augmented	GP"	(Ignizio,	1979a,	1979b,
1981a,	1981d,	1982a,	1983c;	Ignizio	et	al.,	1982).

Augmented	GP	proceeds	as	if	one	were,	at	first,	simply	solving	a	GP
model.	That	is,	the	initial	input	required	of	the	decision	maker	is	as
follows:

(1)	estimates	as	to	the	aspiration	levels	as	required	to	convert	all
objectives	(of	the	baseline	model)	into	goals,	and

(2)	estimates	as	to	the	order	of	the	importance	of	all	goals.
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A	solution	to	this	initial	GP	model	is	then	derived	and	presented	to	the
decision	maker(s)	as	a	"candidate	solution."	Now,	when	dealing	with
any	nontrivial	real-world	problem	subject	to	multiple	(and	conflicting)
objectives,	any	solution	developed	represents	a	compromise.
Consequently,	some	goals	may	be	completely	achieved	whereas
others	are	relatively	far	from	achievement.	Thus,	if	the	candidate
solution	is	considered	unacceptable,	the	next	step	in	the	procedure	is
to	ask	that	the	decision	maker	indicate	just	how	much	he	or	she	would
allow	each	goal	to	be	degraded	if	such	degradation	would	result	in
some	substantial	improvement	to	another	goal	or	goals.	The	indication
of	these	degradations	then	defines	a	"region	of	acceptable
degradation."	We	next	develop	a	subset	of	the	efficient	(i.e.,
nondominated)	solutions	in	this	region	and	present	this	subset	to	the
decision	maker.

If	any	member	of	the	subset	is	acceptable,	we	may	stop.	Otherwise,	in
examining	this	subset	the	decision	maker	can	get	a	fairly	good	idea	as
to	how	much	impact	the	degradation	of	one	goal	will	have	on	the
others.	For	example,	the	decision	maker	may	find	the	cost	of	a
candidate	solution	acceptable	but	may	not	be	pleased	with,	say,	the
resultant	system	reliability.	However,	if	he	or	she	notes	that	cost	must
be	drastically	increased	to	produce	even	a	small	increase	in	reliability,
this	information	may	well	result	in	the	decision	maker	accepting	some
previously	rejected	earlier	candidate	solution.

For	those	readers	desiring	further	references	(and	examples	of
implementation)	on	augmented	GP,	we	suggest	the	following
references:	Ignizio	(1979a,	1979b,	1981a,	1981d,	1982a,	1983c)	and
Ignizio	et	al.	(1982).
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Notes
1.	Huss,	in	fact,	considered	the	results	so	transparent	as	to	not	warrant
even	an	attempt	at	publication.	However,	in	recent	years	sequential
GP	has	become	the	focus	of	some	rather	intense,	although	belated,
interest.

2.	For	lexicographic	LGP,	to	be	precise.

3.	This	specific	model	is	also	a	special	case	of	the	more	general	form
of	mathematical	programming	model	known	as	the	MULTIPLEX
model	(Ignizio,	forthcoming).

4.	The	symbol	 	denotes	"for	all."

5.	In	equation	3.3	only	one	of	the	relations	(£,	=,	or	³)	is	assumed	to
hold	for	each	t.

6.	Where,	again,	only	one	of	the	relations	(£,	=,	or	³)	holds	for	each	i.

7.	Using	the	transformed	form	of	the	LGP	model,	the	reader	should	be
able	to	prove	easily	that	the	program	(i.e.,	v)	for	an	LGP	model	can
itself	be	unbounded	but,	of	course,	uT	will	be	finite.	Further,	standard
pivoting	rules	preclude	a	pivot	to	an	unbounded	program	(i.e.,	some	vj
®	¥).

8.	In	actual	practice,	and	in	the	algorithm	to	follow,	there	is	no	need	to
generate	but	one	element	of	each	dj	for	each	iteration.

9.	Numerous	approaches	for	accomplishing	step	7	have	been
described.	Our	approach,	to	be	described	in	the	example	to	follow,
uses	the	"explicit	form	of	the	inverse."

10.	Note	that	rB,i	is	the	upper	bound	on	the	ith	basic	variable.	Further,
bi	=	vB,i.



11.	Note,	however,	that	the	column	check	operation	of	continuous
LGP	is	not	permitted	here	if	any	variables	are	restricted	to	be	integers.

12.	Where	"È"	denotes	the	union	operator.
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