
Solutions Manual

# Introduction to Operations Research

9th Edition

Frederick S. Hillier



# **SOLUTIONS MANUAL**

For

# INTRODUCTION TO OPERATIONS RESEARCH

Ninth Edition

# FREDERICK S. HILLIER

Stanford University

# GERALD J. LIEBERMAN

Late of Stanford University

Prepared by PELIN G. CANBOLAT

# **TABLE OF CONTENTS**

# SOLUTIONS TO END-OF-CHAPTER PROBLEMS AND CASES

| CHAPTER 1         | Introduction                                                 | 1-1            |
|-------------------|--------------------------------------------------------------|----------------|
| CHAPTER 2         | Overview of the Operations Research Modeling Approach        | 2-1            |
| CHAPTER 3         | Introduction to Linear Programming                           | 3-1            |
| CHAPTER 4         | Solving Linear Programming Problems: The Simplex Method      | 4-1            |
| CHAPTER 5         | The Theory of the Simplex Method                             | 5-1            |
| CHAPTER 6         | Duality Theory and Sensitivity Analysis                      | 6-1            |
| CHAPTER 7         | Other Algorithms for Linear Programming                      | 7-1            |
|                   | Supplement to Chapter 7                                      | 7S-1           |
| CHAPTER 8         | The Transportation and Assignment Problems                   | 8-1            |
| CHAPTER 9         | Network Optimization Models                                  | 9-1            |
| <b>CHAPTER 10</b> | Dynamic Programming                                          | 10-1           |
| <b>CHAPTER 11</b> | Integer Programming                                          | 11-1           |
| <b>CHAPTER 12</b> | Nonlinear Programming                                        | 12-1           |
| <b>CHAPTER 13</b> | Metaheuristics                                               | 13-1           |
| <b>CHAPTER 14</b> | Game Theory                                                  | 14-1           |
| <b>CHAPTER 15</b> | Decision Analysis                                            | 15-1           |
| <b>CHAPTER 16</b> | Markov Chains                                                | 16-1           |
|                   | Queueing Theory                                              | 17-1           |
| <b>CHAPTER 18</b> | Inventory Theory                                             | 18-1           |
|                   | Supplement 1 to Chapter 18                                   | 18S1-1         |
|                   | Supplement 2 to Chapter 18                                   | 18S2-1         |
| <b>CHAPTER 19</b> | Markov Decision Processes                                    | 19-1           |
| <b>CHAPTER 20</b> | Simulation                                                   | 20-1           |
|                   | Supplement 1 to Chapter 20                                   | 20S1-1         |
|                   | Supplement 2 to Chapter 20                                   | 20S2-1         |
|                   | Supplement 3 to Chapter 20                                   | 20S3-1         |
| <b>CHAPTER 21</b> | The Art of Modeling with Spreadsheets                        | 21-1           |
| <b>CHAPTER 22</b> | Project Management with PERT/CPM                             | 22-1           |
| <b>CHAPTER 23</b> | Additional Special Types of Linear Programming Problems      | 23-1           |
| <b>CHAPTER 24</b> | Probability Theory                                           | 24-1           |
| <b>CHAPTER 25</b> | •                                                            | 25-1           |
| <b>CHAPTER 26</b> | The Application of Queueing Theory                           | 26-1           |
| <b>CHAPTER 27</b> | Forecasting                                                  | 27-1           |
| <b>CHAPTER 28</b> | Examples of Performing Simulations on Spreadsheets with Crys | stal Ball 28-1 |

#### **CHAPTER 1: INTRODUCTION**

#### 1.3-1.

Answers will vary.

#### 1.3-2.

Answers will vary.

#### 1.3-3.

By using operations research (OR), FedEx managed to survive crises that could drive it out of business. The new planning system provided more flexibility in choosing the destinations that it serves, the routes and the schedules. Improved schedules yielded into faster and more reliable service. OR applied to this complex system with a lot of interdependencies resulted in an efficient use of the assets. With the new system, FedEx maintained a high load factor while being able to service in a reliable, flexible and profitable manner. The model also enabled the company to foresee future risks and to take measures against undesirable outcomes. The systematic approach has been effective in convincing investors and employees about the benefits of the changes. Consequently, "today FedEx is one of the nation's largest integrated, multi-conveyance freight carriers" [p. 32].

# CHAPTER 2: OVERVIEW OF THE OPERATIONS RESEARCH MODELING APPROACH

#### 2.1-1.

- (a) The rise of electronic brokerage firms in the late 90s was a threat against full-service financial service firms like Merrill Lynch. Electronic trading offered very low costs, which were hard to compete with for full-service firms. With banks, discount brokers and electronic trading firms involved, the competition was fierce. Merrill Lynch needed an urgent response to these changes in order to survive.
- (b) "The group's mission is to aid strategic decision making in complex business situations through quantitative modeling and analysis" [p.8].
- (c) The data obtained for each client consisted of "data for six categories of revenue, four categories of account type, nine asset allocation categories, along with data on number of trades, mutual fund exchanges and redemptions, sales of zero coupon bonds, and purchases of new issues" [p. 10].
- (d) As a result of this study, two main pricing options, viz., an asset-based pricing option and a direct online pricing option were offered to the clients. The first targeted the clients who want advice from a financial advisor. The clients who would choose this option would be charged at a fixed rate of the value of their assets and would not pay for each trade. The latter pricing option was for the clients who want to invest online and who do not want advice. These self-directed investors would be charged for every trade.
- (e) "The benefits were significant and fell into four areas: seizing the marketplace initiative, finding the pricing sweet spot, improving financial performance, and adopting the approach in other strategic initiatives" [p.15].

#### 2.1-2.

- (a) This study arose from GM's efforts to survive the competition of the late 80s. Various factors, including the rise of foreign imports, the increase in customer expectations and the pricing constraints, forced GM to close plants and to incur large financial losses. While trying to copy Japanese production methods directly, GM was suffering from "missing production targets, working unscheduled overtime, experiencing high scrap costs, and executing throughput-improvement initiatives with disappointing results" [p. 7]. The real problems were not understood and the company was continuously losing money while the managers kept disagreeing about solutions.
- (b) The goal of this study was "to improve the throughput performance of existing and new manufacturing systems through coordinated efforts in three areas: modeling and algorithms, data collection, and throughput-improvement processes" [p. 7].
- (c) The data collection was automated by using programmable logic controllers (PLCs). The software kept track of the production events including "machine faults and blocking and starving events" [p. 13] and recorded their duration. The summary of this data was then transferred to a centralized database, which converted this to workstation-performance characteristics and used in validating the models, determining the bottleneck processes and enhancing throughput.
- (d) The improved production throughput resulted in more than \$2.1 billion in documented savings and increased revenue.

#### 2.1-3.

(a) San Francisco Police Department has a total police force of 1900, with 850 officers on patrol. The total budget of SFPD in 1986 was \$176 million with patrol coverage cost of \$79 million. This brings out the importance of the problem.

Like most police departments, SFPD was also operated with manually designed schedules. It was impossible to know if the manual schedules were optimal in serving residents' needs. It was difficult to evaluate alternative policies for scheduling and deploying officers. There was also the problem of poor response time and low productivity, pressure of increasing demands for service with decreasing budgets. The scheduling system was facing the problem of providing the highest possible correlation between the number of officers needed and the number actually on duty during each hour. All these problems led the Task Force to search for a new system and thus undertake this study.

- (b) After reviewing the manual system, the Task Force decided to search for a new system. The criteria it specified included the following six directives:
- -- the system must use the CAD (computer aided dispatching) system, which provides a large and rich data base on resident calls for service. The CAD system was used to dispatch patrol officers to call for service and to maintain operating statistics such as call types, waiting times, travel time and total time consumed in servicing calls. The directive was to use this data on calls for service and consumed times to establish work load by day of week and hour of day
- -- it must generate optimal and realistic integer schedules that meet management policy guidelines using a micro-computer
- it must allow easy adjustment of optimal schedules to accommodate human considerations without sacrificing productivity
- -- it must create schedules in less than 30 minutes and make changes in less than 60 seconds
- it must be able to perform both tactical scheduling and strategic policy testing in one integrated system
- -- the user interface must be flexible and easy, allowing the users (captains) to decide the sequence of functions to be executed instead of forcing them to follow a restrictive sequence.

#### 2.1-4.

(a) Taking all the statistics of AIDS cases into account it was inferred that just one-third of all cases nation-wide involved some aspect of Injection Drug Use(IDU). But in contrast to this national picture, over 60% of 500 cases reported in New Haven, Connecticut was traced to drug use. Though it was realized previously, by 1987 it was clear that the dominant mode of HIV transmission in New Haven was the practice of needle sharing for drug injection.

This was the background of the study and in 1987 a street outreach program was implemented which included a survey of drug addicts with partial intent to determine why IDUs continued to share needles given the threat of HIV infection and AIDS. It was claimed by the survey respondents that IDUs shared needles since they were scared and feared arrest for possessing a syringe without prescription which was forbidden by law in Connecticut. Respondents also pointed out difficulties involved in entering drug treatment program. The officials recognized that logical intervention was needle exchange whereby IDUs exchanged their used needles for clean ones. This would remove infectious drug injection equipment from circulation and also ease access to clean needles. Further, contacts made as a result of needle exchange might lead some active IDUs to consider counseling or enter drug treatment. After a lot of lobbying finally the bill for the first legal needle exchange program became effective on July 1, 1990.

(b) The design for the needle exchange program was achieved over the summer of 1980. The relevant committee decided that IDUs would be treated with respect and so no identification information was asked of program clients. The program began operating on November 13, 1990.

The needle exchange operate on an outreach basis. A van donated by Yale university visits neighborhoods with high concentration of IDUs. Outreach staff members try to educate the clients over there by different means like distributing literature documenting risks of HIV infection, dispensing condoms, clean packets, etc.

The primary goal of needle exchange is to reduce incidence of new HIV infection among IDUs. While studies showed consistent self-reported reductions in risky behavior among IDUs participating in needle exchange programs the studies were not convincing. So the mechanics of needle exchange require that the behavior of needles must change. What was required was to reduce the time needles spend circulating in the population. As needles circulate for shorter period of time, needles share fewer people which lower the number of infected needles in the pool of circulating needles which in effect lowers chances of an IDU becoming infected being injected with a previously infected needle. To use this theory required invention of new data collection system which is as follows.

A syringe tracking and testing is a system developed to interview the needles returned to the program. All clients participating in the needle exchange are given unique code names and every needle distributed receives a code. Everytime a client exchanges needles, an outreach worker records the date and location of exchange. He also records the code name of the client receiving the needles alongside the codes of the needles. The client then places the returned needles in a canister to which the worker puts a label with the date and location of exchange and code name of client.

All returned needles are brought to a laboratory at Yale University where a technician collates the information on the canister labels with the tracking numbers on the returned needles. For non-program or street needles returned to needle exchange, the location, date, and client code are recorded. A sample of the returned needles are tested for HIV.

(c) The initial results from this system were both shocking and decisive. At the start of the program, the IDUs presented the needles in their possession for clear needles. These street needles are representative of risk faced by an IDU prior to operation of needle exchange which showed a prevalence level of 67.5 percent which tested HIV positive. As of middle of March 1991, 50.3 percent of the program needles tested positive. Since March 1991, additional program needles have been tested of which 40.5 percent tested positive. This gave further support to the protection offered by needle exchange program.

Though these results are encouraging, they do not link operations of needle exchange to changes in the rate of new HIV infections. To achieve this required a development of a mathematical model describing HIV transmission among IDUs via needle sharing. The syringe tracking and testing system in concert with limited observation obtained from surveying program clients provided data required to estimate parameters for this model. Though the model developed was conservative, the results were interesting. It estimated that in absence of behavioral changes on part of IDUs in the program, rate of new HIV infections among needle exchange clients would drop. It estimates a 33 percent reduction in new HIV infections.

(d) To understand the impact of this study requires both a local and national perspective. In the local aspect, it is possible to construct a conservative estimate of the actual number of infections averted. As many clients who joined the needle exchange apparently dropped out, the conservative impact of the program can be estimated by multiplying the cumulative number of person years spent in the program over all clients by the incidence reduction of 2 HIV infections per 100 client years. This assumes all those who apparently dropped out of the program are truly recidivists, an assumption that may be patently false. Calculations have shown that between \$1 million and \$2 million dollar in public health care expenditure have been avoided over the first two years of the program.

This only hints at the true impact of this work. Needle exchange has been returned to the menu of legitimate AIDS intervention in major American cities in large part due to the evaluation of New Haven. In some calculations made as to how much public health care costs could be avoided only the annual reduction in HIV incidence among needle exchange program clients is considered, as opposed to changes in lifetime probability of acquiring HIV infection. While decrease in lifetime risk will be less than decrease in annual incidence the effect of placing clients in drug treatment via needle exchange has been ignored. If this point is considered impact of needle exchange on probability of their acquiring HIV could be substantial.

#### 2.2-1.

The financial benefits that resulted from this study include savings of \$40 million in 2001 and of \$5 million in 2002. The savings for any major disruption have been between \$1 and \$5 million. The new system enabled Continental Airlines to operate in an efficient and cost-effective manner in case of disruptions. The time to recover and the costs associated with disruptions are reduced. What-if analysis allowed the company to evaluate various scenarios in short periods of time. Since the complete reliable data can be generated quickly, the company reacts to facts rather than forecasts. These improvements in handling irregularities resulted in better and more reliable service and hence happier customers.

#### 2.2-2.

- (a) Swift & Company operates in an industry that involves highly skilled labor, many production pathways and perishable products. To generate profit, the company needs to make an efficient use of every single animal procured. Before this study, Swift was not able to meet the shipping deadlines and as a result of this, it was forced to offer discounts. The consequences of this practice included highly reduced profits, inaccurate forecasts and very low reliability. The company had to find a way to come up with the best product mix and to survive in this business defined by volatility and velocity.
- (b) The purpose of the scheduling models is "to fix the production schedule for the next shift and to create a projection of short order" [p. 74]. They generate shift-level and daily schedule for 28 days. The capable-to-promise (CTP) models "determine whether a plant can ship a requested order-line-item quantity on the requested date and time given the availability of cattle and constraints on the plants' capacity during the 90-day model horizon" [p. 75]. The starting inventory, committed orders, and production schedule generated by the CTP models are inputs to the available-to-promise (ATP) models. Every 15 minutes, the ATP models determine the unsold production of each shift and alert the salespeople to undesirable inventory levels.
- (c) The company now uses 45 optimization models.
- (d) As a result of this study, the key performance measure, namely the weekly percent-sold position has increased by 22%. The company can now allocate resources to the production of required products rather than wasting them. The inventory resulting from this approach is much lower than what it used to be before. Since the resources are used effectively to satisfy the demand, the production is sold out. The company does not need to offer discounts as often as before. The customers order earlier to make sure that they can get what they want by the time they want. This in turn allows Swift to operate even more efficiently. The temporary storage costs are reduced by 90%. The customers are now more satisfied with Swift. With this study, Swift gained a considerable competitive advantage. The monetary benefits in the first years was \$12.74 million, including the increase in the profit from optimizing the product mix, the decrease in the cost of lost sales, in the frequency of discount offers and in the number of lost customers. The main nonfinancial benefits are the increased reliability and a good reputation in the business.

#### 2.2-3.

(a) The Dutch Government has been facing problems regarding its water management the past it was too much water but now it is the scarcity of fresh water and pollution due to increased industrialization and a growing population with high standard of living. Some features of the Dutch landscape exaggerate the problem.

Netherlands, one of the densely populated countries of the world and the seventh largest wealthiest nation derives a huge amount of wealth from crops grown in irrigated land. Since agriculture is the largest user of fresh water in Netherlands water shortages can cause large economic losses. The Rhine river is Netherlands major source of surface water for agriculture, irrigation and other purposes. Along with other rivers and canals it is a major artery for the inland shipping fleet of Western Europe. Low water levels in

rivers and canals can cause shipping delays and economic losses too because only partially laden ships can navigate the inland waterways. Besides this mines and industries along the Rhine discharge into the water different type of pollutants which also contribute to the rivers increasing level of salinity which in turn damage crops and threaten environment and personal health. Power plants on the banks can degrade quality of water by discharging excess heat into streams, which may in turn endanger the ecological balance in the neighborhood. Besides salinity, the most important water quality problem is eutrophication heavy growth of algae in relatively stagnant water of storage reservoirs and lakes which cause the water to smell and taste foul.

Though in mid 1970s supply met the demand of fresh surface water except in dry years, it was predicted not to be true for late 1980s. But ground water sources were already facing scarcity. Rapid increases in ground water extraction recently have resulted in drop of its level in many areas. This in turn can cause agricultural and environmental damage in areas where water level was higher. Facing such water management problem the Netherlands Government agency responsible for water control and public works, Rijkswaterstaat commissioned an analysis on which to base a new national water management policy, which resulted in PAWN, the Policy Analysis for the Water Management of the Netherlands in April, 1977.

#### (b) The purpose of the five mathematical models are as follows:

The Water Distribution Model is the heart of the analytic method. The infrastructure of the surface water system consists of rivers and canals that transport water, lakes and reservoirs that store water, weirs, locks and lock bypasses, sluices and pumping stations that are used to control the transport of water throughout the country. The model simulates the major components of this system in detail and contains aggregated representations of the other components. The model provides information on the water management system, including flows, level of water, extractions, discharges,

depth of shipping and concentration of pollutants. It provides information on different costs, including investment and operating for technical and managerial tactics and irrigation, as well as shortage and salinity losses for agriculture, low water shipping loss and shipping delay losses. This information is provided for each 10-day period and is given in a summary of totals on averages for the entire year.

The Industry Response Simulation Model: When water becomes more expensive or less available, firms respond by modifying their production process to consume less water; usually with an accompanying increase in costs, part or all which may be passed on to their customers. To find out these responses and their costs, PAWN developed and used this model. The model simulates the behavior of industrial firms in response to a change in ground water extractions or an increase in the price of drinking water. In determining behavior, the model assumes that each firm will choose the least costly alternative available.

Although the model was developed to investigate the effect of ground water charges on industry it is also used to examine effect of imposing quotas that restrict ground water extractions.

Electric Power Reallocation and Cost Model: The Water Distribution Model provides an excess temperature table that shows rise in temperature at one node resulting from a reference heat discharge by a power plant at another node. To obtain the excess temperatures created by heat of power plant discharges other than the reference, this model scales the correct entries in the table by the ratio of the new to reference discharge.

The model calculates the optimal generating schedule for two basic conditions: one in which the thermal standards are relaxed and the other in which it is imposed. The difference is the cost attributable to the thermal standards, the thermal penalty cost. The model repeats this process for each 10-day period in the year and calculates the total thermal penalty annually as well as some other statistics.

The Nutrient Model: Eutrophication, a heavy growth of algae called an algae bloom occurs in the still water of lakes and reservoirs. This model estimates the amounts of nutrients, phosphates, nitrogen and silicon available to algae, given the nutrient flows entering the lake. The model calculates the composition of a column of water 1 square meter in area and as deep as the lake under investigation, in contact with the air and with the bottom sedimentations. The important nutrient processes include the inflow and outflow of nutrient bearing water, the flux of nutrients from the bottom, and the flux of nutrient to and from algae.

The Algae Bloom Model: PAWN used this model to analyze the effect on algae blooms of circumstances, including introducing control tactics. It predicts weekly size and species composition of the algae bloom, given amounts of nutrients and solar energy available to the algae.

(c) PAWN compares policies in terms of their impacts. In choosing impact measures, primary criterion was that they are sufficient to span quite a number of objectives. It includes both national and general water management as well as specific objectives mentioned by different interest groups. The objectives also had to reflect both equity and efficiency.

Impacts on water management system include investment and operating cost of technical and managerial tactics, as well as flood risk in the Ijssal lake.

Direct impact on users include change in profit, expenditure, revenue for each user group like agriculture, shipping, electric power generation, industries, drinking water supply companies.

Environmental impacts include violation of water quality standards, damage to nature areas caused by construction of new facilities and total amount of ground water extracted.

Impact on entire nation include net monetary benefit to nation after deducting transfer payments, total economic effects-- both Government revenues and charges-- in production, employment and imports-- that occurs in both industries directly involved in construction of major new facilities and interrelated industries and effects on public health.

PAWN also pays attention to distributional effects that show uneven distribution of monetary benefit and costs among producers, consumers, Government and uneven distribution of other impacts among different groups and locations.

- (d) The several tangible benefits are:
- -- the building of Brielse Mier pipeline which will yield \$38 million investment savings and \$15 million annual net benefit in decreased salinity damage to agriculture.
- -- rejection of plan to build the second dike to separate Markermeer from an adjacent saline lake-- saving more than \$95 million in investment costs, 0.2% of Dutch domestic product.
- -- implementation of new flushing policy for Markermeer is expected to yield net benefits between \$1.2 million and \$5.4 million per year.

-- adoption of a more stringent thermal standard of an increase of 3 degree Celsius for canals by Dutch since PAWN showed it was practical and not costly. This led to a decrease in locally harmful ecological effects of power plant heat discharges.

The intangible benefits are:

- -- drastic changes in Dutch approach to eutrophication, their most serious water quality problem
- -- implementation of all recommendations by PAWN would lead to an expected profit between \$53 million and \$128 million per year
- -- to deal with ground water extraction problem, priority had to be given to industry and drinking water companies. If practical methods to replenish the ground water cannot be devised, regulatory measures will show growth of ground water sprinkling.
- -- comprehensive methodology developed by PAWN has been adopted by the Government, other departments, laboratories and used in several major studies.
- -- PAWN provides method to educate decision makers and train analysts in analyses of complex natural resource and environmental questions.
- -- the general approach and some of the techniques have potentially wide applicability.

#### 2.2-4.

(a) The author's example of a model in natural sciences is Newton's Law of Universal Gravitation. Tough he says it is one of the most important models in Physics this does not account for all details. For example, it is only approximate if the particles are objects with non-spherical shapes and model ignores relativity.

The model in OR identified by him is the Economic Order Quantity (EOQ) model. Like Newton's Law in Physics, this model too is simple and highlights important features of the real world. It identifies some critical relationships and also shows that a single model can be used for all types of orders. This model too ignores details of the real world which might be considered important. But just like Newton's law, EOQ model is one of the most important one in MS/OR.

(b) The MS/OR profession is often compared to natural sciences. Basic precepts in natural sciences can be used to guide research in MS/OR. The author believes a greater understanding of these precepts can provide needed focus form the profession and help resolve some recent debates.

To be useful, an MS/OR model must possess some qualities as models in natural science. The most important of them are:

- -- understandibility
- -- verifiability
- -- reproducibility

The extent to which a model can be understood depends on tools available for evaluation. But models have inherent values which can be interpreted on inspection. In 1960s many MS/OR professionals tried to model the behavior of automobile traffic. The most successful models examined traffic from macro point of view and found similarities between traffic flow and fluid flow. Less successful models examined behavior of individual drivers with complicated queuing expressions. The latter models though more accurate have less value. They are too difficult to interpret.

A model should be verifiable and based on observable phenomena. It must capture the essence of a problem faced by MS/OR practitioners. It must include important parameters, decision variables, aims and objectives and their relationships.

As a criterion for publication, the phenomena underlying the model must be reproducible. To have a broader appeal the model must be sufficiently general.

#### 2.3-1.

- (a) Towards the end of 90s, Philips Electronics faced challenges in coordinating its supply chains. Decentralized short-term planning was no longer very reliable. The spread of the information to various branches of the global supply chains was taking a lot of time and the information was distorted while it was being transferred. To deal with the uncertainty, the companies had to keep high inventory levels.
- (b) The ultimate purpose of this study was "to improve competitiveness by improving customer service, increasing sales and margins, and reducing obsolescence and inventories" [p. 38]. To achieve this, the project team aimed at designing a collaborative-planning (CP) process that would improve trust and collaboration between partners and accelerate decision making.
- (c) "The algorithm can generate feasible plans within seconds. In fact, the calculation of the plan is hardly noticeable to the people participating in the weekly CP meeting. The speed of the algorithm also allows planners to compute multiple plans during the meeting, creating an interactive planning environment. The software environment also provides strong problem-solving support, used extensively during the CP meetings. One such capability is called backward pegging. It exploits the one-to-one relationship between the storage of an end item in some future period and a constraining stock on hand or scheduled receipt of one or more upstream items. Thus, the backward-pegging mechanism makes the actual material bottlenecks in the network visible" [p. 41-42].
- (d) The four steps of the collaborative-planning process are gathering data, deciding, escalating and deploying.
- (e) This study allowed the companies to solve complex problems quickly, to exploit profitable opportunities and to enhance trust within the supply chain. The information is now conveyed to other parties in a shorter time and more accurately. As a result of this, the companies can have accurate information about the availability of material at different stages. This results in the reduction of inventory and obsolescence as well as the ability to respond promptly to the changes in market conditions. The benefit from decreasing inventory and obsolescence is around \$5 million per year in total. Nonfinancial benefits include enhanced flexibility and reliability throughout the chain.

#### 2.3-2.

(a) The role of evaluating a model is to extract information from it. It entails two, often simultaneous activities -- identifying alternatives and calculating objectives.

The most known technique for identifying alternatives is optimization. The process yields a single solution which maximizes or minimizes a single objective function. The most prevalent technique used for identifying multiple alternatives is sensitivity analysis. The process can show how the optimum changes when model parameters change or can provide near-optimal alternative solutions.

The author views that optimization should not be the sole goal, not just because models are abstractions of real world but because does not provide adequate information for making decisions. Its objective is to find only one solution. But the decision maker probably would prefer information on several alternatives. Though sensitivity analysis increases effectiveness of optimization, it is deficient. It only yields alternative solution near optimum. The decision maker rather needs unique solutions which offer distinct alternatives.

So the author opines that research should be devoted to identify multiple alternatives. One may begin in the solution process itself. Each solution is a feasible alternative, which the decision maker may choose over the optimum. New algorithms may be designed to identify distinct alternatives.

The second step of evaluation should involve calculating quantifiable objective for each alternative.

Thus summarizing, the author views that although optimization has dominated research in MS/OR it is but one technique for addressing one part of MS/OR process. It is deficient since does not provide adequate information for making important decisions/ Complex decisions rather require information on many alternatives and also an understanding of basic trade-offs and principles. Optimization alone cannot provide this information.

- (b) The key to MS/OR is not only possessing knowledge. Though different practitioners take different approaches -- three key steps being
  - -- modeling
  - -- evaluating
  - -- deciding, which are all complementary.

In MS/OR systematized knowledge is reflected in better decisions. The key to good decisions is knowledge and judgment. Modeling and evaluation form a systematized way for acquiring knowledge; judgment is acquired through experience.

The problems which do not require judgment are the ones which can be formulated with well-defined objective functions and solved automatically with algorithms which are pretty efficient; an example being the shortest path algorithm. On the other hand, there are problems which are easy to formulate but difficult to solve, example a carpet store owner would not argue with the objective of the cutting stock problem but may not be happy with solutions provided by available software. He would benefit from models that offer help in cutting the carpet. Combining knowledge from modeling with judgment of store owner would give best result.

Generally, important questions facing management are not well-defined as shortest path or cutting stock problem. Neither there are related well-defined problems which can be optimized, example the facilities layout problem.

Thus the roles are all complementary. Most depend on both judgment of decision maker and knowledge gained from modeling and evaluating.

#### 2.4-1

The credibility of analyses and therefore the probability that policies based upon them will be implemented depends on the perceived validity of the models.

The process of model validation though is a burden helps to learn lessons which may not lead to just improvements in the model but also to changes in the scientific theory and public policy. This happened in PAWN with the Nutrient model and eutrophication. When PAWN was started, the Dutch eutrophication control strategy was to decrease phosphate discharges into surface water from point sources mostly sewerage treatment plants.

To find out how effective this strategy is the Algae Bloom model was applied to some major Dutch lakes. It was revealed that in most cases this required enormous percentage decrease in phosphate concentrations.

Next question was what was to be done to achieve a particular percentage decrease in phosphate concentration. The Dutch strategy was based on the fact that large amount of phosphates and other nutrients accumulated in bottom of the lakes was bound permanently to the bottom and hence unavailable to support algae blooms. This was contradicted both in the Nutrient Model calibration process and validation process.

Studies taken convinced that nutrients particularly phosphate can be liberated from bottom sediments both in normal steady mode and explosive mode. This conclusion was widely accepted in the scientific community.

But the conclusion implied that use of a phosphate reduction program as the only way to limit algae bloom would have hardly any immediate success. But analysis with the Algae Bloom model suggests other tactics which could be effective and combination of tactics should be tailored to individual lakes.

2.4-2 The author feels that observation and experimentation are not emphasized in the MS/OR literature or in the training of its workers as much as experience would lead one to believe. As examples he has given some experiences with the US AirForce in early '50s which strengthens his belief.

He opines that observing actual operations as part of analysis process provides a required base for understanding what is going on in a problem situation. They can help to point out difficulties being encountered, suggest hypothesis and theories that may account for problems and offer evidence regarding the validity of the models built as part of problem solving process.

If a problem is in regard to a non-existing system or an operating system fulfills an important function that must continue, so that controlled experiments with are not possible—one can build a theory about relevant phenomena and analyze the theory but numerical results obtained in this way clearly can be viewed with suspicion. Alternatively if a similar system exists, one can extrapolate from results with it to make estimates about the prospective system. Infact, administrative emergencies or an executive desire to try something new may cause the behavior of a system already in existence to change. The analyst may then be able to collect data useful for analyzing how the system would operate under changed circumstances or for identifying problems that might crop up under different operating regimes.

From his personal experiences he gives evidence to give substance to these remarks of his.

If data was used from one system to predict performance of another he believes that the parameter values form observing another similar system can be useful, and incorporating such estimates in a crude study can be better than not doing a study at all. Parameter values from one context to another cannot be expected to support detailed findings, but even crude findings are enough to provide indispensable information on which to base policy.

He has also analyzed the results of a continent wide Air Defense exercise. He says here that analysis must be carefully planned, and planning must begin early. Early work serves to put attention on the structure of the work and issues to be faced as well as other responsibilities.

Thus, in nutshell, the author views that skills involved in observation and experimentation are enumerous and should be part of the tool kit of many MS/OR analysts. He views that discriminating observation and carefully planned experimentation and analysis are central to MS/OR.

Observing actual operations and collection of data allow us to discern problems, develop hypotheses and validate models needing skill.

Similarly, accurate and complete data are required to estimate validity. Program evaluation brings together many of the issues of observation and experimentation.

Thus issues of scientific and professional craft related to observation and experimentation should occur important places in experience, literature and training of MS/OR workers.

#### 2 4-3

- (a) The author views that analysts do not believe that a model can be completely validated. He further opines that policy models can at best be invalidated. Thus the objective of validation or invalidation attempts is to increase the degree of confidence that the events obtained from the model will take place under conditions assumed. After trying all invalidation procedures, one will have a good understanding of strengths and weaknesses of the model and will be able to meet criticisms of omissions. Knowing the limitations of the model will enable one to express proper confidence on its results.
- (b) Model Validity deals with correspondence of the model to the real world and related to pointing out all stated and implied assumptions, identification and inclusion of all decision variables and hypothesized relations among variables. Different assumptions are made and the analyst compares each assumption and hypothesis to the internal and external problem environments viewed by the decision maker and comments on the extent of divergence.

Data validity deals with raw and structured data, where structured data is manipulated raw data. Raw data validity is concerned with measurement problems and determining if the data is accurate, impartial and representative. Structured data validity needs review of each step of the manipulation and is a part of model verification.

Logical/mathematical validity deals with translating the model form into a numerical, computer process that produces solutions. There is no standard method to determine this. Approaches include comparing model outcomes with expected or historical results and a close scrutiny of the model form and its numerical representation on a flow chart.

Predictive validity is analyzing errors between actual and predicted outcomes for a model's components and relationships. Here one looks for errors and their magnitudes, why they exist and if how they can be corrected.

Operational validity attempts to assess the importance of errors found under technical validity. It must find out if the use of the model is appropriate for the observed and expected errors. It also deals with the fact whether the model can produce unacceptable answers for proper ranges of parameter values.

Dynamic validity is concerned with determining how the model will be maintained during its life cycle so it will continue to be an accepted representation of the real system. The two areas of interest thus are update and review.

- (c) Sensitivity analysis plays an important role in testing the operational validity of a model. In this, values of model parameters are varied over some range of interest to determine if and how the recommended solution changes. If the solution is sensitive to certain parameter changes, the decision maker may want the model analysts to explore further or justify in detail values of these parameters. Sensitivity analysis also involves the relationship between small changes in parameter values and magnitude of related changes in outputs.
- (d) Validating a model tests the agreement between behavior of the model and the real world system being modeled. Models of a non-existing system are the difficult to validate. Three concepts apply here: face validity or expert opinion, variable -parameter validity and sensitivity analysis and hypothesis validity. Though these concepts are applicable to all models, models of real systems can be subjected to further tests. Validity is measured by how well the real-system compares with model-generated data. The model is replicatively valid if it matches data acquired from the real system. It is predictively valid when it matches data before getting the data from the real system. A model is structurally valid if it reproduces the observed real system behavior as well as reflects the way in which real system works to produce this.

The author views that there is no validation methodology appropriate for all models. He says that a decision-aiding model can never be completely validated as there are never real data about the alternatives not implemented. Thus, analysts must be careful in devising, implementing, interpreting and reporting validation tests for their models.

(e) Basic validation steps have been cited in page 616 of the article.

### 2.5 - 1

- (a) In late 1970s oil companies began to experience downward pressure on profitability due to rapid and continuing changes in external environment. Partially in response to these pressures Texaco's Computer Information Systems department developed an improved on-line interactive gasoline blending system called OMEGA. It was first installed in 1983 and is now used in all seven Texaco US refineries and in two foreign plants.
- (b) Simple interactive user interface makes OMEGA easy to use. All input data can be entered by hand. OMEGA can interface with refinery data acquisition system. The user can access stock qualities, stock availabilities, blend specification and requirements, starting values and limits, optimization options, automatic stock selection, automatic blend specification and several other options.

Several features aid the user in performing planning functions. By choosing appropriate options user can obtain optimization options. User also has other options.

Each refinery uses different set of features depending on its availability of blending stocks. These vary depending on the configuration of the refinery and particular crudes being refined. Availability and easy use of OMEGA features has provided engineers and blenders with powerful and easy tool.

(c) OMEGA is constantly being updated and extended. It had to be modified to take into account EPA's regulation for a lead phase down for regular-leaded gasoline so that now OMEGA could be more accurate for these lower lead levels.

OMEGA is continuously modified to reflect changes in refinery operations. Differences in refineries required changes to the system.

When Texaco began installing OMEGA in their foreign refineries, additional changes had to be made to handle different requirements of different countries.

Improvements to OMEGA are needed to enable it to answer the new and unanticipated what-if questions often asked by refinery engineers.

(d) Each refinery uses OMEGA in varying degrees and for various purposes depending on their needs, complexity and configuration. Below the typical usage of the system is pointed out.

On a monthly basis, refineries use OMEGA to develop a gasoline blending plan for the month. The refinery planning model's projected blending stock volumes are input to OMEGA. The blending planner calculates 3 to 8 blends in a single OMEGA run. The refinery planning model's blend compositions are input into OMEGA as initial values. Once a reasonable blend is developed, the marketing department is contacted to discuss resulting grade splits. After marketing department does their job a finalized blending plan is developed for the month. The scheduler determines when each of the grades will be blended. All these work are done by using OMEGA.

(e) OMEGA contributes to overall profitability. To measure actual benefit, a method tried was comparing blend composition that blenders used with and without OMEGA. Here OMEGA achieved as much as 30 percent increase in profit. Average increase in profit is approximately 5 percent of gross gasoline revenue. If OMEGA is used to calculate blending recipes fewer blends fail to meet their quality specification. OMEGA's more reliable gasoline grade-split estimates provide significant aid to those developing marketing strategies and refinery production targets. OMEGA is used for what-if case studies performed for example for economic analysis of refinery improvement projects and analysis of how proposed Government regulations would affect Texaco. OMEGA's features have enabled Texaco with capacity to do things not possible with previous blending system, for example, to deal with mix stocks, consider new grades of gasoline, more control on inventory, etc. OMEGA's features make it easy and quick to explore new avenues of profitability for a refinery.

#### 2.5-2

(a) Yellow Freight System, Inc. was founded in 1926 as a regional motor carrier serving the Mid-West. Today it is one of the largest motor carriers in the country. From a mixed operations in 1970s, Yellow now predominantly serves the less-than-truckload (LTL) portion of the freight market. The '80s were a difficult decade for the motor carrier industry. Deregulation made the way for tremendous opportunity for growth but also presented management with new and difficult challenges to manage these larger operations more efficiently than before. After 1980, motor carriers were forced to compete on price, which led to a lot of pressure to cut costs. The result was decrease in transportation rates. Between 1980 to 1990, transportation rates translated to a drop in real terms of 29%. In addition to real rate decreases, the shipping community in response to intense international competition, started to increase their expectation in service. For many shippers, Yellow Freight is a full partner in their total quality management programs. Another important component of the logistics system is timely delivery of freight. Service reliability is also critical. This heightened emphasis on service was a problem for some long-standing operating practices used by national LTL carriers. The effect of these pressures can be seen in the tremendous attrition the industry suffered. Out of top 20 revenue producing LTL carriers in 1979, only 6 are there today. In this period, Yellow Freight grew from 248 to 630 terminals. This growth has had the effect of creating an extremely large and complex operation. The large network also needs a greater degree of coordination.

In 1986, Yellow initiated a project to improve its ability to manage a complex system. Yellow was interested in using modern network method to simulate and optimize a large network. The project had a main goal—improved service and service reliability through better management control of the network. This goal was supplemented by broader management objectives. There was also an expectation that improved planning would lead to higher productivity level and lower costs. Consequently, a project team was formed.

(b) The development effort at Yellow started with an existing model as a base and then were modified. The result of this effort was SYSNET. SYSNET is more than 80,000 lines of FORTRAN code for performing sophisticated optimizations using modern network tools. They developed an innovative, interactive optimization technology that puts human beings in the loop, placing sophisticated, up-to-date optimization methods in their hands. These methods were required in the development of a system that would handle the entire network without resorting to heuristic methods to decrease the size of the problem. As a result, user is able to analyze impacts of changes in the whole network in a simple but interactive fashion. Projects can be completed earlier new with greater precision. Decisions on shipment consolidations are now optimized taking into account the system effect of each decision.

Yellow uses SYSNET for two sets of applications:

- -- main use is tactical load planning, which involves monthly planning and revision of set of instructions that govern handling and consolidation of shipments through the network.
- -- the second set of applications involve longer range planning of the network itself. These problems cover the location and sizing of new facilities, and long range decisions that govern the flow of freight between terminals.

At Yellow SYSNET is more than just a piece of code. It embodies an entire planning methodology adopted by all levels of the company. From strategic planning studies communicated to high-level management to network routing instructions sent right to the field, SYSNET has become a comprehensive planning process that has allowed management to maintain control of a large complex operation. In addition, Yellow uses SYSNET as the central tool in the design and evaluation of projects of over \$10 million in annual savings.

- (c) The interactive aspects of the code proved important in two respects:
- -- the user was needed to guide the search for changes in the network. For example, user may know that freight levels are in the rise in the Midwest or a particular breakbulk is facing problems with capacity. In other cases, user may know that current solution is a local minimum and a major change in the network is needed to achieve an overall improvement. A human being can easily point out these spatial patterns and test for promising configurations.
- -- the second use proved critical to the adoption of the system and was the user's capability to accept and reject suggestions made by the computer. SYSNET displays suggested changes and allows the user to evaluate each one in terms of difficult to quantify factors. Also local factors, such as work rules or special operating practices that are not incorporated into the model can be accounted for by a knowledgeable user.
- (d) For strategic planning, the outputs from SYSNET are a set of reports used to prepare management summaries on different options. SYSNET is also used on a operational basis to perform load planning. In this role, SYSNET is used to maintain a file that determines the actual routing of shipments through the service network. This file, which contains the load planning, is accessed directly by systems that are used by every terminal manager in the field. SYSNET'S control of load planning and its capability to communicate these instructions to the field is the most important accomplishment of the project.
- (e) SYSNET's effect can be seen in four areas:
  - -- quality of planning practices and management culture
  - cost savings resulting directly from improvement in load planning

- -- in analyzing projects
- -- improved service to customers from more reliable transportation

Qualitative changes includes the following:

- -- management had more control over network operations. SYSNET now allows managers to have direct control. The new load pattern closely controls the loading of directs and management can quickly change the load pattern in response to changing needs.
- -- it could set realistic performance standards. SYSNET allowed Yellow to set direct loading standards based on anticipated freight levels, creating more realistic performance expectations.
- -- planners can better understand the total system now. Yellow can now evaluate new projects and ideas based on their impact on the entire system
- -- SYSNET allows managers to analyze projects formally before making decisions
- -- with SYSNET managers can analyze new options quickly in response to changing situations
- -- Analysts can now try new ideas on computers which ultimately leads to new ideas in the field
- -- because of SYSNET, Yellow is more open now to use of new information technologies
- -- the new system has reduced claims. SYSNET has had a substantial impact on management culture at Yellow

Performance improvement due to better load planning include:

A study was undertaken to estimate savings that could be attributed to SYSNET. Total cost savings for the system were estimated at over \$7.3 million annually. Savings in breakbulk handling costs also increased.

Besides this, reducing shipments handled in the long run may bring down investments in fixed facilities.

SYSNET brought down the cost of routing trailers in part by identifying directs with lower transportation costs-- savings due to better routing of trailers were estimated to be \$1 million annually.

Ongoing projects include:

Operations planning uses SYSNET to scrutinize various projects with a wide range from relocating breakbulks to realigning satellites with breakbulks. Using SYSNET, operational planning now completes over 200 projects per year, mostly on an informal, exploratory basis. SYSNET'S speed in evaluating different ideas is critical to this process.

In 1990, Yellow used SYSNET to identify over \$10 million in annual savings from different projects. SYSNET improved the speed with which such analyses could be completed and expanded the scope of each project thus allowing Yellow to study system impacts with more precision than before. SYSNET thus has played a main role in identification, design and evaluation of these projects.

Improved service includes:

Savings from SYSNET are substantial compared to the cost of its development and implementation. Following the implementation of SYSNET management can be better focused on improved service.

Yellow continues to use SYSNET for a number of planning projects and to continuously monitor and improve the load planning system which is now used directly within linehaul operations group responsible for day-to-day management of flows through the system. In addition, Yellow is using SYSNET as a foundation to expand the use of optimization methods for the other aspects of its operations.

SYSNET is now very popular within the company for its capability to carry out accurate, comprehensive network planning projects.

#### 2.6 - 1

(a) Implementing this major change in operations needed involvement and support of all levels of the company. Process started with acceptance of system with operation planning department. Operation planning was responsible for guiding the project and managing with close cooperation from the information services department and all aspects of the implementation. The systems acceptance was ma lot due to use of interactive optimization which gave users the support needed to optimize such a large network while simultaneously keeping them in close control of the entire process. Users could also analyze suggested changes to the network based on changes in flows and costs, which could be compared against actual field totals.

The next step was to validate the cost model. They were able to compare both total system costs and different subcategories against actual cost summaries for these categories. The individual cost categories within SYSNET consistently match corporate statistics within a few percent and total costs often match with 1 or 2 percent.

The validation of the cost model, both in totality and individual components, played a vital role in gaining upper management's acceptance. The interactive reports and features that convinced operations planning also played a strong role in winning support of top management. They ran sessions for upper management to demonstrate how SYSNET made suggestions and generated supporting reports to back-up the numbers. They also demonstrated how standard operating practices could be detrimental and why coordinating the entire network was important. By taking all these efforts, they gained the needed confidence of upper management required to support a field implementation.

- (b) With the support of upper management, they were able to develop an implementation strategy. The controlled direct program changed operating philosophy so drastically that a single corporate-wide transition was viewed as not safe. In implementing SYSNET, Yellow made a systematic change in the way it loaded directs. SYSNET encourages a greater proportion of directs to be loaded onto breakbulks. It was not possible to change this operation methods so easily over the whole network. It was also difficult to do it in a piecemeal fashion. To deal with this problem, they developed a phased implementation strategy that started with smallest breakbulks in the system and went up to larger ones. Careful planning made sure that no breakbulk would be over capacity during the intermediate stages of the process. The entire implementation was so planned as to ensure that no breakbulk would find itself over capacity during the transition period.
- (c) To communicate the new concept to terminal managers in the field involved three steps:
- -- designing new support tools so that SYSNET routing instructions were easy to follow
- -- training terminal managers and dock personnel to use these new system and most important
  - -- convincing terminal managers that the new approach was a good idea.

They developed two new support tools to assist field operations:

- -- first was a set of reports that managers or dock supervisors could access from their local computer terminals which would give them immediate access to SYSNET load pattern.
- -- second, was a revised shipment movement bill. This provides a very high level of control over the routing of individual shipments.

The Operations Planning department handled training by organizing series of visits to all 25 breakbulks. During each visit, the staff members explained the principles behind the controlled direct program, new reports and use of new routing directions. Follow-up was done by phone calls.

The most important task was to convince terminal managers of the logic behind the new operations strategy. Terminal managers needed to understand that they had to follow the load planning since it was designed to coordinate different parts of the system. They used examples to illustrate the effect their decisions could have on other terminals. Generally, people in the field accepted the principle that their decisions should be coordinated with those in the rest of the system

(d) Following the implementation of SYSNET, they developed a target that represented the expected number of directs that they should be loading based on the SYSNET plan. Yellow then measured terminal manager's performance based on how

close they were to this target. After some period, it deemed compliance with the plan so good that it now measures terminal managers performance on other activities and Yellow continues to monitor compliance with the load plan informally. It then contacts managers that appear to be not in compliance to determine the reasons. In short, SYSNET has changed load planning from a decentralized process that depended on local management incentives to a centralized process that relies on monitoring and enforcement.

#### 2.6-2

(a) The information processing industry has experienced several decades of sustained profitable growth. Recently, competition has intensified leading to quick advances in computer technology. This in turn leads to proliferation of both-end products and services. These trends are especially relevant for after-sales service. Maintaining a service parts logistic system to support products installed in the field is essential to competing in this industry.

Growth in both sales and scope of products offered has dramatically increased the number of spare parts that must be maintained. For IBM, the number of installed machines and the annual usage of spare parts have both increased. This growth has increased the dollar value of service inventories, which are used to maintain the very high levels of service expected by IBM's customers. IBM has developed an extensive multiple-echelon logistic structure to provide ready service for the large population of installed machines, which are distributed through the United States.

IBM developed a large and sophisticated inventory management system to provide customers with prompt and reliable service. A fast changing business environment and pressures to decrease investment in inventory led IBM to look for improvements in its control system.

In response to these new needs, IBM initiated the development of a new planning and control system for management of service parts. The result of this was the creation and implementation of a system called Optimizer.

- (b) The complicating factors faced by the OR team are as follows:
  - -- there are more than 15 million part-location combinations
  - -- there are more than 50000 product-location combinations
  - -- frequent updating (weekly) of system control parameters was a requirement in response to changes in the service environment and installed base
  - -- success of the system is important to IBM's daily operations and so can have a major impact on its future sales and revenues
  - -- employees could be expected to protest against any change since the existing control system was working and sophisticated and overall parts logistics problem was complex.

(c) The system developed in this phase had minimum interface to provide data inputs and multi-echelon algorithm without any improvements. Most of the big changes from the original design was in this phase.

They discovered that the echelon structure was in reality more complex than the one used in the analytic model. Consequently, they had to develop extensions to the demand pass-up methodology and incorporate them into the model.

The test was conducted in early 1986 and led to the finding that the value of the total inventory generated by the new system was smaller than expected. It was discovered that the problem was due to differences in criticality of parts. The algorithm made extensive use of inexpensive, non-functional parts to meet product-service objective. Another problem found out at this stage was the churn (instability) in the recommended stock levels every week. Although stock levels are expected to change periodically in response to changing failure rates and to changes in the installed base, it is desirable to keep the stock levels quasi-static in order to avoid logistic and supply problems. They developed control procedures and changed the model to take care of this problem.

- (d) In this phase, they completed all functions required for implementation and developed a measurement system to monitor the field implementation test. After being done with the system coding for this phase, they conducted an extensive user acceptance test. Every program module was tested individually and jointly. Finally, a field implementation test went live on 7 machine types in early 1987. The working of the system fulfilled expectations. Scope of the field test was slowly expanded. Results were monitored on a weekly and then monthly basis by the measurement system.
- (e) In this phase, they completed the development and installation of all the functions currently in place in Optimizer. The system was able to provide the specified service performance for all parts and locations. Improvements were made. User acceptance testing and integration of final system went smoothly. The project staging helped to sustain support for the project by demonstrating concrete progress throughout the implementation process. It also helped to eradicate problems in formulation and algorithm and programming bugs early. So very few problems occurred when the system went live in a national basis. The final Optimizer system for national implementation consisted of four major modules:
  - -- a forecasting system module
  - -- a data delivery system module
  - -- a decision system that solves multi-echelon stock control problem
  - -- the PIMS interface system
- (f) The implementation of Optimizer yielded a variety of benefits:

- -- a decrease in investment on inventory
- -- improved services
- -- enhanced flexibility in responding to changing service requirements
- -- provision of a planning capability
- -- improved understanding of the impact of parts operations
- -- increased responsive of the control system
- -- increased efficiency of NSD human resources
- -- identifying the role of functional parts in providing product service is an example of benefits derived from implementation of Optimizer
- -- ability to run Optimizer on a weekly basis has increased responsiveness of entire parts inventory system
- -- for machines controlled by Optimizer, inventory analysts no longer have to specify parts stocking lists for each echelon in order to make sure that service objectives are attained. They can now focus on other critical management issues.

Optimizer thus has proved to be an extremely valuable planning and operating control tool.

#### 2.7 - 1.

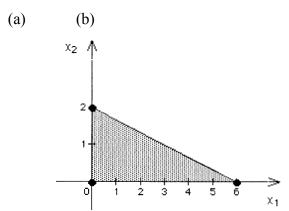
Answers will vary.

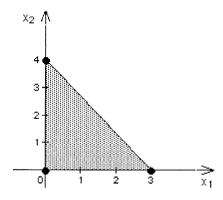
2.7 - 2.

Answers will vary.

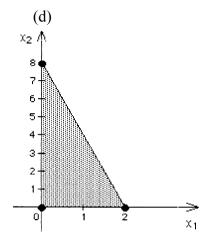
2.7 - 3.

Answers will vary.


#### **CHAPTER 3: INTRODUCTION TO LINEAR PROGRAMMING**


#### 3.1-1.

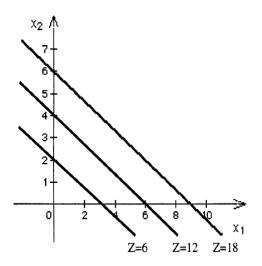
Swift & Com pany solved a series of LP problems to identify an optim al production schedule. The first in this series is the scheduling model, which generates a shift-level schedule for a 28-day horizon. The objective is to minimize the difference of the total cost and the revenue. The total cost includes the operating costs and the penalties for shortage and capacity violation. The constructional sinclude carcass availability, production, inventory and demand balance equations, and limits on the production and inventory. The second LP problem solved is that of capable to-promise models. This is basically the same LP as the first one, but excludes coproduct and inventory. The third type of LP problem arises from the available-to-promise models. The objective is to maximize the total available production subject to production and inventory balance equations.


As a result of this study, the key perform ance measure, namely the weekly percent-sold position has increased by 22%. The company can now allocate resources to the production of required products rather than wasting them. The inventory resulting from this approach is much lower than what it us ed to be before. Since the resources are used effectively to satisfy the demand, the production is sold out. The company does not need to offer discounts as often as before. The customers order earlier to make sure that they can get what they want by the timethey want. This in turn allows Swift to operate even more efficiently. The temporary storage costs are reduced by 90%. The customers are now more satisfied with Swift. With this study, Swift gained a considerable competitive advantage. The monetary benefits in the first years was \$12.74 million, including the increase in the profit from optimizing the product mix, the decrease in the cost of lost sales, in the frequency of discount offers and in the number of lost customers. The main nonfinancial benefits are the increased reliability and a good reputation in the business.

### 3.1-2.






(c)



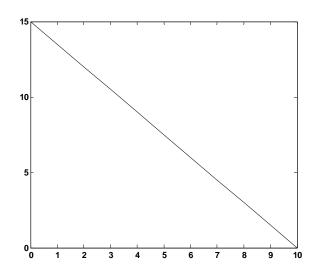
X<sub>2</sub> M. 8 -7 -6 -5 -4 -3 -2

# 3.1-3.

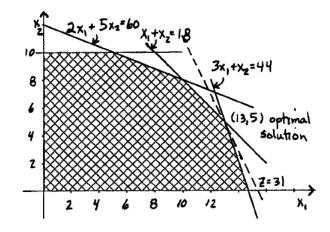
(a)



(b)

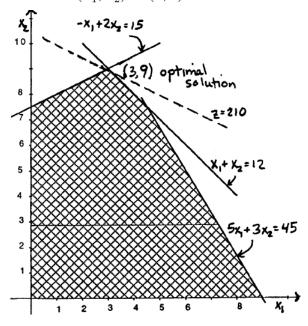

|        | Slope-Intercept Form        | Slope          | Intercept |
|--------|-----------------------------|----------------|-----------|
| Z=6    | $x_2 = -\frac{2}{3}x_1 + 2$ | $-\frac{2}{3}$ | 2         |
| Z = 12 | $x_2 = -\frac{2}{3}x_1 + 4$ | $-\frac{2}{3}$ | 4         |
| Z = 18 | $x_2 = -\frac{2}{3}x_1 + 6$ | $-\frac{2}{3}$ | 6         |

3.1-4.


(a) 
$$x_2 = -\frac{3}{2}x_1 + 15$$

(b) The slope is -3/2, the intercept is 15.

(c)



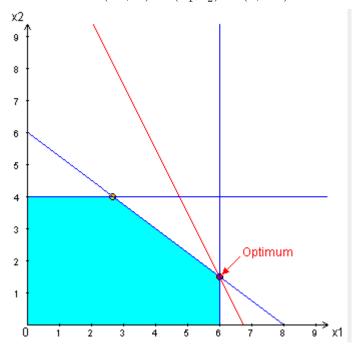

**3.1-5.** Optimal Solution:  $(x_1^*, x_2^*) = (13, 5)$  and  $Z^* = 31$ 



#### 3.1-6.

Optimal Solution:  $(x_1^*, x_2^*) = (3, 9)$  and  $Z^* = 210$ 




## 3.1-7.

(a) As in the W yndor Glass Co. problem , we want to find the optim al levels of two activities that compete for limited resources. Let W be the number of wood-framed windows to produce and A be the number of aluminum-framed windows to produce. The data of the problem is summarized in the table below.

| Resource Usage per Unit of Activity |             |                 |                  |
|-------------------------------------|-------------|-----------------|------------------|
| Resource                            | Wood-framed | Aluminum-framed | Available Amount |
| Glass                               | 6           | 8               | 48               |
| Aluminum                            | 0           | 1               | 4                |
| Wood                                | 1           | 0               | 6                |
| <b>Unit Profit</b>                  | \$180       | \$90            |                  |

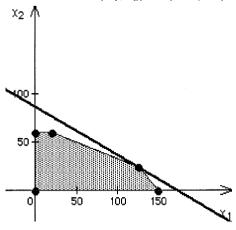
(b) m aximize 
$$P = 180W + 90A$$
 subject to 
$$6W + 8A \le 48$$
 
$$W \le 6$$
 
$$A \le 4$$
 
$$W, A \ge 0$$

(c) Optimal Solution:  $(W, A) = (x_1^*, x_2^*) = (6, 1.5)$  and  $P^* = 1215$ 



(d) From Sensitivity Analysis in IOR Tutorial, the allowable range f or the prof it per wood-framed window is between 67.5 and infin ity. As long as all the other parameters are fixed and the profit per wood-framed window is larger than \$67.5, the solution found in (c) stays optimal. Hence, when it is \$120 instead of \$180, it is still optimal to produce 6 wood-framed and 1.5 aluminum-framed windows and this results in a total profit of \$855. However, when it is decreased to \$60, the optimal solution is to make 2.67 wood-framed and 4 aluminum-framed windows. The total profit in this case is \$520.

(e) m aximize 
$$P=180W+90A$$
 subject to 
$$6W+8A \leq 48$$
 
$$W \leq 5$$
 
$$A \leq 4$$
 
$$W,A \geq 0$$

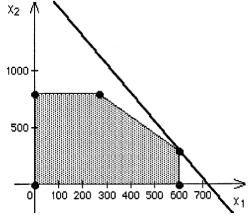

The optimal production schedule consists of 5 wood-framed and 2.25 aluminum-framed windows, with a total profit of \$1102.5.

#### 3.1-8.

(a) Let  $x_1$  be the number of units of product 1 to produce and  $x_2$  be the number of units of product 2 to produce. Then the problem can be formulated as follows:

ma ximize 
$$P=x_1+2x_2$$
 subject to  $x_1+3x_2\leq 200$   $2x_1+2x_2\leq 300$   $x_2\leq 60$   $x_1,x_2\geq 0$ 

(b) Optimal Solution:  $(x_1^*, x_2^*) = (125, 25)$  and  $P^* = 175$ 

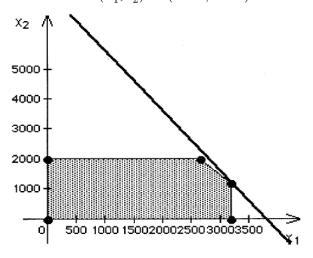



3.1-9.

(a) Let  $x_1$  be the number of units on special risk insurance and  $x_2$  be the number of units on mortgages.

$$\begin{array}{ll} \text{maximize} & z = 5x_1 + 2x_2 \\ \text{subject to} & 3x_1 + 2x_2 \leq 2400 \\ & x_2 \leq 800 \\ & 2x_1 & \leq 1200 \\ & x_1 \geq 0, x_2 \geq 0 \end{array}$$

(b) Optimal Solution:  $(x_1^*, x_2^*) = (600, 300)$  and  $Z^* = 3600$ 




(c) The relevant two equations are  $3x_1+2x_2=2400$  and  $2x_1=1200$ , so  $x_1=600$  and  $x_2=\frac{1}{2}(2400-3x_1)=300$ ,  $z=5x_1+2x_2=3600$ 

## 3.1-10.

(a) m aximize 
$$P=0.8H+0.3B$$
 subject to 
$$0.1B\leq 200$$
 
$$0.25H\leq 800$$
 
$$3H+2B\leq 12,000$$
 
$$H,B\geq 0$$

(b) Optimal Solution:  $(x_1^*, x_2^*) = (3200, 1200)$  and  $P^* = 2920$ 



#### 3.1-11.

(a) Let  $x_i$  be the number of units of product i produced for i = 1, 2, 3.

$$\begin{array}{lll} \text{maximize} & Z = 50x_1 + 20x_2 + 25x_3 \\ \text{subject to} & 9x_1 + & 3x_2 + 5x_3 \leq 500 \\ & 5x_1 + & 4x_2 & \leq 350 \\ & 3x_1 & + 2x_3 \leq 150 \\ & & x_3 \leq 20 \\ & & x_1, x_2, x_3 \geq 0 \end{array}$$

(b)

Solve Automatically by the Simplex Method:

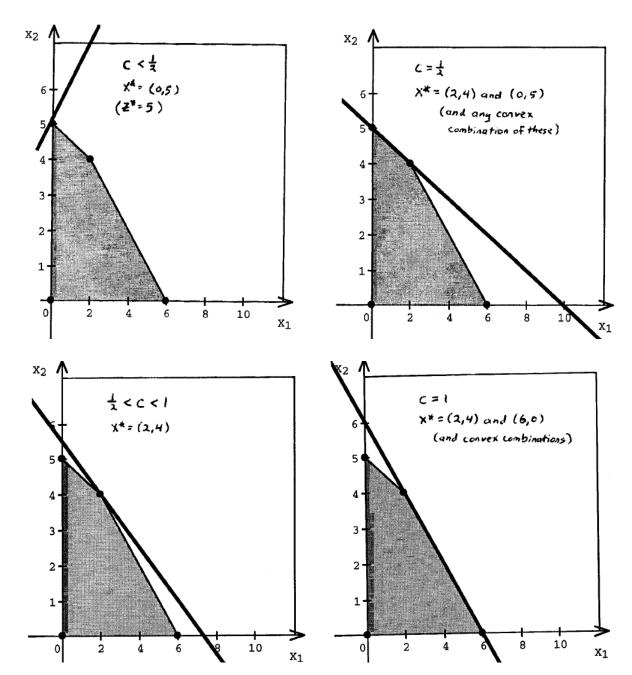
#### Optimal Solution

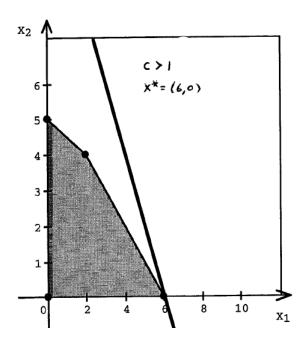
Value of the Objective Function: Z = 2904.7619

| Variable       | Value   |
|----------------|---------|
| x <sub>1</sub> | 26.1905 |
| $x_2$          | 54.7619 |
| хз             | 20      |

| Constraint | Slack or<br>Surplus | Shadow<br>Price |
|------------|---------------------|-----------------|
| 1          | 0                   | 4.7619          |
| 2          | 0                   | 1.42857         |
| 3          | 31.4286             | 0               |
| 4          | 0                   | 1.19048         |

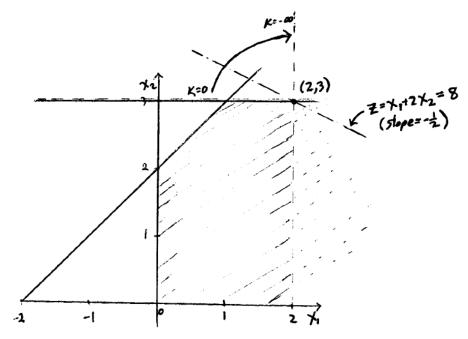
#### Sensitivity Analysis


Objective Function Coefficient


|         | Allowable Range |         |  |
|---------|-----------------|---------|--|
| Current | To Stay Optimal |         |  |
| Value   | Minimum         | Maximum |  |
| 50      | 25              | 51.25   |  |
| 20      | 19              | 40      |  |
| 25      | 23.8095         | + ~     |  |

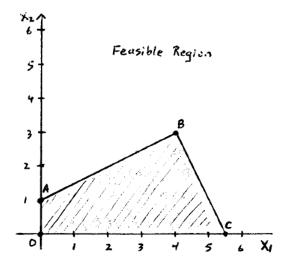
Right Hand Sides

| Current | Allowable Range<br>To Stay Feasible |         |  |
|---------|-------------------------------------|---------|--|
| Value   | Minimum                             | Maximum |  |
| 500     | 362.5                               | 555     |  |
| 350     | 276.667                             | 533.333 |  |
| 150     | 118.571                             | +∞      |  |
| 20      | 0                                   | 47.5    |  |









## 3.1-13.

First note that (2,3) satisfies the three constraints, i.e., (2,3) is always f easible for any value of k. Moreover, the third constraint is always binding at (2,3),  $kx_1 + x_2 = 2k + 3$ . To check if (2,3) is optimal, observe that changing k simply rotates the line that always passes through (2,3). Rewriting this equation as  $x_2 = -kx_1 + (2k+3)$ , we see that the slope of the line is -k, and therefore, the slope ranges from 0 to  $-\infty$ .



As we can see, (2,3) is optimal as long as the slope of the third constraint is less than the slope of the objective line, which is  $-\frac{1}{2}$ . If  $k < \frac{1}{2}$ , then we can increase the objective by traveling along the third constraint to the point  $(2+\frac{3}{k},0)$ , which has an objective value of  $2+\frac{3}{k}>8$  when  $k<\frac{1}{2}$ . For  $k\geq\frac{1}{2}$ , (2,3) is optimal.

## 3.1-14.



Case 1:  $c_2 = 0$  (vertical objective line)

If  $c_1 > 0$ , the objective value increases as  $x_1$  increases, so  $x^* = (\frac{11}{2}, 0)$ , point C.

If  $c_1 < 0$ , the opposite is true so that all the points on the line from (0,0) to (0,1), line  $\overline{OA}$ , are optimal.

If  $c_1 = 0$ , the objective function is  $0x_1 + 0x_2 = 0$  and every feasible point is optimal.

Case 2:  $c_2 > 0$  (objective line with slope  $-\frac{c_1}{c_2}$ )

If 
$$-\frac{c_1}{c_2} > \frac{1}{2} \ x^* = (0, 1)$$
, point A.

If 
$$-\frac{c_1}{c_2} < -2 \ x^* = (\frac{11}{2}, 0)$$
, point  $C$ .

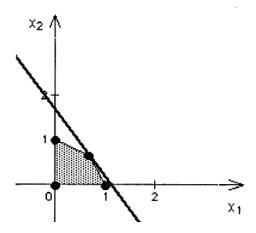
If 
$$\frac{1}{2} > -\frac{c_1}{c_2} > -2 \ x^* = (4,3)$$
, point  $B$ .

If  $-\frac{c_1}{c_2} = \frac{1}{2}$ , any point on the line  $\overline{AB}$  is optimal. Similarly, if  $-\frac{c_1}{c_2} = -2$ , any point on the line  $\overline{BC}$  is optimal.

<u>Case 3:</u>  $c_2 < 0$  (objective line with slope  $-\frac{c_1}{c_2}$ , objective value increases as the line is shifted down)

If 
$$-\frac{c_1}{c_2} > 0$$
, i.e.,  $c_1 > 0$ ,  $x^* = (\frac{11}{2}, 0)$ , point  $C$ .

If 
$$-\frac{c_1}{c_2} < 0$$
, i.e.,  $c_1 < 0$ ,  $x^* = (0,0)$ , point  $O$ .


If  $-\frac{c_1}{c_2} = 0$ , i.e.,  $c_1 = 0$ ,  $x^*$  is any point on the line  $\overline{OC}$ .

# 3.2-1.

(a) m aximize 
$$P = 3A + 2B$$

subject to 
$$2A + B \le 2$$
$$A + 2B \le 2$$
$$3A + 3B \le 4$$
$$A, B > 0$$

(b) Optimal Solution:  $(A, B) = (x_1^*, x_2^*) = (2/3, 2/3)$  and  $P^* = 3.33$ 

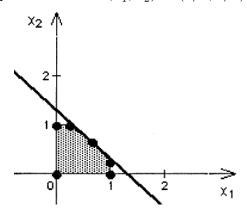


(c) We have to solve 2A + B = 2 and A + 2B = 2. By subtracting the second equation from the first one, we obtain A - B = 0, so A = B. Plugging this in the first equation, we get 2 = 2A + B = 3A, hence A = B = 2/3.

# 3.2-2.

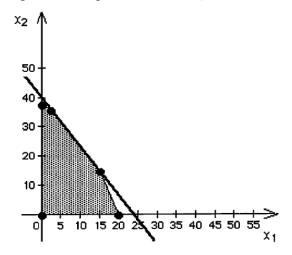
- (a) TRUE (e.g., maximize  $z = -x_1 + 4x_2$ )
- (b) TRUE (e.g., maximize  $z = -x_1 + 3x_2$ )
- (c) FALSE (e.g., maximize  $z = -x_1 x_2$ )

# 3.2-3.

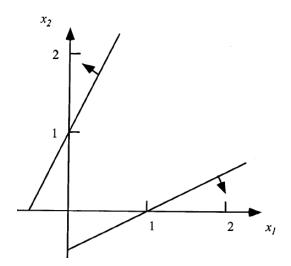

(a) As in the W yndor Glass Co. problem , we want to find the optim al levels of two activities that compete for limited resources. Let  $x_1$  and  $x_2$  be the fraction purchased of the partnership in the first and second friends venture respectively.

|                                | Resource Usage | per Unit of Activity |                  |
|--------------------------------|----------------|----------------------|------------------|
| Resource                       | 1              | 2                    | Available Amount |
| Fraction of partnership in 1st | 1              | 0                    | 1                |
| Fraction of partnership in 2nd | 0              | 1                    | 1                |
| Money                          | \$5000         | \$4000               | \$6000           |
| Summer work hours              | 400            | 500                  | 600              |
| Unit Profit                    | \$4500         | \$4500               |                  |

(b) maximize 
$$P = 4500x_1 + 4500x_2$$
  
subject to  $x_1$ 

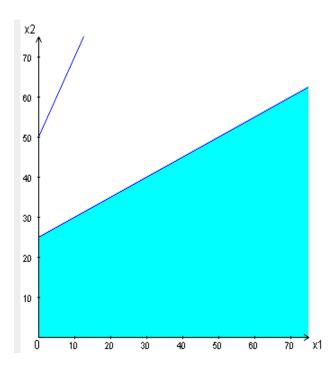

$$\begin{array}{rcl}
 x_1 & \leq 1 \\
 x_2 \leq 1 \\
 5000x_1 + 4000x_2 \leq 6000 \\
 400x_1 + 500x_2 \leq 600 \\
 x_1, x_2 \geq 0
 \end{array}$$

(c) Optimal Solution:  $(x_1^*, x_2^*) = (2/3, 2/3)$  and  $P^* = 6000$ 

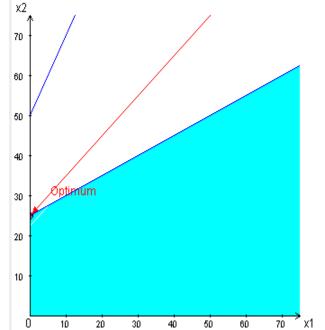



# 3.2-4.

Optimal Solutions: (  $x_1^*,x_2^*$ ) = (15,15), (2.5,35.833) and all points lying on the line connecting these two points,  $Z^*=12,000$ 




# 3.2-5.




3.2-6.

(a)



(b) Yes. Optimal solution:  $(x_1^*, x_2^*) = (0, 25)$  and  $Z^* = 25$ 



- (c) No. The objective function value rises as the objective line is slid to the right and since this can be done forever, there is no optimal solution.
- (d) No, if there is no optim al solution even though there are feasible solutions, it m eans that the objective value can be made arbitrarily large. Such a case may arise if the data of the problem are not accurately determ ined. The objective coefficients m ay be chosen incorrectly or one or more constraints might have been ignored.

#### 3.3-1.

<u>Proportionality:</u> It is fair to assume that the amount of work and money spent and the profit earned are directly proportional to the fraction of partnership purchased in either venture.

<u>Additivity:</u> The profit as well as time and money requirements for one venture should not affect neither the profit nor time and money requirements of the other venture. This assumption is reasonably satisfied.

<u>Divisibility</u>: Because both friends will allow purchase of any fraction of a full partnership, divisibility is a reasonable assumption.

<u>Certainty:</u> Because we do not know how accurate the profit estimates are, this is a m ore doubtful assumption. Sensitivity analysis should be done to take this into account.

#### 3.3-2.

<u>Proportionality:</u> If either variable is fixed, the objective value grows proportionally to the increase in the other variable, so proportionality is reasonable.

Additivity: It is not a reasonable assumption, since the activities interact with each other. For example, the objective value at (1,1) is not equal to the sum of the objective values at (0,1) and (1,0)

<u>Divisibility:</u> It is not justified, since activity levels are not allowed to be fractional.

<u>Certainty:</u> It is reasonable, since the data provided is accurate.

#### 3.4-1.

In this study, linear program ming is used to improve prostate cancer treatments. The treatment planning problem is form ulated as an MIP problem. The variables consist of binary variables that represent whether seed s were placed in a location or not and the continuous variables that denote the deviation of received dose from desired dose. The constraints involve the bounds on the dose to each anatomical structure and various physical constraints. Two models were studied. The first model aims at finding the maximum feasible subsystem with the binary variables while the second one minimizes a weighted sum of the dose deviations with the continuous variables.

With the new system, hundreds of millions of dollars are saved and treatment outcomes have been more reliable. The side effects of the treatment are considerably reduced and as a result of this, postoperation costs decreased. Since planning can now be done just before the operation, pretreatment costs decreased as well. The number of seeds required is reduced, so is the cost of procuring them. Both the quality of care and the quality of life after the operation are improved. The automated computerized system significantly eliminates the variability in quality. Moreove r, the speed of the system allows the clinicians to efficiently handle disruptions.

#### 3.4-2.

United Airlines used linear program ming approach for scheduling. The purpose of this study was "to determine the needs for increased manpower, to identify excess manpower for reallocation, to reduce the time required for preparing schedules, to make manpower allocation more day- and time-sensitive, and to quantife yethe costs associated with

scheduling" [p. 42]. The new system consisted of a mixed integer linear program ming model, a continuous linear program ming model, a heuristic rounding routine and report writer, and a network assignment model. The mixed integer LP model determines the times at which shifts can start. These are inputs to the continuous LP model, which, in turn, returns monthly schedules that minimize the labor costs. The constraints include employee and operating preferences. The solution is then rounded heuristically to obtain the final schedule.

"Benefits it has provided include significan t labor cost savings, im proved custom er service, im proved em ployee schedules, and quantified m anpower planning and evaluation" [p. 48]. As a consequence of this, the revenues increased. The yearly savings in direct salary and benefit costs tota 1 to \$6 m illion. "Unquantified capital benefits include additional revenue generated by improved service, benefits from the use of SMPS in contract negotiations, savings from reduced support staff requirem ents, savings from reduced manual scheduling efforts, cost reductions from additional smaller work groups, and reduced training requirements" [p. 48].

#### 3.4-3.

(a) <u>Proportionality:</u> OK, since beam effects on ti ssue types are proportional to beam strength.

Additivity: OK, since effects from multiple beams are additive.

<u>Divisibility:</u> OK, since beam strength can be fractional.

<u>Certainty:</u> Due to the complicated analysis required to estimate the data about radiation absorption in different tissue types, sensitivity analysis should be employed.

(b) Proportionality: OK, provided there is no setup cost associated with planting a crop.

Additivity: OK, as long as crops do not interact.

<u>Divisibility</u>: OK, since acres are divisible.

Certainty: OK, since the data can be accurately obtained.

(c) Proportionality: OK, setup costs were considered.

Additivity: OK, since there is no interaction.

Divisibility: OK, since methods can be assigned fractional levels.

<u>Certainty:</u> Data is hard to estimate, it could easily be uncertain, so sensitivity analysis is useful.

#### 3.4-4.

(a) Reclaiming solid wastes

<u>Proportionality:</u> The am algamation and treatm ent costs are unlikely to be proportional. They are more likely to involve setup costs, e.g., treating 1,000 lbs. of material does not cost the same as treating 10 lbs. of material 100 times.

<u>Additivity:</u> OK, although it is possible to have so me interaction between treatm ents of materials, e.g., if A is treated after B, the machines do not need to be cleaned out.

Divisibility: OK, unless materials can only be bought or sold in batches, say, of 100 lbs.

<u>Certainty:</u> The selling/buying prices m ay change. The treatment and amalgamation costs are, most likely, crude estimates and may change.

# (b) Personnel scheduling

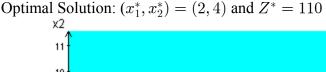
<u>Proportionality:</u> OK, although som e costs need not be proportional to the num ber of agents hired, e.g., benefits and working space.

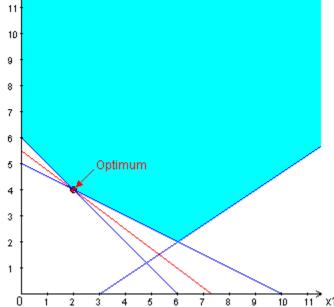
Additivity: OK, although some costs may not be additive.

<u>Divisibility:</u> One cannot hire a fraction of an agent.

<u>Certainty:</u> The m inimum number of agents needed m ay be uncertain. For exam ple, 45 agents may be sufficient rather than 48 for a nominal fee. Another uncertainty is whether an agent does the same amount of work in every shift.

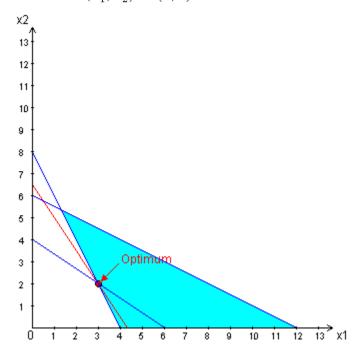
# (c) Distributing goods through a distribution network


<u>Proportionality:</u> There is probably a setup cost fo r delivery, e.g., delivering 50 units one by one does probably cost much more than delivering all together at once.


<u>Additivity:</u> OK, although it is possible to have two routes that can be comprovide lower costs, e.g.,  $x_{\text{F2-DC}} = x_{\text{DC-W2}} = 50$ , but the truck may be able to deliver 50 units directly from F2 to W 2 without stopping at DC and hence saving somen oney. Another question is whether F1 and F2 produce equivalent units.

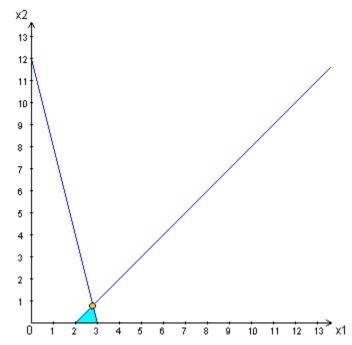
Divisibility: One cannot deliver a fraction of a unit.

<u>Certainty:</u> The shipping costs are probably approximations and are subject to change. The amounts produced m ay change as well.. Ev en the capacities m ay depend on available daily trucking force, weather and various ot her factors. Sensitivity analysis should be done to see the effects of uncertainty.


3.4-5.





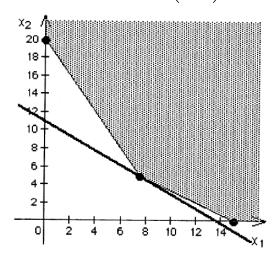

3.4-6.

Optimal Solution:  $(x_1^*, x_2^*) = (3, 2)$  and  $Z^* = 13$ 

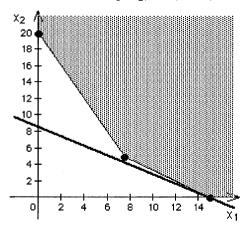


3.4-7.

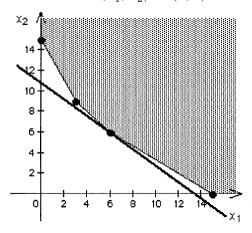
The feasible region can be represented as follows:




Given  $c_2=2>0$ , various cases that may arise are summarized in the following table:


| $c_1$           | slope = $-\frac{c_1}{c_2}$   | optimal solution $(x_1^*, x_2^*)$                                                                  |
|-----------------|------------------------------|----------------------------------------------------------------------------------------------------|
| $c_1 < -2$      | $1 < -\frac{c_1}{c_2}$       | (2,0)                                                                                              |
| $c_1 = -2$      | $-\frac{c_1}{c_2} = 1$       | $(2,0), \left(\frac{14}{5},\frac{4}{5}\right)$ and all points on the line connecting these two     |
| $-2 < c_1 < 24$ | $-12 < -\frac{c_1}{c_2} < 1$ | $\left(\frac{14}{5},\frac{4}{5}\right)$                                                            |
| $c_1 = 24$      | $-\frac{c_1}{c_2} = -12$     | $\left(\frac{14}{5}, \frac{4}{5}\right)$ , $(3,0)$ and all points on the line connecting these two |
| $24 < c_1$      | $-\frac{c_1}{c_2} < -12$     | (3,0)                                                                                              |

# 3.4-8.

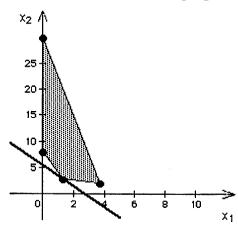

(a) Optimal Solution:  $(x_1^*, x_2^*) = \left(7\frac{1}{2}, 5\right)$  and  $C^* = 550$ 



(b) Optimal Solution:  $(x_1^*, x_2^*) = (15, 0)$  and  $C^* = 600$ 



(c) Optimal Solution:  $(x_1^*, x_2^*) = (6, 6)$  and  $C^* = 540$ 




# 3.4-9.

(a) m inimize C = 4S + 2P

subject to 
$$5S + 15P \ge 50 \\ 20S + 5P \ge 40 \\ 15S + 2P \le 60 \\ S, P \ge 0$$

(b) Optimal Solution:  $(S, P) = (x_1^*, x_2^*) = (1.3, 2.9)$  and  $C^* = 10.91$ 



(c)

| ł            | Contribution | on Per Unit |          |   |       |  |  |
|--------------|--------------|-------------|----------|---|-------|--|--|
|              | Steak        | Potato      | Totals   |   | Level |  |  |
| Carbohydrate | 5            | 15          | 50       | ≥ | 50    |  |  |
| Protein      | 20           | 5           | 40       | ≥ | 40    |  |  |
| Fat          | 15           | 2           | 24.91    | ≤ | 60    |  |  |
| Unit Cost    | 4            | 2           | \$ 10.91 |   |       |  |  |
| Solution     | 1.3          | 2.9         |          |   |       |  |  |

# 3.4-10.

(a) Let  $x_{ij}$  be the amount of space leased for  $j=1,\ldots,6-i$  months in month  $i=1,\ldots,5$ .

mi nimize 
$$C = 650(x_{11} + x_{21} + x_{31} + x_{41} + x_{51}) \\ + 1000(x_{12} + x_{22} + x_{32} + x_{42}) + 1350(x_{13} + x_{23} + x_{33}) \\ + 1600(x_{14} + x_{24}) + 1900x_{15}$$
 subject to 
$$x_{11} + x_{12} + x_{13} + x_{14} + x_{15} \geq 30,000 \\ x_{12} + x_{13} + x_{14} + x_{15} + x_{21} + x_{22} + x_{23} + x_{24} \geq 20,000 \\ x_{13} + x_{14} + x_{15} + x_{22} + x_{23} + x_{24} + x_{31} + x_{32} + x_{33} \geq 40,000 \\ x_{14} + x_{15} + x_{23} + x_{24} + x_{32} + x_{33} + x_{41} + x_{42} \geq 10,000 \\ x_{15} + x_{24} + x_{33} + x_{42} + x_{51} \geq 50,000 \\ x_{ij} \geq 0, j = 1, \dots, 6 - i \text{ and } i = 1, \dots, 5$$

(b)

|   | Α                | В      | С        | Ď        | E           | F            | G      | Н        | l l      |
|---|------------------|--------|----------|----------|-------------|--------------|--------|----------|----------|
| 1 |                  |        |          | Contrib  | ution Towar | d Required / | Amount |          |          |
| 2 | Month            | 1-1    | 1-2      | 1-3      | 1-4         | 1-5          | 2-1    | 2-2      | 2-3      |
| 3 | 1                | 1      | 1        | 1        | 1           | 1            |        |          |          |
| 4 | 2                |        | 1        | 1        | 1           | 1            | 1      | 1        | 1        |
| 5 | 3                |        |          | 1        | 1           | 1            |        | 1        | 1        |
| 6 | 4                |        |          |          | 1           | 1            |        |          | 1        |
| 7 | 5                |        |          |          |             | 1            |        |          |          |
| 8 | <b>Unit Cost</b> | \$ 650 | \$ 1,000 | \$ 1,350 | \$ 1,600    | \$ 1,900     | \$ 650 | \$ 1,000 | \$ 1,350 |
| 9 | Solution         | 0      | 0        | 0        | 0           | 30000        | 0      | 0        | 0        |

|   | J        | К      | L             | M         | N        | 0        | Р      | Q        | R | S         |
|---|----------|--------|---------------|-----------|----------|----------|--------|----------|---|-----------|
| 1 |          | Co     | ntribution To | ward Requ | ired Amo | unt      |        |          |   | Resource  |
| 2 | 2-4      | 3-1    | 3-2           | 3-3       | 4-1      | 4-2      | 5-1    | Totals   |   | Available |
| 3 |          |        | ,             |           |          |          |        | 30000    | 2 | 30000     |
| 4 | 1        |        |               |           |          |          | - 1    | 30000    | ≥ | 20000     |
| 5 | 1        | 1      | 1             | 1         |          |          | 1      | 40000    | ≥ | 40000     |
| 6 | 1        |        | 1             | 1         | 1        | 1        |        | 30000    | 2 | 10000     |
| 7 | 1        |        |               | 1         |          | 1        | 1      | 50000    | 2 | 50000     |
| 8 | \$ 1,600 | \$ 650 | \$ 1,000      | \$ 1,350  | \$ 650   | \$ 1,000 | \$ 650 | 76499994 |   |           |
| 9 | 0        | 10000  | 0             | 0         | 0        | 0        | 20000  |          |   |           |

Data cells: B3:P8 and S3:S7 Changing cells: B9:P9

Target cell: Q8
Output cells: Q3:Q7

|   | Q                        |
|---|--------------------------|
| 3 | =SUMPRODUCT(B3:P3,B9:P9) |
| 4 | =SUMPRODUCT(B4:P4,B9:P9) |
| 5 | =SUMPRODUCT(B5:P5,B9:P9) |
| 6 | =SUMPRODUCT(B6:P6,B9:P9) |
| 7 | =SUMPRODUCT(B7:P7,B9:P9) |
| 8 | =SUMPRODUCT(B8:P8,B9:P9) |

## 3.4-11.

(a) Let  $f_1$  = number of full-time consultants working the morning shift (8 a.m.-4 p.m.),  $f_2$  = number of full-time consultants working the afternoon shift (Noon-8 p.m.),  $f_3$  = number of full-time consultants working the evening shift (4 p.m.-midnight),  $p_1$  = number of part-time consultants working the first shift (8 a.m.-noon),  $p_2$  = number of part-time consultants working the second shift (Noon-4 p.m.),  $p_3$  = number of part-time consultants working the third shift (4 p.m.-8 p.m.),  $p_4$  = number of part-time consultants working the fourth shift (8 p.m.-midnight).  $C = (40 \times 8)(f_1 + f_2 + f_3) + (30 \times 4)(p_1 + p_2 + p_3 + p_4)$ nimize mi subject to  $f_1 + p_1 \ge 4$  $f_1 + f_2 + p_2 \ge 8$  $f_2 + f_3 + p_3 \ge 10$  $f_3 + p_4 \ge 6$  $f_1 \geq 2p_1$  $f_1 + f_2 \ge 2p_2$  $f_2 + f_3 \ge 2p_3$  $f_3 \ge 2p_4$  $f_1, f_2, f_3, p_1, p_2, p_3, p_4 \geq 0$ 

(b)

|                |        |        |       |        |        |        |       |         |   | Minimum  |
|----------------|--------|--------|-------|--------|--------|--------|-------|---------|---|----------|
| Time of Day    | FT1    | FT2    | FT3   | PT1    | PT2    | PT3    | PT4   | Total   |   | Required |
| 8 a.m Noon     | 1      | 0      | 0     | 1      | 0      | 0      | 0     | 4       | 2 | 4        |
|                | 1      | 0      | 0     | -2     | 0      | 0      | 0     | 0       | 2 | 0        |
| Noon - 4 p.m.  | 1      | 1      | 0     | 0      | 1      | 0      | 0     | 8       | 2 | 8        |
|                | 1      | 1      | 0     | 0      | -2     | 0      | 0     | 0       | 2 | 0        |
| 4 p.m 8 p.m.   | 0      | 1      | 1     | 0      | 0      | 1      | 0     | 10      | 2 | 10       |
|                | 0      | 1      | 1     | 0      | 0      | -2     | 0     | 0       | 2 | 0        |
| 8 p.m Midnight | 0      | 0      | 1     | 0      | 0      | 0      | 1     | 6       | 2 | 6        |
|                | 0      | 0      | 1     | 0      | 0      | 0      | -2    | 0       | 2 | 0        |
| Unit Cost      | \$320  | \$320  | \$320 | \$120  | \$120  | \$120  | \$120 | \$4,107 |   |          |
| Solution       | 2.6667 | 2.6667 | 4     | 1.3333 | 2.6667 | 3.3333 | 2     |         |   |          |

Note that the optim al solution has fractional components. If the number of consultants have to be integer, then the problem is an integer programming problem and the solution is (3, 3, 4, 1, 2, 3, 2) with cost \$4, 160.

#### 3.4-12.

(a) Let  $x_{ij}$  be the number of units shipped from factory i = 1, 2 to customer j = 1, 2, 3.

minimize 
$$C = 600x_{11} + 800x_{12} + 700x_{13} + 400x_{21} + 900x_{22} + 600x_{23}$$
 subject to 
$$\begin{aligned} x_{11} + x_{12} + x_{13} &= 400 \\ x_{21} + x_{22} + x_{23} &= 500 \\ x_{11} + x_{21} &= 300 \\ x_{12} + x_{22} &= 200 \\ x_{13} + x_{23} &= 400 \end{aligned}$$
 and 
$$\begin{aligned} x_{ij} \geq 0, i = 1, 2 \text{ and } j = 1, 2, 3 \end{aligned}$$

(b)

|            |       |       |       |       |       |       |           |   | Required |
|------------|-------|-------|-------|-------|-------|-------|-----------|---|----------|
|            | F1-C1 | F1-C2 | F1-C3 | F2-C1 | F2-C2 | F2-C3 | Total     |   | Amount   |
| Factory 1  | 1     | 1     | 1     | 0     | 0     | 0     | 400       | = | 400      |
| Factory 2  | 0     | 0     | 0     | 1     | 1     | 1     | 500       | = | 500      |
| Customer 1 | 1     | 0     | 0     | 1     | 0     | 0     | 300       | = | 300      |
| Customer 2 | 0     | 1     | 0     | 0     | 1     | 0     | 200       | = | 200      |
| Customer 3 | 0     | 0     | 1     | 0     | 0     | 1     | 400       | = | 400      |
| Unit Cost  | \$600 | \$800 | \$700 | \$400 | \$900 | \$600 | \$540,000 |   |          |
| Solution   | 0     | 200   | 200   | 300   | 0     | 200   |           |   |          |

# 3.4-13.

(a) 
$$A_1 + B_1 + R_1 = 60,000$$

$$A_2 + B_2 + C_2 + R_2 = R_1$$

$$A_3 + B_3 + R_3 = R_2 + 1.40A_1$$

$$A_4 + R_4 = R_3 + 1.40A_2 + 1.70B_1$$

$$D_5 + R_5 = R_4 + 1.40A_3 + 1.70B_2$$

(b) maximize 
$$P=1.40A_4+1.70B_3+1.90C_2+1.30D_5+R_5$$
  
subject to  $A_1+B_1+R_1=60,000$   
 $A_2+B_2+C_2-R_1+R_2=0$   
 $-1.40A_1+A_3+B_3-R_2+R_3=0$   
 $-1.40A_2+A_4-1.70B_1-R_3+R_4=0$   
 $-1.40A_3-1.70B_2+D_5-R_4+R_5=0$   
and  $A$   $t, B_t, C_t, D_t, R_t \geq 0$ 

(c)

|             |       |      | Con   | itributi | on Tow | ard Re | quired    | Amo | unt Per U | nit          |               |              |                |    |              |   |          |
|-------------|-------|------|-------|----------|--------|--------|-----------|-----|-----------|--------------|---------------|--------------|----------------|----|--------------|---|----------|
|             |       |      |       | in       | vestme | nt     |           |     |           |              | Re            | main         | der            |    |              |   | Required |
| Year        | A1    | A2   | A3    | A4       | B1     | B2     | <b>B3</b> | C2  | D5        | R1           | R2            | R3           | R4             | R5 | Totals       |   | Amount   |
| 1           | 1     | 0    | 0     | 0        | 1      | 0      | 0         | 0   | 0         | 1            | 0             | 0            | 0              | 0  | 60000        |   | 60000    |
| 2           | 0     | 1    | 0     | 0        | 0      | 1      | 0         | 1   | 0         | -1           | 1             | ō            | ō              | 0  | 0            | _ | 0        |
| 3           | -1.4  | 0    | 1     | 0        | 0      | 0      | 1         | 0   | 0         | 0            | -1            | 1            | ō              | اة | Ô            | _ | Õ        |
| 4           | 0     | -1.4 | 0     | 1        | -1.7   | 0      | 0         | 0   | Ó         | 0            | 0             | -1           | 1              | ŏ  | -1.33577E-12 | - | ŏ        |
| 5           | 0     | 0    | -1.4  | 0        | 0      | -1.7   | 0         | 0   | 1         | ō            | ō             | o            | -1             | ĭ  | 1.45519E-11  | _ | Õ        |
| Unit Profit | 0     | 0    | 0     | 1.4      | 0      | 0      | 1.7       | 1.9 | 1.3       | <del>-</del> | <del>~~</del> | <del>_</del> | <del>- i</del> |    |              | _ |          |
| Solution    | 60000 | 0    | 84000 | 0        | 0      | ň      |           |     | 447604    | ٠.           | Š             | ž            | ž              | ۱. | \$ 152,880   |   |          |

# 3.4-14.

(a) Let  $x_i$  be the amount of Alloy i used for i = 1, 2, 3, 4, 5.

mi nimize 
$$C = 77x_1 + 70x_2 + 88x_3 + 84x_4 + 94x_5$$
 subject to 
$$60x_1 + 25x_2 + 45x_3 + 20x_4 + 50x_5 = 40$$
 
$$10x_1 + 15x_2 + 45x_3 + 50x_4 + 40x_5 = 35$$
 
$$30x_1 + 60x_2 + 10x_3 + 30x_4 + 10x_5 = 25$$
 
$$x_1 + x_2 + x_3 + x_4 + x_5 = 1$$
 and 
$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

(b)

|             | Co      | ntribution 1 | oward Red | uired Amo | unt     |         |   | Required |
|-------------|---------|--------------|-----------|-----------|---------|---------|---|----------|
| Requirement | Alloy 1 | Alloy 2      | Alloy 3   | Alloy 4   | Alloy 5 | Total   |   | Amount   |
| % tin       | 60      | 25           | 45        | 20        | 50      | 40      | = | 40       |
| % zinc      | 10      | 15           | 45        | 50        | 45      | 35      | = | 35       |
| % lead      | 30      | 60           | 10        | 30        | 10      | 25      | = | 25       |
| %total      | 1       | 1            | 1         | 1         | 1       | 1       | = | 1        |
| Unit Cost   | \$77    | \$70         | \$88      | \$84      | \$94    | \$82.43 |   |          |
| Solution    | 0.0435  | 0.2826       | 0.6739    | 0         | 0       |         |   |          |

## 3.4-15.

(a) Let  $x_{ij}$  be the number of tons of cargo type i = 1, 2, 3, 4 stowed in compartment j = F (front), C (center), B (back).

$$\begin{array}{lll} \text{ma} & \text{ximize} & P = 320(x_{1F} + x_{1C} + x_{1B}) + 400(x_{2F} + x_{2C} + x_{2B}) \\ & + 360(x_{3F} + x_{3C} + x_{3B}) + 290(x_{4F} + x_{4C} + x_{4B}) \\ \text{subject} & \text{to} & x_{1F} + x_{2F} + x_{3F} + x_{4F} \leq 12 \\ & x_{1C} + x_{2C} + x_{3C} + x_{4C} \leq 18 \\ & x_{1B} + x_{2B} + x_{3B} + x_{4B} \leq 10 \\ & x_{1F} + x_{1C} + x_{1B} \leq 20 \\ & x_{2F} + x_{2C} + x_{2B} \leq 16 \\ & x_{3F} + x_{3C} + x_{3B} \leq 25 \\ & x_{4F} + x_{4C} + x_{4B} \leq 13 \\ & 500x_{1F} + 700x_{2F} + 600x_{3F} + 400x_{4F} \leq 7,000 \\ & 500x_{1C} + 700x_{2C} + 600x_{3C} + 400x_{4C} \leq 9,000 \\ & 500x_{1B} + 700x_{2B} + 600x_{3B} + 400x_{4B} \leq 5,000 \\ & \frac{1}{12}(x_{1F} + x_{2F} + x_{3F} + x_{4F}) - \frac{1}{18}(x_{1C} + x_{2C} + x_{3C} + x_{4C}) = 0 \\ & \frac{1}{12}(x_{1F} + x_{2F} + x_{3F} + x_{4F}) - \frac{1}{10}(x_{1B} + x_{2B} + x_{3B} + x_{4B}) = 0 \\ & \text{and} & x_{1F}, x_{2F}, x_{3F}, x_{4F}, x_{1C}, x_{2C}, x_{3C}, x_{4C}, x_{1B}, x_{2B}, x_{3B}, x_{4B} \geq 0 \\ & \text{(b)} & \end{array}$$

|              |        | Hesource I  | Jsage H | er Unit of ba | ch Activity |       |        |         |      |         |        |      |          |    | Hesource  |
|--------------|--------|-------------|---------|---------------|-------------|-------|--------|---------|------|---------|--------|------|----------|----|-----------|
| Resource     | 1F     | 1C          | 1B      | 2F            | 2C          | 28    | 3F     | 3C      | 3B   | 4F      | 4C     | 4B   | Totals   |    | Available |
| Front Wt.    |        |             | -       |               |             |       | -      | 0       |      |         |        |      | 72       |    | 12        |
| Center Wt.   | 0      | 1           | ٥       | 0             | 1           | 0     | 0      | 1       | 0    | 0       | 1      | 0    | 18       | ≤  | 18        |
| Back Wt.     | 0      | 0           | 1       | 0             | 0           | 1     | 0      | 0       | 1    | 0       | 0      | 1    | 10       | ≤  | 10        |
| Cargo 1 Wt.  | 1      | 1           | 1       | 0             | 0           | 0     | 0      | 0       | 0    | 0       | 0      | 0    | 15       | ≤  | 20        |
| Cargo 2 Wt.  | 0      | 0           | 0       | 1             | 1           | 1     | 0      | 0       | 0    | 0       | 0      | 0    | 12       | s  | 16        |
| Cargo 3 Wt.  | 0      | 0           | 0       | 0             | 0           | 0     | 1      | 1       | 1    | 0       | 0      | 0    | ٥        | \$ | 25        |
| Cargo 4 Wt.  | 0      | 0           | 0       | 0             | 0           | 0     | 0      | 0       | 0    | 1       | 1      | 1    | 13       | ≤  | 13        |
| Space Front  | 500    | 0           | 0       | 700           | 0           | 0     | 600    | 0       | 0    | 400     | 0      | 0    | 7000     | ≤  | 7000      |
| Space Center | 0      | 500         | 0       | 0             | 700         | 0     | 0      | 600     | 0    | 0       | 400    | 0    | 9000     | ≤  | 8000      |
| Space Back   | 0      | 0           | 500     | 0             | 0           | 700   | 0      | 0       | 600  | 0       | 0      | 400  | 5000     | ≤  | 5000      |
|              |        | Contributio | n Towa  | rd Required / | Amount      |       |        |         |      |         |        |      | •        |    | Required  |
| Requirement  | 1F     | 1C          | 18      | 2F            | 2C          | 2B    | 3F     | 3C      | 3B   | 4F      | 4C     | 48   | Totals   |    | Amount    |
| ストェカレ        |        | -0.0556     | 0       | 0.0833        | -0.0556     | 0     | 0.0833 | -0.0556 | U    | 0.08333 | 0.0556 | -    | 0        |    |           |
| %F=%8        | 0.0833 | 0           | -0.1    | 0.0833        | 0           | -0.1  | 0.0833 | 0       | -0.1 | 0.0833  | 0      | -0.1 | 0        | =  | 0         |
| Unit Profit  | 320    | 320         | 320     | 400           | 400         | 400   | 360    | 360     | 360  | 290     | 290    | 290  | \$ 13,33 | 0  |           |
| Solution     | Õ      | 5           | 10      | 7.33333       |             | 0.000 | 0      | 0       | ő    | 4.66667 |        |      | 0,00     | _  |           |

## 3.4-16.

(a) Let  $x_{ij}$  be the num ber of hours operator i is assigned to work on day j for i = KC, DH, HB SC, KS, NK and j = M, Tu, W, Th, F.

(b)

|                    |      |      |      |       |       |      |       | ceUsa |      |      |       |      |      |      |      |       |      |      |       |          | Resource  |
|--------------------|------|------|------|-------|-------|------|-------|-------|------|------|-------|------|------|------|------|-------|------|------|-------|----------|-----------|
| Resource           | KC,M | KC,W | KC,F | DH,Tu | DH,Th | HB,M | HB,Tu | HB,W  | HB,F | SC,M | SC,Tu | SC,W | SC,F | KS,M | KS,W | KS,Th | NKTh | NK,F | Total |          | Available |
| KC Knowledge       | 1    | 1    | 1    |       |       |      |       |       |      |      |       |      |      |      |      |       |      |      | 9     | 2        | 8         |
| DH Knowledge       |      |      |      | 1     | 1     |      |       |       |      |      |       |      |      |      |      |       |      |      | 8     | 2        | 8         |
| HB Knowledge       |      |      |      |       |       | 1    | 1     | 1     | 1    |      |       |      |      |      |      |       |      |      | 19    | 2        | 8         |
| SC Knowledge       |      |      |      |       |       |      |       |       |      | 1    | 1     | 1    | 1    |      |      |       |      |      | 20    | 2        | 8         |
| KS Knowledge       |      |      |      |       |       |      |       |       |      |      |       |      |      | 1    | 1    | 1     |      |      | 7     | 2        | 7         |
| NK Knowledge       |      |      |      |       |       |      |       |       |      |      |       |      |      |      |      |       | 1    | 1    | 7     | 2        | 7         |
| Mon Hours          | 1    |      |      |       |       | 1    |       |       |      | 1    |       |      |      | 1    |      |       |      |      | 14    | 2        | 14        |
| Tues Hours         |      |      |      | 1     |       |      | 1     |       |      |      | 1     |      |      |      |      |       |      |      | 14    | 2        | 14        |
| Wed Hours          |      | 1    |      |       |       |      |       | 1     |      |      |       | 1    |      |      | 1    |       |      |      | 14    | 2        | 14        |
| Thurs Hours        |      |      |      |       | 1     |      |       |       |      |      |       |      |      |      |      | 1     | 1    |      | 14    | 2        | 14        |
| Fri Hours          |      |      | 1    |       |       |      |       |       | 1    |      |       |      | 1    |      |      |       |      | 1    | 14    | 2        | 14        |
| Availability KC,M  | 1    |      |      |       |       |      |       |       |      |      |       |      |      |      |      |       |      |      | 4     | s        | 6         |
| Availability KC,W  |      | 1    |      |       |       |      |       |       |      |      |       |      |      |      |      |       |      |      | 2     | ≤        | 6         |
| Availability KC,F  |      |      | 1    |       |       |      |       |       |      |      |       |      |      |      |      |       |      |      | 3     | ≤        | 6         |
| Availability DH,Tu |      |      |      | 1     |       |      |       |       |      |      |       |      |      |      |      |       |      |      | 2     | ≤        | 6         |
| Availability DH,Th |      |      |      |       | 1     |      |       |       |      |      |       |      |      |      |      |       |      |      | 6     | ≤        | 6         |
| Availability HB,M  |      |      |      |       |       | 1    |       |       |      |      |       |      |      |      |      |       |      |      | 4     | ≤        | 4         |
| Availability HB,Tu |      |      |      |       |       |      | 1     |       |      |      |       |      |      |      |      |       |      |      | 7     | ≤        | 8         |
| Availability HB,W  |      |      |      |       |       |      |       | 1     |      |      |       |      |      |      |      |       |      |      | 4     | ≤        | 4         |
| Availability HB,F  |      |      |      |       |       |      |       |       | 1    |      |       |      |      |      |      |       |      |      | 4     | ≤        | 4         |
| Availability SC,M  |      |      |      |       |       |      |       |       |      | 1    |       |      |      |      |      |       |      |      | 5     | s        | 5         |
| Availability SC,Tu |      |      |      |       |       |      |       |       |      |      | 1     |      |      |      |      |       |      |      | 5     | ≤        | 5         |
| Availability SC,W  |      |      |      |       |       |      |       |       |      |      |       | 1    |      |      |      |       |      |      | - 5   | ≤        | 5         |
| Availability SC,F  |      |      |      |       |       |      |       |       |      |      |       |      | 1    |      |      |       |      |      | - 5   | s.       | 5         |
| Availability KS, M |      |      |      |       |       |      |       |       |      |      |       |      |      | 1    |      |       |      |      | 1     | <b>S</b> | 3         |
| Availability KS,W  |      |      |      |       |       |      |       |       |      |      |       |      |      |      | 1    |       |      |      | 3     | ≤        | 3         |
| Availability KS,Th |      |      |      |       |       |      |       |       |      |      |       |      |      |      |      | 1     |      |      | 3     | s.       | 8         |
| Availability NK,Th |      |      |      |       |       |      |       |       |      |      |       |      |      |      |      |       | 1    |      | 5     | ≤        | 6         |
| Availability NK,F  |      |      |      |       |       |      |       |       |      |      |       |      |      |      |      |       |      | 1    | 2     | <        | 2         |
| Unit Cost          | \$25 | \$25 | \$25 | \$26  | \$26  | \$24 | \$24  | \$24  | \$24 | \$23 | \$23  | \$23 | \$23 | \$28 | \$28 | \$28  | \$30 | \$30 | 1756  |          |           |
| Solution           | 4    | 2    | 3    | 2     | 6     | 4    | 7     | 4     | 4    | 5    | 5     | 5    | 5    | 1    | 3    | 3     | 5    | 2    |       |          |           |

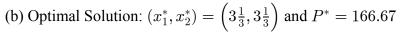
# **3.4-17.**

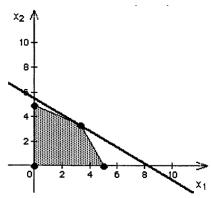
(a) Let B= slices of bread, P= tablespoons of peanut butter, S= tablespoons of strawberry jelly, G= graham crackers, M= cups of milk, and J= cups of juice.

```
\begin{array}{ll} \text{minimize} & C = 5B + 4P + 7S + 8G + 15M + 35J \\ \text{subject to} & 70B + 100P + 50S + 60G + 150M + 100J \geq 400 \\ & 70B + 100P + 50S + 60G + 150M + 100J \leq 600 \\ & 10B + 75P + 20G + 70M \leq 0.3(70B + 100P + 50S + 60G + 150M + 100J) \\ & 3S + 2M + 120J \geq 60 \\ & 3B + 4P + G + 8M + J \geq 12 \\ & B = 2 \\ & P \geq 2S \\ & M + J \geq 1 \\ \text{and} & B, P, S, G, M, J \geq 0 \end{array}
```

(b)

|              | Resource Usage Per Unit of Each Activity |      |       |          |      |       |       | Resource |            |
|--------------|------------------------------------------|------|-------|----------|------|-------|-------|----------|------------|
| Resource     | Bread                                    | PB   | Jelly | Crackers | Milk | Juice | Total |          | Av ailable |
| Min Calories | 70                                       | 100  | 50    | 60       | 150  | 100   | 400   | ≥        | 400        |
| Max Calories | 70                                       | 100  | 50    | 60       | 150  | 100   | 400   | ≤        | 600        |
| Fat          | -11                                      | 45   | -15   | 2        | 25   | -30   | 0     | ≤        | 0          |
| Vitamin C    | 0                                        | 0    | 3     | 0        | 2    | 120   | 60    | ≥        | 60         |
| Protein      | 3                                        | 4    | 0     | 1        | 8    | 1     | 13.95 | ≥        | 12         |
| Bread        | 1                                        | 0    | 0     | 0        | 0    | 0     | 2     | =        | 2          |
| PB&J         | 0                                        | 1    | -2    | 0        | 0    | 0     | 0     | ≥        | 0          |
| Liquid       | 0                                        | 0    | 0     | 0        | 1    | 1     | 1     | ≥        | 1          |
| Unit Cost    | 5                                        | 4    | 7     | 8        | 15   | 35    | 47.31 |          |            |
| Solution     | 2                                        | 0.57 | 0.29  | 1.04     | 0.52 | 0.48  |       |          |            |


## 3.5-1.


Upon facing problems about juice logistics, W elch's formulated the juice logistics model (JLM), which is "an application of LP — to a single-com modity network problem . The decision variables deal with the cost of transfers between plants, the cost of recipes, and carrying cost- all cost that are key to the common planning unit of tons" [p. 20]. The goal is to find the optimal grape juice quantities shipped to customers and transferred between plants over a 12-m onth horizon. The optim al quantities minimize the total cost, i.e., the sum of transportation, recipe and storage — costs. They satisfy balance equations, bounds on the ratio of grape juice sold, and — limits on total grape juice sold.

The JLM resulted in significant savings by preventing unprofitable decisions of the management. The savings in the first y ear of its im plementation were over \$130,000. Since the model can be run quickly, revising the decisions after observing the changes in the conditions is made easier. Thus, the flexibility of the system is improved. Moreover, the output helps the communication within the committee that is responsible for deciding on crop usage.

## 3.5-2.

(a) maximize 
$$P = 20x_1 + 30x_2$$
  
subject to  $2x_1 + x_2 \le 10$   
 $3x_1 + 3x_2 \le 20$   
 $2x_1 + 4x_2 \le 20$   
 $x_1, x_2 > 0$ 





$$(c) - (e)$$

| Resource                | Resource Usage Pe<br>Activity 1 | r Unit of Each Activity<br>Activity 2 | Totals    |   | Resource<br>Available |
|-------------------------|---------------------------------|---------------------------------------|-----------|---|-----------------------|
| 1                       | 2                               | 1                                     | 10        | ≤ | 10                    |
| 2                       | 3                               | 3                                     | 20        | ≤ | 20                    |
| 3                       | 2                               | 4                                     | 20        | ≤ | 20                    |
| Unit Profit<br>Solution | 20<br><b>3.333</b>              | 3 0<br><b>3.333</b>                   | \$ 166.67 |   |                       |

(d)

| $(x_1, x_2)$ | Feasible? | P          |
|--------------|-----------|------------|
| (2,2)        | Yes       | \$100      |
| (3,3)        | Yes       | \$150      |
| (2,4)        | Yes       | \$160 Best |
| (4, 2)       | Yes       | \$140      |
| (3,4)        | No        |            |
| (4,3)        | No        |            |

# 3.5-3.

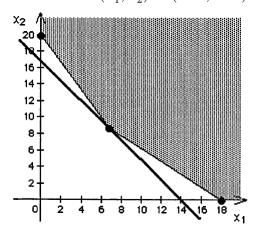
(a) m aximize 
$$P = 300A + 250B + 200C$$
 subject to 
$$0.02A + 0.03B + 0.05C \leq 40$$
 
$$0.05A + 0.02B + 0.04C \leq 40$$
 and 
$$A, B, C \geq 0$$

(b)

|             | Resource Us          | Resource Usage Per Unit of Each Activity |       |  |   |           |
|-------------|----------------------|------------------------------------------|-------|--|---|-----------|
| Resource    | Part A Part B Part C |                                          |       |  |   | Available |
| Machine 1   | 0.02                 | 0.03                                     | 0.05  |  | ≤ | 40        |
| Machine 2   | 0.05                 | 0.02                                     | 0.04  |  | ≤ | 40        |
| Unit Profit | \$300                | \$250                                    | \$200 |  |   |           |
| Solution    |                      |                                          |       |  |   |           |

(c) Many answers are possible.

| (A, B, C)       | Feasible? | P              |
|-----------------|-----------|----------------|
| (500, 500, 300) | No        |                |
| (350, 1000, 0)  | Yes       | \$355,000      |
| (400, 1000, 0)  | Yes       | \$370,000 Best |


(d)

|             | Resource Us | age Per Unit of |        |        | Resource |           |
|-------------|-------------|-----------------|--------|--------|----------|-----------|
| Resource    | Part A      | Part B          | Part C | Total  |          | Available |
| Machine 1   | 0.02        | 0.03            | 0.05   | 40     | ≤        | 40        |
| Machine 2   | 0.05        | 0.02            | 0.04   | 40     | ≤        | 40        |
| Unit Profit | \$300       | \$250           | \$200  | 381818 |          |           |
| Solution    | 363.6363636 | 1090.909091     | 0      |        |          |           |

# 3.5-4.

(a) m inimize 
$$C = 60x_1 + 50x_2$$
 subject to  $5x_1 + 3x_2 \ge 60$   $2x_1 + 2x_2 \ge 30$   $7x_1 + 9x_2 \ge 126$  and  $x_1, x_2 \ge 0$ 

(b) Optimal Solution:  $(x_1^*, x_2^*) = (6.75, 8.75)$  and  $C^* = 842.50$ 



(c) - (e)

|           | Benefit Contribution |            |           | Minimum |       |
|-----------|----------------------|------------|-----------|---------|-------|
| Benefit   | Activity 1           | Activity 2 | Totals    |         | Level |
| 1         | 5                    | 3          | 60        | 2       | 60    |
| 2         | 2                    | 2          | 31        | ≥       | 30    |
| 3         | 7                    | 9          | 126       | ≥       | 126   |
| Unit Cost | 60                   | 50         | \$ 842.50 |         |       |
| Solution  | 6.75                 | 8.75       |           |         |       |

(d)

| $(x_1, x_2)$ | Feasible? | C          |
|--------------|-----------|------------|
| (7,7)        | No        |            |
| (7,8)        | No        |            |
| (8,7)        | No        |            |
| (8,8)        | Yes       | \$880 Best |
| (8,9)        | Yes       | \$930      |
| (9,8)        | Yes       | \$940      |

# 3.5-5.

(a) m inimize 
$$C = 84C + 72T + 60A$$
 subject to  $90C + 20T + 40A \ge 200$   $30C + 80T + 60A \ge 180$   $10C + 20T + 60A \ge 150$  and  $C, T, A \ge 0$ 

(b) - (e)

| Nutritional   |      | Kilogram of |         |        |   | Minimum |
|---------------|------|-------------|---------|--------|---|---------|
| Ingredient    | Corn | Tankage     | Alfalfa | Totals |   | Level   |
| Carbohydrates | 90   | 20          | 40      | 200    | 2 | 200     |
| Proteins      | 30   | 80          | 60      | 180    | 2 | 180     |
| Vitamins      | 10   | 20          | 60      | 157    | 2 | 150     |
| Unit Cost     | 84   | 72          | 60      | \$ 242 |   |         |
| Solution      | 1    | 0           | 2       | I      |   |         |

- (c)  $(x_1, x_2, x_3) = (1, 2, 2)$  is a feasible solution with a daily cost of \$348. This diet will provide 210 kg of carbohydrates, 310 kg of protein, and 170 kg of vitamins daily.
- (d) Answers will vary.

# 3.5-6.

(a) m inimize 
$$C=x_1+x_2+x_3$$
 subject to  $2x_1+x_2+0.5x_3\geq 400$   $0.5x_1+0.5x_2+x_3\geq 100$   $1.5x_2+2x_3\geq 300$  and  $x_1,x_2,x_3\geq 0$ 

(b) - (e)

| Benefit (        | Contributi | ch Asset |         | Minimum<br>Cash Flow |   |          |
|------------------|------------|----------|---------|----------------------|---|----------|
| Year             | Asset 1    | Asset 2  | Asset 3 | Totals               |   | Required |
| 5                | 2          | 1        | 0.5     | 400                  | ≥ | 400      |
| 10               | 0.5        | 0.5      | 1       | 150                  | ≥ | 100      |
| 20               | 0          | 1.5      | 2       | 300                  | ≥ | 300      |
| <b>Unit Cost</b> | 1          | 1        | 1       | \$ 300               |   | -        |
| Solution         | 100        | 200      | 0       |                      |   |          |

- (c)  $(x_1, x_2, x_3) = (100, 100, 200)$  is a feasible solution. This would generate \$400 million in 5 years, \$300 m illion in 10 years, and \$550 million in 20 years. The total investment will be \$400 million.
- (d) Answers will vary.

## 3.6-1.

(a) In the following, the indices i, j, k, l, and m refer to products, m onths, plants, processes and regions respectively. The decision variables are:

 $x_{ijklm}$  = amount of product i produced in month j in plant k using process l and to be sold in region m, and

 $s_{im}$  = amount of product i stored to be sold in March in region m.

The parameters of the problem are:

 $D_{ijm}$  = demand for product i in month j in region m,

 $c_{ikl}$  = unit production cost of product i in plant k using process l,

 $R_{ikl}$  = production rate of product i in plant k using process l,

 $p_i$  = selling price of product i,

 $T_{ikm}$  = transportation cost of product i product in plant k to be sold in region

m,

 $A_i$  = days available for production in month j,

L = storage limit,

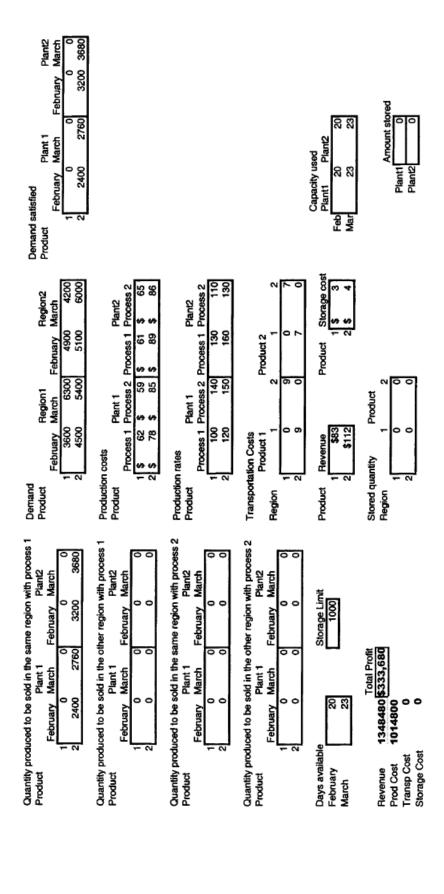
 $M_i$  = storage cost per unit of product i.

The objective is to maximize the total profit, which is the difference of the total revenue and the total cost. The total cost is the sum of the costs of production, inventory and transportation. Using the notation introduced, the objective is to maximize

$$\sum_{i} p_{i} \left( \sum_{j,k,l,m} x_{ijklm} \right) - \sum_{i,k,l} c_{ikl} \left( \sum_{j,m} x_{ijklm} \right) - \sum_{i} M_{i} \left( \sum_{m} s_{im} \right) - \sum_{i,k,m} T_{ikm} \left( \sum_{j,l} x_{ijklm} \right)$$

subject to the constraints

$$\sum_{l,l} x_{ijklm} - s_{im} \leq D_{ijm}$$
 for  $j = \text{February}$ ;  $i = 1, 2$ ;  $m = 1, 2$ 


$$\sum_{k,l} x_{ijklm} + s_{im} \leq D_{ijm}$$
 for  $j = \text{March}$ ;  $i = 1, 2$ ;  $m = 1, 2$ 

$$\sum_{i} s_{im} \leq L \qquad \text{for } m = 1, 2$$

$$\sum_{i,l} \frac{1}{R_{ikl}} \left( \sum_{m} x_{ijklm} \right) \leq A_j$$
 for  $j =$  February, March;  $k = 1, 2$ 

$$x_{ijklm}$$
  $\geq 0$  for  $i, k, l, m = 1, 2$  and  $j =$  February, March

(b)



```
(c)
TITLE
      ManufacturingProblem;
INDEX
      product = (pr1,pr2);
      month = (feb, mar);
      plant = (pl1, pl2);
      process = (ps1,ps2);
region = (r1,r2);
DATA
      demand[product,month,region] := (3600,4900,
                             6300,4200,
                             4500,5100,
                             5400,6000);
      days[month] := (20,23);
      storagecost[product] := (3,4);
     prodcost[product,plant,process] := (62,59,
                                 61,65,
                                78,85,
                                 89,86);
      rate[product,plant,process] := (100,140,
                           130,110,
                           120,150,
                           160,130);
     price[product] := (83,112);
      transpcost[product,plant,region] := (0,9,
                                  9,0,
                                  0,7,
                                  7,0);
 DECISION VARIABLES
      Volume[product,month,plant,process,region];
      Store[product, region];
MACRO
     Revenues := SUM(product,month,plant,process,region: price*Volume);
     ProductionCost := SUM(product,plant,process,month,region: prodcost*Volume);
     TransportationCost := SUM(product,plant,region,month,process: transpost*Volume);
     StorageCost := SUM(product, region: storagecost*Store);
MODEL
    MAX TotalProfit = Revenues - ProductionCost - TransportationCost - StorageCost;
SUBJECT TO
    SalesFeb[product,region,month] where (month=feb) : SUM(plant,process: Volume - Store) <= demand;
SalesMar[product,region,month] where (month=mar) : SUM(plant,process: Volume + Store) <= demand;
StorageLimit[region] : SUM(product: Store) <= 1000;
Capacity[plant,month] : SUM(product,process,region: Volume/rate) <= days;
END
```

#### SOLUTION RESULT

Optimal solution found

MAX TotalPro = 333680.0000

#### MACROS

| Macro Name                                       | Values                                 |
|--------------------------------------------------|----------------------------------------|
|                                                  |                                        |
| Revenues<br>ProductionCost<br>TransportationCost | 1348480.0000<br>1014800.0000<br>0.0000 |
| StorageCost                                      |                                        |

DECISION VARIABLES

VARIABLE Volume[product,month,plant,process,region] :

| pr1         feb         pl1         ps1         r1         0.0000         -19.8000           pr1         feb         pl1         ps1         r2         0.0000         -28.8000           pr1         feb         pl1         ps2         r1         0.0000         -5.1429           pr1         feb         pl1         ps2         r2         0.0000         -14.1429           pr1         feb         pl2         ps1         r2         0.0000         -15.3077           pr1         feb         pl2         ps2         r1         0.0000         -6.3077           pr1         feb         pl2         ps2         r1         0.0000         -24.4545           pr1         feb         pl2         ps2         r2         0.0000         -15.4545           pr1         mar         pl1         ps1         r1         0.0000         -19.8000           pr1         mar         pl1         ps1         r1         0.0000         -15.4545           pr1         mar         pl1         ps1         r2         0.0000         -14.1429           pr1         mar         pl1         ps2         r2         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | product | month | plant | process | region | Activity | Reduced Cost |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------|---------|--------|----------|--------------|
| pr1 feb pl1 ps2 r1 0.0000 -5.1429 pr1 feb pl1 ps2 r2 0.0000 -14.1429 pr1 feb pl1 ps2 r2 0.0000 -14.1429 pr1 feb pl2 ps1 r1 0.0000 -15.3077 pr1 feb pl2 ps1 r2 0.0000 -24.4545 pr1 feb pl2 ps2 r2 0.0000 -15.4545 pr1 mar pl1 ps1 r2 0.0000 -28.8000 pr1 mar pl1 ps2 r1 0.0000 -5.1429  pr1 mar pl1 ps2 r2 0.0000 -6.3077 pr1 mar pl2 ps1 r1 0.0000 -5.1429  pr1 mar pl2 ps1 r2 0.0000 -6.3077 pr1 mar pl2 ps2 r1 0.0000 -6.3077 pr1 mar pl2 ps2 r1 0.0000 -6.3077 pr1 mar pl2 ps2 r2 0.0000 -6.3077 pr1 mar pl2 ps2 r1 0.0000 -24.4545 pr2 feb pl1 ps1 r1 2400.0000 -7.0000 pr2 feb pl1 ps1 r2 0.0000 -7.0000 pr2 feb pl1 ps2 r2 0.0000 -7.2000 pr2 feb pl1 ps2 r1 0.0000 -7.2000 pr2 feb pl2 ps1 r2 0.0000 -7.2000 pr2 feb pl2 ps1 r1 0.0000 -7.2000 pr2 feb pl2 ps1 r2 0.0000 -7.2000 pr2 feb pl2 ps1 r1 0.0000 -7.0000 pr2 feb pl2 ps1 r2 0.0000 -7.2000 pr2 feb pl2 ps1 r1 0.0000 -7.2000 pr2 feb pl2 ps2 r2 0.0000 -7.2000 pr2 feb pl2 ps2 r2 0.0000 -7.0000 pr2 feb pl2 ps1 r1 0.0000 -7.0000 pr2 feb pl2 ps2 r2 0.0000 -7.0000 pr2 mar pl1 ps1 r1 270.0000 -7.0000 pr2 mar pl1 ps1 r2 0.0000 -7.0000 pr2 mar pl1 ps2 r1 0.0000 -7.0000 pr2 mar pl1 ps2 r1 0.0000 -7.0000 pr2 mar pl1 ps1 r2 0.0000 -7.0000 pr2 mar pl1 ps2 r1 0.0000 -7.0000 pr2 mar pl2 ps2 r1 0.0000 -7.0000 | pr1     | feb   | pl1   | ps1     | r1     |          |              |
| pr1         feb         pl1         ps2         r1         0.0000         -5.1429           pr1         feb         pl1         ps2         r2         0.0000         -14.1429           pr1         feb         pl2         ps1         r1         0.0000         -15.3077           pr1         feb         pl2         ps2         r1         0.0000         -24.4545           pr1         feb         pl2         ps2         r2         0.0000         -15.4545           pr1         feb         pl1         ps1         r1         0.0000         -19.8000           pr1         mar         pl1         ps1         r1         0.0000         -14.1429           pr1         mar         pl1         ps2         r2         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -       |       |       |         | r2     |          |              |
| pr1         feb         pl1         ps2         r2         0.0000         -14.1429           pr1         feb         pl2         ps1         r1         0.0000         -6.3077           pr1         feb         pl2         ps2         r1         0.0000         -24.4545           pr1         feb         pl2         ps2         r2         0.0000         -19.8000           pr1         mar         pl1         ps1         r2         0.0000         -19.8000           pr1         mar         pl1         ps1         r2         0.0000         -28.8000           pr1         mar         pl1         ps1         r2         0.0000         -28.8000           pr1         mar         pl1         ps1         r2         0.0000         -28.8000           pr1         mar         pl1         ps2         r1         0.0000         -5.1429           pr1         mar         pl1         ps1         r2         0.0000         -24.84545           pr1         mar         pl2         ps1         r1         0.0000         -15.3077           pr1         mar         pl2         ps2         r1         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -       |       |       |         | r1     |          |              |
| pr1         feb         pl2         ps1         r1         0.0000         -15.3077           pr1         feb         pl2         ps2         r1         0.0000         -24.4545           pr1         feb         pl2         ps2         r2         0.0000         -15.4545           pr1         mar         pl1         ps1         r1         0.0000         -19.8000           pr1         mar         pl1         ps1         r2         0.0000         -28.8000           pr1         mar         pl1         ps2         r2         0.0000         -28.8000           pr1         mar         pl1         ps2         r1         0.0000         -28.8000           pr1         mar         pl1         ps2         r1         0.0000         -5.1429           pr1         mar         pl1         ps2         r1         0.0000         -5.1429           pr1         mar         pl1         ps1         r2         0.0000         -5.1429           pr1         mar         pl1         ps2         r1         0.0000         -15.3077           pr1         mar         pl2         ps1         r2         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -       |       |       | ps2     | r2     |          |              |
| Pr1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |       |       | ps1     | r1     |          |              |
| pr1         feb         p12         ps2         r1         0.0000         -24.4943           pr1         feb         p12         ps2         r2         0.0000         -15.4545           pr1         mar         p11         ps1         r1         0.0000         -19.8000           pr1         mar         p11         ps1         r2         0.0000         -28.8000           pr1         mar         p11         ps2         r1         0.0000         -5.1429           pr1         mar         p11         ps2         r2         0.0000         -5.1429           pr1         mar         p12         ps1         r1         0.0000         -5.1429           pr1         mar         p12         ps1         r1         0.0000         -5.1429           pr1         mar         p12         ps1         r1         0.0000         -15.3077           pr1         mar         p12         ps1         r1         0.0000         -6.3077           pr1         mar         p12         ps2         r1         0.0000         -24.4545           pr1         mar         p12         ps2         r1         0.0000         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       | feb   |       | ps1     | r2     |          |              |
| pr1         feb         p12         ps2         r2         0.0000         -19.8000           pr1         mar         p11         ps1         r1         0.0000         -28.8000           pr1         mar         p11         ps1         r2         0.0000         -28.8000           pr1         mar         p11         ps2         r1         0.0000         -5.1429           pr1         mar         p12         ps1         r1         0.0000         -14.1429           pr1         mar         p12         ps1         r1         0.0000         -15.3077           pr1         mar         p12         ps1         r2         0.0000         -6.3077           pr1         mar         p12         ps2         r1         0.0000         -6.3077           pr1         mar         p12         ps2         r1         0.0000         -6.3077           pr1         mar         p12         ps2         r1         0.0000         -24.4545           pr1         mar         p12         ps2         r2         0.0000         -15.4545           pr2         feb         p11         ps1         r2         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | feb   | p12   |         |        |          |              |
| pr1         mar         pl1         ps1         r1         0.0000         -19.8000           pr1         mar         pl1         ps1         r2         0.0000         -28.8000           pr1         mar         pl1         ps2         r1         0.0000         -5.1429           pr1         mar         pl1         ps2         r2         0.0000         -14.1429           pr1         mar         pl2         ps1         r1         0.0000         -15.3077           pr1         mar         pl2         ps1         r2         0.0000         -6.3077           pr1         mar         pl2         ps1         r2         0.0000         -6.3077           pr1         mar         pl2         ps2         r1         0.0000         -6.3077           pr1         mar         pl2         ps2         r1         0.0000         -24.4545           pr1         mar         pl2         ps2         r2         0.0000         -15.4545           pr2         feb         pl1         ps1         r2         0.0000         -7.0000           pr2         feb         pl1         ps2         r2         0.0000         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | feb   |       | ps2     |        |          |              |
| pr1         mar         pl1         ps1         r2         0.0000         -28.8000           pr1         mar         pl1         ps2         r1         0.0000         -5.1429           pr1         mar         pl1         ps2         r2         0.0000         -14.1429           pr1         mar         pl2         ps1         r1         0.0000         -15.3077           pr1         mar         pl2         ps2         r1         0.0000         -6.3077           pr1         mar         pl2         ps2         r1         0.0000         -24.4545           pr1         mar         pl2         ps2         r2         0.0000         -15.4545           pr2         feb         pl1         ps1         r2         0.0000         -7.0000           pr2         feb         pl1         ps2         r2         0.0000 <t< td=""><td></td><td></td><td></td><td>psl</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |       |       | psl     |        |          |              |
| pr1         mar         pl1         ps2         r1         0.0000         -3.1429           pr1         mar         pl1         ps2         r2         0.0000         -14.1429           pr1         mar         pl2         ps1         r1         0.0000         -15.3077           pr1         mar         pl2         ps1         r2         0.0000         -6.3077           pr1         mar         pl2         ps2         r1         0.0000         -24.4545           pr1         mar         pl2         ps2         r2         0.0000         -15.4545           pr2         feb         pl1         ps1         r1         2400.0000         0.0000           pr2         feb         pl1         ps1         r2         0.0000         -7.0000           pr2         feb         pl1         ps2         r1         0.0000         -7.2000           pr2         feb         pl1         ps2         r2         0.0000         -7.0000           pr2         feb         pl2         ps2         r1         0.0000         -7.0000           pr2         feb         pl2         ps2         r2         0.0000         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       | mar   |       | ps1     |        |          |              |
| pr1         mar         pl2         ps1         r1         0.0000         -15.3077           pr1         mar         pl2         ps1         r2         0.0000         -6.3077           pr1         mar         pl2         ps2         r1         0.0000         -24.4545           pr1         mar         pl2         ps2         r2         0.0000         -15.4545           pr2         feb         pl1         ps1         r1         2400.0000         0.0000           pr2         feb         pl1         ps1         r2         0.0000         -7.0000           pr2         feb         pl1         ps2         r1         0.0000         -7.0000           pr2         feb         pl1         ps2         r2         0.0000         -7.2000           pr2         feb         pl2         ps1         r1         0.0000         -7.0000           pr2         feb         pl2         ps1         r2         3200.0000         0.0000           pr2         feb         pl2         ps2         r1         0.0000         -9.3077           pr2         mar         pl1         ps2         r1         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |       |       | ps2     | r1     | 0.0000   | -5.1429      |
| pr1         mar         p12         ps1         r1         0.0000         -15.3077           pr1         mar         p12         ps1         r2         0.0000         -6.3077           pr1         mar         p12         ps2         r1         0.0000         -24.4545           pr1         mar         p12         ps2         r2         0.0000         -15.4545           pr2         feb         p11         ps1         r1         2400.0000         0.0000         -7.0000           pr2         feb         p11         ps1         r2         0.0000         -7.0000         -7.0000           pr2         feb         p11         ps2         r1         0.0000         -7.2000         -7.2000         -7.2000         -7.0000         -7.0000         -7.0000         -7.0000         -7.0000         -9.3077         -9.3077         -9.3077         -2.3077         -7.0000         -7.0000         -7.0000         -7.0000         -7.0000         -7.0000         -7.0000         -7.0000         -7.0000         -7.0000         -7.0000         -7.2000         -7.2000         -7.2000         -7.2000         -7.2000         -7.2000         -7.2000         -7.2000         -7.2000         -7.2000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pr1     | mar   | pll   | ps2     | r2     | 0.0000   |              |
| pr1         mar         p12         ps1         r2         0.0000         -6.3077           pr1         mar         p12         ps2         r1         0.0000         -24.4545           pr1         mar         p12         ps2         r2         0.0000         -15.4545           pr2         feb         p11         ps1         r1         2400.0000         0.0000         -7.0000           pr2         feb         p11         ps1         r2         0.0000         -7.0000         -7.0000           pr2         feb         p11         ps2         r1         0.0000         -7.2000         -7.2000           pr2         feb         p12         ps1         r1         0.0000         -7.0000         -7.0000           pr2         feb         p12         ps1         r2         3200.0000         0.0000         -9.3077           pr2         feb         p12         ps2         r1         0.0000         -2.3077           pr2         mar         p11         ps1         r1         2760.0000         -7.0000           pr2         mar         p11         ps2         r1         0.0000         -7.2000           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |       |       | ps1     | r1     |          |              |
| pr1         mar         p12         ps2         r1         0.0000         -24.4545           pr1         mar         p12         ps2         r2         0.0000         -15.4545           pr2         feb         p11         ps1         r1         2400.0000         0.0000           pr2         feb         p11         ps1         r2         0.0000         -7.0000           pr2         feb         p11         ps2         r1         0.0000         -7.2000           pr2         feb         p12         ps1         r1         0.0000         -7.0000           pr2         feb         p12         ps1         r1         0.0000         -7.0000           pr2         feb         p12         ps2         r1         0.0000         -9.3077           pr2         feb         p12         ps2         r2         0.0000         -2.3077           pr2         mar         p11         ps1         r1         2760.0000         -7.0000           pr2         mar         p11         ps2         r1         0.0000         -7.0000           pr2         mar         p11         ps2         r2         0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |       |       | ps1     | r2     |          |              |
| pr1         mar         p12         ps2         r2         0.0000         -15.4545           pr2         feb         p11         ps1         r1         2400.0000         0.0000           pr2         feb         p11         ps1         r2         0.0000         -7.0000           pr2         feb         p11         ps2         r1         0.0000         -0.2000           pr2         feb         p11         ps2         r2         0.0000         -7.2000           pr2         feb         p12         ps1         r1         0.0000         -7.0000           pr2         feb         p12         ps2         r1         0.0000         -9.3077           pr2         feb         p12         ps2         r1         0.0000         -9.3077           pr2         feb         p12         ps2         r2         0.0000         -2.3077           pr2         mar         p11         ps1         r1         2760.0000         0.0000           pr2         mar         p11         ps2         r1         0.0000         -7.0000           pr2         mar         p11         ps2         r2         0.0000 <t< td=""><td></td><td></td><td>p12</td><td>ps2</td><td>r1</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |       | p12   | ps2     | r1     |          |              |
| pr2         feb         pl1         ps1         r1         2400.0000         0.0000           pr2         feb         pl1         ps1         r2         0.0000         -7.0000           pr2         feb         pl1         ps2         r1         0.0000         -0.2000           pr2         feb         pl1         ps2         r2         0.0000         -7.2000           pr2         feb         pl2         ps1         r1         0.0000         -7.0000           pr2         feb         pl2         ps1         r2         3200.0000         0.0000           pr2         feb         pl2         ps2         r1         0.0000         -9.3077           pr2         feb         pl2         ps2         r2         0.0000         -9.3077           pr2         mar         pl1         ps1         r1         2760.0000         0.0000         -7.0000           pr2         mar         pl1         ps2         r1         0.0000         -7.0000           pr2         mar         pl1         ps2         r2         0.0000         -7.2000           pr2         mar         pl2         ps1         r2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | mar   |       |         | r2     |          |              |
| pr2         feb         pl1         ps1         r2         0.0000         -7.0000           pr2         feb         pl1         ps2         r1         0.0000         -0.2000           pr2         feb         pl1         ps2         r2         0.0000         -7.2000           pr2         feb         pl2         ps1         r1         0.0000         -7.0000           pr2         feb         pl2         ps1         r2         3200.0000         0.0000         -9.3077           pr2         feb         pl2         ps2         r1         0.0000         -9.3077           pr2         feb         pl2         ps2         r2         0.0000         -9.3077           pr2         mar         pl1         ps1         r1         2760.0000         0.0000         -7.0000           pr2         mar         pl1         ps1         r2         0.0000         -7.0000           pr2         mar         pl1         ps2         r1         0.0000         -7.2000           pr2         mar         pl2         ps1         r1         0.0000         -7.0000           pr2         mar         pl2         ps1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pr2     | feb   | pl1   | ps1     |        |          |              |
| pr2 feb pl1 ps2 r2 0.0000 -7.2000 pr2 feb pl2 ps1 r1 0.0000 -7.0000 pr2 feb pl2 ps1 r2 3200.0000 0.0000 pr2 feb pl2 ps2 r1 0.0000 -9.3077 pr2 feb pl2 ps2 r2 0.0000 -2.3077 pr2 mar pl1 ps1 r1 2760.0000 0.0000 pr2 mar pl1 ps1 r2 0.0000 -7.0000 pr2 mar pl1 ps1 r2 0.0000 -7.0000 pr2 mar pl1 ps2 r1 0.0000 -7.2000 pr2 mar pl1 ps2 r1 0.0000 -7.2000 pr2 mar pl1 ps2 r2 0.0000 -7.2000 pr2 mar pl1 ps2 r2 0.0000 -7.2000 pr2 mar pl2 ps1 r1 0.0000 -7.0000 pr2 mar pl2 ps1 r2 3680.0000 -9.3077 pr2 mar pl2 ps2 r1 0.0000 -9.3077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | feb   |       | ps1     |        |          |              |
| pr2         feb         pl2         ps1         r1         0.0000         -7.0000           pr2         feb         pl2         ps1         r2         3200.0000         0.0000           pr2         feb         pl2         ps2         r1         0.0000         -9.3077           pr2         feb         pl2         ps2         r2         0.0000         -2.3077           pr2         mar         pl1         ps1         r1         2760.0000         0.0000           pr2         mar         pl1         ps1         r2         0.0000         -7.0000           pr2         mar         pl1         ps2         r1         0.0000         -7.2000           pr2         mar         pl1         ps2         r2         0.0000         -7.2000           pr2         mar         pl2         ps1         r1         0.0000         -7.0000           pr2         mar         pl2         ps1         r2         3680.0000         0.0000           pr2         mar         pl2         ps2         r1         0.0000         -9.3077           pr2         mar         pl2         ps2         r1         0.0000         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pr2     | feb   | pl1   | ps2     |        |          |              |
| pr2         feb         pl2         ps1         r2         3200.0000         0.0000           pr2         feb         pl2         ps2         r1         0.0000         -9.3077           pr2         feb         pl2         ps2         r2         0.0000         -2.3077           pr2         mar         pl1         ps1         r1         2760.0000         0.0000           pr2         mar         pl1         ps1         r2         0.0000         -7.0000           pr2         mar         pl1         ps2         r1         0.0000         -0.2000           pr2         mar         pl1         ps2         r2         0.0000         -7.2000           pr2         mar         pl2         ps1         r1         0.0000         -7.0000           pr2         mar         pl2         ps1         r1         0.0000         -7.0000           pr2         mar         pl2         ps1         r2         3680.0000         0.0000           pr2         mar         pl2         ps2         r1         0.0000         -9.3077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pr2     | feb   | pl1   | ps2     |        |          |              |
| pr2         feb         pl2         ps2         r1         0.0000         -9.3077           pr2         feb         pl2         ps2         r2         0.0000         -2.3077           pr2         mar         pl1         ps1         r1         2760.0000         0.0000           pr2         mar         pl1         ps1         r2         0.0000         -7.0000           pr2         mar         pl1         ps2         r1         0.0000         -0.2000           pr2         mar         pl1         ps2         r2         0.0000         -7.2000           pr2         mar         pl2         ps1         r1         0.0000         -7.0000           pr2         mar         pl2         ps1         r2         3680.0000         0.0000           pr2         mar         pl2         ps2         r1         0.0000         -9.3077           pr2         mar         pl2         ps2         r1         0.0000         -9.3077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pr2     | feb   | p12   | ps1     |        |          |              |
| pr2 feb pl2 ps2 r2 0.0000 -2.3077 pr2 mar pl1 ps1 r1 2760.0000 0.0000 pr2 mar pl1 ps1 r2 0.0000 -7.0000 pr2 mar pl1 ps2 r1 0.0000 -0.2000 pr2 mar pl1 ps2 r2 0.0000 -7.2000 pr2 mar pl1 ps2 r2 0.0000 -7.2000 pr2 mar pl2 ps1 r1 0.0000 -7.0000 pr2 mar pl2 ps1 r1 0.0000 -7.0000 pr2 mar pl2 ps1 r1 0.0000 -7.3077 pr2 mar pl2 ps1 r2 3680.0000 0.0000 pr2 mar pl2 ps2 r1 0.0000 -9.3077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pr2     | feb   | p12   |         |        |          |              |
| pr2 mar pl1 ps1 r1 2760.0000 0.0000 pr2 mar pl1 ps2 r1 0.0000 -7.0000 pr2 mar pl1 ps2 r1 0.0000 -7.2000 pr2 mar pl1 ps2 r2 0.0000 -7.2000 pr2 mar pl1 ps2 r2 0.0000 -7.2000 pr2 mar pl2 ps1 r1 0.0000 -7.0000 pr2 mar pl2 ps1 r1 0.0000 0.0000 pr2 mar pl2 ps1 r2 3680.0000 0.0000 pr2 mar pl2 ps2 r1 0.0000 -9.3077 pr2 mar pl2 ps2 r1 0.0000 -7.3077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pr2     | feb   | p12   |         |        |          |              |
| pr2         mar         pl1         ps1         r1         2760.0000         0.0000           pr2         mar         pl1         ps1         r2         0.0000         -7.0000           pr2         mar         pl1         ps2         r1         0.0000         -0.2000           pr2         mar         pl1         ps2         r2         0.0000         -7.2000           pr2         mar         pl2         ps1         r1         0.0000         -7.0000           pr2         mar         pl2         ps1         r2         3680.0000         0.0000           pr2         mar         pl2         ps2         r1         0.0000         -9.3077           pr2         mar         pl2         ps2         r1         0.0000         -9.3077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pr2     | feb   | p12   |         |        |          |              |
| pr2 mar pl1 ps2 r1 0.0000 -0.2000 pr2 mar pl1 ps2 r2 0.0000 -7.2000 pr2 mar pl2 ps1 r1 0.0000 -7.0000 pr2 mar pl2 ps1 r1 0.0000 -7.0000 pr2 mar pl2 ps1 r2 3680.0000 0.0000 pr2 mar pl2 ps2 r1 0.0000 -9.3077 pr2 mar pl2 ps2 r1 0.0000 -9.3077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | mar   | pl1   |         |        |          |              |
| pr2 mar pl1 ps2 r2 0.0000 -7.2000<br>pr2 mar pl2 ps1 r1 0.0000 -7.0000<br>pr2 mar pl2 ps1 r2 3680.0000 0.0000<br>pr2 mar pl2 ps2 r1 0.0000 -9.3077<br>pr2 mar pl2 ps2 r1 0.0000 -9.3077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pr2     | mar   |       |         |        |          |              |
| pr2 mar pl2 ps1 r1 0.0000 -7.0000<br>pr2 mar pl2 ps1 r2 3680.0000 0.0000<br>pr2 mar pl2 ps2 r1 0.0000 -9.3077<br>pr2 mar pl2 ps2 r1 0.0000 -9.3077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pr2     | mar   | pl1   |         |        |          |              |
| pr2 mar pl2 ps1 r2 3680.0000 0.0000<br>pr2 mar pl2 ps2 r1 0.0000 -9.3077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pr2     | mar   | pl1   |         |        |          |              |
| pr2 mar pl2 ps2 r1 0.0000 -9.3077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | mar   |       |         |        |          |              |
| pr2 mar pl2 ps2 rl 0.0000 -9.3077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pr2     | mar   |       |         |        |          |              |
| pr2 mar pl2 ps2 r2 0.0000 -2.30//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | mar   |       |         |        |          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pr2     | mar   | p12   | ps2     | r2     | 0.0000   | -2.3077      |

VARIABLE Store[product, region] :

| product                  | region               | Activity                             | Reduced Cost                             |
|--------------------------|----------------------|--------------------------------------|------------------------------------------|
| pr1<br>pr1<br>pr2<br>pr2 | r1<br>r2<br>r1<br>r2 | 0.0000<br>0.0000<br>0.0000<br>0.0000 | -3.0000<br>-3.0000<br>-4.0000<br>-4.0000 |
|                          |                      |                                      |                                          |

```
(d)
MODEL:
PRODUCT/PR1 PR2/: PRICE, STORAGECOST;
MONTH/FEB MAR/: DAYS;
PLANT/PL1 PL2/;
PROCESS/PS1 PS2/;
REGION/R1 R2/;
LINK1 (PRODUCT, MONTH, PLANT, PROCESS, REGION): VAR;
LINK2 (PRODUCT, MONTH, REGION): DEMAND;
LINK3 (PRODUCT, PLANT, PROCESS): PRODCOST;
LINK4 (PRODUCT, PLANT, PROCESS): RATE;
LINK5 (PRODUCT, REGION): STORE;
LINK6 (PRODUCT, PLANT, REGION): TRANSPCOST;
ENDSETS
 !OBJECTIVE FUNCTION;
 MAX = @SUM(PRODUCT(I): PRICE(I) *@SUM(MONTH(J): @SUM(PLANT(K): @SUM(PROCESS(L):
 @SUM(REGION(M): VAR(I,J,K,L,M))))) - @SUM(LINK3(I,K,L): PRODCOST(I,K,L)*@SUM(MONTH(J): @SUM(REGION(M): VAR(I,J,K,L,M)))) - @SUM(PRODUCT(I): STORAGECOST(I)*@SUM(REGION(M): STORE(I,M))) - @SUM(LINK6(I,K,M): TRANSPCOST(I,K,M)*@SUM(MONTH(J): @SUM(PROCESS(L):
 VAR(I, J, K, L, M))));
 ICONSTRAINTS:
 @FOR(PRODUCT(I): @FOR(REGION(M): @SUM(PLANT(K): @SUM(PROCESS(L): VAR(I,FEB,K,L,M))) -
 STORE(I,M) <= DEMAND(I,FEB,M)));
 @FOR(PRODUCT(I): @FOR(REGION(M): @SUM(PLANT(K): @SUM(PROCESS(L): VAR(I,MAR,K,L,M))) +
 STORE(I,M) <= DEMAND(I,MAR,M)));
 GFOR(REGION(M): @SUM(PRODUCT(I): STORE(I,M))<=1000);</pre>
 @FOR(PLANT(K): @FOR(MONTH(J): @SUM(PRODUCT(I): @SUM(PROCESS(L):
 (1/RATE(I,K,L))*@SUM(REGION(M): VAR(I,J,K,L,M)))) <= DAYS(J)));
 !DATA PART;
 DATA:
 DEMAND = 3600 4900
            6300 4200
            4500 5100
           5400 6000;
 DAYS = 20 23;
 STORAGECOST = 3 4;
 PRODCOST = 62 59
              61 65
              78 85
              89 86;
 RATE = 100 140
         130 110
         120 150
         160 130;
 PRICE = 83 112;
 TRANSPCOST = 0 9
                9 0
                0 7
                7 0;
 ENDDATA
 END
```

|                                                              |                                                                    | v                                                                                                                            | aria                                                                                                                       | ble                                                                                                          |                                                                                             | Value                                                       |
|--------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| VAR(<br>VAR(<br>VAR(<br>VAR(<br>VAR(<br>VAR(<br>VAR(<br>VAR( | P1,<br>P1,<br>P1,<br>P1,<br>P1,<br>P1,<br>P1,<br>P1,<br>P1,<br>P1, | FEB,<br>FEB,<br>FEB,<br>FEB,<br>FEB,<br>MAR,<br>MAR,<br>MAR,<br>MAR,<br>MAR,<br>FEB,<br>FEB,<br>FEB,<br>FEB,<br>FEB,<br>FEB, | P1,<br>P1,<br>P1,<br>P2,<br>P2,<br>P2,<br>P1,<br>P1,<br>P1,<br>P2,<br>P2,<br>P1,<br>P1,<br>P1,<br>P1,<br>P1,<br>P1,<br>P2, | P1,<br>P2,<br>P2,<br>P1,<br>P2,<br>P1,<br>P2,<br>P1,<br>P2,<br>P1,<br>P2,<br>P1,<br>P2,<br>P1,<br>P2,<br>P1, | R1) R2) R1) | Value  0.0000000 0.0000000 0.0000000 0.000000               |
| VAR( VAR( VAR( VAR( VAR( VAR( VAR( VAR(                      | P2,<br>P2,<br>P2,<br>P2,<br>P2,<br>P2,<br>P2,<br>P2,<br>P2,<br>P2, | FEB,<br>FEB,<br>FEB,<br>FEB,<br>FEB,<br>FEB,<br>MAR,<br>MAR,<br>MAR,<br>MAR,<br>MAR,                                         | P1,<br>P1,<br>P1,<br>P2,<br>P2,<br>P2,<br>P1,<br>P1,<br>P1,<br>P2,<br>P2,                                                  | P1,<br>P1,<br>P2,<br>P2,<br>P1,                                                                              | R1)<br>R2)<br>R1)<br>R2)<br>R1)                                                             | 2400.000<br>0.0000000<br>0.0000000<br>0.0000000<br>0.000000 |
| STOR<br>STOR<br>STOR<br>STOR                                 | RE(P                                                               | MAR,<br>1, R1<br>1, R2<br>2, R1<br>2, R2                                                                                     | )<br>)                                                                                                                     | 0                                                                                                            | 0.0000000                                                                                   |                                                             |

## 3.6-2.

```
(a)
     MAX
                                    Variable Name
                                                      Activity
         50x1+20x2+25x3;
                                   -------
                                    x1
                                                              26.1905
     SUBJECT TO
                                    x2
                                                              54.7619
                                    хЗ
                                                             20.0000
         9x1+3x2+5x3<=500;
         5x1+4x2 <= 350;
         3x1+2x3 <= 150;
         x3<=20;
     END
(b)
        max = 50*x1+20*x2+25*x3;
        9*x1+3*x2+5*x3<=500;
        5*x1+4*x2<=350;
        3*x1+2*x3<=150;
        x3 < =20;
        x1>=0; x2>=0; x3>=0;
               Global optimal solution found at step:
               Objective value:
                                                            2904.762
                                     Variable
                                                        Value
                                           X1
                                                     26.19048
                                           X2
                                                     54.76190
                                           Х3
                                                     20.00000
3.6-3.
(a)
 TITLE
     TransportationProblem;
 INDEX
     supply = (Wh1, Wh2);
     dest = (C1, C2, C3);
 DATA
     MaxCapacity[supply] := (400,500);
Required[dest] := (300,200,400);
     ShippingCost[supply,dest] := (600,800,700,
                  400,900,600);
  DECISION VARIABLES
      VolumeShipped[supply,dest] -> ""
  MODEL
     MIN TotalCost = SUM(supply,dest: ShippingCost * VolumeShipped);
  SUBJECT TO
      Capacity[supply] : SUM(dest: VolumeShipped) = MaxCapacity;
      Demand[dest] : SUM(supply: VolumeShipped) = Required;
  END
```

```
(b)
MODEL:
SETS:
       FACTORIES /F1 F2/: CAPACITY;
       CUSTOMERS /C1 C2 C3/: DEMAND;
       LINKS (FACTORIES, CUSTOMERS): COST, VOLUME;
ENDSETS
 [OBJECTIVE] MIN = @SUM(LINKS(I,J):COST(I,J)*VOLUME(I,J));
 !DEMAND CONSTRAINTS;
@FOR(CUSTOMERS(J): @SUM(FACTORIES(I): VOLUME(I,J))=DEMAND(J));
!SUPPLY CONSTRAINTS;
@FOR(FACTORIES(I): @SUM(CUSTOMERS(J):VOLUME(I,J))=CAPACITY(I));
!HERE IS THE DATA;
DATA:
CAPACITY = 400 500;
DEMAND = 300 200 400;
COST = 600 800 700
       400 200 400;
ENDDATA
END
 Global optimal solution found at step:
 Objective value:
                                             410000.0
                       Variable
                                         Value
                   VOLUME( F1, C1)
                                         300,0000
                   VOLUME( F1, C2)
                                        0.0000000
                   VOLUME( F1, C3)
VOLUME( F2, C1)
                                         100.0000
                                        0.0000000
                   VOLUME( F2, C2)
                                         200.0000
                   VOLUME (F2, C3)
                                         300.0000
3.6-4.
(a)
TITLE
     TransportationProblem;
     student = (KC,OH,HB,SC,KS,NK);
     day = (M, TU, W, TH, F);
 DATA
                      :=(10,10.1,9.9,9.8,10.8,11.3);
     Wage[student]
     Gender[student]
                           := (0,0,0,0,1,1);
     Available[student,day] := (6,0,6,0,6,
                    0,6,0,6,0
                    4,8,4,0,4
                    5,5,5,0,5
                    3,0,3,8,0
                    0,0,0,6,2);
```

```
DECISION VARIABLES
```

```
Work[student,day] -> ""
```

MODEL

MIN TotalCost = SUM(student, day: Wage \* Work);

SUBJECT TO

TimeConstraint(student,day] : Work <= Available ;
MinimumWorkO(student] where(Gender=0) : SUM(day: Work) >=8 ;
MinimumWork1[student] where(Gender=1) : SUM(day: Work) >=7 ;
AlwaysOpen[day] : SUM(student: Work) = 14 ;
END
U

MIN TotalCos = 709.6000

# VARIABLE Work[student,day] :

| student | day              | Activity |    |    |        |
|---------|------------------|----------|----|----|--------|
| KC      | М                | 4.0000   |    |    |        |
| KC      | TU               | 0.0000   |    |    |        |
| KC      | W                | 2.0000   |    |    |        |
| KC      | TH               | 0.0000   |    |    |        |
| KC      | F                | 3.0000   |    |    |        |
| OH      | M                | 0.0000   |    |    |        |
| OH      | TU               | 2.0000   |    |    |        |
| OH      | W                | 0.0000   |    |    |        |
| OH      | TH               | 6.0000   |    |    |        |
| OH      | F                | 0.0000   |    |    |        |
| HB      | M                | 4.0000   |    |    |        |
| HB      | TU               | 7.0000   |    |    |        |
| HB      | W                | 4.0000   |    |    |        |
| HB      | TH               | 0.0000   |    |    |        |
| HB      | F                | 4.0000   |    |    |        |
| SC      | M                | 5.0000   |    |    |        |
| SC      | TÜ               | 5.0000   |    |    |        |
| SC      | W                | 5.0000   |    |    |        |
| SC      | TH               | 0.0000   | NK | M  | 0.0000 |
| SC      | F                | 5.0000   | NK | TU | 0.0000 |
| KS      | M                | 1.0000   | NK | W  | 0.0000 |
| KS      | TU               | 0.0000   | NK | TH | 5.0000 |
| KS      | W                | 3.0000   | NK | F  | 2.0000 |
| KS      | $_{\mathrm{TH}}$ | 3.0000   |    |    |        |
| KS      | F                | 0.0000   |    |    |        |

```
(b)
MODEL:
SETS:
      STUDENTS /KC OH HB SC KS NK/: WAGE, GENDER;
      DAYS /M TU W TH F/;
      LINKS(STUDENTS, DAYS): AVAILABLE, WORK;
ENDSETS
[OBJECTIVE] MIN = @SUM(LINKS(I,J):WAGE(I)*WORK(I,J));
!TIME CONSTRAINTS;
@FOR(LINKS(I,J): WORK(I,J)<=AVAILABLE(I,J));</pre>
!MINIMUM WORK CONSTRAINTS;
@FOR(STUDENTS(I) | GENDER(I) #EQ# 0: @SUM(LINKS(I,J):WORK(I,J))>=8);
@FOR(STUDENTS(I) | GENDER(I) #EQ# 1: @SUM(LINKS(I,J):WORK(I,J))>=7);
!ALWAYS OPEN CONSTRAINTS;
@FOR(DAYS(J): @SUM(LINKS(I,J): WORK(I,J))=14);
!HERE IS THE DATA;
DATA:
WAGE = 10 \ 10.1 \ 9.9 \ 9.8 \ 10.8 \ 11.3;
GENDER = 0 \ 0 \ 0 \ 1 \ 1;
AVAILABLE=6 0 6 0 6
          06060
          4 8 4 0 4
          5 5 5 0 5
          3 0 3 8 0
          0 0 0 6 2:
ENDDATA
END
                                     WORK(SC, M)
                                                          5.000000
   WORK( KC, M)
                       2.000000
                                    WORK (SC, TU)
                                                          5.000000
  WORK (KC, TU)
                      0.0000000
                                     WORK ( SC, W)
                                                         5.000000
   WORK( KC, W)
                       3.000000
                                    WORK (SC, TH)
                                                        0.0000000
  WORK ( KC, TH)
                       0.0000000
                                     WORK( SC, F)
                                                         5.000000
   WORK( KC, F)
                       4.000000
                                     WORK( KS, M)
                                                          3.000000
   WORK ( OH, M)
                      0.0000000
                                    WORK( KS, TU)
                                                        0.0000000
  WORK ( OH, TU)
                       2.000000
                                     WORK( KS, W)
                                                         2.000000
   WORK (OH, W)
                      0.0000000
                                    WORK( KS, TH)
                                                         2.000000
  WORK ( OH, TH)
                      6.000000
                                     WORK( KS, F)
                                                        0.0000000
   WORK( OH, F)
                      0.0000000
                                     WORK( NK, M)
                                                        0.0000000
   WORK( HB, M)
                      4.000000
                                    WORK( NK, TU)
                                                        0.0000000
  WORK ( HB, TU)
                       7.000000
                                    WORK( NK, W)
                                                        0.0000000
   WORK( HB, W)
                       4.000000
                                    WORK( NK, TH)
                                                         6.000000
  WORK( HB, TH)
                     0.0000000
                                     WORK( NK, F)
                                                         1.000000
   WORK( HB, F)
                       4.000000
```

# 3.6-5.

(a)

SOLUTION RESULT MODEL

...

MIN 84c+72t+60a; Optimal solution found

SUBJECT TO

90c+20t+40a>=200; MIN Z = 241.7143

30c+80t+60a>=180; 10c+20t+60a>=150;

END

DECISION VARIABLES

#### PLAIN VARIABLES

| t 1.1429<br>t 0.0000 | Variable Name | Activity |
|----------------------|---------------|----------|
| 2.4200               |               |          |

(b) [OBJECTIVE] MIN = 84\*C+72\*T+60\*A;

!CONSTRAINTS;

90\*C+20\*T+40\*A>=200; 30\*C+80\*T+60\*A>=180; 10\*C+20\*T+60\*A>=150;

Global optimal solution found at step:

Objective value:

241.7143

Variable Value C 1.142857 T 0.0000000 A 2.428571

# 3.6-6.

(a)

MODEL

END

SOLUTION RESULT

MIN x1+x2+x3;

SUBJECT TO

Optimal solution found

2x1+x2+0.5x3>=400;0.5x1+0.5x2+x3>=100;1.5x2+2x3>=300;

MIN Z = 300.0000

Variable Name Activity x1 100.0000 x2 200.0000 x3 0.0000

(b)

[OBJECTIVE] MIN = X+Y+Z;

!CONSTRAINTS;

2\*X+Y+0.5\*Z>=400;0.5\*X+0.5\*Y+Z>=100;1.5\*Y+2\*Z>=300;

> Global optimal solution found at step: Objective value:

300.0000

Global optimal solution found at step: Objective value:

21 709.6000

## 3.6-7.

(a) The problem is to choose the amount of paper type k to be produced on machine type l at paper m ill k and to be shipped to custom er j, which we can represent as  $x_{ijkl}$  for i = 1, ..., 10; j = 1, ..., 1000; k = 1, ..., 5 and l = 1, 2, 3. The objective is to minimize

$$\sum_{i,k,l} P_{ikl} \left( \sum_{j} x_{ijkl} \right) + \sum_{i,j,k} T_{ijk} \left( \sum_{l} x_{ijkl} \right)$$

subject to

Note that  $\sum_{l} x_{ijkl}$  is the total am ount of paper type k shipped to custom er j from paper mill i and  $\sum_{j} x_{ijkl}$  is the total am ount of paper type k made on machine type l at paper mill i

(b) 1000\*5 + 10\*4 + 10\*3 = 5,070 functional constraints 10\*1000\*5\*3 = 150,000 decision variables

(c) TITLE PaperManufacturing; INDEX mill = 1..10;customer = 1..1000; machine = 1..3; material = 1..4;paper = 1..5; Required[customer,paper] = DATAFILE(Required.dat); Rate1[paper,machine,material] = DATAFILE(Rate1.dat); RawMaterial[mill,material] = DATAFILE(RawMaterial.dat); Rate2[paper,machine] = DATAFILE(Rate2.dat); MaxCapacity[mill, machine] = DATAFILE(MaxCapacity.dat); ProdCost[mill,paper,machine] = DATAFILE(ProdCost); TranspCost[mill,customer,paper] = DATAFILE(TranspCost); DECISION VARIABLES Quantity[mill,customer,machine,paper] -> ""

```
MODEL
     MIN TotalCost = SUM(mill,customer,machine,paper: ProdCost * Quantity)
         + SUM(mill, customer, machine, paper: TranspCost * Quantity);
SUBJECT TO
     Demand[customer,paper] : SUM(mill,machine: Quantity) >= Required ;
     Supply[mill,material] : SUM(customer,paper,machine: Ratel * Quantity) <= RawMaterial;
Capacity[mill,machine] : SUM(customer,paper: Rate2 * Quantity) < MaxCapacity;</pre>
END
(d)
MODEL:
SETS:
MILLS /1..10/;
CUSTOMERS /1..1000/;
MACHINES /1..3/;
MATERIALS /1..4/;
PAPER /1..5/;
LINK1 (CUSTOMERS, PAPER): DEMAND;
LINK2 (PAPER, MACHINES, MATERIALS): RATE1;
LINK3 (MILLS, MATERIALS): CAPACITY1;
LINK4 (PAPER, MACHINES): RATE2;
LINK5 (MILLS, MACHINES): CAPACITY2;
LINK6 (MILLS, PAPER, MACHINES): PROD_COST;
LINK7 (MILLS, CUSTOMERS, PAPER): TRANSP_COST;
LINK8 (MILLS, CUSTOMERS, PAPER, MACHINES): QUANTITY;
ENDSETS
!OBJECTIVE IS TO MINIMIZE PRODUCTION COST + TRANSPORTATION COST;
MIN = @SUM(LINK6(I,K,L):PROD_COST(I,K,L) * @SUM(CUSTOMERS(J): QUANTITY(I,J,K,L))) +
       @SUM(LINK7(I, J, K): TRANSP_COST * @SUM(MACHINES(L): QUANTITY(I, J, K, L)));
!DEMAND CONSTRAINTS:
@FOR(LINK1(J,K): @SUM(MILLS(I): @SUM(MACHINES(L): QUANTITY(I,J,K,L)))>= DEMAND(J,K));.
! RAW MATERIALS SUPPLY CONSTRAINTS;
@FOR(LINK3(I,M): @SUM(PAPER(K): @SUM(MACHINES(L): RATE1(K,L,M)*@SUM(CUSTOMERS(J):
QUANTITY(I,J,K,L)))) <= CAPACITY1(I,M));
!CAPACITY SUPPLY CONSTRAINTS;
@FOR(LINK5(I,L): @SUM(PAPER(K): RATE2(K,L) * @SUM(CUSTOMERS(J): QUANTITY(I,J,K,L))) <=
CAPACITY2(I,L));
!READ DATA FROM AN EXCEL FILE;
DATA:
DEMAND, RATE1, CAPACITY1, RATE2, CAPACITY2, PROD_COST, TRANSP_COST =
@WKX('C:\LINGO\DATA.WK4','DEMAND','RATE1','CAPACITY1','RATE2','CAPACITY2','PROD_COST','TRA
NSP_COST');
ENDDATA
END
3.7-1.
```

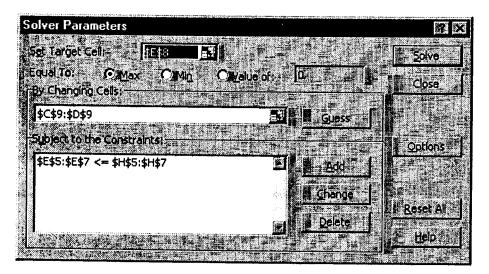
Answers will vary.

#### 3.7-2.

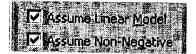
Answers will vary.

# <u>Cases</u>

- a) In this case, we have two decision variables: one variable to determine the number of Family Thrillseekers we should assemble and one variable to determine the number of Classy Cruisers we should assemble. We also have the following three constraints:
  - 1. The plant has a maximum of 48,000 labor hours. Each Thrillseeker requires six labor hours, and each Cruiser requires 10.5 labor hours. The sum of the total number of labor hours required to assemble all Thrillseekers and all Cruisers must be less than or equal to 48,000 hours.
  - 2. The plant has a maximum of 20,000 doors available. Each Thrillseeker requires four doors, and each Cruiser requires two doors. The sum of the total number of doors required to assemble all Thrillseekers and all Cruisers must be less than or equal to 20,000 doors.
  - 3. Because the demand for Cruisers is limited to 3,500 cars, the decision variable for the number of Cruisers we should assemble must be less than or equal to 3,500.


The formulas used in the problem formulation follow.

|   | Α | В                   | С            | D       | E                        | F | G | Н          |
|---|---|---------------------|--------------|---------|--------------------------|---|---|------------|
| 3 |   |                     | Thrillseeker | Cruiser | Totals                   |   |   | Right-Hand |
| 4 |   | Cons traint         |              |         |                          |   |   | Side       |
| 5 |   | Labor Hours         | 6            | 10.5    | =SUMPRODUCT(C5:D5,C9:D9) | < | = | 48000      |
| 6 |   | Doors               | 4            | 2       | =SUMPRODUCT(C6:D6,C9:D9) | ٧ | = | 20000      |
| 7 |   | Cruiser Demand      | 0            | 1       | =SUMPRODUCT(C7:D7,C9:D9) | < | = | 3500       |
| 8 |   | Profit (\$thousands | <b>3</b> .6  | 5.4     | =SUMPRODUCT(C8:D8,C9:D9) |   |   |            |
| 9 |   | Solution            | 3800         | 2400    |                          |   |   |            |


The values used in the problem formulation follow.

|   | Α | В                   | C            | D       | E      | F  | G | Н          |
|---|---|---------------------|--------------|---------|--------|----|---|------------|
| 3 |   |                     | Thrillseeker | Cruiser | Totals |    |   | Right-Hand |
| 4 | L | Constraint          |              |         |        |    |   | Side       |
| 5 |   | Labor Hours         | 6            | 10,5    | 48000  | )< | = | 48000      |
| 6 |   | Doors               | 4            | 2       | 20000  | ٧  | = | 20000      |
| 7 |   | Cruiser Demand      | 0            | 1       | 2400   | ٧  | = | 3500       |
| 8 |   | Profit (\$thousands | ) 3.6        | 5.4     | 26640  |    |   |            |
| 9 |   | Solution            | 3800         | 2400    |        |    |   |            |

We specify the following Solver settings.



Finally, throughout this case we use the following solver options.



Rachel's plant should assemble 3,800 Thrillseekers and 2,400 Cruisers to obtain a maximum profit of \$26,640,000.

- b) In part (a) above, we observed that the Cruiser demand constraint was not binding. Therefore, raising the demand for the Cruiser will not change the optimal solution. The marketing campaign should not be undertaken.
- c) The new value of the right-hand side of the labor constraint becomes 48,000 \* 1.25 = 60,000 labor hours. All formulas and Solver settings used in part (a) remain the same. The values for the problem formulation follow.

|   | Α | В                   | Ç            | D       | E      | F  | G | Н          |
|---|---|---------------------|--------------|---------|--------|----|---|------------|
| 3 |   |                     | Thrillseeker | Cruiser | Totals |    |   | Right-Hand |
| 4 |   | Constraint          |              |         |        |    |   | Side       |
| 5 |   | Labor Hours         | 6            | 10.5    | 56250  | )< | = | 60000      |
| 6 |   | Doors               | 4            |         | 20000  |    |   | 20000      |
| 7 |   | Cruiser Demand      | 0            | 1       | 3500   | <  | = | 3500       |
| 8 |   | Profit (\$thousands | ) 3.6        | 5.4     | 30600  |    |   |            |
| 9 |   | Solution            | 3250         | 3500    |        |    |   |            |

Rachel's plant should now assemble 3,250 Thrillseekers and 3,500 Cruisers to achieve a maximum profit of \$30,600,000.

d) Using over time labor increases the profit by \$30,600,000 - \$26,640,000 = \$3,960,000. Rachel should therefore be willing to pay at most \$3,960,000 extra for overtime labor beyond regular time rates.

e) The value of the right-hand side of the Cruiser demand constraint is 3,500 \* 1.20 = 4,200 cars. The value of the right-hand side of the labor hour constraint is 48,000 \* 1.25 = 60,000 hours. All formulas and Solver settings used in part (a) remain the same. Ignoring the costs of the advertising campaign and overtime labor, the values for the problem formulation follow.

|   | Α | В                   | С            | D       | E      | F  | G | Н          |
|---|---|---------------------|--------------|---------|--------|----|---|------------|
| 3 |   |                     | Thrillseeker | Cruiser | Totals |    |   | Right-Hand |
| 4 |   | Constraint          |              |         |        |    |   | Side       |
| 5 |   | Labor Hours         | 6            | 10.5    | 60000  | )< | = | 60000      |
| 6 |   | Doors               | 4            | 2       | 20000  | )< | = | 20000      |
| 7 |   | Cruiser Demand      | 0            | 1       | 4000   | <  | = | 4200       |
| 8 |   | Profit (\$thousands | ) 3.6        | 5.4     | 32400  |    |   |            |
| 9 |   | Solution            | 3000         | 4000    |        |    |   |            |

Rachel's plant should produce 3,000 Thrillseekers and 4,000 Cruisers for a maximum profit of \$32,400,000. This profit excludes the costs of advertising and using overtime labor.

The advertising campaign costs \$500,000. In the solution to part (e) above, we used the maximum overtime labor available, and the maximum use of overtime labor costs \$1,600,000. Thus, our solution in part (e) required an extra \$500,000 + \$1,600,000 = \$2,100,000. We perform the following cost/benefit analysis:

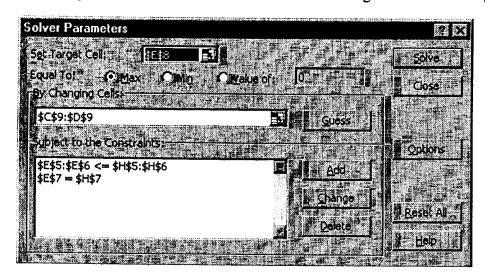
Profit in part (e): \$32,400,000

- Advertising and overtime costs: \$2,100,000
\$30,300,000

We compare the \$30,300,000 profit with the \$26,640,000 profit obtained in part (a) and conclude that the decision to run the advertising campaign and use overtime labor is a very wise, profitable decision.

3) Because we consider this question independently, the values of the right-hand sides for the Cruiser demand constraint and the labor hour constraint are the same as those in part (a). We now change the profit for the Thrillseeker from 3.6 to 2.8 in the problem formulation. All formulas and Solver settings used in part (a) remain the same. The values for the problem formulation follow.

|   | Α | В                   | O            | D       | E      | F | G  | Н          |
|---|---|---------------------|--------------|---------|--------|---|----|------------|
| 3 |   |                     | Thrillseeker | Cruiser | Totals |   |    | Right-Hand |
| 4 |   | Constraint          |              |         |        |   |    | Side       |
| 5 |   | Labor Hours         | 6            | 10.5    | 48000  | < | =  | 48000      |
| 6 |   | Doors               | 4            | 2       | 14500  |   |    | 20000      |
| 7 |   | Cruiser Demand      | 0            | 1       | 3500   | ٧ | 11 | 3500       |
| 8 |   | Profit (\$thousands | ) 2.8        | 5.4     | 24150  |   |    |            |
| 9 |   | Solution            | 1875         | 3500    |        |   |    |            |


Rachel's plant should assemble 1,875 Thrillseekers and 3,500 Cruisers to obtain a maximum profit of \$24,150,000.

h) Because we consider this question independently, the profit for the Thrillseeker remains the same as the profit specified in part (a). The labor hour constraint changes. Each Thrillseeker now requires 7.5 hours for assembly. All formulas and Solver settings used in part (a) remain the same. The values for the new problem formulation follow.

|     | Α | В                   | С            | D       | Е      | F          | G  | Н          |
|-----|---|---------------------|--------------|---------|--------|------------|----|------------|
| 3   | L |                     | Thrillseeker | Cruiser | Totals |            |    | Right-Hand |
| 4   |   | Constraint          |              |         |        |            |    | Side       |
| 5   |   | Labor Hours         | 7.5          | 10.5    | 48000  | <          | =  | 48000      |
| 6   |   | Doors               | 4            | 2       | 13000  | <b>)</b> < |    | 20000      |
| _7_ |   | Cruiser Demand      | 0            | 1       | 3500   | <          | 11 | 3500       |
| 8   |   | Profit (\$thousands | ) 3.6        | 5.4     | 24300  |            |    |            |
| 9   |   | Solution            | 1500         | 3500    |        |            |    |            |

Rachel's plant should assemble 1,500 Thrillseekers and 3,500 Cruisers for a maximum profit of \$24,300,000.

i) Because we consider this question independently, we use the problem formulation used in part (a). In this problem, however, the number of Cruisers assembled has to be strictly equal to the total demand. We use the following new Solver settings:



The formulas used in the problem formulation remain the same as those used in part (a). The values used in the problem follow.

|   | Α        | В                   | С            | D       | Ε      | F          | G  | Н          |
|---|----------|---------------------|--------------|---------|--------|------------|----|------------|
| 3 |          |                     | Thrillseeker | Cruiser | Totals |            |    | Right-Hand |
| 4 | <u> </u> | Constraint          |              |         |        |            |    | Side       |
| 5 |          | Labor Hours         | 6            | 10.5    | 48000  | <          | =  | 48000      |
| 6 |          | Doors               | 4            | 2       | 14500  | <b>)</b> < | =  | 20000      |
| 7 |          | Cruiser Demand      | 0            | 1       | 3500   |            | 11 | 3500       |
| 8 |          | Profit (\$thousands | ) 3.6        | 5.4     | 25650  |            |    |            |
| 9 |          | Solution            | 1875         | 3500    |        |            |    |            |

The new profit is \$25,650,000, which is \$26,640,000 - \$25,650,000 = \$990,000 less than the profit obtained in part (a). This decrease in profit is less than \$2,000,000, so Rachel should meet the full demand for the Cruiser.

j) We now combine the new considerations described in parts (f), (g), and (h). In part (f), we decided to use both the advertising campaign and the overtime labor. The advertising campaign raises the demand for the Cruiser to 4,200 sedans, and the overtime labor increases the labor hour capacity of the plant to 60,000 labor hours. In part (g), we decreased the profit generated by a Thrillseeker to \$2,800. In part (h), we increased the time to assemble a Thrillseeker to 7.5 hours. Including the increased demand for Cruisers, the increased plant capacity, the decreased unit profit for a Thrillseeker, and the increased time to assemble a Thrillseeker, the new problem is formulated as follows:

|   | Α | В                   | С            | D       | E      | F | G | Н          |
|---|---|---------------------|--------------|---------|--------|---|---|------------|
| 3 |   | ·                   | Thrillseeker | Cruiser | Totals |   |   | Right-Hand |
| 4 |   | Constraint          |              |         |        |   |   | Side       |
| 5 |   | Labor Hours         | 7.5          | 10.5    | 60000  |   |   | 60000      |
| 6 |   | Doors               | 4            | 2       | 16880  | < | = | 20000      |
| 7 |   | Cruiser Demand      | 0            | 1       | 4200   | < | = | 4200       |
| 8 |   | Profit (\$thousands |              |         | 28616  |   |   |            |
| 9 |   | Solution            | 2120         | 4200    |        | _ |   |            |

The formulas and Solver settings used for this problem are the same as those used in part (a). Rachel's plant should assemble 2,120 Thrillseekers and 4,200 Cruisers for a maximum profit of \$28,616,000 - \$2,100,000 = \$26,516,000.

3-2 a) We want to determine the amount of potatoes and green beans Maria should purchase to minimize ingredient costs. We have two decision variables: one variable to represent the amount (in pounds) of potatoes Maria should purchase and one variable to represent the amount (in pounds) of green beans Maria should purchase. We also have constraints on nutrition, taste, and weight.

#### **Nutrition Constraints**

1. We first need to ensure that the dish has 180 grams of protein. We are told that 100 grams of potatoes have 1.5 grams of protein and 10 ounces of green beans have 5.67 grams of protein. Since we have decided to measure our decision variables in pounds, however, we need to determine the grams of protein in one pound of each ingredient.

We perform the following conversion for potatoes:

$$\frac{1.5g \text{ of protein}}{0.22046 \text{ lb of potatoes}} = \frac{6.804g \text{ of protein}}{1 \text{ lb of potatoes}}$$

We perform the following conversion for green beans:

10 oz of green beans 
$$\left(\frac{28.35 \text{ g}}{1 \text{ oz}}\right) = 283.5 \text{ g of green beans}$$
  
283.5 g of green beans  $\left(\frac{1 \text{ lb}}{453.6 \text{ g}}\right) = 0.625 \text{ lb of green beans}$   
 $\frac{5.67 \text{ g of protein}}{0.625 \text{ lb of green beans}} = \frac{9.072 \text{ g of protein}}{1 \text{ lb of green beans}}$ 

The total grams of protein in the potatoes and green beans Maria purchases for the casserole must be greater than or equal to 180 grams.

2. We next need to ensure that the dish has 80 milligrams of iron. We are told that 100 grams of potatoes have 0.3 milligrams of iron and 10 ounces of green beans have 3.402 milligrams of iron. Since we have decided to measure our decision variables in pounds, however, we need to determine the milligrams of iron in one pound of each ingredient.

We perform the following conversion for potatoes:

$$\frac{0.3 \text{ mg of iron}}{0.22046 \text{ lb of potatoes}} = \frac{1.3608 \text{ mg of iron}}{1 \text{ lb of potatoes}}$$

We perform the following conversion for green beans:

$$\frac{0.3402 \text{ mg of iron}}{0.625 \text{ lb of green beans}} = \frac{5.4432 \text{ mg of iron}}{1 \text{ lb of green beans}}$$

The total milligrams of iron in the potatoes and green beans Maria purchases for the

casserole must be greater than or equal to 80 milligrams.

3. We next need to ensure that the dish has 1,050 milligrams of vitamin C. We are told that 100 grams of potatoes have 12 milligrams of vitamin C and 10 ounces of green beans have 28.35 milligrams of vitamin C. Since we have decided to measure our decision variables in pounds, however, we need to determine the milligrams of vitamin C in one pound of each ingredient.

We perform the following conversion for potatoes:

$$\frac{12 \text{ mg of vitamin C}}{0.22046 \text{ lb of potatoes}} = \frac{54.432 \text{ mg of vitamin C}}{1 \text{ lb of potatoes}}$$

We perform the following conversion for green beans:

$$\frac{28.35 \text{ mg of vitamin C}}{0.625 \text{ lb of green beans}} = \frac{45.36 \text{ mg of vitamin C}}{1 \text{ lb of green beans}}$$

The total milligrams of vitamin C in the potatoes and green beans Maria purchases for the casserole must be greater than or equal to 1,050 milligrams.

#### **Taste Constraint**

Edson requires that the casserole contain at least a six to five ratio in the weight of potatoes to green beans. We have:

$$\frac{\text{pounds of potatoes}}{\text{pounds of green beans}} > \frac{6}{5}$$

5 (pounds of potatoes) > 6 (pounds of green beans)

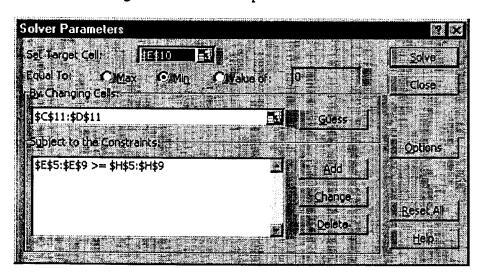
Weight Constraint

Finally, Maria requires a minimum of 10 kilograms of potatoes and green beans together. Because we measure potatoes and green beans in pounds, we must perform the following conversion:

10 kg of potatoes and green beans 
$$\left(\frac{1000 \text{ g}}{1 \text{ kg}}\right) \left(\frac{1 \text{ lb}}{453.6 \text{ g}}\right)$$

= 22.046 lb of potatoes and green beans

The amount of potatoes and green beans Maria purchases must weigh 22.046 pounds or more.


The formulas used in the problem formulation follow.

|    | Α | В              | С          | D           | Ε                          | F  | G  | H           |
|----|---|----------------|------------|-------------|----------------------------|----|----|-------------|
| 3  |   |                | Pot a toes | Green Beans | Totals                     |    |    | Flight-Hand |
| 4  |   | Constraint     |            | 1           |                            |    |    | Side        |
| 5  |   | Protein (g)    | 6.804      | 9.072       | =SUMPRODUCT(C5:D5,C11:D11) | >  | =  | 180         |
| 6  |   | Iron (mg)      | 1.3608     | 5.4432      | =SUMPRODUCT(C6:D6,C11:D11) | ۸  | II | 80          |
| 7  |   | Vitamin C (mg) | 54.432     | 45.36       | =SUMPRODUCT(C7:D7.C11:D11) | >  | =  | 1050        |
| 8  |   | Taste          | 5          | -6          | =SUMPRODUCT(C8:D8,C11:D11) | >  | =  | 0           |
| 9  |   | Amount (lb)    | 1          | 1           | =SUMPRODUCT(C9:D9,C11:D11) | ۸  | 11 | 22.046      |
| 10 |   | Cost (per lb)  | 0.4        | 1           | =SUMPRODUCT(C10:D10,C11:D1 | 1) |    |             |
| 11 |   | Solution (lb)  | 13.5667    | 11.3056     |                            |    |    |             |


The values for the problem and solution follow.

|    | Α | В             | C         | D           | Е          | F  | G | Н          |
|----|---|---------------|-----------|-------------|------------|----|---|------------|
| 3  |   |               | Po tatoes | Green Beans | Totals     |    |   | Right-Hand |
| 4  |   | Const raint   | -         |             |            |    |   | Side       |
| 5  |   | Protein (g)   | 6.804     | 9.072       | 194.871794 | 9  | = | 180        |
| 6  |   | Iron (mg)     | 1.3608    | 5.4432      | 80         | ۸  | = | 80         |
| 7  |   | Vitamin C (mg | 54.432    | 45.36       | 125128205  | ₽  | = | 1050       |
| 8  |   | Taste         | 5         | -6          | 0          | ۸  | = | 0          |
| 9  |   | Amount (lb)   | 1         | 1           | 24.8722470 | g) | = | 22.046     |
| 10 |   | Cost (per lb) | 0.4       | 1           | 16.7322389 | 5  |   |            |
| 11 |   | Solution (lb) | 13.567    | 11.306      |            |    |   |            |

The Solver settings used to solve the problem follow.



Finally, throughout this case we use the following Solver options.



Maria should purchase 13.567 lb of potatoes and 11.306 lb of green beans to obtain a minimum cost of \$16.73.

b) The taste constrint changes. The new constraint is now.

$$\frac{\text{pounds of potatoes}}{\text{pounds of green beans}} > \frac{1}{2}$$

2 (pounds of potatoes) > 1 (pounds of green beans)

The formulas and Solver settings used to solve the problem remain the same as in part (a). The values for the problem and solution follow.

|    | Α | В             | С         | D           | E           | F  | G  | Н          |
|----|---|---------------|-----------|-------------|-------------|----|----|------------|
| 3  |   |               | Po tatoes | Green Beans | Totals      |    |    | Right-Hand |
| 4  |   | Const raint   |           |             |             |    |    | Side       |
| 5  |   | Protein (g)   | 6.804     | 9.072       | 180         | >  | =  | 180        |
| 6  |   | Iron (mg)     | 1.3608    | 5.4432      | 80          | ۸  | =  | 80         |
| 7  |   | Vitamin C (mg | 54.432    | 45.36       | 1110        | >  | =_ | 1050       |
| 8  |   | Taste         | 2         | -1          | 8.45091122  | 9  | =  | 0          |
| 9  |   | Amount (lb)   | 1         | 1           | 22.4 132863 | 3> | =  | 22.046     |
| 10 |   | Cost (per lb) | 0.4       | 1           | 16.2404468  | _  |    |            |
| 11 |   | Solution (lb) | 10.288    | 12.125      |             |    |    |            |

Maria should purchase 10.288 lb of potatoes and 12.125 lb of green beans to obtain a minimum cost of \$16.24.

c) The right-hand side of the iron constraint changes from 80 mg to 65 mg. The formulas and Solver settings used in the problem remain the same as in part (a). The values for the new problem formulation and solution follow.

|    | Α | В             | С        | D           | Е           | F | G | Н          |
|----|---|---------------|----------|-------------|-------------|---|---|------------|
| 3  |   |               | Potatoes | Green Beans | Totals      |   |   | Right-Hand |
| 4  |   | Const raint   |          |             |             |   |   | Side       |
| 5  |   | Protein (g)   | 6.804    | 9.072       | 180         | > | = | 180        |
| 6  |   | Iron (mg)     | 1.3608   | 5.4432      | 65          | > | = | 65         |
|    |   | Vitamin C (mg | 54,432   | 45.36       | 1 222.5     | > | = | 1050       |
| 8  | L | Tast e        | 5        | -6          | 31.0479129  | ₽ | = | 0          |
| 9  |   | Amount (lb)   | 1        | 1           | 23.7911522  | β | = | 22.046     |
| 10 |   | Cost (per lb) | 0.4      | 1           | 14.31143445 |   |   |            |
| 11 |   | Solution (lb) | 15.800   | 7.992       |             | _ |   |            |

Maria should purchase 15.8 lb of potatoes and 7.992 lb of green beans to obtain a minimum cost of \$14.31.

d) The iron requirement remains 65 mg. We need to change the price per pound of green beans from \$1.00 per pound to \$0.50 per pound. The formulas and Solver settings used in the problem remain the same as in part (a). The values for the new problem formulation and solution follow.

|    | Α | В             | С         | D           | E          | F | G | Н          |
|----|---|---------------|-----------|-------------|------------|---|---|------------|
| 3  |   |               | Po tatoes | Green Beans | Totals     |   |   | Right-Hand |
| 4  |   | Const raint   |           |             |            |   |   | Side       |
| 5  |   | Protein (g)   | 6.804     | 9.072       | 1 80       | > | = | 180        |
| 6  |   | Iron (mg)     | 1.3608    | 5.4432      | 73.8947368 | 4 | = | 65         |
| 7  |   | Vitamin C (mg | 54.432    | 45.36       | 1155.78947 | 4 | = | 1050       |
| 8  |   | Taste         | 5         | -6          | 0          | > | = | 0          |
| 9  |   | Amount (lb)   | 1         | 1           | 22.9741019 | 2 | = | 22.046     |
| 10 |   | Cost (per lb) | 0.4       | 0.5         | 10.2339181 | 3 |   |            |
| 11 |   | Solution (lb) | 12.531    | 10.443      |            |   |   |            |

Maria should purchase 12.531 lb of potatoes and 10.443 lb of green beans to obtain a minimum cost of \$10.23.

e) We still have two decision variables: one variable to represent the amount (in pounds) of potatoes Maria should purchase and one variable to represent the amount (in pounds) of lima beans Maria should purchase. To determine the grams of protein in one pound of lima beans, we perform the following conversion:

$$\frac{22.68 \text{ g of protein}}{0.625 \text{ lb of lima beans}} = \frac{36.288 \text{ g of protein}}{1 \text{ lb of lima beans}}$$

To determine the milligrams of iron in one pound of lima beans, we perform the following conversion:

$$\frac{6.804 \text{ mg of iron}}{0.625 \text{ lb of lima beans}} = \frac{10.8864 \text{ mg of iron}}{1 \text{ lb of lima beans}}$$

Lima beans contain no vitamin C, so we do not have to perform a measurement conversion for vitamin C.

We change the decision variable from green beans to lima beans and insert the new parameters for protein, iron, vitamin C, and cost. The formulas and Solver settings used in the problem remain the same as in part (a). The values for the new problem formulation and solution follows.

|     | Α | В             | С         | D          | E          | F  | G | Н          |
|-----|---|---------------|-----------|------------|------------|----|---|------------|
| 3   |   |               | Po tatoes | Lima Beans | Totals     |    |   | Right-Hand |
| 4   |   | Const raint   |           |            |            |    |   | Side       |
| 5   |   | Protein (g)   | 6.804     | 36.288     | 260.416666 | 3  | = | 180        |
| 6   | L | Iron (mg)     | 1.3608    | 10.8864    | 65         | ۸. | = | 65         |
| _7_ |   | Vitamin C (mg | 54.432    | 0          | 1050       | ^  | = | 1050       |
| 8   |   | Taste         | 5         | -6         | 75.094     | >  | = | 0          |
| 9   |   | Amount (lb)   | 1         | _ 1        | 22.8496105 | ઢ  | = | 22.046     |
| 10  |   | Cost (per lb) | 0.4       | 0.6        | 9.85174162 | 3  |   |            |
| 11  |   | Solution (lb) | 19.290    | 3.559      |            |    |   |            |

Maria should purchase 19.29 lb of potatoes and 3.559 lb of lima beans to obtain a minimum cost of \$9.85.

f) Edson takes pride in the taste of his casserole, and the optimal solution from above does not seem to preserve the taste of the casserole. First, Maria forces Edson to use lima beans instead of green beans, and lima beans are not an ingredient in Edson's original recipe. Second, although Edson places no upper limit on the ratio of potatoes to beans, the above recipe uses an over five to one ratio of potatoes to beans. This ratio seems unreasonable since such a large amount of potatoes will overpower the taste of beans in the recipe.

g) We only need to change the values on the right-hand side of the iron and vitamin C constraints. The formulas and Solver settings used in the problem remain the same as in part (a). The values used in the new problem formulation and solution follow.

|     | Α  | В             | С         | D          | Е          | F | G | Н          |
|-----|----|---------------|-----------|------------|------------|---|---|------------|
| 3   | L  |               | Po tatoes | Lima Beans | Totals     |   |   | Right-Hand |
| 4   |    | Const raint   |           |            |            |   |   | Side       |
| 5   |    | Protein (g)   | 6.804     | 36.288     | 428.571803 | 4 | = | 180        |
| 6   | L. | Iron (mg)     | 1.3608    | 10.8864    | 120        | > | = | 120        |
| LZ. |    | Vitamin C (mg | 54.432    | 0          | 685.723282 | 3 | = | 500        |
| 8   |    | Taste         | 5         | -6         | 6.300      | ^ | = | 0          |
| 9   |    | Amount (lb)   | 1         | 1          | 22.046     | ^ | = | 22.046     |
| 10  |    | Cost (per lb) | 0.4       | 0.6        | 10.7080406 | 1 |   |            |
| 11  |    | Solution (lb) | 12.598    | 9.448      |            |   |   |            |

Maria should purchase 12.598 lb of potatoes and 9.448 lb of lima beans to obtain a minimum cost of \$10.71.

3-3 a) The number of operators that the hospital needs to staff the call center during each two-hour shift can be found in the following table:

|   | A           | В                 | С                    | D                    | ΙE                  | F                   |
|---|-------------|-------------------|----------------------|----------------------|---------------------|---------------------|
|   | WORK        | average number or | number of calls from | number of calls from | number of operators | number of operators |
| 2 | shift       | calls per hour    | English speakers     | Spanish speakers     | speaking English    | speaking Spanish    |
|   | 7am to 9am  | 40                | 32                   | 8                    | 6                   | 2                   |
|   | 9am to 11am |                   | 68                   | 17                   | 12                  | 3                   |
|   | 11am to 1pm | 70                | 56                   | 14                   | 10                  | 3                   |
|   | 1pm to 3pm  | 95                | 76                   | 19                   | 13                  | <u>à</u>            |
| 7 | 3pm to 5pm  | 80                | 64                   | 16                   | 11                  | 3                   |
| 8 | 5pm to 7pm  | 35                | 28                   | 7                    | 5                   |                     |
| B | 7pm to 9pm  | 10                | 8                    | 2                    | 2                   | i                   |

For example, the average number of phone calls per hour during the shift from 7am to 9am equals 40. Since, on average, 80% of all phone calls are from English speakers, there is an average number of 32 phone calls per hour from English speakers during that shift. Since one operator takes, on average, 6 phone calls per hour, the hospital needs 32/6 = 5.333 English-speaking operators during that shift. The hospital cannot employ fractions of an operator and so needs 6 English-speaking operators for the shift from 7am to 9am.

b) The problems of determining how many Spanish-speaking operators and English-speaking operators Lenny needs to hire to begin each shift are independent. Therefore we can formulate two smaller linear programming models instead of one large model. We are going to have one model for the scheduling of the Spanish-speaking operators and another one for the scheduling of the English-speaking operators.

Lenny wants to minimize the operating costs while answering all phone calls. For the given scheduling problem we make the assumption that the only operating costs are the wages of the employees for the hours that they answer phone calls. The wages for the hours during which they perform paperwork are paid by other cost centers. Moreover, it does not matter for the callers whether an operator starts his or her work day with phone calls or with paperwork. For example, we do not need to distinguish between operators who start their day answering phone calls at 9am and operators who start their day with paperwork at 7am, because both groups of operators will be answering phone calls at the same time. And only this time matters for the analysis of Lenny's problem.

We define the decision variables according to the time when the employees have their first shift of answering phone calls. For the scheduling problem of the English-speaking operators we have 7 decision variables. First, we have 5 decision variables for full-time employees.

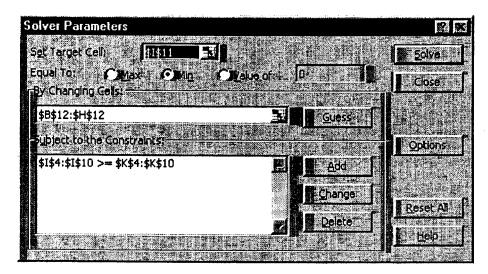
The number of operators having their first shift on the phone from 7am to 9am. The number of operators having their first shift on the phone from 9am to 11am. The number of operators having their first shift on the phone from 11am to 1pm. The number of operators having their first shift on the phone from 1pm to 3pm. The number of operators having their first shift on the phone from 3pm to 5pm.

In addition, we define 2 decision variables for part-time employees.

The number of part-time operators having their first shift from 3pm to 5pm. The number of part-time operators having their first shift from 5pm to 7pm.

The unit cost coefficients in the objective function are the wages operators earn while they answer phone calls. All operators who have their first shift on the phone from 7am to 9am, 9am to 11am, or 11am to 1pm finish their work on the phone before 5pm. They earn 4\*\$10 = \$40 during their time answering phone calls. All operators who have their first shift on the phone from 1pm to 3pm or 3pm to 5pm have one shift on the phone before 5pm and another one after 5pm. They earn 2\*\$10+2\*\$12 = \$44 during their time answering phone calls. The second group of part-time operators, those having their first shift from 5pm to 7pm, earn 4\*\$12 = \$48 during their time answering phone calls.

There are 7 constraints, one for each two-hour shift during which phone calls need to be answered. The right-hand sides for these constraints are the number of operators needed to ensure that all phone calls get answered in a timely manner. On the left-hand side we determine the number of operators on the phone during any given shift. For example, during the 11am to 1pm shift the total number of operators answering phone calls equals the sum of the number of operators who started answering calls at 7am and are currently in their second shift of the day and the number of operators who started answering calls at 11am.

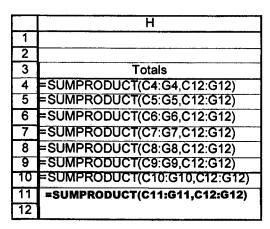

The following spreadsheet describes the entire problem formulation for the English-speaking employees:

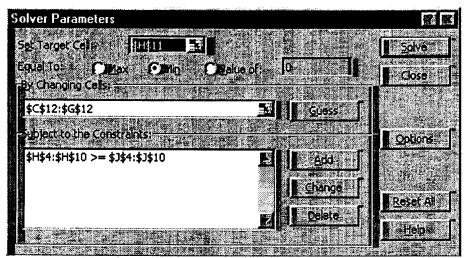
|    | A               | В          | C              | 0                | E               | F             | G                    | н Т            | 1      | þ         | K               |
|----|-----------------|------------|----------------|------------------|-----------------|---------------|----------------------|----------------|--------|-----------|-----------------|
| 1  |                 |            |                |                  |                 |               |                      |                |        |           |                 |
| 2  | Shifts of       |            | Number of open | ators whose firs | t shift of answ | ering phone c | alls in English is t | rom            |        |           | Required number |
| 3  | phone operators | /am to yam | Pam to 11am    | TTAM to 1 pm     | Ipm to 3pm      | ppm to 5pm    | Spm to 5pm (P)       | ppm to /pm (P) | lotals |           | of operators    |
| 4  | 7am to 9am      | 1          | 0              | 0                | 0               | 0             | 0                    | 0              | 6      | >±        | 6               |
| 5  | 9am to 11am     | 0          | 1 1            | 0                | 0               | 0             | 0                    | 0              | 13     | >=        | 12              |
| 6  | 11am to 1 pm    | 1          | 0              | 1                | 0               | 0             | 0                    | 0              | 10     | <b>-=</b> | 10              |
| 7  | 1pm to 3pm      | 0          | 1              | 0                | 1               | 0             | 0                    | 0              | 13     | >=        | 13              |
|    | 3pm to 5pm      | 0          | 0 -            | 1                | 0               | 1             | 1                    | 0              | 11     | >=        | 11              |
| 9  | 5pm to 7pm      | 0          | 0              | 0                | 1 1             | 0             | 1 1                  | 1 1            | 5      | >=        | 5               |
| 10 | 7pm to 9pm      | 0          | 0              | 0                | 0               | 1             | 0                    | 1              | 2      | >=        | 2               |
| 11 | Unit cost       | 40         | 40             | 40               | 44              | 44            | 44                   | 48             | 1228   | 1         | otal cost       |
| 12 | Solution        | 6          | 13             | 4                | 0               | 2             | 5                    | 0              |        | <u> </u>  |                 |

The following formulas are used in the problem formulation:

|    | <b>I</b>                     |
|----|------------------------------|
| 1  |                              |
| 2  |                              |
| 3  | Totals                       |
|    | =SUMPRODUCT(B4:H4,B12:H12)   |
|    | =SUMPRODUCT(B5:H5,B12:H12)   |
| 6  | =SUMPRODUCT(B6:H6,B12:H12)   |
|    | =SUMPRODUCT(B7:H7,B12:H12)   |
|    | =SUMPRODUCT(B8:H8,B12:H12)   |
| 9  | =SUMPRODUCT(B9:H9,B12:H12)   |
| 10 | =SUMPRODUCT(B10:H10,B12:H12) |
| 11 | =SUMPRODUCT(B11:H11,B12:H12) |
| 12 |                              |

The solver appears as follows:



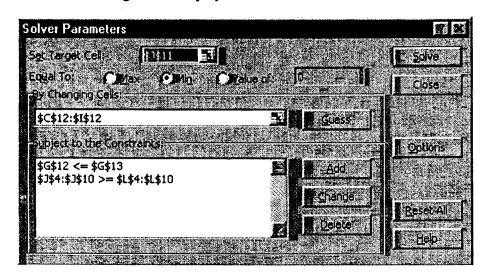


Throughout this analysis we use the following solver options:



The linear programming model for the Spanish-speaking employees can be developed in a similar fashion.

|    | Α | В               | С          | D                  | E            | F           | G          | Н      | - 1 | J               |
|----|---|-----------------|------------|--------------------|--------------|-------------|------------|--------|-----|-----------------|
| 1  |   |                 |            |                    |              |             |            |        |     |                 |
| 2  |   | Shifts of       |            | erators whose firs |              |             |            |        |     | Required number |
| 3  |   | phone operators | 7am to 9am | 9am to 11am        | 11am to 1 pm | 1 pm to 3pm | 3pm to 5pm | Totals |     | of operators    |
| 4  |   | 7am to 9am      | 1          | 0                  | 0            | 0           | 0          | 2      | >=  | 2               |
| 5  |   | 9am to 11am     | 0          | 1                  | 0            | 0           | 0          | 3      | >=  | 3               |
| 6  |   | 11am to 1 pm    | 1          | 0                  | 1            | 0           | 0          | 4      | >=  | 3               |
| 7  |   | 1 pm to 3pm     | 0          | 1                  | 0            | 1           | 0          | 5      | >=  | 4               |
| 8  |   | 3pm to 5pm      | 0          | 0                  | 1            | 0           | 1          | 3      | >=  | 3               |
| 9  |   | 5pm to 7pm      | 0          | 0                  | 0            | 1           | 0          | 2      | >=  | 2               |
| 10 |   | 7pm to 9pm      | 0          | 0                  | 0            | 0           | 1          | 1      | >=  | 1               |
| 11 |   | Unit cost       | 40         | 40                 | 40           | 44          | 44         | 412    | 2   | Total cost      |
| 12 |   | Solution        | 2          | 3                  | 2            | 2           | 1          | 7      |     |                 |






c) Lenny should hire 25 full-time English-speaking operators. Of these operators, 6 have their first phone shift from 7am to 9am, 13 from 9am to 11am, 4 from 11am to 1pm, and 2 from 3pm to 5pm. Lenny should also hire 5 part-time operators who start their work at 3pm. In addition, Lenny should hire 10 Spanish-speaking operators. Of these operators, 2 have their first shift on the phone from 7am to 9am, 3 from 9am to 11am, 2 from 11am to 1pm and 1pm to 3pm, and 1 from 3pm to 5pm. The total (wage) cost of running the calling center equals \$1640 per day.

d) The restriction that Lenny can find only one English-speaking operator who wants to start work at 1pm affects only the linear programming model for English-speaking operators. This restriction does not put a bound on the number of operators who start their first phone shift at 1pm because those operators can start work at 11am with paperwork. However, this restriction does put an upper bound on the number of operators having their first phone shift from 3pm to 5pm. The new worksheet appears as follows.

|    | Α | В               | С           | D              | E                 | F               | G               | Н                   | ı               | J      | К  | L               |
|----|---|-----------------|-------------|----------------|-------------------|-----------------|-----------------|---------------------|-----------------|--------|----|-----------------|
| 1  |   |                 |             |                |                   |                 |                 |                     |                 |        |    |                 |
| 2  |   | Shifts of       |             | vumber of oper | rators whose fire | t shift of ansv | vering phone of | calls in English is | from            |        |    | Required number |
| 3  | - | phone operators | 7 am to 9am | 9am to 11am    | 11am to 1 pm      | 1pm to 3pm      | 3pm to 5pm      | 3pm to 5pm (P)      | 5 pm to 7pm (P) | Totals |    | of operators    |
| 4  |   | 7am to 9am      | 1           | 0              | 0                 | 0               | 0               | Ò                   | 0               | 6      | ×  | - 6             |
| 5  |   | 9am to 11am     | 0           | 1              | 0                 | 0               | 0               | 0                   | 0               | 13     | >8 | 12              |
| 6  |   | 11am to 1 pm    | 1           | 0              | 1                 | 0               | Q               | 0                   | 0               | 12     | >= | 10              |
| 7  |   | 1pm to 3pm      | 0           | 1              | 0                 | 1               | 0               | 0                   | 0               | 13     | >= | 13              |
| 8  |   | 3pm to 5pm      | 0           | 0              | 1                 | 0               | 1               | 1                   | 0               | 11     | >5 | 11              |
| 9  |   | 5pm to 7pm      | 0.          | 0              | 0                 | 11              | 0               | 1                   | 1               | 5      | >3 |                 |
| 10 |   | 7pm to 9pm      | 0_          | 0              | 0                 | 0               | 11              | 0                   | 1               | 2      | >= | 2               |
| 11 |   | Unit cost       | 40          | 40             | 40                | 44              | 44              | 44                  | 48              | 1268   | Ξ  | Total cost      |
| 12 |   | Solution        | 6           | 13             | 6                 | Ö               | 1               | 4                   | 1 1             |        |    |                 |
| 13 |   | Upper bounds    | 1           | 1 - 1          |                   | 1               | 1               | 1                   |                 |        |    |                 |

The Solver dialogue box displays the additional constraint.



Lenny should hire 26 full-time English-speaking operators. Of these operators, 6 have their first phone shift from 7am to 9am, 13 from 9am to 11am, 6 from 11am to 1pm, and 1 from 3pm to 5pm. Lenny should also hire 4 part-time operators who start their work at 3pm and 1 part-time operator starting work at 5pm. The hiring of Spanish-speaking operators is unaffected. The new total (wage) costs equal \$1680 per day.

e) For each hour, we need to divide the average number of calls per hour by the average processing speed, which is 6 calls per hour. The number of bilingual operators that the hospital needs to staff the call center during each two-hour shift can be found in the following table:

|   | Α           | В                 | С                   |
|---|-------------|-------------------|---------------------|
| 1 | work        | average number of | number of operators |
| 2 | shift       | calls per hour    | speaking English    |
| 3 | 7am to 9am  | 40                | 7                   |
| 4 | 9am to 11am | 85                | 15                  |
| 5 | 11am to 1pm | 70                | 12                  |
| 6 | 1pm to 3pm  | 95                | 16                  |
| 7 | 3pm to 5pm  | 80                | 14                  |
| 8 | 5pm to 7pm  | 35                | 6                   |
| 9 | 7pm to 9pm  | 10                | 2                   |

f) The linear programming model for Lenny's scheduling problem can be found in the same way as before, only that now all operators are bilingual.

|    | Α                | 8          | _ c         | <u> </u>      | E          | E          | <b>G</b>         | Н              |        | 4    | к               |
|----|------------------|------------|-------------|---------------|------------|------------|------------------|----------------|--------|------|-----------------|
| 2  | Shifts of        |            |             |               |            |            | in both language |                |        | 1    | Required number |
| 3  | o hone operators | 7am to 9am | 9am to 11am | 11 am to 1 pm | 1pm to 3pm | 3pm to 5pm | 3pm to 5pm (P)   | 5pm to 7pm (P) | Totals | -    | of operators    |
| 4  | Zam to 9am       | 1          |             | 0             | - 0        | -          | -0               |                | 7      | _ == | 7               |
| 5  | 9 am to 11 am    | Ó          | 1           | Ö             | Õ          | 0          | 0                | 0              | 16     | >=   | 15              |
| 6  | 11am to 1 pm     | 1          | 0           | 1             | 0          | 0          | 0                | 0              | 13     | >=   | 12              |
| 7  | 1pm to 3pm       | 0          | 1           | 0             | 1          | 0          | 0                | 0              | 16     | >=   | 16              |
| В  | 3pm to 5pm       | 0          | 0           | 1             | 0          | 11         | 1                | 0              | 14     | >=   | 14              |
| ٥  | 5pm to 7pm       | 0          | 0           | 0             | 1          | 0          | 1                | 11             | 6      | >=   |                 |
| 10 |                  | 0          | . 0         | 0             | 0          | 1          | 0                | 11             | 2      | >=   | 2               |
| 11 |                  | 40         | 40          | 40            | 44         | 44         | 44               | 48             | 1512   |      | Total cost      |
| 12 | Solution         | 7          | 16          | 6             | 0          | 2          | 6                | 0              |        | ٠    | <u> </u>        |

(The formulas and the solver dialogue box are identical to those in part (b).)

Lenny should hire 31 full-time bilingual operators. Of these operators, 7 have their first phone shift from 7am to 9am, 16 from 9am to 11am, 6 from 11am to 1pm, and 2 from 3pm to 5pm. Lenny should also hire 6 part-time operators who start their work at 3pm. The total (wage) cost of running the calling center equals \$1512 per day.

g) The total cost of part (f) is \$1512 per day; the total cost of part (b) is \$1640. Lenny could pay an additional \$1640-\$1512 = \$128 in total wages to the bilingual operators without increasing the total operating cost beyond those for the scenario with only monolingual operators. The increase of \$128 represents a percentage increase of 128/1512 = 8.466%.

h) Creative Chaos Consultants has made the assumption that the number of phone calls is independent of the day of the week. But maybe the number of phone calls is very different on a Monday than it is on a Friday. So instead of using the same number of average phone calls for every day of the week, it might be more appropriate to determine whether the day of the week affects the demand for phone operators. As a result Lenny might need to hire more part-time employees for some days with an increased calling volume.

Similarly, Lenny might want to take a closer look at the length of the shifts he has scheduled. Using shorter shift periods would allow him to "fine tune" his calling centers and make it more responsive to demand fluctuations.

Lenny should investigate why operators are able to answer only 6 phone calls per hour. Maybe additional training of the operators could enable them to answer phone calls quicker and so increase the number of phone calls they are able to answer in an hour.

Finally, Lenny should investigate whether it is possible to have employees switching back and forth between paperwork and answering phone calls. During slow times phone operators could do some paperwork while they are sitting next to a phone, while in times of sudden large call volumes employees who are scheduled to do paperwork could quickly switch to answering phone calls.

Lenny might also want to think about the installation of an automated answering system that gives callers a menu of selections. Depending upon the caller's selection, the call is routed to an operator who specializes in answering questions about that selection.

# Cases 3.4

a) In this case, the decisions to be made are

TV = number of commercials on television

M = Number of advertisements in magazines

SS = Number of advertisements in Sunday supplements

The resulting linear programming model is

Maximize subject to

Exposures = 1,300 TV + 600 M + 500 SS

(1) Resource Constraints:

 $300 \text{ TV} + 150 \text{ M} + 100 \text{ SS} \le 4,000 \text{ (ad budget in $1,000s)}$ 

90 TV + 30 M + 40 SS  $\leq$  1,000 (planning budget in \$1,000s)

TV  $\leq$  5 (television spot avaiable)

(2) Benefit Constraints:

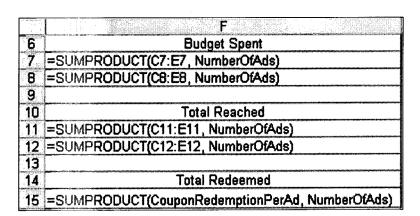
 $1.2 \text{ TV} + 0.1 \text{ M} \geq 5 \text{ (millions of young children)}$ 

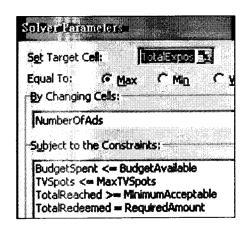
 $0.5 \text{ TV} + 0.2 \text{ M} + 0.2 \text{ SS} \ge 5 \text{ (millions of parents)}$ 

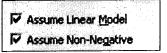
(3) Fixed-requirement Constraints:

40 TV + 120 SS = 5 (coupon budget in \$1,000s)

(4) Nonnegativity Constraints:


 $TV \ge 0$ ,  $M \ge 0$ ,  $SS \ge 0$ 


The linear programming spreadsheet model for this problem is shown below.


|                | A B                                     | C           | D                             | E      | F              | G  | H                  |
|----------------|-----------------------------------------|-------------|-------------------------------|--------|----------------|----|--------------------|
| 1              | Super Grain Corp. Adve                  | rtising-Mix | Problem                       |        |                |    |                    |
| 2              | *************************************** |             |                               |        |                |    |                    |
| 3              |                                         | TV Spots    | Magazine Ads                  | SS Ads |                |    |                    |
| 4              | Exposures per Ad                        | 1,300       | 600                           | 500    |                |    |                    |
| 5              | (thousands)                             |             |                               |        |                |    |                    |
| 6              |                                         |             | Cost per Ad (\$thousands)     |        | Budget Spent   |    | Budget Available   |
| 7              | Ad Budget                               | 300         | 150                           | 100    | 3,775          |    | 4,000              |
| 8              | Planning Budget                         | 90          | 30 110                        | 40     | 1,000          | ≤  | 1,000              |
| 9              |                                         |             |                               |        |                |    |                    |
| 10             |                                         |             | umber reached per Ad (million |        | Total Reached  |    | Minimum Acceptable |
| 11             | Young Children                          | 1.2         | 0.1 militar                   | .0     | 5              | >= | 5                  |
| 12<br>13<br>14 | Parents of Young Children               | 0.5         | 0,2                           | 0.2    | 6              | >= | - 5                |
| 13             |                                         |             |                               |        |                |    |                    |
| 14             |                                         | TV Spots    | Magazine Ads                  | SS Ads | Total Redeemed |    | Required Amount    |
| 15             | Coupon Redemption                       | 0           | 40                            | 120    | 1,490          |    | 1,490              |
| 16             | Per Ad (\$ thousand)                    |             |                               |        |                |    |                    |
| 17             |                                         |             |                               |        |                |    | Total Exposures    |
| 18             |                                         | TV Spots    | Magazine Ads                  | SS Ads |                |    | (thousands)        |
| 19<br>20       | Number of Ads                           | 3           | 14                            | 7.75   |                |    | 16,175             |
| 20             |                                         | ≤           |                               |        |                |    |                    |
| 21             | Max TV Spots                            | 5           |                               |        |                |    |                    |

| Range Name            | Cells   |
|-----------------------|---------|
| BudgetAvaiable -      | -H7:H8  |
| BudgetSpent           | F7:F8   |
| CostPerAd **          | C7:E8   |
| CouponRedemptionPerAd | C15:E15 |
| ExposuresPerAD        | C4:E4   |
| MaxTVSpots            | C21     |
| MinimumAcceptable     | H11:H12 |
| NumberOfAds           | C19:E19 |
| NumberReachedPerAds - | C11.E12 |
| RequiredAmount        | H15     |
| TotalExposures        | H19     |
| TotalReached          | F11:F12 |
| TotalRedeemed         | F15     |
| TVSpots               | C19     |

| 17 | Total Exposures                         |
|----|-----------------------------------------|
| 18 | (thousands)                             |
| 19 | SUMPRODUCT(ExposuresPerAd, NumberOfAds) |



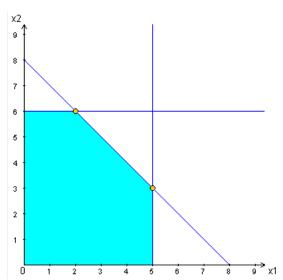




After making all entries in the Solver dialouge box shown as above, plus selecting usual two Solver options, the Solver find the following optimal plan for the promotional campaign (given in row 19):

Run 3 TV commericals.

Run 14 advertisements in magazines.


Run 7.75 advertisements in Sunday supplements.

- b) The violations of four assumptions of LP:
  - (1) Proportationality assumption: the advertisement cost may not be proportional to number of commercials on television or number of advertisements in magzines. The marginal cost for additional commercial can decrease.
  - (2) Additivity assumption: This assumption can be violated for benefit constraints because it states that there is no overlap between people who see the commercial on television or see the advertisements in magzine or Sunday suppleents
  - (3) Divisibility assumption: The decision variables in this case are number of commercial on TV or advertisements in magzines and Sunday supplements of major newspapers. Naturally, these variables should take on integer values.
  - (4) Certainty assumption: Since this LP model is formulated to select some future courses of actions, the parameters used in this case, such as Exposures per Ad or Number Reached per Ad, are based on a prediction of future situation, which inevitably introduces some degree of uncertainty.
- c) Since none of the assumptions appear to be badly violated, LP is reasonable at least as a first approximation. Later models, such as IP or NLP (as formulated in Case 12.3) can provide some refinement.

# CHAPTER 4: SOLVING LINEAR PROGRAMMING PROBLEMS: THE SIMPLEX METHOD

#### 4.1-1.

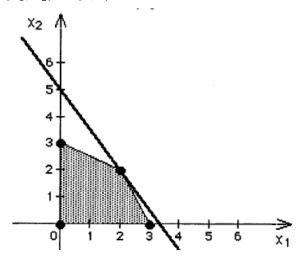
(a) Label the corner points as A, B, C, D, and E in the clockwise direction starting from (0,6).



- (b) A:  $x_1 = 0 \text{ and } x_2 = 6$ 
  - B:  $x_2 = 6$  and  $x_1 + x_2 = 8$
  - C:  $x_1 + x_2 = 8$  and  $x_1 = 5$
  - D:  $x_1 = 5 \text{ and } x_2 = 0$
  - E:  $x_2 = 0 \text{ and } x_1 = 0$
- (c) A:  $(x_1, x_2) = (0, 6)$ 
  - B:  $(x_1, x_2) = (6, 2)$
  - C:  $(x_1, x_2) = (5, 3)$
  - D:  $(x_1, x_2) = (5, 3)$ D:  $(x_1, x_2) = (5, 0)$
  - E:  $(x_1, x_2) = (0, 0)$
- Corner Point
   Adjacent Points

   A
   E, B

   B
   A, C


   C
   B, D

   D
   C, E

   E
   D, A
- (e) A and B:  $x_2 = 6$ 
  - B and C:  $x_1 + x_2 = 8$
  - C and D:  $x_1 = 5$
  - D and E:  $x_2 = 0$
  - E and A:  $x_1 = 0$

4.1-2.

(a) Optimal solution:  $(x_1^*, x_2^*) = (2, 2)$  with  $Z^* = 10$ 



Label the corner points as A, B, C, and D in the clockwise direction starting from (0,3).

(b)

| Corner Point | Corresponding Constraint Boundary Eq.s |                                               |
|--------------|----------------------------------------|-----------------------------------------------|
| A(0,3)       | $x_1 = 0 \text{ and } x_1 + 2x_2 = 6$  | $0 = 0$ and $0 + 2 \times 3 = 6$              |
| B(2,2)       | $x_1 + 2x_2 = 6$ and $2x_1 + x_2 = 6$  | $2 + 2 \times 2 = 6$ and $2 \times 2 + 2 = 6$ |
| C(3,0)       | $2x_1 + x_2 = 6$ and $x_2 = 0$         | $2 \times 3 + 0 = 6$ and $0 = 0$              |
| D(0,0)       | $x_1 = 0 \text{ and } x_2 = 0$         | 0 = 0  and  0 = 0                             |

| (c) | Corner Point | Adjacent Corner Points |
|-----|--------------|------------------------|
|     | A(0, 3)      | D(0,0) and $B(2,2)$    |
|     | B(2, 2)      | A(0,3) and $C(3,0)$    |
|     | C(3, 0)      | B(2,2) and $D(0,0)$    |
|     | D(0,0)       | C(3,0) and $A(0,3)$    |

(d) Optimal Solution:  $(x_1^*, x_2^*) = (2, 2)$  with  $Z^* = 10$ 

| Corner Point $(x_1, x_2)$ | $Profit = 3x_1 + 2x_2$ |
|---------------------------|------------------------|
| A(0,3)                    | 6                      |
| B(2,2)                    | 10                     |
| C(3,0)                    | 9                      |
| D(0,0)                    | 0                      |

(e)

| Corner Point | Profit | Next Step              |
|--------------|--------|------------------------|
| D(0, 0)      | 0      | Check $A$ and $C$ .    |
| A(0, 3)      | 6      | Move to $C$ .          |
| C(3,0)       | 9      | Check B.               |
| B(2,2)       | 10     | Stop, $B$ is optimal.* |

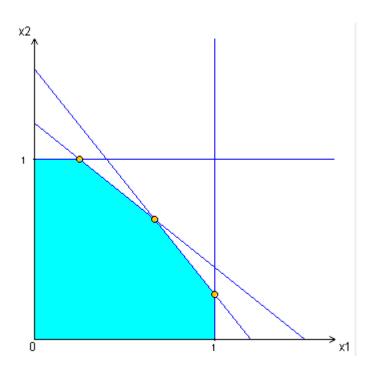
<sup>\*</sup> The next corner point is A, which has already been checked.

4.1-3.

(a)

| Corner Point $(A_1, A_2)$ | $Profit = 1,000A_1 + 2,000A_2$ |
|---------------------------|--------------------------------|
| (0,0)                     | 0                              |
| (8,0)                     | 8,000                          |
| (6,4)                     | 14,000                         |
| (5,5)                     | 15,000                         |
| (0, 6.667)                | 13,333                         |

Optimal Solution:  $(A_1^*,A_2^*)=(5,5)$  with  $Z^*=\$15,000$ 


(b) Initiated at the origin, the simplex method can follow one of the two paths:

$$(0,0) \to (8,0) \to (6,4) \to (5,5) \text{ or } (0,0) \to (0,6.7) \to (5,5).$$

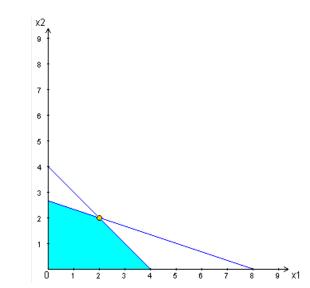
Consider the first path. The origin (0,0) is not optimal, since (0,6.7) and (8,0) are adjacent to (0,0), both are feasible and they have better objective values. (8,0) is not optimal because (6,4), which is adjacent to it, is feasible and better. (5,5) is optimal since both corner points that are adjacent to it are worse.

4.1-4.

(a)



(b)


|   | CP Solution                            | Feasibility | Objective |
|---|----------------------------------------|-------------|-----------|
| A | $\left(0,\frac{3}{2}\right)$           | Infeasible  | 6750      |
| В | $\left(0, \frac{6}{5}\right)$          | Infeasible  | 5400      |
| С | (0, 1)                                 | Feasible    | 4500      |
| D | $\left(\frac{1}{4},1\right)$           | Feasible    | 5625      |
| Е | $\left(\frac{2}{5},1\right)$           | Infeasible  | 6300      |
| F | (1,1)                                  | Infeasible  | 9000      |
| G | $\left(\frac{2}{3},\frac{2}{3}\right)$ | Feasible    | 6000 *    |
| Н | $(1, \frac{2}{5})$                     | Infeasible  | 6300      |
| I | $(1, \frac{1}{4})$                     | Feasible    | 5625      |
| J | (1,0)                                  | Feasible    | 4500      |
| K | $\left(\frac{6}{5},0\right)$           | Infeasible  | 5400      |
| L | $\left(\frac{3}{2},0\right)$           | Infeasible  | 6750      |
| M | (0,0)                                  | Feasible    | 0         |

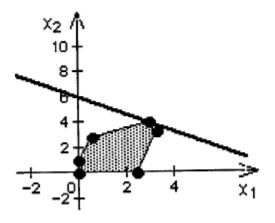
The point G is optimal.

(c) Start at the origin M=(0,0). Both adjacent points C=(1,0) and J=(0,1) are feasible and have better objective values, so one can choose to move to either one of them. Suppose we choose C, which is not optimal since its adjacent CPF solution D is better. The other corner point that is adjacent to C is B, but it is infeasible, so move to D. Its adjacent G is feasible and better. The CPF solutions that are adjacent to G, namely D and G both have lower objective values. Hence, G is optimal. If one chooses to proceed to G instead of G after the starting point, then the simplex path follows the points G0, G1, G2, G3, G4, G5, G5, G6, G6, G8, G9, G9,

#### 4.1-5.

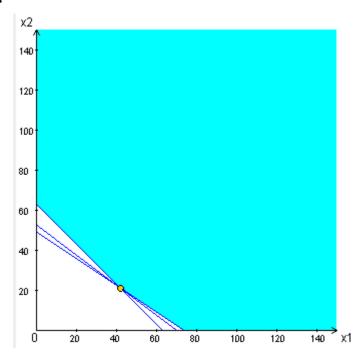
(a)




(b)

|   | CP Solution                  | Feasibility | Objective      |
|---|------------------------------|-------------|----------------|
| A | (0, 4)                       | Infeasible  | 8              |
| В | $\left(0,\frac{8}{3}\right)$ | Feasible    | $5\frac{1}{3}$ |
| С | (2,2)                        | Feasible    | 6 *            |
| D | (4,0)                        | Feasible    | 4              |
| Е | (8,0)                        | Infeasible  | 8              |
| F | (0,0)                        | Feasible    | 0              |

The point C is optimal.


(c) The starting point F is not optimal, since B and D have better objective values. The objective value z increases faster along the edge FB  $(5\frac{1}{3}/\frac{8}{3}=2)$  than along the edge FD (4/4=1), so we choose to move to point B. B is not optimal because the adjacent point C does better. Note that A is adjacent to B as well, but it is infeasible. C is optimal since the two CPF solutions adjacent to C, namely B and D have lower objective values.

4.1-6.



| Corner Point    | $Profit = 2x_1 + 3x_2$ | Next Step                             |
|-----------------|------------------------|---------------------------------------|
| (0,0)           | 0                      | Check $(2.5,0)$ and $(0,1)$ .         |
| (2.5,0)         | 5                      | Move to $(2.5, 0)$ .                  |
| (0,1)           | 3                      | Check (3.3333, 3.333).                |
| (3.3333, 3.333) | 16.667                 | Move to $(3, 4)$ . Check $(3, 4)$ .   |
| (3,4)           | 18                     | Move to $(3,4)$ . Check $(0.6,2.8)$ . |
| (0.6, 2.8)      | 9.6                    | Stop, $(3,4)$ is optimal.             |

#### 4.1-7.



| Corner Point | $Cost = 5x_1 + 7x_2$ | Next Step                         |
|--------------|----------------------|-----------------------------------|
| (42, 21)     | 357                  | Check $(73.5, 0)$ and $(0, 63)$ . |
| (73.5, 0)    | 367.5                | Stop, $(42, 21)$ is optimal.      |
| (0, 63)      | 441                  |                                   |

#### 4.1-8.

- (a) TRUE. Use optimality test. In minimization problems, "better" means smaller. To see this, note that min  $Z=-\max(-Z)$ .
- (b) FALSE. CPF solutions are not the only possible optimal solutions, there can be infinitely many optimal solutions. This is indeed the case when there are more than one optimal solution. For example, consider the problem

maximize 
$$Z = x_1 + x_2$$
 subject to 
$$x_1 + x_2 \leq 10$$
 
$$x_1, x_2 \geq 0$$

where  $Z^* = 10$ ,  $x_1^* = k$  and  $x_2^* = 10 - k$  with  $k \in [0, 10]$  are all optimal solutions.

(c) TRUE. However, this is not always true. It is possible to have an unbounded feasible region where an entire ray with only one CPF solution is optimal.

#### 4.1-9.

- (a) The problem may not have an optimal solution.
- (b) The optimality test checks whether the current corner point is optimal. The iterative step only moves to a new corner point.

- (c) The simplex method can choose the origin as the initial corner point only when it is feasible.
- (d) One of the adjacent points is likely to be better, not necessarily optimal.
- (e) The simplex method only identifies the rate of improvement, not all the adjacent corner points.

#### 4.2-1.

(a) Augmented form:

(b)

|   | CPF Solution                           | BF Solution                                                             | Nonbasic Variables | Basic Variables      |
|---|----------------------------------------|-------------------------------------------------------------------------|--------------------|----------------------|
| A | (0, 1)                                 | (0,1,1,0,2000,100)                                                      | $x_1, x_4$         | $x_2, x_3, x_5, x_6$ |
| В | $\left(\frac{1}{4},1\right)$           | $\left(\frac{1}{4}, 1, \frac{3}{4}, 0, 750, 0\right)$                   | $x_4, x_6$         | $x_1, x_2, x_3, x_5$ |
| С | $\left(\frac{2}{3},\frac{2}{3}\right)$ | $\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0\right)$ | $x_5, x_6$         | $x_1, x_2, x_3, x_4$ |
| D | $(1, \frac{1}{4})$                     | $\left(1, \frac{1}{4}, 0, \frac{3}{4}, 0, 75\right)$                    | $x_3,x_5$          | $x_1, x_2, x_4, x_6$ |
| Е | (1,0)                                  | (1,0,0,1,1000,200)                                                      | $x_2, x_3$         | $x_1, x_4, x_5, x_6$ |
| F | (0,0)                                  | (0,0,1,1,6000,600)                                                      | $x_1, x_2$         | $x_3, x_4, x_5, x_6$ |

(c) <u>BF Solution A:</u> Set  $x_1 = x_4 = 0$  and solve

$$x_3 = 1$$
  
 $x_2 = 1$   
 $4000x_2 + x_5 = 6000 \implies x_5 = 2000$   
 $500x_2 + x_6 = 600 \implies x_6 = 100$ 

BF Solution B: Set  $x_4 = x_6 = 0$  and solve

$$x_1 + x_3 = 1 \implies x_3 = 3/4$$
  
 $x_2 = 1$   
 $5000x_1 + 4000x_2 + x_5 = 6000 \implies x_5 = 750$   
 $400x_1 + 500x_2 = 600 \implies x_1 = 1/4$ 

BF Solution C: Set  $x_5 = x_6 = 0$  and solve

$$x_1 + x_3 = 1$$
  
 $x_2 + x_4 = 1$   
 $5000x_1 + 4000x_2 = 6000$   
 $400x_1 + 500x_2 = 600$ 

From the last two equations,  $x_1=x_2=2/3$  and from the first two,  $x_3=x_4=1/3$ .

BF Solution D: Set  $x_3 = x_5 = 0$  and solve

$$x_1 = 1$$
  
 $x_2 + x_4 = 1 \Rightarrow x_4 = 3/4$   
 $5000x_1 + 4000x_2 = 6000 \Rightarrow x_2 = 1/4$   
 $400x_1 + 500x_2 + x_6 = 600 \Rightarrow x_6 = 75$ 

BF Solution E: Set  $x_2 = x_3 = 0$  and solve

$$x_1 = 1$$
  
 $x_4 = 1$   
 $5000x_1 + x_5 = 6000 \implies x_5 = 1000$   
 $400x_1 + x_6 = 600 \implies x_6 = 200$ 

BF Solution F: Set  $x_1 = x_2 = 0$  and solve

$$x_3 = 1$$
  
 $x_4 = 1$   
 $x_5 = 6000$   
 $x_6 = 600$ 

#### 4.2-2.

(a) Augmented form:

$$\begin{array}{lllll} \text{maximize} & & x_1 + 2x_2 \\ \text{subject to} & & x_1 + 3x_2 + x_3 & = & 8 \\ & & x_1 + & x_2 & + x_4 & = & 4 \\ & & & x_1, x_2, x_3, x_4 & & \geq & 0 \end{array}$$

(b)

|   | CPF Solution       | BF Solution                        | Nonbasic Variables | Basic Variables |
|---|--------------------|------------------------------------|--------------------|-----------------|
| A | (0,0)              | (0,0,8,4)                          | $x_1, x_2$         | $x_3,x_4$       |
| В | $(0, \frac{8}{3})$ | $(0, \frac{8}{3}, 0, \frac{4}{3})$ | $x_{1}, x_{3}$     | $x_2, x_4$      |
| С | (2,2)              | (2,2,0,0)                          | $x_3,x_4$          | $x_1, x_2$      |
| D | (4,0)              | (4,0,4,0)                          | $x_{2}, x_{4}$     | $x_1, x_3$      |

(c) <u>BF Solution A:</u> Set  $x_1 = x_2 = 0$  and solve

$$x_3 = 8$$
$$x_4 = 4$$

BF Solution B: Set  $x_1 = x_3 = 0$  and solve

$$3x_2 = 8 \Rightarrow x_2 = 8/3$$
  
 $x_2 + x_4 = 4 \Rightarrow x_4 = 4/3$ 

BF Solution C: Set  $x_3 = x_4 = 0$  and solve

$$x_1 + 3x_2 = 8 x_1 + x_2 = 4$$

From these two equations,  $x_1 = x_2 = 2$ .

BF Solution D: Set  $x_2 = x_4 = 0$  and solve

$$x_1 + x_3 = 8 \implies x_3 = 4$$
  
 $x_1 = 4$ 

(d)

|   | CP Infeasible Sol.'n | Basic Infeasible Sol.'n | Nonbasic Var.'s | Basic Var.'s |
|---|----------------------|-------------------------|-----------------|--------------|
| Е | (0,4)                | (0,4,-4,0)              | $x_1, x_4$      | $x_2, x_3$   |
| F | (8,0)                | (8,0,0,-4)              | $x_{2}, x_{3}$  | $x_1, x_4$   |

(e) <u>Basic Infeasible Solution E:</u> Set  $x_1 = x_4 = 0$  and solve

$$3x_2 + x_3 = 8 \implies x_3 = -4$$
  
 $x_2 = 4$ 

Basic Infeasible Solution F: Set  $x_2 = x_3 = 0$  and solve

$$x_1 = 8$$
  
 $x_1 + x_4 = 4 \implies x_4 = -4$ 

#### 4.3-1.

After the sudden decline of prices at the end of 1995, Samsung Electronics faced the urgent need to improve its noncompetitive cycle times. The project called SLIM (short cycle time and low inventory in manufacturing) was initiated to address this problem. As part of this project, floor-scheduling problem is formulated as a linear programming model. The goal is to identify the optimal values "for the release of new lots into the fab and for the release of initial WIP from every major manufacturing step in discrete periods, such as work days, out to a horizon defined by the user" [p. 71]. Additional variables are included to determine the route of these through alternative machines. The optimal values "minimize back-orders and finished-goods inventory" [p. 71] and satisfy capacity constraints and material flow equations. CPLEX was used to solved the linear programs.

With the implementation of SLIM, Samsung significantly reduced its cycle times and as a result of this increased its revenue by \$1 billion (in five years) despite the decrease in selling prices. The market share increased from 18 to 22 percent. The utilization of machines was improved. The reduction in lead times enabled Samsung to forecast sales more accurately and so to carry less inventory. Shorter lead times also meant happier customers and a more efficient feedback mechanism, which allowed Samsung to respond to customer needs. Hence, SLIM did not only help Samsung to survive a crisis that drove many out of the business, but it did also provide a competitive advantage in the business.

#### 4.3-2.

Optimal Solution: 
$$\left(x_1^*, x_2^*\right) = \left(\frac{2}{3}, \frac{2}{3}\right), Z^* = 6000$$

$$\text{Max Z} = 4500 X_1 + 4500 X_2$$

subject to

- 1) 1  $X_1 + 0 X_2 \le 1$
- $0 x_1 + 1 x_2 \le 1$
- 3)  $5000 x_1 + 4000 x_2 \le 6000$
- 4)  $400 x_1 + 500 x_2 \le 600$

and

 $x_1 \ge 0, x_2 \ge 0.$ 

Solve Interactively by the Simplex Method:

| 0) | Z-4500 | $x_1$ | -450 | 0 | X2+     | . 0 | X3+ | 0   | X4+ | 0 | X5+ | 0 | X6 | = | 0    |
|----|--------|-------|------|---|---------|-----|-----|-----|-----|---|-----|---|----|---|------|
| 1) |        | $x_1$ |      |   | X2+     |     | X3+ | . 0 | X4+ | 0 | X5+ | 0 | X6 | Ē | 1    |
| 2) | 0      | Х1    | +    | 1 | X2+     | 0   | X3+ | 1   | X4+ | 0 | X5+ | 0 | X6 | = | 1    |
| 3) | 5000   | $x_1$ | +400 | 0 | $x_2 +$ | 0   | X3+ |     | X4+ | 1 | X5+ | 0 | X6 | = | 6000 |
| 4) | 400    | Х1    | + 50 | 0 | X2+     | 0   | X3+ | 0   | X4+ | 0 | X5+ | 1 | X6 | = | 600  |

 $x_1 \ge 0$ ,  $x_2 \ge 0$ ,  $x_3 \ge 0$ ,  $x_4 \ge 0$ ,  $x_5 \ge 0$ ,  $x_6 \ge 0$ .

 $x_1 \ge 0$ ,  $x_2 \ge 0$ ,  $x_3 \ge 0$ ,  $x_4 \ge 0$ ,  $x_5 \ge 0$ ,  $x_6 \ge 0$ .

 $x_1 \ge 0$ ,  $x_2 \ge 0$ ,  $x_3 \ge 0$ ,  $x_4 \ge 0$ ,  $x_5 \ge 0$ ,  $x_6 \ge 0$ .

0) 
$$Z+$$
 0  $X_1+$  0  $X_2+$  0  $X_3+$  0  $X_4+$  0.5  $X_5+$  5  $X_6=6000$   
1) 1  $X_1+$  0  $X_2+$  0  $X_3+$  0  $X_4+6e-4$   $X_5-4e-3$   $X_6=0.66667$   
2) 0  $X_1+$  0  $X_2+$  0  $X_3+$  1  $X_4+4e-4$   $X_5-6e-3$   $X_6=0.33333$   
3) 0  $X_1+$  1  $X_2+$  0  $X_3+$  0  $X_4-4e-4$   $X_5+6e-3$   $X_6=0.66667$   
4) 0  $X_1+$  0  $X_2+$  1  $X_3+$  0  $X_4-6e-4$   $X_5+4e-3$   $X_6=0.33333$ 

 $x_1 \ge 0$ ,  $x_2 \ge 0$ ,  $x_3 \ge 0$ ,  $x_4 \ge 0$ ,  $x_5 \ge 0$ ,  $x_6 \ge 0$ .

#### 4.3-3.

(a) maximize 
$$Z = x_1 + 2x_2$$
  
subject to  $x_1 + 3x_2 + x_3 = 8$   
 $x_1 + x_2 + x_4 = 4$   
 $x_1, x_2, x_3, x_4 \ge 0$ 

Initialization:  $x_1 = x_2 = 0 \implies x_3 = 8$ ,  $x_4 = 4$ ,  $z = x_1 + 2x_2 = 0$ , is not optimal since the improvement rates are positive. Since it offers a rate of improvement of 2, choose to increase  $x_2$ , which becomes the entering basic variable for Iteration 1. Given  $x_1 = 0$ , the highest possible increase in  $x_2$  is found by looking at:

$$x_3 = 8 - 3x_2 \ge 0 \implies x_2 \le 8/3$$
  
 $x_4 = 4 - x_2 > 0 \implies x_2 \le 4$ 

The minimum of these two bounds is 8/3, so  $x_2$  can be raised to 8/3 and  $x_3 = 0$  leaves the basis. Using Gaussian elimination, we obtain:

$$Z = \frac{1}{3}x_1 - \frac{2}{3}x_3 + \frac{16}{3}$$

$$\frac{1}{3}x_1 + x_2 + \frac{1}{3}x_3 = \frac{8}{3}$$

$$\frac{2}{3}x_1 - \frac{1}{3}x_3 + x_4 = \frac{4}{3}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Again  $(0, \frac{8}{3}, 0, \frac{4}{3})$  is not optimal since the rate of improvement for  $x_1$  is  $\frac{1}{3} > 0$  and  $x_1$  can be increased to 2. Consequently,  $x_4$  becomes 0. By Gaussian elimination:

$$Z = -\frac{1}{2}x_3 - \frac{1}{2}x_4 + 6$$

$$x_2 + \frac{1}{2}x_3 + \frac{1}{2}x_4 = 2$$

$$x_1 - \frac{1}{2}x_3 + \frac{3}{2}x_4 = 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

The current solution is optimal, since increasing  $x_3$  or  $x_4$  would decrease the objective value. Hence  $x^* = (2, 2, 0, 0), Z^* = 6$ .

(b) Optimal Solution: 
$$(x_1^*, x_2^*) = (2, 2), Z^* = 6$$

Solve Interactively by the Simplex Method:

0) 
$$Z-$$
 1  $X_1-$  2  $X_2+$  0  $X_3+$  0  $X_4=$  0  
1) 1  $X_1+$  3  $X_2+$  1  $X_3+$  0  $X_4=$  8  
2) 1  $X_1+$  1  $X_2+$  0  $X_3+$  1  $X_4=$  4

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0.$$

- 0)  $z_{-0.33} x_1 + 0 x_2 + 0.67 x_3 + 0 x_4 = 5.33333$
- $1 \ X_2 + 0.33 \ X_3 + 0 \ X_4 = 2.66667$ 1)  $0.333 X_1 +$
- 2)  $0.667 \times_{1} + 0 \times_{2} 0.33 \times_{3} + 1 \times_{4} = 1.33333$

 $x_1 \ge 0$ ,  $x_2 \ge 0$ ,  $x_3 \ge 0$ ,  $x_4 \ge 0$ .

- 0) Z+ 0  $X_1+$  0  $X_2+$  0.5  $X_3+$  0.5  $X_4=6$ 1) 0  $X_1+$  1  $X_2+$  0.5  $X_3-$  0.5  $X_4=2$ 2) 1  $X_1+$  0  $X_2-$  0.5  $X_3+$  1.5  $X_4=2$

 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0.$ 

# (c) The solution is the same.

## Objective Function Coefficient

Value of the Objective Function: Z = 6

| Variable       | Value_ |  |  |  |  |
|----------------|--------|--|--|--|--|
| x <sub>1</sub> | 2      |  |  |  |  |
| $x_2$          | 2      |  |  |  |  |

|         | Allowable Range |         |  |  |  |  |
|---------|-----------------|---------|--|--|--|--|
| Current | To Stay         | Optimal |  |  |  |  |
| Value   | Minimum         | Maximum |  |  |  |  |
| 1       | 0.66667         | 2       |  |  |  |  |
| 2       | 1 1             | 3       |  |  |  |  |

### 4.3-4.

Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (0, 10, 6\frac{2}{3}), Z^* = 70$ 

| Bas    | Eal |   | Coefficient of |                |    |    |    |      |  |  |  |
|--------|-----|---|----------------|----------------|----|----|----|------|--|--|--|
| Var    |     | Z | X <sub>1</sub> | x <sub>2</sub> | Х3 | X4 | X5 | Side |  |  |  |
| 7 4112 |     |   |                |                |    |    |    |      |  |  |  |
| z      | o   | 1 | -4             | -3             | -6 | 0  | 0  | 0    |  |  |  |
| X4     | 1   | 0 | 3              | 1              | 3  | 1  | 0  | 3.0  |  |  |  |
| X5     | 2   | ō | 2              | 2              | 3  | 0  | 1  | 40   |  |  |  |

| Bas     | Eσ |   |                | Right        |     |        |    |          |
|---------|----|---|----------------|--------------|-----|--------|----|----------|
| Var     |    |   | X <sub>1</sub> | X2           | _X3 | X4     | X5 | Side     |
| z<br>X3 | 0  | 1 | 2              | -1<br>0.3333 | 0   | 0.3333 | 0  | 60<br>10 |
| X5      |    | 0 | -1             | 1            | 0   | -1     | 1  | 10       |

| Bas           | Eal |     |                   |             | Right       |                   |             |                     |
|---------------|-----|-----|-------------------|-------------|-------------|-------------------|-------------|---------------------|
| Var           | No  | Z   | X <sub>1</sub>    | X2          | ХЗ          | X4                | X5          | Side                |
| Z<br>X3<br>X2 | 0   | 1 0 | 1<br>1.3333<br>-1 | 0<br>0<br>1 | 0<br>1<br>0 | 1<br>0.6667<br>-1 | -0.333<br>1 | 70<br>6.66667<br>10 |

**4.3-5.** Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (0, 23.68, 25.26), Z^* = 221.1$ 

Bas|Eq|

| 2 3.2   2 -1 |     |       |      |       |        | _     |    | 1            |
|--------------|-----|-------|------|-------|--------|-------|----|--------------|
| Var No       | ZΙ  | X1    | X2   | XЗ    | X4     | X5    | X6 | side         |
| II           | I_  |       |      |       |        |       |    | l            |
| 1 1          | - 1 |       |      |       |        |       |    | l            |
| Z   O        | 1   | -3    | -4   | -5    | 0      | 0     | 0  | 0            |
| X4  1        | 0   | 3     | 1    | 5*    | 1      | 0     | 0  | 150          |
| X5  2        | 0   | 1     | 4    | 1     | 0      | 1     | 0  | 120          |
| X6  3        | 01  | 2     | 0    | 2     | 0      | 0     | 1  | 105          |
| Bas Eq       |     |       | Cos  | effic | ient o | f     |    | Right        |
| Var No       | ΖĮ  | X1    | X2   | X3    | X4     | X5    | X6 | Right        |
| Varinoi      | - 1 | AI    | AL   | 20    | AT     | AU    | NO | l Side       |
| ¦¦-          | —¦- |       |      |       |        |       |    | ¦——          |
| Z   0        | 1   | О     | -3   | 0     | 1      | 0     | 0  | <br>  150    |
| X3  1        | 01  | 0.6   | 0.2  | 1     | 0.2    | 0     | 0  | I 30         |
|              |     |       | 3.8* | 0     | -0.2   | 1     | 0  | , 30<br>I 90 |
| '            | 0   | 0.4   |      |       |        |       |    |              |
| X6  3        | 0   | 0.8   | -0.4 | 0     | -0.4   | 0     | 1  | 45           |
| Bas Eq       |     |       | Co   | effic | ient o | of    |    | Right        |
| Var No       | ZΙ  | X1    | X2   | XЗ    | X4     | X5    | X6 | side         |
|              |     |       |      |       |        |       |    | 1            |
| - $ $        |     |       |      |       |        |       |    | 1            |
| Z   O        | 1   | 0.316 | 0    | 0     | 0.842  | 0.789 | 0  | 221.1        |
| X3  1        | 0   | 0.579 | 0    | 1     | 0.211  | -0.05 | 0  | 25.26        |
| X2  2        | 0   | 0.105 | 1    | 0     | -0.05  | 0.263 | 0  | 23.68        |
| X6  3        | 0]1 | 0.842 | 0    | 0     | -0.42  | 0.105 | 1  | 54.47        |

Coefficient of

| Right

## 4.3-6.

(a) The simplest adaptation of the simplex method is to force  $x_2$  and  $x_3$  into the basis at the earliest opportunity. One can also find the optimal solution directly by using Gaussian elimination.

(b) 
$$Z = 5x_1 + 3x_2 + 4x_3$$

$$2x_1 + x_2 + x_3 + x_4 = 20$$

$$3x_1 + x_2 + 2x_3 + x_5 = 30$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$
(i) Increase  $x_2$  setting  $x_1 = x_3 = 0$ .
$$x_4 = 20 - x_2 \ge 0 \Rightarrow x_2 \le 20 \leftarrow \text{minimum}$$

$$x_5 = 30 - x_2 \ge 0 \Rightarrow x_2 \le 30$$
Let  $x_2 = 20$  and  $x_4 = 0$ .
$$Z = -x_1 + x_3 - 3x_4 + 60$$

$$2x_1 + x_2 + x_3 + x_4 = 20$$

$$x_1 + x_3 - x_4 + x_5 = 10$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

(ii) Increase 
$$x_3$$
 setting  $x_1 = x_4 = 0$ .  
 $x_2 = 20 - x_3 \ge 0 \Rightarrow x_3 \le 20$   
 $x_5 = 10 - x_3 \ge 0 \Rightarrow x_2 \le 10 \leftarrow \text{minimum}$   
Let  $x_3 = 10$  and  $x_5 = 0$ .  
 $Z = -2x_1 - 2x_4 - x_5 + 70$   
 $x_1 + x_2 + 2x_4 - x_5 = 10$   
 $x_1 + x_3 - x_4 + x_5 = 10$   
 $x_1, x_2, x_3, x_4, x_5 \ge 0$ 

Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (0, 10, 10)$  and  $Z^* = 70$ 

#### 4.3-7.

(a) Because  $x_2 = 0$  in the optimal solution, the problem can be reduced to:

maximize 
$$Z = 2x_1 + 3x_3$$
 subject to 
$$x_1 + 2x_3 \le 30$$
 
$$x_1 + x_3 \le 24$$
 
$$3x_1 + 3x_3 \le 60$$
 
$$x_1, x_3 \ge 0$$

or equivalently

maximize 
$$z = 2x_1 + 3x_3$$
 subject to 
$$x_1 + 2x_3 \le 30$$
 
$$x_1 + x_3 \le 20$$
 
$$x_1, x_3 \ge 0$$

Since  $x_1 > 0$  and  $x_3 > 0$  in the optimal solution, they should be basic variables in the optimal solution. Choosing these two as the first two entering basic variables will lead to an optimal solution. The leaving basic variables will be determined by the minimum ratio test.

(b) Optimal Solution: 
$$(x_1^*, x_2^*, x_3^*) = (10, 0, 10)$$
 and  $Z^* = 50$ 

| Basic    |     |   | (  | Coefficient of |    |    |     |  |  |  |
|----------|-----|---|----|----------------|----|----|-----|--|--|--|
| Variable | Eq. | Z | X1 | Х3             | X4 | X5 | RHS |  |  |  |
| Z        | 0   | 1 | -2 | -3             | 0  | 0  | 0   |  |  |  |
| X4       | 1   | 0 | 1  | 2              | 1  | 0  | 30  |  |  |  |
| X5       | 2   | 0 | 1  | 1              | 0  | 1  | 20  |  |  |  |

| Basic    |     |   | (    |    |      |    |     |
|----------|-----|---|------|----|------|----|-----|
| Variable | Eq. | Z | X1   | Х3 | X4   | X5 | RHS |
| Z        | 0   | 1 | -0.5 | 0  | 1.5  | 0  | 45  |
| Х3       | 1   | 0 | 0.5  | 1  | 0.5  | 0  | 15  |
| X5       | 2   | 0 | 0.5  | 0  | -0.5 | 1  | 5   |

| Basic    |     |   | (  |    |    |    |     |
|----------|-----|---|----|----|----|----|-----|
| Variable | Eq. | Z | X1 | Х3 | X4 | X5 | RHS |
| Z        | 0   | 1 | 0  | 0  | 1  | 1  | 50  |
| X3       | 1   | 0 | 0  | 1  | 1  | -1 | 10  |
| X1       | 2   | 0 | 1  | 0  | -1 | 2  | 10  |

#### 4.3-8.

- (a) FALSE. The simplex method's rule for choosing the entering basic variable is used because it gives the best rate of improvement for the objective value at the given corner point.
- (b) TRUE. The simplex method's rule for choosing the leaving basic variable determines which basic variable drops to zero first as the entering basic variable is increased. Choosing any other one can cause this variable to become negative, so infeasible.
- (c) FALSE. When the simplex method solves for the next BF solution, elementary algebraic operations are used to eliminate each basic variable from all but one equation (its equation) and to give it a coefficient of one in that equation.

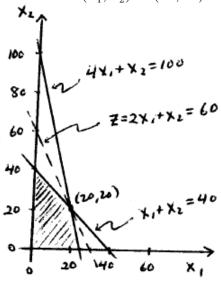
4.4-1.

Optimal Solution:  $(x_1^*, x_2^*) = (2/3, 2/3)$  and  $Z^* = 6,000$ 

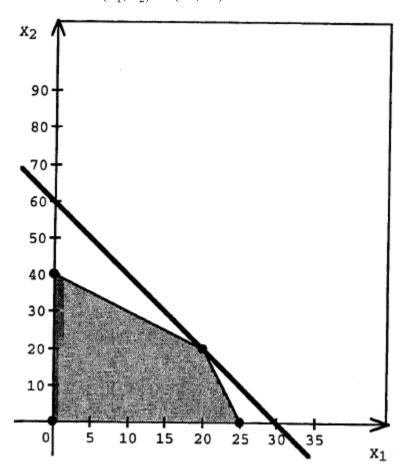
Solve Interactively by the Simplex Method:

| Bas            | Eq  |   |                |       | Right     |     |        |     |       |
|----------------|-----|---|----------------|-------|-----------|-----|--------|-----|-------|
| Var            | No  | Z | X <sub>1</sub> | X2    | Х3        | X4  | X5     | X6  | Side  |
|                |     |   |                |       |           |     | ,      |     |       |
| Z              | 0   | 1 | -4500          | -4500 | 0         | 0   | 0      | 0   | 0     |
| хз             | 1   | 0 | 1              | 0     | 1         | 0   | 0      | 0   | 1     |
| X4             | 2   | 0 | 0              | 1     | 0         | 1   | 0      | 0   | 1     |
| $x_5$          | 3   | 0 | 5000           | 4000  | 0         | 0   | 1      | 0   | 6000  |
| x6             | 4   | 0 | 400            | 500   | 0         | 0   | 0      | 1   | 600   |
| _              | l _ |   |                |       |           |     | _      |     |       |
| Bas            | -   |   |                |       | Coeffic   |     |        |     | Right |
| Var            | No  | Z | X <sub>1</sub> | X2    | X3        | X4  | X5     | X6  | Side  |
|                |     |   | _              |       |           |     |        |     |       |
| Z              | 0   | 1 | 0              | -4500 | 4500      | 0   | 0      | 0   | 4500  |
| $x_1$          | 1   | 0 | 1              | 0     | 1         | 0   | 0      | 0   | 1     |
| Х4             | 2   | 0 | 0              | 1     | 0         | 1   | 0      | . 0 | 1     |
| X5             | 3   | 0 | 0              | 4000  | -5000     | . 0 | 1      | 0   | 1000  |
| Х6             | 4   | 0 | 0              | 500   | -400      | 0   | 0      | 1   | 200   |
| Baal           | P   |   |                |       | C E E ! - |     |        |     |       |
| Bas            |     | - |                |       | Coeffic   |     |        |     | Right |
| Var            | No  | Z | X <sub>1</sub> | X2    | X3_       | X4  | X5     | Х6  | Side  |
| _ I            | _   |   |                | •     | 4405      |     |        |     |       |
| Z              | 0   | 1 | 0              | 0     | -1125     | . 0 | 1.125  | 0   | 5625  |
| х1             | 1   | 0 | 1              | 0     | 1         | 0   | 0      | 0   | 1     |
| X4             | 2   | 0 | 0              | 0     | 1.25      | 1   | -2e-4  | 0   | 0.75  |
| x <sub>2</sub> | 3   | 0 | 0              | 1     | -1.25     | 0   | 0.0002 | 0   | 0.25  |
| x <sub>6</sub> | 4   | 0 | 0              | 0     | 225       | 0   | -0.125 | 1   | 75    |

| Bas      | Eq |   | Coefficient of |    |    |    |        |        |               |  |  |  |
|----------|----|---|----------------|----|----|----|--------|--------|---------------|--|--|--|
| Var      | No | Z | X <sub>1</sub> | X2 | X3 | X4 | X5     | X6     | Right<br>Side |  |  |  |
| z        | 0  | 1 | 0              | 0  | 0  | 0  | 0.5    | 5      | 6000          |  |  |  |
| $x_1$    | 1  | 0 | 1              | 0  | 0  | 0  | 0.0006 | -0.004 | 0.66667       |  |  |  |
| X4<br>X2 | 2  | 0 | 0              | 0  | 0  | 1  | 0.0004 | -0.006 | 0.33333       |  |  |  |
|          | 3  | 0 | 0              | 1  | 0  | 0  | -4e-4  | 0.0056 | 0.66667       |  |  |  |
| Х3       | 4  | 0 | 0              | 0  | 1  | 0  | -6e-4  | 0.0044 | 0.33333       |  |  |  |


# 4.4-2.

Optimal Solution:  $(x_1^*,x_2^*)=(2,2)$  and  $Z^*=6$ 


| Bas<br>Var |    | Z    | C              |                | Right   |       |         |
|------------|----|------|----------------|----------------|---------|-------|---------|
| Val        | NO |      | x <sub>1</sub> | X2             | X3      | X4    | Side    |
| Z          | 0  | 1    | -1             | -2             | 0       | . 0   | 0       |
| Х3         | 1  | 0    | 1              | 3              | 1       | 0     | 8       |
| X4         | 2  | 0    | 1              | 1              | 0       | 1     | 4       |
| -          |    |      |                |                | •       | - 1   | *       |
| Bas        |    | L    |                | oeffic:        | ient of |       | Right   |
| Var        | No | Z    | X1             | x <sub>2</sub> | Х3      | X4    | Side    |
|            |    |      |                |                |         | - 114 | bide    |
| Z          | 0  | 1    | -0.333         | 0 (            | 0.6667  | 0     | 5.33333 |
| $x_2$      | 1  | 0    | 0.3333         | 1 (            | 3333    | 0     | 2.66667 |
| X4         | 2  | 0    | 0.6667         |                | -0.333  |       |         |
| 4          |    | , ,, | 0.0007         |                | -0.333  | 1     | 1.33333 |
|            |    |      |                |                |         |       |         |
| Bas        |    | L_   | C              | oeffic         | ent of  |       | Right   |
| Var        | No | Z    | X <sub>1</sub> | X2             | Х3      | X4    | Side    |
|            |    |      |                |                |         |       |         |
| Z          | 0  | 1    | 0              | 0              | 0.5     | 0.5   | 6       |
| $x_2$      | 1  | 0    | 0              | 1              | 0.5     | -0.5  | 2       |
| X1         | 2  | 0    | 1              | 0              | -0.5    | 1.5   | 2       |

# 4.4-3.

(a) Optimal Solution:  $(x_1^*, x_2^*) = (20, 20)$  and  $Z^* = 60$ 



(b) Optimal Solution:  $(x_1^*, x_2^*) = (20, 20)$  and  $Z^* = 60$ 



| Corner Point | Z        |
|--------------|----------|
| (20, 20)     | $60^{*}$ |
| (0,40)       | 40       |
| (25, 0)      | 50       |
| (0, 0)       | 0        |

(c) Iteration 1: 
$$x_1 = x_2 = 0 \Rightarrow x_3 = 40 \text{ and } x_4 = 100 \text{ (slack variables)}$$
Increase  $x_1$ , set  $x_2 = 0$ .
$$x_3 = 40 - x_1 \ge 0 \Rightarrow x_1 \le 40$$

$$x_4 = 100 - 4x_1 \ge 0 \Rightarrow x_1 \le 25 \leftarrow \text{minimum}$$
Let  $x_1 = 25 \text{ and } x_4 = 0$ .
$$Z = \frac{1}{2}x_2 - \frac{1}{2}x_4 + 50$$

$$\frac{3}{4}x_2 + x_3 - \frac{1}{4}x_4 = 15$$

$$x_1 + \frac{1}{4}x_2 + \frac{1}{4}x_4 = 25$$

 $x_1, x_2, x_3, x_4 \ge 0$ 

Iteration 2: 
$$(25,0,15,0)$$
 is not optimal so increase  $x_2$ , set  $x_4=0$ .  $x_3=15-\frac{3}{4}x_2\geq 0 \Rightarrow x_2\leq 20 \leftarrow \text{minimum}$   $x_1=25-\frac{1}{4}x_2\geq 0 \Rightarrow x_2\leq 100$  Let  $x_2=20$  and  $x_3=0$ .  $Z=-\frac{2}{3}x_3-\frac{1}{3}x_4+60$   $x_2+\frac{4}{3}x_3-\frac{1}{3}x_4=20$   $x_1-\frac{1}{3}x_3+\frac{1}{3}x_4=20$   $x_1,x_2,x_3,x_4\geq 0$ 

Optimal Solution:  $(x_1^*, x_2^*, x_3^*, x_4^*) = (20, 20, 0, 0)$  and  $Z^* = 60$ 

(d) Optimal Solution:  $(x_1^*, x_2^*, x_3^*, x_4^*) = (20, 20, 0, 0)$  and  $Z^* = 60$ 

0) 
$$Z - 2 X_1 - 1 X_2 + 0 X_3 + 0 X_4 = 0$$
  
1)  $1 X_1 + 1 X_2 + 1 X_3 + 0 X_4 = 40$   
2)  $4 X_1 + 1 X_2 + 0 X_3 + 1 X_4 = 100$ 

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0.$$

0) 
$$z + 0 x_1 - 0.5 x_2 + 0 x_3 + 0.5 x_4 = 50$$
  
1)  $0 x_1 + 0.75 x_2 + 1 x_3 - 0.25 x_4 = 15$   
2)  $1 x_1 + 0.25 x_2 + 0 x_3 + 0.25 x_4 = 25$ 

$$x_1 \ge 0$$
,  $x_2 \ge 0$ ,  $x_3 \ge 0$ ,  $x_4 \ge 0$ .

0) 
$$Z+$$
 0  $X_1+$  0  $X_2+0.67$   $X_3+0.33$   $X_4=60$ 

1) 
$$0 X_1 + 1 X_2 + 1.33 X_3 - 0.33 X_4 = 20$$

0) Z+ 0 
$$X_1$$
+ 0  $X_2$ +0.67  $X_3$ +0.33  $X_4$  = 60  
1) 0  $X_1$ + 1  $X_2$ +1.33  $X_3$ -0.33  $X_4$  = 20  
2) 1  $X_1$ + 0  $X_2$ -0.33  $X_3$ +0.33  $X_4$  = 20

$$x_1 \ge 0$$
,  $x_2 \ge 0$ ,  $x_3 \ge 0$ ,  $x_4 \ge 0$ .

| Bas           | Eq    |             | с              | oefficie       | ent of         |        | Right          |
|---------------|-------|-------------|----------------|----------------|----------------|--------|----------------|
| Var           | No    | Z           | X <sub>1</sub> | x <sub>2</sub> | x <sub>3</sub> | X4     | Side           |
| z<br>X3<br>X4 | 0 1 2 | 1<br>0<br>0 | -2<br>1<br>4   | -1<br>1        | 0<br>1         | 0<br>0 | 0<br>40<br>100 |

The coefficients for  $x_1$  and  $x_2$  are negative so this solution is not optimal. Let  $x_1$  enter the basis, since it offers largest improvement rate, so the column lying under  $x_1$  will be the pivot column. To find out how much  $x_1$  can be increased, use the ratio test:

$$x_3$$
:  $40/1 = 40$ 

$$x_4$$
:  $100/4 = 25 \leftarrow \text{minimum}$ ,

so  $x_4$  leaves the basis and its row is the pivot row.

| Bas   |    |   |                | Coeffic | ient of |       | Right |
|-------|----|---|----------------|---------|---------|-------|-------|
| Var   | No | Z | X <sub>1</sub> | X2      | Х3      | X4    | Side  |
| z     | 0  | 1 | 0              |         | 0       | 0.5   | 50    |
| хз    | 1  | 0 | 0              | 0.75    | 1       | -0.25 | 15    |
| $x_1$ | 2  | 0 | 1              | 0.25    | 0       | 0.25  | 25    |

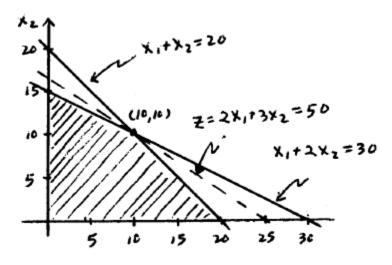
The coefficient of  $x_2$  is still negative, so this solution is not optimal. Let  $x_2$  enter the basis, its column is the pivot column. To find out how much  $x_2$  can be increased, use the ratio test:

$$x_3$$
:  $15/0.75 = 20 \leftarrow \text{minimum}$ 

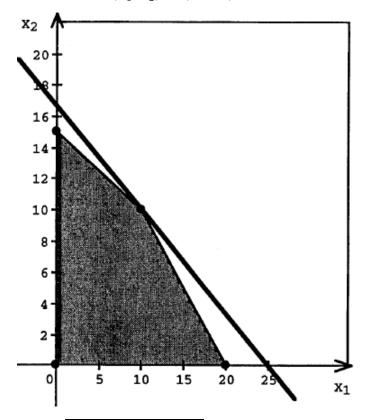
$$x_1$$
:  $25/0.25 = 100$ ,

so  $x_3$  leaves the basis and its row is the pivot row.

| Bas                                   | Εq          | <u> </u> | Co             | effici | ent of              |     | Right          |
|---------------------------------------|-------------|----------|----------------|--------|---------------------|-----|----------------|
| Var                                   | No          | Z        | X <sub>1</sub> | Х2     | Хз                  | X4  | Side           |
| z<br>x <sub>2</sub><br>x <sub>1</sub> | 0<br>1<br>2 | 1<br>0   | 0<br>0<br>1    | 1 1    | .6667 0<br>.3333 -0 | 333 | 60<br>20<br>20 |


All the coefficients in the objective row are nonnegative, so the solution (20, 20, 0, 0) is optimal with an objective value of 60.

(g)


| 2<br><b>20</b> | 1<br><b>20</b> | 60<br>Solution |   |           |
|----------------|----------------|----------------|---|-----------|
| 1 4            | 1              | 40<br>100      | 3 | 40<br>100 |

# 4.4-4.

(a) Optimal Solution:  $(x_1^*, x_2^*) = (10, 10)$  and  $Z^* = 50$ 



(b) Optimal Solution:  $(x_1^{\ast},x_2^{\ast})=(10,10)$  and  $Z^{\ast}=50$ 



| Corner Point | Z   |
|--------------|-----|
| (10, 10)     | 50* |
| (0,15)       | 45  |
| (20, 0)      | 40  |
| (0, 0)       | 0   |

(c) Iteration 1: 
$$x_1 = x_2 = 0 \Rightarrow x_3 = 30 \text{ and } x_4 = 20 \text{ (slack variables)}$$
Increase  $x_2$  and set  $x_1 = 0$ .
$$x_3 = 30 - 2x_2 \ge 0 \Rightarrow x_2 \le 15 \leftarrow \text{minimum}$$

$$x_4 = 20 - x_2 \ge 0 \Rightarrow x_1 \le 20$$
Let  $x_2 = 15 \text{ and } x_3 = 0$ .
$$Z = \frac{1}{2}x_1 - \frac{3}{2}x_3 + 45$$

$$\frac{1}{2}x_1 + x_2 + \frac{1}{2}x_3 = 15$$

$$\frac{1}{2}x_1 - \frac{1}{2}x_3 + x_4 = 5$$

Iteration 2: 
$$(0, 15, 0, 5)$$
 is not optimal so increase  $x_1$ , set  $x_3 = 0$ .

$$x_2 = 15 - \frac{1}{2}x_1 \ge 0 \Rightarrow x_1 \le 30$$
  
$$x_4 = 5 - \frac{1}{2}x_1 \ge 0 \Rightarrow x_1 \le 10 \leftarrow \text{minimum}$$

Let 
$$x_1 = 10$$
 and  $x_3 = 0$ .

$$Z = -x_3 - x_4 + 50$$

 $x_1, x_2, x_3, x_4 \geq 0$ 

$$x_2 + x_3 - x_4 = 10$$

$$x_1 - x_3 + 2x_4 = 10$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Optimal Solution:  $(x_1^*, x_2^*, x_3^*, x_4^*) = (10, 10, 0, 0)$  and  $Z^* = 50$ 

(d) Optimal Solution: 
$$(x_1^*, x_2^*, x_3^*, x_4^*) = (10, 10, 0, 0)$$
 and  $Z^* = 50$ 

0) 
$$Z - 2 X_1 - 3 X_2 + 0 X_3 + 0 X_4 = 0$$
  
1)  $1 X_1 + 2 X_2 + 1 X_3 + 0 X_4 = 30$   
2)  $1 X_1 + 1 X_2 + 0 X_3 + 1 X_4 = 20$ 

 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0.$ 

0) 
$$z-0.5 x_1+0 x_2+1.5 x_3+0 x_4=45$$
  
1)  $0.5 x_1+1 x_2+0.5 x_3+0 x_4=15$   
2)  $0.5 x_1+0 x_2-0.5 x_3+1 x_4=5$ 

$$x_1 \ge 0$$
,  $x_2 \ge 0$ ,  $x_3 \ge 0$ ,  $x_4 \ge 0$ .

0) 
$$Z+$$
 0  $X_1+$  0  $X_2+$  1  $X_3+$  1  $X_4=50$   
1) 0  $X_1+$  1  $X_2+$  1  $X_3-$  1  $X_4=10$   
2) 1  $X_1+$  0  $X_2-$  1  $X_3+$  2  $X_4=10$ 

2) 
$$1 \times 1 + 0 \times 2 - 1 \times 3 + 2 \times 4 = 10$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0.$$

(e) - (f)

| Bas |    |   |                | Coeffic        | ient of |    | Right |
|-----|----|---|----------------|----------------|---------|----|-------|
| Var | No | Z | X <sub>1</sub> | x <sub>2</sub> | Х3      | X4 | Side  |
| z   | 0  | 1 | -2             | -3             | 0       | 0  | 0     |
| х3  | 1  | 0 | 1              | 2              | 1       | 0  | 30    |
| X4  | 2  | 0 | 1              | 1              | 0       | 1  | 20    |

The coefficients for  $x_1$  and  $x_2$  are negative so this solution is not optimal. Let  $x_2$  enter the basis, since it offers largest improvement rate, so the column lying under  $x_2$  will be the pivot column. To find out how much  $x_1$  can be increased, use the ratio test:

$$x_3$$
:  $30/2 = 15 \leftarrow \text{minimum}$ 

$$x_4$$
:  $20/1 = 20$ ,

so  $x_3$  leaves the basis and its row is the pivot row.

| Bas                                   | Eq          | <u>L</u>    | C              | effici         | ent of             |        | Right         |
|---------------------------------------|-------------|-------------|----------------|----------------|--------------------|--------|---------------|
| Var                                   | No          | Z           | x <sub>1</sub> | x <sub>2</sub> | Х3                 | X4     | Side          |
| z<br>x <sub>2</sub><br>x <sub>4</sub> | 0<br>1<br>2 | 1<br>0<br>0 | -0.5<br>0.5    | 0<br>1<br>0    | 1.5<br>0.5<br>-0.5 | 0<br>0 | 45<br>15<br>5 |

The coefficient of  $x_1$  is still negative, so this solution is not optimal. Let  $x_1$  enter the basis, its column is the pivot column. To find out how much  $x_1$  can be increased, use the ratio test:

$$x_2$$
:  $15/0.5 = 30$ 

$$x_4$$
:  $5/0.5 = 10 \leftarrow \text{minimum}$ ,

so  $x_4$  leaves the basis and its row is the pivot row.

| Bas                                   |             | L_,         |                | ceffici     | ent of       |              | Right          |
|---------------------------------------|-------------|-------------|----------------|-------------|--------------|--------------|----------------|
| Var                                   | No          | Z           | x <sub>1</sub> | х2          | Х3           | X4           | Side           |
| z<br>x <sub>2</sub><br>x <sub>1</sub> | 0<br>1<br>2 | 1<br>0<br>0 | 0<br>0<br>1    | 0<br>1<br>0 | 1<br>1<br>-1 | 1<br>-1<br>2 | 50<br>10<br>10 |

All the coefficients in the objective row are nonnegative, so the solution (10, 10, 0, 0) is optimal with an objective value of 50.

(g)

| 10 | 10 | 50       |   |          |
|----|----|----------|---|----------|
| 1  | 2  | 30<br>20 | 4 | 30<br>20 |

### 4.4-5.

(a) Set 
$$x_1 = x_2 = x_3 = 0$$
.

$$(0) Z - 5x_1 - 9x_2 - 7x_3 = 0$$

$$(1) x_1 + 3x_2 + 2x_3 + x_4 = 10 \Rightarrow x_4 = 10$$

(2) 
$$3x_1 + 4x_2 + 2x_3 + x_5 = 12 \Rightarrow x_5 = 12$$

(3) 
$$2x_1 + x_2 + 2x_3 + x_6 = 8 \Rightarrow x_6 = 8$$

Optimality Test: The coefficients of all nonbasic variables are positive, so the solution (0,0,0,10,12,8) is not optimal.

Choose  $x_2$  as the entering basic variable, since it has the largest coefficient.

(1) 
$$x_1 + 3x_2 + 2x_3 + x_4 = 10 \Rightarrow x_4 = 10 - 3x_2 \Rightarrow x_2 \le 10/3$$

(2) 
$$3x_1 + 4x_2 + 2x_3 + x_5 = 12 \Rightarrow x_5 = 12 - 4x_2 \Rightarrow x_2 \le 3 \leftarrow \text{minimum}$$

(3) 
$$2x_1 + x_2 + 2x_3 + x_6 = 8 \Rightarrow x_6 = 8 - x_2 \Rightarrow x_2 \le 8$$

We choose  $x_5$  as the leaving basic variable. Set  $x_1 = x_5 = x_3 = 0$ .

$$(0) Z + 1.75x_1 - 2.5x_3 + 2.25x_5 = 27$$

(1) 
$$-1.25x_1 + 0.5x_3 + x_4 - 0.75x_5 = 1 \Rightarrow x_4 = 1$$

(2) 
$$0.75x_1 + x_2 + 0.5x_3 + 0.25x_5 = 3 \Rightarrow x_2 = 3$$

(3) 
$$1.25x_1 + 1.5x_3 - 0.25x_5 + x_6 = 5 \Rightarrow x_6 = 5$$

Optimality Test: The coefficient of  $x_3$  is positive, so the solution (0, 3, 0, 1, 0, 5) is not optimal.

Let  $x_3$  be the entering basic variable.

(1)  $-1.25x_1 + 0.5x_3 + x_4 - 0.75x_5 = 1 \Rightarrow x_4 = 1 - 0.5x_3 \Rightarrow x_3 \le 2 \leftarrow \text{minimum}$ 

(2) 
$$0.75x_1 + x_2 + 0.5x_3 + 0.25x_5 = 3 \Rightarrow x_2 = 3 - 0.5x_3 \Rightarrow x_3 \le 6$$

(3) 
$$1.25x_1 + 1.5x_3 - 0.25x_5 + x_6 = 5 \Rightarrow x_6 = 5 - 1.5x_3 \Rightarrow x_3 \le 10/3$$

We choose  $x_4$  as the leaving basic variable. Set  $x_1 = x_5 = x_4 = 0$ .

$$(0) Z - 4.5x_1 + 5x_4 - 1.5x_5 = 32$$

(1) 
$$-2.5x_1 + x_3 + 2x_4 - 1.5x_5 = 2 \Rightarrow x_3 = 2$$

(2) 
$$2x_1 + x_2 - x_4 + x_5 = 2 \Rightarrow x_2 = 2$$

(3) 
$$5x_1 - 3x_4 + 2x_5 + x_6 = 2 \Rightarrow x_6 = 2$$

Optimality Test: The coefficient of  $x_1$  is positive, so the solution (0, 2, 2, 0, 0, 2) is not optimal.

Let  $x_1$  be the entering basic variable.

(1) 
$$-2.5x_1 + x_3 + 2x_4 - 1.5x_5 = 2 \Rightarrow x_3 = 2 + 2.5x_1$$

(2) 
$$2x_1 + x_2 - x_4 + x_5 = 2 \Rightarrow x_2 = 2 - 2x_1 \Rightarrow x_1 \le 1$$

(3) 
$$5x_1 - 3x_4 + 2x_5 + x_6 = 2 \Rightarrow x_6 = 2 - 5x_1 \Rightarrow x_1 \le 0.4 \leftarrow \text{minimum}$$

We choose  $x_6$  as the leaving basic variable. Set  $x_6 = x_5 = x_4 = 0$ .

$$(0) Z + 2.3x_4 + 0.3x_5 + 0.9x_6 = 33.8$$

(1) 
$$x_3 + 0.5x_4 - 0.5x_5 + 0.5x_6 = 3 \Rightarrow x_3 = 3$$

(2) 
$$x_2 + 0.2x_4 + 0.2x_5 - 0.4x_5 = 1.2 \Rightarrow x_2 = 1.2$$

(3) 
$$x_1 - 0.6x_4 + 0.4x_5 + 0.2x_6 = 0.4 \Rightarrow x_1 = 0.4$$

Optimality Test: The coefficients of all nonbasic variables are nonpositive, so the solution (0.4, 1.2, 3, 0, 0, 0) is optimal.

(b) Optimal solution:  $(x_1^*, x_2^*, x_3^*) = (0.4, 1.2, 3)$  and  $Z^* = 33.8$ 

| Bas Eq                                               |                                                      |                               | Co                                 | effic                           | ient c                                                 | f                                       |                        | Right                                                                      |
|------------------------------------------------------|------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|--------------------------------------------------------|-----------------------------------------|------------------------|----------------------------------------------------------------------------|
| Var No                                               | Ζļ                                                   | X1                            | X2                                 | XЗ                              | Х4                                                     | X5                                      | X6                     | side                                                                       |
| II                                                   | I                                                    |                               |                                    |                                 |                                                        |                                         |                        | I                                                                          |
| 1 1                                                  | I                                                    |                               |                                    |                                 |                                                        |                                         |                        | I                                                                          |
| Z   O                                                | 1                                                    | -5                            | -9                                 | -7                              | 0                                                      | 0                                       | 0                      | 1 0                                                                        |
| X4  1                                                | 01                                                   | 1                             | 3                                  | 2                               | 1                                                      | 0                                       | 0                      | 10                                                                         |
| X5  2                                                | 01                                                   | 3                             | 4*                                 | 2                               | 0                                                      | 1                                       | 0                      | 12                                                                         |
| X6  3                                                | 01                                                   | 2                             | 1                                  | 2                               | 0                                                      | 0                                       | 1                      | 8                                                                          |
| Bas Eq                                               |                                                      |                               | Co                                 | effic                           | ient o                                                 | f                                       |                        | Right                                                                      |
| Var No                                               | ZΙ                                                   | X1                            | X2                                 | XЗ                              | X4                                                     | X5                                      | X6                     | side                                                                       |
| i i                                                  | i                                                    |                               |                                    |                                 |                                                        |                                         |                        | i                                                                          |
| ii                                                   | — i                                                  |                               |                                    |                                 |                                                        |                                         |                        | _i                                                                         |
| Z   0                                                | 1                                                    | 1.75                          | 0                                  | -2.5                            | 0                                                      | 2.25                                    | 0                      | 27                                                                         |
| X4  1                                                | 0                                                    | -1.25                         | 0                                  | 0.5*                            | 1                                                      | -0.75                                   | 0                      | 1                                                                          |
| X2  2                                                | 0                                                    | 0.75                          | 1                                  | 0.5                             | 0                                                      | 0.25                                    | 0                      | 3                                                                          |
| X6  3                                                | 01                                                   | 1.25                          | 0                                  | 1.5                             | 0                                                      | -0.25                                   | 1                      | 5                                                                          |
|                                                      |                                                      |                               |                                    |                                 |                                                        |                                         |                        |                                                                            |
| BaslEql                                              |                                                      |                               | Co                                 | effic                           | ient o                                                 | f                                       |                        | Right                                                                      |
| Bas Eq <br>Var No                                    | ZI                                                   | X1                            |                                    | effic:<br>X3                    |                                                        |                                         | Х6                     | Right<br>  side                                                            |
| Bas Eq <br>Var No <br>                               | Z Į                                                  | X1                            | Co<br>X2                           | effic:<br>X3                    | ient o<br>X4                                           | f<br>X5                                 | Х6                     | Right<br>  side<br>                                                        |
| Var No                                               |                                                      | X1                            |                                    |                                 |                                                        |                                         | Х6                     |                                                                            |
| Var No <br> _                                        | _ <br> -                                             | X1<br>-4.5                    |                                    |                                 | X4<br>5                                                | -1.5                                    | X6<br>0                |                                                                            |
| Var No <br> _                                        | _ <br> -                                             |                               | X2                                 | Х3                              | X4<br>5<br>2                                           | X5                                      |                        | side<br>_ <br>_                                                            |
| Var No <br> _ <br>   <br>  Z   O                     | .                                                    | -4.5                          | X2<br>O                            | X3                              | X4<br>5                                                | -1.5                                    | 0                      | side<br>_ <br>  32                                                         |
| Var No <br> _ <br>     <br>  Z   0 <br>  X3  1       | _ <br> <br> <br> <br>                                | -4.5<br>-2.5                  | X2<br>0<br>0                       | X3<br>0<br>1                    | X4<br>5<br>2                                           | -1.5<br>-1.5                            | 0                      | side<br>_ <br>  32<br>  2                                                  |
| Var No <br>  <br>Z   O <br>X3  1 <br>X2  2 <br>X6  3 | <br> <br>  1 <br>  0 <br>  0                         | -4.5<br>-2.5<br>2             | 0<br>0<br>1<br>0                   | 0<br>1<br>0                     | 5<br>2<br>-1<br>-3                                     | -1.5<br>-1.5<br>1                       | 0                      | side<br>_ <br>  32<br>  2<br>  2<br>  2                                    |
| Var No  _                                            | <br> <br> <br> <br> <br> <br> <br> <br>              | -4.5<br>-2.5<br>2<br>5*       | X2<br>0<br>0<br>1<br>0             | X3<br>0<br>1<br>0<br>0          | X4<br>5<br>2<br>-1<br>-3                               | -1.5<br>-1.5<br>-1.5<br>2               | 0<br>0<br>0<br>1       | side<br>                                                                   |
| Var No <br>  <br>Z   O <br>X3  1 <br>X2  2 <br>X6  3 | <br> <br>  1 <br>  0 <br>  0                         | -4.5<br>-2.5<br>2             | 0<br>0<br>1<br>0                   | 0<br>1<br>0                     | 5<br>2<br>-1<br>-3                                     | -1.5<br>-1.5<br>1                       | 0                      | side<br>_ <br>  32<br>  2<br>  2<br>  2                                    |
| Var No                                               | <br>  1  <br>  0  <br>  0  <br>  0  <br>  2  <br>    | -4.5<br>-2.5<br>2<br>5*       | 0<br>0<br>1<br>0<br>Cc<br>X2       | X3<br>0<br>1<br>0<br>0<br>effic | 5<br>2<br>-1<br>-3<br>ient c                           | -1.5<br>-1.5<br>1<br>2                  | 0<br>0<br>0<br>1       | side<br>                                                                   |
| Var No                                               | <br>  1  <br>  0  <br>  0  <br>  0  <br>  2  <br>  1 | -4.5<br>-2.5<br>2<br>5*<br>X1 | 0<br>0<br>1<br>0<br>Cc<br>X2       | X3  O 1 O O effic:              | X4 5 2 -1 -3 ient c X4                                 | -1.5<br>-1.5<br>-1.5<br>1<br>2          | 0<br>0<br>0<br>1<br>X6 | side<br>                                                                   |
| Var No                                               |                                                      | -4.5<br>-2.5<br>2<br>5*       | X2<br>0<br>0<br>1<br>0<br>Cc<br>X2 | X3  O 1 O ceffic: X3  O 1       | X4<br>5<br>2<br>-1<br>-3<br>ient c<br>X4<br>2.3<br>0.5 | -1.5<br>-1.5<br>-1.5<br>1<br>2<br>of X5 | 0<br>0<br>0<br>1<br>X6 | side<br>  32<br>  2<br>  2<br>  2<br>  Right<br>  side<br>  33.8<br>  33.8 |
| Var No                                               | <br>  1  <br>  0  <br>  0  <br>  0  <br>  2  <br>  1 | -4.5<br>-2.5<br>2<br>5*<br>X1 | 0<br>0<br>1<br>0<br>Cc<br>X2       | X3  O 1 O O effic:              | X4 5 2 -1 -3 ient c X4                                 | -1.5<br>-1.5<br>-1.5<br>1<br>2          | 0<br>0<br>0<br>1<br>X6 | side<br>                                                                   |

### (c) Excel Solver

|              | Coe | efficier | t of |       |   |    |
|--------------|-----|----------|------|-------|---|----|
|              | X1  | Х2       | ХЗ   | Total |   |    |
| Constraint 1 | 1   | 3        | 2    | 10    | М | 10 |
| Constraint 2 | 3   | 4        | 2    | 12    | М | 12 |
| Constraint 3 | 2   | 1        | 2    | 8     | ≤ | 8  |
| Objective    | 5   | 9        | 7    | 33.8  |   |    |
| Solution     | 0.4 | 1.2      | 3    |       |   |    |

### 4.4-6.

(a) Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (0, \frac{4}{3}, \frac{4}{3})$  and  $Z^* = 14\frac{2}{3}$ 

```
5 X2-
1 X2+
           3 X<sub>1</sub>-
                                          0 X4+
                                6 X3+
                                                     0 X5+
                                                                0 X6+
                                                                          0 X_7 = 0
          2 X<sub>1</sub>+
1)
                                1 X3
                                                     0 X5+
                                          1 X4+
                                                               0 X6+
                                                                          0 X_7 = 4
                     2 X7+
2)
          1 X1+
                                1 X +
                                          0 X4+
                                                     1_X5+
                                                               0 X6+
                                                                          0 X_7 = 4
3)
           1 X_{1} +
                     1 X2+
                                          0 X4+
                                2 X2
                                                               1 X6+
                                                     0 X5+
                                                                          0 X_7 = 4
                                          0 X4+
                     1 X2+
                                                     0 X5+
                                                               0 X6+
```

 $x_1 \ge 0$ ,  $x_2 \ge 0$ ,  $x_3 \ge 0$ ,  $x_4 \ge 0$ ,  $x_5 \ge 0$ ,  $x_6 \ge 0$ ,  $x_7 \ge 0$ .

0) 
$$Z+$$
 0  $X_1-$  2  $X_2+$  0  $X_3+$  0  $X_4+$  0  $X_5+$  3  $X_6+$  0  $X_7=12$   
1)  $1.5 \times 1+$  0.5  $\times 2+$  0  $\times 3+$  1  $\times 4+$  0  $\times 5-$  0.5  $\times 6+$  0  $\times 7=2$   
2)  $0.5 \times 1+$  1.5  $\times 2+$  0  $\times 3+$  0  $\times 4+$  1  $\times 5-$  0.5  $\times 6+$  0  $\times 7=2$   
3)  $0.5 \times 1+$  0.5  $\times 2+$  1  $\times 3+$  0  $\times 4+$  0  $\times 5+$  0.5  $\times 6+$  0  $\times 7=2$   
4) 0.5  $\times 1+$  0.5  $\times 2+$  0  $\times 3+$  0  $\times 4+$  0  $\times 5-$  0.5  $\times 6+$  1  $\times 7=1$ 

 $x_1 \ge 0$ ,  $x_2 \ge 0$ ,  $x_3 \ge 0$ ,  $x_4 \ge 0$ ,  $x_5 \ge 0$ ,  $x_6 \ge 0$ ,  $x_7 \ge 0$ .

```
0) Z+0.67 X<sub>1</sub>+
                    0 X2+
                             0 X3+
                                       0 X4+1.33 X5+2.33 X6+
                                                                    0 X_7 = 14.6667
   1.333 X<sub>1+</sub>
                    0 X2+
                             0 X3+
                                       1 X4-0.33 X5-0.33 X6+
                                                                    0 X_7 = 1.33333
     0.333 X1+
                   1 X2+
                             0 X3+
                                       0 X4+0.67 X5-0.33 X6+
                                                                    0 X_7 = 1.33333
     0.333 \ x_1 +
                   0 X<sub>2</sub>+
                             1 X3+
                                       0 X4-0.33 X5+0.67 X6+
                                                                    0 X_7 = 1.33333
4) 0.333 x<sub>1+</sub>
                   0 X2+
                             0 X3+
                                       0 X4-0.33 X5-0.33 X6+
```

 $1 X_7 = 0.33333$ 

 $x_1 \ge 0$ ,  $x_2 \ge 0$ ,  $x_3 \ge 0$ ,  $x_4 \ge 0$ ,  $x_5 \ge 0$ ,  $x_6 \ge 0$ ,  $x_7 \ge 0$ .

(b) Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (0, \frac{4}{3}, \frac{4}{3})$  and  $Z^* = 14\frac{2}{3}$ 

| Bas                  | Eq           |        |                |                | Coef    | ficient                  | of             |                             |                | Right           |
|----------------------|--------------|--------|----------------|----------------|---------|--------------------------|----------------|-----------------------------|----------------|-----------------|
| Var                  | No           | Z      | Х1             | X2             | Х3      | X4                       | X5             | X6                          | X7             | Side            |
|                      |              |        |                |                |         |                          |                |                             |                |                 |
| z                    | 0            | 1      | -3             | -5 _           | -6      | 0                        | 0              | 0                           | 0              | 0               |
| X4                   | 1            | 0      | 2              | 1              | 1       | 1                        | 0              | 0                           | 0              | 4               |
| X5                   | 2            | 0      | 1              | 2              | 1       | 0                        | 1              | 0                           | 0              | 4               |
| Х <sub>5</sub><br>Х6 | 3            | 0      | 1              | 1              | 2       | 0                        | 0              | 1                           | 0              | 4               |
| X7                   | 4            | 0      | 1              | 1              | 1       | 0                        | 0              | 0                           | 1              | 3               |
|                      |              |        |                |                |         |                          |                |                             |                |                 |
| D                    | l            |        |                |                | 06      | e: -:                    |                |                             |                | Diabe           |
| Bas                  |              | _      |                |                |         | ficient                  |                |                             |                | Right           |
| Bas<br><u>Var</u>    |              | _      | X <sub>1</sub> | Х2             | Coef    | ficient<br>X4            | of<br>X5       | X <sub>6</sub>              | Х7             | Right<br>Side   |
|                      |              | _      | X <sub>1</sub> | Х2             |         |                          |                | х <sub>6</sub>              | Х7             |                 |
|                      |              | _      | X <sub>1</sub> | X <sub>2</sub> |         |                          |                | х <sub>6</sub>              | X <sub>7</sub> |                 |
| <u>Var</u><br>Z      | No<br>0      | _      | 0              |                | Хз      | Х4                       | X5             | X <sub>6</sub><br>3<br>-0.5 |                | Side            |
| <u>Var</u>           | No<br>0<br>1 | 1<br>0 | 0              | -2             | X3<br>0 | Х4                       | x <sub>5</sub> | 3                           | 0              | Side<br>12      |
| Var<br>Z<br>X4       | No<br>0<br>1 | 1<br>0 | 0<br>1.5       | -2<br>0.5      | 0<br>0  | X <sub>4</sub><br>0<br>1 | x <sub>5</sub> | 3<br>-0.5                   | 0              | Side<br>12<br>2 |

| Bas         | Eq Coefficient of |   |                |    |    |    |        |        |    |         |
|-------------|-------------------|---|----------------|----|----|----|--------|--------|----|---------|
| Var         | No                | Z | X <sub>1</sub> | х2 | Хз | Х4 | X5     | X6     | Х7 | Side    |
|             |                   |   |                |    |    |    |        |        |    |         |
| Z           | 0                 | 1 | 0.6667         | 0  | 0  | 0  | 1.3333 | 2.3333 | 0  | 14.6667 |
| X4          | 1                 | 0 | 1.3333         | 0  | 0  | 1  | -0.333 | -0.333 | 0  | 1.33333 |
| X2          | 2                 | 0 | 0.3333         | 1  | 0  | 0  | 0.6667 | -0.333 | 0  | 1.33333 |
| $\bar{x_3}$ | 3                 | 0 | 0.3333         | 0  | 1  | 0  | -0.333 | 0.6667 | 0  | 1.33333 |
| X7          | 4                 | 0 | 0.3333         | 0  | 0  | 0  | -0.333 | -0.333 | 1  | 0.33333 |

(c)

|              | 3<br><b>0</b> | 5<br><b>1.3</b> | 6<br>1.3 <b>4</b> | -solutio | 14 | 1.7 |
|--------------|---------------|-----------------|-------------------|----------|----|-----|
| <del> </del> | 2             | 1               | 1]                | 2.7      | ç  | 4   |
| l            | 1             | 2               | 1                 | 4        | ≤  | 4   |
| L            | 1             | 1               | 2                 | 4        | 4  | 4   |

**4.4-7.** Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (1.5, 0.5, 0)$  and  $Z^* = 2.5$ 

| Bas        |            |   |                |                | Coeffici  | ent of |      |     | Right |  |  |
|------------|------------|---|----------------|----------------|-----------|--------|------|-----|-------|--|--|
| Var        | No         | Z | x <sub>1</sub> | X <sub>2</sub> | Х3        | X4     | X5   | X6  | Side  |  |  |
|            |            |   |                |                |           |        |      |     |       |  |  |
| z          | 0          | 1 | -2             | 1              | -1        | 0      | 0    | 0   | 0     |  |  |
| X4         | 1          | 0 | 3              | 1              | 1         | 1      | 0    | 0   | 6     |  |  |
| X5         | 2          | 0 | 1              | -1             | 2         | 0      | 1    | 0   | 1     |  |  |
| X6         | 3          | 0 | 1              | 1              | -1        | 0      | 0    | 1   | 2     |  |  |
|            |            |   |                |                |           |        |      |     |       |  |  |
| Bas        |            |   |                |                | Coefficie | ent of |      |     | Right |  |  |
| <u>Var</u> | No         | Z | X <sub>1</sub> | x <sub>2</sub> | Х3        | X4     | X5   | Х6  | Side  |  |  |
|            |            |   |                |                |           |        |      |     |       |  |  |
| z          | 0          | 1 | 0              | 1              | 3         | 0      | 2    | 0   | 2     |  |  |
| X4         | 1          | 0 | ٥              | 4              | -5        | 1      | -3   | 0   | 3     |  |  |
| $x_1$      | 2          | 0 | 1              | -1             | 2         | 0      | 1    | 0   | 1     |  |  |
| x6         | 3          | 0 | 0              | 2              | -3        | 0      | -1   | 1   | 1     |  |  |
|            |            |   |                |                |           |        |      |     |       |  |  |
| Bas        |            |   |                |                | cefficie  | ent of |      |     | Right |  |  |
| Var        | No         | Z | x <sub>1</sub> | X2             | Х3        | X4     | X5   | X6  | Side  |  |  |
|            |            |   |                |                |           |        |      |     |       |  |  |
| z          | 0          | 1 | 0              | 0              | 1.5       | 0      | 1.5  | 0.5 | 2.5   |  |  |
| X4         | 1          | 0 | 0              | 0              | 1         | 1      | ~1   | -2  | 1     |  |  |
| $x_1$      | 2          | 0 | 1              | 0              | 0.5       | 0      | 0.5  | 0.5 | 1.5   |  |  |
| X2         | 3 <b>i</b> | 0 | 0              | 1              | -1.5      | Õ      | -0.5 | 0.5 | 0.5   |  |  |

4.4-8.

Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (6\frac{2}{3}, 0, 36\frac{2}{3})$  and  $Z^* = 66\frac{2}{3}$ 

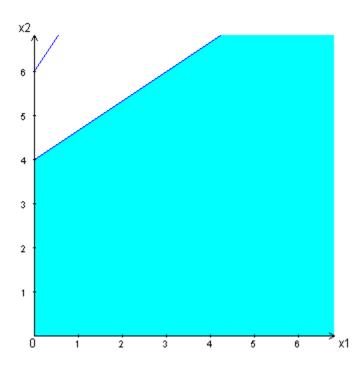
|       |    |    |                  |                | •       |          | •        |        |         |
|-------|----|----|------------------|----------------|---------|----------|----------|--------|---------|
| Bas   | Εq | L_ |                  |                | Coeffic | cient o  | <u>f</u> |        | Right   |
| Var   | No | Z  | x <sub>1</sub>   | x <sub>2</sub> | Х3      | X4       | X5       | X6     | Side    |
|       |    |    |                  |                |         |          |          |        |         |
| Z     | 0  | 1  | 1                | -1             | -2      | 0        | 0        | 0      | 0       |
| $x_4$ | 1  | 0  | 1                | 2              | -1      | ] 1      | 0        | 0      | 20      |
| X5    | 2  | 0  | -2               | 4              | 2       | 0        | 1        | 0      | 60      |
| x6    | 3  | 0  | 2                | 3              | 1       | 0        | 0        | 1      | 50      |
|       |    |    |                  |                |         | •        |          |        |         |
| Bas   | Eq |    |                  |                | Coeffic | ient of  | £        |        | Right   |
| Var   | No | Z  | X1               | Х2             | Х3      | X4       | X5       | X6     | Side    |
|       |    |    |                  |                |         |          |          |        |         |
| z     | 0  | 1  | -1               | 3              | 0       | 0        | 1        | 0      | 60      |
| X4    | 1  | 0  | 0                | ] 4            | 0       | 1        | 0.5      | 0      | 50      |
| Х3    | 2  | 0  | -1               | 2              | 1       | 0        | 0.5      | 0      | 30      |
| $x_6$ | 3  | 0  | 3                | 1              | 0       | 0        | -0.5     | 1      | 20      |
| •     |    |    |                  |                |         |          |          |        |         |
| Bas   | Eq | L  |                  |                | Coeffic | cient of | £        |        | Right   |
| Var   |    |    | . X <sub>1</sub> | X2             | Х3      | X4       | X5       | X6     | Side    |
|       | Г  |    |                  |                |         |          |          |        |         |
| Z     | 0  | 1  | 0                | 3.3333         | 0       | 0        | 0.8333   | 0.3333 | 66.6667 |
| X4    | 1  | 0  | 0                | 4              | 0       | 1        | 0.5      | 0      | 50      |
| х3    | 2  | 0  | 0                | 2.3333         | 1       | 0        | 0.3333   | 0.3333 | 36.6667 |
| $x_1$ |    | 0  | 1                | 0.3333         | 0       | 0        | -0.167   | 0.3333 | 6.66667 |
|       |    |    | -                |                | •       |          |          |        | ,       |

#### 4.5-1.

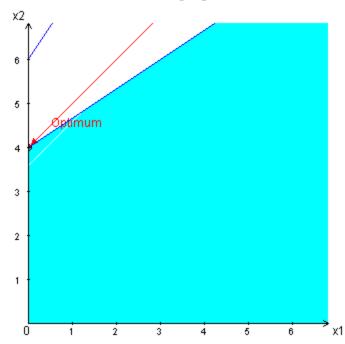
- (a) TRUE. The ratio test tells how far the entering basic variable can be increased before one of the current basic variables drops below zero. If there is a tie for which variable should leave the basis, then both variables drop to zero at the same value of the entering basic variable. Since only one variable can become nonbasic in any iteration, the other will remain in the basis even though it will be zero.
- (b) FALSE. If there is no leaving basic variable, then the solution is unbounded and the entering basic variable can be increased indefinitely.
- (c) FALSE. All basic variables always have a coefficient of zero in row 0 of the final tableau.

#### (d) FALSE.

Example 1: maximize  $x_1 - x_2$  subject to  $x_1 - x_2 \le 1$   $x_1, x_2 \ge 0$ 


Clearly, any solution  $(x_1^*, x_2^*) = (k+1, k)$  for  $k \in [0, \infty)$  with  $z^* = 1$  is optimal. The problem has infinitely many optimal solutions and the feasible region is not bounded.

Example 2: maximize  $-x_1$  subject to  $-x_1 - x_2 \le 1$   $x_1, x_2 \ge 0$ 


Any solution  $(0, x_2^*)$  with  $x_2 \ge 0$  is optimal.

4.5-2.

(a)



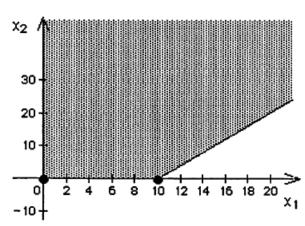
(b) Yes, the optimal solution is  $(x_1^*, x_2^*) = (0, 4)$  with  $Z^* = 4$ .



- (c) No, the objective function value is maximized by sliding the objective function line to the right. This can be done forever, so there is no optimal solution.
- (d) No, there exist solutions that make the objective value arbitrarily large. This usually occurs when a constraint is left out of the model.

(e) Let the objective function be  $Z=x_1-x_2$ . Then, the initial tableau is:

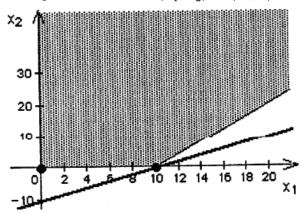
|       |     | Co | efficie |       |       |       |            |
|-------|-----|----|---------|-------|-------|-------|------------|
| BV    | Eq. | Z  | $x_1$   | $x_2$ | $x_3$ | $x_4$ | Right Side |
| Z     | (0) | 1  | -1      | 1     | 0     | 0     | 0          |
| $x_3$ | (1) | 0  | -2      | 3     | 1     | 0     | 12         |
| $x_4$ | (2) | 0  | -3      | 2     | 0     | 1     | 12         |


The pivot column, the column of  $x_1$ , has all negative elements, so Z is unbounded.

(f) The Solver tells that the Set Cell values do not converge. There is no optimal solution because a better solution can always be found.

|              | Coeffic | cient of |       |   |    |
|--------------|---------|----------|-------|---|----|
|              | X1      | X2       | Total |   |    |
| Constraint 1 | -2      | 3        | 0     | ≤ | 12 |
| Constraint 2 | -3      | 2        | 0     | ≤ | 12 |
| Objective    | 1       | -1       | 0     |   |    |
| Solution     | 0       | 0        |       |   |    |

4.5-3.


(a)



(b) No. the objective function value is maximized by sliding the objective function line upwards. This can be done forever, so there is no optimal solution.



(c) Yes, the optimal solution is  $(x_1^*, x_2^*) = (10, 0)$  with  $Z^* = 10$ .



(d). No, there exist solutions that make z arbitrarily large. This usually occurs when a constraint is left out of the model.

(e) Let the objective function be  $Z=-x_1+x_2$ . Then, the initial tableau is:

|       |     | Co | effici | ent of |       |       |            |
|-------|-----|----|--------|--------|-------|-------|------------|
| BV    | Eq. | Z  | $x_1$  | $x_2$  | $x_3$ | $x_4$ | Right Side |
| Z     | (0) | 1  | 1      | -1     | 0     | 0     | 0          |
| $x_3$ | (1) | 0  | 2      | -1     | 1     | 0     | 20         |
| $x_4$ | (2) | 0  | 1      | -2     | 0     | 1     | 20         |

The pivot column, the column of  $x_2$ , has all elements negative, so Z is unbounded.

(f) The Solver tells that the Set Cell values do not converge. There is no optimal solution because a better solution can always be found.

|    | Contribution Per Unit of Each Activity |            |            |        |    |           |  |  |  |
|----|----------------------------------------|------------|------------|--------|----|-----------|--|--|--|
| _F | Resource                               | Activity 1 | Activity 2 | Totals |    | Available |  |  |  |
|    | 1                                      | 2          | -1         | 0      | ≤  | 20        |  |  |  |
|    | 2                                      | 1          | -2         | 0      | _≤ | 20        |  |  |  |
| υ  | nit Profit                             | -1         | 1          | \$ -   |    |           |  |  |  |
|    | Solution                               | 0          | 0          | 1      |    |           |  |  |  |

#### **4.5-4.**

| Bas                                                     |                  |             |                |                  |                  | Coeff                 | icient                           | of                   |                    |                                  | Right                                    |
|---------------------------------------------------------|------------------|-------------|----------------|------------------|------------------|-----------------------|----------------------------------|----------------------|--------------------|----------------------------------|------------------------------------------|
| Var                                                     | No               | Z           |                | Х1               | х2               | Х3                    | X4                               | X5                   | X6                 | Х7                               | Side                                     |
| Z<br>X5                                                 | 0<br>1           | 1           | _              | -5<br>1          | -1<br>-2         | -3<br>4               | - <u>4</u>                       | 0                    | 0                  | 0                                | 0 20                                     |
| X <sub>6</sub><br>X <sub>7</sub>                        | 2                | 0           |                | -4<br>2          | -3               | 5<br>3                | - <b>4</b><br>8                  | 0                    | 1 0                | 0                                | 40<br>50                                 |
| Bas                                                     |                  |             | Coefficient of |                  |                  |                       |                                  |                      |                    |                                  | Right                                    |
| Var                                                     | No               | Z           |                | X1               | x <sub>2</sub>   | Х3                    | Х4                               | X5                   | Х6                 | X7                               | Side                                     |
| z<br>x <sub>1</sub><br>x <sub>6</sub>                   | 0<br>1<br>2<br>3 | 1<br>0<br>0 |                | 0<br>1<br>0      | -11<br>-2<br>-2  | 17<br>4<br>21         | 11<br>3<br>8                     | 5<br>1<br>4          | 0<br>0<br>1        | 0                                | 100<br>20<br>120                         |
| X7                                                      | 3                | 0           |                | 0                | 1                | <b>~</b> 5            | 2                                | -2                   | 0                  | 1                                | 10                                       |
| Bas<br>Var                                              | Eq<br>No         | Z           |                | X <sub>1</sub>   | x <sub>2</sub>   | Coeff                 | icient<br>X4                     | of<br>X5             | x <sub>6</sub>     | X7                               | Right<br>Side                            |
| z<br>X <sub>1</sub><br>X <sub>6</sub><br>X <sub>2</sub> | 0 1 2            | 1<br>0<br>0 |                | 0<br>1<br>0      | 0<br>0<br>0<br>0 | -38<br>-6<br>11<br>-5 | 33<br>7<br>12<br>2               | -17<br>-3<br>0<br>-2 | 0<br>0<br>1        | 11<br>2<br>2                     | 210<br>40<br>140                         |
| Bas<br>Var                                              |                  | z           |                | х1               | x <sub>2</sub>   | Coeff<br>X3           | icient<br>X4                     | of<br>X5             | Х6                 | X <sub>7</sub>                   | Right<br>Side                            |
| z<br>X <sub>1</sub><br>X <sub>3</sub><br>X <sub>2</sub> | 0<br>1<br>2<br>3 | 1<br>0<br>0 |                | 0<br>1<br>0<br>0 | 0<br>0<br>0<br>1 | 0 1<br>1 1            | 4.455<br>3.545<br>.0909<br>.4545 | -3 0<br>0 0          | .5455 3<br>.0909 0 | 7.909<br>.0909<br>.1818<br>.9091 | 693.636<br>116.364<br>12.7273<br>73.6364 |

We can see from either the second or third iteration that because all of the constraint coefficients of  $x_5$  are nonpositive, it can be increased without forcing any basic variable to zero. From the third iteration,  $(116.364 + 3\theta, 73.6364 + 2\theta, 12.7273, 0)$  is feasible for any  $\theta \ge 0$  and  $Z = 693.636 + 17\theta$  is unbounded.

### 4.5-5.

(a) The constraints of any LP problem can be expressed in matrix notation as:

$$Ax = b, x > 0.$$

If  $x^1, x^2, \ldots, x^N$  are feasible solutions and  $x = \sum_{k=1}^N \alpha_k x^k$  with  $\sum_{k=1}^N \alpha_k = 1$  and  $\alpha_k \ge 0$  for  $k = 1, \ldots, N$ , then

$$Ax=A{\sum\limits_{k=1}^{N}}lpha_kx^k={\sum\limits_{k=1}^{N}}lpha_kAx^k={\sum\limits_{k=1}^{N}}lpha_kb=b,\,x={\sum\limits_{k=1}^{N}}lpha_kx^k\geq 0,$$

so x is also a feasible solution.

(b) This follows immediately from (a), since basic feasible solutions are feasible solutions.

#### 4.5-6.

(a) Suppose  $Z^*$  is the value of the objective function for an optimal solution and  $x^1, x^2, \ldots, x^N$  are optimal BF solutions. From Problem 4.5-5,  $x = \sum_{k=1}^N \alpha_k x^k$  is feasible for any choice of  $\alpha_k \geq 0$   $(k=1,\ldots,N)$  satisfying  $\sum_{k=1}^N \alpha_k = 1$ . The objective function value at x is:

$$c^T x = c^T \sum_{k=1}^{N} \alpha_k x^k = \sum_{k=1}^{N} \alpha_k c^T x^k = \sum_{k=1}^{N} \alpha_k Z^* = Z^*,$$

so x is also an optimal solution.

(b) Consider any feasible solution x that is not a weighted average of the optimal BF solutions. Since x is feasible, it must be a weighted average of the basic feasible solutions, which are not all optimal by assumption. Let  $\overline{x}^1, \overline{x}^2, \dots, \overline{x}^L$  are the basic feasible solutions that are not optimal. Then,

$$x = \sum_{k=1}^{N} \alpha_k x^k + \sum_{i=1}^{L} \beta_i \overline{x}^i$$

where  $\sum_{k=1}^{N} \alpha_k + \sum_{i=1}^{L} \beta_i = 1$ ,  $\alpha_k \ge 0$   $(k=1,\ldots,N)$ ,  $\beta_i \ge 0$   $(i=1,\ldots,L)$  and  $\beta_i \ne 0$  for some i. The objective function value at x is:

$$c^T x = c^T \sum_{k=1}^N \alpha_k x^k + c^T \sum_{i=1}^L \beta_i \overline{x}^i = \sum_{k=1}^N \alpha_k c^T x^k + \sum_{i=1}^L \beta_i c^T \overline{x}^i.$$

Since  $\overline{x}^i$  is not optimal,  $c^T \overline{x}^i < Z^*$  for every i. Because there is at least one positive  $\beta_i$  and  $c^T x^k = Z^*$ ,

$$c^T x < \left(\sum_{k=1}^N \alpha_k + \sum_{i=1}^L \beta_i\right) Z^* = Z^*.$$

Hence, x cannot be optimal.

### 4.5-7.

(a) 
$$x_1 \le 6$$
  
 $x_2 \le 3$   
 $-x_1 + 3x_2 \le 6$ 

(b)

| Unit Profit (Prod.1) | Unit Profit (Prod.2) | Objective     | Multiple Opt. Solutions                |  |  |
|----------------------|----------------------|---------------|----------------------------------------|--|--|
| -1                   | 3                    | $-x_1 + 3x_2$ | line segment between $(0,2)$ & $(3,3)$ |  |  |
| 0                    | 1                    | $x_2$         | line segment between $(3,3)$ & $(6,3)$ |  |  |
| 1                    | 0                    | $x_1$         | line segment between $(6,3)$ & $(6,0)$ |  |  |
| 0                    | -1                   | $-x_2$        | line segment between $(0,0)$ & $(6,0)$ |  |  |
| -1                   | 0                    | $-x_1$        | line segment between $(0,0)$ & $(0,2)$ |  |  |

(c)

| Corner Point $(x_1, x_2)$ | $Profit = -x_1 + 2x_2$ |
|---------------------------|------------------------|
| (0,0)                     | 0                      |
| (0,2)                     | 4                      |
| (3,3)                     | 3                      |
| (6,3)                     | 0                      |
| (6,0)                     | -6                     |

Optimal Solution:  $(x_1^*, x_2^*) = (0, 2)$  with  $Z^* = 4$ 

(d)

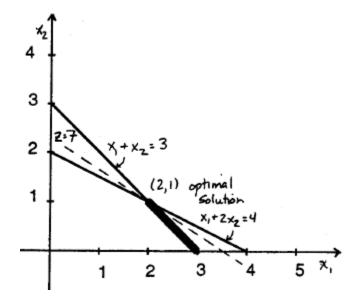
| Z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RS |
|---|-------|-------|-------|-------|-------|----|
| 1 | 1     | -2    | 0     | 0     | 0     | 0  |
| 0 | 1     | 0     | 1     | 0     | 0     | 6  |
| 0 | 0     | 1     | 0     | 1     | 0     | 3  |
| 0 | -1    | [3]   | 0     | 0     | 1     | 6  |

| Z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RS |
|---|-------|-------|-------|-------|-------|----|
| 1 | 1/3   | 0     | 0     | 0     | 2/3   | 4  |
| 0 | -1    | 0     | 1     | 0     | 0     | 6  |
| 0 | 1/3   | 0     | 0     | 1     | -1/3  | 1  |
| 0 | -1/3  | 1     | 0     | 0     | 1/3   | 2  |

So the unique optimal solution is  $(x_1^*, x_2^*) = (0, 2)$  with  $V^* = 4$ .

4.5-8.

| Bas Eq |     | Coefficient of |      |        |         |     |     |       |  |  |
|--------|-----|----------------|------|--------|---------|-----|-----|-------|--|--|
| Var No | ZΙ  | X1             | X2   | XЗ     | X4      | X5  | X6  | side  |  |  |
| II     | I_  |                |      |        |         |     |     | _I    |  |  |
| 1 1    | - 1 |                |      |        |         |     |     | 1     |  |  |
| Z   O  | 1   | -50            | -25  | -20    | -40     | 0   | 0   | 1 0   |  |  |
| X5  1  | 0   | 2 *            | 1    | 0      | 0       | 1   | 0   | 30    |  |  |
| X6  2  | 01  | 0              | 0    | 1      | 2       | 0   | 1   | 20    |  |  |
| Bas Eq |     |                | Co   | effic: | ient of |     |     | Right |  |  |
| Var No | ZΙ  | X1             | X2   | X3     | X4      | X5  | X6  | side  |  |  |
| 11     | I_  |                |      |        |         |     |     | _I    |  |  |
| 1 1    |     |                |      |        |         |     |     |       |  |  |
| Z   O  | 1   | 0              | 0    | -20    | -40     | 25  | 0   | 750   |  |  |
| X1  1  | 0   | 1              | 0.5  | 0      | 0       | 0.5 | 0   | 15    |  |  |
| X6  2  | 01  | 0              | 0    | 1      | 2 *     | 0   | 1   | 20    |  |  |
| Bas Eq |     |                | Co   | effici | ent of  |     |     | Right |  |  |
| Var No | ZΙ  | X1             | X2   | XЗ     | X4      | X5  | X6  | side  |  |  |
|        | I_  |                |      |        |         |     |     | _l    |  |  |
| 1 1    |     |                |      |        |         |     |     | 1     |  |  |
| Z   O  | 1   | 0              | 0    | 0      | 0       | 25  | 20  | 1150  |  |  |
| X1  1  | 0   | 1              | 0.5* | 0      | 0       | 0.5 | 0   | 15    |  |  |
| X4  2  | 0   | 0              | 0    | 0.5    | 1       | 0   | 0.5 | 10    |  |  |


Since the objective coefficients (row Z) for  $x_2$  and  $x_3$  are zero, we can pivot to get other optimal BF solutions.

| Bas Eq   |    |     | Co  | oefficie | ent of |     |     | Right    |
|----------|----|-----|-----|----------|--------|-----|-----|----------|
| Var No   | ZΙ | X1  | X2  | Х3       | Х4     | X5  | X6  | side     |
|          | I_ |     |     |          |        |     |     | _I       |
| 1 1      |    |     |     |          |        |     |     | 1        |
| Z   O    | 1  | 0   | 0   | 0        | 0      | 25  | 20  | 1150     |
| X2  1    | 01 | 2   | 1   | 0        | 0      | 1   | 0   | ] 30     |
| X4  2    | 01 | 0   | 0   | 0.5*     | 1      | 0   | 0.5 | 10       |
| Pogl Fal |    |     | C.  | peffici  | ont o  | =   |     | l Diocht |
| Bas Eq   | ٠. | *** |     |          |        |     | *** | Right    |
| Var No   | ΖĮ | X1  | X2  | Х3       | X4     | X5  | Х6  | side     |
| !!-      | !. |     |     |          |        |     |     | _!       |
| 1 1      | ı  |     |     |          |        |     |     | I        |
| Z   O    | 1  | 0   | 0   | 0        | 0      | 25  | 20  | 1150     |
| X2  1    | 01 | 2*  | 1   | 0        | 0      | 1   | 0   | 30       |
| X3  2    | 01 | 0   | 0   | 1        | 2      | 0   | 1   | 20       |
| Pool Fal |    |     | C.  | ooffiai. |        | =   |     | l Diaht  |
| Bas Eq   |    | *** |     | peffici  |        |     |     | Right    |
| Var No   | ZΙ | X1  | X2  | X3       | X4     | X5  | Х6  | side     |
|          | !. |     |     |          |        |     |     | _        |
| 1 1      | ı  |     |     |          |        |     |     | I        |
| Z   O    | 1  | 0   | 0   | 0        | 0      | 25  | 20  | 1150     |
| X1  1    | 01 | 1   | 0.5 | 0        | 0      | 0.5 | 0   | 15       |
| X3  2    | 01 | 0   | 0   | 1        | 2      | 0   | 1   | 20       |

Hence, the optimal BF solutions are (15, 0, 0, 10), (0, 30, 0, 10), (0, 30, 20, 0), and (15, 0, 20, 0), all with objective function value 1150.

## 4.6-1.

(a) Optimal Solution:  $(x_1^*, x_2^*) = (2, 1)$  and  $Z^* = 7$ 



(b) Initial artificial BF solution: (0,0,4,3)

| Bas        | Ēα |   |                | Right |    |    |      |   |
|------------|----|---|----------------|-------|----|----|------|---|
| Var        |    |   | x <sub>1</sub> | Х2    | Х3 | X4 | Side | _ |
|            |    |   | -1M            | -1M   |    |    |      |   |
| z          | 0  | 1 | -2             | -3    | 0  | 0  | -3M  |   |
| <u>X</u> 3 | 1  | 0 | 1              | 2     | 1  | 0  | 4    |   |
| ΧA         | 2  | 0 | 1              | 1     | 0  | 1  | 3    |   |

(c) Optimal Solution:  $(x_1^*, x_2^*) = (2, 1)$  and  $Z^* = 7$ 

| Bas        | Εq | L |                |     | Right |                |      |
|------------|----|---|----------------|-----|-------|----------------|------|
| Var        | No | Z | x <sub>1</sub> | X2  | Х3    | X <sub>4</sub> | Side |
|            |    |   | -0.5M          |     | 0.5M  |                | -1M  |
| z          | 0  | 1 | -0.5           | 0   | +1.5  | 0              | +6   |
| <u>x</u> 2 | 1  | 0 | 0.5            | 1   | 0.5   | 0              | 2    |
| X4         | 2  | 0 | 0.5            | . 0 | -0.5  | 1              | 1    |

| Bas   | Εq | L |                | Right         |    |    |      |
|-------|----|---|----------------|---------------|----|----|------|
| Var   | No | z | x <sub>1</sub> | Coeffic<br>X2 | Хз | X4 | Side |
|       |    |   |                |               |    | 1M |      |
| Z     | 0  | 1 | 0              | 0             | 1  | +1 | 7    |
| $x_2$ | 1  | 0 | 0              | 1             | 1  | -1 | 1    |
| $x_1$ | 2  | 0 | 1              | 0             | -1 | 2  | 2    |

## 4.6-2.

(a) - (b) Initial artificial BF solution: (0, 0, 0, 0, 300, 300)

| Bas                    | Eq |   | Coefficient of |                |     |     |     |                |               |  |  |  |
|------------------------|----|---|----------------|----------------|-----|-----|-----|----------------|---------------|--|--|--|
| Var                    | No | Z | X <sub>1</sub> | $\mathbf{x}_2$ | Х3  | X4  | X̄5 | X <sub>6</sub> | Right<br>Side |  |  |  |
|                        |    |   | -10M           | -4M            | -5M | -7M |     |                |               |  |  |  |
| Z                      | l٥ | 1 | -4             | -2             | -3  | -5  | 0   | 0              | -600M         |  |  |  |
| <u>z</u><br><u>x</u> 5 | 1  | 0 | 2              | 3              | 4   | 2   | 1   | 0              | 300           |  |  |  |
| x <sub>6</sub>         | 2  | 0 | 8              | 1              | 1   | 5   | 0   | 1.             | 300           |  |  |  |

| Bas             | Eq | <u>.</u> |                |        | Coeffic | cient of |                |                | Right |
|-----------------|----|----------|----------------|--------|---------|----------|----------------|----------------|-------|
| Var             | No | Z        | X <sub>1</sub> | Х2     | Х3      | X4       | X <sub>5</sub> | X <sub>6</sub> | Side  |
|                 |    |          |                | -2.75M | -3.75M  | -0.75M   |                | 1.25M          | -225M |
| Z               | 0  | 1        | 0              | -1.5   | -2.5    | -2.5     | 0              | +0.5           | +150  |
| $\frac{z}{x_5}$ | 1  | 0        | 0              | 2.75   | 3.75    | 0.75     | 1              | -0.25          | 225   |
| X1              | 2  | 0        | 1              | 0.125  | 0.125   | 0.625    | 0              | 0.125          | 37.5  |

| Bas   | Eq |   | Right          |                |                  |     |                |            |      |
|-------|----|---|----------------|----------------|------------------|-----|----------------|------------|------|
| Var   | No | Z | x <sub>1</sub> | X <sub>2</sub> | _ X <sub>3</sub> | X4  | X <sub>5</sub> | <u>x</u> 6 | Side |
|       |    |   |                |                |                  |     | 1M             | 1M         |      |
| Z     | 0  | 1 | 0              | 0.3333         | 0                | -2  | +0.667         | +0.333     | 300  |
| Х3    | 1  | 0 | 0              | 0.7333         | 1                | 0.2 | 0.2667         | -0.067     | 60   |
| $x_1$ | 2  | 0 | 1              | 0.0333         | 0                | 0,6 | -0.033         | 0.1333     | 30   |

| Bas     | Εq |   | Coefficient of |        |    |    |             |                        |      |  |  |  |
|---------|----|---|----------------|--------|----|----|-------------|------------------------|------|--|--|--|
| Var     | No | 2 | X <sub>1</sub> | Х2     | х3 | X4 | $\bar{x}_5$ | $\bar{\mathbf{x}}_{6}$ | Side |  |  |  |
|         |    |   |                |        |    |    | 1M          | 1M                     |      |  |  |  |
| Z       | 0  | 1 | 3.3333         | 0.4444 | 0  | 0  | +0.556      | +0.778                 | 400  |  |  |  |
| z<br>X3 | 1  | 0 | -0.333         | 0.7222 | 1  | 0  | 0.2778      | -0.111                 | 50   |  |  |  |
| X4      | 2  | 0 | 1.6667         | 0.0556 | 0  | 1  | -0.056      | 0.2222                 | 50   |  |  |  |

Optimal Solution:  $(x_1^\ast, x_2^\ast, x_3^\ast, x_4^\ast) = (0, 0, 50, 50)$  and  $Z^\ast = 400$ 

(c) - (d) - (e) - (f) Initial artificial BF solution: (0,0,0,0,300,300)

### Phase 1:

| Bas                    | Eq |   | Coefficient of |         |         |         |    |                |               |  |  |
|------------------------|----|---|----------------|---------|---------|---------|----|----------------|---------------|--|--|
| Var                    |    | Z | Х1             | Х2      | хз      | Х4      | X5 | x <sub>6</sub> | Right<br>Side |  |  |
| <u>z</u><br>X5<br>X6   | 0  | 1 | -10<br>2       | -4<br>3 | -5<br>4 | -7<br>2 | 0  | 0              | -600<br>300   |  |  |
| $\bar{\mathbf{x}}_{6}$ | 2  | 0 | 8              | 1       | 1       | . 5     | 0  | 1              | 300           |  |  |

| Bas            | Eq |     | Right |       |       |       |                |                |      |
|----------------|----|-----|-------|-------|-------|-------|----------------|----------------|------|
| Var            | No | _ Z | X1    | X2    | Х3    | X4    | <del>X</del> 5 | X <sub>6</sub> | Side |
| <u>z</u>       | 0  | 1   | 0     | -2.75 | -3.75 | -0.75 | . 0            | 1.25           | -225 |
| <u>Z</u><br>X5 | 1  | 0   | 0     | 2.75  | 3.75  | 0.75  | 1              | -0.25          | 225  |
| X1             | 2  | 0   | 1     | 0.125 | 0.125 | 0.625 | 0              | 0.125          | 37.5 |

| Bas                                   | Eq          | cq Coefficient of |    |                       |             |    |                       |                |               |  |  |  |  |
|---------------------------------------|-------------|-------------------|----|-----------------------|-------------|----|-----------------------|----------------|---------------|--|--|--|--|
| Var                                   | No          | Z                 | x1 | X2                    | Х3          | X4 |                       | x <sub>6</sub> | Side          |  |  |  |  |
| z<br>x <sub>3</sub><br>x <sub>1</sub> | 0<br>1<br>2 | 1<br>0<br>0       |    | 0<br>0.7333<br>0.0333 | 0<br>1<br>0 |    | 1<br>0.2667<br>-0.033 |                | 0<br>60<br>30 |  |  |  |  |

## Phase 2:

| Bas           | Eq          | L_          |                | Right                      |             |                  |                 |
|---------------|-------------|-------------|----------------|----------------------------|-------------|------------------|-----------------|
| Var           | No          | Z           | x <sub>1</sub> | Coeffici<br>X <sub>2</sub> | Х3          | X4               | Side            |
| z<br>X3<br>X1 | 0<br>1<br>2 | 1<br>0<br>0 | 0 0            | 0.3333<br>0.7333<br>0.0333 | 0<br>1<br>0 | -2<br>0.2<br>0.6 | 300<br>60<br>30 |

| Bas     | _  | <u> </u> | Coefficient of   |        |    |    |               |  |  |  |  |  |  |
|---------|----|----------|------------------|--------|----|----|---------------|--|--|--|--|--|--|
| Var     | No | Z        | X <sub>1</sub>   | X2     | Х3 | X4 | Right<br>Side |  |  |  |  |  |  |
| z<br>x3 | 0  | 1        | 3.3333<br>-0.333 | 0.4444 | 0  | 0  | 400<br>50     |  |  |  |  |  |  |
| X4.     | 2  | 0        | 1.6667           | 0.0556 | Ō  | 1  | 50            |  |  |  |  |  |  |

Optimal Solution:  $(x_1^*, x_2^*, x_3^*, x_4^*) = (0, 0, 50, 50)$  and  $Z^* = 400$ 

(g) The basic solutions of the two methods coincide. They are artificial BF solutions for the revised problem until both artificial variables  $x_5$  and  $x_6$  are driven out of the basis, which in the two-phase method is the end of Phase 1.

(h)

|             | 4 | 2  | 3  | 5  |         | 400 | Maximum value |
|-------------|---|----|----|----|---------|-----|---------------|
| Variables   | 0 | 0  | 50 | 50 |         | DUC |               |
|             |   |    |    |    |         | RHS |               |
| Constraints | 2 | 3  | 4  | 2  | 300 "=" | 300 |               |
|             | 8 | 11 | 1  | 5  | 300 "=" | 300 | 2             |
|             |   |    |    |    |         |     |               |
|             | 2 | 3  |    | 1  |         | 7 🛭 | Minimum value |
| Variables   | 0 | 3  |    | -2 |         | - 1 |               |
|             |   |    |    |    | RH      | s   |               |
| Constraint  | 1 | 4  |    | 2  | 8 >=    | 8   |               |
|             | 3 | 2  |    | 0  | 6 >=    | 6   |               |

### 4.6-3.

(a) maximize 
$$-Z = -2x_1 - 3x_2 - x_3$$
 subject to 
$$-x_1 - 4x_2 - 2x_3 \le -8$$
 
$$-3x_1 - 2x_2 \le -6$$
 
$$x_1, x_2, x_3 \ge 0$$

(b) Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (0.8, 1.8, 0)$  and  $Z^* = 7$ 

|                      | s Eq Coefficient of |   |                |     |     |    |    |                |    |               |  |
|----------------------|---------------------|---|----------------|-----|-----|----|----|----------------|----|---------------|--|
| Var                  | No                  | Z | X <sub>1</sub> | X2  | Х3  | X4 | X5 | X <sub>6</sub> | X7 | Right<br>Side |  |
|                      |                     |   | -4M            | -6M | -2M |    |    |                |    |               |  |
| <u>Z</u><br>X6<br>X7 | 0                   | 1 | +2             | +3  | +1  | 1M | 1M | 0              | 0  | -14M          |  |
| <u>X</u> 6           | 1                   | 0 | 1              | 4   | 2   | -1 | 0  | 1              | 0  | 8             |  |
| Х7                   | 2                   | 0 | 3 [            | 2   | 0   | 0  | -1 | 0              | 1  | 6             |  |

| Bas        | Eq |   |                |    | Coef | ficient | of |                |     | Right |
|------------|----|---|----------------|----|------|---------|----|----------------|-----|-------|
| Var        | No | Z | $\mathbf{x}_1$ | Х2 | Х3   | Х4      | X5 | x <sub>6</sub> | X7  | Side  |
|            |    |   | -2.5M          |    | 1M   | -0.5M   |    | 1.5M           |     | -2M   |
| z          | 0  | 1 | +1.25          | 0  | -0.5 | +0.75   | 1M | -0.75          | 0   | -6    |
| <u>x</u> 2 | 1  | 0 | 0.25           | 1  | 0.5  | -0.25   | 0  | 0.25           | . 0 | 2     |
| X7         | 2  | 0 | 2.5            | 0  | -1   | 0.5     | -1 | -0.5           | 1   | 2     |

| Bas   |    |   | Coefficient of |    |      |      |      |                |      |               |  |  |  |  |  |
|-------|----|---|----------------|----|------|------|------|----------------|------|---------------|--|--|--|--|--|
| Var   | No | Z | x <sub>1</sub> | Х2 | X3   | X4   | X5   | X <sub>6</sub> | . X7 | Right<br>Side |  |  |  |  |  |
|       |    |   |                |    |      |      |      | 1M             | 1M   |               |  |  |  |  |  |
| Z     | 0  | 1 | 0              | 0  | 0    | 0.5  | 0.5  | -0.5           | -0.5 | -7            |  |  |  |  |  |
| $x_2$ | 1  | 0 | 0              | 1  | 0.6  | -0.3 | 0.1  | 0.3            | -0.1 | 1.8           |  |  |  |  |  |
| $x_1$ | 2  | 0 | 1              | 0  | -0.4 | 0.2  | -0.4 | -0.2           | 0.4  | 0.8           |  |  |  |  |  |

Pivoting  $x_3$  for  $x_2$  gives an alternate optimal BF solution, (2, 0, 3).

(c) Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (0.8, 1.8, 0)$  and  $Z^* = 7$ 

### Phase 1:

| Bas                                     |    | L., |                |                | Coef | ficient | of |                |    | l pinte       |
|-----------------------------------------|----|-----|----------------|----------------|------|---------|----|----------------|----|---------------|
| Var                                     | No | _ Z | X <sub>1</sub> | x <sub>2</sub> | Х3   | Х4      | X5 | x <sub>6</sub> | X7 | Right<br>Side |
| <u>z</u>                                | 0  | 1   | -4             | -6             | -2   | 1       | 1  | 0              | 0  | -14           |
| $\frac{\overline{x}_6}{\overline{x}_7}$ | 1  | 0   | 1              | 4              | 2    | -1      | 0  | 1              | 0  | 8 7           |
| A71                                     | 4  | 0   | 3              | 2              | 0    | 0       | -1 | 0              | 1  |               |

| Bas           |       |             |                     |             | Coef      | ficient              | of           |                     |             | Dicht         |
|---------------|-------|-------------|---------------------|-------------|-----------|----------------------|--------------|---------------------|-------------|---------------|
| Var           | No    | Z           | x <sub>1</sub>      | X2          | Х3        | X4                   | X5           | - X <sub>6</sub>    | X7          | Right<br>Side |
| Z<br>X2<br>X7 | 0 1 2 | 1<br>0<br>0 | -2.5<br>0.25<br>2.5 | 0<br>1<br>0 | 0.5<br>-1 | -0.5<br>-0.25<br>0.5 | 1<br>0<br>-1 | 1.5<br>0.25<br>-0.5 | 0<br>0<br>1 | -2<br>2<br>2  |

| Bas                                   | Eq          |             |             |             | Coef             | ficient          | of               |                |             | Right           |
|---------------------------------------|-------------|-------------|-------------|-------------|------------------|------------------|------------------|----------------|-------------|-----------------|
| Var                                   | No          | Z           | х1          | Х2          | Х3               | X4               | X5               | X <sub>6</sub> | X7          | Side            |
| z<br>x <sub>2</sub><br>x <sub>1</sub> | 0<br>1<br>2 | 1<br>0<br>0 | 0<br>0<br>1 | 0<br>1<br>0 | 0<br>0.6<br>-0.4 | 0<br>-0.3<br>0.2 | 0<br>0.1<br>-0.4 | 0.3<br>-0.2    | -0.1<br>0.4 | 0<br>1.8<br>0.8 |

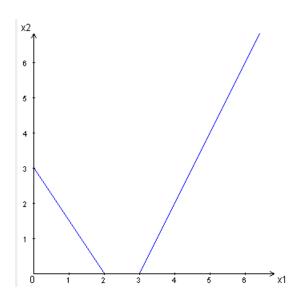
### Phase 2:

| Bas            | Eq | l | Coefficient of |    |        |      |      |      |  |  |  |
|----------------|----|---|----------------|----|--------|------|------|------|--|--|--|
| Var            |    | Z | X1             | X2 | Хз     | X4   | X5   | Side |  |  |  |
|                |    |   |                |    | ارير   | 3    |      |      |  |  |  |
| $\mathbf{z}$   | 0  | 1 | 0              | 0  | -5e-20 | 0.5  | 0.5  | -7   |  |  |  |
| $x_2$          | 1  | 0 | 0              | 1  | 0.6    | -0.3 | 0.1  | 1.8  |  |  |  |
| X <sub>1</sub> | 2  | 0 | 1              | 0  | -0.4   | 0.2  | -0.4 | 0.8  |  |  |  |

Pivoting  $x_3$  for  $x_2$  gives an alternate optimal BF solution, (2, 0, 3).

(d) The basic solutions of the two methods coincide. They are artificial BF solutions for the revised problem until both artificial variables  $x_6$  and  $x_7$  are driven out of the basis, which in the two-phase method is the end of Phase 1.

(e)


|             | 2 | 3 | 1  |      | 7   | Optimal Value |
|-------------|---|---|----|------|-----|---------------|
| Variables   | 0 | 3 | -2 |      |     |               |
|             |   |   |    |      | RHS |               |
| Constraints | 1 | 4 | 2  | 8 >= | 8   |               |
|             | 3 | 2 | 0  | 6 >= | 6   |               |

## 4.6-4.

Once all artificial variables are driven out of the basis in a maximization (minimization) problem. Choosing an artificial variable to reenter the basis can only lower (raise) the objective function value by an arbitrarily large amount depending on M.

### 4.6-5.

(a)



(b) The Solver could not find a feasible solution.

|              | Coeffic | cient of |       |   |    |
|--------------|---------|----------|-------|---|----|
|              | X1      | X2       | Total |   |    |
| Constraint 1 | 3       | 2        | 6     | ≤ | 6  |
| Constraint 2 | -2      | 1        | -4    | ≤ | -6 |
| Objective    | 5       | 4        | 10    |   |    |
| Solution     | 2       | 0        |       |   |    |

(c)

| BV | Eq. | Ζ | X1 | X2 | Х3 | X4 | X5 | RHS |
|----|-----|---|----|----|----|----|----|-----|
| Ζ  | 0   | 1 | -5 | -4 | 0  | 0  | 1M | 0   |
| Х3 | 1   | 0 | 3  | 2  | 1  | 0  | 0  | 6   |
| X5 | 2   | 0 | 2  | -1 | Ō  | -1 | 1  | 6   |

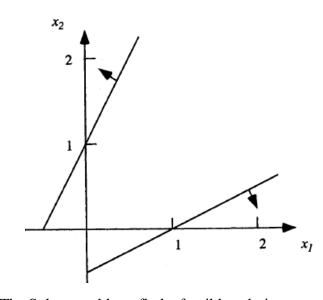
| В | V | Eq. | Ζ | X1    | X2    | X3 | X4  | X5 | RHS |
|---|---|-----|---|-------|-------|----|-----|----|-----|
|   | 7 | 0   | 1 | -5-2M | -4+1M | 0  | 1 M | 0  | -6M |
|   | 3 | 1   | 0 | 3     | 2     | 1  | 0   | 0  | 6   |
| X | 5 | 2   | 0 | 2     | -1    | 0  | -1  | 1  | 6   |

| BV | Eq. | Ζ | X1 | X2          | Х3         | X4  | X5 | RHS   |
|----|-----|---|----|-------------|------------|-----|----|-------|
| Z  | 0   | 1 | 0  | -2/3+(7/3)M | 5/3+(2/3)M | 1 M | 0  | 10-2M |
| X1 | 1   | 0 | 1  | 2/3         | 1/3        | 0   | 0  | 2     |
| X5 | 2   | 0 | 0  | -7/3        | -2/3       | -1  | 1  | 2     |

In the optimal solution, the artificial variable  $X_5$  is basic and takes a positive value, so the problem has no feasible solutions.

(d)

| B۱ | 7 | Eq. | Ζ | X1 | X2 | Х3 | X4 | X5 | RHS |
|----|---|-----|---|----|----|----|----|----|-----|
| Z  |   | 0   | 1 | 0  | 0  | 0  | 0  | 1  | 0   |
| ХЗ |   | 1   | 0 | 3  | 2  | 1  | 0  | 0  | 9   |
| X5 |   | 2   | 0 | 2  | -1 | Ó  | -1 | 1  | 6   |


| BV | Eq. | Ζ | X1 | X2 | Х3 | X4 | X5 | RHS |
|----|-----|---|----|----|----|----|----|-----|
| Z  | 0   | 1 | -2 | 1  | 0  | 1  | 0  | -6  |
| Х3 | 1   | 0 | 3  | 2  | 1  | 0  | 0  | 6   |
| X5 | 2   | 0 | 2  | -1 | 0  | -1 | 1  | 6   |

| BV | ' ⊢ | Ēq. | Ζ | X1 | X2            | Х3   | X4 | X5 | RHS |
|----|-----|-----|---|----|---------------|------|----|----|-----|
| Z  | - 1 | 0   | 1 | 0  | 7/3           | 2/3  | 1  | 0  | -2  |
| X1 |     | 1   | 0 | 1  | 2/3           | 1/3  | 0  | 0  | 2   |
| X5 | - 1 | 2   | 0 | 0  | -7 <i>1</i> 3 | -2/3 | -1 | 1  | 2   |

Since the artificial variable  $X_5$  is not zero in the optimal solution of Phase I Problem, the original model must have no feasible solutions.

**4.6-6.** 

(a)



(b) The Solver could not find a feasible solution.

|           | Benefit Contribution Pe | r Unit of Each Activity | _        |        |   | Minimum |
|-----------|-------------------------|-------------------------|----------|--------|---|---------|
| Benefit   | Activity 1              | Activity 2              |          | Totals |   | Level   |
| 1         | -2                      | 1                       | Г        | 0      | 2 | 1       |
| 2         | 1                       | -2                      | <u> </u> | 0      | ≥ | 11      |
| Unit Cost | 5000                    | 7000                    | \$       | -      |   |         |
| Solution  | 0                       | 0                       | ı        |        |   |         |

(c)

| (C)      |        |        |         |       |        |         |       |       |       |
|----------|--------|--------|---------|-------|--------|---------|-------|-------|-------|
| Bas      | Eq     |        |         |       |        | cient o |       |       | Right |
| Var      | No     | Z      | Х1      | X2    | Х3     | X4      | X5    | Х6    | side  |
|          | 0      | 1      | 5000    | 7000  | 0      | 0       | 1.0e6 | 1.0e6 | 0     |
| X1       | 1      | ō      | -2      | 1     | -1     | 0       | 1     | 0     | 1     |
| X1       | 2      |        | 1*      |       | 0      | -1      | 0     | 1     | 1     |
| Bas      | Eq     | ı      |         | (     | Coeffi | cient   | of    |       | Right |
| Var      |        | Z      | X1      | X2    | х3     | X4      | X5    | Х6    | side  |
| z        | 0      | 1      | 0       | 17000 | 0      | 5000    | 1.0e6 | 1.0e6 | -5000 |
| X1       | Ĭ      | ō      | Ĭŏ      | -3    | -i     | -2      |       |       | 3     |
| X1       | 2      | ŏ      | ĭ       | -2    | ō      |         |       |       | 1     |
| Bas      |        |        |         |       |        | ient o  |       |       | Right |
| Var      | No     | Z      | X1      | X2    | Х3     | X4      | X5    | Х6    | side  |
| z        | 0      | 1      | -1e6    | 2.0e6 | 0      | 1.0e6   | 1.0e6 | 0     | -1e6  |
| X1       | ĭ      | ō      | -2      | 1     | -1     | 0       | 1*    |       | 1     |
| Х6       | 2      | Ö      | 1       | -2    | 0      | -1      | 0     | 1     | 1     |
| Bas      | Eq     |        |         |       |        | cient   |       |       | Right |
| Var      | No     | Z      | X1      | X2    | х3     | X4      | Х5    | Х6    | side  |
|          | _      | _      | 1 000   | 1 006 | 1 006  | 1.0e6   | 0     | 0     | -2e6  |
| Z        | 0 1    | 1<br>0 | 1.0e6   | 1.000 | -1     | 0       | 1     | 0     | 1     |
| X5<br>X6 | 1<br>2 | 0      | -2<br>1 | -2    | 0      | -1      | 0     | 1     | î     |
| (d)      |        |        |         |       |        |         |       |       |       |
| Bas      | Eq     |        |         | (     | coeffi | cient   | of    |       | Right |
| Var      | No     | Z      | X1      | X2    | Х3     | X4      |       | X6    | side  |
|          | —      |        |         |       |        |         |       |       |       |
| Z        | 0      | 1      | 0       | 0     | 0      | 0       | 1     | 1     | 0     |
| X1       | 1      | 0      | -2      | 1     | -1     | 0       |       | 0     | 1     |
| X1       | 2      | 0      | 1*      | -2    | 0      | -1      | 0     | 1     | 1     |

| Bas          | Eq  | ٠. |    | Co       | effici | ent of | :  |    | Right   |
|--------------|-----|----|----|----------|--------|--------|----|----|---------|
| Var          | No  | Z  | X1 | X2       | х3     | X4     | X5 | X6 | side    |
|              |     | -  |    |          |        |        |    |    |         |
| Z            | 0   | 1  | 0  | 0        | 0      | 0      | 1  | 1  | 0       |
| X1           | 1   | 0  | 0  | -3       | -1     | -2     | 1* | 2  | 3       |
| X1           | 2   | 0  | 1  | -3<br>-2 | 0      | -1     | 0  | 1  | 3       |
| Bas          | lΕα | ı  |    | Co       | effici | ent of | ;  |    | Right   |
| Var          |     | z  | X1 | Х2       | X3     | X4     | X5 | X6 | side    |
|              |     | _  |    |          |        |        |    |    | 1       |
|              |     | _  |    |          |        |        |    |    |         |
| $\mathbf{z}$ | 0   | 1  | 0  | 3        | 1      | 2      | 0  | -1 | -3      |
| X5           | 1   | 0  | 0  | -3<br>-2 | -1     | -2     | 1  | 2  | -3<br>3 |
| Х1           | 2   | 0  | 1  | -2       | 0      | -1     | 0  | 1* | 1       |
| Bas          | Eal | ı  |    | Co       | effici | ent of |    |    |         |
| Var          | No  | z  | X1 | X2       | X3     | X4     | Х5 | Х6 | Right   |
|              |     |    |    |          | 11.5   | AT     | ΔЭ | A0 | side    |
| _            |     |    |    |          |        |        |    |    |         |
| Z            | 0   | 1  | 1  | 1        | 1      | 1      | 0  | 0  | -2      |
| X5           | 1   | 0  | -2 | 1        | -1     | 0      | 1  | 0  | 1       |
| X6           | 2   | 0  | 1  | -2       | 0      | -1     | 0  | 1  | 1       |

## 4.6-7.

(a) Initial artificial BF solution: (0,0,0,0,20,50)

| Bas        | Eq |              | Coefficient of |     |     |    |             |                |               |  |
|------------|----|--------------|----------------|-----|-----|----|-------------|----------------|---------------|--|
| Var        | No | $\mathbf{z}$ | x <sub>1</sub> | X2  | Хз  | X4 | $\bar{x}_5$ | x <sub>6</sub> | Right<br>Side |  |
|            |    |              | -3M            | -2M | -2M |    |             |                |               |  |
| Z          | 0  | 1            | -2             | -5  | -3  | 1M | 0           | 0              | -70M          |  |
| <u>x</u> 5 | 1  | 0            | 1              | -2  | 1   | -1 | 1           | 0              | 20            |  |
| X6         | 2  | 0            | 2              | 4   | 1   | 0  | 0           | 1              | 50            |  |

(b) Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (0, 0, 50)$  and  $Z^* = 150$ 

| Bas         | Eα |   |                |     | Coeffic | ient of |             |                  | Right |
|-------------|----|---|----------------|-----|---------|---------|-------------|------------------|-------|
| Var         |    | Z | X <sub>1</sub> | X2  | Х3      | X4      | $\bar{x}_5$ | X <sub>6</sub> _ | Side  |
|             |    |   |                | -8M | 1M      | -2M     | 3M          |                  | -10M  |
| z           | 0  | 1 | . 0            | -9  | -1      | -2      | +2          | 0                | +40   |
| <u>x</u> 1  | 1  | 0 | 1              | -2  | 1       | -1      | 1           | 0                | 20    |
| $\bar{x}_6$ | 2  | 0 | 0              | 8   | -1      | 2       | -2          | 1                | 10    |

| Bas              | Eq  |   |                | C   | oeffic | ient of |                |                | Right |
|------------------|-----|---|----------------|-----|--------|---------|----------------|----------------|-------|
| Var              | No  | z | X1             | X2  | Х3     | X4      | X5             | X6_            | Side  |
|                  |     |   |                |     |        |         | 1M             | 1M             |       |
| z                | 0   | 1 | 0              | 0 - | 2.125  | 0.25    | -0.25          | +1.125         | 51.25 |
| $x_1$            | 1   | 0 | 1              | 0   | 0.75   | -0.5    | 0.5            | 0.25           | 22.5  |
| $\mathbf{x}_{2}$ | 2   | 0 | 0              | 1 - | 0.125  | 0.25    | -0.25          | 0.125          | 1.25  |
| D                | 1   |   |                | -   |        | ient of |                | 1              | Right |
| Bas              |     |   |                |     |        |         |                |                |       |
| Var              | No  | Z | X <sub>1</sub> | Х2  | Х3     | X4      | X5             | x <sub>6</sub> | Side  |
|                  |     |   |                |     |        |         | 1M             | 1,M            |       |
| Z                | 0   | 1 | 2.8333         | 0   | 0      | -1.167  | +1.167         | +1.833         | 115   |
| $x_3$            | 1   | 0 | 1.3333         | 0   | 1      | -0.667  | 0.6667         | 0.3333_        | 30    |
| $x_2$            | 2   | 0 | 0.1667         | 1   | 0      | 0.1667  | -0.167         | 0.1667         | 5     |
| _                |     |   |                |     |        |         |                |                |       |
| Bas              | Eq  |   |                | Co  | effic: | ient of |                |                | Right |
| Var              |     | Z | X <sub>1</sub> | Х2  | Хз     | X4      | X <sub>5</sub> | $\bar{x}_6$    | Side  |
| · ·              | -10 |   |                |     |        |         |                | 1M             |       |
| z                | 0   | 1 | 4              | 7   | 0      | 0       | 1M             | +3             | 150   |
| X3               | 1   | ō | 2              | 4   | 1      | 0       | 0              | 1              | 50    |
| X4               | 2   | 0 | 1              | 6   | 0      | 1       | -1             | 1              | 30    |
|                  | ~   | • | _              |     |        |         |                |                |       |

(c) Initial artificial BF solution:  $\left(0,0,0,0,20,50\right)$ 

## Phase 1:

| Bas            | Eq |   |    |                | Coeffic | ient of |                |             | Right<br>Side |
|----------------|----|---|----|----------------|---------|---------|----------------|-------------|---------------|
| Bas<br>Var     | No | Z | х1 | x <sub>2</sub> | Х3      | X4      | X <sub>5</sub> | $\bar{x}_6$ | Side          |
| z              | 0  | 1 | -3 | -2             | -2      | 1       | 0              | 0           | -70           |
| <u>X</u> 5     | 1  | 0 | 1  | -2             | 1       | -1      | 1              | 0           | 20            |
| x <sub>6</sub> | 2  | 0 | 2  | 4              | 1       | 0       | 0              | 1           | 50            |

(d)

| Bas                   | Εq          |             |     | C             | oeffici      | ent of        |                |                | Right     |
|-----------------------|-------------|-------------|-----|---------------|--------------|---------------|----------------|----------------|-----------|
| Var                   | No          | Z           | Х1  | Х2            | Хз           | X4            | X <sub>5</sub> | x <sub>6</sub> | Side      |
| z<br><u>X</u> 1<br>X6 | 0<br>1<br>2 | 1<br>0<br>0 | 0 1 | -8<br>-2<br>8 | 1<br>1<br>-1 | -2<br>-1<br>2 | 3<br>1<br>-2   | 0<br>0         | -10<br>20 |

| Bas                                   | Eq          |   |             |                | Coeffici            | ent of            |                   |               | Right             |
|---------------------------------------|-------------|---|-------------|----------------|---------------------|-------------------|-------------------|---------------|-------------------|
| <u>Var</u>                            | No          | Z | Х1          | x <sub>2</sub> | Х3                  | X4                | X <sub>5</sub>    | <u>x</u> 6    | Side              |
| z<br>x <sub>1</sub><br>x <sub>2</sub> | 0<br>1<br>2 | 0 | 0<br>1<br>0 | 0<br>0<br>1    | 0<br>0.75<br>-0.125 | 0<br>-0.5<br>0.25 | 1<br>0.5<br>-0.25 | 0.25<br>0.125 | 0<br>22.5<br>1.25 |

(e) - (f) Optimal Solution: 
$$(x_1^\ast, x_2^\ast, x_3^\ast) = (0, 0, 50)$$
 and  $Z^\ast = 150$ 

Phase 2:

| Bas                                   | Eq |   |        | Coeffic | ient of  |        | Right |
|---------------------------------------|----|---|--------|---------|----------|--------|-------|
| Var                                   | -  | Z | X1     | X2      | Х3       | X4     | Side  |
|                                       |    |   |        |         |          |        |       |
| z                                     | 0  | 1 | 0      | 0       | -2.125   | 0.25   | 51.25 |
| X1                                    | 1  | 0 | 1      | 0       | 0.75     | -0.5   | 22.5  |
| Z<br>X <sub>1</sub><br>X <sub>2</sub> | 2  | 0 | 0      | 1       | -0.125   | 0.25   | 1.25  |
|                                       | P  | ı |        | Cooffic | ient of  |        | Right |
| Bas                                   | _  |   |        |         |          |        |       |
| Var                                   | No | Z | X1     | X2      | . хз     | X4     | Side  |
| z                                     | 0  | 1 | 2.8333 | 0       | 0        | -1.167 | 115   |
|                                       | ,  |   |        |         | 1        | -0.667 | 30    |
| Хз                                    | 1  | 0 | 1.3333 | 0       | <u>+</u> |        |       |
| X2                                    | 2  | 0 | 0.1667 | 1       | 0        | 0.1667 | 5     |
| _                                     |    |   |        |         |          |        |       |
| Bas                                   | Eα | 1 |        | Coeffic | cient o  | £      | Right |
| Var                                   |    | _ | X1     | X2      | Хa       | XΔ     | Side  |

| Bas           | Eq    |     | C              | oefficie       | ent of      |             | Right           |
|---------------|-------|-----|----------------|----------------|-------------|-------------|-----------------|
| Var           | No    | Z   | X <sub>1</sub> | X <sub>2</sub> | Хз          | X4          | Side            |
| Z<br>X3<br>X4 | 0 1 2 | 1 0 | 4<br>2<br>1    | 7<br>4<br>6    | 0<br>1<br>0 | 0<br>0<br>1 | 150<br>50<br>30 |

(g) The basic solutions of the two methods coincide. They are artificial basic feasible solutions for the revised problem until both artificial variables  $x_5$  and  $x_6$  are driven out of the basis, which in the two-phase method is the end of Phase 1.

(h)

|             | 2 | 5  | 3  |        | 150 Optimal  | Value |
|-------------|---|----|----|--------|--------------|-------|
| Solution    | 0 | 0  | 50 |        | 1            |       |
| ì           |   |    |    | Rig    | ht Hand Side |       |
| Constraints | 1 | -2 | 1  | 50 >=  | 20           |       |
|             | 2 | 4  | 1  | 50 "=" | 50           |       |

### 4.6-8.

(a)

Phase 1:

| Bas     | Eσ |   |         | C              | oeffic   | ient of |        |                | Right               |
|---------|----|---|---------|----------------|----------|---------|--------|----------------|---------------------|
| Var     |    | Z | X1      | x <sub>2</sub> | Х3       | X4      | X5     | x <sub>6</sub> | Side                |
| Z<br>X5 | 0  | 1 | -8<br>5 | -4<br>2 Г      | -12<br>7 | 1<br>0  | 0<br>1 | 0              | -700<br><b>4</b> 20 |
| Xe      | 2  | 0 | 3       | 2              | 5        | -1      | 0      | 1              | 280                 |

| Bas            | Εα |   |      | Co   | effic | ient of |    |                | Right |
|----------------|----|---|------|------|-------|---------|----|----------------|-------|
| Var            |    | Z | X1_  | X2_  | Х3    | X_      | X5 | X <sub>6</sub> | Side  |
| z              | 0  | 1 | -0.8 | 0.8  | 0     | -1.4    | 0  | 2.4            | -28   |
| <u>z</u><br>X5 | 1  | 0 | 0.8  | -0.8 | 0     | 1.4     | 1_ | -1.4           | 28    |
| X3             | 2  | 0 | 0.6  | 0.4  | 1     | -0.2    | 0  | 0.2            | 56    |

| Bas           | Eq    |   |                           |        | Coefficie | nt of | E                     |                | Right             |
|---------------|-------|---|---------------------------|--------|-----------|-------|-----------------------|----------------|-------------------|
| Var           | No    | Z | _x <sub>1</sub>           | Х2     | Х3        | Х4    | X5                    | x <sub>6</sub> | Side              |
| Z<br>X4<br>X3 | 0 1 2 | 0 | 5e-20<br>0.5714<br>0.7143 | -0.571 | 0         |       | 1<br>0.7143<br>0.1429 | 1<br>-1        | 2e-18<br>20<br>60 |

(b)

|             | 0 | 0 | 0  | 0  | 1 | 1 | <u>, , , , , , , , , , , , , , , , , , , </u> | 0   | Minimum Value |
|-------------|---|---|----|----|---|---|-----------------------------------------------|-----|---------------|
| Variables   | 0 | 0 | 60 | 20 | 0 | 0 |                                               |     |               |
|             | 1 |   |    |    |   |   |                                               | RHS |               |
| Constraints | 5 | 2 | 7  | 0  | 1 | Ō | 420 "="                                       | 420 |               |
|             | 3 | 2 | 5  | -1 | 0 | 1 | 280 "="                                       | 280 |               |

(c) Optimal Solution:  $(x_1^{\ast},x_2^{\ast},x_3^{\ast})=(35,0,35)$  and  $Z^{\ast}=175$ 

Phase 2:

| Bas        | Eq |   |                       | Coefficie       | ent of |            | Right         |
|------------|----|---|-----------------------|-----------------|--------|------------|---------------|
| Var        | No | Z | x <sub>1</sub>        | x <sub>2</sub>  | Х3     | X4         | Side          |
|            |    |   | İ                     |                 |        |            |               |
| z          | 0  | 1 | -0.143                | 0.1429          | 00     | 0          | -180          |
| X4         | 1  | 0 | 0.5714                | -0.571          | 0      | 1          | 20            |
| X4<br>X3   | 2  | 0 | 0.7143                | 0.2857          | 1      | 0          | 60            |
|            |    |   |                       |                 |        |            |               |
|            |    |   |                       |                 |        |            |               |
| Bas        | Eq |   |                       | Coefficie       | ent of |            | Right         |
| Bas<br>Var | _  | Z | <b>x</b> <sub>1</sub> | Coefficie<br>X2 | nt of  | X4         | Right<br>Side |
| 1          | _  |   | x <sub>1</sub>        | х2              | Х3     | Х4         | Side          |
| 1          | _  |   |                       | х2              | Х3     | X4<br>0.25 | _             |
| Var        | No |   | X <sub>1</sub>        | x <sub>2</sub>  | Х3     |            | Side          |

Pivoting  $x_2$  into the basis for  $x_3$  provides the alternative optimal BF solution (70, 35, 0). (d)

| Masiables   | 2<br>36.6 | 1<br>1.6 | 3<br><b>33.</b> 4 | 1       | 175 | Minimum Value |
|-------------|-----------|----------|-------------------|---------|-----|---------------|
| Variables   | 30.0      | 1.0      |                   | •       | RHS |               |
| Constraints | 5         | 2        | 7                 | 420 "=" | 420 |               |
|             | 3         | 2        | 5                 | 280 >=  | 280 |               |

**4.6-9.** (a) Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (0, 15, 15)$  and  $Z^* = 90$ 

| Bas                  | Eq |   |                |                | Coeffic | ient of |                |                | Right |
|----------------------|----|---|----------------|----------------|---------|---------|----------------|----------------|-------|
| Var                  | No | Z | X1             | X2             | Х3      | X4      | X5             | X6             | Side  |
|                      |    |   | -5M            | -4M            | -8M     |         |                |                |       |
| Z                    | 0  | 1 | +3             | +2             | +4      | 1M      | 0              | 0              | -180M |
| <u>Z</u><br>X5<br>X6 | 1  | 0 | 2              | 1              | 3_      | 0       | 1              | 0              | 60    |
| X6                   | 2  | 0 | 3              | 3              | 5       | -1      | 0              | 1              | 120   |
|                      |    |   |                |                |         | '       |                |                |       |
| Bas                  | Eq |   |                |                | Coeffic | ient of | :              |                | Right |
| Var                  | No | Z | X <sub>1</sub> | X <sub>2</sub> | Х3      | X4      | X <sub>5</sub> | $\bar{x}_6$    | Side  |
|                      |    |   | 0.333M         | -1.33M         |         |         | 2.667M         |                | -20M  |
| 2                    | 0  | 1 | +0.333         | +0.667         | 0       | 1M      | -1.333         | 0              | -80   |
|                      | 1  | 0 | 0.6667         | 0.3333         | 1       | 0       | 0.3333         | 0              | 20    |
| <u>X</u> 3           | 2  | 0 | -0.333         | 1.3333         | 0       | -1      | -1.667         | 1              | 20    |
|                      |    |   |                |                |         |         |                |                |       |
| Bas                  | Eq |   |                |                | Coeffic | ient of | Ē              |                | Right |
| Var                  | No | Z | X1             | Х2             | Хз      | X4      | X5             | X <sub>6</sub> | Side  |
|                      |    |   |                |                |         |         | 1M             | 1M             |       |
| z                    | 0  | 1 | 0.5            | 0              | 0       | 0.5     | -0.5           | -0.5           | -90   |
| Х3                   | 1  | 0 | 0.75           | 0              | 1       | 0.25    | 0.75           | -0.25          | 15    |
| X <sub>2</sub>       | 2  | 0 | -0.25          | 1              | 0       | -0.75   | -1.25          | 0.75           | 15    |
|                      |    |   |                |                |         |         |                |                |       |

(b) Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (0, 15, 15)$  and  $Z^* = 90$ 

Phase 1:

|                      | -    |          |                |                |         |         |                | _              |       |
|----------------------|------|----------|----------------|----------------|---------|---------|----------------|----------------|-------|
| Bas                  | Eal  |          |                | C              | oeffici | ent of  |                |                | Right |
| Var                  |      | z        | X <sub>1</sub> | x <sub>2</sub> | Х3      | X4_     | X5             | x <sub>6</sub> | Side  |
| var                  | NO   |          |                | /-             |         |         |                |                |       |
| 7.                   | 0    | 1        | -5             | -4             | -8      | 1       | 0              | 0              | -180  |
| <u>Z</u><br>X5<br>X6 | 1    | ō        | 2              | 1              | 3 1     | 0       | 1              | 0              | 60    |
| ≙5                   |      | ۱ ۱      |                | 3              | 5       | -1      | 0              | 1              | 120   |
| X6                   | 2    | 0        | 3              | ے د            | 2.      | -1      | •              |                |       |
|                      |      |          |                |                |         |         |                |                |       |
|                      |      |          |                | ^              | oeffici | ont of  |                | . 1            | Right |
| Bas                  |      |          |                |                |         |         | 37-            | Xe             | Side  |
| Var                  | No   | 13       | ж1             | v <sub>a</sub> | <u></u> | X_      | X5             | Δ6             | Side  |
|                      | l    |          |                |                |         |         |                |                | 20    |
| $\mathbf{z}$         | 0    | 1        | 0.3333         | -1.333         | 0       |         | 2.6667         | 0              | -20   |
| V.                   |      | <u> </u> |                | 0.3333         | 1       | 0 (     | 0.3333         | 0              | 20    |
| <u>x</u> 3           | -    | ľ        |                |                | 0       |         | -1.667         | 1              | 20    |
| х6                   | 2    | 0        | -0.333         | 1.3333 1       |         |         | 1.00.          |                |       |
|                      |      |          |                |                |         |         |                |                |       |
| Bas                  | Eq   | ı        |                |                | coeffic | ient of |                |                | Right |
|                      | No   | _        | X <sub>1</sub> | Х2             | Х3_     | X4      | X <sub>5</sub> | $\bar{x}_6$    | Side  |
| Val                  | 1.10 | ۳        |                |                |         |         |                |                |       |
| _                    | ١.   | Ι.       |                | •              | ^       | ^       | 1              | 1              | 0     |
| Z                    | 0    | 1        | -3e-20         | 0              | 0       | 0       |                | _              |       |
| Хз                   | 1    | 0        | 0.75           | 0              | 1       | 0.25    | 0.75           | -0.25          | 15    |
| X <sub>2</sub>       | 1 2  | l٥       | -0.25          | 1              | 0       | -0.75   | -1.25          | 0.75           | 15    |
| 2                    |      |          |                | _              |         |         |                |                |       |

Phase 2:

| Bas        | Eq |   | C              |                | Right |       |      |
|------------|----|---|----------------|----------------|-------|-------|------|
| Bas<br>Var | No | Z | X <sub>1</sub> | X <sub>2</sub> | Х3    | X4    | Side |
|            |    |   |                |                |       |       |      |
| Z          | 0  | 1 | 0.5            | 0              | 0     | 0.5   | -90  |
| z<br>x3    | 1  | o | 0.75           | 0              | 1     | 0.25  | 15   |
| X2         | 2  | 0 | -0.25          | 1              | 0     | -0.75 | 15   |

(c) In both the Big-M method and the two-phase method, only the final tableau represents a feasible solution for the original problem.

(d)

| ı           | 3 | 2  | 4  |        | 90 Optimal   | /alue |
|-------------|---|----|----|--------|--------------|-------|
| Solution    | 0 | 15 | 15 |        | 1            |       |
|             |   |    |    | Rig    | ht Hand Side |       |
| Constraints | 2 | 1  | 3  | 60 "=" | 60           |       |
|             | 3 | 3  | 5  | 120 >= | 120          |       |

## 4.6-10.

(a) Optimal Solution:  $(x_1^{\ast},x_2^{\ast},x_3^{\ast})=(20,30,0)$  and  $Z^{\ast}=120$ 

| ` ' '                        | L   |   | ( )            | 1/ 2/ 3/       | (       | /       |                |                |       |
|------------------------------|-----|---|----------------|----------------|---------|---------|----------------|----------------|-------|
| Bas                          | -   |   |                |                | Coeffic | ient of |                |                | Right |
| Var                          | No  | Z |                | X2             | Х3      | X4      | X <sub>5</sub> | X <sub>6</sub> | Side  |
|                              | ļ   |   | -1M            |                | -1M     |         |                |                |       |
| <u>z</u>                     | 0   | 1 | +3             | _ 2            | +7      | 1M      | 0              | 0              | -20M  |
| <u>z</u><br><u>X</u> 5<br>X6 | 1   | 0 | -1             | 1              | 0       | 0       | 1              | 0              | 10    |
| х6                           | 2   | 0 | 2              | -1             | 1       | -1      | 0              | 1              | 10    |
|                              |     |   |                |                |         |         |                |                |       |
| Bas                          |     |   |                |                | Coeffic | ient of |                |                | Right |
| Var                          | No  | Z | x <sub>1</sub> | X2             | X3      | X4      | X <sub>5</sub> | X <sub>6</sub> | Side  |
|                              |     | l |                | -0.5M          | -0.5M   | 0.5M    |                | 0.5M           | -15M  |
| $\frac{z}{x_5}$              | 0   | 1 | 0              | +3.5           | +5.5    | +1.5    | 0              | -1.5           | -15   |
| Х5                           | 1   | 0 | 0              | 0.5            | 0.5     | -0.5    | 1              | 0.5            | 15    |
| $x_1$                        | 2   | 0 | 1              | -0.5           | 0.5     | -0.5    | 0              | 0.5            | 5     |
| Bas                          | P~1 |   |                |                | 0661    |         |                |                |       |
|                              |     | I | 17.            |                | Coeffic |         |                |                | Right |
| Var                          | NO  | Z | X <sub>1</sub> | X <sub>2</sub> | Х3      | X4      | X5             | Х6             | Side  |
| _                            |     |   |                | _              | _       |         | 1M             | 1M             |       |
| Z                            | 0   | 1 | 0              | 0              | 2       | 5       | -7             | -5             | -120  |
| X <sub>2</sub>               | 1   | 0 | 0              | 1              | 1       | -1      | 2              | 1              | 30    |
| $x_1$                        | 2   | 0 | 1              | 0              | 1       | -1      | 1              | 1              | 20    |
|                              |     |   |                |                |         |         |                |                |       |

(b) Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (20, 30, 0)$  and  $Z^* = 120$ 

| Bas        |    |   | Coefficient of |    |    |    |    |    |               |  |  |  |
|------------|----|---|----------------|----|----|----|----|----|---------------|--|--|--|
| Var        | No | Z | x <sub>1</sub> | Х2 | Х3 | X4 | Χς | Χc | Right<br>Side |  |  |  |
| <u>z</u>   | 0  | 1 | 1              | 0  | -1 | 1  | 0  | 0  | -20           |  |  |  |
| <u>X</u> 5 | 1  | 0 | -1             | 1  | 0  | 0  | 1  | ŏ  | 10            |  |  |  |
| x6         | 2  | 0 | 2              | -1 | 1  | -1 | 0  | 1  | 10            |  |  |  |

| Bas            |    |   | Coefficient of |      |      |      |                |                |               |  |  |  |
|----------------|----|---|----------------|------|------|------|----------------|----------------|---------------|--|--|--|
| Var            | No | Z | X1             | X2   | Х3   | X4   | X <sub>5</sub> | X <sub>6</sub> | Right<br>Side |  |  |  |
| Z<br>X5        | 0  | 1 | 0              | -0.5 | -0.5 | 0.5  | 0              | 0.5            | -15           |  |  |  |
| X5             | 1  | 0 | 0              | 0.5  | 0.5  | -0.5 | 1              | 0.5            | 15            |  |  |  |
| x <sub>1</sub> | 2  | 0 | 1              | -0.5 | 0.5  | -0.5 | 0              | 0.5            | 5             |  |  |  |

| Bas                                   | Eq          |             | Coefficient of |             |             |               |             |             |               |  |  |  |
|---------------------------------------|-------------|-------------|----------------|-------------|-------------|---------------|-------------|-------------|---------------|--|--|--|
| Var                                   | No          | Z           | x <sub>1</sub> | Х2          | Х3          | X4            | X5          | X6          | Right<br>Side |  |  |  |
| z<br>x <sub>2</sub><br>x <sub>1</sub> | 0<br>1<br>2 | 1<br>0<br>0 | 0<br>0<br>1    | 0<br>1<br>0 | 0<br>1<br>1 | 0<br>-1<br>-1 | 1<br>2<br>1 | 1<br>1<br>1 | 0<br>30<br>20 |  |  |  |

Phase 2:

| Bas                                   |             | L           | Co             | Right          |             |               |                  |
|---------------------------------------|-------------|-------------|----------------|----------------|-------------|---------------|------------------|
| Var                                   | No          | Z           | x <sub>1</sub> | X <sub>2</sub> | хз          | X4            | Side             |
| z<br>x <sub>2</sub><br>x <sub>1</sub> | 0<br>1<br>2 | 1<br>0<br>0 | 0<br>0<br>1    | 0<br>1<br>0    | 2<br>1<br>1 | 5<br>-1<br>-1 | -120<br>30<br>20 |

(c) Only the final tableau for the Big-M method and the two-phase method represent feasible solutions to the original problem.

(d)

|             | 3       | 2       | 7 |                 | 120 Optimal Value |
|-------------|---------|---------|---|-----------------|-------------------|
| Solution    | 30      | 20      | 0 | Rig             | l<br>ht Hand Side |
| Constraints | -1<br>2 | 1<br>-1 | 0 | 10 "="<br>10 >= | 10<br>10          |

### 4.6-11.

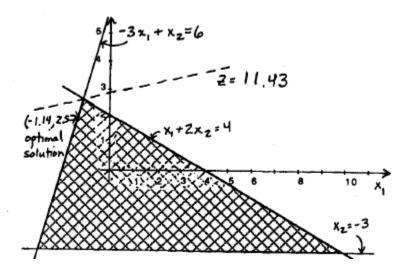
- (a) FALSE. The initial basic solution for the artificial model is not feasible for the original model.
- (b) FALSE. If at least one of the artificial variables is not zero, then the real problem is infeasible.
- (c) FALSE. The two methods are basically equivalent, so they should take the same number of iterations.

## 4.6-12.

(a) Substitute  $x_1 = x_1^+ - x_1^-$ , where both  $x_1^+$  and  $x_1^-$  are nonnegative.

$$\begin{array}{ll} \text{maximize } Z = 3x_1^+ - 3x_1^- + 7x_2 + 5x_3 \\ \text{subject to} & 3x_1^+ - 3x_1^- + \ x_2 + 2x_3 & \leq 9 \\ -2x_1^+ + 2x_1^- + \ x_2 + 3x_3 & \leq 12 \\ x_1^+, x_1^-, x_2, x_3 & \geq 0 \end{array}$$

(b) Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (-0.6, 10.8, 0)$  and  $Z^* = 73.8$ 


| Bas Eq    |    | Coe | effic: | ient o | f    |     | Right |
|-----------|----|-----|--------|--------|------|-----|-------|
| Var No  Z | X1 | X2  | ХЗ     | X4     | X5   | X6  | side  |
| III       |    |     |        |        |      |     | _l    |
|           |    |     |        |        |      |     | 1     |
| Z   O  1  | -3 | 3   | -7     | -5     | 0    | 0   | 1 0   |
| X5  1  0  | 3  | -3  | 1*     | 2      | 1    | 0   | 9     |
| X6  2  0  | -2 | 2   | 1      | 3      | 0    | 1   | 12    |
| Bas Eq    |    | Co  | effic  | ient o | f    |     | Right |
| Var No  Z | X1 | X2  | XЗ     | X4     | X5   | X6  | side  |
| III       |    |     |        |        |      |     | _1    |
| 1 1 1     |    |     |        |        |      |     | 1     |
| Z   O  1  | 18 | -18 | 0      | 9      | 7    | 0   | 63    |
| X3  1  0  | 3  | -3  | 1      | 2      | 1    | 0   | 9     |
| X6  2  0  | -5 | 5*  | 0      | 1      | -1   | 1   | ] 3   |
| Bas Eq    |    | Co  | effic  | ient o | f    |     | Right |
| Var No  Z | X1 | X2  | XЗ     | X4     | X5   | X6  | side  |
| III       |    |     |        |        |      |     | _I    |
| 1 1 1     |    |     |        |        |      |     | 1     |
| Z   O  1  | 0  | 0   | 0      | 12.6   | 3.4  | 3.6 | 73.8  |
| X3  1  0  | 0  | 0   | 1      | 2.6    | 0.4  | 0.6 | 10.8  |
| X2  2  0  | -1 | 1   | 0      | 0.2    | -0.2 | 0.2 | 0.6   |

Note that  $x_1^+, x_1^-, x_2$ , and  $x_3$  are renamed as  $X_1, X_2, X_3$  and  $X_4$  respectively. (c)

|              |    | Coeffic | ient of |    |       |   |    |
|--------------|----|---------|---------|----|-------|---|----|
|              | X1 | X2      | Х3      | X4 | Total |   |    |
| Constraint 1 | 3  | -3      | 1       | 2  | 9     | ≤ | 9  |
| Constraint 2 | -2 | 2       | 1       | 3  | 12    | ≤ | 12 |
| Objective    | 3  | -3      | 7       | 5  | 73.8  |   |    |
| Solution     | 0  | 0.6     | 10.8    | 0  |       |   |    |

## 4.6-13.

(a) Optimal Solution:  $(x_1^*, x_2^*) = (-1.14, 2.57)$  and  $Z^* = 11.43$ 



(b) Let 
$$x_{1,OLD} = x_1 - x_2$$
 and  $x_{2,OLD} + 3 = x_3$ .

$$\begin{array}{lll} \text{maximize } Z = - \ x_1 + \ x_2 + 4x_3 - 12 \\ \text{subject to} & -3x_1 + 3x_2 + \ x_3 & \leq 9 \\ & x_1 - \ x_2 + 2x_3 & \leq 10 \\ & x_1, x_2, x_3 & \geq 0 \end{array}$$

$$x_1 - x_2 + 2x_3 \le 10$$
  
 $x_1, x_2, x_3 \ge 0$ 

(c) Optimal Solution: 
$$(x_1^*, x_2^*) = (-1.14, 2.57)$$
 and  $Z^* = 11.43$ 

| Bas           | Eq |   |                | Coeff          | icient  | of  |    | Right |
|---------------|----|---|----------------|----------------|---------|-----|----|-------|
| Var           | No | Z | x <sub>1</sub> | x <sub>2</sub> | Х3      | Х4  | X5 | Side  |
| Z<br>X4<br>X5 | 0  | 1 | 1<br>-3        | -1<br>3        | -4<br>1 | 0 1 | 0  | 0 9   |

| Bas      | Εq |   | _              | Coef | ficient | of |      | Right |
|----------|----|---|----------------|------|---------|----|------|-------|
| Var      | No | Z | X <sub>1</sub> | X2   | Хз      | X4 | X5   | Side  |
| Z        | 0  | 1 | 3              | -3   | 0       | 0  | 2    | 20    |
| X4<br>X3 | 1  | 0 | -3.5           | 3.5  | 0       | 1  | -0.5 | 4     |
| хз       | 2  | 0 | 0.5            | -0.5 | 1       | 0  | 0.5  | 5     |

| Bas                                   |             |        |                | Coeffi         | cient | _of_   |        | Right                         |
|---------------------------------------|-------------|--------|----------------|----------------|-------|--------|--------|-------------------------------|
| Var                                   | No          | Z      | x <sub>1</sub> | x <sub>2</sub> | Х3    | X4     | X5     | Side                          |
| z<br>x <sub>2</sub><br>x <sub>3</sub> | 0<br>1<br>2 | 1<br>0 | 0<br>-1<br>0   | 0<br>1<br>0    | 0     | 0.2857 | -0.143 | 23.4286<br>1.14286<br>5.57143 |

Optimal solution for the revised problem: (0, 1.14, 5.57) with  $Z^* = 23.43$ 

### 4.6-14.

(a) Let 
$$x_{1,\text{OLD}} = x_1 - x_2, x_{2,\text{OLD}} = x_3 - x_4, \text{ and } x_{3,\text{OLD}} = x_5 - x_6.$$
 maximize  $Z = -x_1 + x_2 + 2x_3 - 2x_4 + x_5 - x_6$  subject to 
$$3x_3 - 3x_4 + x_5 - x_6 \leq 120$$
 
$$x_1 - x_2 - x_3 + x_4 - 4x_5 + 4x_6 \leq 80$$
 
$$-3x_1 + 3x_2 + x_3 - x_4 + 2x_5 - 2x_6 \leq 100$$
 
$$x_1, x_2, x_3, x_4, x_5, x_6 \geq 0$$

(b)

| Bas | Eq |   |    |       |    | Coeff | icient | of |    |                |    | Right |
|-----|----|---|----|-------|----|-------|--------|----|----|----------------|----|-------|
| Var | No | Z | X1 | $x_2$ | Х3 | X4    | X5     | X6 | X7 | X <sub>8</sub> | Хg | Side  |
| _   |    |   |    |       |    |       |        |    |    |                |    |       |
| Z   | 0  | 1 | 1  | -1    | -2 | 2     | -1     | 1. | 0  | 0              | 0  | 0     |
| X7  | 1  | 0 | 0  | 0     | 3  | -3    | 1      | -1 | 1  | 0              | 0  | 120   |
| X8  | 2  | 0 | 1  | -1    | -1 | 1     | -4     | 4  | 0  | 1              | 0  | 80    |
| Χq  | 3  | 0 | -3 | 3     | 1  | -1    | 2      | -2 | 0  | 0              | 1  | 100   |

| Bas | Εq |   | Coefficient of |    |    |    |       |                |       |                |    |      |  |  |
|-----|----|---|----------------|----|----|----|-------|----------------|-------|----------------|----|------|--|--|
| Var | No | Z | X <sub>1</sub> | X2 | Х3 | Х4 | X5    | x <sub>6</sub> | X7_   | x <sub>8</sub> | Х9 | Side |  |  |
|     |    |   |                |    |    |    |       |                |       |                |    |      |  |  |
| z   | 0  | 1 | 1              | -1 | 0  | 0  | -0.33 | 0.333          | 0.667 | 0              | 0  | 80   |  |  |
| х3  | 1  | 0 | 0              | 0  | 1  | -1 | 0.333 | -0.33          | 0.333 | 0              | 0  | 40   |  |  |
| x8  | 2  | 0 | 1              | -1 | 0  | 0  | -3.67 | 3.667          | 0.333 | 1              | 0  | 120  |  |  |
| Х9  | 3  | 0 | -3             | 3  | 0  | 0  | 1.667 | -1.67          | -0.33 | 0              | 1  | 60   |  |  |

| Bas   | Eq |   |                |    |    | Coef | ficier | nt of |       |    |       | Right |
|-------|----|---|----------------|----|----|------|--------|-------|-------|----|-------|-------|
| Var   | No | Z | x <sub>1</sub> | х2 | Х3 | Х4   | X5     | X6    | X7    | X8 | X9    | Side  |
|       |    |   |                |    |    |      |        |       |       |    |       |       |
| Z     | 0  | 1 | 0              | 0  | 0  | 0    | 0.222  | -0.22 | 0.556 | 0  | 0.333 | 100   |
| Х3    | 1  | 0 | 0              | 00 | 1  | -1   | 0.333  | -0.33 | 0.333 | 0  | 0     | 40    |
| Хg    | 2  | 0 | 0              | 0  | 0  | 0    | -3.11  | 3.111 | 0.222 | 1  | 0.333 | 140   |
| $x_2$ | 3  | 0 | -1             | 1  | 0  | 0    | 0.556  | -0.56 | -0.11 | 0  | 0.333 | 20    |

| Bas                 | Eal              |             |                   |             |             | Coef              | ficient           | of |       |       |                                  | Right |
|---------------------|------------------|-------------|-------------------|-------------|-------------|-------------------|-------------------|----|-------|-------|----------------------------------|-------|
| Var                 |                  | Z           | X1                | X2          | Х3          | Х4                | X5                | Х6 | Х7    | Xg    | Х9_                              | Side  |
| z<br>X3<br>X6<br>X2 | 0<br>1<br>2<br>3 | 1<br>0<br>0 | 0<br>0<br>0<br>-1 | 0<br>0<br>0 | 0<br>1<br>0 | 0<br>-1<br>0<br>0 | 0 0 9<br>3e-20 -3 | 1  | 0.071 | 0.321 | 0.357<br>0.036<br>0.107<br>0.393 | 45    |

Optimal solution for the revised problem: (0,45,55,0,0,45)

Optimal solution for the original problem:  $(x_1^*, x_2^*, x_3^*) = (-45, 55, -45)$  and  $Z^* = 110$  (c)

|             | -1  | 2  | 1   |                 | 110        | Optimal Value |
|-------------|-----|----|-----|-----------------|------------|---------------|
| Solution    | -45 | 55 | -45 |                 | 1          |               |
|             | İ   |    |     |                 | Right Hand |               |
| Constraints | 0   | 3  | 1   | 120 <=          | 120        |               |
|             | 1   | -1 | -4  | <b>80 &lt;=</b> | 80         |               |
|             | -3  | 1  | 2   | 100.0 <=        | 100        |               |

## 4.6-15.

(a) In order to decrease the objective function value in the simplex method, choose the nonbasic variable that has the (largest) positive coefficient in the objective row, as the entering basic variable. The ratio test is conducted the same way as in the maximization problem to determine the leaving basic variable.

(b) Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (11.67, 0, 17.5)$  and  $Z^* = 122$ 

|         |            |     | \ 1    | , 4,  | 3/        |         | , ,   | ,     |       |          |
|---------|------------|-----|--------|-------|-----------|---------|-------|-------|-------|----------|
| Bas     | Eqi        |     |        |       | Coef      | ficien  | t of  |       |       | Right    |
| Var     | No         | 2   |        | X2    | х3        | X4      | X5    | Х6    | X7    | side     |
| !       | -!         |     |        |       |           |         | -14   |       |       | 1 -140   |
| 1       | .!         |     |        | 84    | 6M        | -1H     | -1H   |       | •     |          |
| Z       |            |     |        | ·-8   | . 5       | 0       | 0     | 0     | 0     | 10       |
| X6      |            |     |        | 3     | 4         | -1      | 0     | 1     | 0     | 70       |
| X7      | 2          | 0   | 3      | 5*    | 2         | 0       | -1    | 0     | 1     | 70       |
| Bas     | Eal        |     |        |       | Coef      | ficien  | t of  |       |       | Right    |
| Var     |            | 21  | X1     | x2    | x3        | X4      | X5    | X6    | X7    | side     |
| i       | Ξi         | _i  |        |       |           |         |       |       |       |          |
| -i      | Ξï         | -i  | -1.8M  | .,    | 2.8M      | -1H     | 0.6M  |       | -1.6H | 28 M     |
| Z       | 0          | 1   | 1.8    | 0     | -1.8      | 0       | -1.6  | 0     | 1.6   | 1112     |
| X6      | 1          | 0   | -1.8   | 0     | 2.8*      | -1      | 0.6   | 1     | -0.6  | 28       |
| X2      |            |     | 0.6    | 1     | 0.4       | 0       | -0.2  | 0     | 0.2   | 14       |
|         |            |     |        |       |           |         |       |       |       |          |
| Bas   E |            |     |        |       |           | ficient |       |       |       | Right    |
| Var   K | lo         | ۲į  | X1     | X2    | X3        | X4      | х5    | Х6    | X7    | side     |
|         | -¦-        | -¦  |        |       |           |         |       | -1M   | -1M   | <u> </u> |
| Ζİ      | ٥į         | 1   | 0.64   | 0     | 0-0       | .643 -  | 1.214 | 0.64  | 1.21  | 130      |
| x3 i    | 1İ         |     | -0.64  | 0     | 1 .       | 0.36    | 0.214 | 0.357 | -0.21 | 10       |
|         |            |     | 0.857* | . 1   |           |         |       | -0.14 |       | 10       |
|         |            |     |        |       |           |         |       |       |       |          |
| Bas     | Eq         | ı   |        |       | Coe       | fficie  | nt of |       |       | Right    |
| Var     | No         | Z   | X1     | X2    | <b>X3</b> | X4      | X5    | Х6    | х7    | side     |
|         | <b> </b> _ |     |        |       |           |         |       |       |       |          |
|         | 1          | 1   | 1      |       | -         |         |       | ~1M   |       | 1        |
| Z       | 0          | 1   | 0      | -0.75 | 0         | -0.75   | 1     | 0.75  | 1     | 122      |
| X3      | 1          | 0   | 0      | 0.75  | 1         | -0.25   | 0     | 0.25  | 0     | 17.5     |
| X1      | 2          | į o | 1      | 1.167 | 0         | 0.167   | -0.33 | -0.17 | 0.333 | 11.67    |

## 4.6-16.

(a) maximize 
$$Z = -2x_1 + 2x_2 + x_3 - 4x_4 + 3x_5$$
  
subject to  $x_1 - x_2 + x_3 + 3x_4 - x_5 \le 4$   
 $-x_1 + x_2 + x_4 - x_5 \le 1$   
 $2x_1 - 2x_2 + x_3 \le 2$   
 $x_1 - x_2 + 2x_3 + x_4 + 2x_5 = 2$   
 $x_1, x_2, x_3, x_4, x_5 \ge 0$ 

(b)

| Bas   Eq              |     |    |     | Coeff     | ficient   | of |           |    |    | Righ |        |
|-----------------------|-----|----|-----|-----------|-----------|----|-----------|----|----|------|--------|
| Var No Z              | X1  | X2 | X3  | <b>x4</b> | <b>x5</b> | Х6 | <b>x7</b> | х8 | х9 | side | •      |
| -                     | -1H | 1M | -2M | -1H       | -2M       |    |           |    |    | -2   | _<br>H |
| z   0  1              | 2   | -2 | -1  | 4         | -3        | 0  | 0         | 0  | 0  | 0    |        |
| - 1 - 1               | •   | -1 | 1   | 3         | 2         | 1  | 0         | 0  | 0  | 4    |        |
|                       | -1  | 1  | Ó   | 1         | -1        | 0  | 1         | 0  | 0  | 1 1  |        |
| X7  2  0 <br>X8  3  0 | 2   | -2 | 1   | 0         | 0         | 0  | 0         | 1  | 0  | 2    |        |
| X9  4  0              |     | -1 | 2   | 1         | 2*        | 0  | 0         | 0  | 1  | 2    |        |

(c)

| Bas   Eq |    |    |    | Coeff     | icient | of |    |    | Righ        |   |
|----------|----|----|----|-----------|--------|----|----|----|-------------|---|
| Var No Z | X1 | X2 | х3 | <b>X4</b> | х5     | Х6 | х7 | X8 | x9   side   | _ |
| z   0  1 | -1 | 1  | -2 | -1        | -2     | 0  | 0  | 0  | )<br>0   -2 |   |

(d)

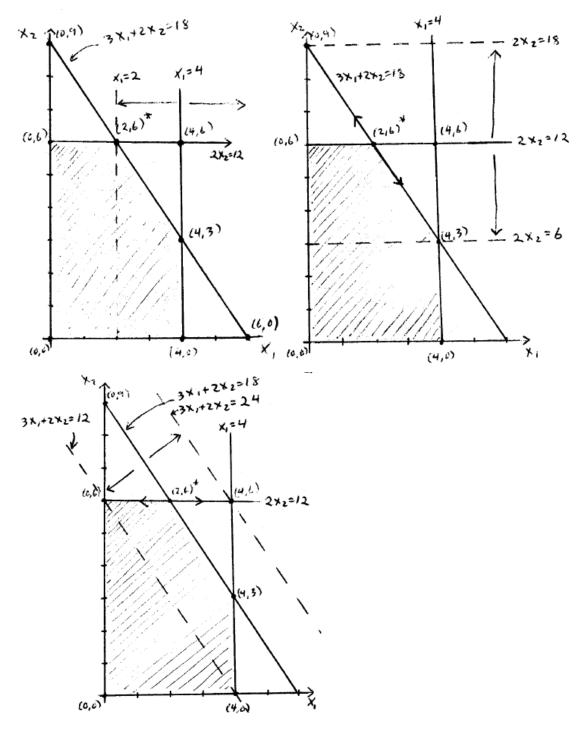
|             | -2 | 1 | -4 | 3 |                 | 17 Optim | al Val 🕊 |
|-------------|----|---|----|---|-----------------|----------|----------|
| Solution    | -4 | 0 | 0  | 3 |                 | ı        |          |
|             | Ì  |   |    |   | Right Hand Side |          |          |
| Constraints | 1  | 1 | 3  | 2 | 2 <=            | 4        |          |
|             | 1  | 0 | -1 | 1 | -1 >=           | -1       |          |
|             | 2  | 1 | 0  | 0 | -8 <=           | 2        |          |
|             | 1  | 2 | 1  | 2 | 2 *=*           | 2        |          |

4.6-17.

### Reformulation:

maximize 
$$Z = 4x_1 + 5x_2 + 3x_3$$
 subject to 
$$x_1 + x_2 + 2x_3 - x_4 + \overline{x}_7 = 20$$
 
$$15x_1 + 6x_2 - 5x_3 + x_5 = 50$$
 
$$x_1 + 3x_2 + 5x_3 + x_6 = 30$$
 
$$x_1, x_2, x_3, x_4, x_5, x_6, \overline{x}_7 \ge 0$$

Phase 1:


| Bas           | Eσ    |     |                |              | Coef          | ficient      | of          |     |             | Right           |
|---------------|-------|-----|----------------|--------------|---------------|--------------|-------------|-----|-------------|-----------------|
| Var           |       | Z   | X <sub>1</sub> | Х2           | Х3            | X4           | X5_         | X6  | X7          | Side            |
| Z<br>X7<br>X5 | 0 1 2 | 1 0 | -1<br>1<br>15  | -1<br>1<br>6 | -2<br>2<br>-5 | 1<br>-1<br>0 | 0<br>0<br>1 | 0 0 | 0<br>1<br>0 | -20<br>20<br>50 |
| X6            | 3     | 0   | 1              | 3            | 5             | 0            | 0           | 1   |             | 30              |

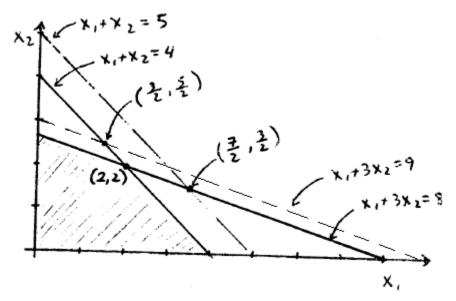
| Bas            | Εq |   |                |                | Coeff | icient d | of |     |    | Right |
|----------------|----|---|----------------|----------------|-------|----------|----|-----|----|-------|
| Var            | No | Z | x <sub>1</sub> | x <sub>2</sub> | Х3    | X4       | X5 | Х6  | X7 | Side  |
| <u>z</u><br>x7 | 0  | 1 | -0.6           | 0.2            | 0     | 1 -1     | 0  | 0.4 | 0  | -8    |
| X <sub>5</sub> | 2  | 0 | 16             | 9              | 0     | 0        | 1  | 1   | 0  | 80    |
| хз             | 3  | 0 | 0.2            | 0.6            | 1     | 0        | 0  | 0.2 | 0  | 6     |

| Bas                 | Eq               | L           |                |                                      | Coeffi      | cient   | of                                   |                  |                  | Right        |
|---------------------|------------------|-------------|----------------|--------------------------------------|-------------|---------|--------------------------------------|------------------|------------------|--------------|
| Var                 | No               | Z           | X <sub>1</sub> | Х2                                   | Х3          | X4      | X5                                   | x <sub>6</sub>   | <u>x</u> 7       | Side         |
| Z<br>X7<br>X1<br>X3 | 0<br>1<br>2<br>3 | 1<br>0<br>0 | 0              | 0.5375<br>-0.538<br>0.5625<br>0.4875 | 0<br>0<br>0 | -1<br>0 | 0.0375<br>-0.038<br>0.0625<br>-0.013 | -0.438<br>0.0625 | 0<br>1<br>0<br>0 | -5<br>5<br>5 |

Since this is the optimal tableau for Phase 1 and the artificial variable  $\overline{x}_7 = 5 > 0$ , the problem is infeasible.

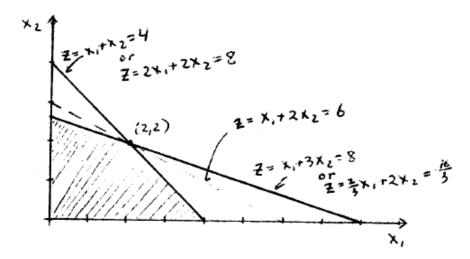




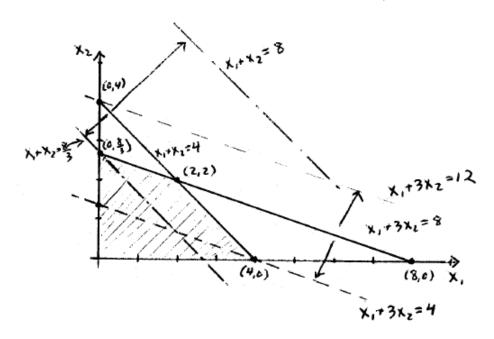

The CP solution (2,6) remains feasible and optimal if the constraint  $x_1 \le 4$  is changed to  $x_1 \le k$  with  $2 \le k < \infty$ . However, if k < 2, then this solution ceases to be feasible and the optimal solution becomes (k,6). This agrees with the allowable range (allowable increase: 1E+30, allowable decrease: 4) for this constraint given in Figure 4.10.

Now, suppose instead that the constraint  $2x_2 \le 12$  is replaced by  $2x_2 \le k$ . Then, the intersection of the lines  $2x_2 = k$  and  $3x_1 + 2x_2 = 18$  can be expressed as ((18-k)/3, k/2). This CP solution is feasible as long as  $0 \le x_1 \le 4$  or equivalently  $6 \le k \le 18$ . In that case, provided that the objective function is the same, this solution is optimal. Hence, the right-hand side of this constraint can be increased or decreased by 6.

If the third constraint is  $3x_1 + 2x_2 \le k$ , then the CP solution determined by this and  $2x_2 \le 12$  becomes ((k-12)/3, 6). This point is feasible and optimal as long as  $0 \le x_1 \le 4$  or equivalently  $12 \le k \le 24$ , so the allowable change for this constraint is also  $\pm 6$ , as given in Figure 4.10.


### 4.7-2.

(a)




Constraint (1): 
$$x_1 + 3x_2 \le 8$$
:  $x_1 + 3x_2 = 8 \Rightarrow x_1 = x_2 = 2$  and  $Z = 6$   $x_1 + 3x_2 = 9 \Rightarrow x_1 = 3/2, x_2 = 5/2$  and  $Z = 13/2$   $\Delta Z = 13/2 - 6 = 1/2 = y_1^*$  Constraint (2):  $x_1 + x_2 \le 4$ :  $x_1 + x_2 = 4 \Rightarrow x_1 = x_2 = 2$  and  $Z = 6$   $x_1 + x_2 = 5 \Rightarrow x_1 = 7/2, x_2 = 3/2$  and  $Z = 13/2$   $\Delta Z = 13/2 - 6 = 1/2 = y_2^*$ 

- (b) From (a), we see that the right-hand sides  $b_1=8$  and  $b_2=4$  are sensitive parameters. The graph in part (a) shows that both constraints are active (binding) at the optimal solution, so all the coefficients  $a_{11}=1$ ,  $a_{12}=3$ ,  $a_{21}=1$ , and  $a_{22}=1$  are sensitive parameters, too. As will be seen in (c), the objective coefficients  $c_1=1$  and  $c_2=2$  are not sensitive parameters.
- (c) Observe that the optimal solution remains the same for  $2/3 \le c_1 \le 2$  (with  $c_2 = 2$  fixed) and  $1 \le c_2 \le 3$  (with  $c_1 = 1$  fixed)



(d) The dashed lines "- - -" in the graph below suggest that the CP solution ranges from (4,0) to (0,4) when  $4 \le b_1 \le 12$ . Outside this range, the CP solution becomes infeasible. The dashed lines "- · -" represent the second constraint for different right-hand side values. They suggest that the CP solution ranges from (0,8/3) to (0,8) when  $8/3 \le b_2 \le 8$ . Hence, the allowable ranges are  $4 \le b_1 \le 12$  and  $8/3 \le b_2 \le 8$ .



(e)

Variables

Variables

Constraints

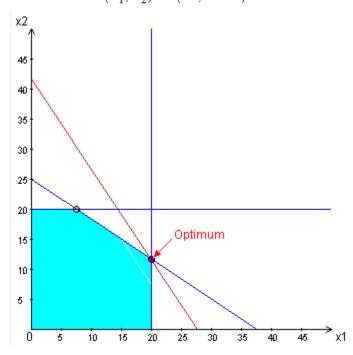
1 2 6 Optimal Value

RHS

RHS

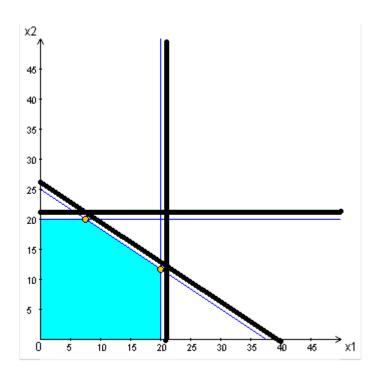
1 3 8 <= 8
1 1 4 <= 4

Adjustable Cells


| ~ = | Cell | Name | Final<br>Value |   | Objective<br>Coefficient |   | Allowable<br>Decrease |
|-----|------|------|----------------|---|--------------------------|---|-----------------------|
| 3   | B\$2 |      | 2              | 0 | 1                        | 1 | 0.333333              |
|     | C\$2 |      | 2              | 0 | 2                        | 1 | 1                     |

Constraints

| Cell Name | Final<br>Value | Shadow<br>Price | Constraint<br>R.H. Side |   | Allowable<br>Decrease |
|-----------|----------------|-----------------|-------------------------|---|-----------------------|
| \$E\$4    | 8              | 0.5             | 8                       | 4 | 4                     |
| \$E\$5    | 4              | 0.5             | 4                       | 4 | 1.333333              |


# 4.7-3.

(a) Optimal Solution:  $(x_1^*, x_2^*) = (20, 11.67)$  and  $Z^* = 83.33$ 



| Corner Point | Z      |
|--------------|--------|
| (0,20)       | 40     |
| (7.5, 20)    | 62.5   |
| (20, 11.67)  | 83.33* |
| (20,0)       | 60     |
| (0,0)        | 0      |

(b)



Increasing resource 1 to 61 units increases Z to 3(20.33)+2(11.44)=83.89, so  $\Delta Z=y_1^*=0.56$ .

Increasing resource 2 to 76 units increases Z to 4(20)+2(12)=84, so  $\Delta Z=y_2^*=0.67$ .

The third constraint is not binding, so  $y_3^* = 0$ .

(c) To increase Z by 15, resource 1 should be increased by  $\frac{15}{y_1^*} = \frac{15}{0.56} \approx 27$ . Solving the LP problem with resource 1 set to 60 + 27 = 87 returns the result Z = 98.33.

4.7-4.

(a) Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (0.5, 0, 4.5)$  and  $Z^* = 14$ 

| Bas            | Eq |   |    |    | Coeffic | ient of |    |     | Right |
|----------------|----|---|----|----|---------|---------|----|-----|-------|
| Var            |    | Z | х1 | Х2 | Х3      | Х4      | X5 | Х6  | Side  |
| z              | 0  | 1 | -1 | 7  | -3      | 0       | 0  | 0   | 0     |
| X4             | 1  | 0 | 2  | 1  | -1      | 1       | 0  | . 0 | 4     |
| X5             | 2  | 0 | 4  | -3 | 0       | . 0     | 1  | . 0 | 2     |
| x <sub>6</sub> | 3  | 0 | -3 | 2  | 1       | 0       | 0  | 1   | 3     |

| Bas   | Eq | L  |                |    | Coeffic | ient of |    |     | Right |
|-------|----|----|----------------|----|---------|---------|----|-----|-------|
| Var   |    | Z  | x <sub>1</sub> | X2 | Хз      | X4      | X5 | х6  | Side  |
|       |    |    |                |    |         |         |    |     |       |
| Z     | 0  | 1  | -10            | 13 | 0       | 0       | 0  | 3   | 9     |
| $x_4$ | 1  | 0  | -1             | 3  | 0       | 1       | 0  | . 1 | 7     |
| X5    | 2  | 0  | 4              | -3 | 0       | 0       | 1  | 0   | 2     |
| X3    | 3  | ol | -3             | 2  | 1       | 0       | 0  | 1   | 3     |

| Bas                 | Εσ               |             |                  |                               | Coeffic     | ient of |                             |                  | Right                   |
|---------------------|------------------|-------------|------------------|-------------------------------|-------------|---------|-----------------------------|------------------|-------------------------|
| Var                 | _                | Z           | X <sub>1</sub>   | x <sub>2</sub>                | Х3          | X4      | X5                          | Х6               | Side                    |
| z<br>X4<br>X1<br>X3 | 0<br>1<br>2<br>3 | 1<br>0<br>0 | 0<br>0<br>1<br>0 | 5.5<br>2.25<br>-0.75<br>-0.25 | 0<br>0<br>0 | 0 1 0 0 | 2.5<br>0.25<br>0.25<br>0.75 | 3<br>1<br>0<br>1 | 14<br>7.5<br>0.5<br>4.5 |

(b) The shadow prices for the three resources are given by the reduced costs (in the objective function) for the corresponding slack variables. These values are circled in the table above. The shadow prices for resources 1, 2 and 3 are 0, 2.5 and 3 respectively. They represent the rate at which the objective function value z increases as the corresponding resource is increased. For instance, increasing resource 3 by one unit increases Z by 3, provided that no other constraints cause any trouble.

(c)

| Variables   | 0.5          | -7<br>0      | 3<br>4.5     |                         | 14<br>RHS | Optimal Val |
|-------------|--------------|--------------|--------------|-------------------------|-----------|-------------|
| Constraints | 2<br>4<br>-3 | 1<br>-3<br>2 | -1<br>0<br>1 | -3.5 <=<br>2 <=<br>3 <= | 4 2 3     |             |

Adjustable Cells

| 0-11   |                   | Final<br>Value | Reduced | Objective<br>Coefficient |           | Allowable<br>Decrease |
|--------|-------------------|----------------|---------|--------------------------|-----------|-----------------------|
| \$B\$3 | Name<br>Variables | 0.5            | 0       | 1                        | 7.3333333 | 10                    |
| \$C\$3 | Variables         | 0              | -5.5    | -7                       | 5.5       | 1E+30                 |
| \$D\$3 | Variables         | 4.5            | 0       | 3                        | 22        | 3                     |

Constraints

| Cell   | Name        | Final<br>Value | Shadow<br>Price | Constraint<br>R.H. Side | Allowable<br>Increase | Allowable<br>Decrease |
|--------|-------------|----------------|-----------------|-------------------------|-----------------------|-----------------------|
|        | Constraints | -3.5           | 0               | 4                       | 1E+30                 | 7.5                   |
| \$F\$6 | -           | 2              | 2.5             | 2                       | 1E+30                 | 2                     |
| \$F\$7 |             | 3              | 3               | 3                       | 1E+30                 | 4.5                   |

4.7-5.

(a) Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (0, 1, 3)$  and  $Z^* = 7$ 

| Bas | Εq |   |                |                | Coeffic | ient of |    |    | Right |
|-----|----|---|----------------|----------------|---------|---------|----|----|-------|
| Var | No | Z | x <sub>1</sub> | x <sub>2</sub> | Х3      | Х4      | X5 | х6 | Side  |
| _   |    |   |                | _              |         |         |    |    |       |
| Z   | 0  | 1 | -2             | 2 _            | 3       | 0       | 0  | 0  | 0     |
| X4  | 1  | 0 | -1             | 1              | 1       | 1       | 0  | 0  | 4     |
| X5  | 2  | 0 | 2              | 1              | 1       | 0       | 1  | 0  | 2     |
| х6  | 3  | 0 | 1              | 1              | 3       | 0       | 0  | 1  | 12    |

| Bas | Eq |   |                |    | Coeffic | ient of |                  |    | Right |
|-----|----|---|----------------|----|---------|---------|------------------|----|-------|
| Var | No | Z | X <sub>1</sub> | X2 | Х3      | X4      | . x <sub>5</sub> | Х6 | Side  |
| z   | 0  | 1 | 4              | -1 | 0       | 0       | 3                | 0  | _6    |
| X4  | 1  | 0 | -3             | 2  | 0       | 1       | -1               | 0  | 2     |
| Хз  | 2  | 0 | 2              | -1 | 1       | 0       | 1                | 0  | 2     |
| х6  | 3  | 0 | -5             | 4  | 0       | 0       | -3               | 1  | 6     |

| Bas                                                     | Eq               |             |                         | C              | effici           | ent of                  | _                        |             | Right            |
|---------------------------------------------------------|------------------|-------------|-------------------------|----------------|------------------|-------------------------|--------------------------|-------------|------------------|
| Var                                                     | No               | z           | x <sub>1</sub>          | x <sub>2</sub> | Х3               | Х4                      | X5                       | Х6          | Side             |
| z<br>x <sub>2</sub><br>x <sub>3</sub><br>x <sub>6</sub> | 0<br>1<br>2<br>3 | 1<br>0<br>0 | 2.5<br>-1.5<br>0.5<br>1 | 0<br>1<br>0    | 0<br>0<br>1<br>0 | 0.5<br>0.5<br>0.5<br>-2 | 2.5<br>-0.5<br>0.5<br>-1 | 0<br>0<br>0 | 7<br>1<br>3<br>2 |

(b) The shadow prices are  $y_1^*=0.5$ ,  $y_2^*=2.5$  and  $y_3^*=0$ . They are the marginal values of resources 1, 2 and 3 respectively.

(c)

| Variables  | 2<br><b>0</b> | -2<br><b>1</b> | 3<br><b>3</b> |       | 7   | Optimal Value |
|------------|---------------|----------------|---------------|-------|-----|---------------|
|            |               |                |               |       | RHS |               |
| Constraint | -1            | 1              | 1             | 4 <=  | 4   |               |
|            | 2             | -1             | 1             | 2 <=  | 2   |               |
|            | 1             | 1              | 3             | 10 <= | 12  |               |

Adjustable Cells

| Cell   | Name      | Final<br>Value | Reduced<br>Cost | Objective<br>Coefficient | Allowable<br>Increase |       |
|--------|-----------|----------------|-----------------|--------------------------|-----------------------|-------|
| \$B\$3 | Variables | 0              | -2.5            | 2                        | 2.5                   | 1E+30 |
| \$C\$3 | Variables | 1              | 0               | -2                       | 1.6666667             | 1     |
| \$D\$3 | Variables | 3              | 0               | 3                        | 1E+30                 | 1     |

Constraints

| Cell   | Name        | Final<br>Value |   | Shadow<br>Price | Constraint<br>R.H. Side | Allowable<br>Increase | Allowable<br>Decrease |
|--------|-------------|----------------|---|-----------------|-------------------------|-----------------------|-----------------------|
| \$F\$5 | Constraints |                | 4 | 0.5             | 4                       | 1                     | 2                     |
| \$F\$6 |             |                | 2 | 2.5             | 2                       | 2                     | 6                     |
| \$F\$7 |             | 1              | 0 | 0               | 12                      | 1E+30                 | 2                     |

# 4.7-6.

(a) Optimal Solution:  $(x_1^\ast, x_2^\ast, x_3^\ast, x_4^\ast) = (11, 0, 3, 0)$  and  $Z^\ast = 52$ 

| Bas | Eq |   |    |                | ceffici | ent of |    |    | Right |
|-----|----|---|----|----------------|---------|--------|----|----|-------|
| Var | No | Z | X1 | x <sub>2</sub> | Х3      | X4     | X5 | Х6 | Side  |
| z   | 0  | 1 | -5 | -2             | 1       | -3     | 0  | 0  | 0     |
| X5  | 1  | 0 | 3  | 2              | -3      | 1      | 1  | 0  | 24    |
| x6  | 2  | 0 | 3  | 3              | 1       | 3      | 0  | 1  | 36    |

| Bas                                   |             |             |                |                  | Coeffic       | ient_o | £                      | i      | Right   |
|---------------------------------------|-------------|-------------|----------------|------------------|---------------|--------|------------------------|--------|---------|
| Var                                   | No          | Z           | x <sub>1</sub> | X2               | х3            | X4     | X5                     | Х6     | Side    |
| z<br>x <sub>1</sub><br>x <sub>6</sub> | 0<br>1<br>2 | 1<br>0<br>0 | 0<br>1<br>0    | 1.3333<br>0.6667 | -4<br>-1<br>4 |        | 1.6667<br>0.3333<br>-1 | 0<br>0 | 40<br>8 |

| Bas           |             |             |                |                          | Coeffic | cient of | £                         | 1                 | Right         |
|---------------|-------------|-------------|----------------|--------------------------|---------|----------|---------------------------|-------------------|---------------|
| Var           | No          | Z           | X <sub>1</sub> | X2                       | Х3      | X4       | X5                        | Х6                | Side          |
| z<br>X1<br>X3 | 0<br>1<br>2 | 1<br>0<br>0 |                | 2.3333<br>0.9167<br>0.25 |         |          | 0.6667<br>0.0833<br>-0.25 | 1<br>0.25<br>0.25 | 52<br>11<br>3 |

(b) The shadow prices are  $y_1^*=0.6667$  and  $y_2^*=1$ . They are the marginal values of resources 1 and 2 respectively.

(c)

| Variables   | 5<br>11 | 4<br>0 | -1<br>3 | 3<br>0 |                       | 52       | Optimal Value |
|-------------|---------|--------|---------|--------|-----------------------|----------|---------------|
| Constraint: | 3<br>3  | 2<br>3 | -3<br>1 | 1<br>3 | RHS<br>24 <=<br>36 <= | 24<br>36 |               |

Adjustable Cells

| Cell   | Name      | Final<br>Value | Reduced<br>Cost | Objective<br>Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Allowable<br>Increase | Allowable<br>Decrease |
|--------|-----------|----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|
|        | Variables | 11             | 0               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1E+30                 | 0.363636              |
| \$D\$3 | Variables | 0              | -0.33333333     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.33333333            |                       |
|        | Variables | 3              | 0               | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | 2.66666667            | 1.333333              |
| \$F\$3 | Variables | 0              | -0.66666667     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6666667             | 1E+30                 |

Constraints

| Cell Name          | Final<br>Valu <del>e</del> | Shadow<br>Price | Constraint<br>R.H. Side | Aliowable<br>Increase | Allowable<br>Decrease |
|--------------------|----------------------------|-----------------|-------------------------|-----------------------|-----------------------|
| \$H\$5 Constraints | 24                         | 0.66666667      | 24                      | 12                    | 132                   |
| \$H\$6             | 36                         | 1               | 36                      | 1E+30                 | 12                    |

### 4.9-1.

Linear Programming Model:

Number of Decision Variables: 2

Number of Functional Constraints: 4

Max Z = 4500 X1 + 4500 X2

subject to

1) 
$$1 \times 1 + 0 \times 2 <= 1$$

2) 
$$0 \times 1 + 1 \times 2 <= 1$$

3) 
$$5000 \times 1 + 4000 \times 2 <= 6000$$

4) 
$$400 \times 1 + 500 \times 2 \iff 600$$

and

$$X1 >= 0, X2 >= 0.$$

Solve Automatically by the Interior Point Algorithm:

$$(X1, X2) = (0.1, 0.2)$$
 and Alpha = 0.5

| It.                                                                    | X1                                                                                                                                   | X2                                                                                                                                      | Z                                                                                                                                                          |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | 0.1<br>0.1999<br>0.26144<br>0.33761<br>0.40279<br>0.4661<br>0.56345<br>0.6511<br>0.66172<br>0.66487<br>0.66582<br>0.66624<br>0.66646 | 0.2<br>0.58008<br>0.76085<br>0.81491<br>0.82027<br>0.79837<br>0.69021<br>0.66525<br>0.66525<br>0.66511<br>0.66582<br>0.66624<br>0.66646 | 1350<br>3509.91<br>4600.3<br>5186.35<br>5503.76<br>5690.12<br>5842.42<br>5911.71<br>5949.09<br>5971.35<br>5984.91<br>5992.4<br>5996.2<br>5998.1<br>5999.05 |
| 15                                                                     | 0.66661                                                                                                                              | 0.66661                                                                                                                                 | 3999.32                                                                                                                                                    |

### 4.9-2.

The linear programming problem is:

Number of Decision Variables: 2

Number of Functional Constraints: 2

$$Max Z = 1 X1 + 2 X2$$

subject to

1) 
$$1 \times 1 + 3 \times 2 <= 8$$

2) 
$$1 \times 1 + 1 \times 2 <= 4$$

and

$$X1 >= 0, X2 >= 0.$$

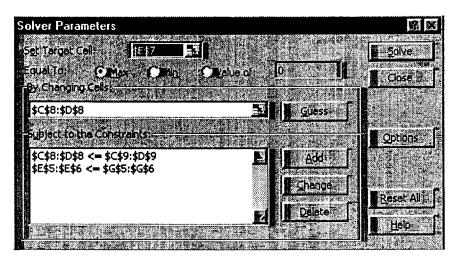
Solve Automatically by the Interior Point Algorithm:

$$(X1, X2) = (0.1, 0.2)$$
 and Alpha = 0.5

| It.                                                                                | X1                                                                                                                                                                      | X2                                                                                                                                                 | Z                                                                                                                                                                        |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 0.1<br>0.24587<br>0.25651<br>0.26482<br>0.28233<br>0.32398<br>0.43489<br>0.82513<br>1.4229<br>1.72185<br>1.86959<br>1.94077<br>1.97327<br>1.98735<br>1.99373<br>1.99687 | 0.2<br>1.36804<br>1.97283<br>2.27423<br>2.42047<br>2.48263<br>2.48368<br>2.37261<br>2.17597<br>2.07758<br>2.03012<br>2.00909<br>2.00166<br>2.00011 | 0.5<br>2.98196<br>4.20217<br>4.81327<br>5.12328<br>5.28924<br>5.40225<br>5.57036<br>5.77485<br>5.87702<br>5.92984<br>5.95894<br>5.97659<br>5.98758<br>5.99373<br>5.99687 |

### **Cases**

- 4-1 a) The fixed design and fashion costs are sunk costs and therefore should not be considered when setting the production now in July. Since the velvet shirts have a positive contribution to covering the sunk costs, they should be produced or at least considered for production according to the linear programming model. Had Ted raised these concerns before any fixed costs were made, then he would have been correct to advise against designing and producing the shirts. With a contribution of \$22 and a demand of 6000 units, maximum expected profit will be only \$132,000. This amount will not be enough to cover the \$500,000 in fixed costs directly attributable to this product.
  - b) The following insight greatly simplifies the analysis of the problem. The production processes of the various clothing items are not all linked together. We can separate the clothing items according to the materials that are used in their production and instead of one large linear programming problem we can formulate 4 smaller problems.


We use the term net contribution of a sales item to describe the difference between its total revenues and variable costs. The net contribution does not reflect any part of the fixed costs.

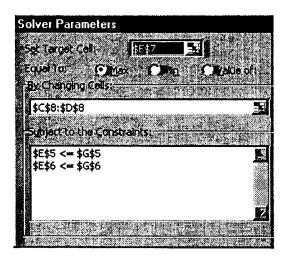
The cashmere sweater is the only item consisting of cashmere. The net contribution of one cashmere sweater equals \$450 - \$150 - 1.5\*\$60 = \$210. TrendLines can sell at most 4000 sweaters and has 9000 yards of cashmere as raw material. It is optimal to produce 4000 sweaters using 6000 yards of cashmere yielding a net contribution of 4000\*\$210 = \$840,000.

The silk blouse and camisole are the only items using silk and no other materials are used for these items. We can determine the optimal production amounts of these two items through a simple linear program. The first constraint models the resource limitation in the production process that Katherine has ordered 18,000 yards of silk. The second constraint models the production condition that whenever a silk blouse is produced automatically also a silk camisole is produced. Finally we must include the stated upper bounds on the number of silk items we can sell.

|   | Α | В           | С           | D             | E                                                                                                               | F  | G              |
|---|---|-------------|-------------|---------------|-----------------------------------------------------------------------------------------------------------------|----|----------------|
| 1 |   |             |             |               |                                                                                                                 |    |                |
| 2 |   |             |             |               |                                                                                                                 |    |                |
| 3 |   |             | Ac          | tivity        |                                                                                                                 |    |                |
| 4 |   | Constraint  | silk blouse | silk camisole | Totals                                                                                                          |    | Constraint RHS |
| 5 |   | silk        | 1.5         | 0.5           | 18000                                                                                                           | <= | 18000          |
| 6 |   | production  | 1           | -1            | -8000                                                                                                           | <= | 0              |
| 7 |   | unit profit | 60.5        | 53.5          | 1226000                                                                                                         |    |                |
| 8 |   | Solution    | 7000        | 15000         | ere spressive versioner standard de regioner in de service de la company de la company de la company de la comp |    |                |
| 9 | 1 | Maximum     | 12000       | 15000         |                                                                                                                 |    |                |

|   | E                        |
|---|--------------------------|
| 3 |                          |
| 4 | Totals                   |
| 5 | =SUMPRODUCT(C5:D5,C8:D8) |
| 6 | =SUMPRODUCT(C6:D6,C8:D8) |
| 7 | =SUMPRODUCT(C7:D7,C8:D8) |
| 8 |                          |



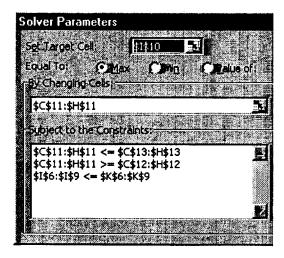

Throughout this case we use the following solver options.



TrendLines should produce 7000 silk blouses and 15000 silk camisoles yielding a net contribution of \$1,226,000.

We can determine the optimal production plan for the items made from cotton in a similar fashion. There are no demand limitations for the cotton items.

| Г | Α | В           | T C T          | D          | E       | F  | G              |
|---|---|-------------|----------------|------------|---------|----|----------------|
| 1 |   |             |                |            |         |    |                |
| 2 |   |             |                |            |         |    |                |
| 3 |   |             | Activ          | vity       |         |    |                |
| 4 |   | Constraint  | cotton sweater | cotton m-s | Totals  |    | Constraint RHS |
| 5 |   | wool        | 1.5            | 0.5        | 30000   | <= | 30000          |
| 6 |   | production  | 1              | -1         | -60000  | <= | 0              |
| 7 |   | unit profit | 66.25          | 33.75      | 2025000 |    |                |
| 8 |   | Solution    | 0              | 60000      |         |    |                |




TrendLines should produce 60000 cotton mini-skirts but no cotton sweaters yielding a net contribution of \$2,025,000.

It remains to develop a linear programming problem for determining the optimal production quantities of the tailored wool slacks, the tailored skirt, the wool blazer, the velvet pants and shirts, and the button-down blouse. We include four constraints for the resource limitations on wool, velvet, rayon, and acetate. Upper and lower bounds are given for many items. When there is no lower bound, we insert 0, when there is no upper bound, we determine a safe upper bound as a consequence of the resource limitations.

|    | Α          | В           | С                | D           | Е           | F              | G            | Н          | l l        | J            | κ         |
|----|------------|-------------|------------------|-------------|-------------|----------------|--------------|------------|------------|--------------|-----------|
| 1  |            |             |                  |             |             |                |              |            |            |              |           |
| 2  |            |             |                  |             |             |                |              |            |            |              |           |
| 3  |            |             |                  | Resource l  | Jsage Per U | nit of Each Ad | tivity       |            |            |              |           |
| 4  |            |             |                  |             | Activit     | Y              |              |            |            |              | Resource  |
| 5  |            | Resource    | tail.wool slacks | tail.skirt  | wool blazer | velvet pants   | velvet shirt | bd. blouse | Totals     |              | Available |
| 6  | <u>L</u> _ | wool        | 3                | 0           | 2.5         | 0              | 0            | 0          | 25100      | <=           | 45000     |
| 7  |            | acetate     | 2                | 1.5         | 1.5         | 2              | 0            | 0          | 28000      | <=           | 28000     |
| 8  |            | rayon       | 0                | 2           | 0           | 0              | 0            | 1.5        | 30000      | <b>&lt;=</b> | 30000     |
| 9  |            | velvet      | 0                | 0           | 0           | 3              | 1.5          | 0          | 9000       | <b>&lt;=</b> | 20000     |
| 10 |            | unit profit | 110              | 143,25      | 155.25      | 136            | 22           | 26,625     | 2771933.33 | 3            |           |
| 11 |            | Solution    | 4200             | 8066.666667 | 5000        | 0              | 6000 9       | 244.44444  |            |              |           |
| 12 | <u>L</u>   | Minimum     | 4200             | 2800        | 3000        | 0              | l o l        | 0          |            | L.           |           |
| 13 | l          | Maximum     | 7000             | 20000       | 5000        | 5500           | 6000         | 20000      |            | ] _          | I         |

| 4  |                              |
|----|------------------------------|
| 5  | Totals                       |
|    | =SUMPRODUCT(C6:H6,C11:H11)   |
|    | =SUMPRODUCT(C7:H7,C11:H11)   |
|    | =SUMPRODUCT(C8:H8,C11:H11)   |
| 9  | =SUMPRODUCT(C9:H9,C11:H11)   |
| 10 | =SUMPRODUCT(C10:H10,C11:H11) |
| 11 |                              |



TrendLines should produce 4200 wool slacks, 8066.67 skirts, 5000 wool blazers, no velvet pants, 6000 velvet shirts, and 9244.44 button-down blouses. The net contribution of these items equals \$2,771,933.33. (Of course, TrendLines cannot produce two-thirds of a skirt, so the actual solution should be integer. You will learn about integer programming in chapter 8.)

The net contribution of all clothing items equals \$840,000 + \$1,226,00 + \$2,025,000 + \$2,771,933.33 = \$6,862,933.33. So far we have not considered the sunk costs for the three fashion shows and the designers which total \$8,960,000. The total profit equals \$6,862,933.33 - \$8,960,000 = -\$2,097,066.67. So, TrendLines actually loses almost \$2.1 million.

c) If velvet cannot be sent back to the textile wholesaler, then the whole quantity will be considered as a sunk cost and therefore added to the fixed costs. The objective function coefficients of items using velvet will no longer include the material cost. The objective function coefficients of the velvet pants and shirts are now \$175 and \$40, respectively.

|    | Α        | В          | С                | Б           | E             | F                  | G            | H           | l l        | J  | K         |
|----|----------|------------|------------------|-------------|---------------|--------------------|--------------|-------------|------------|----|-----------|
| 1  |          |            |                  |             |               |                    |              |             |            |    |           |
| 2  |          |            |                  |             |               |                    |              |             |            |    |           |
| 3  |          |            |                  | Reso        | urce Usage Pe | r Unit of Each Act | ivity        |             |            |    |           |
| 4  |          |            |                  |             | Ac            | tivity             |              |             |            | П  | Resource  |
| 5  | <b>†</b> | Resource   | tail.wool slacks | tail.skirt  | wool blazer   | velvet pants       | velvet shirt | bd. blouse  | Totals     |    | Available |
| 6  |          | wool       | 3                | 0           | 2.5           | 0                  | 0            | 0           | 25100      | <= | 45000     |
| 7  | 1        | acetate    | 2                | 1.5         | 1.5           | 2                  | 0            | 0           | 28000      | <= | 28000     |
| 8  | 1        | rayon      | 0                | 2           |               | 0                  | 0            | 1.5         | 30000      | <= | 30000     |
| 9  |          | velvet     | 0                | 0           | 0             | 3                  | 1.5          | 0           | 20000      | <= | 20000     |
| 10 | 1        | unitprolit | 110              | 143.25      | 155.25        | 172                | 40           | 26.625      | 2983822.22 |    |           |
| 11 | 1        | Solution   | 4200             | 3177.777778 | 5000          | 3666.666667        | 6000         | 15762.96296 |            |    | i         |
| 12 | 1        | Minimum    | 4200             | 2800        | 3000          | 0                  | 0            | 0           | 1          |    |           |
| 13 |          | Maximum    | 7000             | 20000       | 5000          | 5500               | 6000         | 20000       |            |    | 1         |

The production plan changes considerably. TrendLines should produce 4200 wool slacks, 3177.77 skirts, 5000 wool blazers, 3666.67 velvet pants, 6000 velvet shirts, and 15762.92 button-down blouses. The production decisions for all other items are unaffected by the change. The net contribution of all clothing items equals \$840,000 + \$1,226,00 + \$2,025,000 + \$2,983,822.22 = \$7,074,822.22. The sunk costs now include the material cost for velvet and total \$9,200,000. The loss equals \$9,200,000 - \$7,074,822.22 = \$2,125,177.78.

- d) When TrendLines cannot return the velvet to the wholesaler, the costs for velvet cannot be recovered. These cost are no longer variable cost but now are sunk cost. As a consequence the increased net contribution of the velvet items makes them more attractive to produce. This way the revenues from selling these items can contribute to the recovery of at least some of the fixed costs. Instead of zero TrendLines produces now 3666.67 velvet pants. These pants also require some acetate and thus their production affects the production plan for all other items. Since it is not optimal to make full use of the ordered velvet in part (b) it comes as no surprise that the loss in part (c) is even bigger than in part (b).
- e) The unit contribution of a wool blazer changes to \$75.25.

|    | Α  | В           | C                | D           | E             | F               | G            | Н           |            | J            | K         |
|----|----|-------------|------------------|-------------|---------------|-----------------|--------------|-------------|------------|--------------|-----------|
| 1  |    |             |                  |             |               |                 |              |             |            |              |           |
| 2  | 1  |             |                  |             |               |                 |              |             |            | l            | <u> </u>  |
| 3  |    |             |                  | Reso        | urce Usage Pe | Unit of Each Ac | tivity       |             |            |              |           |
| 4  | П  |             |                  |             | Act           | ivity           |              |             |            | I            | Resource  |
| 5  |    | Resource    | tail.wool slacks | tail.skirt  | wool blazer   | velvet pants    | velvet shirt | bd. blouse  | Totals     |              | Available |
| 6  | 1  | wool        | 3                | 0           | 2.5           | 0               | 0            | 0           | 20100      | ₹=           | 45000     |
| 7  | T  | acetate     | 2                | 1.5         | 1.5           | 2               | 0            | 0           | 28000      | <b>&lt;=</b> | 28000     |
| 8  | 1  | rayon       | 0                | 2           | -0            | 0               | 0            | 1.5         | 30000      | ₹2           | 30000     |
| 9  |    | velvet      | 0                | 0           | 0             | 3               | 1.5          | 0           | 9000       | <=           | 20000     |
| TÜ | 1  | unit profit | 110              | 143.25      | 75.25         | 135             | 22           | 20.023      | 2436933.33 | 3            |           |
| 11 | 1  | Solution    | 4200             | 10066.66667 | 3000          | , o             | 6000         | 6577.777778 |            | Г            | <b>1</b>  |
| 12 | 1  | Minimum     | 4200             | 2800        | 3000          | 7               | 7            | 1 0         |            |              |           |
| 13 | Τ- | Maximum     | 7000             | 20000       | 5000          | 5500            | 6000         | 20000       |            |              |           |

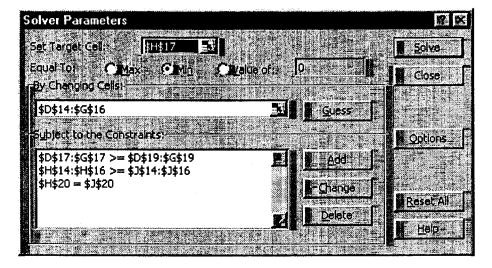
TrendLines should produce 4200 wool slacks, 10066.67 skirts, the minimum of 3000 wool blazers, no velvet pants, 6000 velvet shirts, and 6577.78 button-down blouses. The production decisions for all other items are unaffected by the change. The net contribution of all clothing items equals \$840,000 + \$1,226,00 + \$2,025,000 + \$2,436,933.33 = \$6,527,933.33. The loss equals \$8,960,000 - \$6,527,933.33 = \$2,432,066.67.

f) The right-hand-side of the acetate constraint changes.

|    | Α        | В           | С                | D           | Ε             | F               | G            | H          |             | IJ | K         |
|----|----------|-------------|------------------|-------------|---------------|-----------------|--------------|------------|-------------|----|-----------|
| 7  |          |             |                  |             |               |                 |              |            |             |    |           |
| 2  |          |             |                  |             |               |                 |              |            |             |    |           |
| 3  | 1        |             |                  | Reso        | urce Usage Pe | Unit of Each Ad | tivity       |            |             | 1  |           |
| 4  | _        |             |                  | ·           | Acl           | ivity           |              |            |             |    | Resource  |
| 5  |          | Resource    | tail.wool slacks | tail.skirt  | wool blazer   | v elvet pants   | velvet shirt | bd. blouse | Totals      |    | Available |
| 6  | 1-       | wool        | 3                | 0           | 2.5           | 0               | 0            | 0          | 25100       | <= | 45000     |
| 7  | $t^-$    | acetate     | 2                | 1.5         | 1.5           | 2               | 0            | 0          | 38000       | <= | 38000     |
| 8  | 1        | rayon       | 0                | 2           | 0             | 0               | 0            | 1.5        | 30000       | <≖ | 30000     |
| 9  | 1        | velvet      | 0                | 0           | 0             | 3               | 1.5          | 0          | 9000        | <= | 20000     |
| 10 | $\vdash$ | unit protit | 110              | 143.25      | 155.25        | 136             | 22           | 26.625     | 3490266.667 | ,  |           |
| 11 | ┪        | Solution    | 4200             | 14733.33333 | 5000          | ` o '           | 6000         | 355.555556 | l           |    |           |
| 12 | 1        | Minimum     | 4200             | 2800        | 3000          | 0               | 0            | 0          |             | 1  |           |
| 13 |          | Maximum     | 7000             | 15000       | 5000          | 5500            | 6000         | 20000      |             |    |           |
|    | 1        | 1           |                  |             |               |                 |              |            | 1           |    | 1         |

TrendLines should produce 4200 wool slacks, 14733.33 skirts, the minimum of 5000 wool blazers, no velvet pants, 6000 velvet shirts, and 355.55 button-down blouses. The production decisions for all other items are unaffected by the change. The net contribution of all clothing items equals \$840,000 + \$1,226,00 + \$2,025,000 + \$3,490,266.67 = \$7,581,266.67. The loss equals \$8,960,000 - \$7,581,266.67 = \$1,378,733.33.

g) The net contribution of one cashmere sweater sold in the November sale equals 0.6\*\$450 - \$150 - 1.5\*\$60 = \$30. After producing 4000 sweaters to be sold in September and October TrendLines has 3000 yards of cashmere as raw material left. It is optimal to produce 2000 more sweaters using the remaining 3000 yards of cashmere yielding an additional contribution of 2000\*\$30 = \$60,000.

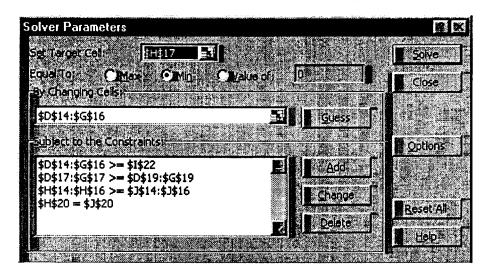

For the three linear programming problems determining the production plans for all other clothing items we need to include new decision variables representing the number of clothing items that are sold during the November sale. Clearly TrendLines does not want to produce items with a negative net contribution. Therefore, we need to consider only those clothing items that have a positive net contribution after taking the sales price into account.

|         | Т            | Α                    | В              | С           |      |           | D                     |                                              | Ε        |                                                  | Γ   | F           | G    |                          | Н         |                  |
|---------|--------------|----------------------|----------------|-------------|------|-----------|-----------------------|----------------------------------------------|----------|--------------------------------------------------|-----|-------------|------|--------------------------|-----------|------------------|
| 1       | Τ            |                      |                |             |      |           |                       |                                              |          |                                                  |     |             |      |                          |           |                  |
| 2       | Т            |                      |                |             | ┱    |           |                       |                                              |          |                                                  |     |             |      |                          |           |                  |
| 3       | T            |                      |                |             |      |           | Activity              | /                                            |          |                                                  |     |             |      |                          |           |                  |
| 4       | 1            | C                    | Constraint     | sik blous   | e s  | ilk c     | amisole               | silk car                                     | nisole(  | sale)                                            | T   | otals       |      | Const                    | rain      | t RHS            |
| 5       | 1            |                      | silk           | 1.5         | 丁    | (         | 0.5                   |                                              | 0.5      |                                                  | 7   | 8000        | <=   | 1                        | 800       | 0                |
| 6       | T            | р                    | rod uction     | 1           |      |           | -1                    |                                              | -1       |                                                  | -8  | 3000        | <=   |                          | 0         |                  |
| 7       |              | 1                    | unit profit    | 60.5        |      | 5         | 3.5                   |                                              | 5.5      |                                                  | 12  | 26000       |      |                          |           |                  |
| 8       | 7            |                      | Solution       | 7000        |      |           | 15000                 |                                              | 0        |                                                  |     |             |      |                          |           |                  |
| 9       | 1            | 1                    | <b>Maximum</b> | 12000       | - 1  | 15        | 5000                  | 3                                            | 86000    |                                                  |     |             |      |                          |           |                  |
|         |              |                      |                |             |      |           |                       | the second state of the second second second |          |                                                  |     |             |      |                          |           |                  |
|         | T            | A I                  | В              | С           |      |           | D                     | F                                            |          | F                                                | Т   | G           | Tr   | 1                        |           |                  |
| 1       | Ι            |                      |                |             |      |           |                       |                                              |          |                                                  |     |             | T    |                          |           |                  |
| 2       | T            |                      |                |             |      |           |                       |                                              |          | <del>,                                    </del> |     |             |      |                          |           |                  |
| 3       |              |                      |                |             |      |           | Activity              | 1                                            |          |                                                  |     |             |      |                          |           |                  |
| 4       |              | Co                   | nstraint       | cotton swea | er   | swea      | ter(sale)             | cotton                                       | m-s m    | -s (sak                                          | e)  | Totals      |      | Con                      | strai     | nt RHS           |
| 5       | 1            |                      | wod            | 1.5         |      |           | 1.5                   | 0.5                                          |          | 0.5                                              |     | 30000       | <    | =                        | 300       | 000              |
| 6       |              | pro                  | duction        | 1           |      |           | 1                     | -1                                           |          | -1_                                              |     | -60000      | ) <  | =                        | (         | )                |
| 7       |              | un                   | it profit      | 66.25       |      | 1         | 4.25                  | 33.7                                         | 5        | 3.75                                             | 72  | 2025000     | )    |                          |           |                  |
| 8       | $\mathbf{I}$ | S                    | olution        | 0           |      | (         | )                     | 6000                                         | 0        | 0                                                | L   |             |      |                          |           |                  |
|         |              |                      |                |             |      |           |                       |                                              |          |                                                  |     |             |      |                          |           |                  |
|         | 4            | В                    |                | D           |      | E         | F                     | G                                            | н        |                                                  |     | J           | 4    | K                        | 1         | М                |
| 2       |              |                      |                |             |      |           |                       |                                              |          |                                                  |     |             |      |                          | 1         |                  |
| 3       | $\dashv$     |                      |                |             | Re   | source    | Usage Per L<br>Activi | Init of Each A                               | clivity  |                                                  |     |             | -    |                          | +         | Resource         |
| 3       |              | Resource             |                |             |      |           |                       | blazer (sale)                                |          |                                                  |     | bd. blou    | se   | Totals                   | 工         | Available        |
| 6       | 7            | wool                 | 3 2            | 1.5         |      | Ö<br>1.5  | 2.5                   | 2.5<br>1.5                                   | 0 2      | 0                                                |     | 0           | 4    | 25100<br>28000           | <=<br>₹±  | 4 5000<br>2 8000 |
| 8       |              | rayon                | 0              | 2           | 1    | 2         | 0                     | 0                                            | Ö        | 0                                                |     | 1.5         |      | 30000                    | <=        | 30000            |
| 9<br>10 | -            | velvet<br>unit profi | 0<br>t 110     | 143.25      |      | 0<br>5.25 | 0<br>155.25           | 0<br>27.25                                   | 3<br>136 | 1.                                               |     | 0<br>26.625 | را – | 9000<br><b>771933.</b> 3 | <=<br>333 | 20000            |
| 11      | +            | Solution             | 4200           | 8066.6666   |      | 0         | 5000                  | 0                                            | 0        | 600                                              |     | 9244.44     |      | 1999.                    | Ť         | <del> </del>     |
| 12      |              | Minimun              |                | 2800        |      | ū         | 3000                  | 0                                            | 0        | و ا                                              |     | O           |      |                          |           |                  |
| 13      |              | Maxi mur             | n 7000         | 15000       | 1 15 | 5000      | 5000                  | 20000                                        | 5500     | 600                                              | )() | 20000       | L    |                          |           | L                |

It only pays to produce 2000 more Cashmere sweaters. The production plan for all other items is the same as in part (b). The sale of the Cashmere sweaters reduces the loss by \$60,000 to \$2,037,066.67.

4-2 a) We define 12 decision variables, one for each age group surveyed in each region. Rob's restrictions are easily modeled as constraints. For example, his condition that at least 20 percent of the surveyed customers have to be from the first age group requires that the sum of the variables for the age group "18 to 25" across all three regions is at least 400. All his other requirements are modeled similarly. Finally, the sum of all variables has to equal 2000, because that is the number of customers Rob wants to have interviewed.

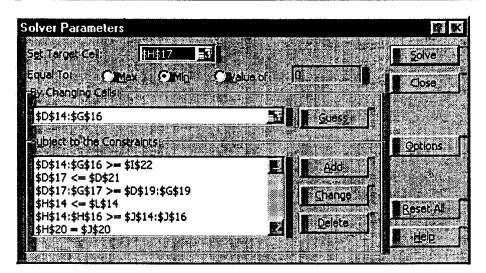
|                                               | Α        | В                                      | С                    | D               | E               | F                 | G            | Н           | 1         | J               | К   |
|-----------------------------------------------|----------|----------------------------------------|----------------------|-----------------|-----------------|-------------------|--------------|-------------|-----------|-----------------|-----|
| <u>,                                     </u> |          |                                        |                      |                 |                 |                   | L            |             |           |                 |     |
| ν.                                            |          |                                        |                      |                 |                 | er Person         |              |             |           |                 |     |
| 3                                             | L        |                                        |                      | 40 45 18        | Age<br>26 to 40 | 41 to 50          | 51 and over  |             |           |                 |     |
| 4                                             |          |                                        | <u> </u>             | 18 to 25        |                 | i                 |              |             |           |                 |     |
| 5                                             |          |                                        | Silicon Valley       | \$4.75          | \$6.50          | \$6.50            | \$5.00       |             |           |                 |     |
| 6                                             |          | Region                                 | Big Cities           | \$5.25          | \$5.75          | \$6.25            | \$6.25       |             |           |                 |     |
| 7                                             |          |                                        | Small lowns          | \$6.50          | \$7.50          | \$7.50            | \$7.25       |             |           |                 |     |
| 8                                             |          |                                        |                      |                 |                 |                   |              |             |           |                 |     |
| 3                                             |          |                                        |                      |                 |                 |                   |              |             |           |                 |     |
| 10                                            |          |                                        |                      |                 |                 |                   |              |             |           |                 |     |
| 11                                            |          |                                        |                      | N               | umper of P      | •                 | eyea         |             |           |                 |     |
| 12                                            |          |                                        |                      |                 |                 | Group             |              |             |           |                 |     |
| Т3                                            | ]        |                                        |                      | 18 to 25        | 26 to 40        | 41 to 50          | 51 and over  | lotais      | 51        | irvey restricti | ons |
| 14                                            | $\vdash$ |                                        | Silicon Valley       | 600             | 0               | 0                 | 300          | 900         | >=        | 300             |     |
| 15                                            | 1        | Kegion                                 | BIG CRIES            | 0               | 550             | 150               | 0            | 700         | >=        | 700             |     |
| 16                                            |          |                                        | Small Towns          | 250             | 0               | 150               | 0            | 400         | >=        | 400             |     |
| 17                                            |          | lotals                                 |                      | 850             | 550             | 300               | 300          | \$11,200    |           | Total Cost      |     |
| 10                                            |          |                                        |                      | 7=              | >=              | >=                |              | \$12,880.00 |           | Біц             |     |
| 19                                            | 3        | urvey restriction                      | ns                   | 400             | 550             | 300               | 300          | 18          | tal Surve | eys —           |     |
| ZÜ                                            | $\Box$   |                                        |                      |                 | <u> </u>        |                   | T            | 2000        |           | 2000            |     |
| 21                                            | П        |                                        |                      |                 |                 |                   |              |             |           |                 |     |
| ZZ                                            |          |                                        | POTITION THE CONTROL | 1 <del>4 </del> | ~30M(DT         | 4.014)            | 1            |             |           |                 |     |
| 23                                            |          | 1700                                   | Formula in cell H    | 15:             | =SUM(DT         | 5:G15)"           |              |             |           |                 |     |
| <b>Z</b> 4                                    | 1        |                                        | POITIUR ITTORICH     | 10.             | -SOM(DT         | (טרט.ט            |              |             |           |                 |     |
| 25                                            | 1        |                                        | Formula in cell D    | 17:             | =5UM(DT         | 4:D16)            |              |             |           |                 |     |
| ZU                                            | 1        |                                        | TOTTIGE THE COLL     | 17.             | -00 OIN (L P    | <del>4.E10)</del> | 1            |             |           |                 |     |
| 27                                            |          |                                        | Formula in Cell F    | 17:             | =SUM(FT         | 4:F16)***         | 1            |             | * *       |                 |     |
| 28                                            | ┪        | Formula in cell G17:                   |                      |                 | <b>=</b> SUM(G1 | 4:G16)            | <del> </del> |             |           | 1               |     |
| 29                                            | Τ-       | Formula in cell H20:                   |                      |                 | =20M(D1         | 4:G16)"           |              |             |           | 1               |     |
| 30                                            | 1        |                                        | roimula ili celi n   | 17.             | -SUMPRI         | פעור טטטכ         | ·            |             | 1         |                 |     |
| 31                                            | 1        | ······································ | Formula in cell in   | 16:             | =1.15°H1        | 7                 | T            |             |           | <del></del>     | l   |






The cost of conducting the survey meeting all constraints imposed by AmeriBank incurs cost of \$11,200. The mix of customers is displayed in the spreadsheet above.

- b) Sophisticated Surveys will submit a bid of 1.15\*\$11200 = \$12,880.
- c) We need to include the new lower-bound constraint on all variables.


|    | Α  | В                 | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D        | E           | F          | Ğ                                                | Н            | ı           | J                | K        |
|----|----|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|------------|--------------------------------------------------|--------------|-------------|------------------|----------|
| rl |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |            | Ţ                                                |              |             |                  |          |
| 2  |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             | er Person  |                                                  |              |             |                  |          |
| 3  |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             | Group      |                                                  |              |             |                  |          |
| 4  |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 to 25 | 26 to 40    | 41 to 50   | 51 and over                                      |              |             |                  |          |
| 6  |    |                   | Silicon Valley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$4.75   | \$6.50      | \$6.50     | \$5.00                                           |              |             |                  |          |
| 6  |    | Region            | Big Cities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$5.25   | \$5.75      | \$6.25     | \$6.25                                           |              |             |                  |          |
| 7  |    |                   | Small Towns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$6.50   | \$7.50      | \$7.50     | \$7.25                                           |              |             |                  |          |
| 8  |    |                   | pour-to-this country is an arrangement of the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the country in the count |          |             |            |                                                  |              |             |                  |          |
| 9  |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |            |                                                  |              |             |                  |          |
| 10 |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |            |                                                  |              |             |                  |          |
| 11 |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N        | umber of Po |            | eyed                                             |              |             |                  |          |
| 12 |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Age         | Group      |                                                  |              |             |                  |          |
| 13 |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 to 25 | 26 to 40    | 41 to 50   | 51 and over                                      | Totals       | Su          | rvey restriction | ons      |
| 14 | _  |                   | Silicon Valley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 600      | 50          | 50         | 200                                              | 900          | >=          | 300              |          |
| 15 |    | Region            | Big Cities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150      | 450         | 50         | 50                                               | 700          | >=          | 700              |          |
| 16 |    |                   | Small Towns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100      | 50          | 200        | 50                                               | 400          | >=          | 400              |          |
| 17 |    | lotais            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 850      | 550         | 300        | 300                                              | 11387.5      | - =         | Total Cost       |          |
| 18 |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >=       | >=          | >=         | >=                                               | \$13,095.62  | _=          | Bid              |          |
| 19 | S  | urvey restriction | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400      | 550         | 300        | 300                                              | ļ            | otal Surve  | ys               |          |
| 20 |    |                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |             |            |                                                  | 2000         | =           | 2000             |          |
| ZT |    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |             |            |                                                  | Minimum v    | alue for ea | ch variable      |          |
| 22 |    |                   | Formula in cell H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14:      | "=SUM(D1    |            |                                                  |              | 50          |                  |          |
| 23 | Γ- |                   | Formula in cell H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15:      | =SUM(D1     | 5:G15)"    |                                                  |              | <u> </u>    |                  |          |
| 24 |    |                   | Formula in cell H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16:      | =SUM(D1     |            |                                                  |              |             |                  |          |
| 25 |    |                   | Formula in cell D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17:      | =SUM(DT     |            |                                                  |              |             |                  |          |
| 20 |    |                   | romula in cer E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17:      | =SUM(E I    | 4:E 10)    |                                                  | <u> </u>     |             | <del></del>      | <u> </u> |
| 27 |    | ******            | Formula in cell F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17:      | '=SUM(F14   | I:F16)"    | <del>                                     </del> | <del> </del> |             | <b></b>          |          |
| 28 | Ι  |                   | Formula in celi G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17:      | =SUM(G1     | 4:G16)**** |                                                  |              |             |                  |          |
| 29 | 1  | 1                 | Formula in cell H:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20:      | =SUM(D1     | 4:G16)"    |                                                  |              |             | <u> </u>         |          |
| 30 | -  | 1                 | Formula in cell H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17:      |             |            | G7.D14:G16)"                                     | I            |             | +                |          |
| 31 |    | <u> </u>          | Formula in cell H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18:      | "=1.15*H1   |            | 1                                                | Ţ            |             | <del> </del>     |          |



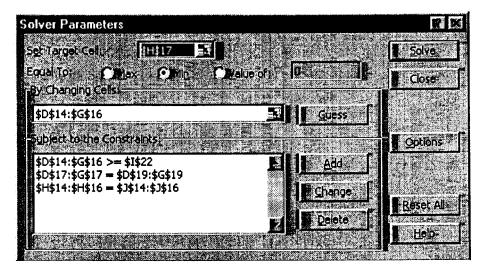
The new requirement increases the bid to \$13,095.62.

d) We include upper bounds on the total number of people surveyed in Silicon Valley and from the age group of 18 to 25 year-olds.

|                            | AT       | В                 | С                                       | D        | E           | F         | G            | н            |            | J                                                | К  | L   |
|----------------------------|----------|-------------------|-----------------------------------------|----------|-------------|-----------|--------------|--------------|------------|--------------------------------------------------|----|-----|
| П                          | -        |                   | <del> </del>                            |          |             |           |              |              |            | 1                                                |    |     |
| 2                          |          |                   |                                         | <b></b>  | Cost p      | er Person | L            |              |            |                                                  |    |     |
| 3                          | Н        |                   | *************************************** |          | Age         | Group     |              |              |            |                                                  |    |     |
| 4                          |          |                   |                                         | 18 to 25 | 26 to 40    | 41 to 50  | 51 and over  |              |            |                                                  |    |     |
| 5                          |          |                   | Silicon Valley                          | \$4.75   | \$6.50      | \$6.50    | \$5.00       |              |            |                                                  |    |     |
| 6                          |          | Region            | Big Cities                              | \$5.25   | \$5.75      | \$6.25    | \$6.25       |              |            |                                                  |    |     |
| 7                          |          |                   | Small Towns                             | \$6.50   | \$7.50      | \$7.50    | \$7.25       |              |            |                                                  |    |     |
| 8                          |          |                   |                                         |          |             |           |              |              |            | 11                                               |    |     |
| 9                          |          |                   |                                         |          |             |           |              |              |            |                                                  |    |     |
| 10                         |          |                   |                                         |          |             |           |              |              |            |                                                  |    |     |
| 11                         |          |                   |                                         | ١        | lumber of P |           | eyed         |              |            |                                                  |    |     |
| 12                         |          |                   |                                         |          |             | Group     |              |              |            |                                                  |    |     |
| 13                         |          |                   |                                         | 18 to 25 | 26 to 40    | 41 to 50  | 51 and over  | Totals       |            | rvey restriction                                 |    |     |
| 14                         |          |                   | Silicon Valley                          | 100      | 50          | 50        | 450          | 650          | >=         | 300                                              | <= | 650 |
| 15                         |          | Region            | Big Cities                              | 400      | 450         | 50        | 50           | 950          | >=         | 700                                              |    |     |
| 16                         |          |                   | Small Towns                             | 100      | 50          | 200       | 50           | 400          | >=         | 400                                              | ,  |     |
| 17                         |          | Totals            |                                         | 600      | 550         | 300       | 550          | \$11,575     |            | Total Cost                                       |    |     |
| 18                         |          |                   |                                         | >=       | >=          | >=        | >=           | \$13,311.25  | =          | Bid                                              |    |     |
| 19                         |          | urvey restriction | ns                                      | 400      | 550         | 300       | 300          |              | otal Surve |                                                  |    |     |
| 20                         | _        |                   |                                         | <=       |             |           |              | 2000         | 2          | 2000                                             |    |     |
| 21                         | <u> </u> |                   |                                         | 600      |             |           |              | Minimum      |            | ch variable                                      |    |     |
| 22<br>23                   |          |                   |                                         |          |             |           |              |              | 50         | ļ                                                |    |     |
|                            |          | <del> </del>      | L                                       | L        |             | L         |              |              |            | <del> </del>                                     |    |     |
| 24<br>25<br>26<br>27<br>28 | Н        |                   | Formula in cell H                       |          | "=SUM(D1    |           |              |              |            | 1                                                |    |     |
| 25                         |          | ļ ————            | Formula in cell H                       |          | "=SUM(D1    |           |              |              |            | <del>                                     </del> |    |     |
| 20                         | <b>!</b> | ļ                 | Formula in cell H                       |          | "=SUM(D1    |           |              |              |            | ļ                                                |    |     |
| 36                         |          | <u> </u>          | Formula in cell D                       |          | "=SUM(D1    |           |              |              |            | <del> </del>                                     |    |     |
|                            |          | ļ ————            | Formula in cell E                       |          | "=SUM(E1    |           |              |              |            | <del>   </del>                                   |    |     |
| 29<br>30                   | -        |                   | Formula in cell F                       |          | "=SUM(F14   |           |              | ļ            | -          | <del> </del>                                     |    |     |
|                            |          | <del> </del>      | Formula in cell G                       |          | "=SUM(G1    |           |              | <del> </del> |            | <del> </del>                                     |    |     |
| 31<br>32                   | -        |                   | Formula in cell H                       |          | "=SUM(D1    |           |              | <u> </u>     |            | <del> </del>                                     |    |     |
| 33                         |          | <del> </del>      | Formula in cell H                       |          |             |           | G7.D14.G16\* | i -          |            | <del> </del>                                     |    |     |
| 33                         | L        | 1                 | Formula in cell H                       | 16:      | "=1.15°H1   | I"        | l            | 1            |            | 1                                                |    |     |



The new requirements increase the bid to \$13,311.25.


e) The three cost factors for the age group "18 to 25" are changed.

|                | ΑĪ       | В                 | С                 | D        | E           | F         | G                                            | Н            | T .          | J              | К  | L.           |
|----------------|----------|-------------------|-------------------|----------|-------------|-----------|----------------------------------------------|--------------|--------------|----------------|----|--------------|
| 1              |          |                   |                   |          |             |           |                                              |              |              |                |    |              |
| 2              |          |                   |                   |          | Cost pe     | er Person |                                              |              |              |                |    |              |
| 3              |          | **                |                   | L        | Age         | Group     |                                              |              |              |                |    |              |
| 4              |          |                   |                   | 18 to 25 | 26 to 40    | 41 to 50  | 51 and over                                  |              |              |                |    |              |
| 5              |          |                   | Silicon Valley    | \$6.50   | \$6.50      | \$6.50    | \$5.00                                       |              |              |                |    |              |
| 6              |          | Region            | Big Cities        | \$6.75   | \$5.75      | \$6.25    | \$6.25                                       |              |              |                |    |              |
| 7              |          |                   | Small Towns       | \$7.00   | \$7.50      | \$7.50    | \$7.25                                       |              |              |                |    |              |
| 8              |          |                   |                   |          |             |           |                                              |              |              |                |    |              |
| 9              |          |                   |                   |          |             |           |                                              |              |              |                |    |              |
| 10             |          |                   |                   |          |             |           |                                              |              |              |                |    |              |
| 11             |          |                   |                   | N        | lumber of P |           | eyed                                         | L            |              |                |    |              |
| 12             |          |                   |                   |          |             | Group     | <b>,</b> , , , , , , , , , , , , , , , , , , |              |              | L              |    | <b></b>      |
| 13             |          |                   |                   | 18 to 25 | 26 to 40    | 41 to 50  | 51 and over                                  | Totals       |              | rvey restricti |    |              |
| 14             |          |                   | Silicon Valley    | 50       | 50          | 50        | 500                                          | 650          | >=           | 300            | <= | 650          |
| 15             |          | Region            | Big Cities        | 100      | 600         | 200       | 50                                           | 950          | >=           | 700            |    |              |
| 16             |          |                   | Small Towns       | 250      | 50          | 50        | 50                                           | 400          | >=           | 400            |    |              |
| 17             |          | Totals            |                   | 400      | 700         | 300       | 600                                          | \$ 12,025    |              | Total Cost     |    |              |
| 18             |          |                   |                   | >=       | >=          | >=        | >=                                           | \$13,828.75  | =            | Bid            |    |              |
| 19             | S        | urvey restriction | 18                | 400      | 550         | 300       | 300                                          |              | Total Surve  |                |    |              |
| 20             |          |                   |                   | <≖       |             |           |                                              | 2000         | =            | 2000           |    |              |
| 21             |          |                   |                   | 600      |             |           |                                              | Minimum      | value for ea | ch variable    |    |              |
| 22<br>23<br>24 |          |                   |                   |          |             |           |                                              |              | 50           |                |    | <b></b>      |
| 23             | _        | ļ                 |                   |          |             | L         | <u> </u>                                     |              |              |                |    |              |
| 24             | _        |                   | Formula in cell H |          | "=SUM(D1    |           |                                              |              |              |                |    | ļ            |
| 25<br>26       |          |                   | Formula in cell H |          | "=SUM(D1    |           |                                              |              |              |                |    |              |
| 26             |          |                   | Formula in cell H |          | "=SUM(D1    |           |                                              |              |              |                |    |              |
| 27             |          |                   | Formula in cell D |          | "=SUM(D1    | 4:D16)"   |                                              | <u> </u>     |              |                |    |              |
| 28             | L_       |                   | Formula in cell E |          | "=SUM(E1    |           | L                                            | L            |              | <b> </b>       |    | L            |
| 29             |          |                   | Formula in cell F |          | "=SUM(F1    |           |                                              | L            |              | ļ              |    | ļ            |
| 30             |          |                   | Formula in cell G |          | "=SUM(G1    |           | ļ                                            |              | ļ            | ļ              |    | <del> </del> |
| 31             |          |                   | Formula in cell H |          | "=SUM(D1    |           | l                                            | L            |              |                |    | ļ            |
| 32             | <u> </u> |                   | Eormula in cell H |          |             |           | G7.D14G16\                                   | <del> </del> |              |                |    | ļ            |
| 33             |          | Ĺ                 | Formula in cell H | 18:      | "=1.15*H1   | 7"        |                                              |              | l            |                | L  | L            |

With the new cost factors the bid increases to \$13,828.75.

f) We eliminate all lower and upper bounds on the age groups and regions and replace them with Rob's strict requirements. These requirements also ensure that exactly 2000 people are surveyed so that we can drop that constraint too.

|    | A  | В                                       | C                 | D          | Ε           | F        | G             | Н           | ı  | J              | K   |
|----|----|-----------------------------------------|-------------------|------------|-------------|----------|---------------|-------------|----|----------------|-----|
| -  |    |                                         |                   |            |             | <u> </u> |               |             |    |                |     |
| 2  |    |                                         |                   |            |             | r Person |               |             |    |                |     |
| 3  |    |                                         |                   |            |             | Group    |               |             |    |                |     |
| 4  | ll |                                         |                   | 18 to 25   | 26 to 40    | 41 to 50 | 51 and over   |             |    |                |     |
| 5  |    |                                         | Silicon valley    | \$6.50     | \$6.5U      | \$6.50   | \$5.00        |             |    |                | ļ   |
| 6  |    | Region                                  | Big Cities        | \$6.75     | \$5.75      | \$6.25   | \$6.25        |             |    |                |     |
| 7  |    |                                         | Small Towns       | \$7.00     | \$7.50      | \$7.50   | \$7.25        | L           |    |                |     |
| 8  |    |                                         |                   |            |             |          |               |             |    |                |     |
| 9  |    |                                         |                   |            |             |          |               |             |    | <u> </u>       |     |
| 10 |    |                                         |                   |            |             |          |               |             |    |                |     |
| 11 |    |                                         |                   | N          | umber of Po |          | eyed          |             |    | l              |     |
| 12 |    |                                         |                   |            | _           | Group    |               |             |    |                |     |
| 13 |    |                                         |                   | 18 to 25   | 26 to 40    | 41 to 50 | 51 and over   | Totals      | Su | rvey restricti | ons |
| 14 |    |                                         | Silicon Valley    | 50         | 50          | 50       | 250           | 400         | =  | 400            |     |
| 15 |    | Region                                  | Big Cities        | 50         | 600         | 300      | 50            | 1000        | =  | 1000           |     |
| 16 |    |                                         | Small Towns       | 400        | 50          | 50       | 100           | 600         | =  | 600            |     |
| 17 | _  | Totals                                  |                   | 500        | 700         | 400      | 400           | \$ 12,475   | =  | Total Cost     |     |
| 18 | 1  |                                         |                   | =          | =           | =        | =             | \$14,346.25 | =  | Bid            |     |
| 19 | 5  | urvey restriction                       | 8                 | 500        | 700         | 400      | 400           |             |    |                |     |
| 20 |    |                                         |                   |            |             |          |               |             |    |                |     |
| 21 |    |                                         |                   |            |             |          |               | Minimum va  |    | ich variable   |     |
| 22 |    |                                         | Formula in cell H | 4:         | =SUM(D1     | 4 G14)"  |               |             | 50 |                |     |
| 23 | 1  |                                         | Formula in cell H | 15:        | '=SUM(D1:   |          |               |             |    |                |     |
| 24 |    |                                         | Formula in cell H | 6:         | =SUM(D1     |          |               |             |    |                |     |
| 25 |    | 1                                       | Formula in cell D | 17:        | =SUM(D1     |          |               | i i         |    |                |     |
| 20 | 1  | l                                       | Formula in cell E | 17:        | =5 UNKE I   |          | 1             |             |    |                |     |
| 27 | 1  |                                         | Formula in cell F | <b>7</b> : | SUM(FT      | F16)"    |               |             |    |                |     |
| 28 | 1  |                                         | Formula in cell G | 17:        | "=SUM(GT    |          | <b>T</b>      |             |    |                |     |
| 29 | Τ- |                                         | Formula in cell H | 20:        | '=SUM(D1    | 4:G16)"  |               |             |    |                |     |
| 30 | ✝  |                                         | Formula in cell H | 17:        | =SUMPR      | DDUCT(D5 | :G7,D14:G16)" |             |    | 1              |     |
| 31 | 1  | *************************************** | Formula in cell H | 18:        | "=1.15"H1   | 7"       | 1             |             |    |                |     |



Rob's strict requirements increase the cost of the survey by \$450. The new bid of Sophisticated Surveys is \$14,346.25.

**ኍን** a & b)

| ı | Data: |           | Percentage | Percentage | Percentage |          |              |          |
|---|-------|-----------|------------|------------|------------|----------|--------------|----------|
|   |       | Number of | in 6th     | in 7th     | in 8th     | Bussin   | g Cost (\$/S | Student) |
|   | Area  | Students  | Grade      | Grade      | Grade      | School 1 | School 2     | School 3 |
| ſ | 1     | 450       | 0.32       | 0.38       | 0.3        | 300      | 0            | 700      |
| ı | 2     | 600       | 0.37       | 0.28       | 0.35       | -        | 400          | 500      |
| ı | 3     | 550       | 0.3        | 0.32       | 0.38       | 600      | 300          | 200      |
| ١ | 4     | 350       | 0.28       | 0.4        | 0.32       | 200      | 500          | -        |
| ١ | 5     | 500       | 0.39       | 0.34       | 0.27       | 0        | -            | 400      |
| ١ | 6     | 450       | 0.34       | 0.28       | 0.38       | 500      | 300          | 0        |
| - |       |           |            |            | Capacity:  | 900      | 1100         | 1000     |

| Solution: | Numbe      | r of Students A | Assigned   |       |   |                         |            |
|-----------|------------|-----------------|------------|-------|---|-------------------------|------------|
|           | School 1   | School 2        | School 3   | Total |   |                         |            |
| Area 1    | 0          | 450             | 0          | 450   | = | 450                     |            |
| Area 2    | 0          | 422.222222      | 177.777778 | 600   | = | 600                     |            |
| Area 3    | 0          | 227.777778      | 322.222222 | 550   | = | 550                     |            |
| Area 4    | 350        | 0               | 0          | 350   | = | 350                     |            |
| Area 5    | 366.666667 | 0               | 133.333333 | 500   | = | 500                     |            |
| Area 6    | 83.3333333 | 0               | 366.666667 | 450   | = | 450                     |            |
| Total     | 800        | 1100            | 1000       |       |   |                         |            |
|           | ≤          | ≤               | ≤          |       |   |                         |            |
| Canacity  | 900        | 1100            | 1000       |       |   | Total Bussing Cost = \$ | 555.555.56 |

#### Grade Constraints:

|              | School 1   | School 2   | School 3   |
|--------------|------------|------------|------------|
| 6th Graders  | 269.333333 | 368.555556 | 339.111111 |
| 7th Graders  | 288        | 362.111111 | 300.888889 |
| 8th Graders  | 242.666667 | 369.333333 | 360        |
| 30% of Total | 240        | 330        | 300        |
| 36% of Total | 288        | 396        | 360        |

c) The recommendation to the school board is to assign students to schools as shown in the above solution section of the spreadsheet. Quantities that are not integers must be rounded since partial students cannot be sent.

d) The following solution decreases total bussing costs by over \$135,000 but violates the grade constraints that were imposed. Solutions will vary and those than satisfy the grade constraints will be likely to increase the total bussing costs.

| Data: | Number of | Percentage<br>in 6th | Percentage<br>in 7th | Percentage<br>in 8th | Bussing Cost ( |          | S/Student) |  |
|-------|-----------|----------------------|----------------------|----------------------|----------------|----------|------------|--|
| Area  | Students  | Grade                | Grade                | Grade                | School 1       | School 2 | School 3   |  |
| 1     | 450       | 0.32                 | 0.38                 | 0.3                  | 300            | 0        | 700        |  |
| 2     | 600       | 0.37                 | 0.28                 | 0.35                 | -              | 400      | 500        |  |
| 3     | 550       | 0.3                  | 0.32                 | 0.38                 | 600            | 300      | 200        |  |
| 4     | 350       | 0.28                 | 0.4                  | 0.32                 | 200            | 500      | -          |  |
| 5     | 500       | 0.39                 | 0.34                 | 0.27                 | 0              | •        | 400        |  |
| 6     | 450       | 0.34                 | 0.28                 | 0.38                 | 500            | 300      | 0          |  |
|       |           | -                    |                      | Capacity:            | 900            | 1100     | 1000       |  |

| Solution: | Numbe    | r of Students A | ssigned  |       |   |                         |            |
|-----------|----------|-----------------|----------|-------|---|-------------------------|------------|
|           | School 1 | School 2        | School 3 | Total |   |                         |            |
| Area 1    | 0        | 450             | 0        | 450   | = | 450                     |            |
| Area 2    | 0        | 600             | 0        | 600   | = | 600                     |            |
| Area 3    | 0        | 0               | 550      | 550   | = | 550                     |            |
| Area 4    | 350      | 0               | 0        | 350   | = | 350                     |            |
| Area 5    | 500      | 0               | 0        | 500   | = | 500                     |            |
| Area 6    | 0        | 0               | 450      | 450   | = | 450                     |            |
| Total     | 850      | 1050            | 1000     |       |   |                         |            |
|           | ≤        | ≤               | ≤        |       |   |                         |            |
| Capacity  | 900      | 1100            | 1000     |       |   | Total Bussing Cost = \$ | 420,000.00 |

#### Grade Constraints:

| _            | School 1 | School 2 | School 3 |  |
|--------------|----------|----------|----------|--|
| 6th Graders  | 293      | 366      | 318      |  |
| 7th Graders  | 310      | 339      | 302      |  |
| 8th Graders  | 247      | 345      | 380      |  |
| 30% of Total | 255      | 315      | 300      |  |
| 36% of Total | 306      | 378      | 360      |  |

e) The number of students assigned from each area to each school changes to the solution shown below and the total bussing cost is reduced by almost \$162,000.

| Da | ta:  | Number of | Percentage<br>in 6th | Percentage<br>in 7th | Percentage<br>in 8th | Bussin   | g Cost (\$/5 | Student) |
|----|------|-----------|----------------------|----------------------|----------------------|----------|--------------|----------|
|    | Area | Students  | Grade                | Grade                | Grade                | School 1 | School 2     | School 3 |
| Г  | 1    | 450       | 0.32                 | 0.38                 | 0.3                  | 300      | 0            | 700      |
|    | 2    | 600       | 0.37                 | 0.28                 | 0.35                 | -        | 400          | 500      |
|    | 3    | 550       | 0.3                  | 0.32                 | 0.38                 | 600      | 300          | 0        |
|    | 4    | 350       | 0.28                 | 0.4                  | 0.32                 | 0        | 500          | -        |
|    | 5    | 500       | 0.39                 | 0.34                 | 0.27                 | 0        | -            | 400      |
|    | 6    | 450       | 0.34                 | 0.28                 | 0.38                 | 500      | 300          | 0        |
|    |      |           |                      |                      | 0                    | 000      | 1100         | 1000     |

Capacity: 900 1100 1000

| Solution: | Number     | of Students | Assigned   |       |     |                         |            |
|-----------|------------|-------------|------------|-------|-----|-------------------------|------------|
|           | School 1   | School 2    | School 3   | Total |     |                         |            |
| Area 1    | 0          | 450         | 0          | 450   | =   | 450                     |            |
| Area 2    | 0          | 600         | 0          | 600   | =   | 600                     |            |
| Area 3    | 0          | 0           | 550        | 550   | =   | 550                     |            |
| Area 4    | 350        | 0           | 0          | 350   | *** | 350                     |            |
| Area 5    | 318.181818 | 0           | 181.818182 | 500   | *** | 500                     |            |
| Area 6    | 131.818182 | 50          | 268.181818 | 450   | =   | 450                     |            |
| Total     | 800        | 1100        | 1000       |       |     |                         |            |
|           | ≤          | ≤           | ≤          |       |     |                         |            |
| Capacity  | 900        | 1100        | 1000       |       |     | Total Bussing Cost = \$ | 393,636.36 |

#### Grade Constraints:

|              | School 1   | School 2 | School 3   |
|--------------|------------|----------|------------|
| 6th Graders  | 266.909091 | 383      | 327.090909 |
| 7th Graders  | 285.090909 | 353      | 312.909091 |
| 8th Graders  | 248        | 364      | 360        |
| 30% of Total | 240        | 330      | 300        |
| 36% of Total | 288        | 396      | 360        |

f) The number of students assigned from each area to each school changes to the solution shown below and the total bussing cost is reduced by over \$215,000.

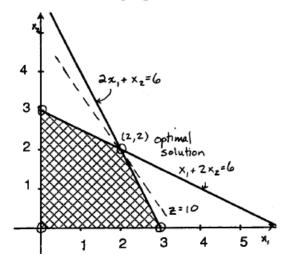
| Data | :    | Number of | Percentage<br>in 6th | Percentage<br>in 7th | Percentage<br>in 8th | Bussin   | g Cost (\$/5 | Student) |
|------|------|-----------|----------------------|----------------------|----------------------|----------|--------------|----------|
| /    | Area | Students  | Grade                | Grade                | Grade                | School 1 | School 2     | School 3 |
|      | 1    | 450       | 0.32                 | 0.38                 | 0.3                  | 0        | 0            | 700      |
| 1    | 2    | 600       | 0.37                 | 0.28                 | 0.35                 | -        | 400          | 500      |
|      | 3    | 550       | 0.3                  | 0.32                 | 0.38                 | 600      | 0            | 0        |
|      | 4    | 350       | 0.28                 | 0.4                  | 0.32                 | 0        | 500          |          |
|      | 5    | 500       | 0.39                 | 0.34                 | 0.27                 | 0        | -            | 400      |
|      | 6    | 450       | 0.34                 | 0.28                 | 0.38                 | 500      | 0            | 0        |
|      |      |           |                      |                      | Capacity:            | 900      | 1100         | 1000     |

| Solution: | Number     | r of Students A | ssigned    |       |    |                         |            |
|-----------|------------|-----------------|------------|-------|----|-------------------------|------------|
|           | School 1   | School 2        | School 3   | Total |    |                         |            |
| Area 1    | 38.7096771 | 411.290323      | 0          | 450   | =  | 450                     |            |
| Area 2    | 0          | 236.559139      | 363.440861 | 600   | =  | 600                     |            |
| Area 3    | 0          | 77.95699        | 472.04301  | 550   | =  | 550                     |            |
| Area 4    | 350        | 0               | 0          | 350   | =  | 350                     |            |
| Area 5    | 435.483871 | 0               | 64.5161288 | 500   | =  | 500                     |            |
| Area 6    | 75.8064517 | 374.193548      | 0          | 450   | == | 450                     |            |
| Total     | 900        | 1100            | 900        |       |    |                         |            |
|           | ≤          | ≤               | ≤          |       |    |                         |            |
| Capacity  | 900        | 1100            | 1000       |       |    | Total Bussing Cost = \$ | 340,053.76 |

#### Grade Constraints:

| _            | School 1 | School 2   | School 3   |
|--------------|----------|------------|------------|
| 6th Graders  | 306      | 369.752688 | 301.247312 |
| 7th Graders  | 324      | 352.247312 | 274.752688 |
| 8th Graders  | 270      | 378        | 324        |
| 30% of Total | 270      | 330        | 270        |
| 36% of Total | 324      | 396        | 324        |

g)


| Option  | Cost         | # students walking<br>1 to 1.5 miles | # students walking<br>more than 1.5 miles |
|---------|--------------|--------------------------------------|-------------------------------------------|
| current | \$555,555.56 | 0                                    | 0                                         |
| 1       | \$393,636.36 | 900                                  | 0                                         |
| 2       | \$340,053.76 | 900                                  | 491                                       |

h) Answers will vary.

### **CHAPTER 5: THE THEORY OF THE SIMPLEX METHOD**

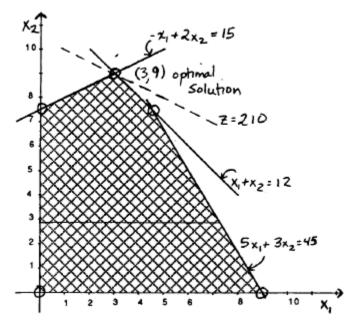
### **5.1-1.**

(a) Optimal Solution:  $(x_1^*, x_2^*) = (2, 2)$  and  $Z^* = 10$ 



(c) maximize 
$$Z = 3x_1 + 2x_2$$
 subject to  $2x_1 + x_2 + x_3 = 6$   $x_1 + 2x_2 + x_4 = 6$   $x_1, x_2, x_3, x_4 \geq 0$ 

(b) - (d)


| Defining<br>Equations            | CP    | Feasible? | Basic Solution | Indicating<br>Variables          | Equations                                |
|----------------------------------|-------|-----------|----------------|----------------------------------|------------------------------------------|
| $x_1 = 0$<br>$x_2 = 0$           | (0,0) | Yes       | (0,0,6,6)      | х <sub>1</sub><br>х <sub>2</sub> | x <sub>3</sub> = 6<br>x <sub>4</sub> = 6 |
| $x_1 = 0$<br>$2x_1 + x_2 = 6$    | (0,6) | No        | (0,6,0,-6)     | х <sub>1</sub><br>х <sub>3</sub> | $x_2 = 6$ $2x_2 + x_4 = 6$               |
| $x_1 = 0$<br>$x_1 + 2x_2 = 6$    | (0,3) | Yes       | (0,3,3,0)      | Х <sub>1</sub><br>Х <sub>4</sub> | $x_2 + x_3 = 6$<br>$2x_2 = 6$            |
| $x_2 = 0$<br>$2x_1 + x_2 = 6$    | (3,0) | Yes       | (3,0,0,3)      | х <sub>2</sub><br>х <sub>3</sub> | $2x_1 = 6$<br>$x_1 + x_4 = 6$            |
| $x_2 = 0$<br>$x_1 + 2x_2 = 6$    | (6,0) | No        | (6,0,-6,0)     | х <sub>2</sub><br>х <sub>4</sub> | $2x_1 + x_3 = 6$<br>$x_1 = 6$            |
| $2x_1 + x_2 = 6  x_1 + 2x_2 = 6$ | (2,2) | Yes       | (2,2,0,0)      | х <sub>3</sub><br>х <sub>4</sub> | $2x_1+x_2=6$<br>$x_1+2x_2=6$             |

(e)

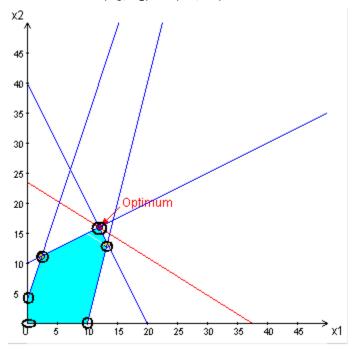
| Step | CPF Sol.'n     | Deleted Defining Eq. | Added Defining Eq. | Deleted Ind.Var. | Added Ind.Var. |
|------|----------------|----------------------|--------------------|------------------|----------------|
| 1    | (0,0)          | $x_1 = 0$            | $2x_1 + x_2 = 6$   | $x_1$            | $x_3$          |
| 2    | (3,0)          | $x_2 = 0$            | $x_1 + 2x_2 = 6$   | $x_2$            | $x_4$          |
| 3    | (2, 2) OPTIMAL |                      |                    |                  |                |

# 5.1-2.

(a) Optimal Solution:  $(x_1^*, x_2^*) = (3, 9)$  and  $Z^* = 210$ 



# (b) - (d)


| Defining<br>Equations                                                          | CP             | Feasible? | Basic Solution            | Indicating<br>Variables          | Equations                                                                                                                             |
|--------------------------------------------------------------------------------|----------------|-----------|---------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| × <sub>1</sub> = 0<br>× <sub>2</sub> = 0                                       | (0.0)          | Yes       | (0,0,15,12,45)            | × <sub>1</sub><br>× <sub>2</sub> | × <sub>3</sub> = 15<br>× <sub>4</sub> = 12<br>× <sub>5</sub> = 45                                                                     |
| × <sub>1</sub> = 0<br>-× <sub>1</sub> +2× <sub>2</sub> = 15                    | (0,7.5)        | Yes       | (0,7.5,0,4.5,22.5)        | × <sub>1</sub><br>× <sub>3</sub> | 2x <sub>2</sub> = 15<br>x <sub>2</sub> +x <sub>4</sub> = 12<br>3x <sub>2</sub> +x <sub>5</sub> = 45                                   |
| × <sub>1</sub> = 0<br>× <sub>1</sub> +× <sub>2</sub> = 12                      | (0,12)         | No        | (0,12,9,09)               | ×1<br>×4                         | 2x <sub>2</sub> +x <sub>3</sub> = 15<br>x <sub>2</sub> +x <sub>4</sub> = 12<br>3x <sub>2</sub> +x <sub>5</sub> = 45                   |
| × <sub>1</sub> = 0<br>5× <sub>1</sub> +3× <sub>2</sub> = 45                    | (0,15)         | No        | (0,15,-15,-3,0)           | × <sub>1</sub><br>× <sub>5</sub> | 2× <sub>2</sub> +× <sub>3</sub> = 15<br>× <sub>2</sub> +× <sub>4</sub> = 12<br>3× <sub>2</sub> = 45                                   |
| × <sub>2</sub> = 0<br>-× <sub>1</sub> +2× <sub>2</sub> = 15                    | (-15,0)        | No        | (-15,0,0,3,120)           | X <sub>2</sub><br>X <sub>3</sub> | × <sub>1</sub> +× <sub>4</sub> = 12<br>-× <sub>1</sub> = 15<br>5× <sub>1</sub> +× <sub>5</sub> = 46                                   |
| × <sub>2</sub> = 0<br>× <sub>1</sub> +× <sub>2</sub> = 12                      | (12,0)         | No        | (12,0,27,0,-15)           | × <sub>2</sub><br>× <sub>4</sub> | × <sub>1</sub> = 12<br>-× <sub>1</sub> +× <sub>3</sub> = 15<br>5× <sub>1</sub> +× <sub>5</sub> = 45                                   |
| × <sub>2</sub> = 0<br>5× <sub>1</sub> +3× <sub>2</sub> = 45                    | (9,0)          | Yes       | (9,0,24,3,0)              | × <sub>2</sub><br>× <sub>5</sub> | x <sub>1</sub> +x <sub>+</sub> = 12<br>-x <sub>1</sub> +x <sub>3</sub> = 15<br>5x <sub>1</sub> = 45                                   |
| × <sub>1</sub> +× <sub>2</sub> = 12<br>-× <sub>1</sub> +2× <sub>2</sub> = 15   | (3,9)          | Yes       | (3,9,0,0,3)               | ×3<br>×₄                         | $x_1+x_2=12$<br>$-x_1+2x_2=15$<br>$5x_1+3x_2+x_5=45$                                                                                  |
| 5× <sub>1</sub> +3× <sub>2</sub> = 45<br>-× <sub>1</sub> +2× <sub>2</sub> = 15 | (45/13,120/13) | No        | (45/13,120/13,0,-19/13,0) | ×3<br>×5                         | $x_1 + x_2 + x_4 = 12$<br>$-x_1 + 2x_2 = 15$<br>$5x_1 + 3x_2 = 45$                                                                    |
| × <sub>1</sub> +× <sub>2</sub> = 12<br>5× <sub>1</sub> +3× <sub>2</sub> = 45   | (4.5,75)       | Yes       | (4.5,7.5,3.5,0,0)         | ×.<br>×s                         | × <sub>1</sub> +× <sub>2</sub> = 12<br>-× <sub>1</sub> +2× <sub>2</sub> +× <sub>4</sub> = 15<br>5× <sub>1</sub> +3× <sub>2</sub> = 45 |

(e)

| Step | CPF Sol.'n    | Deleted Defining Eq. | Added Defining Eq. | Deleted Ind.Var. | Added Ind.Var. |
|------|---------------|----------------------|--------------------|------------------|----------------|
| 1    | (0,0)         | $x_2 = 0$            | $-x_1 + 2x_2 = 15$ | $x_2$            | $x_3$          |
| 2    | (0, 7.5)      | $x_1 = 0$            | $x_1 + x_2 = 12$   | $x_1$            | $x_4$          |
| 3    | (3,9) OPTIMAL |                      |                    |                  |                |

5.1-3.

(a) Optimal Solution:  $(x_1^*, x_2^*) = (12, 16)$  and  $Z^* = 188$ 



(b) The corner point (12, 16) has the best objective value 188, so is optimal.

| CPF Sol.'n   | Defining Equations                   | BF Solution                   | NB Var.'s      | z     |
|--------------|--------------------------------------|-------------------------------|----------------|-------|
| (0,0)        | $x_1 = 0, x_2 = 0$                   | (0,0,80,4,20,40)              | $x_{1}, x_{2}$ | 0     |
| (0,4)        | $x_1 = 0, -3x_1 + x_2 = 4$           | (0,4,72,0,12,44)              | $x_1, x_4$     | 32    |
| (2.4, 11.2)  | $-3x_1 + x_2 = 4, -x_1 + 2x_2 = 20$  | (2.4, 11.2, 48, 0, 0, 41.6)   | $x_4, x_5$     | 101.6 |
| (12, 16)     | $-x_1 + 2x_2 = 20, 4x_1 + 2x_2 = 80$ | (12, 16, 0, 24, 0, 8)         | $x_{3}, x_{5}$ | 188   |
| (13.3, 13.3) | $4x_1 + 2x_2 = 80, 4x_1 - x_2 = 40$  | (13.3, 13.3, 0, 16.7, 6.7, 0) | $x_3, x_6$     | 173.3 |
| (10,0)       | $4x_1 - x_2 = 40, x_2 = 0$           | (10, 0, 40, 34, 30, 0)        | $x_2, x_6$     | 50    |

(c) All sets yield a solution.

| CP Infeas. Sol.'n                | Defining Equations                  | Basic Infeas. Solutions                                                        | NB Var.'s      |
|----------------------------------|-------------------------------------|--------------------------------------------------------------------------------|----------------|
| $(-\frac{4}{3},0)$               | $-3x_1 + x_2 = 4, x_2 = 0$          | $\left(-\frac{4}{3}, 0, 85\frac{1}{3}, 0, 18\frac{2}{3}, 45\frac{1}{3}\right)$ | $x_2, x_4$     |
| (-20, 0)                         | $-x_1 + 2x_2 = 20, x_2 = 0$         | (-20, 0, 160, -56, 0, 120)                                                     | $x_2, x_5$     |
| (0,40)                           | $4x_1 + 2x_2 = 80, x_1 = 0$         | (0,40,0,-36,-60,80)                                                            | $x_{1}, x_{3}$ |
| (0, 10)                          | $-x_1 + 2x_2 = 20, x_1 = 0$         | (0, 10, 60, -6, 0, 50)                                                         | $x_1, x_5$     |
| (7.2, 25.6)                      | $4x_1 + 2x_2 = 80, -3x_1 + x_2 = 4$ | (7.2, 25.6, 0, 0, -24, 36.8)                                                   | $x_{3}, x_{4}$ |
| (44, 136)                        | $-3x_1 + x_2 = 4, 4x_1 - x_2 = 40$  | (44, 136, -368, 0, -208, 0)                                                    | $x_4, x_6$     |
| $(\frac{100}{7}, \frac{120}{7})$ | $4x_1 - x_2 = 40, -x_1 + 2x_2 = 20$ | $(\frac{100}{7}, \frac{120}{7}, -\frac{80}{7}, \frac{208}{7}, 0, 0)$           | $x_5, x_6$     |
| (20,0)                           | $4x_1 + 2x_2 = 80, x_2 = 0$         | (20, 0, 0, 64, 40, -40)                                                        | $x_2, x_3$     |
| (0, -40)                         | $4x_1 - x_2 = 40, x_1 = 0$          | (0, -40, 160, 44, 100, 0)                                                      | $x_1, x_6$     |

### 5.1-4.

(a) 
$$(x_1, x_2, x_3) = (10, 0, 0)$$

(b) 
$$x_2 = 0, x_3 = 0, x_1 - x_2 + 2x_3 = 10$$

# 5.1-5.

| (a) | CPF Sol.'n | Defining Equations                        |
|-----|------------|-------------------------------------------|
|     | (0,0,0)    | $x_1 = 0, x_2 = 0, x_3 = 0$               |
|     | (4,0,0)    | $x_1 = 4, x_2 = 0, x_3 = 0$               |
|     | (4, 2, 0)  | $x_1 = 4, x_1 + x_2 = 6, x_3 = 0$         |
|     | (2, 4, 0)  | $x_2 = 4, x_1 + x_2 = 6, x_3 = 0$         |
|     | (0, 4, 0)  | $x_1 = 0, x_2 = 4, x_3 = 0$               |
|     | (0, 4, 2)  | $x_1 = 0, x_2 = 4, -x_1 + 2x_3 = 4$       |
|     | (2,4,3)    | $x_1 + x_2 = 6, x_2 = 4, -x_1 + 2x_3 = 4$ |
|     | (4, 2, 4)  | $x_1 + x_2 = 6, x_1 = 4, -x_1 + 2x_3 = 4$ |
|     | (4, 0, 4)  | $x_2 = 0, x_1 = 4, -x_1 + 2x_3 = 4$       |
|     | (0, 0, 2)  | $x_2 = 0, x_1 = 0, -x_1 + 2x_3 = 4$       |

(b) 
$$x_1 + x_2 = 6$$
,  $x_2 = 4$ ,  $-x_1 + 2x_3 = 4$ 

(c) 
$$x_1 = 4, x_1 = 0, x_2 = 0 \Rightarrow$$
 inconsistent system

# **5.1-6.**

# (a) - (b)

| Defining Equations                   | CP       | Feas.? | Basic Solution        | NB Var.'s      |
|--------------------------------------|----------|--------|-----------------------|----------------|
| $x_1 = 0, x_2 = 0$                   | (0,0)    | No     | (0,0,30,-50,-30)      | $x_1, x_2$     |
| $x_1 = 0, -3x_1 + 2x_2 = 30$         | (0, 15)  | No     | (0, 15, 0, -35, -15)  | $x_{1}, x_{3}$ |
| $x_1 = 0, 2x_1 + x_2 = 50$           | (0, 50)  | No     | (0, 50, -70, 0, 20)   | $x_1, x_4$     |
| $x_1 = 0, x_1 + x_2 = 30$            | (0, 30)  | No     | (0,30,-30,-20,0)      | $x_1, x_5$     |
| $x_2 = 0, -3x_1 + 2x_2 = 30$         | (-10,0)  | No     | (-10, 0, 0, -70, -40) | $x_2, x_3$     |
| $x_2 = 0, 2x_1 + x_2 = 50$           | (25,0)   | No     | (25,0,105,0,-5)       | $x_2, x_4$     |
| $x_2 = 0, x_1 + x_2 = 30$            | (30,0)   | Yes    | (30, 0, 120, 10, 0)   | $x_2, x_5$     |
| $-3x_1 + 2x_2 = 30, 2x_1 + x_2 = 50$ | (10, 30) | Yes    | (10, 30, 0, 0, 10)    | $x_3, x_4$     |
| $-3x_1 + 2x_2 = 30, x_1 + x_2 = 30$  | (6, 24)  | No     | (6, 24, 0, -14, 0)    | $x_3, x_5$     |
| $2x_1 + x_2 = 50, x_1 + x_2 = 30$    | (20, 10) | Yes    | (20, 10, 70, 0, 0)    | $x_4, x_5$     |

# **5.1-7.**

# (a) - (b)

| Defining Equations                  | CP            | Feas.? | Basic Solution                   | NB Var.'s      |
|-------------------------------------|---------------|--------|----------------------------------|----------------|
| $x_1 = 0, x_2 = 0$                  | (0,0)         | Yes    | (0,0,10,60,18,44)                | $x_{1}, x_{2}$ |
| $x_1 = 0, x_2 = 10$                 | (0, 10)       | Yes    | (0, 10, 0, 10, 8, 34)            | $x_{1}, x_{3}$ |
| $x_1 = 0, 2x_1 + 5x_2 = 60$         | (0, 12)       | No     | (0, 12, -2, 0, 6, 32)            | $x_1, x_4$     |
| $x_1 = 0, x_1 + x_2 = 18$           | (0, 18)       | No     | (0, 18, -8, -30, 0, 26)          | $x_{1}, x_{5}$ |
| $x_1 = 0, 3x_1 + x_2 = 44$          | (0,44)        | No     | (0,44,-34,-160,-26,0)            | $x_1, x_6$     |
| $x_2 = 0, x_2 = 10$                 | No Solution   |        |                                  | $x_{2}, x_{3}$ |
| $x_2 = 0, 2x_1 + 5x_2 = 60$         | (30,0)        | No     | (30, 0, 10, 0, -12, -46)         | $x_{2}, x_{4}$ |
| $x_2 = 0, x_1 + x_2 = 18$           | (18,0)        | No     | (18, 0, 10, 24, 0, -10)          | $x_{2}, x_{5}$ |
| $x_2 = 0, 3x_1 + x_2 = 44$          | (14.67, 0)    | Yes    | (14.67, 0, 10, 30.67, 3.33, 0)   | $x_2, x_6$     |
| $x_2 = 10, 2x_1 + 5x_2 = 60$        | (5, 10)       | Yes    | (5, 10, 0, 0, 3, 19)             | $x_3, x_4$     |
| $x_2 = 10, x_1 + x_2 = 18$          | (8, 10)       | No     | (8, 10, 0, -6, 0, 10)            | $x_3, x_5$     |
| $x_2 = 10, 3x_1 + x_2 = 44$         | (11.33, 10)   | No     | (11.33, 10, 0, -12.67, -3.33, 0) | $x_3, x_6$     |
| $2x_1 + 5x_2 = 60, x_1 + x_2 = 18$  | (10, 8)       | Yes    | (10, 8, 2, 0, 0, 6)              | $x_4, x_5$     |
| $2x_1 + 5x_2 = 60, 3x_1 + x_2 = 44$ | (12.31, 7.08) | No     | (12.31, 7.08, 2.92, 0, -1.38, 0) | $x_4, x_6$     |
| $x_1 + x_2 = 18, 3x_1 + x_2 = 44$   | (13, 5)       | Yes    | (13, 5, 5, 9, 0, 0)              | $x_5, x_6$     |

#### 5.1-8.

- (a) If the feasible region is unbounded, then there may be no optimal solution.
- (b) There may be multiple optimal solutions, in which case the weighted average of any optimal CPF solutions is optimal, too.
- (c) An adjacent CPF solution may have an equal objective function value, then all the points that lie on the line segment between these two corner points are optimal.

### 5.1-9.

- (a) FALSE. (p.5-10) Property 1: (a) If there is exactly one optimal solution, then it must be a CPF solution. (b) If there are multiple optimal solutions, then at least two of them must be adjacent CPF solutions. An optimal solution that is not a CPF solution can be obtained by taking a convex combination of two optimal CPF solutions.
- (b) FALSE. (p.5-12) The number of CPF solutions is at most  $\binom{m+n}{n} = \frac{(m+n)!}{m!n!}$ .
- (c) FALSE. (p.5-13) The adjacent CPF solution that has a better objective function value than the initial CPF solution may be adjacent to another CPF solution that has an even better objective function value.

#### 5.1-10.

- (a) TRUE. By Property 1(a), there must be multiple solutions, since this optimal solution is not a CPF solution. But then, there must be infinitely many optimal solutions, namely any convex combination of optimal solutions.
- (b) TRUE. Any point x on the line segment connecting  $x^*$  and  $x^{**}$  can be expressed as  $x = \alpha x^* + (1 \alpha) x^{**}$  with  $\alpha \in [0, 1]$ . Both  $x^*$  and  $x^{**}$  have the optimal objective value  $Z^*$ . The objective function value at x is

$$Z = c^{T}(\alpha x^{*} + (1 - \alpha)x^{**}) = \alpha Z^{*} + (1 - \alpha)Z^{*} = Z^{*},$$

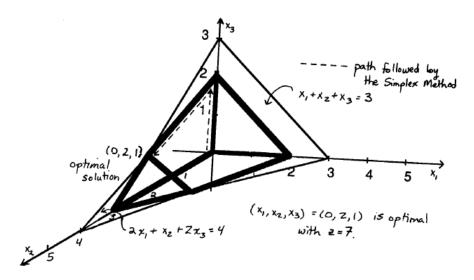
so x is optimal. Since the feasible region is convex, any such point is feasible.

(c) FALSE. The simultaneous solution of any set of n constraint boundary equations may be infeasible or may not even exist.

#### 5.1-11.

- (a) TRUE. If there are no optimal solutions, then either the problem is infeasible or the objective value is unbounded (Chapter 3). The former is not the case by assumption of the problem. Also by assumption again, the feasible region is bounded, so the objective value is bounded, so the latter cannot be the case. Hence, there must be at least one optimal solution.
- (b) FALSE. If a solution is optimal, it need not be a BF solution. A convex combination of two optimal BF solutions is optimal even though it is not a BF solution. This follows from Property 1, since BF solutions are CPF solutions.
- (c) TRUE. Since BF solutions correspond to CPF solutions, this follows directly from Property 2.

### 5.1-12.


$$x_1 = 0, 2x_1 + x_2 + 3x_3 = 60, 3x_1 + 3x_2 + 5x_3 = 120 \Rightarrow (x_1, x_2, x_3) = (0, 15, 15)$$

### **5.1-13.**

Since  $x_2 > 0$  and  $x_3 > 0$ ,  $x_2 = 0$  and  $x_3 = 0$  cannot be part of the three boundary equations, so the boundary equations are  $x_1 = 0$ ,  $2x_1 + x_2 + x_3 = 20$ ,  $3x_1 + x_2 + 2x_3 = 30$ . Then, the optimal solutions is  $(x_1, x_2, x_3) = (0, 10, 10)$ .

### 5.1-14.

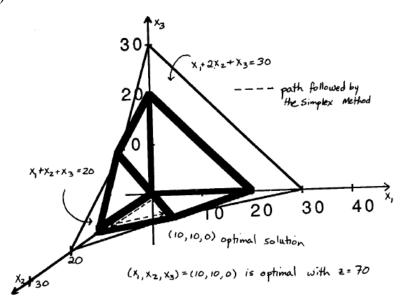
(a)



(b) The simplex method follows this path because moving along the chosen edges provides the greatest increase in the objective value for a unit move in the chosen direction among all possible edges at each vertex/decision point.

(c)

| Ec | dge | Constraint Boundary Equations    | End Points      | Additional Constraints           |
|----|-----|----------------------------------|-----------------|----------------------------------|
| 1  | 1   | $x_2 = 0, x_1 = 0$               |                 | $x_3 = 0, 2x_1 + x_2 + 2x_3 = 4$ |
| 2  | 2   | $2x_1 + x_2 + 2x_3 = 4, x_1 = 0$ | (0,0,2),(0,2,1) | $x_2 = 0, x_1 + x_2 + x_3 = 3$   |


(d) - (e)

| CP        | Defining Equations                                    | BF Solution | NB Var.'s       |
|-----------|-------------------------------------------------------|-------------|-----------------|
| (0,0,0)   | $x_1 = 0, x_2 = 0, x_3 = 0$                           | (0,0,0,4,3) | $x_1, x_2, x_3$ |
| (0, 0, 2) | $x_1 = 0, x_2 = 0, 2x_1 + x_2 + 2x_3 = 4$             | (0,0,2,0,1) | $x_1, x_2, x_4$ |
| (0, 2, 1) | $x_1 = 0, 2x_1 + x_2 + 2x_3 = 4, x_1 + x_2 + x_3 = 3$ | (0,0,2,0,1) | $x_1, x_4, x_5$ |

The nonbasic variables having value zero are equivalent to indicating variables. They indicate that their associated inequality constraints are actually equalities. The associated equalities are the defining equations.

5.1-15.

(a)



(b) The simplex method follows this path because moving along the chosen edges provides the greatest increase in the objective value for a unit move in the chosen direction among all possible edges at each vertex/decision point.

(c)

| Edge | Constraint Boundary Equations    | End Points              | Additional Constraints           |
|------|----------------------------------|-------------------------|----------------------------------|
| 1    | $x_1 = 0, x_3 = 0$               | (0,0,0),(0,15,0)        | $x_2 = 0, x_1 + 2x_2 + x_3 = 30$ |
| 2    | $x_3 = 0, x_1 + 2x_2 + x_3 = 30$ | (0, 15, 0), (10, 10, 0) | $x_1 = 0, x_1 + x_2 + x_3 = 20$  |

(d) - (e)

| CP          | Defining Equations                                     | BF Solution       | NB Var.'s       |
|-------------|--------------------------------------------------------|-------------------|-----------------|
| (0,0,0)     | $x_1 = 0, x_2 = 0, x_3 = 0$                            | (0,0,0,20,30)     | $x_1, x_2, x_3$ |
| (0, 15, 0)  | $x_1 = 0, x_3 = 0, x_1 + 2x_2 + x_3 = 30$              | (0, 15, 0, 5, 0)  | $x_1, x_3, x_5$ |
| (10, 10, 0) | $x_3 = 0, x_1 + 2x_2 + x_3 = 30, x_1 + x_2 + x_3 = 20$ | (10, 10, 0, 0, 0) | $x_3, x_4, x_5$ |

The nonbasic variables having value zero are equivalent to indicating variables. They indicate that their associated inequality constraints are actually equalities. The associated equalities are the defining equations.

### **5.1-16.**

- (a) When the objective is to maximize  $Z=x_3$ , both corner points (4,2,4) and (4,0,4) are optimal, with  $Z^*=4$ .
- (b) When the objective is to maximize  $Z = -x_1 + 2x_3$ , all the corner points (0,0,2), (4,0,4), (4,2,4), (2,4,3) and (0,4,2) are optimal, with  $Z^* = 4$ .

### 5.1-17.

- (a) Geometrically, each constraint is a plane and the points that are feasible for a given (inequality) constraint form a half-space. The line segment defined by any two feasible points must lie entirely on the feasible side of the plane and therefore, all the points on the line segment are feasible, implying that the set of solutions for any one constraint is a convex set.
- (b) Because the points in the feasible region of the LP problem satisfy all the constraints simultaneously, it must be the case that for any two feasible points, the points on the line segment joining them must also satisfy each constraint (from (a)). Hence, the set of solutions that satisfy all the constraints simultaneously is a convex set.

#### 5.1-18.

To maximize  $Z = 3x_1 + 4x_2 + 3x_3$ , starting at the origin (0,0,0), one first chooses to move to (0,4,0) because this edge offers the best rate of improvement among all edges at the origin. From (0,4,0), the edge that increases the objective function fastest is the one that connects to either (0,4,2) or (2,4,0). From either one these, the edge that gives the best rate of increase connects to (2,4,3). Then, the only edge that provides an improvement in Z connects to the optimal solution (4,2,4).

#### 5.1-19.

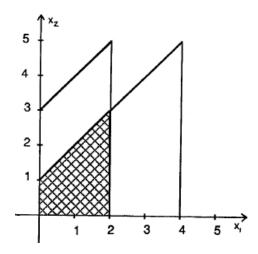
(a)

| Original Constraint     | Boundary Equation | Indicating Variable |
|-------------------------|-------------------|---------------------|
| $x_1 \ge 0$             | $x_1 = 0$         | $x_1$               |
| $x_2 \ge 0$             | $x_2 = 0$         | $x_2$               |
| $x_3 \ge 0$             | $x_3 = 0$         | $x_3$               |
| $x_1 + x_4 = 4$         | $x_1 = 4$         | $x_4$               |
| $x_2 + x_5 = 4$         | $x_2 = 4$         | $x_5$               |
| $x_1 + x_2 + x_6 = 6$   | $x_1 + x_2 = 6$   | $x_6$               |
| $-x_1 + 2x_3 + x_7 = 4$ | $-x_1 + 2x_3 = 4$ | $x_7$               |

(b)

| CPF Sol.'n | Defining Equations                        | BF Solution           | NB Var.'s       |
|------------|-------------------------------------------|-----------------------|-----------------|
| (2,4,3)    | $x_1 + x_2 = 6, x_2 = 4, -x_1 + 2x_3 = 4$ | (2,4,3,2,0,0,0)       | $x_5, x_6, x_7$ |
| (4, 2, 4)  | $x_1 + x_2 = 6, -x_1 + 2x_3 = 4, x_1 = 4$ | (4, 2, 4, 0, 2, 0, 0) | $x_4, x_6, x_7$ |
| (0,4,2)    | $x_1 = 0, x_2 = 4, -x_1 + 2x_3 = 4$       | (0,4,2,4,0,2,0)       | $x_1, x_5, x_7$ |
| (2,4,0)    | $x_3 = 0, x_1 + x_2 = 6, x_2 = 4$         | (2,4,0,2,0,0,6)       | $x_3, x_5, x_6$ |

(c) Because the sets of defining equations of (4,2,4), (0,4,2) and (2,4,0) differ from the set of defining equations of (2,4,3) by only one equation, they are adjacent to (2,4,3). On the other hand, the sets of defining equations of (4,2,4), (0,4,2) and (2,4,0) differ by more than one equation, they are not adjacent to each other. The same statement is true if we substitute "nonbasic variables" for "defining equations" and "variable" for "equation."


### 5.1-20.

(a)  $x_5$  enters.

(b)  $x_4$  leaves.

(c) (4, 2, 4, 0, 2, 0, 0)

### 5.1-21.



## 5.2-1.

(a) Optimal Solution: 
$$\begin{pmatrix} x_3 \\ x_1 \\ x_5 \end{pmatrix} = B^{-1}b = \frac{1}{27} \begin{pmatrix} 11 & -3 & 1 \\ -6 & 9 & -3 \\ 2 & -3 & 10 \end{pmatrix} \begin{pmatrix} 180 \\ 270 \\ 180 \end{pmatrix} = \begin{pmatrix} 50 \\ 30 \\ 50 \end{pmatrix}$$

$$Z = cx = \begin{pmatrix} 8 & 4 & 6 & 3 & 9 \end{pmatrix} \begin{pmatrix} 30 \\ 0 \\ 50 \\ 0 \\ 50 \end{pmatrix} = 990$$

(b) Shadow prices: 
$$c_B B^{-1} = \frac{1}{27} \begin{pmatrix} 6 & 8 & 9 \end{pmatrix} \begin{pmatrix} 11 & -3 & 1 \\ -6 & 9 & -3 \\ 2 & -3 & 10 \end{pmatrix} = \begin{pmatrix} 1.33 \\ 1 \\ 2.67 \end{pmatrix}$$

### 5.2-2.

$$c = (5 \ 8 \ 7 \ 4 \ 6 \ 0 \ 0), A = \begin{pmatrix} 2 & 3 & 3 & 2 & 2 & 1 & 0 \\ 3 & 5 & 4 & 2 & 4 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 20 \\ 30 \end{pmatrix}$$

Iteration 0: 
$$B = B^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
,  $x_B = \begin{pmatrix} x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 20 \\ 30 \end{pmatrix} = \begin{pmatrix} 20 \\ 30 \end{pmatrix}$ 

$$c_B = (0 \ 0), -c = (-5 \ -8 \ -7 \ -4 \ -6 \ 0 \ 0), \text{ so } x_2 \text{ enters.}$$

Revised 
$$x_2$$
 coefficients:  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ , so  $x_7$  leaves.

Iteration 1: 
$$B_{\text{new}}^{-1} = \begin{pmatrix} 1 & 3 \\ 0 & 5 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -3/5 \\ 0 & 1/5 \end{pmatrix}$$
,  $x_B = \begin{pmatrix} x_6 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & -3/5 \\ 0 & 1/5 \end{pmatrix} \begin{pmatrix} 20 \\ 30 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$ ,  $c_B = \begin{pmatrix} 0 & 8 \end{pmatrix}$ 

Revised row 0:  $\begin{pmatrix} 0 & 8/5 \end{pmatrix} \begin{pmatrix} 2 & 3 & 3 & 2 & 2 & 1 & 0 \\ 3 & 5 & 4 & 2 & 4 & 0 & 1 \end{pmatrix}$ - $\begin{pmatrix} 5 & 8 & 7 & 4 & 6 & 0 & 0 \end{pmatrix}$ 

$$= \begin{pmatrix} -1/5 & 0 & -3/5 & -4/5 & -2/5 & 0 & 8/5 \end{pmatrix}$$
, so  $x_4$  enters.

Revised  $x_4$  coefficients:  $\begin{pmatrix} 1 & -3/5 \\ 0 & 1/5 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 4/5 \\ 2/5 \end{pmatrix}$ , so  $x_6$  leaves.

Iteration 2:  $B_{\text{new}}^{-1} = \begin{pmatrix} 2 & 3 \\ 2 & 5 \end{pmatrix}^{-1} = \begin{pmatrix} 5/4 & -3/4 \\ -1/2 & 1/2 \end{pmatrix}$ 

Iteration 2: 
$$B_{\text{new}}^{-1} = \begin{pmatrix} 2 & 3 \\ 2 & 5 \end{pmatrix}^{-1} = \begin{pmatrix} 5/4 & -3/4 \\ -1/2 & 1/2 \end{pmatrix}$$

$$x_B = \begin{pmatrix} x_4 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5/4 & -3/4 \\ -1/2 & 1/2 \end{pmatrix} \begin{pmatrix} 20 \\ 30 \end{pmatrix} = \begin{pmatrix} 5/2 \\ 5 \end{pmatrix}, c_B = \begin{pmatrix} 4 & 8 \end{pmatrix}$$
Revised row 0:  $\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 3 & 2 & 2 & 1 & 0 \\ 3 & 5 & 4 & 2 & 4 & 0 & 1 \end{pmatrix}$ - $\begin{pmatrix} 5 & 8 & 7 & 4 & 6 & 0 & 0 \end{pmatrix}$ 

 $= (\ 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1\ ), \text{ so the current solution is optimal.}$  Optimal Solution:  $(x_1^*, x_2^*, x_3^*, x_4^*, x_5^*) = (0, 5, 0, 5/2, 0)$  and  $Z^* = 50$ 

### 5.2-3.

$$c = (3 \ 2 \ 0 \ 0), A = \begin{pmatrix} 2 \ 1 \ 1 \ 0 \ 1 \end{pmatrix}, b = \begin{pmatrix} 6 \ 6 \end{pmatrix}$$

$$CP(0,0): B = B^{-1} = \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}, x_B = \begin{pmatrix} x_3 \ x_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} \begin{pmatrix} 6 \ 6 \end{pmatrix} = \begin{pmatrix} 6 \ 6 \end{pmatrix}$$

$$Row 0: (-3 \ -2 \ 0 \ 0)$$

$$CP(3,0): B = \begin{pmatrix} 2 & 0 \ 1 & 1 \end{pmatrix}, B^{-1} = \begin{pmatrix} 1/2 & 0 \ -1/2 & 1 \end{pmatrix}$$

$$x_B = \begin{pmatrix} x_1 \ x_4 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 \ -1/2 & 1 \end{pmatrix} \begin{pmatrix} 6 \ 6 \end{pmatrix} = \begin{pmatrix} 3 \ 3 \end{pmatrix}, c_B = (3 \ 0)$$

$$Row 0: (3/2 \ 0) \begin{pmatrix} 2 & 1 & 1 & 0 \ 1 & 2 & 0 & 1 \end{pmatrix} - (3 \ 2 \ 0 \ 0) = (0 \ -1/2 \ 3/2 \ 0)$$

$$CP(2,2): B = \begin{pmatrix} 2 & 1 \ 1 & 2 \end{pmatrix}, B^{-1} = \begin{pmatrix} 2/3 & -1/3 \ -1/3 & 2/3 \end{pmatrix}$$

$$x_B = \begin{pmatrix} x_1 \ x_2 \end{pmatrix} = \begin{pmatrix} 2/3 & -1/3 \ -1/3 & 2/3 \end{pmatrix} \begin{pmatrix} 6 \ 6 \end{pmatrix} = \begin{pmatrix} 2 \ 2 \end{pmatrix}, c_B = (3 \ 2)$$

$$Row 0: (3 \ 2) \begin{pmatrix} 2 & 1 & 1 & 0 \ 1 & 2 & 0 & 1 \end{pmatrix} - (3 \ 2 \ 0 \ 0) = (0 \ 0 \ 1/3 \ 1/3)$$

Optimal Solution:  $(x_1^*, x_2^*) = (2, 2)$  and  $Z^* = 10$ 

### 5.2-4.

$$c = (1 \ 2 \ 0 \ 0), A = \begin{pmatrix} 1 & 3 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$$

Iteration 0: 
$$B = B^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
,  $x_B = \begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$ 

 $c_B = (0 \quad 0)$ , Row 0:  $(-1 \quad -2 \quad 0 \quad 0)$ , so  $x_2$  enters the basis.

Revised  $x_2$  coefficients:  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ , so  $x_3$  leaves the basis.

Iteration 1: 
$$B_{\text{new}}^{-1} = \begin{pmatrix} 3 & 0 \\ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1/3 & 0 \\ -1/3 & 1 \end{pmatrix}$$

$$x_B = \begin{pmatrix} x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1/3 & 0 \\ -1/3 & 1 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} = \begin{pmatrix} 8/3 \\ 4/3 \end{pmatrix}, c_B = \begin{pmatrix} 2 & 0 \end{pmatrix}$$

Revised row 0: 
$$(2/3 0)\begin{pmatrix} 1 & 3 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 2 & 0 & 0 \end{pmatrix}$$

 $= (-1/3 \quad 0 \quad 2/3 \quad 0)$ , so  $x_1$  enters the basis.

Revised  $x_1$  coefficients:  $\begin{pmatrix} 1/3 & 0 \\ -1/3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 2/3 \end{pmatrix}$ , so  $x_4$  leaves.

Iteration 2: 
$$B_{\text{new}}^{-1} = \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 3/2 \end{pmatrix}$$

$$x_B = \begin{pmatrix} x_2 \\ x_1 \end{pmatrix} = \begin{pmatrix} 1/2 & -1/2 \\ -1/2 & 3/2 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, c_B = \begin{pmatrix} 2 & 1 \end{pmatrix}$$

Revised row 0: 
$$(1/2 \quad 1/2)\begin{pmatrix} 1 & 3 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 2 & 0 & 0 \end{pmatrix}$$

 $= (0 \quad 0 \quad 1/2 \quad 1/2)$ , so the current solution is optimal.

Optimal Solution:  $(x_1^*, x_2^*) = (2, 2)$  and  $Z^* = 6$ 

### 5.2-5.

$$c = \begin{pmatrix} 5 & 4 & -1 & 3 & 0 & 0 \end{pmatrix}, A = \begin{pmatrix} 3 & 2 & -3 & 1 & 1 & 0 \\ 3 & 3 & 1 & 3 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 24 \\ 36 \end{pmatrix}$$

Iteration 0: 
$$B = B^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
,  $x_B = \begin{pmatrix} x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 24 \\ 36 \end{pmatrix} = \begin{pmatrix} 24 \\ 36 \end{pmatrix}$ 

 $c_B = (0 \quad 0)$ , Row 0:  $(-5 \quad -4 \quad 1 \quad -3 \quad 0 \quad 0)$ , so  $x_1$  enters the basis.

Revised  $x_1$  coefficients:  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$ , so  $x_5$  leaves the basis.

Iteration 1: 
$$B_{\text{new}}^{-1} = \begin{pmatrix} 3 & 0 \\ 3 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1/3 & 0 \\ -1 & 1 \end{pmatrix}$$

$$x_B = \begin{pmatrix} x_1 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1/3 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 24 \\ 36 \end{pmatrix} = \begin{pmatrix} 8 \\ 12 \end{pmatrix}, c_B = \begin{pmatrix} 5 & 0 \end{pmatrix}$$
Revised row 0:  $(5/3 \ 0) \begin{pmatrix} 3 & 2 & -3 & 1 & 1 & 0 \\ 3 & 3 & 1 & 3 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 5 & 4 & -1 & 3 & 0 & 0 \end{pmatrix}$ 

$$= \begin{pmatrix} 0 & -2/3 & -4 & -4/3 & 5/3 & 0 \end{pmatrix}, \text{ so } x_3 \text{ enters the basis.}$$
Provised  $x_1$  acceptionary:  $\begin{pmatrix} 1/3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 & 1 \end{pmatrix}$  so  $x_1$  leaves

Revised 
$$x_3$$
 coefficients:  $\begin{pmatrix} 1/3 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$ , so  $x_6$  leaves.

Iteration 2: 
$$B_{\text{new}}^{-1} = \begin{pmatrix} 3 & -3 \\ 3 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1/12 & 1/4 \\ -1/4 & 1/4 \end{pmatrix}$$

$$x_B = \begin{pmatrix} x_1 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1/12 & 1/4 \\ -1/4 & 1/4 \end{pmatrix} \begin{pmatrix} 24 \\ 36 \end{pmatrix} = \begin{pmatrix} 11 \\ 9 \end{pmatrix}, c_B = \begin{pmatrix} 5 & -1 \end{pmatrix}$$
Revised row 0:  $(2/3 \ 1) \begin{pmatrix} 3 & 2 & -3 & 1 & 1 & 0 \\ 3 & 3 & 1 & 3 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 5 & 4 & -1 & 3 & 0 & 0 \end{pmatrix}$ 

$$= \begin{pmatrix} 0 & 1/3 & 0 & 2/3 & 2/3 & 1 \end{pmatrix}, \text{ so current solution is optimal.}$$

Optimal Solution:  $(x_1^*, x_2^*, x_3^*, x_4^*) = (11, 0, 3, 0)$  and  $Z^* = 52$ 

### 5.3-1.

(a) 
$$B^{-1} = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix}$$

Final constraint columns for  $(x_1, x_2, x_3)$ :

$$B^{-1}A = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 2 & -2 & 3 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 & 0 \\ 2 & 0 & 0 \\ 4 & 0 & 1 \end{pmatrix}$$
$$c_B = \begin{pmatrix} -1 & 0 & 2 \end{pmatrix}$$

Final objective coefficients for  $(x_1, x_2, x_3)$ :

$$c_B B^{-1} A - c = \begin{pmatrix} -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 5 & 1 & 0 \\ 2 & 0 & 0 \\ 4 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$$

Right-hand side:

$$B^{-1}b = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 14 \\ 5 \\ 11 \end{pmatrix} \text{ and } z = \begin{pmatrix} -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 14 \\ 5 \\ 11 \end{pmatrix} = 8$$

Final tableau:

| Bas Eq   |    | Co | effici | ent of    | :  |    | Right |
|----------|----|----|--------|-----------|----|----|-------|
| Var No Z | X1 | X2 | X3     | <b>x4</b> | X5 | X6 | side  |
| i_i_i_   |    |    |        |           |    |    |       |
| 1 1 1    |    |    |        |           |    |    | 1     |
| Z   0  1 | 2  | 0  | 0      | 1         | 1  | 0  | 8     |
| X2 1 0   | 5  | 1  | 0      | 1         | 3  | 0  | 14    |
| X6  2  0 | 2  | 0  | 0      | 0         | 1  | 1  | 5     |
| X3 3 0   | 4  | 0  | 1      | 1         | 2  | 0  | 11    |

(b) Defining equations:  $2x_1 - 2x_2 + 3x_3 = 5$ ,  $x_1 + x_2 - x_3 = 3$ ,  $x_1 = 0$ **5.3-2.** 

(a) 
$$B^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$

Final constraint columns for  $(x_1, x_2, x_3, x_4)$ :

$$B^{-1}A = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 4 & 2 & 1 & 1 \\ 3 & 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 & 0 \\ 2 & 0 & 3 & 1 \end{pmatrix}$$
$$c_B = \begin{pmatrix} 3 & 2 \end{pmatrix}$$

Final objective coefficients for  $(x_1, x_2, x_3, x_4)$ :

$$c_B B^{-1} A - c = \begin{pmatrix} 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 & 0 \\ 2 & 0 & 3 & 1 \end{pmatrix} - \begin{pmatrix} 4 & 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 2 & 0 \end{pmatrix}$$

Right-hand side:

$$B^{-1}b = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \text{ and } Z = \begin{pmatrix} 3 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = 9$$

Final tableau:

| Bas   Eq |    | Co | effici | ent of |           |    | Right |
|----------|----|----|--------|--------|-----------|----|-------|
| Var No Z | X1 | X2 | х3     | X4     | <b>X5</b> | Х6 | side  |
| _ _ _ _  |    |    |        |        |           |    | .     |
| 1 1 1    |    |    |        |        |           |    | İ     |
| Z   0  1 | 3  | 0  | 2      | 0      | 1         | 1  | 9     |
| X2  1  0 | 1  | 1  | -1     | 0      | 1         | -1 | 1     |
| X4  2  0 | 2  | 0  | 3      | 1      | -1        | 2  | 3     |

(b) Defining equations:  $4x_1 + 2x_2 + x_3 + x_4 = 5$ ,  $3x_1 + x_2 + 2x_3 + x_4 = 4$ ,  $x_1 = 0$ ,  $x_3 = 0$ 

### 5.3-3.

$$B^{-1} = \begin{pmatrix} 1 & 1 & 2 \\ -2 & 0 & 4 \\ 1 & 0 & -1 \end{pmatrix}$$

Final constraint columns for  $(x_1, x_2, x_3)$ :

$$B^{-1}A = \begin{pmatrix} 1 & 1 & 2 \\ -2 & 0 & 4 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & 2 & 1/2 \\ -4 & -2 & -3/2 \\ 1 & 2 & 1/2 \end{pmatrix} = \begin{pmatrix} 0 & 4 & 0 \\ 0 & 4 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$c_B = \begin{pmatrix} 0 & 2 & 6 \end{pmatrix}$$

Final objective coefficients for  $(x_1, x_2, x_3)$ :

$$c_B B^{-1} A - c = \begin{pmatrix} 0 & 2 & 6 \end{pmatrix} \begin{pmatrix} 0 & 4 & 0 \\ 0 & 4 & 1 \\ 1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 6 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 7 & 0 \end{pmatrix}$$

Right-hand side:

$$B^{-1}b = \begin{pmatrix} 1 & 1 & 2 \\ -2 & 0 & 4 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \\ 1 \end{pmatrix} \text{ and } Z = \begin{pmatrix} 0 & 2 & 6 \end{pmatrix} \begin{pmatrix} 7 \\ 0 \\ 1 \end{pmatrix} = 6$$

Final tableau:

| Bas   Eq  | Coefficient of |    |           |    |    | Right |      |  |
|-----------|----------------|----|-----------|----|----|-------|------|--|
| Var No  Z | X1             | X2 | <b>x3</b> | X4 | X5 | X6    | side |  |
| _         |                |    |           |    |    |       | .i   |  |
| 1 1 1     |                |    |           |    |    |       | 1    |  |
| Z   0  1  | 0              | 7  | 0         | 2  | 0  | 2     | 6    |  |
| X5  1  0  | 0              | 4  | 0         | 1  | 1  | 2     | 7    |  |
| X3  2  0  | 0              | 4  | 1         | -2 | 0  | 4     | j 0  |  |
| X1  3  0  | 1              | 0  | 0         | 1  | 0  | -1    | j 1  |  |

### 5.3-4.

(a) 
$$B^{-1} = \begin{pmatrix} 3/16 & -1/8 & 0 & 0 \\ -1/4 & 1/2 & 0 & 0 \\ -3/8 & 1/4 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Current constraint columns for  $(x_1, x_2, x_3)$ :

$$B^{-1}A = \begin{pmatrix} 3/16 & -1/8 & 0 & 0 \\ -1/4 & 1/2 & 0 & 0 \\ -3/8 & 1/4 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 8 & 2 & 3 \\ 4 & 3 & 0 \\ 2 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 9/16 \\ 0 & 1 & -3/4 \\ 0 & 0 & -1/8 \\ 0 & 0 & 1 \end{pmatrix}$$

$$c_B = (20 \ 6 \ 0 \ 0)$$

Current objective coefficients for  $(x_1, x_2, x_3)$ :

$$c_B B^{-1} A - c = \begin{pmatrix} 20 & 6 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 9/16 \\ 0 & 1 & -3/4 \\ 0 & 0 & -1/8 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 20 & 6 & 8 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -5/4 \end{pmatrix}$$

Right-hand side:

$$B^{-1}b = \begin{pmatrix} 3/16 & -1/8 & 0 & 0 \\ -1/4 & 1/2 & 0 & 0 \\ -3/8 & 1/4 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 200 \\ 100 \\ 50 \\ 20 \end{pmatrix} = \begin{pmatrix} 25 \\ 0 \\ 0 \\ 20 \end{pmatrix} \text{ and } Z = \begin{pmatrix} 20 & 6 & 0 & 0 \end{pmatrix} \begin{pmatrix} 25 \\ 0 \\ 0 \\ 20 \end{pmatrix} = 500$$

Current tableau:

| Bas   Eq |    |     | Coef | ficien    | t of      |    |    | Right |
|----------|----|-----|------|-----------|-----------|----|----|-------|
| Var No Z | X1 | X2  | х3   | <b>X4</b> | <b>X5</b> | х6 | х7 | side  |
| _ _ _    |    |     |      |           |           |    |    | .     |
|          | 0  | 0 - | 1.25 | 2.25      | 0.5       | 0  | 0  | 500   |
| X1 1 0   | 1  | 0.0 | .563 | 0.188     | -0.13     | 0  | 0  | 25    |
| X2 2 0   | 0  | 1 - | 0.75 | -0.25     | 0.5       | 0  | 0  | 10    |
| X6  3  0 | 0  | 0 - | 0.13 | -0.38     | 0.25      | 1  | 0  | 0     |
| X7 4 0   | 0  | 0   | 1    | 0         | 0         | 0  | 1  | 20    |

(b) The revised simplex method would generate the reduced costs for row 0 and then the revised column for  $x_3$ .

(c) Defining equations: 
$$8x_1 + 2x_2 + 3x_3 = 200, 4x_1 + 3x_2 = 100, x_3 = 0$$

Note that  $2x_1 + x_3 = 50$  is also binding at the current solution.

### 5.3-5.

(a)

(b) 
$$B^{-1} = \begin{pmatrix} 3/5 & -1/5 \\ -1/5 & 2/5 \end{pmatrix}$$
,  $B^{-1}b = b^* \Leftrightarrow \begin{pmatrix} 3/5 & -1/5 \\ -1/5 & 2/5 \end{pmatrix} \begin{pmatrix} b \\ 2b \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \Leftrightarrow b = 5$ 

(c) Using (a): 
$$Z^* = c_B b^* = \begin{pmatrix} c_2 & c_3 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = 11$$

Using (b): 
$$Z^* = \overline{c}_B b = (3/5 \quad 4/5) {b \choose 2b} = (3/5 \quad 4/5) {5 \choose 10} = 11$$

### 5.3-6.

Iteration 1: Multiply row 2 by 5/2 and add to row 0, i.e., premultiply  $A_0$  by (0 5/2 0) and add to row 0, where

$$A_0 = \begin{pmatrix} 1 & 0 & \vdots & 1 & 0 & 0 & \vdots & 4 \\ 0 & 2 & \vdots & 0 & 1 & 0 & \vdots & 12 \\ 3 & 2 & \vdots & 0 & 0 & 1 & \vdots & 18 \end{pmatrix}.$$

Iteration 2: Add row 3 to row 0, i.e., premultiply  $A_1$  by  $(0 \ 0 \ 1)$  and add to row 0, where

$$A_1 = \begin{pmatrix} 1 & 0 & \vdots & 1 & 0 & 0 & \vdots & 4 \\ 0 & 1 & \vdots & 0 & 1/2 & 0 & \vdots & 6 \\ 3 & 0 & \vdots & 0 & -1 & 1 & \vdots & 6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1 & 1 \end{pmatrix} A_0.$$

Therefore, the final row 0 is: initial row  $0 + (0 5/2 0)A_0 + (0 0 1)A_1$ ,

$$= (-3 \quad -5 \quad \vdots \quad 0 \quad 0 \quad 0 \quad \vdots \quad 0) + \left[ \begin{pmatrix} 0 & \frac{5}{2} & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & -1 & 1 \end{pmatrix} \right] A_0$$

$$= (-3 \quad -5 \quad \vdots \quad 0 \quad 0 \quad 0 \quad \vdots \quad 0) + \begin{pmatrix} 0 & \frac{3}{2} & 1 \end{pmatrix} A_0$$

### 5.3-7.

- (a) Use the columns corresponding to artificial variables in exactly the same way as a slack variable would have been used. Note that the shadow price of this column may be positive or negative.
- (b) For the reversed inequalities, use the negative of the column corresponding to the slack variable in exactly the same formulae. The artificial column may be discarded.
- (c) Same as (b).
- (d) No change, use slack and artificial variables as above.

### **5.3-8.**

maximize 
$$Z=5x_1+4x_2 - Mx_5$$
 subject to 
$$3x_1+2x_2+x_3 = 6\\ 2x_1-x_2 - x_4+ x_5 = 6\\ x_1,x_2,x_3,x_4,x_5 \geq 0$$

Initial Tableau:

|       |    |   |       | Coefficient of |       |       |       |     |
|-------|----|---|-------|----------------|-------|-------|-------|-----|
| BV    | Eq | Z | $x_1$ | $x_2$          | $x_3$ | $x_4$ | $x_5$ | RS  |
| Z     | 0  | 1 | -5-2M | -4 + M         | 0     | M     | 0     | -6M |
| $x_3$ | 1  | 0 | 3     | 2              | 1     | 0     | 0     | 6   |
| $x_5$ | 2  | 0 | 2     | -1             | 0     | -1    | 1     | 6   |

The columns that will contain  $S^*$  for applying the fundamental insight in the final tableau are those associated with  $x_3$  and  $x_5$ , since those columns form the  $2 \times 2$  identity matrix in the initial tableau.

### Final Tableau:

|       |    |   |       | Coef                          |                              |       |       |       |
|-------|----|---|-------|-------------------------------|------------------------------|-------|-------|-------|
| BV    | Eq | Z | $x_1$ | $x_2$                         | $x_3$                        | $x_4$ | $x_5$ | RS    |
| Z     | 0  | 1 | 0     | $-\frac{2}{3} + \frac{7}{3}M$ | $\frac{5}{3} + \frac{2}{3}M$ | M     | 0     | 10-2M |
| $x_1$ | 1  | 0 | 1     | $\frac{2}{3}$                 | $\frac{1}{3}$                | 0     | 0     | 2     |
| $x_5$ | 2  | 0 | 0     | $-\frac{7}{3}$                | $-\frac{2}{3}$               | -1    | 1     | 2     |

### 5.3-9.

(a) 
$$B^{-1} = \begin{pmatrix} 3/10 & -1/10 \\ -2/10 & 2/5 \end{pmatrix}$$

Final constraint columns for  $(x_1, x_2, x_3, x_4, x_6)$ :

$$B^{-1}A = \begin{pmatrix} 3/10 & -1/10 \\ -2/10 & 2/5 \end{pmatrix} \begin{pmatrix} 1 & 4 & 2 & -1 & 0 \\ 3 & 2 & 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 3/5 & -3/10 & 1/10 \\ 1 & 0 & -2/5 & 2/10 & -2/5 \end{pmatrix}$$

$$c_B = \begin{pmatrix} -6M + 3 & -4M + 2 \end{pmatrix}$$

Final objective coefficients for  $(x_1, x_2, x_3, x_4, x_6)$ :

$$-c_B B^{-1} A + c = -(-6M + 3 -4M + 2) \begin{pmatrix} 0 & 1 & 3/5 & -3/10 & 1/10 \\ 1 & 0 & -2/5 & 2/10 & -2/5 \end{pmatrix} + (-4M + 2 -6M + 3 -2M + 2 & M & M) = \begin{pmatrix} 0 & 0 & 1 & 1/2 & 1/2 \end{pmatrix}$$

Right-hand side:

$$B^{-1}b = \begin{pmatrix} 3/10 & -1/10 \\ -2/10 & 2/5 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} = \begin{pmatrix} 9/5 \\ 4/5 \end{pmatrix}$$
$$z = -14M + c_B x_B = -14M + (-6M + 3 -4M + 2) \begin{pmatrix} 9/5 \\ 4/5 \end{pmatrix} = 7$$

Final tableau:

(b) The constraints in the original tableau can be expressed as  $(A \in I \in b)$  with the second identity matrix corresponding to the artificial variables. Premultiply this matrix by M to get:

$$(A^* : S^* : L^* : b^*) = M(A : I : I : b) = (MA : M : M : Mb),$$

(d) Defining equations: 
$$x = Mb \Leftrightarrow M^{-1}x = b$$
 
$$x_1 + 4x_2 + 2x_3 = 8, 3x_1 + 2x_2 = 6, x_3 = 0$$

#### 5.3-10.

(a) 
$$-2x_1 + 2x_2 + x_3 + x_4 = 10$$
 (i)  $3x_1 + x_2 - x_3 + x_5 = 20$  (ii)

Multiply (i) by 1.5 and add to (ii).

$$4x_2 + \frac{1}{2}x_3 + \frac{3}{2}x_4 + x_5 = 35 \text{ (iii)}$$

Divide (\*) by -2 and add to (iii).

$$x_1 + 3x_2 + x_4 + x_5 = 30$$
 (iv)

Multiply (iii) by 2.

$$8x_2 + x_3 + 3x_4 + 2x_5 = 70$$
 (v)

Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (30, 0, 70)$  and  $Z^* = 230$ 

(b) (original objective)-3(iv) - 2(v)

$$3x_1 + 7x_2 + 2x_3$$
 $-3x_1 - 9x_2 - 3x_3 - 3x_5$ 
 $-16x_2 - 2x_3 - 6x_4 - 4x_5$ 
 $-18x_2 - 3x_3 - 6x_4 - 7x_5$ 

Hence, the shadow prices are 9 and 7.

(c) Defining equations:  $-2x_1 + 2x_2 + x_3 = 10, 3x_1 + x_2 - x_3 = 20, x_2 = 0$ 

(d) 
$$B = \begin{pmatrix} -2 & 1 \ 3 & -1 \end{pmatrix}, B^{-1} = \begin{pmatrix} 1 & 1 \ 3 & 2 \end{pmatrix}, x_B = \begin{pmatrix} 1 & 1 \ 3 & 2 \end{pmatrix} \begin{pmatrix} 10 \ 20 \end{pmatrix} = \begin{pmatrix} 30 \ 70 \end{pmatrix}$$
  
 $y^* = \begin{pmatrix} 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \ 3 & 2 \end{pmatrix} = \begin{pmatrix} 9 & 7 \end{pmatrix}$ 

Revised row 0:  $(9 \ 7)\begin{pmatrix} -2 & 2 & 1 & 1 & 0 \\ 3 & 1 & -1 & 0 & 1 \end{pmatrix} - (3 \ 7 \ 2 \ 0 \ 0) = (0 \ 18 \ 0 \ 9 \ 7),$ 

( ) T' 1 , 11

so the current solution is optimal.

|    | Coeff | icient               | of              |          | Right                   |
|----|-------|----------------------|-----------------|----------|-------------------------|
| X1 | x2    | х3                   | <b>x</b> 4      | X5       | side                    |
|    |       |                      |                 |          | .                       |
|    |       |                      |                 |          | 1                       |
| 0  | 18    | 0                    | 9               | 7        | 230                     |
| 1  | 3     | 0                    | 1               | 1        | 30                      |
| 0  | 8     | 1                    | 3               | 2        | 70                      |
|    | 0     | x1 x2<br>0 18<br>1 3 | 0 18 0<br>1 3 0 | 0 18 0 9 | 0 18 0 9 7<br>1 3 0 1 1 |

### 5.4-1.

Iteration 0: 
$$B = B^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Revised 
$$x_2$$
 coefficients:  $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ 

 $x_2$  enters and  $x_7$  leaves.

Iteration 1: 
$$\eta = \begin{pmatrix} -\frac{a_{12}}{a_{22}} \\ \frac{1}{a_{22}} \end{pmatrix} = \begin{pmatrix} -\frac{3}{5} \\ \frac{1}{5} \end{pmatrix}$$

$$B_{\text{new}}^{-1} = \begin{pmatrix} 1 & -\frac{3}{5} \\ 0 & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{3}{5} \\ 0 & \frac{1}{5} \end{pmatrix}$$

Revised 
$$x_4$$
 coefficients:  $\begin{pmatrix} 1 & -\frac{3}{5} \\ 0 & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{4}{5} \\ \frac{2}{5} \end{pmatrix}$ 

 $x_4$  enters and  $x_6$  leaves.

Iteration 2: 
$$\eta = \begin{pmatrix} \frac{1}{a'_{11}} \\ -\frac{a'_{24}}{a'_{11}} \end{pmatrix} = \begin{pmatrix} \frac{5}{4} \\ -\frac{1}{2} \end{pmatrix}$$

$$B_{\text{new}}^{-1} = \begin{pmatrix} \frac{5}{4} & 0\\ -\frac{1}{2} & 1 \end{pmatrix} \begin{pmatrix} 1 & -\frac{3}{5}\\ 0 & \frac{1}{5} \end{pmatrix} = \begin{pmatrix} \frac{5}{4} & -\frac{3}{4}\\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

### 5.4-2.

$$c = (1 \quad 2 \quad 4 \quad 0 \quad 0 \quad 0), A = \begin{pmatrix} 3 & 1 & 5 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 & 1 & 0 \\ 2 & 0 & 2 & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 10 \\ 8 \\ 7 \end{pmatrix}$$

Iteration 0: 
$$B = B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$x_B = \begin{pmatrix} x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 10 \\ 8 \\ 7 \end{pmatrix} = \begin{pmatrix} 10 \\ 8 \\ 7 \end{pmatrix}$$

 $c_B = (0 \quad 0 \quad 0)$ , Row 0:  $(-1 \quad -2 \quad -4 \quad 0 \quad 0 \quad 0)$ 

 $x_3$  enters the basis.

Revised 
$$x_3$$
 coefficients: 
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \\ 2 \end{pmatrix}$$

 $x_4$  leaves the basis.

$$\eta = \begin{pmatrix} \frac{1}{5} \\ -\frac{1}{5} \\ -\frac{2}{5} \end{pmatrix}$$

$$B_{\text{new}}^{-1} = \begin{pmatrix} \frac{1}{5} & 0 & 0 \\ -\frac{1}{5} & 1 & 0 \\ -\frac{2}{5} & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{5} & 0 & 0 \\ -\frac{1}{5} & 1 & 0 \\ -\frac{2}{5} & 0 & 1 \end{pmatrix}$$

$$x_B = \begin{pmatrix} x_3 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} \frac{1}{5} & 0 & 0 \\ -\frac{1}{5} & 1 & 0 \\ -\frac{2}{5} & 0 & 1 \end{pmatrix} \begin{pmatrix} 10 \\ 8 \\ 7 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 3 \end{pmatrix}$$

$$c_B = (4 \quad 0 \quad 0)$$

Revised row 0:

$$\begin{pmatrix} \frac{4}{5} & 0 & 0 \end{pmatrix} \begin{pmatrix} 3 & 1 & 5 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 & 1 & 0 \\ 2 & 0 & 2 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 2 & 4 & 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{7}{5} & -\frac{6}{5} & 0 & \frac{4}{5} & 0 & 0 \end{pmatrix}$$

 $x_2$  enters the basis.

Revised 
$$x_2$$
 coefficients:  $\begin{pmatrix} \frac{1}{5} & 0 & 0 \\ -\frac{1}{5} & 1 & 0 \\ -\frac{2}{5} & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{5} \\ \frac{19}{5} \\ -\frac{2}{5} \end{pmatrix}$ 

 $x_5$  leaves.

Iteration 2: 
$$\eta = \begin{pmatrix} -\frac{1}{19} \\ \frac{5}{19} \\ \frac{2}{19} \end{pmatrix}$$

$$B_{\text{new}}^{-1} = \begin{pmatrix} 1 & -\frac{1}{19} & 0 \\ 0 & \frac{5}{19} & 0 \\ 0 & \frac{2}{19} & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{5} & 0 & 0 \\ -\frac{1}{5} & 1 & 0 \\ -\frac{2}{5} & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{4}{19} & -\frac{1}{19} & 0 \\ -\frac{8}{19} & \frac{2}{19} & 1 \end{pmatrix}$$

$$x_{R} = \begin{pmatrix} x_{3} \\ x_{2} \end{pmatrix} = \begin{pmatrix} \frac{4}{19} & -\frac{1}{19} & 0 \\ -\frac{1}{12} & \frac{5}{19} & 0 \end{pmatrix} \begin{pmatrix} 10 \\ 8 \end{pmatrix} = \begin{pmatrix} \frac{32}{19} \\ \frac{30}{32} \end{pmatrix}$$

$$x_B = \begin{pmatrix} x_3 \\ x_2 \\ x_6 \end{pmatrix} = \begin{pmatrix} \frac{4}{19} & -\frac{1}{19} & 0 \\ -\frac{1}{19} & \frac{5}{19} & 0 \\ -\frac{8}{19} & \frac{2}{19} & 1 \end{pmatrix} \begin{pmatrix} 10 \\ 8 \\ 7 \end{pmatrix} = \begin{pmatrix} \frac{32}{19} \\ \frac{30}{19} \\ \frac{69}{19} \end{pmatrix}$$

$$c_B = (4 \quad 2 \quad 0)$$

Revised row 0:

$$\begin{pmatrix} \frac{14}{19} & \frac{6}{19} & 0 \end{pmatrix} \begin{pmatrix} 3 & 1 & 5 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 & 1 & 0 \\ 2 & 0 & 2 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 2 & 4 & 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{29}{19} & 0 & 0 & \frac{14}{19} & \frac{6}{19} & 0 \end{pmatrix}$$

The current solution is optimal.

Optimal Solution: 
$$(x_1^*, x_2^*, x_3^*) = \left(0, \frac{30}{19}, \frac{32}{19}\right)$$
 and  $Z^* = \frac{188}{19}$ 

### **5.4-3.**

$$c = (2 \quad -2 \quad 3 \quad 0 \quad 0 \quad 0), A = \begin{pmatrix} -1 & 1 & 1 & 1 & 0 & 0 \\ 2 & -1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 3 & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 4 \\ 2 \\ 12 \end{pmatrix}$$

Iteration 0: 
$$B = B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$x_B = \begin{pmatrix} x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ 12 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \\ 12 \end{pmatrix}$$

$$c_B = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$$
, Row 0:  $\begin{pmatrix} -2 & 2 & -3 & 0 & 0 & 0 \end{pmatrix}$ 

 $x_3$  enters the basis.

Revised 
$$x_3$$
 coefficients: 
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$$

 $x_5$  leaves the basis.

Iteration 1: 
$$\eta = \begin{pmatrix} -1 \\ 1 \\ -3 \end{pmatrix}, B_{\text{new}}^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix}$$
$$x_B = \begin{pmatrix} x_4 \\ x_3 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ 12 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 6 \end{pmatrix}$$
$$c_B = \begin{pmatrix} 0 & 3 & 0 \end{pmatrix}$$

Revised row 0:

$$(0 \quad 3 \quad 0) \begin{pmatrix} -1 & 1 & 1 & 1 & 0 & 0 \\ 2 & -1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 3 & 0 & 0 & 1 \end{pmatrix} - (2 \quad -2 \quad 3 \quad 0 \quad 0 \quad 0)$$

$$= (4 \quad -1 \quad 0 \quad 0 \quad 3 \quad 0)$$

 $x_2$  enters the basis.

Revised 
$$x_2$$
 coefficients:  $\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$ 

 $x_4$  leaves.

Iteration 2: 
$$\eta = \begin{pmatrix} 1/2 \\ 1/2 \\ -2 \end{pmatrix}, B_{\text{new}}^{-1} = \begin{pmatrix} 1/2 & -1/2 & 0 \\ 1/2 & 1/2 & 0 \\ -2 & -1 & 1 \end{pmatrix}$$
$$x_B = \begin{pmatrix} x_2 \\ x_3 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1/2 & -1/2 & 0 \\ 1/2 & 1/2 & 0 \\ -2 & -1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ 12 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$
$$c_B = \begin{pmatrix} -2 & 3 & 0 \end{pmatrix}$$

Revised row 0:

$$(1/2 \quad 5/2 \quad 0) \begin{pmatrix} -1 & 1 & 1 & 1 & 0 & 0 \\ 2 & -1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 3 & 0 & 0 & 1 \end{pmatrix} - (2 \quad -2 \quad 3 \quad 0 \quad 0 \quad 0)$$

$$= (5/2 \quad 0 \quad 0 \quad 1/2 \quad 5/2 \quad 0)$$

The current solution is optimal.

Optimal Solution:  $(x_1^*, x_2^*, x_3^*) = (0, 1, 3)$  and  $Z^* = 7$ 

### 5.4-4.

$$c = (10 \quad 20 \quad 0 \quad 0), A = \begin{pmatrix} -1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 5 & 3 & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 15 \\ 12 \\ 45 \end{pmatrix}$$

Iteration 0: 
$$B = B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
,

$$x_B = \begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 15 \\ 12 \\ 45 \end{pmatrix} = \begin{pmatrix} 15 \\ 12 \\ 45 \end{pmatrix}$$

 $c_B = (0 \ 0 \ 0), \text{Row } 0: (-10 \ -20 \ 0 \ 0 \ 0)$ 

 $x_2$  enters the basis.

Revised 
$$x_2$$
 coefficients: 
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

 $x_3$  leaves the basis.

Iteration 1: 
$$\eta = \begin{pmatrix} 1/2 \\ -1/2 \\ -3/2 \end{pmatrix}, B_{\text{new}}^{-1} = \begin{pmatrix} 1/2 & 0 & 0 \\ -1/2 & 1 & 0 \\ -3/2 & 0 & 1 \end{pmatrix}$$
$$x_B = \begin{pmatrix} x_2 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 & 0 \\ -1/2 & 1 & 0 \\ -3/2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 15 \\ 12 \\ 45 \end{pmatrix} = \begin{pmatrix} 7.5 \\ 4.5 \\ 22.5 \end{pmatrix}$$
$$c_B = \begin{pmatrix} 20 & 0 & 0 \end{pmatrix}$$

Revised row 0:

$$(10 \quad 0 \quad 0) \begin{pmatrix} -1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 5 & 3 & 0 & 0 & 1 \end{pmatrix} - (10 \quad 20 \quad 0 \quad 0 \quad 0)$$

$$= (-20 \quad 0 \quad 10 \quad 0 \quad 0)$$

 $x_1$  enters the basis.

Revised 
$$x_1$$
 coefficients: 
$$\begin{pmatrix} 1/2 & 0 & 0 \\ -1/2 & 1 & 0 \\ -3/2 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix} = \begin{pmatrix} -1/2 \\ 3/2 \\ 13/2 \end{pmatrix}$$

 $x_4$  leaves.

Iteration 2: 
$$\eta = \begin{pmatrix} 1/3 \\ 2/3 \\ -13/3 \end{pmatrix}, B_{\text{new}}^{-1} = \begin{pmatrix} 1/3 & 1/3 & 0 \\ -1/3 & 2/3 & 0 \\ 2/3 & -13/3 & 1 \end{pmatrix}$$
$$x_B = \begin{pmatrix} x_2 \\ x_1 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1/3 & 1/3 & 0 \\ -1/3 & 2/3 & 0 \\ 2/3 & -13/3 & 1 \end{pmatrix} \begin{pmatrix} 15 \\ 12 \\ 45 \end{pmatrix} = \begin{pmatrix} 9 \\ 3 \\ 3 \end{pmatrix}$$
$$c_B = \begin{pmatrix} 20 & 10 & 0 \end{pmatrix}$$

Revised row 0:

$$(10/3 \quad 40/3 \quad 0) \begin{pmatrix} -1 & 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 5 & 3 & 0 & 0 & 1 \end{pmatrix} - (10 \quad 20 \quad 0 \quad 0 \quad 0)$$

$$= (0 \quad 0 \quad 10/3 \quad 40/3 \quad 0)$$

The current solution is optimal.

Optimal Solution:  $(x_1^*, x_2^*) = (3, 9)$  and  $Z^* = 210$ 

#### **CHAPTER 6: DUALITY THEORY AND SENSITIVITY ANALYSIS**

#### 6.1-1.

(a) minimize 
$$15y_1 + 12y_2 + 45y_3$$
 subject to  $-y_1 + y_2 + 5y_3 \ge 10$   $2y_1 + y_2 + 3y_3 \ge 20$   $y_1, y_2, y_3 \ge 0$ 

(b) minimize 
$$4y_1 + 2y_2 + 12y_3$$
 subject to  $-y_1 + 2y_2 + y_3 \ge 2$   $y_1 - y_2 + y_3 \ge -2$   $y_1 + y_2 + 3y_3 \ge 3$   $y_1, y_2, y_3 \ge 0$ 

### 6.1-2.

minimize 
$$20y_1 + 40y_2 + 50y_3$$
 subject to 
$$y_1 - 4y_2 + 2y_3 \ge 5$$
 
$$-2y_1 + 6y_2 - 3y_3 \ge 1$$
 
$$4y_1 + 5y_2 + 3y_3 \ge 3$$
 
$$3y_1 - 4y_2 + 8y_3 \ge 4$$
 
$$y_1, y_2, y_3 > 0$$

(b) The dual problem has no feasible solution.

### 6.1-3.

- (a) Apply the simplex method to the dual of the problem, since the dual has fewer constraints (not including nonnegativity constraints). We expect that the simplex method will go through fewer basic feasible solutions.
- (b) Apply the simplex method to the primal problem, since it has fewer constraints (not including nonnegativity constraints). We expect that the simplex method will go through fewer basic feasible solutions.

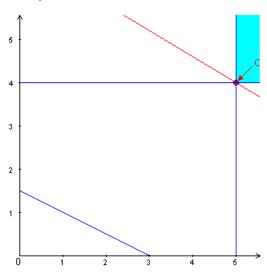
#### 6.1-4.

(a) minimize 
$$12y_1 + y_2$$
  
subject to  $y_1 + y_2 \ge -1$   
 $y_1 + y_2 \ge -2$   
 $2y_1 - y_2 \ge -1$   
 $y_1, y_2 \ge 0$ 

(b) It is clear from the dual problem that  $(y_1, y_2) = (0, 0)$  is the optimal dual solution. By strong duality,  $Z = 0 \le 0$ .

6.1-5.

(a) minimize 
$$15y_1 + 25y_2$$


subject to 
$$y_1 \geq$$

$$y_2 \quad \ge 4$$

$$y_1 + 2y_2 \quad \ge 3$$

$$\begin{array}{ccc} y_1 & & \geq 5 \\ & y_2 & \geq 4 \\ y_1 + & 2y_2 & \geq 3 \\ y_1, y_2 & & \geq 0 \end{array}$$

(b) Optimal Solution:  $(y_1^*,y_2^*)=(5,4)$ , so shadow prices for resources 1 and 2 are 5 and 4 respectively.



(c)

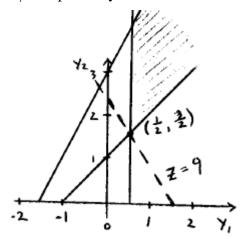
### **Optimal Solution** Objective Function: Z = 175

| Variable | Value |
|----------|-------|
| X1       | 15    |
| X2       | 25    |
| Х3       | 0     |

### **Objective Function Coefficients** Allowable Range to Stay Optimal

| Current Value | Minimum | Maximum |
|---------------|---------|---------|
| 5             | 0       | infin   |
| 4             | 0       | infin   |
| 3             | -infin  | 13      |

| 1 0 5      | Constraint | Slack or Surplus | Shadow Price |
|------------|------------|------------------|--------------|
|            | 1          | 0                | 5            |
| [Z   U   4 | 2          | 0                | 4            |


### Allowable Range for Right-Hand Side

| Current Value | Minimum | Maximum |  |  |  |  |  |
|---------------|---------|---------|--|--|--|--|--|
| 15            | 0       | infin   |  |  |  |  |  |
| 25            | 0       | infin   |  |  |  |  |  |

# 6.1-6.

(a) minimize 
$$6y_1 + 4y_2$$
 subject to  $2y_1 \ge 1$   $2y_1 - y_2 \ge -3$   $-2y_1 + 2y_2 \ge 2$   $y_1, y_2 \ge 0$ 

(b) Optimal Solution:  $(y_1^*, y_2^*) = (1/2, 3/2)$ , so shadow prices for resources 1 and 2 are 1/2 and 3/2 respectively.



(c)

### Optimal Solution

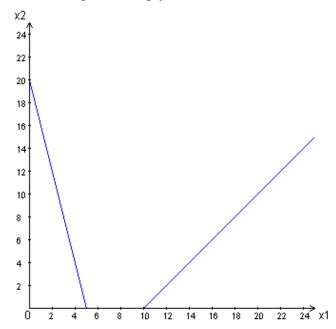
Value of the Objective Function: Z = 9

| Variable         | Value |
|------------------|-------|
| x <sub>1</sub>   | 5     |
| $\mathbf{x}_{2}$ | 0     |
| x <sub>3</sub>   | 2     |

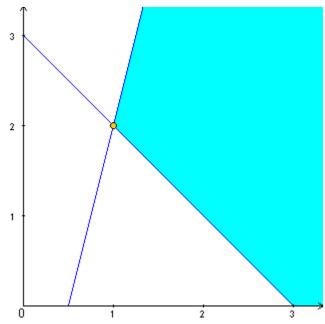
|            | Slack or | Shadow |
|------------|----------|--------|
| Constraint | Surplus  | Price  |
| 1          | 0        | 0.5    |
| 2          | 0 -      | 1.5    |

### Sensitivity Analysis

Objective Function Coefficient


| Current       | Allowabl<br>To Stay |         |
|---------------|---------------------|---------|
| <u> Value</u> | Minimum             | Maximum |
| 1             | 0                   | + ∞     |
| -3            | -∞                  | -0.5    |
| 2             | -1                  | 7       |

| Right | Hand | Sides |
|-------|------|-------|
|-------|------|-------|


|         | Allowable Range |          |  |  |  |  |
|---------|-----------------|----------|--|--|--|--|
| Current |                 | Feasible |  |  |  |  |
| Value   | Minimum         | Maximum  |  |  |  |  |
| 6       | -4              | + ∞      |  |  |  |  |
| 4       | 0               | +∞       |  |  |  |  |

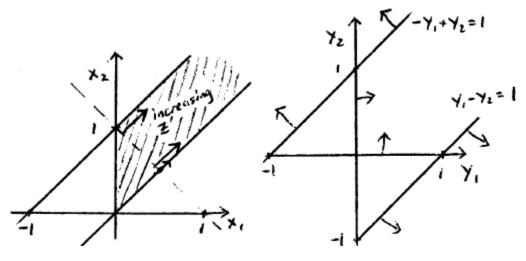
# **6.1-7.**

(a) The feasible region is empty.



- (b) minimize  $20y_1-10y_2$  subject to  $4y_1-y_2\geq 2$   $y_1+y_2\geq 3$   $y_1,y_2\geq 0$
- (c) Note that the dual objective function can be expressed as  $5(4y_1 y_2) 5y_2$ . If for any  $y_2$ ,  $y_1$  is chosen such that  $4y_1 y_2 = 2$ , then the objective function equals  $10 5y_2$ . Hence, by choosing  $y_2$  properly, the dual objective can be made arbitrarily small.

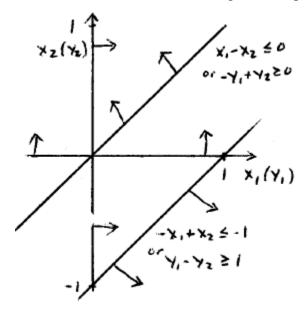



# 6.1-8.

Primal: maximize 
$$x_1+x_2$$
 subject to  $-x_1+x_2 \leq 1$   $x_1-x_2 \leq 0$   $x_1,x_2 \geq 0$ 

Let  $x_1=x_2=c \to \infty, Z=2c$  is unbounded.

Dual: minimize 
$$y_1$$
 
$$\text{subject to} \qquad -y_1+y_2 \geq 1 \\ y_1-y_2 \geq 1 \\ y_1,y_2 \geq 0$$


The dual problem is infeasible.



### 6.1-9.

Primal: maximize 
$$x_1$$
 
$$x_1 - x_2 \leq 0$$
 
$$-x_1 + x_2 \leq -1$$
 
$$x_1, x_2 \geq 0$$
 Dual: minimize 
$$-y_2$$
 subject to 
$$y_1 - y_2 \geq 1$$
 
$$-y_1 + y_2 \geq 0$$
 
$$y_1, y_2 \geq 0$$

Neither the primal nor the dual is feasible. They have the same two constraints, which contradict each other, so their feasible region is empty.



### 6.1-10.

Primal:maximize 
$$x_1+x_2$$
 subject to 
$$x_1 \leq -1$$
 
$$x_1+x_2 \leq 0$$
 
$$x_1,x_2 \geq 0$$

The primal problem is clearly infeasible.

$$\begin{array}{lll} \text{Dual: minimize} & -y_1 \\ & \text{subject to} & y_1+y_2 \geq 1 \\ & y_2 \geq 1 \\ & y_1,y_2 \geq 0 \end{array}$$

Let  $c \to \infty$  in the feasible solution (c,1), so the objective function value is unbounded.

#### 6.1-11.

Let  $x^0$  and  $y^0$  be a primal and a dual feasible point respectively. By weak duality,

$$-\infty < cx^0 \le y^0b < \infty.$$

Furthermore, for any primal feasible point x and any dual feasible point y,

$$cx \le y^0 b$$
 and  $cx^0 \le yb$ .

This means that the primal problem cannot be unbounded, as it is bounded above by  $y^0b$  and similarly, the dual problem cannot be bounded as it is bounded below by  $cx^0$ . Therefore, since the primal problem (and the dual problem) has a feasible solution and the objective function value is bounded, it must have an optimal solution.

#### 6.1-12.

(a) From the primal,  $Ax \leq b$ ,  $x \geq 0$  and from the dual,  $y^T A \geq c^T$ ,  $y \geq 0$ , so

$$y^T A - c^T \ge 0, x \ge 0 \Rightarrow (y^T A - c^T)x \ge 0$$
  
 $b - Ax > 0, y > 0 \Rightarrow y^T (b - Ax) > 0.$ 

In other words,  $y^TAx \ge c^Tx$  and  $y^Tb \ge y^TAx$ , so  $y^Tb \ge y^TAx \ge c^Tx$ , which is weak duality.

(b) There are many ways to prove this. The simplest is by contradiction. Assume the primal objective Z can be increased indefinitely and the dual does have a feasible solution. By weak duality,  $c^Tx \leq y^Tb$  for all primal feasible x, given y is a dual feasible solution. This means that Z is bounded above, which contradicts the assumption. Hence, if Z is unbounded, then the dual must be infeasible.

#### 6.1-13.

Primal: maximize 
$$Z=cx$$
 Dual: minimize  $W=yb$  subject to  $Ax \leq b$  subject to  $yA \geq c$   $y \geq 0$ 

Since changing b to  $\overline{b}$  keeps the dual feasible region unchanged,  $y^*$  must be feasible for the new problem. Let  $\overline{y}$  be the optimal solution for the new dual, then clearly  $\overline{y}\overline{b} \leq y^*\overline{b}$ , since  $\overline{y}$  is optimal. Furthermore, by strong duality,  $c\overline{x} = \overline{y}\overline{b} \leq y^*\overline{b}$ .

### 6.1-14.

- (a) TRUE. If A is an  $n \times m$  matrix, then in standard form, the number of functional constraints is n for the primal and m for the dual. The number of variables is m in the primal and n in the dual. Hence, for both, the sum of the number of constraints and variables is m + n.
- (b) FALSE. This cannot be true since the weak and strong duality theorems imply that the primal and the dual objective function values are the same only at optimality.
- (c) FALSE. If the primal problem has an unbounded objective function value, the dual problem must be infeasible, since by weak duality, if the dual has a feasible solution  $\overline{y}$ , the primal objective value is  $Z = cx \leq \overline{y}b$ .

### **6.2-1.**

(a) Iteration 0: Since all coefficients are zero, at the current solution (0,0), the three resources (production time per week at plant 1, 2 and 3) are free goods. This means increasing them does not improve the objective value.

Iteration 1: (0, 5/2, 0). Now resource 2 has been entirely used up and contributes 5/2 to profit per unit of resource. Since this is positive, it is worthwhile to continue fully using this resource.

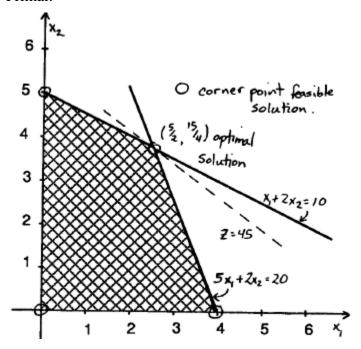
Iteration 2: (0,3/2,1). Resources 2 and 3 are used up and contribute a positive amount to profit. Resource 1 is a free good while resources 2 and 3 contribute 3/2 and 1 per unit of resource respectively.

(b) Iteration 0: (-3, -5). Both activities 1 and 2 (number of batches of product 1 and 2 produced per week) can be initiated to give a more profitable allocation of the resources. The current contribution of the resources required to produce one batch of product 1 or 2 to the profit is smaller than the unit profit per batch of product 1 or 2 respectively.

Iteration 1: (-3,0). Again activity 1 can be initiated to give a more profitable use of resources, but activity 2 is already being produced (or the resources are being used just as well in other activities).

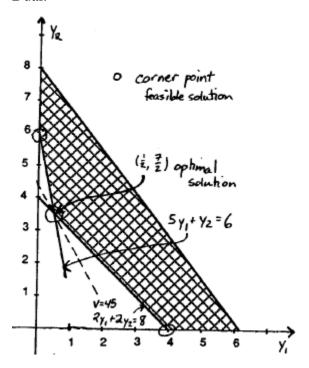
Iteration 2: (0,0). Both activities are being produced (or the resources are being used just as profitably elsewhere).

(c) Iteration 1: Since activities 1 and 2 can be initiated to increase the profit (give the same amount of resources), we choose to increase one of these. We choose activity 2 as the entering activity (basic variable), since it increases the profit by 5 for every unit of product 2 produced (as opposed to 3 for product 1).


Iteration 2: Only activity 1 can be initiated for more profit, so we do so.

Iteration 3: Both activity 1 and 2 are being used. Furthermore, since the coefficients for  $x_3$ ,  $x_4$  and  $x_5$  are nonnegative, it is not worthwhile to cut back on the use of any of the resources. Thus, we must be at the optimal solution.

### 6.3-1.


(a) minimize 
$$W = 20y_1 + 10y_2$$
 subject to 
$$5y_1 + y_2 \ge 6$$
 
$$2y_1 + 2y_2 \ge 8$$
 
$$y_1, y_2 \ge 0$$

# (b) Primal:



 $(x_1,x_2)=(5/2,15/4)$  is optimal with Z=45. Infeasible corner point solutions are (0,10) and (10,0).

### Dual:



 $(y_1,y_2)=(1/2,7/2)$  is optimal with W=45. Infeasible corner point solutions are (0,4),(0,0) and (6/5,0).

(c)

| Primal BS         | Feasible? | Z  | Dual BS            | Feasible? |
|-------------------|-----------|----|--------------------|-----------|
| (0,5,10,0)        | Yes       | 40 | (0,4,-2,0)         | No        |
| (0,0,20,10)       | Yes       | 0  | (0,0,-6,-8)        | No        |
| (4,0,0,6)         | Yes       | 24 | (6/5, 0, 0, -28/5) | No        |
| (5/2, 15/4, 0, 0) | Yes       | 45 | (1/2, 7/2, 0, 0)   | Yes       |
| (0, 10, 0, -10)   | No        | 80 | (4,0,14,0)         | Yes       |
| (10, 0, -30, 0)   | No        | 60 | (0,6,0,4)          | Yes       |

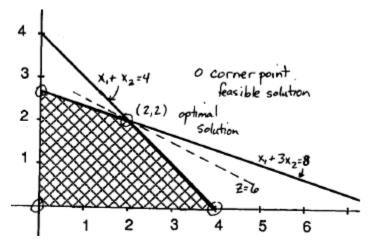
(d)

| Bas   Eq | Coefficient of |    |           |    | Right |
|----------|----------------|----|-----------|----|-------|
| Var No Z | X1             | X2 | <b>X3</b> | X4 | side  |
| _ _ _    |                |    |           |    |       |
|          |                |    |           |    |       |
| Z   0  1 | -6             | -8 | 0         | 0  | 0     |
| X3  1  0 | 5              | 2  | 1         | 0  | 20    |
| X4  2  0 | 1              | 2* | 0         | 1  | 10    |

Primal: (0, 0, 20, 10)Dual: (0, 0, -6, -8)

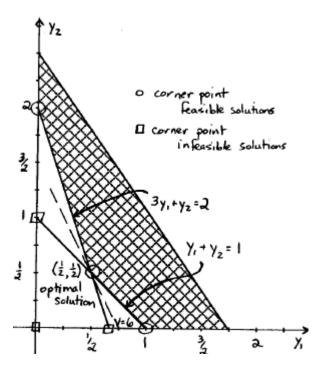
| Bas   Eq | Co  | Coefficient of |    |     |      |
|----------|-----|----------------|----|-----|------|
| Var No 2 | X1  | X2             | X3 | X4  | side |
|          |     |                |    |     |      |
| 111      |     |                |    |     | 1    |
| Z   0  1 | -2  | 0              | 0  | 4   | 40   |
| X3  1  0 | 4*  | 0              | 1  | -1  | 10   |
| X2  2  0 | 0.5 | 1              | 0  | 0.5 | 5    |

Primal: (0, 5, 10, 0)Dual: (0, 4, -2, 0)


| Bas   Eq | Co | Right |        |      |          |
|----------|----|-------|--------|------|----------|
| Var No Z | X1 | X2    | X3     | X4   | side     |
|          |    |       |        |      |          |
| 111      |    |       |        |      | <u> </u> |
| Z   0  1 | 0  | 0     | 0.5    | 3.5  | 45       |
| X1  1  0 | 1  | 0     | 0.25 - |      | 2.5      |
| X2  2  0 | 0  |       |        | .625 |          |

Primal: (5/2, 15/4, 0, 0)Dual: (1/2, 7/2, 0, 0)

# **6.3-2.**


(a) minimize 
$$W = 8y_1 + 4y_2$$
 subject to 
$$y_1 + y_2 \ge 1$$
 
$$3y_1 + y_2 \ge 2$$
 
$$y_1, y_2 \ge 0$$

# (b) Primal:



 $(x_1,x_2)=(2,2)$  is optimal with Z=6. Infeasible corner point solutions are (8,0) and (0,4).

# Dual:



 $(y_1,y_2)=(1/2,1/2)$  is optimal with W=6.

(c)

| Primal BS     | Feasible? | Z    | Dual BS          | Feasible? |
|---------------|-----------|------|------------------|-----------|
| (4,0,4,0)     | Yes       | 4    | (0,1,0,-1)       | No        |
| (0,0,8,4)     | Yes       | 0    | (0,0,-1,-2)      | No        |
| (0,8/3,0,4/3) | Yes       | 16/3 | (2/3,0,-1/3,0)   | No        |
| (2,2,0,0)     | Yes       | 6    | (1/2, 1/2, 0, 0) | Yes       |
| (0,4,-4,0)    | No        | 8    | (0, 2, 1, 0)     | Yes       |
| (8,0,0,-4)    | No        | 8    | (1,0,0,1)        | Yes       |

(d)

| Bas   Eq | Coefficient of |    |    |    | Right |
|----------|----------------|----|----|----|-------|
| Var No Z | X1             | X2 | X3 | X4 | side  |
| !_ _ _   |                |    |    |    |       |
| 1 1 1    |                |    |    |    | 1     |
| Z   0  1 | -1             | -2 | 0  | 0  | 10    |
| x3  1  0 | 1              | 3* | 1  | 0  | 8     |
| X4  2  0 | 1              | 1  | 0  | 1  | 4     |

Primal: (0, 0, 8, 4)

Dual: (0,0,-1,-2)

| Coefficient of |            |    |                        |  |
|----------------|------------|----|------------------------|--|
| X2             | X3         | X4 | side                   |  |
|                |            |    | .i                     |  |
|                |            |    |                        |  |
| 0 0            | .667       | 0  | 5.333                  |  |
| 1 0            | .333       | 0  | 2.667                  |  |
| 0 -            | 0.33       | 1  | 1.333                  |  |
|                | 0 0<br>1 0 |    | 0 0.667 0<br>1 0.333 0 |  |

Primal: (0, 8/3, 0, 4/3)

Dual: (2/3, 0, -1/3, 0)

| Bas Eq   | Eq Coefficient of |    |      |      |      |  |  |
|----------|-------------------|----|------|------|------|--|--|
| Var No Z | X1                | х2 | х3   | Х4   | side |  |  |
|          |                   |    |      |      | -!   |  |  |
|          | •                 |    |      |      |      |  |  |
| Z   0  1 | U                 | 0  |      | 0.5  | 0    |  |  |
| X2  1  0 | 0                 | 1  | 0.5  | -0.5 | 2    |  |  |
| X1 2 0   | 1                 | 0  | -0.5 | 1.5  | 2    |  |  |

 $\mathbf{Primal:}(2,2,0,0)$ 

Dual: (1/2, 1/2, 0, 0)

#### 6.3-3.

| NB Primal Var. | Assoc. Dual Var. | NB Dual Var.  |
|----------------|------------------|---------------|
| $x_{1}, x_{2}$ | $y_4,y_5$        | $y_1,y_2,y_3$ |
| $x_1, x_4$     | $y_4,y_2$        | $y_1,y_3,y_5$ |
| $x_4, x_5$     | $y_2,y_3$        | $y_1,y_4,y_5$ |
| $x_3, x_5$     | $y_1,y_3$        | $y_2,y_4,y_5$ |
| $x_2, x_3$     | $y_5,y_1$        | $y_2,y_3,y_4$ |
| $x_1, x_5$     | $y_4,y_3$        | $y_1,y_2,y_5$ |
| $x_3, x_4$     | $y_1,y_2$        | $y_3,y_4,y_5$ |
| $x_2, x_5$     | $y_5,y_3$        | $y_1,y_2,y_4$ |

In all cases, complementary slackness holds:  $x_1y_4 = x_2y_5 = x_3y_1 = x_4y_2 = x_5y_3 = 0$ .

### 6.3-4.

If either the primal or the dual has a degenerate optimal basic feasible solution, then the other may have multiple solutions. For example, consider the problem:

maximize 
$$3x_1$$
  
subject to  $a_{11}x_1 + x_2 = 0$   
 $-2x_1 + x_3 = 1$   
 $x_1, x_2, x_3 > 0$ 

If  $a_{11} > 0$ , we can pivot and get an alternative optimal solution to the dual problem. If  $a_{11} \le 0$ , we cannot.

The converse is true, however. If a problem has multiple optimal solutions, then two of them must be adjacent corner points. To move from the tableau of one solution to that of the other requires exactly one pivot. Suppose  $x_i$  enters and  $x_k$  leaves. A partial tableau is:

|       | $x_j$               | RS               |
|-------|---------------------|------------------|
|       | $\overline{c}_j$    |                  |
|       |                     |                  |
| $x_k$ | $\overline{a}_{kj}$ | $\overline{b}_k$ |
|       |                     |                  |

 $\overline{a}_{kj}$  must be positive and  $\overline{b}_k \ge 0$ . If  $\overline{b}_k > 0$ , then  $\overline{c}_j$  or Z would change with the pivot. If  $\overline{b}_k = 0$ , then  $x_j$  pivots in at value zero and the resulting tableau represents the same corner point, contradicting the assumption that the two optimal solutions are distinct.

### 6.3-5.

(a) minimize 
$$W = 10y_1$$
 subject to  $y_1 \ge 3$   $-2y_1 \ge -8$   $y_1 \ge 0$ 

The optimal solution is  $y_1 = 3$  and W = 30.

- (b)  $(y_1,y_2,y_3)=(3,0,2)$  is the optimal basic feasible solution for the dual. By complementary slackness,  $y_1x_3=y_2x_1=y_3x_2=0$ , so  $x_2=x_3=0$ . Since  $x_1-2x_2+x_3=10$ ,  $(x_1,x_2,x_3)=(10,0,0)$  is optimal for the primal.
- (c) The constraints for the dual problem can be expressed as:

$$c_1 \le y_1 \le \frac{-c_2}{2} = 4,$$

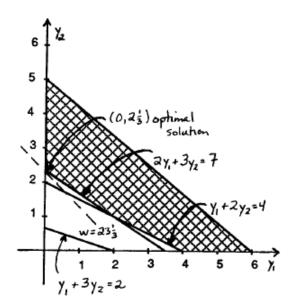
so if  $c_1 > 4$ , the dual is infeasible and the primal objective function is unbounded.

#### 6.3-6.

(a) minimize 
$$W = 10y_1 + 10y_2$$
  
subject to  $y_1 + 3y_2 \ge 2$   
 $2y_1 + 3y_2 \ge 7$   
 $y_1 + 2y_2 \ge 4$   
 $y_1, y_2 > 0$ 

(b) (0, 5/2) is feasible for the dual problem. By weak duality,

$$W = 10 \cdot 0 + 10 \cdot 5/2 = 25 \ge z,$$


so the optimal primal objective function value is less than 25.

(c)

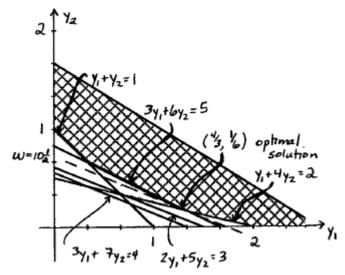
| Bas   Eq  |            | Coefficient of |        |     |            |       |  |  |
|-----------|------------|----------------|--------|-----|------------|-------|--|--|
| Var No Z  | X1         | X2             | х3     | X4  | X5         | Right |  |  |
| _         |            |                |        |     |            | .i    |  |  |
| 1 1 1     |            |                |        |     |            |       |  |  |
| Z   0  1  | -2         | -7             | -4     | 0   | 0          | 0     |  |  |
| X4  1  0  | 1          | 2              | 1      | 1   | . 0        | 10    |  |  |
| X5  2  0  | 3          | 3*             | 2      | . 0 | 1          | 10    |  |  |
|           |            |                |        |     |            |       |  |  |
| Bas   Eq  |            | Coeff          | icient | of  |            | Right |  |  |
| Var No  Z | <b>X</b> 1 | X2             | X3     | X4  | <b>X</b> 5 | side  |  |  |
| _         |            |                |        |     |            |       |  |  |
| 1 1 1     |            |                |        |     |            |       |  |  |
| 2   0  1  | 5          | 0 0            | .667   | 0 2 | 2.333      | 23.33 |  |  |
| X4  1  0  | -1         | 0 -            | 0.33*  | 1 - | 0.67       | 3.333 |  |  |
| x5  5  0  | 1          | 1 0            | .667   | 0 0 | .333       | 3.333 |  |  |
|           |            |                |        |     |            |       |  |  |
| Bas   Eq  |            | Coeff          | icient | of  |            | Right |  |  |
| Var No Z  | X1         | XS             | х3     | X4  | X5         | side  |  |  |
| _         |            |                |        |     |            | İ     |  |  |
| 1 1 1     |            |                |        |     |            |       |  |  |
| 2   0  1  | 3          | 0              | 0      | 2   | 1          | 30    |  |  |
| X3  1  0  | 3          | 0              | 1      | -3  | 2          | -10   |  |  |
| X2  2  0  | -1         | 1              | 0      | 2   | -1         | 10    |  |  |

The primal basic solution is  $(x_1, x_2, x_3, x_4, x_5) = (0, 10, -10, 0, 0)$ , which is not feasible. The dual basic solution is  $(y_1, y_2, z_1 - c_1, z_2 - c_2, z_3 - c_3) = (2, 1, 3, 0, 0)$ .

(d)



 $(y_1, y_2) = (0, 7/3)$  is optimal with W = 70/3. From the dual solution,  $y_2$ ,  $y_3$  and  $y_5$  are basic; therefore,  $x_3$ ,  $x_5$  and  $x_1$  are nonbasic primal variables,  $x_2$  and  $x_4$  are basic.


| Bas   Eq  |    | Right |           |           |      |       |
|-----------|----|-------|-----------|-----------|------|-------|
| Var No  Z | X1 | X2    | <b>x3</b> | X4        | X5   | side  |
| _ _ _     |    |       |           |           |      |       |
| 1 1 1     |    |       |           |           |      | 1     |
| Z   0  1  | -2 | -7    | -4        | 0         | 0    | 0     |
| X4  1  0  | 1  | 2     | 1         | 1         | 0    | 10    |
| X5  2  0  | 3  | 3*    | 2         | 0         | 1    | 10    |
| Bas   Eq  |    | Coeff | icient    | of        |      | Right |
| Var No Z  | X1 | X2    | X3        | <b>X4</b> | X5   | side  |
| _ _ _     |    |       |           |           |      | .i    |
|           |    |       |           |           |      | 1     |
| Z   0  1  | 5  | 0 0   | .667      | 0 2       | .333 | 23.33 |
| X4  1  0  | -1 | 0 -   | 0.33*     | 1 -       | 0.67 | 3.333 |
| X2  2  0  | 1  | 1 0   | .667      | 0 0       | .333 | 3.333 |

 $(x_1, x_2, x_3, x_4, x_5) = (0, 10/3, 0, 10/3, 0)$  is the primal optimal basic solution with Z = 70/3.

# **6.3-7.**

(a) minimize 
$$W = 6y_1 + 15y_2$$
 subject to  $y_1 + 4y_2 \ge 2$   $3y_1 + 6y_2 \ge 5$   $2y_1 + 5y_2 \ge 3$   $3y_1 + 7y_2 \ge 4$   $y_1 + y_2 \ge 1$   $y_1, y_2 \ge 0$ 

(b)  $(y_1, y_2) = (4/3, 1/6)$  is optimal with W = 21/2.



(c)  $(z_1-c_1)$  and  $(z_2-c_2)$  are nonbasic in the dual, so  $x_1$  and  $x_2$  must be basic in the optimal primal solution.

(d)

| Bas   Eq |       |     | Coe       | fficie  | nt of      |       |           | Right |
|----------|-------|-----|-----------|---------|------------|-------|-----------|-------|
| Var No Z | X1    | X2  | X3        | X4      | X5         | X6    | X7        | side  |
| _ _ _    |       |     |           |         |            |       |           | -ĺ    |
|          |       |     |           |         |            |       |           | 1     |
| Z   0  1 |       | -5  | -3        | -       | •          | 0     | 0         | 0     |
| X6  1  0 | 1     | 3*  | 2         | 3       | 1          | 1     | 0         | 6     |
| X7  2  0 | 4     | 6   | 5         | 7       | 1          | 0     | 1         | 15    |
| Bas   Eq |       |     | Coe       | fficie  | nt of      |       |           | Right |
| Var No Z | X1    | X2  | х3        | X4      | <b>X</b> 5 | х6    | X7        | side  |
|          |       |     |           |         |            |       |           | -!    |
| -   .  . |       |     |           |         |            |       | _         | !     |
|          | -0.33 |     | .333      |         | 0.667      |       |           | 10    |
|          | 0.333 | 1 0 | .667      | 1       | 0.333      | 0.333 | 0         | 2     |
| X7  2  0 | 2*    | 0   | 1         | 1       | -1         | -2    | 1         | 3     |
| Bas   Eq |       |     | Coe       | fficier | nt of      |       |           | Right |
| Var No Z | X1    | X2  | <b>x3</b> | X4      | X5         | Х6    | <b>x7</b> | side  |
| iii      |       |     |           |         |            |       |           | .i    |
| 111      |       |     |           |         |            |       |           | 1     |
| Z   0  1 | 0     | 0   | 0.5       | 1.167   | 0.5        | 1.333 | 0.167     | 10.5  |
| X2 1 0   | 0     | 1   | 0.5       | 0.833   | 0.5        | 0.667 | -0.17     | 1.5   |
| X1 2 0   | 1     | 0   | 0.5       | 0.5     | -0.5       | -1    | 0.5       | 1.5   |

 $(x_1, x_2) = (3/2, 3/2)$  is optimal with Z = 21/2.

(e) The defining equations are:

$$x_1 + 3x_2 + 2x_3 + 3x_4 + x_5 = 6$$

$$4x_1 + 6x_2 + 5x_3 + 7x_4 + x_5 = 15$$

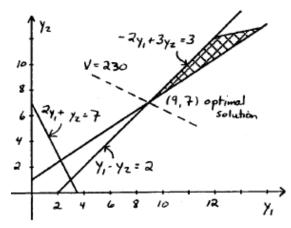
$$x_3 = 0$$

$$x_4 = 0$$

$$x_5 = 0,$$

which have the solution  $(x_1, x_2, x_3, x_4, x_5) = (3/2, 3/2, 0, 0, 0)$ .

### 6.3-8.


(a) minimize 
$$W = 10y_1 + 20y_2$$
 subject to  $-2y_1 + 3y_2 \ge 3$   $2y_1 + y_2 \ge 7$   $y_1 - y_2 \ge 2$   $y_1, y_2 \ge 0$ 

- (b) Because  $x_2$ ,  $x_4$  and  $x_5$  are nonbasic in the optimal primal solution,  $y_1$ ,  $y_2$  and  $y_4$  will be basic in the optimal dual solution.
- (c) The defining equations are:

$$\begin{array}{rcl}
-2y_1 + 3y_2 - y_3 & = 3 \\
2y_1 + y_2 & -y_4 & = 7 \\
y_1 - y_2 & -y_5 & = 2 \\
y_3 & = 0 \\
y_5 & = 0
\end{array}$$

which have the solution  $(y_1, y_2, y_3, y_4, y_5) = (9, 7, 0, 18, 0)$ .

(d)  $(y_1, y_2) = (9, 7)$  is optimal with W = 230.



6.3-9.

(a) minimize 
$$W = 10y_1 + 60y_2 + 18y_3 + 44y_4$$
 subject to 
$$2y_2 + y_3 + 3y_4 \ge 2$$
 
$$y_1 + 5y_2 + y_3 + y_4 \ge 1$$
 
$$y_1, y_2, y_3, y_4 \ge 0$$

(b) The defining equations for  $(x_1, x_2) = (13, 5)$  are:

$$x_1 + x_2 = 18$$
 and  $3x_1 + x_2 = 44$ .

Then  $y_3$  and  $y_4$  must be basic in the optimal dual solution whereas  $y_1$ ,  $y_2$  and  $y_3$  are non-basic.

(c) The basic variables in the primal optimal solution are  $x_1$ ,  $x_2$ ,  $x_3$  and  $x_4$ . Introduce  $x_1$  and  $x_2$  into the basis.

| Bas   Eq   |     | Co    | effici    | ent d      | of   |       | Right |
|------------|-----|-------|-----------|------------|------|-------|-------|
| Var No Z   | X1  | x2    | <b>x3</b> | X4         | X5   | х6    | side  |
| i_i_i      |     |       |           |            |      |       | i     |
|            |     |       |           |            |      |       | i     |
| Z   0   1  | -2  | -1    | 0         | 0          | 0    | 0     | i o   |
| X3 1 0     | 0   | 1     | 1         | 0          | 0    | 0     | 10    |
| X4  2  0   | 2   | 5     | 0         | 1          | 0    | 0     | 60    |
| X5 3 0     | 1   | 1     | 0         | 0          | 1    | 0     | 18    |
| X6  4  0   | 3*  | 1     | 0         | 0          | 0    | 1     | 44    |
|            |     |       |           |            |      |       |       |
| Bas   Eq   |     | Co    | effici    | ent o      | f    |       | Right |
| Var No Z   | X1  | X2    | <b>x3</b> | X4         | X5   | X6    | side  |
| _ _ _      |     |       |           |            |      |       | .i    |
| 111        |     |       |           |            |      |       | i     |
| Z   0  1   | 0 - | 0.33  | 0         | 0          | 0    | 0.667 | 29.33 |
| x3  1  0   | 0   | 1     | 1         | 0          | 0    | 0     | 10    |
| X4  2  0   | 0 4 | .333  | 0         | 1          | 0    | -0.67 | 30.67 |
| X5 3 0     | 0 0 | .667* | 0         | 0          | 1    | -0.33 | 3.333 |
| X1 4 0     | 1 0 | .333  | 0         | 0          | 0    | 0.333 | 14.67 |
|            |     |       |           |            |      |       |       |
| Bas   Eq   |     | Co    | effici    | ent o      | f    |       | Right |
| Var No Z   | X1  | X2    | х3        | <b>x</b> 4 | X5   | X6    | side  |
|            |     |       |           |            |      |       | i     |
| 111        |     |       |           |            |      |       | i     |
| Z   0  1   | . 0 | 0     | 0         | 0          | 0.5  | 0.5   | 31    |
| X3 1 0     | 0   | 0     | 1         | 0          | -1.5 | 0.5   | j 5   |
| X4   2   0 | 0   | 0     | 0         | 1          | -6.5 | 1.5   | 9     |
| X2 3 0     | 0   | 1     | 0         | 0          | 1.5  | -0.5  | 5     |
| X1 4 0     | 1   | 0     | 0         | 0          | -0.5 | 0.5   | 13    |
|            |     |       |           |            |      |       |       |

 $(x_1,x_2,x_3,x_4,x_5,x_6)=(13,5,5,9,0,0)$  is optimal with Z=31. The dual solution is  $(y_1,y_2,y_3,y_4,y_5,y_6)=(0,0,1/2,1/2,0,0).$ 

(d) The defining equations are:

which are satisfied by (0,0,1/2,1/2,0,0).

### 6.3-10.

- (a) The optimal dual solution corresponds to row 0 computed by the simplex method to determine optimality.
- (b) The complementary basic solution corresponds to row 0 as well.

### **6.4-1.**

(a) minimize 
$$W=10y_1+20y_2$$
 subject to 
$$2y_1+y_2=5$$
 
$$3y_1+2y_2\geq 4$$
 
$$y_1\leq 0 \ (y_2 \ \text{unconstrained in sign})$$

(b) Standard form: maximize 
$$Z = 5x_1^+ - 5x_1^- + 4x_2$$
 subject to 
$$-2x_1^+ + 2x_1^- - 3x_2 \le -10$$
 
$$x_1^+ - x_1^- + 2x_2 \le 20$$
 
$$-x_1^+ + x_1^- - 2x_2 \le -20$$
 
$$x_1^+, x_1^-, x_2 \ge 0$$

Dual: minimize 
$$W = -10y_1 + 20y_2 - 20y_3$$
 subject to 
$$-2y_1 + y_2 - y_3 \ge 5$$
 
$$2y_1 - y_2 + y_3 \ge -5$$
 
$$-3y_1 + 2y_2 - 2y_3 \ge 4$$
 
$$y_1, y_2, y_3 \ge 0$$

Let 
$$y_2' = y_2 - y_3$$
 and  $y_1' = -y_1$ . Then the dual is:

minimize 
$$W' = 10y_1' + 20y_2'$$
 subject to 
$$2y_1' + y_2' = 5$$
 
$$3y_1' + 2y_2' \ge 4$$
 
$$y_1' \le 0 \ (y_2' \ \text{unconstrained in sign})$$

as given in part (a).

#### 6.4-2.

(a) Since  $\{Ax = b\}$  is equivalent to

$$\left\{ \begin{pmatrix} A \\ -A \end{pmatrix} x \le \begin{pmatrix} b \\ -b \end{pmatrix} \right\},\,$$

changing the primal functional constraints from  $Ax \leq b$  to Ax = b changes the dual to:

$$\begin{split} & \text{minimize} & & W = (\,\overline{y}^T \quad \overline{u}^T\,) \binom{b}{-b} \\ & \text{subject to} & & (\,\overline{y}^T \quad \overline{u}^T\,) \binom{A}{-A} \geq c \\ & & \overline{y}, \overline{u} \geq 0. \end{split}$$

Let  $y = \overline{y} - \overline{u}$ .

$$\begin{array}{ll} \mbox{minimize} & W = yb \\ \mbox{subject to} & yA \geq c \\ & y \mbox{ unrestricted in sign} \end{array}$$

Hence, the only change is the deletion of the nonnegativity constraints.

(b)  $\{Ax \ge b\}$  is equivalent to  $\{-Ax \le -b\}$ , so the dual of

is

$$\begin{array}{ll} \text{minimize} & W = \overline{y}(-b) \\ \text{subject to} & \overline{y}(-A) \geq c \\ & \overline{y} \geq 0. \end{array}$$

Let  $y = -\overline{y}$ .

Hence,  $y \ge 0$  is replaced by  $y \le 0$  in the dual.

(c)

Primal: maximize 
$$Z=cx$$
  $\Leftrightarrow$  maximize  $Z=cx^+-cx^-$  subject to  $Ax \leq b$  subject to  $Ax^+-Ax^- \leq b$   $x$  unrestricted in sign  $x^+, x^- \geq 0$ 

Dual: minimize  $W=yb$   $\Leftrightarrow$  minimize  $W=yb$  subject to  $yA \geq c$  subject to  $yA=c$   $y \geq 0$ 

Hence,  $yA \ge c$  is replaced by yA = c.

### 6.4-3.

maximize 
$$W=8y_1+6y_2$$
 subject to 
$$y_1+3y_2\leq 2\\ 4y_1+2y_2\leq 3\\ 2y_1\leq 1\\ y_1,y_2\geq 0$$

## 6.4-4.

(a) maximize 
$$W=4y_1+10y_2$$
 subject to 
$$-4y_1+5y_2\leq 5$$
 
$$2y_1-10y_2\leq 10$$
 
$$y_1,y_2\geq 0$$

(b) 5 4 3 2 1

Since v can be increased indefinitely, the primal problem is infeasible, by weak duality.

# 6.4-5.

$$\begin{array}{lllll} \text{minimize} & W = 2.7y_1 + & 6y_2 + & 6y_3' \\ \text{subject to} & 0.3y_1 + 0.5y_2 + 0.6y_3' \geq -0.4 \\ & 0.1y_1 + 0.5y_2 + 0.4y_3' \geq -0.5 \\ & y_1 \geq 0, y_3' \leq 0, y_2 \text{ unrestricted in sign} \\ \Leftrightarrow & \text{maximize} & -W = -2.7y_1 - & 6y_2 - & 6y_3' \\ & \text{subject to} & 0.3y_1 + 0.5y_2 + 0.6y_3' \geq -0.4 \\ & 0.1y_1 + 0.5y_2 + 0.4y_3' \geq -0.5 \\ & y_1 \geq 0, y_3' \leq 0, y_2 \text{ unrestricted in sign} \\ \Leftrightarrow & \text{maximize} & W' = 2.7y_1' + & 6y_2' + & 6y_3 \\ & \text{subject to} & -0.3y_1' - 0.5y_2' - 0.6y_3 \geq -0.4 \\ & -0.1y_1' - 0.5y_2' - 0.4y_3 \geq -0.5 \\ & y_1' \leq 0, y_3 \geq 0, y_2' \text{ unrestricted in sign} \\ \Leftrightarrow & \text{maximize} & W' = 2.7y_1' + & 6y_2' + & 6y_3 \\ & \text{subject to} & 0.3y_1' + 0.5y_2' + 0.6y_3 \leq 0.4 \\ & 0.1y_1' + 0.5y_2' + 0.4y_3 \leq 0.5 \\ & y_1' \leq 0, y_3 \geq 0, y_2' \text{ unrestricted in sign} \\ \end{array}$$

## 6.4-6.

(a) maximize 
$$Z = 2x_1 + 5x_2 + 3x_3$$
 subject to  $x_1 - 2x_2 + x_3 \ge 20$   $2x_1 + 4x_2 + x_3 = 50$   $x_1, x_2, x_3 \ge 0$ 

Dual: minimize 
$$W=20y_1+50y_2$$
 subject to 
$$y_1+\ 2y_2\geq 2\\ -2y_1+\ 4y_2\geq 5\\ y_1+\ y_2\geq 3\\ y_1\leq 0, y_2 \text{ unconstrained in sign}$$

(b) maximize 
$$Z = -2x_1 + x_2 - 4x_3 + 3x_4$$
 subject to 
$$x_1 + x_2 + 3x_3 + 2x_4 \le 4$$
 
$$x_1 - x_3 + x_4 \ge -1$$
 
$$2x_1 + x_2 \le 2$$
 
$$x_1 + 2x_2 + x_3 + 2x_4 = 2$$
 
$$x_1 \text{unconstrained in sign}, x_2, x_3, x_4 \ge 0$$

Dual: minimize 
$$W = 4y_1 - y_2 + 2y_3 + 2y_4$$
 subject to 
$$y_1 + y_2 + 2y_3 + y_4 = -2$$
 
$$y_1 + y_3 + 2y_4 \ge 1$$
 
$$3y_1 - y_2 + y_4 \ge -4$$
 
$$2y_1 + y_2 + 2y_4 \ge 3$$
 
$$y_1, y_3 \ge 0, y_2 \le 0, y_4 \text{ unconstrained in sign}$$

## 6.4-7.

(a) minimize 
$$W=300y_1+300y_2$$
 subject to 
$$2y_1+8y_2\geq 4$$
 
$$3y_1+y_2\geq 2$$
 
$$4y_1+y_2\geq 3$$
 
$$2y_1+5y_2\geq 5$$
 
$$y_1,y_2 \text{ unconstrained in sign}$$

(b) maximize 
$$Z = 4x_1 + 2x_2 + 3x_3 + 5x_4$$
  
subject to  $2x_1 + 3x_2 + 4x_3 + 2x_4 = 300$   
 $8x_1 + x_2 + x_3 + 5x_4 = 300$   
 $x_1, x_2, x_3, x_4 > 0$ 

Standard form: 
$$Z = 4x_1 + 2x_2 + 3x_3 + 5x_4$$
 subject to 
$$2x_1 + 3x_2 + 4x_3 + 2x_4 \le 300$$
 
$$-2x_1 - 3x_2 - 4x_3 - 2x_4 \le -300$$
 
$$8x_1 + x_2 + x_3 + 5x_4 \le 300$$
 
$$-8x_1 - x_2 - x_3 - 5x_4 \le -300$$
 
$$x_1, x_2, x_3, x_4 > 0$$

Dual: minimize 
$$W = 300y_1 - 300y_2 + 300y_3 - 300y_4$$
 subject to 
$$2y_1 - 2y_2 + 8y_3 - 8y_4 \ge 4$$
 
$$3y_1 - 3y_2 + y_3 - y_4 \ge 2$$
 
$$4y_1 - 4y_2 + y_3 - y_4 \ge 3$$
 
$$2y_1 - 2y_2 + 5y_3 - 5y_4 \ge 5$$
 
$$y_1, y_2, y_3, y_4 \ge 0$$

Let 
$$y'_1 = y_1 - y_2$$
 and  $y'_2 = y_3 - y_4$ .  
minimize  $W = 300y'_1 + 300y'_2$ 

subject to 
$$2y_1' + 8y_2' \ge 4 \\ 3y_1' + y_2' \ge 2 \\ 4y_1' + y_2' \ge 3 \\ 2y_1' + 5y_2' \ge 5$$

 $y'_1, y'_2$  unconstrained in sign

## 6.4-8.

(a) minimize 
$$W = 120y_1 + 80y_2 + 100y_3$$
 subject to 
$$y_2 - 3y_3 = -1$$
 
$$3y_1 - y_2 + y_3 = 2$$
 
$$y_1 - 4y_2 + 2y_3 = 1$$
 
$$y_1, y_2, y_3 \ge 0$$

(b)Standard form:

maximize 
$$Z = -x_1' + \ x_1'' + 2x_2' - 2x_2'' + \ x_3' - \ x_3''$$
 subject to 
$$3x_2' - 3x_2'' + \ x_3' - \ x_3'' \leq 120$$
 
$$x_1' - \ x_1'' - \ x_2' + \ x_2'' - 4x_3' + 4x_3'' \leq 80$$
 
$$-3x_1' + 3x_1'' + \ x_2' - \ x_2'' + 2x_3' - 2x_3'' \leq 100$$
 
$$x_1', x_1'', x_2', x_2'', x_3', x_3'' \geq 0$$

Dual: minimize  $W = 120y_1 + 80y_2 + 100y_3$ 

minimize 
$$W = 120y_1 + 80y_2 + 100y_3$$

subject to 
$$\begin{aligned} y_2 - & 3y_3 = -1 \\ 3y_1 - & y_2 + & y_3 = 2 \\ y_1 - & 4y_2 + & 2y_3 = 1 \\ y_1, y_2, y_3 \geq 0 \end{aligned}$$

# 6.4-9.

The dual problem for the Wyndor Glass Co. example:

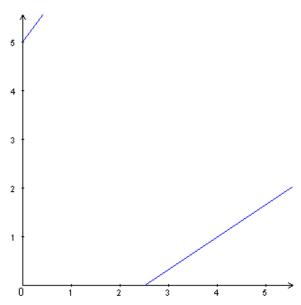
maximize 
$$-W = -4y_1 - 12y_2 - 18y_3$$
 subject to 
$$-y_1 - 3y_3 \le -3$$
 
$$-2y_2 - 2y_3 \le -5$$
 
$$y_1, y_2, y_3 \ge 0$$

The dual of the dual:

$$\begin{array}{lll} & \text{minimize} & -Z = -3x_1 - 5x_2 \\ & \text{subject to} & -x_1 & \geq -4 \\ & -2x_2 \geq -12 \\ & -3x_1 - 2x_2 \geq -18 \\ & x_1, x_2 \geq 0 \\ \\ \Leftrightarrow & \text{maximize} & Z = 3x_1 + 5x_2 \\ & \text{subject to} & x_1 & \leq 4 \\ & x_2 \leq 12 \\ & 3x_1 + 2x_2 \leq 18 \\ & x_1, x_2 \geq 0 \end{array}$$

## **6.4-10.**

(a) The objective is unbounded below.




(b) maximize 
$$8y_1+24y_2$$
 subject to 
$$2y_1-3y_2\leq -5\\ -4y_1+3y_2\leq -15\\ y_1,y_2\leq 0$$

Equivalently:

minimize 
$$8y_1 + 24y_2$$
  
subject to  $2y_1 - 3y_2 \ge 5$   
 $-4y_1 + 3y_2 \ge 15$   
 $y_1, y_2 \ge 20$ 

(c) The dual has no feasible solution.



## 6.5-1.

(a) Since  $x_1$  was nonbasic, changing its coefficients does not affect feasibility. To check optimality, we need to check dual feasibility. The first dual constraint becomes

$$0y_1 + 5y_2 \ge -2$$
,

which is always true, since  $y_2 \ge 0$ . Hence the current basic solution remains optimal.

(b) Adding a new variable does not affect primal feasibility, simply let  $x_6 = 0$ . To check optimality, check dual feasibility. The constraint that corresponds to  $x_6$  in the dual is

$$3y_1 + 5y_2 > 10$$
,

assuming  $x_6 \ge 0$ .  $(y_1, y_2) = (5, 0)$  satisfies this constraint, so the current basic solution with  $x_6 = 0$  is optimal.

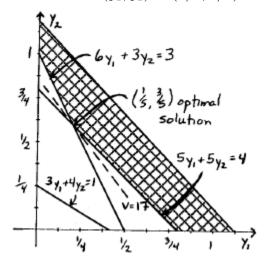
#### 6.5-2.

- (a) Since  $x_3$  is nonbasic, the primal solution is still feasible. The dual constraint associated with  $x_3$ ,  $3y_1 2y_2 \ge -2$  is violated by  $(y_1, y_2) = (0, 2)$ , so the current basic solution is not optimal.
- (b) Letting  $x_6 = 0$ , primal feasibility still holds. The dual constraint associated with this variable,  $y_1 + 2y_2 \ge 3$  is satisfied by  $(y_1, y_2) = (0, 2)$ , so the current basic solution remains optimal.

## 6.5-3.

Since  $x_3$  was nonbasic, changing its coefficients does not affect primal feasibility. To see whether the solution remains optimal, check if the complementary basic solution remains feasible for the dual problem. The third dual constraint becomes

$$3y_1 + 2y_2 + y_3 \ge 4$$
,


which is satisfied by  $(y_1, y_2, y_3) = (1, 1, 0)$ , so the current basic solution remains optimal.

## 6.6-1.

(a) 
$$(x_1, x_2, x_3) = (5/3, 0, 3), Z = 17$$

(b) minimize 
$$W = 25y_1 + 20y_2$$
 subject to  $6y_1 + 3y_2 \ge 3$   $3y_1 + 4y_2 \ge 1$   $5y_1 + 5y_2 \ge 4$   $y_1, y_2 > 0$ 

(c) Optimal Solution:  $(y_1, y_2) = (1/5, 3/5), W = 17$ 



- (d) Since the new dual constraint  $2y_1 + 3y_2 \ge 3$  is violated by  $(y_1, y_2) = (1/5, 3/5)$ , the current solution is no longer optimal.
- (e) New  $x_2$  column:

$$\begin{pmatrix} \frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{5} & \frac{2}{5} \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} \\ \frac{4}{5} \end{pmatrix}$$

(f) The new primal variable adds a constraint to the dual,  $3y_1 + 2y_2 \ge 2$ , which is not satisfied by  $(y_1, y_2) = (1/5, 3/5)$ , so the current solution is no longer optimal.

(g) 
$$\overline{c}_{\text{new}} = \begin{pmatrix} \frac{1}{5} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} 3\\2 \end{pmatrix} - 2 = -\frac{1}{5}$$
, new column:  $\begin{pmatrix} \frac{1}{3} & -\frac{1}{3}\\ -\frac{1}{5} & \frac{2}{5} \end{pmatrix} \begin{pmatrix} 3\\2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3}\\ \frac{1}{5} \end{pmatrix}$ 

6.6-2.

(a) 
$$\Delta b_1 = -15, \Delta b_2 = 0$$

$$\Rightarrow \Delta Z^* = \begin{pmatrix} \frac{1}{5} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} -15 \\ 0 \end{pmatrix} = -3$$

$$\Delta b_1^* = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -15 \\ 0 \end{pmatrix} = -5$$

$$\Delta b_2^* = \begin{pmatrix} -\frac{1}{5} & \frac{2}{5} \end{pmatrix} \begin{pmatrix} -15 \\ 0 \end{pmatrix} = 3$$

New Tableau:

The current basic solution (-10/3, 0, 6, 0, 0) is infeasible and superoptimal.

(b) 
$$\Delta b_1 = 0, \Delta b_2 = -10$$

$$\Rightarrow \Delta Z^* = \begin{pmatrix} \frac{1}{5} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} 0 \\ -10 \end{pmatrix} = -6$$

$$\Delta b_1^* = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 0 \\ -10 \end{pmatrix} = 10/3$$

$$\Delta b_2^* = \begin{pmatrix} -\frac{1}{5} & \frac{2}{5} \end{pmatrix} \begin{pmatrix} 0 \\ -10 \end{pmatrix} = -4$$

New Tableau:

| Bas Eq |     |    | Coes  | fficie | nt of |       |     | Right |
|--------|-----|----|-------|--------|-------|-------|-----|-------|
| Var No | ZΙ  | X1 | X2    | X3     | X4    | X5    |     | side  |
|        | I_  |    |       |        |       |       | I   |       |
|        | - 1 |    |       |        |       |       |     |       |
| Z   O  | 1   | 0  | 2     | 0      | 0.2   | 0.6   |     | 11    |
| X1  1  | 0   | 1  | -0.33 | 0      | 0.333 | -0.33 |     | 5     |
| X3  2  | 0   | 0  | 1     | 1      | -0.2  | 0.4   | - 1 | -1    |

The current basic solution (5, 0, -1, 0, 0) is infeasible and superoptimal.

(c) 
$$\Delta c_2 = 2 \Rightarrow \Delta(z_2^* - c_2) = -2$$

| Bas Eq |     | C     | - 1 | Right |       |       |    |       |
|--------|-----|-------|-----|-------|-------|-------|----|-------|
| Var No | ZΙ  | X1    | X2  | XЗ    | X4    | X5    |    | side  |
| II_    | I_  |       |     |       |       |       | I_ |       |
|        | - 1 |       |     |       |       |       |    |       |
| Z   O  | 1   | 0     | 0   | 0     | 0.2   | 0.6   |    | 17    |
| X1  1  | 0   | 1 -0. | 33  | 0     | 0.333 | -0.33 |    | 1.667 |
| X3  2  | 0   | 0     | 1   | 1     | -0.2  | 0.4   |    | 3     |

The current basic solution (5/3, 0, 3, 0, 0) stays optimal.

(d) 
$$\Delta c_3 = -2 \Rightarrow \Delta(z_3^* - c_3) = 2$$

New Tableau:

| Bas Eq |    |    | - 1   | Right |       |       |     |       |
|--------|----|----|-------|-------|-------|-------|-----|-------|
| Var No | ZΙ | X1 | X2    | XЗ    | X4    | X5    | - 1 | side  |
| II     | I  |    |       |       |       |       | I   |       |
|        |    |    |       |       |       |       |     |       |
| Z   O  | 1  | 0  | 2     | 2     | 0.2   | 0.6   | - 1 | 17    |
| X1  1  | 0  | 1  | -0.33 | 0     | 0.333 | -0.33 |     | 1.667 |
| X3  2  | 0  | 0  | 1     | 1     | -0.2  | 0.4   | - 1 | 3     |

# Proper Form:

The current basic solution (5/3, 0, 3, 0, 0) stays optimal.

(e) 
$$\Delta a_{12} = 0, \Delta a_{22} = -2$$
  
 $\Rightarrow \Delta (z_2^* - c_2) = \left(\frac{1}{5} - \frac{3}{5}\right) \begin{pmatrix} 0 \\ -2 \end{pmatrix} = -\frac{6}{5}$   
 $\Delta a_{12}^* = \left(\frac{1}{3} - \frac{1}{3}\right) \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \frac{2}{3}$   
 $\Delta a_{22}^* = \left(-\frac{1}{5} - \frac{2}{5}\right) \begin{pmatrix} 0 \\ -2 \end{pmatrix} = -\frac{4}{5}$ 

| Bas Eq    |    | Coef  | ficier | nt of |       | Right |
|-----------|----|-------|--------|-------|-------|-------|
| Var No  Z | X1 | X2    | Х3     | X4    | X5    | side  |
|           |    |       |        |       |       | _1    |
|           |    |       |        |       |       | 1     |
| Z   O  1  | 0  | 0.8   | 0      | 0.2   | 0.6   | 17    |
| X1  1  0  | 1  | 0.333 | 0      | 0.333 | -0.33 | 1.667 |
| X3  2  0  | 0  | 0.2   | 1      | -0.2  | 0.4   | 3     |

The current basic solution (5/3, 0, 3, 0, 0) is feasible and optimal.

(f) 
$$\Delta a_{11} = 2, \Delta a_{21} = 0$$
  
 $\Rightarrow \Delta (z_1^* - c_1) = \left(\frac{1}{5} - \frac{3}{5}\right) \begin{pmatrix} 2\\0 \end{pmatrix} = \frac{2}{5}$   
 $\Delta a_{11}^* = \left(\frac{1}{3} - \frac{1}{3}\right) \begin{pmatrix} 2\\0 \end{pmatrix} = \frac{2}{3}$   
 $\Delta a_{21}^* = \left(-\frac{1}{5} - \frac{2}{5}\right) \begin{pmatrix} 2\\0 \end{pmatrix} = -\frac{2}{5}$ 

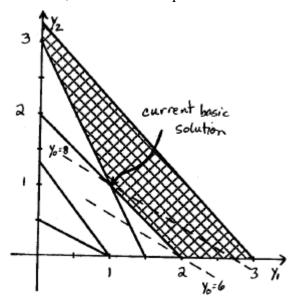
New Tableau:

Proper Form:

The current basic solution (0.71, 0, 3.57, 0, 0) is feasible and optimal.

# 6.6-3.

(a) 
$$\Delta b_1 = -2, \Delta b_2 = 1$$
  


$$\Rightarrow \Delta Z^* = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = -1$$

$$\Delta b_1^* = \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = -3$$

$$\Delta b_2^* = \begin{pmatrix} -1 & 2 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \end{pmatrix} = 4$$

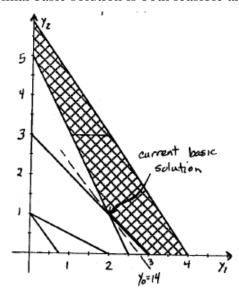
| Bas   Eq   |    |    | Right |           |    |    |      |
|------------|----|----|-------|-----------|----|----|------|
| Var No Z   | X1 | X2 | X3    | <b>X4</b> | X5 | Х6 | side |
| _ _ _      |    |    |       |           |    |    | .ļ   |
| -   -   -  |    |    |       | •         |    |    | l B  |
| Z   0  1   | 3  | U  | ~     | U         | 1  |    | , .  |
| X2 1 0     | 1  | 1  | -1    | 0         | 1  | -1 | -2   |
| X4   2   0 | 2  | 0  | 3     | 1         | -1 | 2  | 7    |

From the tableau, we see that the primal basic solution is feasible, but not optimal.



From the graph, we can see the current basic solution is feasible, but not optimal.

(b) 
$$\Delta c_1 = -1 \Rightarrow \Delta(z_1^* - c_1) = 1$$
$$\Delta c_2 = 2 \Rightarrow \Delta(z_2^* - c_2) = -2$$
$$\Delta c_3 = 1 \Rightarrow \Delta(z_3^* - c_3) = -1$$
$$\Delta c_4 = 1 \Rightarrow \Delta(z_4^* - c_4) = -1$$


New Tableau:

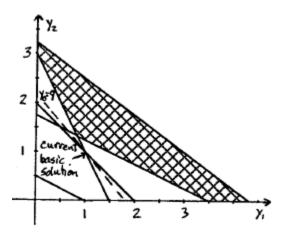
| Bas   Eq  | Coefficient of |    |           |           |            |    |                 |  |
|-----------|----------------|----|-----------|-----------|------------|----|-----------------|--|
| Var No  Z | X1             | X2 | <b>x3</b> | <b>X4</b> | <b>X</b> 5 | Х6 | Right<br>  side |  |
| _ _ _     |                |    |           |           |            |    | .i              |  |
| 1 1 1     |                |    |           |           |            |    | i               |  |
| Z   0  1  | 4              | -2 | 1         | -1        | 1          | 1  | 19              |  |
| X2  1  0  | 1              | 1  | -1        | 0         | 1          | -1 | i 1             |  |
| X4  2  0  | 2              | 0  | 3         | 1         | -1         | 2  | 3               |  |

Proper Form:

| Bas   Eq  |    |    | Right |           |    |    |          |
|-----------|----|----|-------|-----------|----|----|----------|
| Var No  Z | X1 | X2 | х3    | <b>X4</b> | X5 | х6 | side     |
|           |    |    |       |           |    |    | 1        |
| 1 1 1     |    |    |       |           |    |    | <u> </u> |
| Z   0  1  | 8  | 0  | 2     | 0         | 2  | 1  | 14       |
| X2  1  0  | 1  | 1  | -1    | 0         | 1  | -1 | j 1      |
| X4  2  0  | 2  | 0  | 3     | 1         | -1 | 2  | j 3      |

The primal basic solution is both feasible and optimal.




From the graph, we see that the current basic solution is feasible and optimal.

(c) 
$$\Delta a_{11} = -2, \, \Delta a_{21} = 1$$
  
 $\Delta c_1 = 3 \Rightarrow \Delta (z_1^* - c_1) = -3 + (1 \quad 1) \begin{pmatrix} -2 \\ 1 \end{pmatrix} = -4$   
 $\Delta a_{11}^* = (1 \quad -1) \begin{pmatrix} -2 \\ 1 \end{pmatrix} = -3$   
 $\Delta a_{21}^* = (-1 \quad 2) \begin{pmatrix} -2 \\ 1 \end{pmatrix} = 4$ 

New Tableau:

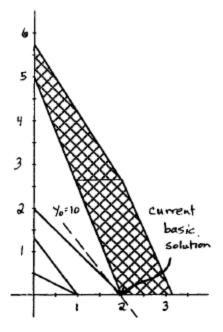
| 8as Eq    |    |    | Right |     |    |    |      |
|-----------|----|----|-------|-----|----|----|------|
| Var No  Z | X1 | X2 | X3    | X4  | X5 | Х6 | side |
|           |    |    |       |     |    |    | i    |
| 1 1 1     |    |    |       |     |    |    | 1    |
| Z   0  1  | -1 | 0  | 2     | . 0 | 1  | 1  | j 9  |
| X2  1  0  | -2 | 1  | -1    | 0   | 1  | -1 | i 1  |
| X4  2  0  | 6  | 0  | 3     | 1   | -1 | 2  | j 3  |

The primal basic solution is infeasible, but satisfies the optimality criterion.



From the graph, the current basic solution is infeasible and superoptimal.

(d) 
$$\Delta a_{12} = 3, \Delta a_{22} = 1$$
  
 $\Delta c_2 = 7 \Rightarrow \Delta (z_2^* - c_2) = -7 + (1 \quad 1) \begin{pmatrix} 3 \\ 1 \end{pmatrix} = -3$   
 $\Delta a_{12}^* = (1 \quad -1) \begin{pmatrix} 3 \\ 1 \end{pmatrix} = 2$   
 $\Delta a_{22}^* = (-1 \quad 2) \begin{pmatrix} 3 \\ 1 \end{pmatrix} = -1$ 


New Tableau:

| Bas Eq   |    |    | Right     |    |    |    |      |
|----------|----|----|-----------|----|----|----|------|
| Var No Z | X1 | X2 | <b>x3</b> | X4 | X5 | X6 | side |
| i_i_i_i_ |    |    |           |    |    |    | .    |
| 111      |    |    |           |    |    |    |      |
| Z   0  1 | 3  | -3 | 2         | 0  | 1  | 1  | 9    |
| x2  1  0 | 1  | 3  | -1        | 0  | 1  | -1 | 1    |
| X4 2 0   | 2  | -1 | 3         | 1  | -1 | 2  | 3    |

Proper Form:

| Bas   Eq    |     |     | Right |     |      |    |       |
|-------------|-----|-----|-------|-----|------|----|-------|
| Var No Z    | X1  | X2  | X3    | X4  | X5   | X6 | side  |
| i_i_i_      |     |     |       |     |      |    | _i    |
| 111         |     |     |       |     |      |    | 1     |
| Z   0  1    | 4   | 0   | 1     | 0   | 2    | 0  | 10    |
| X2  1  0 0. | 333 | 1 - | 0.33  |     |      |    | 0.333 |
| X4  2  0 2. | 333 | 0 2 | .667  | 1 - | 0.67 |    | 3.333 |

The primal basic solution is feasible and optimal.



From the graph, the current basic solution is feasible and optimal.

## **6.7-1.**

The model Ep(x) is developed to identify a long-term management plan that satisfies the legal requirements and optimizes PALCO's operations and profitability. The model consists of a linear program with the objective of maximizing present net worth subject to harvest-flow constraints, political and environmental constraints. Detailed sensitivity analysis is performed to "determine the optimal mix of habitat types within each of individual watersheds" [p. 93]. Many instances of the LP problem are run with varying parameters.

The financial benefits of this study include an increase of over \$398 million in present net worth and of over \$29 million in average yearly net revenues. Sustained-yield annual-harvest levels have increased. The habitat mix is improved in accordance with political and environmental regulations. A more profitable long-term plan paved the way for improved short- and mid-term plans. Sensitivity analysis enabled PALCO to improve its knowledge base of the ecosystem and to adjust its plans quickly when a change in costs or in regulations occurs. Since its decisions are now justified through a systematic approach, PALCO is able to obtain better terms from banks. The study did not only affect PALCO and the habitat controlled by PALCO. It has also "shown that the forest product industries can coexist with wildlife and contribute to their habitats" [p. 104] and "increased quality of life for future generations" [p. 105].

**6.7-2.** 

(a) 
$$\Delta b_1 = 10, \Delta b_2 = 0$$
$$\Rightarrow \Delta Z^* = \begin{pmatrix} 5 & 0 \end{pmatrix} \begin{pmatrix} 10 \\ 0 \end{pmatrix} = 50$$
$$\Delta b_1^* = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 10 \\ 0 \end{pmatrix} = 10$$
$$\Delta b_2^* = \begin{pmatrix} -4 & 1 \end{pmatrix} \begin{pmatrix} 10 \\ 0 \end{pmatrix} = -40$$

New Tableau:

| Bas   Eq | Coefficient of |    |    |    |    |      |  |  |  |
|----------|----------------|----|----|----|----|------|--|--|--|
| Var No Z | X1             | X2 | X3 | X4 | X5 | side |  |  |  |
|          |                |    |    |    |    | İ    |  |  |  |
| 111      |                |    |    |    |    |      |  |  |  |
| Z   0  1 | 0              | 0  | 2  | 5  | 0  | 150  |  |  |  |
| X2  1  0 | -1             | 1  | 3  | 1  | 0  | 30   |  |  |  |
| x5  2  0 | 16             | 0  | -2 | -4 | 1  | -30  |  |  |  |

The current basic solution is infeasible and superoptimal.

(b) 
$$\Delta b_1 = 0, \Delta b_2 = -20$$

$$\Rightarrow \Delta Z^* = \begin{pmatrix} 5 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ -20 \end{pmatrix} = 0$$

$$\Delta b_1^* = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ -20 \end{pmatrix} = 0$$

$$\Delta b_2^* = \begin{pmatrix} -4 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ -20 \end{pmatrix} = -20$$

New Tableau:

| Bas   Eq |    | Right |    |    |    |       |
|----------|----|-------|----|----|----|-------|
| Var No Z | X1 | X2    | X3 | X4 | X5 | side  |
|          |    |       |    |    |    |       |
| 111      |    |       |    |    |    |       |
| Z   0  1 | 0  | 0     | 2  | 5  | 0  | 100   |
| X2  1  0 | -1 | 1     | 3  | 1  | 0  | 20    |
| X5  2  0 | 16 | 0     | -2 | -4 | 1  | j -10 |

The current basic solution is infeasible and superoptimal.

(c) 
$$\Delta b_1 = -10, \Delta b_2 = 10$$
  

$$\Rightarrow \Delta Z^* = \begin{pmatrix} 5 & 0 \end{pmatrix} \begin{pmatrix} -10 \\ 10 \end{pmatrix} = -50$$

$$\Delta b_1^* = (1 \quad 0) \begin{pmatrix} -10 \\ 10 \end{pmatrix} = -10$$
$$\Delta b_2^* = (-4 \quad 1) \begin{pmatrix} -10 \\ 10 \end{pmatrix} = 50$$

| Bas   Eq |    | Right |    |    |    |      |
|----------|----|-------|----|----|----|------|
| Var No Z | X1 | X2    | X3 | X4 | X5 | side |
| _ _      |    |       |    |    |    | i    |
| 1 1 1    |    |       |    |    |    | i    |
| Z   0  1 | 0  | 0     | 2  | 5  | 0  | j 50 |
| X2 1 0   | -1 | 1     | 3  | 1  | 0  | 10   |
| X5  2  0 | 16 | 0     | -2 | -4 | 1  | 60   |

The current basic solution is feasible and optimal.

(d) 
$$\Delta c_3 = -5 \Rightarrow \Delta(z_3^* - c_3) = 5$$

New Tableau:

| Bas   Eq  |    | Right |    |    |    |      |
|-----------|----|-------|----|----|----|------|
| Var No  Z | X1 | X2    | X3 | X4 | X5 | side |
| _         |    |       |    |    |    | i    |
| 1 1 1     |    |       |    |    |    | 1    |
| Z   0  1  | 0  | 0     | 7  | 5  | 0  | 100  |
| X2 1 0    | -1 | 1     | 3  | 1  | 0  | 20   |
| X5 2 0    | 16 | 0     | -2 | -4 | 1  | 10   |

The current basic solution is feasible and optimal.

(e) 
$$\Delta a_{11} = 1, \Delta a_{21} = -7$$
  
 $\Delta c_1 = 3 \Rightarrow \Delta (z_1^* - c_1) = -3 + (5 \quad 0) \begin{pmatrix} 1 \\ -7 \end{pmatrix} = 2$   
 $\Delta a_{11}^* = (1 \quad 0) \begin{pmatrix} 1 \\ -7 \end{pmatrix} = 1$   
 $\Delta a_{21}^* = (-4 \quad 1) \begin{pmatrix} 1 \\ -7 \end{pmatrix} = -11$ 

New Tableau:

| Bas   Eq |    | Right |    |    |    |      |
|----------|----|-------|----|----|----|------|
| Var No 2 | X1 | X2    | X3 | X4 | X5 | side |
| _ _ _    |    |       |    |    |    | .i   |
| 1 1 1    |    |       |    |    |    | 1    |
| Z   0  1 | 2  | 0     | 2  | 5  | 0  | 100  |
| X2  1  0 | 0  | 1     | 3  | 1  | 0  | 20   |
| X5  2  0 | 5  | 0     | -2 | -4 | 1  | 10   |

The current basic solution is feasible and optimal.

(f) 
$$\Delta a_{12} = 1, \Delta a_{22} = 1$$
  
 $\Delta c_2 = 1 \Rightarrow \Delta (z_2^* - c_2) = -1 + (5 \quad 0) \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 4$   
 $\Delta a_{12}^* = (1 \quad 0) \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1$   
 $\Delta a_{22}^* = (-4 \quad 1) \begin{pmatrix} 1 \\ 1 \end{pmatrix} = -3$ 

| Bas   Eq   | Eq  Coefficient of |    |    |    |    |      |  |  |  |
|------------|--------------------|----|----|----|----|------|--|--|--|
| Var No Z   | X1                 | X2 | X3 | X4 | X5 | side |  |  |  |
| _ _ _      |                    |    |    |    |    | .    |  |  |  |
| 1 1 1      |                    |    |    |    |    | 1    |  |  |  |
| z   0  1   | 0                  | 4  | 2  | 5  | 0  | 100  |  |  |  |
| X2 1 0     | -1                 | 2  | 3  | 1  | 0  | 20   |  |  |  |
| X5   2   0 | 16                 | -3 | -2 | -4 | 1  | 10   |  |  |  |

Proper Form:

| Bas   Eq  |      | Right |     |      |    |      |
|-----------|------|-------|-----|------|----|------|
| Var No  Z | X1   | x2    | х3  | X4   | X5 | side |
| _         |      |       |     |      |    | İ    |
| 1 1 1     |      |       |     |      |    | ĺ    |
| Z   0  1  | 2    | 0     | -4  | 3    | 0  | 60   |
| X2  1  0  | -0.5 | 1     | 1.5 | 0.5  | 0  | 10   |
| X5 2 0    | 14.5 | 0     | 2.5 | -2.5 | 1  | 40   |

The current basic solution is feasible, but not optimal.

(g) 
$$\Delta a_{16} = 3, \Delta a_{26} = 5$$
  
 $\Delta c_6 = 10 \Rightarrow \Delta (z_6^* - c_6) = -10 + (5 \quad 0) \begin{pmatrix} 3 \\ 5 \end{pmatrix} = 5$   
 $\Delta a_{16}^* = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \end{pmatrix} = 3$   
 $\Delta a_{26}^* = \begin{pmatrix} -4 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \end{pmatrix} = -7$ 

New Tableau:

| Ras        | Fo |   | 1             | Co | efficie | nts of    |    |    | Right |
|------------|----|---|---------------|----|---------|-----------|----|----|-------|
| Bas<br>Var | No | Z | XI            | Χą | Х3      | X4        | X5 | X6 | side  |
| z          | 0  | 1 | 0             | 0  | ą       | 5         | 0  | 5  | 100   |
| X2         | 1  | 0 | 0<br>-1<br>16 | 1  | 3       | $\cdot I$ | 0  | 3  | 20    |
| X5         | 2  | 0 | 16            | 0  | -a      | -4        | 1  | -7 | 10    |

The current basic solution is feasible and optimal.

(h) New Tableau and Proper Form:

| Bas        | Fa   |   |     | С  | oefficie | nt of  |     |    | Right |
|------------|------|---|-----|----|----------|--------|-----|----|-------|
| Var        | No   | Z | XI  | XQ | X3       |        | _X5 | X6 | side  |
| z          | 0    | 1 | 0   | 0  | 2        | 5      | 0   | 0  | 100   |
| XZ         | 1    | 0 | -1  | 1  | 3        | - 1    | 0   | 0  | 20    |
| X5         | 2    | ٥ | 16  | 0  | -2       | -4     | ı   | 0  | 10    |
| X6         | 3    | 0 | 2   | 3  | 5        | 0      | 0   | 1  | 50    |
| <b>D</b>   | ا ۔۔ | 1 | ı   | (  | Coeffici | ent of |     |    | Right |
| Bas<br>Var | No   | z | XI. | X2 | Х3       | X4     | X5  | X6 | side  |
| z          | 0    | 1 | 0   | 0  | a        | 5      | 0   | 0  | 100   |
| ΧQ         | 1    | 0 | -1  | 1  | 3        | 1      | 0   | 0  | 20    |
| X5         | 2    | 0 | 16  | 0  | -2       | -4     | 1   | 0  | 10    |

The current basic solution is infeasible and superoptimal.

(i) 
$$\Delta a_{11} = 0, \Delta a_{21} = -2$$
  
 $\Delta c_1 = 0 \Rightarrow \Delta(z_1^* - c_1) = 0 + (5 \quad 0) \begin{pmatrix} 0 \\ -2 \end{pmatrix} = 0$   
 $\Delta a_{11}^* = (1 \quad 0) \begin{pmatrix} 0 \\ -2 \end{pmatrix} = 0$   
 $\Delta a_{21}^* = (-4 \quad 1) \begin{pmatrix} 0 \\ -2 \end{pmatrix} = -2$   
 $\Delta a_{12} = 0, \Delta a_{22} = 1$   
 $\Delta c_2 = 0 \Rightarrow \Delta(z_2^* - c_2) = 0 + (5 \quad 0) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$   
 $\Delta a_{12}^* = (1 \quad 0) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$   
 $\Delta a_{22}^* = (-4 \quad 1) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1$   
 $\Delta b_1 = 0, \Delta b_2 = 10$   
 $\Rightarrow \Delta Z^* = (5 \quad 0) \begin{pmatrix} 0 \\ 10 \end{pmatrix} = 0$   
 $\Delta b_1^* = (1 \quad 0) \begin{pmatrix} 0 \\ 10 \end{pmatrix} = 0$   
 $\Delta b_2^* = (-4 \quad 1) \begin{pmatrix} 0 \\ 10 \end{pmatrix} = 0$ 

| Bas   Eq          |    | Right |    |    |            |      |
|-------------------|----|-------|----|----|------------|------|
| Var No Z          | X1 | X2    | X3 | X4 | <b>X</b> 5 | side |
| _ _ _<br>z   0  1 | 0  | 0     | 2  | 5  | 0          | 100  |
| x2 1 0            | -1 | 1     | 3  | 1  | 0          | 20   |
| x5 2 0            | 14 | 1     | -2 | -4 | 1          | 20   |

Proper Form:

| Bas   Eq   |    | Right |    |    |    |      |
|------------|----|-------|----|----|----|------|
| Var No Z   | X1 | X2    | x3 | X4 | X5 | side |
| i_i_i_i_   |    |       |    |    |    | l    |
| 111        |    |       |    |    |    | 1    |
| z   0  1   | 0  | 0     | 2  | 5  | 0  | 100  |
| X2 1 0     | -1 | 1     | 3  | 1  | 0  | 20   |
| x5   2   0 | 15 | 0     | -5 | -5 | 1  | ] 0  |

# **6.7-3.**

$$\Delta b_1 = 2\theta, \, \Delta b_2 = -\theta$$

$$\Rightarrow \Delta Z^* = (5 \quad 0) \begin{pmatrix} 2\theta \\ -\theta \end{pmatrix} = 10\theta$$

$$\Delta b_1^* = (1 \quad 0) \begin{pmatrix} 2\theta \\ -\theta \end{pmatrix} = 2\theta$$

$$\Delta b_2^* = (-4 \quad 1) \begin{pmatrix} 2\theta \\ -\theta \end{pmatrix} = -9\theta$$

$$\Rightarrow Z = 100 + 10\theta$$

$$b_1^* \ge 0 \Leftrightarrow 20 + 2\theta \ge 0$$

$$b_2^* \ge 0 \Leftrightarrow 10 - 9\theta \ge 0$$

$$\Leftrightarrow -10 \le \theta \le 10/9$$

# 6.7-4.

Original Final Tableau:

| Bas Eq    |    |    | Right |    |    |     |      |
|-----------|----|----|-------|----|----|-----|------|
| Var No  Z | X1 | X2 | XЗ    | X4 | X5 | -   | side |
| III       |    |    |       |    |    | _1_ |      |
|           |    |    |       |    |    |     |      |
| Z   O  1  | 0  | 1  | 1     | 0  | 2  |     | 20   |
| X4  1  0  | 0  | -1 | 5     | 1  | -1 |     | 20   |
| X1  2  0  | 1  | 4  | -1    | 0  | 1  |     | 10   |

(a) 
$$\Delta b_1 = -10, \, \Delta b_2 = 20$$
  
 $\Rightarrow \Delta Z^* = \begin{pmatrix} 0 & 2 \end{pmatrix} \begin{pmatrix} -10 \\ 20 \end{pmatrix} = 40$   
 $\Delta b_1^* = \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} -10 \\ 20 \end{pmatrix} = -30$   
 $\Delta b_2^* = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} -10 \\ 20 \end{pmatrix} = 20$ 

| Bas Eq    |    | 1  | Right |    |    |       |      |
|-----------|----|----|-------|----|----|-------|------|
| Var No  Z | X1 | X2 | XЗ    | X4 | X5 | -     | side |
| III       |    |    |       |    |    | _ ا _ |      |
|           |    |    |       |    |    |       |      |
| Z   O  1  | 0  | 1  | 1     | 0  | 2  | -     | 60   |
| X4  1  0  | 0  | -1 | 5     | 1  | -1 | -     | -10  |
| X1  2  0  | 1  | 4  | -1    | 0  | 1  | Ι     | 30   |

The current basic solution is superoptimal, but infeasible.

Revised Final Tableau After Reoptimization (Dual Simplex Method):

| Bas Eq |     |      | Coei | fficie | nt of |    | l  | Right |
|--------|-----|------|------|--------|-------|----|----|-------|
| Var No | ZΙ  | X1   | X2   | XЗ     | X4    | X5 | l  | side  |
| II_    | I_  |      |      |        |       |    | ١_ |       |
|        | - 1 |      |      |        |       |    | ١  |       |
| Z   O  | 1 0 | .333 | 0    | 12.33  | 2.333 | 0  |    | 46.67 |
| X2  1  | 010 | .333 | 1    | 1.333  | 0.333 | 0  | l  | 6.667 |
| X5  2  | 0]- | 0.33 | 0    | -6.33  | -1.33 | 1  | l  | 3.333 |

(b) 
$$\Delta a_{13} = -1, \, \Delta a_{23} = -1$$
  
 $\Delta c_3 = 1 \Rightarrow \Delta (z_3^* - c_3) = -1 + (0 \quad 2) \begin{pmatrix} -1 \\ -1 \end{pmatrix} = -3$   
 $\Delta a_{13}^* = (1 \quad -1) \begin{pmatrix} -1 \\ -1 \end{pmatrix} = 0$   
 $\Delta a_{23}^* = (0 \quad 1) \begin{pmatrix} -1 \\ -1 \end{pmatrix} = -1$ 

Revised Final Tableau:

| Bas Eq    |    | Coet | fficie |    |    | -   | Right |
|-----------|----|------|--------|----|----|-----|-------|
| Var No  Z | X1 | X2   | X3     | X4 | X5 |     | side  |
| II        | I  |      |        |    |    | _1  |       |
| 1 1       |    |      |        |    |    |     |       |
| Z   O  1  | 0  | 1    | -2     | 0  | 2  | - 1 | 20    |
| X4  1  0  | 0  | -1   | 5      | 1  | -1 | - 1 | 20    |
| X1  2  0  | 1  | 4    | -2     | 0  | 1  | -   | 10    |

The current basic solution is feasible, but not optimal.

Revised Final Tableau After Reoptimization (Simplex Method):

| Bas Eq <br>Var No  Z |   | Coe:<br>X2 | fficie<br>X3 |     | Х5   |     | Right<br>side |
|----------------------|---|------------|--------------|-----|------|-----|---------------|
| _ _ _<br>            |   | 0.6        | 0            | 0.4 | 1.6  | -¦. | 28            |
| X3  1  O             | 0 | -0.2       | 1            | 0.2 | -0.2 | İ   | 4             |
| X1  2  0             | 1 | 3.6        | 0            | 0.4 | 0.6  | -   | 18            |

(c) 
$$\Delta a_{11} = 2, \Delta a_{21} = 1$$

$$\Delta c_1 = 2 \Rightarrow \Delta(z_2^* - c_2) = -2 + (0 \quad 2) \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 0$$

$$\Delta a_{11}^* = (1 \quad -1) \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 1$$

$$\Delta a_{21}^* = (0 \quad 1) \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 1$$

Revised Final Tableau:

| Bas Eq    |    | Coeff | icient | of |    |     | Right |
|-----------|----|-------|--------|----|----|-----|-------|
| Var No  Z | X1 | X2    | XЗ     | X4 | X5 |     | side  |
|           |    |       |        |    |    | _ _ |       |
| 1 1 1     |    |       |        |    |    |     |       |
| Z   O  1  | 0  | 1     | 1      | 0  | 2  |     | 20    |
| X4  1  0  | 1  | -1    | 5      | 1  | -1 |     | 20    |
| X1  2  0  | 2  | 4     | -1     | 0  | 1  |     | 10    |

Revised Final Tableau After Converting to Proper Form:

| Bas Eq    |    | Coe | fficier | nt of |      | - 1 | Right |
|-----------|----|-----|---------|-------|------|-----|-------|
| Var No  Z | X1 | X2  | XЗ      | X4    | X5   | - 1 | side  |
|           |    |     |         |       |      | _I  |       |
| 1 1 1     |    |     |         |       |      |     |       |
| Z   O  1  | 0  | 1   | 1       | 0     | 2    | - 1 | 20    |
| X4  1  0  | 0  | -3  | 5.5     | 1     | -1.5 | - 1 | 15    |
| X1  2  0  | 1  | 2   | -0.5    | 0     | 0.5  | - 1 | 5     |

The current basic solution is feasible and optimal.

(d) 
$$\Delta a_{16} = 1, \Delta a_{26} = 2$$
  
 $\Delta c_6 = -3 \Rightarrow \Delta (z_6^* - c_6) = 3 + (0 \quad 2) \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 7$   
 $\Delta a_{16}^* = (1 \quad -1) \begin{pmatrix} 1 \\ 2 \end{pmatrix} = -1$ 

$$\Delta a_{26}^* = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 2$$

| Bas Eq    |    | Co | effici | ent of |    |    | -   | Right |
|-----------|----|----|--------|--------|----|----|-----|-------|
| Var No  Z | X1 | X2 | XЗ     | X4     | X5 | X6 | -   | side  |
| III       |    |    |        |        |    |    | _1_ |       |
| 1 1 1     |    |    |        |        |    |    | -   |       |
| Z   O  1  | 0  | 1  | 1      | 0      | 2  | 7  | -   | 20    |
| X4  1  0  | 0  | -1 | 5      | 1      | -1 | -1 |     | 20    |
| X1  2  0  | 1  | 4  | -1     | 0      | 1  | 2  | -   | 10    |

The current basic solution is feasible and optimal.

(e) 
$$\Delta c_1 = -1 \Rightarrow \Delta(z_1^* - c_1) = 1$$

$$\Delta c_2 = -2 \Rightarrow \Delta(z_2^* - c_2) = 2$$

$$\Delta c_3 = 1 \Rightarrow \Delta(z_3^* - c_3) = -1$$

Revised Final Tableau:

| Bas Eq    |    | Coeff | icient | of |    | -   | Right |
|-----------|----|-------|--------|----|----|-----|-------|
| Var No  Z | X1 | X2    | XЗ     | X4 | X5 |     | side  |
| III       |    |       |        |    |    | _1_ |       |
| 1 1 1     |    |       |        |    |    |     |       |
| Z   O  1  | 1  | 3     | 0      | 0  | 2  |     | 20    |
| X4  1  0  | 0  | -1    | 5      | 1  | -1 |     | 20    |
| X1  2  0  | 1  | 4     | -1     | 0  | 1  | -   | 10    |

Revised Final Tableau After Converting to Proper Form:

| Bas Eq    |    | Coeff | icient | of |    | 1   | Right |
|-----------|----|-------|--------|----|----|-----|-------|
| Var No  Z | X1 | X2    | X3     | X4 | X5 |     | side  |
| III       |    |       |        |    |    | _1_ |       |
|           |    |       |        |    |    |     |       |
| Z   O  1  | 0  | -1    | 1      | 0  | 1  |     | 10    |
| X4  1  0  | 0  | -1    | 5      | 1  | -1 |     | 20    |
| X1  2  0  | 1  | 4     | -1     | 0  | 1  | 1   | 10    |

The current basic solution is feasible, but not optimal.

Revised Final Tableau After Reoptimization (Simplex Method):

| Bas Eq |     |      | Coet | fficient | of |       | - 1 | Right |
|--------|-----|------|------|----------|----|-------|-----|-------|
| Var No | ZΙ  | X1   | X2   | Х3       | X4 | X5    |     | side  |
|        | _1_ |      |      |          |    |       | _1  |       |
| 1 1    |     |      |      |          |    |       |     |       |
| Z   O  | 1   | 0.25 | 0    | 0.75     | 0  | 1.25  | - 1 | 12.5  |
| X4  1  | 0   | 0.25 | 0    | 4.75     | 1  | -0.75 |     | 22.5  |
| X2  2  | 0   | 0.25 | 1    | -0.25    | 0  | 0.25  | - 1 | 2.5   |

## (f) New Tableau:

| Bas Eq    |    | Co | effici | ent of |    |    | 1   | Right |
|-----------|----|----|--------|--------|----|----|-----|-------|
| Var No  Z | X1 | X2 | XЗ     | X4     | X5 | X6 | 1   | side  |
| III       |    |    |        |        |    |    | _ _ |       |
| 1 1 1     |    |    |        |        |    |    | 1   |       |
| Z   O  1  | 0  | 1  | 1      | 0      | 2  | 0  | 1   | 20    |
| X4  1  0  | 0  | -1 | 5      | 1      | -1 | 0  | 1   | 20    |
| X1  2  0  | 1  | 4  | -1     | 0      | 1  | 0  | Ι   | 10    |
| X6  3  0  | 3  | 2  | 3      | 0      | 0  | 1  | 1   | 25    |

## Proper Form:

| Bas Eq    |    |     | Coeffic | cient o | f  |    |     | Right |
|-----------|----|-----|---------|---------|----|----|-----|-------|
| Var No  Z | X1 | X2  | XЗ      | X4      | X5 | X6 |     | side  |
|           |    |     |         |         |    |    | _1  |       |
|           |    |     |         |         |    |    | - 1 |       |
| Z   O  1  | 0  | 1   | 1       | 0       | 2  | 0  |     | 20    |
| X4  1  0  | 0  | -1  | 5       | 1       | -1 | 0  |     | 20    |
| X1  2  0  | 1  | 4   | -1      | 0       | 1  | 0  |     | 10    |
| X6  3  0  | 0  | -10 | 6       | 0       | -3 | 1  |     | -5    |

The current basic solution is infeasible and superoptimal.

## Tableau After Reoptimization:

| Bas Eq    |    | С  | oeffici | ient o | f    |      |     | Right |
|-----------|----|----|---------|--------|------|------|-----|-------|
| Var No  Z | X1 | X2 | XЗ      | X4     | X5   | X6   |     | side  |
| III       |    |    |         |        |      |      | _١_ |       |
| 1 1 1     |    |    |         |        |      |      |     |       |
| Z   O  1  | 0  | 0  | 1.6     | 0      | 1.7  | 0.1  |     | 19.5  |
| X4  1  0  | 0  | 0  | 4.4     | 1      | -0.7 | -0.1 |     | 20.5  |
| X2  2  0  | 0  | 1  | -0.6    | 0      | 0.3  | -0.1 |     | 0.5   |
| X1  3  0  | 1  | 0  | 1.4     | 0      | -0.2 | 0.4  | - 1 | 8     |

(g) 
$$\Delta a_{22} = -2, \Delta a_{23} = 3$$
  
 $\Rightarrow \Delta (z_2^* - c_2) = (0 \quad 2) \begin{pmatrix} 0 \\ -2 \end{pmatrix} = -4$   
 $\Delta a_{12}^* = (1 \quad -1) \begin{pmatrix} 0 \\ -2 \end{pmatrix} = 2$   
 $\Delta a_{22}^* = (0 \quad 1) \begin{pmatrix} 0 \\ -2 \end{pmatrix} = -2$   
 $\Rightarrow \Delta (z_3^* - c_3) = (0 \quad 2) \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 6$   
 $\Delta a_{13}^* = (1 \quad -1) \begin{pmatrix} 0 \\ 3 \end{pmatrix} = -3$   
 $\Delta a_{23}^* = (0 \quad 1) \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 3$ 

$$\Delta b_1 = 0, \Delta b_2 = 25$$

$$\Rightarrow \Delta Z^* = \begin{pmatrix} 0 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 25 \end{pmatrix} = 50$$

$$\Delta b_1^* = \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 25 \end{pmatrix} = -25$$

$$\Delta b_2^* = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 25 \end{pmatrix} = 25$$

| Bas Eq    |    | Coet | fficie | nt of |    |     | Right |
|-----------|----|------|--------|-------|----|-----|-------|
| Var No  Z | X1 | X2   | XЗ     | X4    | X5 |     | side  |
| II        |    |      |        |       |    | 1   |       |
| 1 1 1     |    |      |        |       |    |     |       |
| Z   O  1  | 0  | -3   | 7      | 0     | 2  |     | 70    |
| X4  1  0  | 0  | 1    | 2      | 1     | -1 | - 1 | -5    |
| X1  2  0  | 1  | 2    | 2      | 0     | 1  |     | 35    |

The current basic solution is neither feasible nor optimal.

| Bas Eq |     | Coefficient of |    |       |       |    |     |      |  |  |  |  |
|--------|-----|----------------|----|-------|-------|----|-----|------|--|--|--|--|
| Var No | ZΙ  | X1             | X2 | X3    | X4    | X5 | -   | side |  |  |  |  |
| II     | I_  |                |    |       |       |    | _1_ |      |  |  |  |  |
| 1 1    |     |                |    |       |       |    |     |      |  |  |  |  |
| Z   O  | 1 0 | .333           | 0  | 12.33 | 2.333 | 0  |     | 70   |  |  |  |  |
| X2  1  | 0 0 | .333           | 1  | 1.333 | 0.333 | 0  |     | 10   |  |  |  |  |
| X5  2  | 010 | .333           | 0  | -0.67 | -0.67 | 1  | -   | 15   |  |  |  |  |

## 6.7-5.

$$\Delta b_1 = 3\theta, \, \Delta b_2 = -\theta$$

$$\Rightarrow \Delta Z^* = \begin{pmatrix} 0 & 2 \end{pmatrix} \begin{pmatrix} 3\theta \\ -\theta \end{pmatrix} = -2\theta$$

$$\Delta b_1^* = \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 3\theta \\ -\theta \end{pmatrix} = 4\theta$$

$$\Delta b_2^* = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 3\theta \\ -\theta \end{pmatrix} = -\theta$$

$$Z^*(\theta) = 20 - 2\theta$$

 $(x_1, x_2, x_3, x_4, x_5) = (10 - \theta, 0, 0, 20 + 4\theta, 0)$  is feasible if  $-5 \le \theta \le 10$ .

**6.7-6.** 

Original Final Tableau:

| Bas Eq    |    | 1  | Right |    |    |    |     |      |
|-----------|----|----|-------|----|----|----|-----|------|
| Var No  Z | X1 | X2 | ХЗ    | X4 | X5 | X6 | 1   | side |
| III       |    |    |       |    |    |    | _1_ |      |
|           |    |    |       |    |    |    |     |      |
| Z   O  1  | 0  | 0  | 2     | 1  | 1  | 0  | 1   | 18   |
| X2  1  0  | 0  | 1  | 5     | 1  | 3  | 0  | 1   | 24   |
| X6  2  0  | 0  | 0  | 2     | 0  | 1  | 1  | 1   | 7    |
| X1  3  0  | 1  | 0  | 4     | 1  | 2  | 0  | 1   | 21   |

(a) 
$$\Delta b_1 = -5, \, \Delta b_2 = 1, \, \Delta b_3 = -2$$
  

$$\Rightarrow \Delta Z^* = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -5 \\ 1 \\ -2 \end{pmatrix} = -4$$

$$\Delta b_1^* = \begin{pmatrix} 1 & 3 & 0 \end{pmatrix} \begin{pmatrix} -5 \\ 1 \\ -2 \end{pmatrix} = -2$$

$$\Delta b_2^* = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} -5 \\ 1 \\ -2 \end{pmatrix} = -1$$

$$\Delta b_3^* = \begin{pmatrix} 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} -5 \\ 1 \\ -2 \end{pmatrix} = -3$$

Revised Final Tableau:

| Bas Eq    | Coefficient of |    |    |    |    |    |    |      |
|-----------|----------------|----|----|----|----|----|----|------|
| Var No  Z | X1             | X2 | XЗ | X4 | X5 | X6 |    | side |
| III       |                |    |    |    |    |    | _1 |      |
| 1 1 1     |                |    |    |    |    |    |    |      |
| Z   O  1  | 0              | 0  | 2  | 1  | 1  | 0  |    | 14   |
| X2  1  0  | 0              | 1  | 5  | 1  | 3  | 0  |    | 22   |
| X6  2  0  | 0              | 0  | 2  | 0  | 1  | 1  |    | 6    |
| X1  3  0  | 1              | 0  | 4  | 1  | 2  | 0  |    | 18   |

The current basic solution is feasible and optimal.

(b) 
$$\Delta c_3 = 1 \Rightarrow \Delta(z_3^* - c_3) = -1$$

| Bas Eq    |    | 1  | Right |    |    |    |     |      |
|-----------|----|----|-------|----|----|----|-----|------|
| Var No  Z | X1 | X2 | XЗ    | X4 | X5 | X6 | 1   | side |
| III       |    |    |       |    |    |    | _ _ |      |
| 1 1 1     |    |    |       |    |    |    | 1   |      |
| Z   O  1  | 0  | 0  | 1     | 1  | 1  | 0  | 1   | 18   |
| X2  1  0  | 0  | 1  | 5     | 1  | 3  | 0  | 1   | 24   |
| X6  2  0  | 0  | 0  | 2     | 0  | 1  | 1  | Ι   | 7    |
| X1  3  0  | 1  | 0  | 4     | 1  | 2  | 0  | Ι   | 21   |

The current basic solution remains feasible and optimal.

(c) 
$$\Delta c_1 = 3 \Rightarrow \Delta(z_1^* - c_1) = -3$$

Revised Final Tableau:

| Bas Eq    |    | Coefficient of |    |    |    |    |     |      |  |
|-----------|----|----------------|----|----|----|----|-----|------|--|
| Var No  Z | X1 | X2             | XЗ | X4 | X5 | Х6 | - 1 | side |  |
| II        | l  |                |    |    |    |    | _1  |      |  |
| 1 1       | l  |                |    |    |    |    | - 1 |      |  |
| Z   O  1  | -1 | 0              | 2  | 1  | 1  | 0  |     | 18   |  |
| X2  1  O  | 0  | 1              | 5  | 1  | 3  | 0  |     | 24   |  |
| X6  2  O  | 0  | 0              | 2  | 0  | 1  | 1  |     | 7    |  |
| X1  3  O  | 1  | 0              | 4  | 1  | 2  | 0  |     | 21   |  |

Revised Final Tableau After Converting to Proper Form:

| Bas Eq    | Coefficient of |    |    |    |    |    |      |  |
|-----------|----------------|----|----|----|----|----|------|--|
| Var No  Z | X1             | X2 | ХЗ | X4 | X5 | X6 | side |  |
| III       |                |    |    |    |    |    | I    |  |
| 1 1 1     |                |    |    |    |    |    | I    |  |
| Z   O  1  | 0              | 0  | 6  | 2  | 3  | 0  | 39   |  |
| X2  1  0  | 0              | 1  | 5  | 1  | 3  | 0  | 24   |  |
| X6  2  0  | 0              | 0  | 2  | 0  | 1  | 1  | 7    |  |
| X1  3  0  | 1              | 0  | 4  | 1  | 2  | 0  | 21   |  |

The current basic solution is feasible and optimal.

(d) 
$$\Delta a_{13} = 1$$
,  $\Delta a_{23} = 1$ ,  $\Delta a_{33} = 0$ 

$$\Delta c_3 = 3 \Rightarrow \Delta(z_3^* - c_3) = -3 + (1 \quad 1 \quad 0) \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = -1$$

$$\Delta a_{13}^* = \begin{pmatrix} 1 & 3 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 4$$

$$\Delta a_{23}^* = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 1$$

$$\Delta a_{33}^* = \begin{pmatrix} 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 3$$

| Bas Eq    |    | Co | effici | ent of |    |    | Ι | Right |
|-----------|----|----|--------|--------|----|----|---|-------|
| Var No  Z | X1 | X2 | ХЗ     | X4     | X5 | X6 | - | side  |
| III       |    |    |        |        |    |    | _ |       |
|           |    |    |        |        |    |    |   |       |
| Z   O  1  | 0  | 0  | 1      | 1      | 1  | 0  |   | 18    |
| X2  1  0  | 0  | 1  | 9      | 1      | 3  | 0  |   | 24    |
| X6  2  0  | 0  | 0  | 3      | 0      | 1  | 1  |   | 7     |
| X1  3  0  | 1  | 0  | 7      | 1      | 2  | 0  |   | 21    |

The current basic solution remains feasible and optimal.

(e) 
$$\Delta a_{11} = -2$$
,  $\Delta a_{21} = -1$ ,  $\Delta a_{31} = 2$ 

$$\Delta c_{1} = -1 \Rightarrow \Delta (z_{1}^{*} - c_{1}) = 1 + (1 \quad 1 \quad 0) \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} = -2$$

$$\Delta a_{11}^{*} = (1 \quad 3 \quad 0) \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} = -5$$

$$\Delta a_{21}^{*} = (0 \quad 1 \quad 1) \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} = 1$$

$$\Delta a_{31}^{*} = (1 \quad 2 \quad 0) \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} = -4$$

$$\Delta a_{12} = 0, \ \Delta a_{22} = 2, \ \Delta a_{32} = 3$$

$$\Delta c_{2} = -1 \Rightarrow \Delta (z_{2}^{*} - c_{2}) = 1 + (1 \quad 1 \quad 0) \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} = 3$$

$$\Delta a_{12}^{*} = (1 \quad 3 \quad 0) \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} = 6$$

$$\Delta a_{22}^{*} = (0 \quad 1 \quad 1) \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} = 5$$

$$\Delta a_{32}^{*} = (1 \quad 2 \quad 0) \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} = 4$$

| Bas Eq    |    | Coefficient of |    |    |    |    |     |      |  |
|-----------|----|----------------|----|----|----|----|-----|------|--|
| Var No  Z | X1 | X2             | XЗ | X4 | X5 | Х6 |     | side |  |
| III       |    |                |    |    |    |    | _1_ |      |  |
| 1 1 1     |    |                |    |    |    |    |     |      |  |
| Z   O  1  | -2 | 3              | 2  | 1  | 1  | 0  |     | 18   |  |
| X2  1  0  | -5 | 7              | 5  | 1  | 3  | 0  |     | 24   |  |
| X6  2  0  | 1  | 5              | 2  | 0  | 1  | 1  |     | 7    |  |
| X1  3  0  | -3 | 4              | 4  | 1  | 2  | 0  |     | 21   |  |

Revised Final Tableau After Converting to Proper Form:

| Bas Eq    |       |    | Coeffic | ient o | of |    | -  | Right |
|-----------|-------|----|---------|--------|----|----|----|-------|
| Var No  2 | :  X1 | X2 | XЗ      | X4     | X5 | Х6 |    | side  |
|           | .l    |    |         |        |    |    | _1 |       |
| 1 1       | 1     |    |         |        |    |    |    |       |
| Z   O  1  | .  0  | 0  | 1       | 1      | 0  | 0  |    | 15    |
| X2  1  C  | 1 0   | 1  | -5      | -2     | -1 | 0  |    | -33   |
| X6  2  C  | 1 0   | 0  | 35      | 13     | 8  | 1  |    | 223   |
| X1  3  C  | 1     | 0  | -8      | -3     | -2 | 0  |    | -51   |

The current basic solution is superoptimal, but infeasible.

Revised Final Tableau After Reoptimization (Dual Simplex Method):

| Bas Eq    | Coefficient of |      |    |    |      |     |     |      |
|-----------|----------------|------|----|----|------|-----|-----|------|
| Var No  Z | X1             | X2   | XЗ | X4 | X5   | Х6  |     | side |
| III       |                |      |    |    |      |     | _1_ |      |
| 1 1 1     |                |      |    |    |      |     |     |      |
| Z   O  1  | 0              | 4.4  | 0  | 0  | 0.4  | 0.6 |     | 3.6  |
| X1  1  0  | 1              | -0.2 | 0  | 0  | -0.2 | 0.2 |     | 0.2  |
| X3  2  0  | 0              | 2.6  | 1  | 0  | 0.6  | 0.4 |     | 3.4  |
| X4  3  0  | 0              | -7   | 0  | 1  | -1   | -1  | -   | 8    |

(f) 
$$\Delta c_1 = 3 \Rightarrow \Delta(z_1^* - c_1) = -3$$
$$\Delta c_2 = 2 \Rightarrow \Delta(z_2^* - c_2) = -2$$
$$\Delta c_3 = 2 \Rightarrow \Delta(z_3^* - c_3) = -2$$

Revised Final Tableau:

| Bas Eq    |    | Coefficient of |    |    |    |    |     |      |  |
|-----------|----|----------------|----|----|----|----|-----|------|--|
| Var No  Z | X1 | X2             | XЗ | X4 | X5 | Х6 | - 1 | side |  |
| II        |    |                |    |    |    |    | _1  |      |  |
| 1 1 1     |    |                |    |    |    |    | - 1 |      |  |
| Z   O  1  | -3 | -2             | 0  | 1  | 1  | 0  |     | 18   |  |
| X2  1  0  | 0  | 1              | 5  | 1  | 3  | 0  |     | 24   |  |
| X6  2  0  | 0  | 0              | 2  | 0  | 1  | 1  | - 1 | 7    |  |
| X1  3  0  | 1  | 0              | 4  | 1  | 2  | 0  | - 1 | 21   |  |

Revised Final Tableau After Converting to Proper Form:

| Bas Eq    |    | Co | effici | ent of |    |    | I   | Right |
|-----------|----|----|--------|--------|----|----|-----|-------|
| Var No  Z | X1 | X2 | XЗ     | X4     | X5 | X6 | 1   | side  |
| III       |    |    |        |        |    |    | _1_ |       |
| 1 1 1     |    |    |        |        |    |    | 1   |       |
| Z   O  1  | 0  | 0  | 22     | 6      | 13 | 0  | 1   | 129   |
| X2  1  0  | 0  | 1  | 5      | 1      | 3  | 0  | 1   | 24    |
| X6  2  0  | 0  | 0  | 2      | 0      | 1  | 1  | 1   | 7     |
| X1  3  0  | 1  | 0  | 4      | 1      | 2  | 0  | 1   | 21    |

The current basic solution is feasible and optimal.

(g) 
$$\Delta a_{11} = -1, \ \Delta a_{21} = 0, \ \Delta a_{31} = 0$$

$$\Rightarrow \Delta (z_1^* - c_1) = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = -1$$

$$\Delta a_{11}^* = \begin{pmatrix} 1 & 3 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = -1$$

$$\Delta a_{21}^* = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = 0$$

$$\Delta a_{31}^* = \begin{pmatrix} 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = -1$$

$$\Delta a_{12} = 1, \ \Delta a_{22} = 0, \ \Delta a_{32} = 0$$

$$\Rightarrow \Delta (z_2^* - c_2) = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 1$$

$$\Delta a_{12}^* = \begin{pmatrix} 1 & 3 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 1$$

$$\Delta a_{22}^* = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0$$

$$\Delta a_{32}^* = \begin{pmatrix} 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 1$$

$$\Delta a_{13}^* = 2, \ \Delta a_{23} = 0, \ \Delta a_{33} = 0$$

$$\Rightarrow \Delta(z_3^* - c_3) = (1 \quad 1 \quad 0) \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = 2$$

$$\Delta a_{13}^* = (1 \quad 3 \quad 0) \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = 2$$

$$\Delta a_{23}^* = (0 \quad 1 \quad 1) \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = 0$$

$$\Delta a_{33}^* = (1 \quad 2 \quad 0) \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = 2$$

$$\Delta b_1 = -3, \, \Delta b_2 = 0, \, \Delta b_3 = 0$$

$$\Rightarrow \Delta Z^* = (1 \quad 1 \quad 0) \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix} = -3$$

$$\Delta b_1^* = (1 \quad 3 \quad 0) \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix} = -3$$

$$\Delta b_2^* = (0 \quad 1 \quad 1) \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix} = 0$$

$$\Delta b_3^* = (1 \quad 2 \quad 0) \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix} = 0$$

| Bas Eq    |    | Co | effici | ent of |    |    | Ι     | Right |
|-----------|----|----|--------|--------|----|----|-------|-------|
| Var No  Z | X1 | X2 | XЗ     | X4     | X5 | X6 |       | side  |
| III       |    |    |        |        |    |    | _   _ |       |
|           |    |    |        |        |    |    |       |       |
| Z   O  1  | -1 | 1  | 4      | 1      | 1  | 0  |       | 15    |
| X2  1  0  | -1 | 2  | 7      | 1      | 3  | 0  |       | 21    |
| X6  2  0  | 0  | 0  | 2      | 0      | 1  | 1  |       | 7     |
| X1  3  0  | 0  | 1  | 6      | 1      | 2  | 0  |       | 18    |

Revised Final Tableau After Converting to Proper Form:

| Bas Eq    | Coefficient of |    |    |    |    |    |       | Right |
|-----------|----------------|----|----|----|----|----|-------|-------|
| Var No  Z | X1             | X2 | XЗ | X4 | X5 | X6 |       | side  |
|           |                |    |    |    |    |    | _   _ |       |
| 1 1 1     |                |    |    |    |    |    |       |       |
| Z   O  1  | 0              | 0  | 3  | 1  | 0  | 0  |       | 12    |
| X2  1  0  | 0              | 1  | 6  | 1  | 2  | 0  |       | 18    |
| X6  2  0  | 0              | 0  | 2  | 0  | 1  | 1  |       | 7     |
| X1  3  0  | 1              | 0  | 5  | 1  | 1  | 0  |       | 15    |

The current basic solution is feasible and optimal.

(h)

New Tableau:

| Bas Eq    |    |    | Coeff | icient | of |    |    |       | Right |
|-----------|----|----|-------|--------|----|----|----|-------|-------|
| Var No  Z | X1 | X2 | ХЗ    | X4     | X5 | X6 | X7 |       | side  |
| III       |    |    |       |        |    |    |    | _   _ |       |
| 1 1 1     |    |    |       |        |    |    |    |       |       |
| Z   O  1  | 0  | 0  | 2     | 1      | 1  | 0  | 0  |       | 18    |
| X2  1  0  | 0  | 1  | 5     | 1      | 3  | 0  | 0  |       | 24    |
| X6  2  0  | 0  | 0  | 2     | 0      | 1  | 1  | 0  |       | 7     |
| X1  3  0  | 1  | 0  | 4     | 1      | 2  | 0  | 0  |       | 21    |
| X7  4  0  | 2  | 1  | 3     | 0      | 0  | 0  | 1  | 1     | 60    |

Proper Form:

| Bas Eq |     |    |    | Coef: | ficien | t of |    |    | Ι   | Right |
|--------|-----|----|----|-------|--------|------|----|----|-----|-------|
| Var No | ZΙ  | X1 | X2 | XЗ    | X4     | X5   | X6 | X7 |     | side  |
| !!_    | I_  |    |    |       |        |      |    |    | _١_ |       |
| 1 1    | - 1 |    |    |       |        |      |    |    |     |       |
| Z   O  | 1   | 0  | 0  | 2     | 1      | 1    | 0  | 0  |     | 18    |
| X2  1  | 0   | 0  | 1  | 5     | 1      | 3    | 0  | 0  |     | 24    |
| X6  2  | 0   | 0  | 0  | 2     | 0      | 1    | 1  | 0  |     | 7     |
| X1  3  | 0   | 1  | 0  | 4     | 1      | 2    | 0  | 0  |     | 21    |
| X7  4  | 0   | 0  | 0  | -10   | -3     | -7   | 0  | 1  | -   | -6    |

The current basic solution is infeasible and superoptimal.

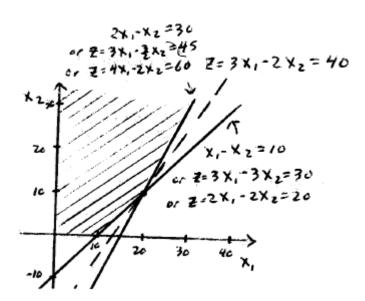
Tableau After Reoptimization:

| Bas Eq |     |    |     | Coei  | fficien | t of |    |       | -  | Right |
|--------|-----|----|-----|-------|---------|------|----|-------|----|-------|
| Var No | ZΙ  | X1 | X2  | XЗ    | X4      | X5   | X6 | X7    | -  | side  |
| II     | ١_  |    |     |       |         |      |    |       | _1 |       |
| 1 1    | - 1 |    |     |       |         |      |    |       |    |       |
| Z   O  | 1   | 0  | 0 0 | 5.571 | 0.571   | 0    | 0  | 0.143 | -  | 17.14 |
| X2  1  | 0   | 0  | 1 ( | 0.714 | -0.29   | 0    | 0  | 0.429 | -  | 21.43 |
| X5  2  | 0   | 0  | 0 : | 1.429 | 0.429   | 1    | 0  | -0.14 | -  | 0.857 |
| X1  3  | 0   | 1  | 0 : | 1.143 | 0.143   | 0    | 0  | 0.286 | -  | 19.29 |
| X6  4  | 0   | 0  | 0 0 | 0.571 | -0.43   | 0    | 1  | 0.143 | -  | 6.143 |

6.7-7.
Adjustable Cells

|         |                | Final | Reduced | Objective   | Allowable | Allowable |
|---------|----------------|-------|---------|-------------|-----------|-----------|
| Cell    | Name           | Value | Cost    | Coefficient | Increase  | Decrease  |
| \$B\$11 | Solution F1-DC | 50    | -200    | 300         | 200       | 1E+30     |
| \$C\$11 | Solution F2-DC | 30    | 0       | 400         | 100       | 1E+30     |
| \$D\$11 | Solution F1-W1 | 30    | 0       | 700         | 1E+30     | 200       |
| \$E\$11 | Solution F2-W1 | 40    | 0       | 900         | 1E+30     | 100       |
| \$F\$11 | Solution DC-W1 | 30    | 0       | 200         | 200       | 1E+30     |
| \$G\$11 | Solution DC-W2 | 50    | -100    | 400         | 100       | 1E+30     |

(a) F2-DC, F2-W1 and DC-W2 have the smallest margins for error (100). The greatest effort in estimating the unit shipping costs should be placed on these lanes.


| (b) | Cost               | Allowable Range |
|-----|--------------------|-----------------|
|     | $C_{	ext{F1-DC}}$  | ≤ 500           |
|     | $C_{	ext{F2-DC}}$  | $\leq 500$      |
|     | $C_{	ext{F1-W1}}$  | $\geq 500$      |
|     | $C_{	ext{F2-W1}}$  | ≥ 800           |
|     | $C_{\text{DC-W1}}$ | $\leq 400$      |
|     | $C_{	ext{DC-W2}}$  | $\leq 500$      |

(c) The range of optimality for each unit shipping cost indicates how much that shipping cost can change before the optimal shipping quantities change.

(d) Use the 100% rule for simultaneous changes in the objective function coefficients. If the sum of the percentage changes does not exceed 100%, the optimal solution will remain optimal. If it exceeds 100%, then it may or may not be optimal for the new problem.

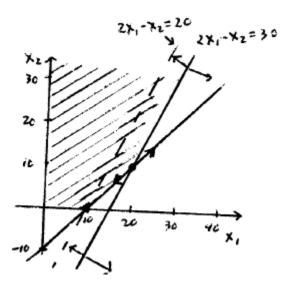
# **6.7-8.**

(a)

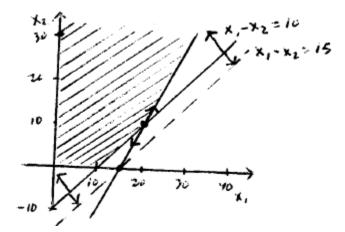


The allowable range for  $c_1$  is  $2 \le c_1 \le 4$  and the one for  $c_2$  is  $-3 \le c_2 \le -3/2$ .

(b) Increasing  $c_1$  by  $\Delta c_1$  ( $c_1 = 3 + \Delta c_1$ )causes the coefficient of  $x_1$  in row 0 of the final tableau to become  $-\Delta c_1$ . To make it 0, add  $\Delta c_1$  times row 2 to row 0:


$$(-\Delta c_1 \quad 0 \quad 1 \quad 1) + \Delta c_1(1 \quad 0 \quad 1 \quad -1) = (0 \quad 0 \quad 1 + \Delta c_1 \quad 1 - \Delta c_1).$$

For optimality, we need  $1 + \Delta c_1 \ge 0$  and  $1 - \Delta c_1 \ge 0$ , so  $-1 \le \Delta c_1 \le 1$ . Hence, the allowable range for  $c_1$  is  $3 - 1 = 2 \le c_1 \le 3 + 1 = 4$ . Similarly, increasing  $c_2$  by  $\Delta c_2$  ( $c_2 = -2 + \Delta c_2$ )causes the coefficient of  $x_2$  in row 0 of the final tableau to become  $-\Delta c_2$ . To make it 0, add  $\Delta c_2$  times row 1 to row 0:


$$(0 - \Delta c_2 - 1 - 1) + \Delta c_2 (0 - 1 - 1 - 2) = (0 - 0 - 1 + \Delta c_2 - 1 - 2\Delta c_2).$$

For optimality, we need  $1 + \Delta c_2 \ge 0$  and  $1 - 2\Delta c_2 \ge 0$ , so  $-1 \le \Delta c_2 \le 1/2$ . Hence, the allowable range for  $c_2$  is  $-2 - 1 = -3 \le c_2 \le -2 + 1/2 = -3/2$ .

(c)



The allowable range for  $b_1$  is  $b_1 \ge 20$ .



The allowable range for  $b_2$  is  $b_2 \leq 15$ .

(d) If we increase  $b_1$  by  $\Delta b_1$ , the final right-hand side becomes:

$$S^*\overline{b} = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 30 + \Delta b_1 \\ 10 \end{pmatrix} = \begin{pmatrix} 10 \\ 20 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Delta b_1.$$

In order to preserve feasibility,  $\Delta b_1 \ge -10$ , so the allowable range for  $b_1$  is  $b_1 \ge 20$ . Similarly, if  $b_2$  is increased by  $\Delta b_2$ , the final right-hand side becomes:

$$S^*\overline{b} = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 30 \\ 10 + \Delta b_2 \end{pmatrix} = \begin{pmatrix} 10 \\ 20 \end{pmatrix} + \begin{pmatrix} -2 \\ -1 \end{pmatrix} \Delta b_2.$$

In order to preserve feasibility,  $\Delta b_2 \leq 5$ , so the allowable range for  $b_2$  is  $b_2 \leq 15$ .

# (e) (in MPL)

MAX 3x1-2x2;

SUBJECT TO

| 000000   | _ | _ |   |
|----------|---|---|---|
| 2x1-x2<= | 3 | 0 | ; |
| x1-x2<=1 | 0 | ; |   |
|          |   |   |   |

| Variable Name | Coefficient       | Lower Range | Upper Range       |
|---------------|-------------------|-------------|-------------------|
| x1<br>x2      | 3.0000<br>-2.0000 | 2.0000      | 4.0000<br>-1.5000 |
|               |                   |             |                   |

#### RANGES RHS

#### PLAIN CONSTRAINTS

| Constraint Name | RHS Value | Lower Bound        | Upper Bound       |
|-----------------|-----------|--------------------|-------------------|
|                 |           |                    |                   |
| c1              | 30.0000   | 20.0000<br>-1£+020 | 1E+020<br>15.0000 |
| c2              | 10.0000   | -154020            | 15.0000           |

## 6.7-9.

If we increase  $b_i$  by  $\Delta b_i$ , the final right-hand side becomes:

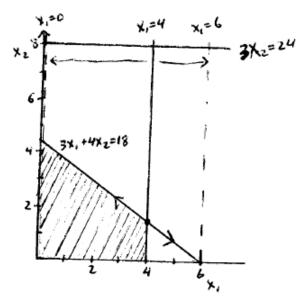
$$b^* = S^* \overline{b} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{3}{4} & 0 & \frac{1}{4} \\ \frac{9}{4} & 1 & -\frac{3}{4} \end{pmatrix} \begin{pmatrix} 4 + \Delta b_1 \\ 24 + \Delta b_2 \\ 18 + \Delta b_3 \end{pmatrix}$$
$$= \begin{pmatrix} 4 \\ \frac{3}{2} \\ \frac{39}{2} \end{pmatrix} + \begin{pmatrix} 1 \\ -\frac{3}{4} \\ \frac{9}{4} \end{pmatrix} \Delta b_1 + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \Delta b_2 + \begin{pmatrix} 0 \\ \frac{1}{4} \\ -\frac{3}{4} \\ -\frac{3}{4} \end{pmatrix} \Delta b_3.$$

Assuming  $\Delta b_2 = \Delta b_3 = 0$ ,  $\Delta b_1$  must satisfy:

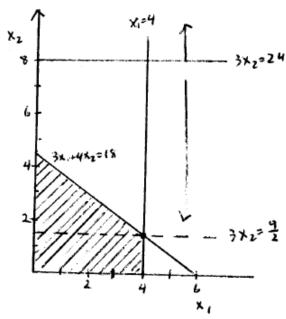
$$4 + \Delta b_1 \ge 0 \Leftrightarrow \Delta b_1 \ge -4$$
$$\frac{3}{2} - \frac{3}{4} \Delta b_1 \ge 0 \Leftrightarrow \Delta b_1 \le 2$$

$$\frac{39}{2} + \frac{9}{4}\Delta b_1 \ge 0 \Leftrightarrow \Delta b_1 \ge -\frac{78}{9}$$
  
 
$$\Leftrightarrow -4 \le \Delta b_1 \le 2 \Leftrightarrow 0 \le b_1 \le 6.$$

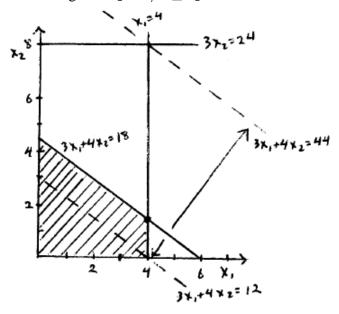
Assuming  $\Delta b_1 = \Delta b_3 = 0$ ,  $\Delta b_2$  must satisfy:


$$\frac{39}{2} + \Delta b_2 \ge 0 \Leftrightarrow \Delta b_2 \ge -\frac{39}{2} \Leftrightarrow b_2 \ge \frac{9}{2}.$$

Assuming  $\Delta b_1 = \Delta b_2 = 0$ ,  $\Delta b_3$  must satisfy:


$$\frac{3}{2} + \frac{1}{4}\Delta b_3 \ge 0 \Leftrightarrow \Delta b_3 \ge -6$$

$$\frac{39}{2} - \frac{3}{4}\Delta b_3 \ge 0 \Leftrightarrow \Delta b_3 \le 26$$

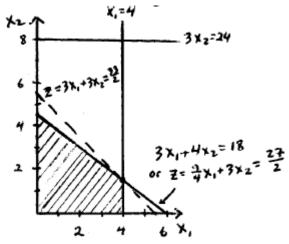

$$\Leftrightarrow 12 \leq b_3 \leq 44.$$



The allowable range for  $b_1$  is  $0 \le b_1 \le 6$ .



The allowable range for  $b_2$  is  $9/2 \le b_2$ .




The allowable range for  $b_3$  is  $12 \le b_3 \le 44$ .

# **6.7-10.**

If we increment  $c_1$  by  $\Delta c_1$  ( $c_1 = 3 + \Delta c_1$ ), the coefficient of  $x_1$  in row 0 of the final tableau becomes  $-\Delta c_1$ . Add  $\Delta c_1$  times row 1 to row 0 to get:

For optimality, we need  $(3/4) + \Delta c_1 \ge 0$ , so  $\Delta c_1 \ge -3/4$ . Hence, the allowable range for  $c_1$  is  $c_1 \ge 9/4$ .



The allowable range for  $c_1$  is  $c_1 \ge 9/4$ . No matter how large  $c_1$  gets, (4,3/2) stays optimal as long as  $c_1 \ge 9/4$ .

## 6.7-11.

If we increment  $c_2$  by  $\Delta c_2$  ( $c_2 = 5 + \Delta c_2$ ), the coefficient of  $x_2$  in row 0 of the final tableau becomes  $-\Delta c_2$ . Add  $\Delta c_2$  times row 2 to row 0 to get:

$$\begin{pmatrix} \frac{9}{2} & -\Delta c_2 & 0 & 0 & \frac{5}{2} \end{pmatrix} + \Delta c_2 \begin{pmatrix} \frac{3}{2} & 1 & 0 & 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{9}{2} + \frac{3}{2}\Delta c_2 & 0 & 0 & 0 & \frac{5}{2} + \frac{1}{2}\Delta c_2 \end{pmatrix}.$$

For optimality, we need  $(9/2) + (3/2)\Delta c_2 \ge 0$  and  $(5/2) + (1/2)\Delta c_2 \ge 0$ , so  $\Delta c_2 \ge -3$ , so the allowable range for  $c_2$  is  $c_2 \ge 2$ . Looking at Figure 6.3, we see that if  $c_2 = 2$ ,  $Z = 3x_1 + 2x_2 = 18$  lies exactly on the constraint boundary. Thus, if  $c_2$  is decreased any more, (0,9) does not remain optimal and the optimal solution becomes (4,3). On the other hand, as  $c_2$  increases, the objective function gets closer to the horizontal line  $Z = x_2 = 9$ , so for any  $c_2 \ge 2$ , (0,9) stays optimal.

## **6.7-12.**

(a) 
$$b^* = \begin{pmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} \Delta b_1 \\ 0 \\ 0 \end{pmatrix} \ge 0 \Leftrightarrow \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \Delta b_1 \ge 0$$
$$\Leftrightarrow \Delta b_1 \ge -2 \Leftrightarrow b_1 \ge 2$$
$$b^* = \begin{pmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 0 \\ \Delta b_2 \\ 0 \end{pmatrix} \ge 0 \Leftrightarrow \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} + \begin{pmatrix} \frac{1}{3} \\ \frac{1}{2} \\ -\frac{1}{3} \end{pmatrix} \Delta b_2 \ge 0$$
$$\Leftrightarrow -6 \le \Delta b_2 \le 6 \Leftrightarrow 6 \le b_2 \le 18$$
$$b^* = \begin{pmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \Delta b_3 \end{pmatrix} \ge 0 \Leftrightarrow \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} + \begin{pmatrix} -\frac{1}{3} \\ 0 \\ \frac{1}{3} \end{pmatrix} \Delta b_3 \ge 0$$
$$\Leftrightarrow -6 \le \Delta b_3 \le 6 \Leftrightarrow 12 \le b_3 \le 24$$
(b) 
$$(\text{Row } 0) + \Delta c_1(\text{Row } 3) \ge 0 \Leftrightarrow \frac{3}{2} - \frac{1}{3} \Delta c_1 \ge 0 \text{ and } 1 + \frac{1}{3} \Delta c_1 \ge 0$$

(b) 
$$(\text{Row } 0) + \Delta c_1(\text{Row } 3) \ge 0 \Leftrightarrow \frac{3}{2} - \frac{1}{3}\Delta c_1 \ge 0 \text{ and } 1 + \frac{1}{3}\Delta c_1 \ge 0$$
  
 $\Leftrightarrow -3 \le \Delta c_1 \le \frac{9}{2} \Leftrightarrow 0 \le c_1 \le \frac{15}{2}$   
 $(\text{Row } 0) + \Delta c_2(\text{Row } 2) \ge 0 \Leftrightarrow \frac{3}{2} + \frac{1}{2}\Delta c_2 \ge 0$   
 $\Leftrightarrow -3 \le \Delta c_2 \Leftrightarrow 2 \le c_2$ 

## (c) (in MPL)

MAX 3x1+5x2; SUBJECT TO x1<=4; 2x2<=12; 3x1+2x2<=18;

### PLAIN CONSTRAINTS

| Constraint Name | RHS Value | Lower Bound | Upper Bound |
|-----------------|-----------|-------------|-------------|
| c1              | 4.0000    | 2.0000      | 1E+020      |
| c2              | 12.0000   | 6.0000      | 18.0000     |
| c3              | 18.0000   | 12.0000     | 24.0000     |

### PLAIN VARIABLES

| Variable Name | Coefficient | Lower Range | Upper Range |
|---------------|-------------|-------------|-------------|
|               |             |             |             |
| x1            | 3.0000      | 0.0000      | 7.5000      |
| <b>x</b> 2    | 5.0000      | 2.0000      | 1E+020      |
|               |             |             |             |

## 6.7-13.

(a) 
$$b^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & 0 & -\frac{2}{3} \\ 0 & 0 & 1 & -\frac{2}{3} \end{pmatrix} \begin{pmatrix} 4 + \Delta b_1 \\ 24 \\ 18 \\ 24 \end{pmatrix} \ge 0 \Leftrightarrow \begin{pmatrix} 4 \\ 8 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Delta b_1 \ge 0$$
$$\Leftrightarrow \Delta b_1 \ge -4 \Leftrightarrow b_1 \ge 0$$
$$b^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & 0 & -\frac{2}{3} \\ 0 & 0 & 1 & -\frac{2}{3} \end{pmatrix} \begin{pmatrix} 4 \\ 24 + \Delta b_2 \\ 18 \\ 24 \end{pmatrix} \ge 0 \Leftrightarrow \begin{pmatrix} 4 \\ 8 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \Delta b_2 \ge 0$$
$$\Leftrightarrow \Delta b_2 \ge -8 \Leftrightarrow b_2 \ge 16$$
$$b^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & 0 & -\frac{2}{3} \\ 0 & 0 & 1 & -\frac{2}{3} \end{pmatrix} \begin{pmatrix} 4 \\ 24 \\ 18 + \Delta b_3 \\ 24 \end{pmatrix} \ge 0 \Leftrightarrow \begin{pmatrix} 4 \\ 8 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \Delta b_3 \ge 0$$
$$\Leftrightarrow \Delta b_3 \ge -2 \Leftrightarrow b_3 \ge 16$$
$$b^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 4 \\ 24 \\ 18 + \Delta b_3 \end{pmatrix} \ge 0 \Leftrightarrow \begin{pmatrix} 4 \\ 8 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \Delta b_3 \ge 0$$

$$b^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & 0 & -\frac{2}{3} \\ 0 & 0 & 1 & -\frac{2}{3} \end{pmatrix} \begin{pmatrix} 4 \\ 24 \\ 18 \\ 24 + \Delta b_4 \end{pmatrix} \ge 0 \Leftrightarrow \begin{pmatrix} 4 \\ 8 \\ 8 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \end{pmatrix} \Delta b_4 \ge 0$$

$$\Leftrightarrow \Delta b_4 \geq -24, \Delta b_4 \leq 12, \Delta b_4 \leq 3 \Leftrightarrow 0 \leq b_4 \leq 27$$

(b) Incrementing  $c_1$  by  $\Delta c_1$ , the coefficient of  $x_1$  in row 0 of the final tableau becomes  $(1/3) - \Delta c_1$ . In order for the solution to remain optimal,  $(1/3) - \Delta c_1 \geq 0$ , so

$$c_1 \le 3 + \frac{1}{3} = \frac{10}{3}.$$

Incrementing  $c_2$  by  $\Delta c_2$ , the coefficient of  $x_2$  in row 0 of the final tableau becomes  $-\Delta c_2$ . Using row 2 to eliminate this coefficient, we get:

$$\begin{pmatrix} \frac{1}{3} & -\Delta c_2 & 0 & 0 & 0 & \frac{5}{3} \end{pmatrix} + \Delta c_2 \begin{pmatrix} \frac{2}{3} & 1 & 0 & 0 & 0 & \frac{1}{3} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{3} + \frac{2}{3} \Delta c_2 & 0 & 0 & 0 & \frac{5}{3} + \frac{1}{3} \Delta c_2 \end{pmatrix}.$$

To keep optimality, we need:

$$\tfrac{1}{3} + \tfrac{2}{3}\Delta c_2 \geq 0 \text{ and } \tfrac{5}{3} + \tfrac{1}{3}\Delta c_2 \geq 0 \Leftrightarrow \Delta c_2 \geq -\tfrac{1}{2} \Leftrightarrow c_2 \geq \tfrac{9}{2}.$$

# (c) (in MPL)

MAX 3x1+5x2;

SUBJECT TO

x1 <= 4;

2x2<=12;

3x1+2x2 <= 18;

 $2x1+3x2 \le 24;$ 

### PLAIN CONSTRAINTS

| Constraint Name RH | s Value                              | Lower Bound                            | Upper Bound                            |
|--------------------|--------------------------------------|----------------------------------------|----------------------------------------|
| c1<br>c2 1         | 4.0000<br>2.0000<br>8.0000<br>4.0000 | 2.0000<br>6.0000<br>12.0000<br>22.0000 | 1E+020<br>14.4000<br>21.0000<br>1E+020 |

### PLAIN VARIABLES

| Variable Name | Coefficient | Lower Range | Upper Range |
|---------------|-------------|-------------|-------------|
| Vallable III  |             |             |             |
|               | 3.0000      | 0.0000      | 7.5000      |
| x1            |             | 2.0000      | 1E+020      |
| <b>x</b> 2    | 5.0000      | 2.0000      |             |
|               |             |             |             |

# **6.7-14.**

$$\Delta c_1 = \theta \Rightarrow \Delta(z_1^* - c_1) = -\theta$$

$$\Delta c_2 = 2\theta \Rightarrow \Delta(z_2^* - c_2) = -2\theta$$

New Tableau:

| Bas  | E0 | L  | J  | Right |      |    |     |      |
|------|----|----|----|-------|------|----|-----|------|
| Var  | No | Z. | XI | X2    | X3   | X4 | χ5  | side |
| Z(0) | 0  | 1  | -0 | -20   | 3/4  | 0  | 3/4 | 33/2 |
| χı   | 1  | 0  | 1  | 0     | 1    | 0  | 0   | 4    |
| XZ   | 2  | 0  | O  | 1     | -3/4 | ō  | 1/4 | 3/2  |
| X4   | 3  | 0  | U  | 0     | 9/4  | ĭ  | -3, | 34,  |

Proper Form:

| Bas        | Eq | _  |    |    | Coefficient | of |         | Right   |
|------------|----|----|----|----|-------------|----|---------|---------|
| Var        | No | 4  | χı | X2 | Х3          |    |         | side    |
| Z(g)       | 0  | 1  | 0  | 0  | 34-32       | ٥  | 3, +0/2 | 33, +70 |
| χı         | ı  | 0  | 1  | 0  | 1           | 0  | ^ _     | 1 2     |
| X2         | 2  | 0  | 0  | 1  | -3/4        | 0  | 4.      | 1 7     |
| <i>)</i> 4 | 3  | ol | O  | 0  | 9/4         | ĭ  | -3/4    | 34/2    |

The current basic solution is optimal if  $\frac{3}{4} - \frac{\theta}{2} \ge 0$  and  $\frac{3}{4} + \frac{\theta}{2} \ge 0$ , so  $-\frac{3}{2} \le \theta \le \frac{3}{2}$ .

### 6.7-15.

$$\Delta c_1 = \theta \Rightarrow \Delta(z_1^* - c_1) = -\theta$$

$$\Delta c_2 = -\theta \Rightarrow \Delta(z_2^* - c_2) = \theta$$

New Tableau:

| Bas | E0 | _ | Coefficient of |     |    |      |    |    |      |
|-----|----|---|----------------|-----|----|------|----|----|------|
| Var | No | Z | _X/_           | XZ  | X3 | . X4 | X5 | X6 | side |
| Z   | 0  | 1 | -0             | e   | 2  | - 1  | 1  | 0  | 18   |
| X2  | 1  | 0 | ه ا            | - 1 | 5  | 1    | 3  | 0  | 24   |
| X6  | 2  | 0 | 0              | 0   | 2  | 0    | -  | 1  | 7    |
| χı  | 3  | 0 | 1              | 0   | 4  | 1    | 2  | 0  | 21   |

Proper Form:

| Bas        | Fo |    | 177 | Right |     |    |     |    |       |
|------------|----|----|-----|-------|-----|----|-----|----|-------|
| Var        | No | Z  | Χł  | X2    | X 3 | X4 | X5  | Χ6 | side  |
| z          | 0  | 1  | 0   | 0     | 2-0 | 1  | 1-0 | 0  | 18-30 |
| <b>X</b> 2 | l, | 0  | 0   | 1     | 5   | 1  | 3   | 0  | 24    |
| X6         | 2  | 0  | 0   | 0     | 2   | 0  | ,   | 1  | 7     |
| Χį         | 13 | ١, | 1 t | 0     | 4   | 1  | 2   | 0  | 21    |

The current basic solution is optimal if  $2 - \theta \ge 0$  and  $1 - \theta \ge 0$ , so  $\theta \le 1$ . Clearly,  $Z(\theta) = 18 - 3\theta$  is maximized when  $\theta$  is as small as possible. Since  $\theta$  is restricted to be nonnegative,  $\theta = 0$  is optimal.

## **6.7-16.**

(a) Row 0 of the final tableau is:  $(4\theta \quad \theta \quad 3-\theta \quad 2 \quad 2 \quad 24)$ . Use row 1 and 2 to eliminate  $x_1$  and  $x_2$ . We get:

To preserve optimality, we need:  $3-2\theta \ge 0 \Leftrightarrow \theta \le \frac{3}{2}$ 

$$2 - 2\theta > 0 \Leftrightarrow \theta < 1$$

$$2+\theta \geq 0 \Leftrightarrow \theta \geq -2,$$

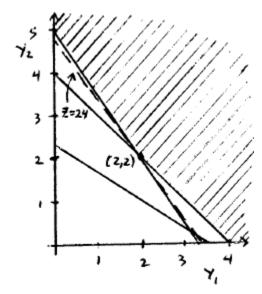
so the range of values over which the solution stays optimal is  $-2 \le \theta \le 1$ . Since  $Z - 9\theta$  is decreasing in  $\theta$ , the best choice of  $\theta$  is -2, then Z = 42.

(b) 
$$S^*\overline{b} = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 7 + \Delta b_1 \\ 5 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ -2 \end{pmatrix} \Delta b_1$$
$$2 + \Delta b_1 \ge 0 \text{ and } 1 - 2\Delta b_1 \ge 0 \Leftrightarrow -2 \le \Delta b_1 \le \frac{1}{2} \Leftrightarrow 5 \le b_1 \le \frac{15}{2}$$
$$S^*\overline{b} = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 7 \\ 5 + \Delta b_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 3 \end{pmatrix} \Delta b_2$$
$$2 - \Delta b_2 \ge 0 \text{ and } 1 + 3\Delta b_2 \ge 0 \Leftrightarrow -\frac{1}{3} \le \Delta b_2 \le 2 \Leftrightarrow \frac{14}{3} \le b_2 \le 7$$

(c) From the final row 0 in part (a), we get  $y_1^* = 2 - 2\theta$  and  $y_2^* = 2 + \theta$ . Decreasing the first resource  $(b_1)$  by one and increasing the second one  $(b_2)$  by one gives us a new objective function value  $\overline{Z} = Z - (2 - 2\theta) + (2 + \theta) = Z + \theta$ , so the objective function value increases by  $\theta$ .

(d) Dual: minimize 
$$W(\theta)=7y_1+5y_2$$
 subject to 
$$3y_1+2y_2\geq 10-4\theta$$
 
$$y_1+y_2\geq 4-\theta$$
 
$$2y_1+3y_2\geq 7+\theta$$
 
$$y_1,y_2\geq 0$$

Starting Tableau:


| -7 | -5 | 0 | 0 | 0 | 0             |
|----|----|---|---|---|---------------|
| -3 | -2 | 1 | 0 | 0 | $-10+4\theta$ |
| -1 | -1 | 0 | 1 | 0 | $-4+\theta$   |
| -2 | -3 | 0 | 0 | 1 | $-7-\theta$   |

Force  $y_1$  and  $y_2$  into the basis and  $y_3$  and  $y_4$  out of the basis.

| 0 | 0 | -2 | -1 | 0 | $24-9\theta$ |
|---|---|----|----|---|--------------|
| 0 | 1 | 1  | -3 | 0 | $2 + \theta$ |
| 1 | 0 | -1 | 2  | 0 | $2-2\theta$  |
| 0 | 0 | 1  | -5 | 1 | $3-2\theta$  |

The shadow prices are  $(y_1^*, y_2^*) = (2 - 2\theta, 2 + \theta)$  as found in part (c).

Graphically:  $(y_1^*, y_2^*) = (2, 2)$  when  $\theta = 0$ 



6.7-17.

(a) 
$$S^*\overline{b} = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 5+\theta \\ 6+2\theta \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \end{pmatrix} \theta$$

 $(3-\theta,0,1+\theta,0,0)$  is feasible if  $3-\theta \ge 0$  and  $1+\theta \ge 0$ , so  $-1 \le \theta \le 3$ . The new objective function value is then:

$$Z(\theta) = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 5+\theta \\ 6+2\theta \end{pmatrix} = 11+3\theta,$$

which is increasing in  $\theta$ , so the best choice of  $\theta$  is 3 and Z=20.

(b) Incrementing  $c_1$  by  $\Delta c_1$  and adding  $\Delta c_1$  times row 1 to row 0, we get:

$$(-\Delta c_1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 11 + 3\theta) + \Delta c_1 (1 \quad 5 \quad 0 \quad 3 \quad -2 \quad 3 - \theta)$$

$$= (0 \quad 1 + 5\Delta c_1 \quad 0 \quad 1 + 3\Delta c_1 \quad 1 - 2\Delta c_1 \quad 11 + 3\Delta c_1 + (3 - \Delta c_1)\theta).$$

To preserve optimality, we need:

$$\begin{aligned} 1+5\Delta c_1 &\geq 0 \Leftrightarrow \Delta c_1 \geq -\frac{1}{5} \\ 1+3\Delta c_1 &\geq 0 \Leftrightarrow \Delta c_1 \geq -\frac{1}{3} \\ 1-2\Delta c_1 &\geq 0 \Leftrightarrow \Delta c_1 \leq \frac{1}{2}, \\ \text{so } -\frac{1}{5} &\leq \Delta c_1 \leq \frac{1}{2} \text{ and } \frac{9}{5} \leq c_1 \leq \frac{5}{2}. \end{aligned}$$

6.7-18.

(a) 
$$\Delta c_1 = -2\theta, \, \Delta a_{11} = 1 \Rightarrow \Delta(z_1^* - c_1) = 2\theta + (2 \quad 2) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 2\theta + 2$$

$$\Delta a_{11}^* = (-2 \quad 3) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = -2$$

$$\Delta a_{21}^* = (1 \quad -1) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1$$

$$\Delta c_2 = \theta \Rightarrow \Delta(z_2^* - c_2) = -\theta$$

$$\Delta b_1 = 10 \Rightarrow \Delta Z^* = (2 \quad 2) \begin{pmatrix} 10 \\ 0 \end{pmatrix} = 20$$

$$\Delta b_1^* = (-2 \quad 3) \begin{pmatrix} 10 \\ 0 \end{pmatrix} = -20$$

$$\Delta b_2^* = (1 \quad -1) \begin{pmatrix} 10 \\ 0 \end{pmatrix} = 10$$

New Tableau:

| Bas | Fa  |   | l    | Right |     |    |      |
|-----|-----|---|------|-------|-----|----|------|
| Var | 3,8 | Z | ΧI   | X2    | X3  | X4 | side |
| Z   | ٥   | 1 | 20+2 | -0    | 2   | 2  | 130  |
| Хa  |     | 0 | - a  | 1     | - 2 | 3  | -5   |
| Χı  | a   | 0 | 2    | 0     | 1   | -/ | 15   |

Proper Form:

| Bas | Eq |   |    | Right |                |      |                          |
|-----|----|---|----|-------|----------------|------|--------------------------|
| Var | No | z | X1 | X2    | X3             | χ4   | side                     |
| Z   | 0  | 1 | 0  | 0     | - <i>30</i> +l | 40+3 | -20 <del>0</del><br>+115 |
| XΖ  | ١  | 0 | ٥  | J     | -1             | a    | 10                       |
| ΧI  | z  | 0 | ı  | 0     | ዿ              | -1/2 | 15/2                     |

For  $\theta$  near 0, the optimal solution is  $(x_1, x_2, x_3, x_4) = (15/2, 10, 0, 0)$  with  $Z = -20\theta + 115$ .

(b) The solution in (a) remains optimal if  $3\theta + 1 \ge 0$  and  $4\theta + 3 \ge 0$ , so the allowable range for  $\theta$  is  $-3/4 \le \theta \le 1/3$ .

(c)  $Z(\theta) = -20\theta + 115$  attains its largest value when  $\theta$  is smallest, so  $\theta = 0$ .

## **6.7-19.**

(a) 
$$\Delta c_1 = 9, \, \Delta a_{11} = 1, \, \Delta a_{21} = 1 \Rightarrow \Delta (z_1^* - c_1) = -9 + (2 \quad 1) \begin{pmatrix} 1 \\ 1 \end{pmatrix} = -6$$

$$\Delta a_{11}^* = \begin{pmatrix} 3 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2$$

$$\Delta a_{21}^* = \begin{pmatrix} -5 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = -3$$

New Tableau:

| Bas | E0 |   | Coefficient of |    |    |    |    |      |  |  |
|-----|----|---|----------------|----|----|----|----|------|--|--|
| Var | No | Z | XL             | X2 | Х3 | χ4 | X5 | side |  |  |
| z   | 0  | 1 | -6             | Z  | 0  | 2  | t  | 19   |  |  |
| Χı  | 1  | 0 | 3              | 5  | 0  | 3  | -1 | 1    |  |  |
|     | 2  | 0 | - 3            | -7 | 1  | -5 | 2  | 2    |  |  |

Proper Form:

| Bas        | Fo     |   |    | C   | oefficient | of |      | Right |
|------------|--------|---|----|-----|------------|----|------|-------|
| Bas<br>Var | No     | z | ΧI | X2  | Х3         | X4 | X5   | side  |
| Z          | 0      | 1 | 0  | /2  | 0          | 8  | -1   | 21    |
| Χì         | l<br>2 | 0 | 1  | 5/3 | 0          | 1  | -1/3 | 1/3   |
| Х3         | 2      | 0 | 0  | -2  | 1          | -2 | 1 *  | 3     |

Optimal Tableau:

| Bas        | E₀ |   |    | Coefficient of |     |     |    |               |  |  |
|------------|----|---|----|----------------|-----|-----|----|---------------|--|--|
| Var        | No | z | ΧI | XZ             | Х3  | χ4  | X5 | Right<br>side |  |  |
| z          | 0  | 1 | 0  | 10             | l   | 6   | 0  | 24            |  |  |
| ΧI         | 1  | 0 | 1  | 1              | 1/3 | 1/3 | 0  | 4/3           |  |  |
| <b>X</b> 5 | 2  | 0 | 0  | -2             | 1   | 2   | 1  | 3             |  |  |

With the new technology,  $(x_1, x_2, x_3, x_4, x_5) = (4/3, 0, 0, 0, 3)$  is optimal with Z = 24.

(b) The changes in  $z_1^*-c_1$ ,  $a_{11}^*$  and  $a_{21}^*$  are  $\theta$  times the values in part (a).

New Tableau:

| Ras        | Fo |   | 1                  |    | oefficient | of |    | Right |
|------------|----|---|--------------------|----|------------|----|----|-------|
| Bas<br>Var | 2  | Z | _X/_               | ΧZ | Х3         | X4 | X5 | side  |
|            |    |   |                    | 2  | 0          | 2  | ĺ  | 19    |
| Χı         | 1  | 0 | -60<br>1+20<br>-30 | 5  | 0          | 3  | -1 | 1     |
| X 3        | 2  | 0 | -30                | 7  | 1          | -5 | 2  | 2     |

Proper Form:

| Bas | Ea |   |     | Coefficient of    |    |       |      |        |  |  |  |  |
|-----|----|---|-----|-------------------|----|-------|------|--------|--|--|--|--|
| Var | No | z | XI  | X2                | Χ. | 3 X4  | X5   | side   |  |  |  |  |
| Z   | 0  | 1 | 0   | 340+2             | 0  | Z20+2 |      | 440+19 |  |  |  |  |
|     |    |   |     | 20+1              |    | 2⊕+1  | 20+1 | 20+1   |  |  |  |  |
| χı  | ′  | 0 | ١ ' | 20+1              | 0  | 20+1  | 20+1 | 70+1   |  |  |  |  |
| Χз  | 2  | 0 | 0   | 2 <del>90+7</del> | 1  | 190+5 | 0+2  | 70+2   |  |  |  |  |
| , , |    | , |     | 20+1              | •  | 20+1  | 20+1 | Zeti   |  |  |  |  |

Since  $2\theta + 1 > 0$  for all choices of  $\theta \in [0, 1]$ , the right-hand side always remains positive, so the current solution is always feasible for  $\theta \in [0, 1]$ . For optimality, we need

$$34\theta + 2 \ge 0$$
,  $22\theta + 2 \ge 0$  and  $-4\theta + 1 \ge 0$ ,

so  $\theta \leq 1/4$ . Hence, the current basis is optimal for  $\theta \in [0,1/4]$ .

## 6.7-20.

$$\Delta c_1 = 2\theta \Rightarrow \Delta(z_1^* - c_1) = -2\theta$$

$$\Delta c_2 = \theta \Rightarrow \Delta(z_2^* - c_2) = -\theta$$

$$\Delta c_3 = -\theta \Rightarrow \Delta(z_3^* - c_3) = \theta$$

$$\Delta b_1 = 6\theta, \Delta b_2 = -8\theta \Rightarrow \Delta Z^* = (9 \quad 7) \begin{pmatrix} 6\theta \\ -8\theta \end{pmatrix} = -2\theta$$

$$\Delta b_1^* = (1 \quad 1) \begin{pmatrix} 6\theta \\ -8\theta \end{pmatrix} = -2\theta$$

$$\Delta b_2^* = (3 \quad 2) \begin{pmatrix} 6\theta \\ -8\theta \end{pmatrix} = 2\theta$$

New Tableau:

| Bas | Fa |   |     | Coefficient of |     |     |    |               |  |  |  |
|-----|----|---|-----|----------------|-----|-----|----|---------------|--|--|--|
| Var | No | z | Χı  | X2             | X.3 | XÝ. | X5 | Right<br>side |  |  |  |
| Z   | 0  | 1 | -20 | 20-€           | 0   | 9   | 7  | 115-20        |  |  |  |
| ΧI  | 1  | 0 | 1   | 3              | 0   | 1   | ı  | 15-20         |  |  |  |
| Х3  | 2  | 0 | 0   | 8              | 1   | 3   | 2  | 35+20         |  |  |  |

Proper Form:

| Bas | Fa | ı | l  | Coe               | Right |     |    |        |
|-----|----|---|----|-------------------|-------|-----|----|--------|
| Var | No | z | ΧI | X2                | Х3    | X4  | X5 | side   |
| z   | 0  | 1 | O  | 20-3 <del>0</del> | ò     | 9-0 | 7  | 115-70 |
| χı  |    | o | 1  | 3                 | 0     | 1   | 1  | 15-20  |
|     | 2  | 0 | 0  | 8                 | 1     | 3   | a  | 35+20  |

For  $\theta \ge 0$ , the current basic solution is feasible if  $15 - 2\theta \ge 0$  and  $35 + 2\theta \ge 0$ , so  $\theta \le 15/2$ . It is also optimal if  $20 - 3\theta \ge 0$  and  $9 - \theta \ge 0$ , so  $\theta \le 20/3$ . Hence, for the current solution to be optimal, we need  $\theta \le 20/3$ . For  $0 \le \theta \le 20/3$ ,

$$Z(\theta) = 15 - 7\theta - 8\theta^2,$$

which is maximized when  $\theta = 0$ .

# 6.7-21.

(a)

$$B^{-1} = \begin{pmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

$$\Rightarrow b = \begin{pmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 4 - \theta \\ 12 - 4\theta \\ 18 - 3\theta \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix} - \begin{pmatrix} \frac{4}{3} \\ 2 \\ -\frac{1}{3} \end{pmatrix} \theta$$

$$Z(\theta) = 3\left(2 + \frac{1}{3}\theta\right) + 5(6 - 2\theta) = 36 - 9\theta$$

To keep feasibility:  $2 - \frac{4}{3}\theta \ge 0 \Leftrightarrow \theta \le \frac{3}{2}$ 

$$6 - 2\theta \ge 0 \Leftrightarrow \theta \le 3$$

$$2 + \frac{1}{3}\theta \ge 0 \Leftrightarrow \theta \ge -6$$

Hence, if  $-6 \le \theta \le 3/2$ ,  $(x_1^*, x_2^*) = (2 + \theta/3, 6 - 2\theta)$  and  $Z^*(\theta) = 36 - 9\theta$ .

(b) Since  $Z^*(\theta) = 36 - 9\theta$ , every unit of change (increase) in the production of the old product results in a change (decrease) in the profit (of the optimal production of the two new products) of 9 (\$9,000 per batch). Thus,  $\theta$  should be positive if the unit profit of the old product is more than this and negative if less. The break-even point is \$9,000 per batch of the old product.

- (c) As shown in part (a),  $\theta \le 3/2$  is needed to keep feasibility, so the production rate of the old product cannot be increased by more than 1.5 units without changing the final basic feasible solution.
- (d) From part (a),  $\theta \ge -6$ , so the production rate of the old product cannot be decreased by more than 6 units without changing the final basic feasible solution.

### 6.7-22.

$$\Delta c_2 = 4 \Rightarrow \Delta (z_2^* - c_2) = -4$$

$$\Delta c_3 = 1 \Rightarrow \Delta (z_3^* - c_3) = -1$$

$$\Delta b_3 = -1 \Rightarrow \Delta Z^* = \begin{pmatrix} 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = -1$$

$$\Delta b_1^* = \begin{pmatrix} 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = 1$$

$$\Delta b_2^* = \begin{pmatrix} 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = 0$$

$$\Delta b_3^* = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = -1$$

New Tableau:

| Bas<br>Var | Eq<br>No | z | x1 | X2 | Coe | fficient | of<br><i>X5</i> | х̃6 | x7 | Right |
|------------|----------|---|----|----|-----|----------|-----------------|-----|----|-------|
| Z          | 0        | 1 | 0  | 1  | -1  | M+2      | 0               | M   | 1  | 2     |
| Χį         | 1        | 0 | ŧ  | -1 | 0   | ı        | 0               | 0   | -1 | 2     |
| 15         | 2        | 0 | 0  | 3  | 0   | ĺ        | 1               | -1  | 0  | 2     |
| X3         | '3'      | 0 | 0  | a  | 1   | 0        | 0               | O   | ,  | 1     |

Proper Form:

| Bas<br>Var | Eq<br>No | z   | χı | ΧZ  | C06 | efficien<br>_ X4 | t of | ¥/. | 82            | Right |
|------------|----------|-----|----|-----|-----|------------------|------|-----|---------------|-------|
| Z          | 0        | 1   | 0  | 3   |     | M+Z              |      | M   | - <u>^7</u> - | Side  |
| Χı         | ,        | 0   | 1  | - 1 |     | ŧ                | 0    | 0   | -1            | 2     |
| X5         | 2        | 0   | 0  | 3   | 0   | 1                | . 1  | -1  | 0             | 2     |
| X3         | 3        | 'ه' | 0  | 2   | 1   | 0                | 0    | 0   | ,             | 1,    |

The current basic solution is feasible and optimal.

# **6.8-1.**

(a)

|   | Α           | В          | С          | D    | E | F            |
|---|-------------|------------|------------|------|---|--------------|
| 1 |             | Activity 1 | Activity 2 |      |   |              |
| 2 | Unit Profit | \$2        | \$5        |      | 1 |              |
| 3 |             |            |            |      |   |              |
| 4 |             | Resour     | ce Usage   | Used |   | Available    |
| 5 | Resource 1  | 1          | 2          | 10   | 2 | 10           |
| 6 | Resource 2  | 1          | 3          | 12   | 2 | 12           |
| 7 |             |            |            |      |   |              |
| 8 |             | Activity 1 | Activity 2 |      |   | Total Profit |
| 9 | Solution    | 6          | 2          |      |   | \$22         |

Adjustable Cells

| -      |                     | Final | Reduced | Objective   | Allowable | Allowable |
|--------|---------------------|-------|---------|-------------|-----------|-----------|
| Cell   | Name                | Value | Cost    | Coefficient | Increase  | Decrease  |
| \$B\$9 | Solution Activity 1 | 6     | 0       | 2           | 0.5       | 0.33333   |
| \$C\$9 | Solution Activity 2 | 2     | 0       | 5           | 1         | 11        |

Constraints

| Marin Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence of the Commence |                 | Final | Shadow | Constraint | Allowable | Allowable |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|--------|------------|-----------|-----------|
| Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Name            | Value | Price  | R.H. Side  | Increase  | Decrease  |
| \$D\$5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Resource 1 Used | 10    | 1      | 10         | 2         | 2         |
| \$D\$6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Resource 2 Used | 12    | 1      | 12         | 3         | 2         |

(b) The optimal solution is (0,4) if the unit profit for Activity 1 is \$1.

|   | Α           | В          | С          | D    | E        | F            |
|---|-------------|------------|------------|------|----------|--------------|
| 1 |             | Activity 1 | Activity 2 |      |          |              |
| 2 | Unit Profit | \$1        | +\$5       |      |          |              |
| 3 |             |            |            |      |          |              |
| 4 |             | Resourc    | e Usage    | Used |          | Available    |
| 5 | Resource 1  | 1          | 2          | 8    | 2        | 10           |
| 6 | Resource 2  | 1          | 3          | 12   | 2        | 12           |
| 7 |             |            |            |      |          |              |
| 8 |             | Activity 1 | Activity 2 |      | <u> </u> | Total Profit |
| 9 | Solution    | 0          | 4          |      |          | \$20         |

The optimal solution is (10,0) if the unit profit for Activity 1 is \$3.

|   | Α           | В          | С          | D    | E | F            |
|---|-------------|------------|------------|------|---|--------------|
| 1 |             | Activity 1 | Activity 2 |      |   |              |
| 2 | Unit Profit | \$3        | \$5        |      |   |              |
| 3 |             |            |            |      |   |              |
| 4 |             | Resourc    | e Usage    | Used |   | Available    |
| 5 | Resource 1  | 1          | 2          | 10   | 2 | 10<br>12     |
| 6 | Resource 2  | 1 3        | 3          | 10   | 2 | 12           |
| 7 |             |            |            |      |   |              |
| 8 |             | Activity 1 | Activity 2 |      |   | Total Profit |
| 9 | Solution    | 10         | 0          |      |   | \$30         |

(c) The optimal solution is (10,0) if the unit profit for Activity 2 is \$2.50.

|   | Α Α         | В          | С          | D    | E | F            |
|---|-------------|------------|------------|------|---|--------------|
| 1 |             | Activity 1 | Activity 2 |      |   |              |
| 2 | Unit Profit | \$2        | \$2.50     |      |   |              |
| 3 |             |            |            |      | 1 |              |
| 4 |             | Resource   | e Usage    | Used |   | Available    |
| 5 | Resource 1  | 1          | 2          | 10   | 2 | 10           |
| 6 | Resource 2  | 1          | 3          | 10   | 2 | 12           |
| 7 |             |            |            |      |   |              |
| 8 |             | Activity 1 | Activity 2 |      |   | Total Profit |
| 9 | Solution    | 10         | 0 1        |      |   | \$20         |

The optimal solution is (0,4) if the unit profit for Activity 2 is \$7.50.

|   | Α           | В          | С          | D    | E | F            |
|---|-------------|------------|------------|------|---|--------------|
| 1 |             | Activity 1 | Activity 2 |      |   |              |
| 2 | Unit Profit | \$2        | \$7.50     |      |   |              |
| 3 |             |            |            |      |   |              |
| 4 |             | Resource   | e Usage    | Used |   | Available    |
| 5 | Resource 1  | 1          | 2          | 8    | 2 | 10           |
| 6 | Resource 2  | 1          | 3          | 12   | 2 | 12           |
| 7 |             |            |            |      |   |              |
| 8 |             | Activity 1 | Activity 2 |      |   | Total Profit |
| 9 | Solution    | 0          | 4          |      |   | \$30         |

(d)

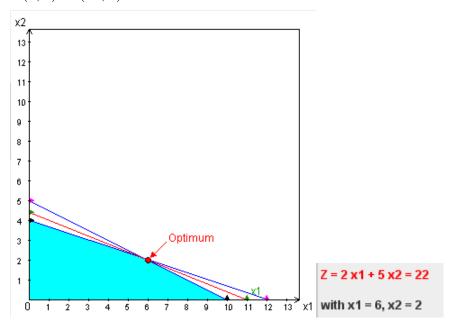
|    | Α               | В          | С          | D       |
|----|-----------------|------------|------------|---------|
| 11 | Unit Profit for | Solu       | ition      | Total   |
| 12 | Activity 1      | Activity 1 | Activity 2 | Profit  |
| 13 |                 | 6          | 2          | \$22.00 |
| 14 | \$1.00          | 0          | 4          | \$20.00 |
| 15 | \$1.20          | 0          | 4          | \$20.00 |
| 16 | \$1.40          | 0          | 4          | \$20.00 |
| 17 | \$1.60          | 0          | 4          | \$20.00 |
| 18 | \$1.80          | 6          | 2          | \$20.80 |
| 19 | \$2.00          | 6          | 2          | \$22.00 |
| 20 | \$2.20          | 6          | 2          | \$23.20 |
| 21 | \$2.40          | 6          | 2          | \$24.40 |
| 22 | \$2.60          | 10         | 0          | \$26.00 |
| 23 | \$2.80          | 10         | 0          | \$28.00 |
| 24 | \$3.00          | 10         | 0          | \$30.00 |

| 27 | Unit Profit for | Soli       | ution      | Total   |
|----|-----------------|------------|------------|---------|
| 28 | Activity 2      | Activity 1 | Activity 2 | Profit  |
| 29 | ,               | 6          | 2          | \$22.00 |
| 30 | \$2.50          | 10         | 0          | \$20.00 |
| 31 | \$3.00          | 10         | 0          | \$20.00 |
| 32 | \$3.50          | 10         | 0          | \$20.00 |
| 33 | \$4.00          | 6          | 2          | \$20.00 |
| 34 | \$4.50          | 6          | 2          | \$21.00 |
| 35 | \$5.00          | 6          | 2          | \$22.00 |
| 36 | \$5.50          | 6          | 2          | \$23.00 |
| 37 | \$6.00          | 0          | 4          | \$24.00 |
| 38 | \$6.50          | 0          | 4          | \$26.00 |
| 39 | \$7.00          | 0          | 4          | \$28.00 |
| 40 | \$7.50          | 0          | 4          | \$30.00 |

The allowable range for the unit profit of Activity 1 is approximately between \$1.60 and \$1.80 up to between \$2.40 and \$2.60. The allowable range for the unit profit of Activity 2 is between \$3.50 and \$4 up to between \$5.50 and \$6.

(e) The allowable range for the unit profit of Activity 1 is approximately between \$1.67 and \$2.50. The allowable range for the unit profit of Activity 2 is between \$4 and \$6.

| Objective Coefficient |                     |     |  |  |  |  |  |  |
|-----------------------|---------------------|-----|--|--|--|--|--|--|
| Current<br>Value      | Allowabl<br>to Stay | _   |  |  |  |  |  |  |
|                       | Minimum Maximum     |     |  |  |  |  |  |  |
| 2                     | 1.67                | 2.5 |  |  |  |  |  |  |
| 5                     | 5 4 6               |     |  |  |  |  |  |  |


(f) The allowable range for the unit profit of Activity 1 is approximately between \$1.67 and \$2.50. The allowable range for the unit profit of Activity 2 is between \$4 and \$6.

(g)

|          | A            | В      | С       | D       | E       | F       | G       | Н            | I        | J       | K       | L       | M       |
|----------|--------------|--------|---------|---------|---------|---------|---------|--------------|----------|---------|---------|---------|---------|
| 11       | Total Profit |        |         |         |         |         | Unit P  | rofit for Ac | tivity 2 |         |         |         |         |
| 12       |              | \$22   | \$2.50  | \$3.00  | \$3.50  | \$4.00  | \$4.50  | \$5.00       | \$5.50   | \$6.00  | \$6.50  | \$7.00  | \$7.50  |
| 12<br>13 |              | \$1.00 | \$11.00 | \$12.00 | \$14.00 | \$16.00 | \$18.00 | \$20.00      | \$22.00  | \$24.00 | \$26.00 | \$28.00 | \$30.00 |
| 14       | 1            | \$1.20 | \$12.20 | \$13.20 | \$14.20 | \$16.00 | \$18.00 | \$20.00      | \$22.00  | \$24.00 | \$26.00 | \$28.00 | \$30.00 |
| 15       |              | \$1.40 | \$14.00 | \$14.40 | \$15.40 | \$16.40 | \$18.00 | \$20.00      | \$22.00  | \$24.00 | \$26.00 | \$28.00 | \$30.00 |
| 16       | Unit Profit  | \$1.60 | \$16.00 | \$16.00 | \$16.60 | \$17.60 | \$18.60 | \$20.00      | \$22.00  | \$24.00 | \$26.00 | \$28.00 | \$30.00 |
| 17       | for          | \$1.80 | \$18.00 | \$18.00 | \$18.00 | \$18.80 | \$19.80 | \$20.80      | \$22.00  | \$24.00 | \$26.00 | \$28.00 | \$30.00 |
| 18       | Activity 1   | \$2.00 | \$20.00 | \$20.00 | \$20.00 | \$20.00 | \$21.00 | \$22.00      | \$23.00  | \$24.00 | \$26.00 | \$28.00 | \$30.00 |
| 19       |              | \$2.20 | \$22.00 | \$22.00 | \$22.00 | \$22.00 | \$22.20 | \$23.20      | \$24.20  | \$25.20 | \$26.20 | \$28.00 | \$30.00 |
| 20       |              | \$2.40 | \$24.00 | \$24.00 | \$24.00 | \$24.00 | \$24.00 | \$24.40      | \$25.40  | \$26.40 | \$27.40 | \$28.40 | \$30.00 |
| 21       |              | \$2.60 | \$26.00 | \$26,00 | \$26.00 | \$26.00 | \$26.00 | \$26.00      | \$26.60  | \$27.60 | \$28.60 | \$29.60 | \$30.60 |
| 22       |              | \$2.80 | \$28.00 | \$28.00 | \$28.00 | \$28.00 | \$28.00 | \$28.00      | \$28.00  | \$28.80 | \$29.80 | \$30.80 | \$31.80 |
| 23       |              | \$3.00 | \$30.00 | \$30.00 | \$30.00 | \$30.00 | \$30.00 | \$30.00      | \$30.00  | \$30.00 | \$31.00 | \$32.00 | \$33.00 |
| 23       |              | *      | -       |         |         |         |         |              |          |         |         |         |         |

| 25                   | Solution    |        |        |        |        |        | Unit P | rofit for Ac | tivity 2 |        |        |        |        |
|----------------------|-------------|--------|--------|--------|--------|--------|--------|--------------|----------|--------|--------|--------|--------|
| 26                   |             | (6,2)  | \$2.50 | \$3.00 | \$3.50 | \$4.00 | \$4.50 | \$5.00       | \$5.50   | \$6.00 | \$6.50 | \$7.00 | \$7.50 |
| 27                   |             | \$1.00 | (6,2)  | (0,4)  | (0,4)  | (0,4)  | (0,4)  | (0,4)        | (0,4)    | (0,4)  | (0,4)  | (0,4)  | (0,4)  |
| 28<br>29             |             | \$1.20 | (6,2)  | (6,2)  | (6,2)  | (0,4)  | (0,4)  | (0,4)        | (0,4)    | (0,4)  | (0,4)  | (0,4)  | (0,4)  |
| 29                   |             | \$1.40 | (10,0) | (6,2)  | (6,2)  | (6,2)  | (0,4)  | (0,4)        | (0,4)    | (0,4)  | (0,4)  | (0,4)  | (0,4)  |
| 30                   | Unit Profit | \$1.60 | (10,0) | (10,0) | (6,2)  | (6,2)  | (6,2)  | (0,4)        | (0,4)    | (0,4)  | (0,4)  | (0,4)  | (0,4)  |
| 31                   | for         | \$1.80 | (10,0) | (10,0) | (10,0) | (6,2)  | (6,2)  | (6,2)        | (0,4)    | (0,4)  | (0,4)  | (0,4)  | (0,4)  |
|                      | Activity 1  | \$2.00 | (10,0) | (10,0) | (10,0) | (6,2)  | (6,2)  | (6,2)        | (6,2)    | (0,4)  | (0,4)  | (0,4)  | (0,4)  |
| 32<br>33<br>34<br>35 | ,           | \$2.20 | (10,0) | (10,0) | (10,0) | (10,0) | (6,2)  | (6,2)        | (6,2)    | (6,2)  | (6,2)  | (0,4)  | (0,4)  |
| 34                   |             | \$2.40 | (10,0) | (10,0) | (10,0) | (10,0) | (10,0) | (6,2)        | (6,2)    | (6,2)  | (6,2)  | (6,2)  | (0,4)  |
| 35                   |             | \$2.60 | (10,0) | (10,0) | (10,0) | (10,0) | (10,0) | (10,0)       | (6,2)    | (6,2)  | (6,2)  | (6,2)  | (6,2)  |
| 36                   |             | \$2.80 | (10,0) | (10,0) | (10,0) | (10,0) | (10,0) | (10,0)       | (10,0)   | (6,2)  | (6,2)  | (6,2)  | (6,2)  |
| 37                   |             | \$3.00 | (10,0) | (10,0) | (10,0) | (10,0) | (10,0) | (10,0)       | (10,0)   | (6,2)  | (6,2)  | (6,2)  | (6,2)  |

(h) Keeping the unit profit of Activity 2 fixed, the unit profit of Activity 1 cannot be changed to less than 1.67 or more than 2.5 without changing the optimal solution. Similarly if the unit profit of Activity 1 is fixed at 1, the unit profit of Activity 2 needs to stay between 4 and 6 so that the optimal solution remains the same. Otherwise, the objective function line becomes either too flat or too steep and the optimal solution becomes (0,4) or (10,0).



6.8-2.

(a) The original model:

|    | Α           | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С          | D    | E | F            |
|----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|---|--------------|
| 1  |             | Activity 1 Activity 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |      |   |              |
| 2  | Unit Profit | \$2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$5        |      |   |              |
| 3  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |   |              |
| 4  |             | Resourc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Usage    | Used |   | Available    |
| -5 | Resource 1  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2          | 10   | 2 | 10           |
| 6  | Resource 2  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3          | 12   | 2 | 12           |
| 7  |             | ARRIVER COSTON NAMED TO COORDINATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PA |            |      |   |              |
| 8  |             | Activity 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Activity 2 |      |   | Total Profit |
| 9  | Solution    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2          |      |   | \$22.00      |

With one additional unit of resource 1:

|   | Α           | В          | С          | D    | E | F            |
|---|-------------|------------|------------|------|---|--------------|
| 1 |             | Activity 1 | Activity 2 |      |   |              |
| 2 | Unit Profit | \$2        | \$5        |      |   |              |
| 3 |             |            |            |      |   |              |
| 4 |             | Resour     | ce Usage   | Used |   | Available    |
| 5 | Resource 1  | 1          | 2          | 11   | 2 | 11           |
| 6 | Resource 2  | 1          | 3          | 12   | 2 | 12           |
| 7 |             |            |            |      |   |              |
| 8 |             | Activity 1 | Activity 2 |      |   | Total Profit |
| 9 | Solution    | 9          | 1          |      |   | \$23.00      |

The shadow price (the increase in total profit) is \$1.

(b) The shadow price of 1 is valid in the range of 8 to 12.

|    | Α          | В                     | С     | D       | E           |
|----|------------|-----------------------|-------|---------|-------------|
| 12 | Available  | Solu                  | ition | Total   | Incremental |
| 13 | Resource 1 | Activity 1 Activity 2 |       | Profit  | Profit      |
| 14 |            | 6                     | 2     | \$22.00 |             |
| 15 | 5          | 0                     | 2.5   | \$12.50 |             |
| 16 | 6          | 0                     | 3     | \$15.00 | \$2.50      |
| 17 | 7          | 0                     | 3.5   | \$17.50 | \$2.50      |
| 18 | 8          | 0                     | 4     | \$20.00 | \$2.50      |
| 19 | 9          | 3                     | 3     | \$21.00 | \$1.00      |
| 20 | 10         | 6                     | 2     | \$22.00 | \$1.00      |
| 21 | 11         | 9                     | 1     | \$23.00 | \$1.00      |
| 22 | 12         | 12                    | 0     | \$24.00 | \$1.00      |
| 23 | 13         | 12                    | 0     | \$24.00 | \$0.00      |
| 24 | 14         | 12                    | 0     | \$24.00 | \$0.00      |
| 25 | 15         | 12                    | 0     | \$24.00 | \$0.00      |

(c) With one additional unit of resource 2:

|   | Α           | В          | С          | D  | E         | F            |
|---|-------------|------------|------------|----|-----------|--------------|
| 1 |             | Activity 1 | Activity 2 |    |           |              |
| 2 | Unit Profit | \$2        | \$5        |    |           |              |
| 3 |             |            |            |    |           |              |
| 4 |             | Resource   | Used       |    | Available |              |
| 5 | Resource 1  | 1          | 2          | 10 | 2         | 10           |
| 6 | Resource 2  | 1          | 3          | 13 | 2         | 13           |
| 7 |             |            |            |    |           |              |
| 8 |             | Activity 1 | Activity 2 |    |           | Total Profit |
| 9 | Solution    | 4          | 3          |    |           | \$23.00      |

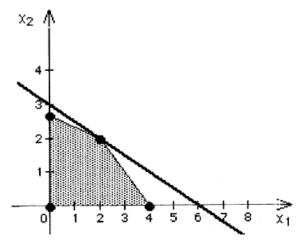
The shadow price (the increase in total profit) is \$1.

(d) The shadow price of \$1 is valid in the range of 10 to 15.

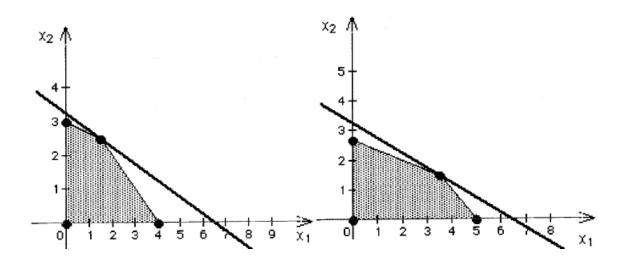
|    | Α          | В          | С          | D       | E           |
|----|------------|------------|------------|---------|-------------|
| 12 | Available  | Solu       | ution      | Total   | Incremental |
| 13 | Resource 2 | Activity 1 | Activity 2 | Profit  | Profit      |
| 14 |            | 6          | 2          | \$22.00 |             |
| 15 | 6          | 6          | 0          | \$12.00 |             |
| 16 | 7          | 7          | 0          | \$14.00 | \$2.00      |
| 17 | 8          | 8          | 0          | \$16.00 | \$2.00      |
| 18 | 9          | 9          | 0          | \$18.00 | \$2.00      |
| 19 | 10         | 10         | 0          | \$20.00 | \$2.00      |
| 20 | 11         | 8          | 1          | \$21.00 | \$1.00      |
| 21 | 12         | 6          | 2          | \$22.00 | \$1.00      |
| 22 | 13         | 4          | 3          | \$23.00 | \$1.00      |
| 23 | 14         | 2          | 4          | \$24.00 | \$1.00      |
| 24 | 15         | 0          | 5          | \$25.00 | \$1.00      |
| 25 | 16         | 0          | 5          | \$25.00 | \$0.00      |
| 26 | 17         | 0          | 5          | \$25.00 | \$0.00      |
| 27 | 18         | 0          | 5          | \$25.00 | \$0.00      |

(e) From the sensitivity report, the shadow prices for both constraints are \$1. According to the allowable increase and decrease, the allowable range for the right-hand side of the first constraint is 8 to 12. Similarly, the allowable range for the right-hand side of the second constraint is 10 to 15.

Adjustable Cells


| Cell   | Name                | Final<br>Value | Reduced<br>Cost | Objective<br>Coefficient | Allowable<br>Increase | Allowable<br>Decrease |
|--------|---------------------|----------------|-----------------|--------------------------|-----------------------|-----------------------|
| \$B\$9 | Solution Activity 1 | 6              | 0               | 2                        | 0.5                   | 0.333                 |
| \$C\$9 | Solution Activity 2 | 2              | 0               | 5                        | 1                     | 1                     |

Constraints


| NAME OF THE PERSONS | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | Final | Shadow | Constraint | Allowable | Allowable |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------------|-----------|-----------|
| Cell                | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Value | Price  | R.H. Side  | Increase  | Decrease  |
| \$D\$5              | Resource 1 Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10    | 11     | 10         | 2         | 2         |
| \$D\$6              | Resource 2 Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12    | 1      | 12         | 3         | 2         |

# **6.8-3.**

(a) Optimal Solution:  $(x_1, x_2) = (2, 2)$ , with profit \$6



(b)



(c) The original model:

|   | Α           | В          | С          | D    | E | F _          |
|---|-------------|------------|------------|------|---|--------------|
| 1 |             | Activity 1 | Activity 2 |      |   |              |
| 2 | Unit Profit | \$1        | \$2        |      |   |              |
| 3 |             |            |            |      |   |              |
| 4 |             | Resourc    | ce Usage   | Used |   | Available    |
| 5 | Resource 1  | 1          | 3          | - 8  | 2 | 8            |
| 6 | Resource 2  | 1          | 1          | _ 4  | 2 | 4            |
| 7 |             |            |            |      |   |              |
| 8 |             | Activity 1 | Activity 2 |      |   | Total Profit |
| 9 | Solution    | 2          | 2          |      |   | \$6.00       |

The shadow price for resource 1 is \$0.50.

|   | Α           | В          | С          | D    | E | F            |
|---|-------------|------------|------------|------|---|--------------|
| 1 |             | Activity 1 | Activity 2 |      |   |              |
| 2 | Unit Profit | \$1        | \$2        |      |   |              |
| 3 |             |            |            |      |   |              |
| 4 |             | Resour     | ce Usage   | Used |   | Available    |
| 5 | Resource 1  | 1          | 3          | 9    | 2 | 9            |
| 6 | Resource 2  | 1          | 1          | _4   | 2 | 4            |
| 7 |             |            |            |      |   |              |
| 8 |             | Activity 1 | Activity 2 |      |   | Total Profit |
| 9 | Solution    | 1.5        | 2.5        |      |   | \$6.50       |

The shadow price for resource 2 is \$0.50.

|   | A           | В          | С              | D    | E | F            |
|---|-------------|------------|----------------|------|---|--------------|
| 1 |             | Activity 1 | Activity 2     |      |   |              |
| 2 | Unit Profit | \$1        | \$2            |      |   |              |
| 3 |             |            |                | Used |   |              |
| 4 |             | Resourc    | Resource Usage |      |   | Available    |
| 5 | Resource 1  | 1          | 3              | 8    | 2 | - 8          |
| 6 | Resource 2  | 1          | 1              | 5    | 2 | 5            |
| 7 |             |            |                |      |   |              |
| 8 |             | Activity 1 | Activity 2     |      |   | Total Profit |
| 9 | Solution    | 3.5        | 1.5            |      |   | \$6.50       |

(d) The allowable range for the right-hand side of the resource 1 constraint is approximately between 4 (or less) and 12.

|    | A          | В          | ВС         |        | E           |
|----|------------|------------|------------|--------|-------------|
| 12 | Available  | Solu       | ition      | Total  | Incremental |
| 13 | Resource 1 | Activity 1 | Activity 2 | Profit | Profit      |
| 14 |            | 2          | 2          | \$6.00 |             |
| 15 | 4          | 4          | 0          | \$4.00 |             |
| 16 | 5          | 3.5        | 0.5        | \$4.50 | \$0.50      |
| 17 | 6          | 3          | 1          | \$5.00 | \$0.50      |
| 18 | 7          | 2.5        | 1.5        | \$5.50 | \$0.50      |
| 19 | 8          | 2          | 2          | \$6.00 | \$0.50      |
| 20 | 9          | 1.5        | 2.5        | \$6.50 | \$0.50      |
| 21 | 10         | 1          | 3          | \$7.00 | \$0.50      |
| 22 | 11         | 0.5        | 3.5        | \$7.50 | \$0.50      |
| 23 | 12         | 0          | 4          | \$8.00 | \$0.50      |
| 24 | 13         | 0          | 4          | \$8.00 | \$0.00      |
| 25 | 14         | 0          | 4          | \$8.00 | \$0.00      |

The allowable range for the right-hand side of the resource 2 constraint is approximately between 3 and 8.

|    | Α          | В          | С          | D      | E           |
|----|------------|------------|------------|--------|-------------|
| 28 | Available  | Solu       | ition      | Total  | Incremental |
| 29 | Resource 2 | Activity 1 | Activity 2 | Profit | Profit      |
| 30 |            | 2          | 2          | \$6.00 |             |
| 31 | 0          | 0          | 0          | \$0.00 |             |
| 32 | 1          | 0          | 1          | \$2.00 | \$2.00      |
| 33 | 2          | 0          | 2          | \$4.00 | \$2.00      |
| 34 | 3          | 0.5        | 2.5        | \$5.50 | \$1.50      |
| 35 | 4          | 2          | 2          | \$6.00 | \$0.50      |
| 36 | 5          | 3.5        | 1.5        | \$6.50 | \$0.50      |
| 37 | 6          | 5          | 1          | \$7.00 | \$0.50      |
| 38 | 7          | 6.5        | 0.5        | \$7.50 | \$0.50      |
| 39 | 8          | 8          | 0          | \$8.00 | \$0.50      |
| 40 | 9          | 8          | 0          | \$8.00 | \$0.00      |
| 41 | 10         | 8          | 0          | \$8.00 | \$0.00      |

(e) The shadow price for both resources is \$0.50. The allowable range for the right-hand side of the first resource is between 4 and 12 and that of the second resource is between 2.667 and 8.

## Adjustable Cells

| MERCE/STATISTICS |                     | Final | Reduced | Objective   | Allowable | Allowable |
|------------------|---------------------|-------|---------|-------------|-----------|-----------|
| Cell             | Name                | Value | Cost    | Coefficient | Increase  | Decrease  |
| \$B\$9           | Solution Activity 1 | 2     | 0       | 1           | 1         | 0.333     |
| \$C\$9           | Solution Activity 2 | 2     | 0       | 2           | 11        | 11        |

## Constraints

| Cell   | Name            | Final<br>Value | Shadow<br>Price | Constraint<br>R.H. Side | Allowable<br>Increase | Allowable<br>Decrease |
|--------|-----------------|----------------|-----------------|-------------------------|-----------------------|-----------------------|
| \$D\$5 | Resource 1 Used | 8              | 0.5             | 8                       | 4                     | 4                     |
| \$D\$6 | Resource 2 Used | 4              | 0.5             | 4                       | 4                     | 1.333                 |

(f) These shadow prices tell management that for each additional unit of resource, the profit increases by \$0.50 (for small changes). Management is then able to evaluate whether or not to change the available amount of resources.

## **6.8-4.**

(a)

|   | Α             | В      | c             | D     | E | F            |
|---|---------------|--------|---------------|-------|---|--------------|
| 1 |               | Toys   | Subassemblies |       |   |              |
| 2 | Unit Profit   | \$3.00 | -\$2.50       |       |   |              |
| 3 |               |        |               |       |   |              |
| 4 |               | Resou  | irce Usage    | Used  |   | Available    |
| 5 | Subassembly A | 2      | -1            | 3,000 | 2 | 3,000        |
| 6 | Subassembly B | 1      | -1            | 1,000 | 2 | 1,000        |
| 7 |               |        |               |       |   |              |
| 8 |               | Toys   | Subassemblies |       |   | Total Profit |
| 9 | Production    | 2,000  | 1,000         |       |   | \$3,500      |

(b)

| Unit               | Optimal P | roduction Rates | Total  |
|--------------------|-----------|-----------------|--------|
| Profit<br>for Toys | Toys      | Subassemblie    | Profit |
| \$2.00             | 1000      | s<br>0          | \$2000 |
| \$2.50             | 1000      | 0               | \$2500 |
| \$3.00             | 2000      | 1000            | \$3500 |
| \$3.50             | 2000      | 1000            | \$4500 |
| \$4.00             | 2000      | 1000            | \$5500 |

The estimate of the unit profit for toys can be off by something between 0 and 0.50 before the optimal solution changes. There is no change in the solution for an increase in the unit profit for toys, at least for an increase up to \$1.

(c)

| Unit Profit       | Optin | Total                  |        |
|-------------------|-------|------------------------|--------|
| for Subassemblies | Toys  | Rates<br>Subassemblies | Profit |
| -\$3.50           | 1000  | 0                      | \$3000 |
| -\$3.00           | 1000  | 0                      | \$3000 |
| -\$2.50           | 2000  | 1000                   | \$3500 |
| -\$2.00           | 2000  | 1000                   | \$4000 |
| -\$1.50           | 2000  | 1000                   | \$4500 |

The estimate of the unit profit for subassemblies can be off by something between 0 and 0.50 before the optimal solution changes. There is no change in the solution for an increase in the unit profit for subassemblies, at least for an increase up to \$1.

(d) Solver Table for change in unit profit for toys as in (b):

|    | Α           | В     | С             | D            |
|----|-------------|-------|---------------|--------------|
| 11 | Unit Profit | Prod  | uction        |              |
| 12 | for Toys    | Toys  | Subassemblies | Total Profit |
| 13 |             | 2,000 | 1,000         | \$3,500      |
| 14 | \$2.00      | 1000  | 0             | \$2,000      |
| 15 | \$2.25      | 1000  | 0             | \$2,250      |
| 16 | \$2.50      | 1000  | 0             | \$2,500      |
| 17 | \$2.75      | 2000  | 1000          | \$3,000      |
| 18 | \$3.00      | 2000  | 1000          | \$3,500      |
| 19 | \$3.25      | 2000  | 1000          | \$4,000      |
| 20 | \$3.50      | 2000  | 1000          | \$4,500      |
| 21 | \$3.75      | 2000  | 1000          | \$5,000      |
| 22 | \$4.00      | 2000  | 1000          | \$5,500      |

Solver Table for change in unit profit for subassemblies as in (c):

|    | Α                 | ВС    |               | D            |
|----|-------------------|-------|---------------|--------------|
| 11 | Unit Profit       | Produ | uction        |              |
| 12 | for Subassemblies | Toys  | Subassemblies | Total Profit |
| 13 |                   | 2,000 | 1,000         | \$3,500      |
| 14 | -\$3.50           | 1000  | 0             | \$3,000      |
| 15 | -\$3.25           | 1000  | 0             | \$3,000      |
| 16 | -\$3.00           | 1000  | 0             | \$3,000      |
| 17 | -\$2.75           | 2000  | 1000          | \$3,250      |
| 18 | -\$2.50           | 2000  | 1000          | \$3,500      |
| 19 | -\$2.25           | 2000  | 1000          | \$3,750      |
| 20 | -\$2.00           | 2000  | 1000          | \$4,000      |
| 21 | -\$1.75           | 2000  | 1000          | \$4,250      |
| 22 | -\$1.50           | 2000  | 1000          | \$4,500      |

- (e) The unit profit for toys can vary between \$2.50 and \$5 before the solution changes. For subassemblies, the unit profit can change between -\$3 and -1.50 before the solution changes.
- (f) The allowable range of the unit profit for toys is \$2.50 to \$5 whereas that for subassemblies is -\$3 to -\$1.50.

Adjustable Cells

| Cell   | Name                     | Final<br>Value | Reduced<br>Cost | Objective<br>Coefficient | Allowable<br>Increase | Allowable<br>Decrease |
|--------|--------------------------|----------------|-----------------|--------------------------|-----------------------|-----------------------|
| \$B\$9 | Production Toys          | 2,000          | 0               | 3                        | 2                     | 0.5                   |
| \$C\$9 | Production Subassemblies | 1,000          | 0               | -2.5                     | 1                     | 0.5                   |

(g)

|          | Α            | В       | С       | D       | E       | F          | G           | Н        | I       | J       | K       |
|----------|--------------|---------|---------|---------|---------|------------|-------------|----------|---------|---------|---------|
| 11       | Total Profit |         |         |         |         | Unit Profi | t for Subas | semblies |         |         |         |
| 12       |              | \$3,500 | -\$3.50 | -\$3.25 | -\$3.00 | -\$2.75    | -\$2.50     | -\$2.25  | -\$2.00 | -\$1.75 | -\$1.50 |
| 13       |              | \$2.00  | \$2,000 | \$2,000 | \$2,000 | \$2,000    | \$2,000     | \$2,000  | \$2,000 | \$2,250 | \$2,500 |
| 14       |              | \$2.25  | \$2,250 | \$2,250 | \$2,250 | \$2,250    | \$2,250     | \$2,250  | \$2,500 | \$2,750 | \$3,000 |
| 15<br>16 |              | \$2.50  | \$2,500 | \$2,500 | \$2,500 | \$2,500    | \$2,500     | \$2,750  | \$3,000 | \$3,250 | \$3,500 |
| 16       | Unit Profit  | \$2.75  | \$2,750 | \$2,750 | \$2,750 | \$2,750    | \$3,000     | \$3,250  | \$3,500 | \$3,750 | \$4,000 |
| 17       | for Toys     | \$3.00  | \$3,000 | \$3,000 | \$3,000 | \$3,250    | \$3,500     | \$3,750  | \$4,000 | \$4,250 | \$4,500 |
| 18       |              | \$3.25  | \$3,250 | \$3,250 | \$3,500 | \$3,750    | \$4,000     | \$4,250  | \$4,500 | \$4,750 | \$5,000 |
| 19       |              | \$3.50  | \$3,500 | \$3,750 | \$4,000 | \$4,250    | \$4,500     | \$4,750  | \$5,000 | \$5,250 | \$5,500 |
| 20       |              | \$3.75  | \$4,000 | \$4,250 | \$4,500 | \$4,750    | \$5,000     | \$5,250  | \$5,500 | \$5,750 | \$6,000 |
| 21       |              | \$4.00  | \$4,500 | \$4,750 | \$5,000 | \$5,250    | \$5,500     | \$5,750  | \$6,000 | \$6,250 | \$6,500 |

(h) As long as the sum of the percentage change of the unit profit for subassemblies does not exceed 100% (where the allowable range is given in part (f)), the solution does not change.

6.8-5.

(a)

|    | Α             | В        | С             | D     | E | F            |
|----|---------------|----------|---------------|-------|---|--------------|
| 1  |               | Toys     | Subassemblies |       |   |              |
| 2  | Unit Profit   | \$3.00   | -\$2.50       |       |   |              |
| 3  |               |          |               |       |   |              |
| 4  |               | Resource | e Usage       | Used  |   | Available    |
| 5  | Subassembly A | 2        | -1            | 3,000 | 2 | 3,000        |
| 6  | Subassembly B | 1        | -1            | 1,000 | 2 | 1,000        |
| 7  |               |          |               |       |   |              |
| 8  |               | Toys     | Subassemblies |       |   | Total Profit |
| 9  | Production    | 2,000    | 1,000         |       |   | \$3,500.00   |
| 10 |               | 2        |               |       |   |              |
| 11 |               | 2,500    |               |       |   |              |

(b)

|    | Α             | В       | С             | D     | E | F            |
|----|---------------|---------|---------------|-------|---|--------------|
| 1  |               | Toys    | Subassemblies |       |   |              |
| 2  | Unit Profit   | \$3.00  | -\$2.50       |       |   |              |
| 3  |               |         |               |       |   |              |
| 4  |               | Resourc | ce Usage      | Used  |   | Available    |
| 5  | Subassembly A | 2       | -1            | 3,001 | 2 | 3,001        |
| 6  | Subassembly B | 1       | -1            | 1,000 | 2 | 1,000        |
| 7  |               |         |               |       |   |              |
| 8  |               | Toys    | Subassemblies |       |   | Total Profit |
| 9  | Production    | 2,001   | 1,001         |       |   | \$3,500.50   |
| 10 |               | 2       |               |       |   |              |
| 11 |               | 2,500   |               |       |   |              |

The shadow price for subassembly A is \$0.50, which is the maximum premium that the company should be willing to pay.

(c)

| ГТ | Α             | В        | С             | D     | E | F            |
|----|---------------|----------|---------------|-------|---|--------------|
| 1  |               | Toys     | Subassemblies |       |   |              |
| 2  | Unit Profit   | \$3.00   | -\$2.50       |       |   |              |
| 3  |               |          |               |       |   |              |
| 4  |               | Resource | ce Usage      | Used  |   | Available    |
| 5  | Subassembly A | 2        | -1            | 3,000 | 2 | 3,000        |
| 6  | Subassembly B | 1        | -1            | 1,001 | 2 | 1,001        |
| 7  |               |          |               |       |   |              |
| 8  |               | Toys     | Subassemblies |       |   | Total Profit |
| 9  | Production    | 1,999    | 998           |       |   | \$3,502.00   |
| 10 |               | 2        |               |       |   |              |
| 11 |               | 2,500    |               |       |   |              |

The shadow price for subassembly B is \$2, which is the maximum premium that the company should be willing to pay.

(d)

|    | Α             | В     | С             | D          | E           |
|----|---------------|-------|---------------|------------|-------------|
| 14 | Available     | Produ | uction        | Total      | Incremental |
| 15 | Subassembly A | Toys  | Subassemblies | Profit     | Profit      |
| 16 |               | 2,000 | 1,000         | \$3,500.00 |             |
| 17 | 3,000         | 2,000 | 1,000         | \$3,500.00 |             |
| 18 | 3,100         | 2,100 | 1,100         | \$3,550.00 | \$50.00     |
| 19 | 3,200         | 2,200 | 1,200         | \$3,600.00 | \$50.00     |
| 20 | 3,300         | 2,300 | 1,300         | \$3,650.00 | \$50.00     |
| 21 | 3,400         | 2,400 | 1,400         | \$3,700.00 | \$50.00     |
| 22 | 3,500         | 2,500 | 1,500         | \$3,750.00 | \$50.00     |
| 23 | 3,600         | 2,500 | 1,500         | \$3,750.00 | \$0.00      |
| 24 | 3,700         | 2,500 | 1,500         | \$3,750.00 | \$0.00      |
| 25 | 3,800         | 2,500 | 1,500         | \$3,750.00 | \$0.00      |
| 26 | 3,900         | 2,500 | 1,500         | \$3,750.00 | \$0.00      |
| 27 | 4,000         | 2,500 | 1,500         | \$3,750.00 | \$0.00      |

The shadow price is still valid until the maximum supply of subassembly A is at least 3,500.

(e)

|    | Α             | В     | С             | D          | E           |
|----|---------------|-------|---------------|------------|-------------|
| 14 | Available     | Produ | uction        | Total      | Incremental |
| 15 | Subassembly B | Toys  | Subassemblies | Profit     | Profit      |
| 16 |               | 2,000 | 1,000         | \$3,500.00 |             |
| 17 | 1,000         | 2,000 | 1,000         | \$3,500.00 |             |
| 18 | 1,100         | 1,900 | 800           | \$3,700.00 | \$200.00    |
| 19 | 1,200         | 1,800 | 600           | \$3,900.00 | \$200.00    |
| 20 | 1,300         | 1,700 | 400           | \$4,100.00 | \$200.00    |
| 21 | 1,400         | 1,600 | 200           | \$4,300.00 | \$200.00    |
| 22 | 1,500         | 1,500 | 0             | \$4,500.00 | \$200.00    |
| 23 | 1,600         | 1,500 | 0             | \$4,500.00 | \$0.00      |
| 24 | 1,700         | 1,500 | 0             | \$4,500.00 | \$0.00      |
| 25 | 1,800         | 1,500 | 0             | \$4,500.00 | \$0.00      |
| 26 | 1,900         | 1,500 | 0             | \$4,500.00 | \$0.00      |
| 27 | 2,000         | 1,500 | 0             | \$4,500.00 | \$0.00      |

The shadow price is still valid until the maximum supply of subassembly A is at least 1,500.

(f)

Adjustable Cells

| Cell   | Name                     | Final<br>Value | Reduced<br>Cost | Objective<br>Coefficient | Allowable<br>increase | Allowable<br>Decrease |
|--------|--------------------------|----------------|-----------------|--------------------------|-----------------------|-----------------------|
| \$B\$9 | Production Toys          | 2,000          | 0               | 3                        | 2                     | 0.5                   |
| \$C\$9 | Production Subassemblies | 1,000          | 0               | -2.5                     | 1                     | 0.5                   |

| Constraints    | s                  |       |        |            |           |           |
|----------------|--------------------|-------|--------|------------|-----------|-----------|
| MACHININAMENTA |                    | Final | Shadow | Constraint | Allowable | Allowable |
| Cell           | Name               | Value | Price  | R.H. Side  | Increase  | Decrease  |
| \$D\$5         | Subassembly A Used | 3,000 | 0.5    | 3000       | 500       | 1000      |
| \$D\$6         | Subassembly B Used | 1,000 | 2      | 1000       | 500       | 500       |

As shown in the sensitivity report, the shadow price is \$0.50 for subassembly A and \$2 for subassembly B. According to the allowable increase and decrease, the allowable range for the right-hand side of the subassembly A constraint is 2,000 to 3,500. The allowable range for the right-hand side of the subassembly B constraint is 500 to 1,500.

## **6.8-6.**

- (a) The optimal solution does not change.
- (b) The optimal solution changes.

| $ \top$  | В              | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D           | E              | F            | G        | H       | I         | J                          |
|----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|--------------|----------|---------|-----------|----------------------------|
| 3        |                | 6am-2pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8am-4pm     | Noon-8pm       | 4pm-midnight | 10pm-6am |         |           |                            |
| 4        |                | Shift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Shift       | Shift          | Shift        | Shift    |         |           |                            |
| 5        | Cost per Shift | \$170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$160       | \$175          | \$170        | \$195    |         |           |                            |
| 6        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                |              |          | Total   |           | Minimum                    |
| 7        | Time Period    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shift Works | Time Period? ( | 1=yes, 0=no) |          | Working | Щ         | Needed                     |
| 8        | 6am-8am        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0              | 0            | 0        | 48      | 3         | 48                         |
| 9        | 8am-10am       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           | 0              | 0            | 0        | 79      | 3         | 79                         |
| 10       | 10am- 12pm     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1          | 0              | 0            | 0        | 79      | 3         | 65                         |
| 11       | 12pm-2pm       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           | 1              | 0            | 0        | 112     | 3         | 87                         |
| 12<br>13 | 2pm-4pm        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           | 1              | 0            | 0        | 64      | 3         | 64                         |
| 13       | 4pm-6pm        | ٥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 1              | 1            | 0        | 82      | 3         | 73                         |
| 14       | 6pm-8pm        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 1              | 1            | 0        | 82      | 3         | 73<br>82<br>43<br>52<br>15 |
| 15       | 8pm-10pm       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 11        | D              | 1            | 0        | 49      | 3         | 43                         |
| 16       | 10pm-12am      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0              | 1            | 1        | 64      | 3         | 52                         |
| 17       | 12am-6am       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0           | 0              | 0            |          | 15      | 3         | 15                         |
| 18       |                | Apply and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco |             |                |              |          |         | $\square$ |                            |
| 19       |                | 6am-2pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8am-4pm     | Noon-8pm       | 4pm-midnight | 10pm-6am |         |           |                            |
| 20       |                | Shift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Shift       | Shift          | Shift        | Shift    |         | L         | Total Cost                 |
| 21       | Number Working | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31          | 33             | 49           | 15       |         |           | \$30,150                   |

(c) The optimal solution changes.

| ΤТ                   | В              | C                                       | D           | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F             | G        | Н       | I       | J          |
|----------------------|----------------|-----------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|---------|---------|------------|
| 3                    |                | 6am-2pm                                 | 8am-4pm     | Noon-8pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4pm-midnight  | 10pm-6am |         |         |            |
| 4                    |                | Shift                                   | Shift       | Shift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Shift         | Shift    |         |         |            |
| 5                    | Cost per Shift | \$170                                   | \$165       | \$175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$170         | \$195    |         | $\perp$ |            |
| 6                    |                |                                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |          | _ Total |         | Minimum    |
| 7                    | Time Period    |                                         | Shift Works | Time Period?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1=yes, 0=no) |          | Working |         | Needed     |
| 8                    | 6am-8am        | 100111                                  |             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0             | 0        | 48      | 3       | 48         |
| 9                    | 8am-10am       | 1                                       | 1           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0             | 0        | 79      | 3       | 79         |
| 10                   | 10am- 12pm     | 1                                       | 1           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0             | 0        | 79      |         | 65<br>87   |
| 10<br>11             | 12pm-2pm       | 1                                       | 1           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0             | 0        | 112     | 3       |            |
| 12                   | 2pm-4pm        | 0                                       | 1.          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0             | 0        | 64      | 3       | 64         |
| 13                   | 4pm-6pm        | 0                                       | 0           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1             | 0        | 82      | 3       | 73         |
| 12<br>13<br>14       | 6pm-8pm        | 0                                       | 0           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1             | 0        | 82      | 3       | 82         |
| 15                   | 8pm-10pm       | 0.                                      | 0           | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1             | 0        | 49      | 3       | 43         |
| 15<br>16             | 10pm-12am      | 0                                       | 0           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1             | 1        | 64      | 3       | 52         |
| 17                   | 12am-6am       | 0                                       | 0           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0             | 1 2      | _15     | 3       | 15         |
| 18                   |                | 000000000000000000000000000000000000000 |             | NAME OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY |               |          |         |         |            |
| 19                   |                | 6am-2pm                                 | 8am-4pm     | Noon-8pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4pm-midnight  | 10pm-6am |         |         |            |
| 17<br>18<br>19<br>20 |                | Shift                                   | Shift       | Shift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Shift         | Shift    |         |         | Total Cost |
| 21                   | Number Working | 48                                      | 31          | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49            | 15       |         |         | \$30,305   |

- (d) The optimal solution does not change.
- (e) The optimal solution does not change.

(f)

Adjustable Cells

|         |                      | Final | Reduced | Objective   | Allowable | Allowable |
|---------|----------------------|-------|---------|-------------|-----------|-----------|
| Cell    | Name                 | Value | Cost    | Coefficient | Increase  | Decrease  |
| \$C\$21 | Number Working Shift | 48    | 0       | 170         | 1E+30     | 10        |
| \$D\$21 | Number Working Shift | 31    | 0       | 160         | 10        | 160       |
| \$E\$21 | Number Working Shift | 39    | 0       | 175         | 5         | 175       |
| \$F\$21 | Number Working Shift | 43    | 0       | 180         | 1E+30     | 5         |
| \$G\$21 | Number Working Shift | 15    | 0       | 195         | 1E+30     | 195       |

Part (a): The optimal solution does not change (within the allowable increase of \$10).

Part (b): The optimal solution does change (outside the allowable decrease of \$5).

Part (c): Percentage of allowable increase for shift 2: (165 - 160)/10 = 50%Percentage of allowable decrease for shift 4: (180 - 170)/5 = 200%Sum: 250%

The optimal solution may or may not change.

Part (d): Percentage of allowable decrease for shift 1: (170-166)/10=40%Percentage of allowable increase for shift 2: (164-160)/10=40%Percentage of allowable decrease for shift 3: (175-171)/175=2%Percentage of allowable increase for shift 4:  $(184-180)/\infty=0\%$ Percentage of allowable increase for shift 5:  $(199-194)/\infty=0\%$ Sum: 82%

The optimal solution does not change.

Part (e): Percentage of allowable increase for shift 1:  $(173.40 - 170)/\infty = 0\%$ Percentage of allowable increase for shift 2: (163.20 - 160)/10 = 32%Percentage of allowable increase for shift 3: (178.50 - 175)/5 = 70%Percentage of allowable increase for shift 4:  $(183.60 - 180)/\infty = 0\%$ Percentage of allowable increase for shift 5:  $(198.90 - 195)/\infty = 0\%$ Sum: 102%

The optimal solution may or may not change.

(g)

|     | В              | C       | D       | E        | F            | G        | Н        |
|-----|----------------|---------|---------|----------|--------------|----------|----------|
| 24  | Cost per Shift | 6am-2pm | 8am-4pm | Noon-8pm | 4pm-midnight | 10pm-6am | Total    |
| 25  | 6am-2pm        | Shift   | Shift   | Shift    | Shift        | Shift    | Cost     |
| 26  |                | 48      | 31      | 39       | 43           | 15       | \$30,610 |
| 27  | \$155          | 54      | 25      | 39       | 43           | 15       | \$29,860 |
| 28  | \$158          | 54      | 25      | 39       | 43           | 15       | \$30,022 |
| 29  | \$161          | 48      | 31      | 39       | 43           | 15       | \$30,178 |
| _30 | \$164          | 48      | 31      | 39       | 43           | 15       | \$30,322 |
| 31  | \$167          | 48      | 31      | 39       | 43           | 15       | \$30,466 |
| 32  | \$170          | 48      | 31      | 39       | 43           | 15       | \$30,610 |
| 33  | \$173          | 48      | 31      | 39       | 43           | 15       | \$30,754 |
| 34  | \$176          | 48      | 31      | 39       | 43           | 15       | \$30,898 |
| 35  | \$179          | 48      | 31      | 39       | 43           | 15       | \$31,042 |
| 36  | \$182          | 48      | 31      | 39       | 43           | 15       | \$31,186 |
| 37  | \$185          | 48      | 31      | 39       | 43           | 15       | \$31,330 |

|                                  | В              | С       | D       | E        | F            | G        | н        |
|----------------------------------|----------------|---------|---------|----------|--------------|----------|----------|
| 40                               | Cost per Shift | 6am-2pm | 8am-4pm | Noon-8pm | 4pm-midnight | 10pm-6am | Total    |
| 41                               | 8am-4pm        | Shift   | Shift   | Shift    | Shift        | Shift    | Cost     |
| 42                               |                | 48      | 31      | 39       | 43           | 15       | \$30,610 |
| _43                              | \$145          | 48      | 31      | 39       | 43           | 15       | \$30,145 |
| 44                               | \$148          | 48      | 31      | 39       | 43           | 15       | \$30,238 |
| 45                               | \$151          | 48      | 31      | 39       | 43           | 15       | \$30,331 |
| 46<br>47                         | \$154          | 48      | 31      | 39       | 43           | 15       | \$30,424 |
| 47                               | \$157          | 48      | 31      | 39       | 43           | 15       | \$30,517 |
| 48                               | \$160          | 48      | 31      | 39       | 43           | 15       | \$30,610 |
| 49                               | \$163          | 48      | 31      | 39       | 43           | 15       | \$30,703 |
| _50                              | \$166          | 48      | 31      | 39       | 43           | 15       | \$30,796 |
| 48<br>49<br>50<br>51<br>52<br>53 | \$169          | 48      | 31      | 39       | 43           | 15       | \$30,889 |
| 52                               | \$172          | 54      | 25      | 39       | 43           | 15       | \$30,970 |
| 53                               | \$175          | 54      | 25      | 39       | 43           | 15       | \$31,045 |

|                | В              | С       | D       | E        | F            | G        | Н        |
|----------------|----------------|---------|---------|----------|--------------|----------|----------|
| 56<br>57       | Cost per Shift | 6am-2pm | 8am-4pm | Noon-8pm | 4pm-midnight | 10pm-6am | Total    |
| 57             | Noon-8pm       | Shift   | Shift   | Shift    | Shift        | Shift    | Cost     |
| 58             |                | 48      | 31      | 39       | 43           | 15       | \$30.610 |
| 58<br>59<br>60 | \$160          | 48      | 31      | 39       | 43           | 15       | \$30,025 |
| 60             | \$163          | 48      | 31      | 39       | 43           | 15       | \$30,142 |
| 61             | \$166          | 48      | 31      | 39       | 43           | 15       | \$30,259 |
| 61<br>62       | \$169          | 48      | 31      | 39       | 43           | 15       | \$30,376 |
| 63             | \$172          | 48      | 31      | 39       | 43           | 15       | \$30,493 |
| 64             | \$175          | 48      | 31      | 39       | 43           | 15       | \$30,610 |
| 64<br>65       | \$178          | 48      | 31      | 39       | 43           | 15       | \$30,727 |
| 66             | \$181          | 48      | 31      | 33       | 49           | 15       | \$30,838 |
| 67             | \$184          | 48      | 31      | 33       | 49           | 15       | \$30,937 |
| 68             | \$187          | 48      | 31      | 33       | 49           | 15       | \$31,036 |
| 69             | \$190          | 48      | 31      | 33       | 49           | 15       | \$31.135 |

|     | В              | C       | D       | E        | F            | G        | Н        |
|-----|----------------|---------|---------|----------|--------------|----------|----------|
| 88  | Cost per Shift | 6am-2pm | 8am-4pm | Noon-8pm | 4pm-midnight | 10pm-6am | Total    |
| 89  | 10pm-6am       | Shift   | Shift   | Shift    | Shift        | Shift    | Cost     |
| 90  |                | 48      | 31      | 39       | 43           | 15       | \$30,610 |
| 91  | \$180          | 48      | 31      | 39       | 43           | 15       | \$30,385 |
| 92  | \$183          | 48      | 31      | 39       | 43           | 15       | \$30,430 |
| 93  | \$186          | 48      | 31      | 39       | 43           | 15       | \$30,475 |
| 94  | \$189          | 48      | 31      | 39       | 43           | 15       | \$30,520 |
| 95  | \$192          | 48      | 31      | 39       | 43           | 15       | \$30,565 |
| 96  | \$195          | 48      | 31      | 39       | 43           | 15       | \$30,610 |
| 97  | \$198          | 48      | 31      | 39       | 43           | 15       | \$30,655 |
| 98  | \$201          | 48      | 31      | 39       | 43           | 15       | \$30,700 |
| 99  | \$204          | 48      | 31      | 39       | 43           | 15       | \$30,745 |
| 100 | \$207          | 48      | 31      | 39       | 43           | 15       | \$30,790 |
| 101 | \$210          | 48      | 31      | 39       | 43           | 15       | \$30.835 |

# **6.8-7.**

|    | В              | С                        | D           | E              | F            | G        | Н       | I | J          |
|----|----------------|--------------------------|-------------|----------------|--------------|----------|---------|---|------------|
| 3  |                | 6am-2pm                  | 8am-4pm     | Noon-8pm       | 4pm-midnight | 10pm-6am |         |   |            |
| 4  |                | Shift                    | Shift       | Shift          | Shift        | Shift    |         |   |            |
| 5  | Cost per Shift | \$170                    | \$160       | \$175          | \$180        | \$195    |         |   |            |
| 6  |                | ************************ |             |                |              |          | Total   |   | Minimum    |
| 7  | Time Period    |                          | Shift Works | Time Period? ( | 1=yes, 0=no) |          | Working |   | Needed     |
| 8  | 6am-8am        | 1                        | 0           | 0              | 0            | 0        | 48      | 3 | 48         |
| 9  | 8am-10am       | 1                        | 1           | . 0            | 0            | 0        | 79      | 3 | 79         |
| 10 | 10am- 12pm     | 1                        | 1           | 0              | 0            | 0        | 79      | 3 | 65         |
| 11 | 12pm-2pm       | 1                        | 1           | 1              | 0            | 0        | 118     | 3 | 87<br>64   |
| 12 | 2pm-4pm        | 0                        | 1           | - 1            | 0            | 0        | 70      | 3 | 64         |
| 13 | 4pm-6pm        | 0                        | 0           | 1              | 1            | 0        | 82      | 3 | 73         |
| 14 | 6pm-8pm        | 0                        | 0           | - 1            | 1.           | 0        | 82      | 3 | 82         |
| 15 | 8pm-10pm       | 0                        | 0           | 0              | 1            | 0        | 43      | 3 | 43         |
| 16 | 10pm-12am      | 0.                       | 0           | 0              | . 1          | 1        | 58      | 3 | 52         |
| 17 | 12am-6am       | 0                        | 0           | 0              | 0            | 1        | 15      | 3 | 15         |
| 18 |                | PROFESSION (1000)        |             |                |              |          |         |   |            |
| 19 |                | 6am-2pm                  | 8am-4pm     | Noon-8pm       | 4pm-midnight | 10pm-6am |         |   |            |
| 20 |                | Shift                    | Shift       | Shift          | Shift        | Shift    |         |   | Total Cost |
| 21 | Number Working | 48                       | 31          | 39             | 43           | 15       |         |   | \$30,610   |

Adjustable Cells

| ************************************** |                      | Final | Reduced | •           | Allowable |          |
|----------------------------------------|----------------------|-------|---------|-------------|-----------|----------|
| Cell                                   | Name                 | Value | Cost    | Coefficient | Increase  | Decrease |
| \$C\$21                                | Number Working Shift | 48    | 0       | 170         | 1E+30     | 10       |
| \$D\$21                                | Number Working Shift | 31    | 0       | 160         | 10        | 160      |
| \$E\$21                                | Number Working Shift | 39    | 0       | 175         | 5         | 175      |
| \$F\$21                                | Number Working Shift | 43    | 0       | 180         | 1E+30     | 5        |
| \$G\$21                                | Number Working Shift | 15    | 0       | 195         | 1E+30     | 195      |

Constraints

| Cell    | Name               | Final<br>Value | Shadow<br>Price | Constraint<br>R.H. Side | Allowable<br>increase | Allowable<br>Decrease |
|---------|--------------------|----------------|-----------------|-------------------------|-----------------------|-----------------------|
| \$H\$8  | 6am-8am Working    | 48             | 10              | 48                      | 6                     | 48                    |
| \$H\$9  | 8am-10am Working   | 79             | 160             | 79                      | 1E+30                 | 6                     |
| \$H\$10 | 10am- 12pm Working | 79             | 0               | 65                      | 14                    | 1E+30                 |
| \$H\$11 | 12pm-2pm Working   | 118            | 0               | 87                      | 31                    | 1E+30                 |
| \$H\$12 | 2pm-4pm Working    | 70             | 0               | 64                      | 6                     | 1E+30                 |
| \$H\$13 | 4pm-6pm Working    | 82             | 0               | 73                      | 9                     | 1E+30                 |
| \$H\$14 | 6pm-8pm Working    | 82             | 175             | 82                      | 1E+30                 | 6                     |
| \$H\$15 | 8pm-10pm Working   | 43             | 5               | 43                      | 6                     | 6                     |
| \$H\$16 | 10pm-12am Working  | 58             | 0               | 52                      | 6                     | 1E+30                 |
| \$H\$17 | 12am-6am Working   | 15             | 195             | 15                      | 1E+30                 | 6                     |

(a) The following shifts can be increased by the indicated amounts without increasing the total cost: Serve 10-12 a.m.  $\to$  14

Serve 12-2 p.m.  $\rightarrow$  31

Serve 2-4 p.m.  $\rightarrow$  6

Serve 4-6 p.m.  $\rightarrow$  9

Serve 10-12 p.m.  $\rightarrow$  6.

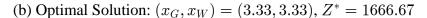
(b) For each of the following shifts, the total cost increases by the amount indicated per unit increase. These costs hold for the indicated increases.

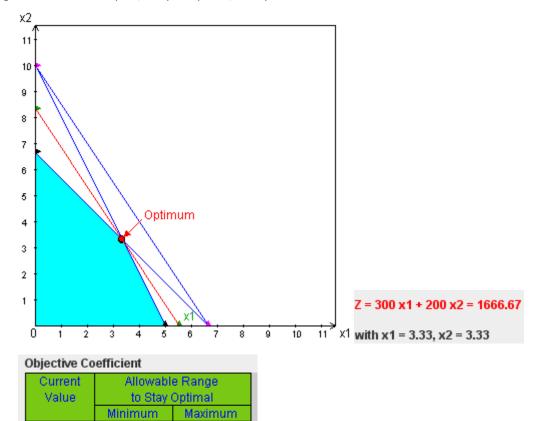
| Shift           | Increased Cost | Valid for Increase |
|-----------------|----------------|--------------------|
| Serve 6-8 a.m.  | \$10           | 6                  |
| Serve 8-10 a.m. | \$160          | 8                  |
| Serve 6-8 p.m.  | \$175          | 8                  |
| Serve 8-10 p.m. | \$5            | 6                  |
| Serve 12-6 a.m. | \$195          | 8                  |

(c) Percentage of allowable increase for 6-8 a.m.: (49-48)/6=16.7% Percentage of allowable increase for 8-10 a.m.:  $(80-79)/\infty=0\%$  Percentage of allowable increase for 6-8 p.m.:  $(83-82)/\infty=0\%$  Percentage of allowable increase for 8-10 p.m.: (44-43)/6=16.7% Percentage of allowable increase for 12-6 a.m.:  $(16-15)/\infty=0\%$  Sum: 33.4%

The shadow prices are still valid.

(d) Percentage of allowable increase for 6-8 a.m.: (49-48)/6=16.7% Percentage of allowable increase for 8-10 a.m.:  $(80-79)/\infty=0\%$  Percentage of allowable increase for 10-12 a.m.: (66-65)/14=7.1% Percentage of allowable increase for 12-2 p.m.: (88-87)/31=3.2% Percentage of allowable increase for 2-4 p.m.: (65-64)/6=16.7% Percentage of allowable increase for 4-6 p.m.: (74-73)/9=11.1% Percentage of allowable increase for 6-8 p.m.:  $(83-82)/\infty=0\%$  Percentage of allowable increase for 8-10 p.m.: (44-43)/6=16.7% Percentage of allowable increase for 10-12 p.m.: (53-52)/6=16.7% Percentage of allowable increase for 12-6 a.m.:  $(16-15)/\infty=0\%$  Sum: 88.2%


The shadow prices are still valid.


(e) All numbers can be increased by  $100/88.2 \approx 1.13$  hours before it is no longer definite that the shadow prices remain valid.

### 6.8-8.

(a) Let  $x_G$  and  $x_W$  be the number of grandfather and wall clocks produced respectively.

maximize 
$$300x_G+200x_W$$
 subject to 
$$6x_G+4x_W\leq 40$$
 
$$8x_G+4x_W\leq 40$$
 
$$3x_G+3x_W\leq 20$$
 and 
$$x_G,x_W\geq 0$$





The unit profit for grandfather clocks is allowed to vary between \$200 and \$400, so if it changed from \$300 to \$375, the optimal solution would remain the same, provided that there are no other changes in the model. However, if in addition to this, the unit profit for wall clocks is changed to \$175, the optimal solution becomes (5,0).

# (c) Using Excel Solver:

|                 | Grandfather<br>Clocks | Wall Clocks   |       |   |           |
|-----------------|-----------------------|---------------|-------|---|-----------|
| Unit Profit     | \$300                 | \$200         |       |   |           |
|                 |                       |               | Hours |   | Hours     |
|                 | Hours Requi           | red per Clock | Used  |   | Available |
| David           | 6                     | 4             | 33.33 | ≤ | 40        |
| LaDeana         | 8                     | 4             | 40    | ≤ | 40        |
| Lydia           | 3                     | 3             | 20    | М | 20        |
|                 |                       |               |       |   |           |
|                 | Grandfather           | Wall Clocks   |       |   | Total     |
|                 | Clocks                | VVali Clucks  |       |   | Profit    |
| Clocks Produced | 3.33                  | 3.33          |       |   | \$1,667   |

(d)

|                 | Grandfather<br>Clocks | Wall Clocks   |       |   |           |
|-----------------|-----------------------|---------------|-------|---|-----------|
| Unit Profit     | \$375                 | \$200         |       |   |           |
|                 |                       |               | Hours |   | Hours     |
|                 | Hours Requi           | red per Clock | Used  |   | Available |
| David           | 6                     | 4             | 33.33 | ≤ | 40        |
| LaDeana         | 8                     | 4             | 40    | ≤ | 40        |
| Lydia           | 3                     | 3             | 20    | ≤ | 20        |
|                 |                       |               |       |   |           |
|                 | Grandfather           | Wall Clocks   |       |   | Total     |
|                 | Clocks                | VVali Clucks  |       |   | Profit    |
| Clocks Produced | 3.33                  | 3.33          |       |   | \$1,917   |

Changing the unit profit of grandfather clocks to \$375 does not change the optimal solution.

| Clocks Produced | 5.00                  | 0.00           |       |   | \$1,875   |
|-----------------|-----------------------|----------------|-------|---|-----------|
|                 | Clocks                | I vvali Clucks |       |   | Profit    |
|                 | Grandfather           | Wall Clocks    |       |   | Total     |
|                 |                       |                |       |   |           |
| Lydia           | 3                     | 3              | 15    | ≤ | 20        |
| LaDeana         | 8                     | 4              | 40    | ≤ | 40        |
| David           | 6                     | 4              | 30.00 | ≤ | 40        |
|                 | Hours Requi           | red per Clock  | Used  |   | Available |
|                 |                       |                | Hours |   | Hours     |
| Unit Profit     | \$375                 | \$175          |       |   |           |
|                 | Grandfather<br>Clocks | Wall Clocks    |       |   |           |

If we also change the unit profit of wall clocks to \$175, then the optimal solution changes to reflect the fact that it is now more profitable to produce only grandfather clocks.

(e)

| Unit Profit            | Optimal Cloc          | ks Produced | Total      |
|------------------------|-----------------------|-------------|------------|
| for Grandfather Clocks | Grandfather<br>Clocks | Wall Clocks | Profit     |
|                        | 3.33                  | 3.33        | \$1,666.67 |
| \$150                  | 0.00                  | 6.67        | \$1,333.33 |
| \$170                  | 0.00                  | 6.67        | \$1,333.33 |
| \$190                  | 0.00                  | 6.67        | \$1,333.33 |
| \$210                  | 3.33                  | 3.33        | \$1,366.67 |
| \$230                  | 3.33                  | 3.33        | \$1,433.33 |
| \$250                  | 3.33                  | 3.33        | \$1,500.00 |
| \$270                  | 3.33                  | 3.33        | \$1,566.67 |
| \$290                  | 3.33                  | 3.33        | \$1,633.33 |
| \$310                  | 3.33                  | 3.33        | \$1,700.00 |
| \$330                  | 3.33                  | 3.33        | \$1,766.67 |
| \$350                  | 3.33                  | 3.33        | \$1,833.33 |
| \$370                  | 3.33                  | 3.33        | \$1,900.00 |
| \$390                  | 3.33                  | 3.33        | \$1,966.67 |
| \$410                  | 5.00                  | 0.00        | \$2,050.00 |
| \$430                  | 5.00                  | 0.00        | \$2,150.00 |
| \$450                  | 5.00                  | 0.00        | \$2,250.00 |

From the Solver Table, the allowable range to stay optimal for the unit profit of grandfather clocks is the interval  $[210-\Delta_1,390+\Delta_2]$ , where  $\Delta_1>20$  and  $0\leq\Delta_2<20$ .

| Unit Profit     |                       | ks Produced | Total      |
|-----------------|-----------------------|-------------|------------|
| for Wall Clocks | Grandfather<br>Clocks | Wall Clocks | Profit     |
|                 | 3.33                  | 3.33        | \$1,666.67 |
| \$50            | 5.00                  | 0.00        | \$1,500.00 |
| \$70            | 5.00                  | 0.00        | \$1,500.00 |
| \$90            | 5.00                  | 0.00        | \$1,500.00 |
| \$110           | 5.00                  | 0.00        | \$1,500.00 |
| \$130           | 5.00                  | 0.00        | \$1,500.00 |
| \$150           | 5.00                  | 0.00        | \$1,500.00 |
| \$170           | 3.33                  | 3.33        | \$1,566.67 |
| \$190           | 3.33                  | 3.33        | \$1,633.33 |
| \$210           | 3.33                  | 3.33        | \$1,700.00 |
| \$230           | 3.33                  | 3.33        | \$1,766.67 |
| \$250           | 3.33                  | 3.33        | \$1,833.33 |
| \$270           | 3.33                  | 3.33        | \$1,900.00 |
| \$290           | 3.33                  | 3.33        | \$1,966.67 |
| \$310           | 0.00                  | 6.67        | \$2,066.67 |
| \$330           | 0.00                  | 6.67        | \$2,200.00 |
| \$350           | 0.00                  | 6.67        | \$2,333.33 |

From the Solver Table, the allowable range to stay optimal for the unit profit of wall clocks is the interval  $[170-\Delta_3,290+\Delta_4]$ , where  $\Delta_3>20$  and  $0\leq\Delta_4<20$ .

(f)

| Total Profi | it        |            |            | Unit Profit for Wall Clocks |            |            |            |            |            |
|-------------|-----------|------------|------------|-----------------------------|------------|------------|------------|------------|------------|
|             |           | \$1,666.67 | \$50       | \$100                       | \$150      | \$200      | \$250      | \$300      | \$350      |
|             |           | \$150      | \$750.00   | \$833.33                    | \$1,000.00 | \$1,333.33 | \$1,666.67 | \$2,000.00 | \$2,333.33 |
|             |           | \$200      | \$1,000.00 | \$1,000.00                  | \$1,166.67 | \$1,333.33 | \$1,666.67 | \$2,000.00 | \$2,333.33 |
| Unit Pr     | ofit for  | \$250      | \$1,250.00 | \$1,250.00                  | \$1,333.33 | \$1,500.00 | \$1,666.67 | \$2,000.00 | \$2,333.33 |
| Grandfath   | er Clocks |            |            |                             |            |            |            |            | \$2,333.33 |
|             |           | \$350      | \$1,750.00 | \$1,750.00                  | \$1,750.00 | \$1,833.33 | \$2,000.00 | \$2,166.67 | \$2,333.33 |
|             |           | \$400      | \$2,000.00 | \$2,000.00                  | \$2,000.00 | \$2,000.00 | \$2,166.67 | \$2,333.33 | \$2,500.00 |
|             |           | \$450      | \$2,250.00 | \$2,250.00                  | \$2,250.00 | \$2,250.00 | \$2,333.33 | \$2,500.00 | \$2,666.67 |

| Clocks Pro | oduced    |             |       | Unit Profit for Wall Clocks |             |             |              |              |             |
|------------|-----------|-------------|-------|-----------------------------|-------------|-------------|--------------|--------------|-------------|
|            |           | (3.33,3.33) | \$50  | \$100                       | \$150       | \$200       | \$250        | \$300        | \$350       |
|            |           | \$150       | (5,0) | (3.33,3.33)                 | (3.33,3.33) | (6.67,6.67) | (6.67 (6.67) | (6.67, 6.67) | (6.67,6.67) |
|            |           | \$200       | (5,0) | (5,0)                       |             | (3.33,3.33) |              |              |             |
| Unit Pr    | rofit for | \$250       | (5,0) | (5,0)                       | (3.33,3.33) | (3.33,3.33) | (3.33, 3.33) | (6.67,6.67)  | (6.67,6.67) |
| Grandfath  | er Clocks | \$300       | (5,0) | (5,0)                       | (5,0)       | (3.33,3.33) | (3.33, 3.33) | (3.33,3.33)  | (6.67,6.67) |
|            |           | \$350       | (5,0) | (5,0)                       | (5,0)       |             |              |              | (3.33,3.33) |
|            |           | \$400       | (5,0) | (5,0)                       | (5,0)       | (5,0)       | (3.33, 3.33) | (3.33, 3.33) | (3.33,3.33) |
|            |           | \$450       | (5,0) | (5,0)                       | (5,0)       | (5,0)       | (3.33, 3.33) | (3.33,3.33)  | (3.33,3.33) |

(g) If David is available to work a maximum of 45 hours, the optimal solution and the total profit do not change. Even when he is available for 40 hours, he is required to use less.

|                 | Grandfather<br>Clocks | Wall Clocks   |       |   |           |
|-----------------|-----------------------|---------------|-------|---|-----------|
| Unit Profit     | \$300                 | \$200         |       |   |           |
|                 |                       |               | Hours |   | Hours     |
|                 | Hours Requi           | red per Clock | Used  |   | Available |
| David           | 6                     | 4             | 33.33 | ≤ | 45        |
| LaDeana         | 8                     | 4             | 40    | ≤ | 40        |
| Lydia           | 3                     | 3             | 20    | ≤ | 20        |
|                 |                       |               |       |   |           |
|                 | Grandfather           | Wall Clocks   |       |   | Total     |
|                 | Clocks                | VVali Clucks  |       |   | Profit    |
| Clocks Produced | 3.33                  | 3.33          |       |   | \$1,667   |

If LaDeana is available for 5 more hours every week, the optimal number of grandfather clocks to be produced increases whereas the optimal number of wall clocks to be produced decreases. The total profit increases by \$125.

|                 | Grandfather<br>Clocks | Wall Clocks   |       |   |           |
|-----------------|-----------------------|---------------|-------|---|-----------|
| Unit Profit     | \$300                 | \$200         |       |   |           |
|                 |                       |               | Hours |   | Hours     |
|                 | Hours Requi           | red per Clock | Used  |   | Available |
| David           | 6                     | 4             | 35.83 | ≤ | 40        |
| LaDeana         | 8                     | 4             | 45    | ≤ | 45        |
| Lydia           | 3                     | 3             | 20    | ≤ | 20        |
|                 |                       |               |       |   |           |
|                 | Grandfather           | Wall Clocks   |       |   | Total     |
|                 | Clocks                | Wall Clocks   |       |   | Profit    |
| Clocks Produced | 4.58                  | 2.08          |       |   | \$1,792   |

Finally, if Lydia increases her availability by 5 hours, the optimal number of grandfather clocks to be produced decreases whereas the optimal number of wall clocks to be produced increases. The optimal total profit increases by \$166, which is more than the increase caused by increasing LaDeana's working hours by the same amount.

|                 | Grandfather<br>Clocks | Wall Clocks   |       |   |           |
|-----------------|-----------------------|---------------|-------|---|-----------|
| Unit Profit     | \$300                 | \$200         |       |   |           |
|                 |                       |               | Hours |   | Hours     |
|                 | Hours Requi           | red per Clock | Used  |   | Available |
| David           | 6                     | 4             | 36.67 | ≤ | 40        |
| LaDeana         | 8                     | 4             | 40    | ≤ | 40        |
| Lydia           | 3                     | 3             | 25    | ≤ | 25        |
|                 |                       |               |       |   |           |
|                 | Grandfather           | Wall Clocks   |       |   | Total     |
|                 | Clocks                | vvali Clucks  |       |   | Profit    |
| Clocks Produced | 1.67                  | 6.67          |       |   | \$1,833   |

Note that in each case, the binding constraints remain the same.

(h)

| Available Hours | Optimal Cloc          | ks Produced | Total      |
|-----------------|-----------------------|-------------|------------|
| for David       | Grandfather<br>Clocks | Wall Clocks | Profit     |
|                 | 3.33                  | 3.33        | \$1,666.67 |
| 35              | 3.33                  | 3.33        | \$1,666.67 |
| 37              | 3.33                  | 3.33        | \$1,666.67 |
| 39              | 3.33                  | 3.33        | \$1,666.67 |
| 41              | 3.33                  | 3.33        | \$1,666.67 |
| 43              | 3.33                  | 3.33        | \$1,666.67 |
| 45              | 3.33                  | 3.33        | \$1,666.67 |

| Available Hours | Optimal Cloc          | ks Produced | Total      |
|-----------------|-----------------------|-------------|------------|
| for LaDeana     | Grandfather<br>Clocks | Wall Clocks | Profit     |
|                 | 3.33                  | 3.33        | \$1,666.67 |
| 35              | 2.08                  | 4.58        | \$1,541.67 |
| 37              | 2.58                  | 4.08        | \$1,591.67 |
| 39              | 3.08                  | 3.58        | \$1,641.67 |
| 41              | 3.58                  | 3.08        | \$1,691.67 |
| 43              | 4.08                  | 2.58        | \$1,741.67 |
| 45              | 4.58                  | 2.08        | \$1,791.67 |

| Available Hours | Optimal Cloc          | ks Produced | Total      |
|-----------------|-----------------------|-------------|------------|
| for Lydia       | Grandfather<br>Clocks | Wall Clocks | Profit     |
|                 | 3.33                  | 3.33        | \$1,666.67 |
| 15              | 5.00                  | 0.00        | \$1,500.00 |
| 17              | 4.33                  | 1.33        | \$1,566.67 |
| 19              | 3.67                  | 2.67        | \$1,633.33 |
| 21              | 3.00                  | 4.00        | \$1,700.00 |
| 23              | 2.33                  | 5.33        | \$1,766.67 |
| 25              | 1.67                  | 6.67        | \$1,833.33 |

(i)

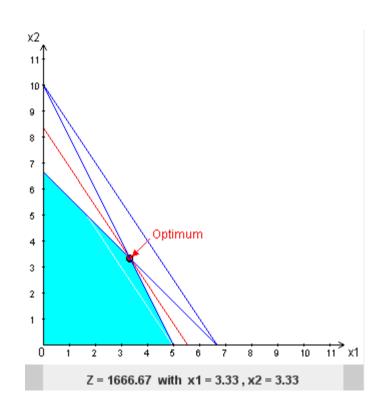
### Adjustable Cells

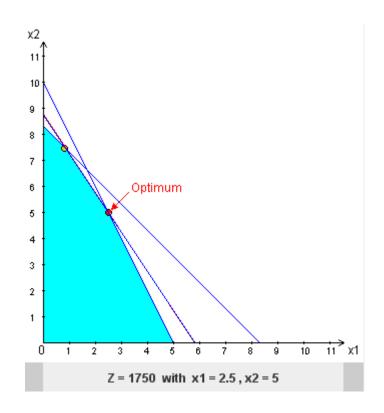
|         |                           | Final | Reduced | Objective   | Allowable | Allowable |
|---------|---------------------------|-------|---------|-------------|-----------|-----------|
| Cell    | Name                      | Value | Cost    | Coefficient | Increase  | Decrease  |
| \$D\$25 | GrandfatherClocksProduced | 3.33  | 0.00    | 300         | 100       | 100       |
| \$E\$25 | WallClocksProduced        | 3.33  | 0.00    | 200         | 100       | 50        |

The unit profit for grandfather clocks should stay in the interval [200, 400] and that for wall clocks should stay in [150, 300] for the optimal solution to remain unchanged.

### Constraints

| Call    | N                | Final | Shadow      | Constraint<br>R.H. Side | Allowable   | Allowable   |
|---------|------------------|-------|-------------|-------------------------|-------------|-------------|
| Cell    | Name             | Value | Price       | K.n. Side               | Increase    | Decrease    |
| \$F\$20 | DavidHoursUsed   | 33.33 | 0.00        | 40                      | 1E+30       | 6.66666667  |
| \$F\$21 | LadeanaHoursUsed | 40    | 25          | 40                      | 13.33333333 | 13.33333333 |
| \$F\$22 | LydiaHoursUsed   | 20    | 33.33333333 | 20                      | 10          | 5           |


Provided that the maximum number of hours David is available is more than 33.334, the binding constraints stay the same. LaDeana's number of available hours can differ from 40 only by 13.333. Lydia's maximum number of hours is allowed to vary between 15 and 30.


- (j) The constraint associated with Lydia has the highest shadow price, so Lydia should be the one to increase the maximum number of hours available to work per week.
- (k) The constraint associated with David is not binding in the optimal solution. In other words, David is required to work less than the maximum number of hours he is available. Hence increasing his availability does not improve the profit unless the other partners offer more time as well, so the shadow price of his constraint is equal to zero.
- (1) The allowable increase for Lydia's hours is 10, so this shadow price can be used for an increase of 5. If Lydia increases her available hours from 20 to 25, the total profit is improved by approximately  $5 \times 33.333 = \$166.665$ , which is pretty close to what was found in part (g). The difference is due to rounding.
- (m) When David changes his maximum of hours to 35 and Lydia changes hers to 25, the constraints that are binding in the optimal solution change to that of David and LaDeana. The constraint of Lydia becomes unbinding. The total profit increases by \$83, which is half of the change resulting from Lydia alone. The change suggested by the shadow prices would be  $5 \times 33.333 + 5 \times 0 = \$166.665$ . The individual changes fall in the

allowable range; however, they change simultaneously, so we cannot use the shadow prices in this case.

|                 | Grandfather<br>Clocks | Wall Clocks   |       |   |           |
|-----------------|-----------------------|---------------|-------|---|-----------|
| Unit Profit     | \$300                 | \$200         |       |   |           |
|                 |                       |               | Hours |   | Hours     |
|                 | Hours Requir          | red per Clock | Used  |   | Available |
| David           | 6                     | 4             | 35.00 | ≤ | 35        |
| LaDeana         | 8                     | 4             | 40    | ≤ | 40        |
| Lydia           | 3                     | 3             | 22.5  | ≤ | 25        |
|                 |                       |               |       |   |           |
|                 | Grandfather           | Wall Clocks   |       |   | Total     |
|                 | Clocks                | VVali CIUCKS  |       |   | Profit    |
| Clocks Produced | 2.50                  | 5.00          |       |   | \$1,750   |







# Cases

a) The decisions to be made are how which types of abatement methods will be used and at what fractions of their abatement capacities for the blast furnaces and the open-hearth furnaces. The constraints on these decisions are the technological limits on how heavily each method can be used and the required reductions in the annual emission rate. The overall measure of performance is cost, which is to be minimized.

|                         |        | Benefit Con | tribution Pe | er Unit of Abates | ment Metl | nod         |           |   |            |
|-------------------------|--------|-------------|--------------|-------------------|-----------|-------------|-----------|---|------------|
| l                       | Taller | Smokestacks |              | Filters           | Bet       | ter Fuels   |           |   | Acceptable |
| Constraints             | Blast  | Open-hearti | n Blast      | Open-hearth       | Blast     | Open-hearth | Totals    |   | Level      |
| reduce particulates     | 12     | 9           | 25           | 20                | 17        | 13          | 60        | ≥ | 60         |
| reduce sulfer oxides    | 35     | 42          | 18           | 31                | 56        | 49          | 150       | ≥ | 150        |
| reduce hydrocarbons     | 37     | 53          | 28           | 24                | 29        | 20          | 125       | 2 | 125        |
| smokestacks - blast     | 1      | 0           | 0            | 0                 | 0         | 0           | 1         | ≤ | 1          |
| smokestacks-open-hearth | 0      | 1           | 0            | 0                 | 0         | 0           | 0.6226975 | ≤ | 1          |
| filters - blast         | 0      | 0           | 1            | 0                 | 0         | 0           | 0.3434794 | ≤ | 1          |
| filters - open-hearth   | 0      | 0           | 0            | 1                 | 0         | 0           | 1         | ≤ | 1          |
| fuels - blast           | 0      | 0           | 0            | 0                 | 1         | 0           | 0.0475728 | ≤ | 1          |
| fuels - open-hearth     | 0      | 0           | 0            | 0                 | 0         | 1           | 1         | ≤ | 1          |
| Unit Cost               | 8      | 10          | 7            | 6                 | 11        | 9           | \$ 32.155 |   |            |
| Solution                | 1      | 0.6227      | 0.3435       | 1                 | 0.0476    | 3 1         | ì         | • |            |

|         |                      | Final  | Reduced | Objective   | Allowable   | Allowable   |
|---------|----------------------|--------|---------|-------------|-------------|-------------|
| Cell    | Name                 | Value  | Cost    | Coefficient | Increase    | Decrease    |
| \$B\$14 | Solution Blast       | 1      | 0       | 8           | 0.336210968 | 1E+30       |
| \$C\$14 | Solution Open-hearth | 0.6227 | 0.0000  | 10          | 0.429446289 | 0.666961637 |
| \$D\$14 | Solution Blast       | 0.3435 | 0.0000  | 7           | 0.381632655 | 2.011459969 |
| \$E\$14 | Solution Open-hearth | 1      | 0       | 6           | 1.816085017 | 1E+30       |
| \$F\$14 | Solution Blast       | 0.0476 | 0.0000  | 11          | 2.975225225 | 0.044638358 |
| \$G\$14 | Solution Open-hearth | 1      | 0       | 9           | 0.044161638 | 1E+30       |

|                         | Final                                                                                                                                    | Shadow                                                                                                                                                                                                                                                                                                                                                      | Constraint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Allowable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Allowable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                    | Value                                                                                                                                    | Price                                                                                                                                                                                                                                                                                                                                                       | R.H. Side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Decrease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ticulates Totals        | 60                                                                                                                                       | 0.111046969                                                                                                                                                                                                                                                                                                                                                 | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.29714286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| er oxides Totals        | 150                                                                                                                                      | 0.126817108                                                                                                                                                                                                                                                                                                                                                 | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.453125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.689655172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| irocarbons Totals       | 125                                                                                                                                      | 0.069325636                                                                                                                                                                                                                                                                                                                                                 | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.041666667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.69195612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ks - blast Totals       | 1                                                                                                                                        | -0.336210968                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.246231156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.748477435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ks - open-hearth Totals | 0.622697455                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.377302545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| st Totals               | 0.343479402                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                           | 1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.656520598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| en-hearth Totals        | 1                                                                                                                                        | -1.816085017                                                                                                                                                                                                                                                                                                                                                | 1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.110609481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| t Totals                | 0.047572816                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.952427184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| n-hearth Totals         | 1                                                                                                                                        | -0.044161638                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.048086359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.962708538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | Name riculates Totals for oxides Totals frocarbons Totals ks - Dest Totals ks - open-hearth Totals sit Totals en-hearth Totals it Totals | Name         Value           rticulates Totals         60           fer oxides Totals         150           drocarbons Totals         125           ks - blast Totals         1           ks - open-hearth Totals         0.622697455           sst Totals         0.343479402           en-hearth Totals         1           st Totals         0.047572816 | Name         Value         Price           rticulates Totals         60         0.111046969           fer oxides Totals         150         0.126817108           drocarbons Totals         125         0.069325636           ks - blast Totals         1         -0.336210968           ks - open-hearth Totals         0.622697455         0           sst Totals         0.343479402         0           en-hearth Totals         1         -1.816085017           st Totals         0.047572816         0 | Name         Value         Price         R.H. Side           riculates Totals         60         0.111046969         60           fer oxides Totals         150         0.126817108         150           drocarbons Totals         125         0.069325636         125           ks - blast Totals         1         -0.336210968         1           ks - open-hearth Totals         0.622697455         0         1           sst Totals         0.343479402         0         1           en-hearth Totals         0.047572816         0         1 | Name         Value         Price         R.H. Side         Increase           diculates Totals         60         0.111046969         60         14.29714286           for oxides Totals         150         0.126817108         150         20.453125           drocarbons Totals         125         0.069325636         125         2.041666667           ks - blast Totals         1         -0.336210968         1         0.246231156           ks - open-hearth Totals         0.622697455         0         1         1E+30           est Totals         0.343479402         0         1         1E+30           en-hearth Totals         0.047572816         0         1         0.110609481           at Totals         0.047572816         0         1         1E+30 |

The right-hand-side of each constraint with a non-zero shadow price is sensitive, since changing its value will impact the total cost. All three required reductions in emission rates are sensitive parameters. All of the objective coefficients have an allowable range to stay optimal around them, and thus are not as sensitive. However, for some, the allowable change is small—in particular, the cost of the two better fuel options (with an allowable increase of only 0.045 and an allowable decrease of 0.044, respectively) are fairly sensitive. Thus, all five of these parameters should be estimated more closely, if possible.

The following table shows in which cases the optimal solution will change:

| Current<br>Value | 10% Less<br>Value | Solution Changes? | 10% More<br>Value | Solution Changes? |
|------------------|-------------------|-------------------|-------------------|-------------------|
| 8                | 7.2               | No                | 8.8               | Yes               |
| 10               | 9                 | Yes               | 11                | Yes               |
| 7                | 6.3               | No                | 7.7               | Yes               |
| 6                | 5.4               | No                | 6.6               | No                |
| 11               | 9.9               | Yes               | 12.1              | No                |
| 9                | 8.1               | No                | 9.9               | Yes               |

This suggests that focus should be put on estimating all of the costs except the one that is currently \$6 million since it's optimal solution will not change with a 10% increase or decrease. Special consideration should be given to the estimate of the current \$10 million cost since it affects the optimal solution for both an increase and a decrease.

d) Hure is the corresponding dual problem.

Renefit Contribution Per Unit of Abate.

|                          | Taller Sm | okestacks  |            | Filters    |       | Better Fuels | <b>;</b>              |      | Accepatable |
|--------------------------|-----------|------------|------------|------------|-------|--------------|-----------------------|------|-------------|
| Constraints              | Blast     | Open-earth | Blast      | Open-earth | Blast | Open-earth   | <b>Dual Variables</b> |      | Level       |
| reduce particulates      | 12        | 9          | 25         | 20         | 17    | 13           | v1                    | <= 0 | 60          |
| reduce sulfer-oxides     | 35        | 42         | 18         | 31         | 56    | 49           | v2                    | <= 0 |             |
| reduce hydrocarbons      | 37        | 53         | 28         | 24         | 29    | 20           | ý3                    | <= 0 |             |
| smokestacks - blast      | 1         | 0          | 0          | 0          | 0     | 0            | y4                    | >= 0 |             |
| smokestacks - open-earth | 0         | 1          | 0          | 0          | 0     | 0            | ý5                    | >= 0 | 1           |
| filters - blast          | 0         | 0          | 1          | 0          | 0     | 0            | y6                    | >= 0 | 1           |
| filters - open-earth     | 0         | 0          | 0          | 1          | 0     | 0            | v7                    | >= 0 | 1           |
| fuels - blast            | 0         | 0          | 0          | 0          | 1     | 0            | v8                    | >= 0 | 1           |
| fuels - open-earth       | 0         | 0          | 0          | 0          | 0     | 1            | v9                    | >= 0 | 1           |
| Totals                   |           |            |            |            |       |              |                       |      | <del></del> |
|                          | 7/        | ₩/         | <b>V</b> / | ٧,         | V/    | V/           |                       |      |             |
| Unit Cost                | -8        | -10        | -7         | -6         | -11   | -9           |                       |      |             |

This is the sensitivity report of primal (Maximization problem)

| Cell    | Name                | Final<br>Value | Reduced<br>Cost | Objective<br>Coefficient | Allowable<br>Increase | Allowable<br>Decrease |
|---------|---------------------|----------------|-----------------|--------------------------|-----------------------|-----------------------|
|         | Solution Blast      | 1.00           | 0.00            | -8                       | 1E+30                 | 0.336210968           |
| \$D\$16 | Solution Open-earth | 0.62           | 0.00            | -10                      | 0.666961637           | 0.429446294           |
| E\$16   | Solution Blast      | 0.34           | 0.00            | -7                       | 2.01145997            | 0.381632659           |
| F\$16   | Solution Open-earth | 1.00           | 0.00            | -6                       | 1E+30                 | 1.816085017           |
| G\$16   | Solution Blast      | 0.05           | 0.00            | -11                      | 0.044638358           | 2 975225225           |
| H\$16   | Solution Open-earth | 1.00           | 0.00            | -9                       | 1E+30                 | 0.044161638           |

| Cell    | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Final<br>Value | Shadow Price | Constraint R.H. Side | Allowable Increase | Allowable<br>Decrease |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|----------------------|--------------------|-----------------------|
| \$1\$6  | reduce particulates Totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60             | -0.111046969 | 60                   | 14.29714286        | 7.48                  |
| \$1\$7  | reduce sulfer-oxides Totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150            | -0.126817108 | 150                  | 20.453125          | 1.689655172           |
| \$1\$8  | reduce hydrocarbons Totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125            | -0.069325636 | 125                  | 2.041666667        | 21.69195612           |
| \$1\$9  | smokestacks - blast Totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1              | 0.336210968  | 1                    | 0.246231156        | 0.748477435           |
| \$1\$10 | smokestacks - open-earth Totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.623          | 0.000        | 1                    | 1E+30              | 0.377302545           |
| \$1\$11 | filters - blast Totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.343          | 0.000        | 1 1                  | 1E+30              | 0.656520598           |
| \$1\$12 | filters - open-earth Totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1              | 1.816085017  | 1 1                  | 0.110609481        | 0.000020098           |
| \$1\$13 | fuels - blast Totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0476         | 0.0000       | 1 1                  | 1E+30              | 0.952427184           |
| \$1\$14 | fuels - open-earth Totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1              | 0.044161638  | † <del> </del>       | 0.048086359        | 0.962708538           |
|         | A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR |                |              | <del>/</del>         |                    | 0.002, 00000          |

The dual variables one the stradow prices of the constraints.

If the primal had been left in minimization Form, the sign of the dual maniables would be the opposition.

The dual would be the same except that the "sign" constraints on the dual variables changes From > to < and visceverse, and the dual functional constraints all change From > to < (cont'))

a) (cont'o) It would 2/50 be a maximization problem, instead of minimization.

| e) | Pollutant     | Rate that cost changes | Maximum increase before rate changes | Maximum decrease before rate changes |
|----|---------------|------------------------|--------------------------------------|--------------------------------------|
|    | Particulates  | 0.111                  | 14.297                               | 7.48                                 |
|    | Sulfur oxides | 0.127                  | 20.453                               | 1.69                                 |
|    | Hydrocarbons  | 0.069                  | 2.042                                | 21.692                               |

### Particulates and sulfur oxides:

For each unit increase in particulate reduction, cost will increase by \$0.111 million. For each unit decrease in sulfur oxide reduction, cost will decrease by \$0.127 million. Thus, cost will remain equal if for each unit increase in particulate reduction, the sulfur oxide reduction is reduced by 0.111 / 0.127 = 0.874 units.

### Particulates and hydrocarbons:

For each unit increase in particulate reduction, cost will increase by \$0.111 million. For each unit decrease in hydrocarbon reduction, cost will decrease by \$0.069 million. Thus, cost will remain equal if for each unit increase in particulate reduction, the hydrocarbon reduction is reduced by \$0.111 / \$0.069 = 1.609 units.

### Particulates and both sulfur oxides and hydrocarbons:

For each unit increase in particulate reduction, cost will increase by \$0.111 million. For each simultaneous unit decrease in sulfur oxide and hydrocarbon reduction, cost will decrease by \$0.127 + \$0.069 = \$0.196.

Thus, cost will remain equal if for each unit increase in particulate reduction, the sulfur oxide and hydrocarbon reduction are each reduced by \$0.111 / \$0.196 = 0.566 units.

a) The formulation is the same except that the right hand side of the constraints comesponding to table 3.12 become 60+060; 150+0150; 2nd 125+0125.

The rate at which the optimal cost of an optimal solution would invesse with a small increase in a from zero is giver by:

$$y*\Delta b = [0.111; 0.127; 0.0693] [0.60] = 0.3440$$

$$y*\Delta b = [0.111; 0.127; 0.0693] [0.60] = 0.3440$$
These are the shadow prices for the first

3 constraints.

So the rate of increase is 0.3440.

### h) 10% increase

Benefit Contribution Per Unit of Abatement Method Taller Smokestacks Filters **Better Fuels** Acceptable Open-hearth Level Constraints Blast Open-hearth Blast Open-hearth Blast Totals reduce particulates 25 20 17 13 66 66 12 165 56 165 reduce sulfer oxides 35 42 18 31 49 reduce hydrocarbons 37 53 28 24 29 20 137.5 137.5 0 smokestacks - blast 0 0 0 0 1 1 1 0.7188402 smokestacks-open-hearth 0 0 filters - blast 0 0 0 0 0 0.4359748 filters - open-hearth 0 0 0 0 0 fuels - blast 0 0 0 0 0.2135922 ≤ 0 1 fuels - open-hearth 0 0 0 1 1 Unit Cost 11 8 6 9 \$ 35.590 10 群 1 0.4360 1 Solution 0.7188 0.2136

### 20% increase

| Renefit | Contribution | Per | Unit | of | Abatement | Method |
|---------|--------------|-----|------|----|-----------|--------|

|                         | Taller Smokestacks |             |         | Filters     |        | ter Fuels   |           |   | Acceptable  |  |
|-------------------------|--------------------|-------------|---------|-------------|--------|-------------|-----------|---|-------------|--|
| Constraints             | Blast              | Open-hearti | h Blast | Open-hearth | Blast  | Open-hearth | Totals    |   | Level       |  |
| reduce particulates     | 12                 | 9           | 25      | 20          | 17     | 13          | 72        | 2 | 72          |  |
| reduce sulfer oxides    | 35                 | 42          | 18      | 31          | 56     | 49          | 180       | ≥ | 180         |  |
| reduce hydrocarbons     | 37                 | 53          | 28      | 24          | 29     | 20          | 150       | 2 | 150         |  |
| smokestacks - blast     | 1                  | 0           | 0       | 0           | 0      | 0           | 1         | ≤ | 1           |  |
| smokestacks-open-hearth | 0                  | 1           | 0       | 0           | 0      | 0           | 0.8149829 | ≤ | 1           |  |
| filters - blast         | 0                  | 0           | 1       | 0           | 0      | 0           | 0.5284702 | ≤ | 1           |  |
| filters - open-hearth   | 0                  | 0           | 0       | 1           | 0      | 0           | 1         | ≤ | 1           |  |
| fuels - blast           | 0                  | 0           | 0       | 0           | 1      | 0           | 0.3796117 | ≤ | 1           |  |
| fuels - open-hearth     | 0                  | 0           | 0       | 0           | 0      | 1           | 1         | ≤ | 1           |  |
| Unit Cost               | 8                  | 10          | 7       | 6           | 11     | 9           | \$ 39.025 |   | <del></del> |  |
| Solution                | <b>#</b> 1         | 0.8150      | 0.5285  | 1           | 0.3796 | 1           | P T       |   |             |  |

## 30% increase

#### Benefit Contribution Per Unit of Abatement Method

|                         | Taller Smokestacks |             |        | Filters     | Bet    | ter Fuels   |           |   | Acceptable |  |
|-------------------------|--------------------|-------------|--------|-------------|--------|-------------|-----------|---|------------|--|
| Constraints             | Blast              | Open-hearth | Blast  | Open-hearth | Blast  | Open-hearth | Totals    |   | Level      |  |
| reduce particulates     | 12                 | 9           | 25     | 20          | 17     | 13          | 78        | Σ | 78         |  |
| reduce sulfer oxides    | 35                 | 42          | 18     | 31          | 56     | 49          | 195       | ≥ | 195        |  |
| reduce hydrocarbons     | 37                 | 53          | 28     | 24          | 29     | 20          | 162.5     | 2 | 162.5      |  |
| smokestacks - blast     | 1                  | 0           | 0      | 0           | 0      | 0           | 1         | ≤ | 1          |  |
| smokestacks-open-hearth | 0                  | 1           | 0      | 0           | 0      | 0           | 0.9111257 | ≤ | 1          |  |
| filters - blast         | 0                  | 0           | 1      | 0           | 0      | 0           | 0.6209656 | ≤ | 1          |  |
| filters - open-hearth   | 0                  | 0           | 0      | 1           | 0      | 0           | 1         | ≤ | 1          |  |
| fuels - blast           | 0                  | 0           | 0      | 0           | 1      | 0           | 0.5456311 | ≤ | 1          |  |
| fuels - open-hearth     | 0                  | 0           | 0      | 0           | 0      | 1           | 1         | ≤ | 1          |  |
| Unit Cost               | 8                  | 10          | 7      | 6           | 11     | 9           | \$ 42.460 |   |            |  |
| Solution                | B 1                | 0.9111      | 0.6210 | 1           | 0.5456 | 1 20 3      | ł         |   |            |  |

## 40% increase

|                         |   |       | Benefit Contri | bution Pe | er Unit of A | batement Met | hod         |           |   |            |
|-------------------------|---|-------|----------------|-----------|--------------|--------------|-------------|-----------|---|------------|
|                         | 1 | Talle | r Smokestacks  |           | Filters      | Bet          | ter Fuels   |           |   | Acceptable |
| Constraints             | ł | Blas  | Open-hearth    | Blast     | Open-hea     | arth Blast   | Open-hearth | Totals    |   | Level      |
| reduce particulates     |   | 12    | 9              | 25        | 20           | 17           | 13          | 84        | 2 | 84         |
| reduce sulfer oxides    | ľ | 35    | 42             | 18        | 31           | 56           | 49          | 210       | ≥ | 210        |
| reduce hydrocarbons     | l | 37    | 53             | 28        | 24           | 29           | 20          | 175       | ≥ | 175        |
| smokestacks - blast     | l | 1     | 0              | 0         | 0            | 0            | 0           | 1         | ≤ | 1          |
| smokestacks-open-hearth | l | 0     | 1              | 0         | 0            | 0            | 0           | 1         | ≤ | 1          |
| filters - blast         | 1 | 0     | 0              | 1         | 0            | 0            | 0           | 0.705282  | ≤ | 1          |
| filters - open-hearth   | 1 | 0     | 0              | 0         | 1            | 0            | 0           | 1         | ≤ | 1          |
| fuels - blast           | ı | 0     | 0              | 0         | 0            | 1            | 0           | 0.7815769 | ≤ | 1          |
| fuels - open-hearth     | ı | 0     | 0              | 0         | 0            | 0            | 1           | 0.9293187 | ≤ | 1          |
| Unit Cost               | Т | 8     | 10             | 7         | 6            | 11           | 9           | \$ 45.898 |   |            |
| Solution                | 2 | 1     | 1.0000 縺       | .7053     | <b>2 1</b>   | 0.7816       | 10.9293187  |           |   |            |

## 50% increase

|                         |    |          | Benefit Contri | bution Pe | r Unit of Aba | tement Met | hod         |           |    |            |
|-------------------------|----|----------|----------------|-----------|---------------|------------|-------------|-----------|----|------------|
|                         | ١. | Taller : | Smokestacks    | F         | ilters        | Bet        | tter Fuels  |           |    | Acceptable |
| Constraints             | 1  | 3last    | Open-hearth    | Blast     | Open-heart    | h Blast    | Open-hearth | Totals    |    | Level      |
| reduce particulates     | Т  | 12       | 9              | 25        | 20            | 17         | 13          | 93.378953 | 2  | 90         |
| reduce sulfer oxides    |    | 35       | 42             | 18        | 31            | 56         | 49          | 225       | ≥  | 225        |
| reduce hydrocarbons     | l  | 37       | 53             | 28        | 24            | 29         | 20          | 187.5     | ≥  | 187.5      |
| smokestacks - blast     |    | 1        | 0              | 0         | 0             | 0          | 0           | ·1        | ≤  | 1          |
| smokestacks-open-hearth |    | 0        | 1              | 0         | 0             | 0          | 0           | 1         | ≤  | 1          |
| filters - blast         |    | 0        | 0              | 1         | 0             | 0          | 0           | 0.9491107 | ≤  | 1          |
| filters - open-hearth   |    | 0        | 0              | 0         | 1             | 0          | 0           | 1         | ≤  | 1          |
| fuels - blast           |    | 0        | 0              | 0         | 0             | 1          | 0           | 1         | ≤  | 1          |
| fuels - open-hearth     | l  | 0        | 0              | 0         | 0             | 0          | 1           | 0.8962451 | ≤  | 1          |
| Unit Cost               | Г  | 8        | 10             | 7         | 6             | 11         | 9           | \$ 49.710 |    |            |
| Solution                |    | 1        | 1.0000         | 0.9491    | <b>%</b> 1    | 1.0000     | 0.8962451   |           | .1 |            |

Subtracting \$3.5 for each 10% reduction gives the following costs: 10% - \$32.090 20% - \$32.025 30% - \$31.960 40% - \$31.898

50% - \$32.210

To minimize the total cost of both pollution abatement and taxes, a 40% reduction should be chosen.

i) The sensitivity report for a 40% reduction is shown below.

| Cell  | Name                 | Final<br>Value | Reduced<br>Cost | Objective<br>Coefficient | Allowable<br>Increase | Allowable<br>Decrease |
|-------|----------------------|----------------|-----------------|--------------------------|-----------------------|-----------------------|
| B\$14 | Solution Blast       | 1              | 0               | 8                        | 0.552692013           | 1E+30                 |
| C\$14 | Solution Open-hearth | 1.0000         | 0.0000          | 10                       | 0.429446287           | 1E+30                 |
| D\$14 | Solution Blast       | 0.7053         | 0.0000          | 7                        | 0.381632653           | 1.292358804           |
| E\$14 | Solution Open-hearth | 1              | 0               | 6                        | 1.789231947           | 1E+30                 |
| F\$14 | Solution Blast       | 0.7816         | 0.0000          | 11                       | 0.384387352           | 0.044638358           |
| G\$14 | Solution Open-hearth | 0.929318704    | 0               | 9                        | 0.044161637           | 0.371892925           |

|         |                                | Final       | Shadow       | Constraint | Allowable   | Allowable   |
|---------|--------------------------------|-------------|--------------|------------|-------------|-------------|
| Cell    | Name                           | Value       | Price        | R.H. Side  | Increase    | Decrease    |
| \$H\$4  | reduce particulates Totals     | 84          | 0.099260015  | 84         | 0.264818356 | 0.845849802 |
| \$H\$5  | reduce sulfer oxides Totals    | 210         | 0.124011227  | 210        | 1.112449799 | 6.294117647 |
| \$H\$6  | reduce hydrocarbons Totals     | 175         | 0.081653483  | 175        | 0.863773966 | 0.253199269 |
| \$H\$7  | smokestacks - blast Totals     | 1           | -0.552692013 | 1          | 0.014418823 | 0.043313262 |
| H\$8    | smokestacks-open-hearth Totals | 1           | -0.429446287 | 1          | 0.007268433 | 0.022703764 |
| \$H\$9  | filters - blast Totals         | 0.70528196  | 0            | 1          | 1E+30       | 0.29471804  |
| \$H\$10 | filters - open-hearth Totals   | 1           | -1.789231947 | 1          | 1.174670633 | 0.116240034 |
| \$H\$11 | fuels - blast Totals           | 0.781576933 | 0            | 1          | 1E+30       | 0.218423067 |
| \$H\$12 | fuels - open-hearth Totals     | 0.929318704 | 0            | 1          | 1E+30       | 0.070681296 |

| Pollutant                               | Rate that cost changes | Maximum increase before rate changes | Maximum decrease before rate changes |
|-----------------------------------------|------------------------|--------------------------------------|--------------------------------------|
| Particulates Sulfur oxides Hydrocarbons | 0.099                  | 0.265                                | 0.846                                |
|                                         | 0.124                  | 1.112                                | 6.294                                |
|                                         | 0.082                  | 0.864                                | 0.253                                |

#### Particulates and sulfur oxides:

For each unit increase in particulate reduction, cost will increase by \$0.099 million. For each unit decrease in sulfur oxide reduction, cost will decrease by \$0.124 million. Thus, cost will remain equal if for each unit increase in particulate reduction, the sulfur oxide reduction is reduced by \$0.099 / \$0.124 = 0.798 units.

#### Particulates and hydrocarbons:

For each unit increase in particulate reduction, cost will increase by \$0.099 million. For each unit decrease in hydrocarbon reduction, cost will decrease by \$0.082 million. Thus, cost will remain equal if for each unit increase in particulate reduction, the hydrocarbon reduction is reduced by \$0.099 / \$0.082 = 1.207 units.

### Particulates and both sulfur oxides and hydrocarbons:

For each unit increase in particulate reduction, cost will increase by \$0.099 million. For each simultaneous unit decrease in sulfur oxide and hydrocarbon reduction, cost will decrease by \$0.124 + \$0.082 = \$0.206.

Thus, cost will remain equal if for each unit increase in particulate reduction, the sulfur oxide and hydrocarbon reduction are each reduced by \$0.099 / \$0.206 = 0.481 units.

6-.2 a) The decisions to be made are how much acreage should be planted in each of the crops and how many cows and hens to have for the coming year. The constraints on these decisions are amount of labor hours available, the investment funds available, the number of acres available, the space available in the barn and chicken house, the minimum requirements for feed to be planted. The overall measure of performance is monetary worth, which is to be maximized.

### b & c)

|                      |         |       |       | Resource | usage P | er Unit o | f Activity |            |          |             |          | _              |
|----------------------|---------|-------|-------|----------|---------|-----------|------------|------------|----------|-------------|----------|----------------|
|                      | acres   | acres | acres | current  | new     | current   | new        | leftover   | leftover |             |          | Resource       |
| Resources            | soybean | corn  | wheat | cows     | cows    | hens      | hens       | W/\$ Labor | S/F Labo | Totals      |          | Available      |
| acreage              | 1       | 1     | 1     | 2        | 2       | 0         | 0          | 0          | 0        | 640         | ≤        | 640            |
| barn space           | 0       | 0     | 0     | 1        | 1       | 0         | 0          | 0          | 0        | 30          | ≤        | 42             |
| chicken house space  | 0       | 0     | 0     | 0        | 0       | 1         | 1          | 0          | 0        | 2000        | ≤        | 5000           |
| winter/spring hours  | 1       | 0.9   | 0.6   | 60       | 60      | 0.3       | 0.3        | 1          | 0        | 4000        | ≤        | 4000           |
| summer/fall hours    | 1.4     | 1.2   | 0.7   | 60       | 60      | 0.3       | 0.3        | 0          | 1        | 4500        | ≤        | 4500           |
| investment fund      | 0       | 0     | 0     | 0        | 1500    | 0         | 3          | 0          | 0        | 0           | ≤        | 20000          |
| feed for cows        | 0       | - 1   | 0     | 1        | 1       | 0         | 0          | 0          | 0        | 0           | ≤        | 0              |
| feed for chickens    | 0       | 0     | - 1   | 0        | 0       | 0.05      | 0.05       | 0          | 0        | 0           | <u> </u> | 0              |
| Net Income           | \$0     | \$0   | \$0   | \$850    | \$850   | \$4.25    | \$4.25     | \$5        | \$5.50   | \$ 46,817   |          |                |
| Net Value            | \$70    | \$60  | \$40  | \$1,050  | \$1,350 | \$1.88    | \$2.25     | \$0        | \$0      | \$ 72,550   |          |                |
| Remaining Investment |         |       |       |          |         |           |            |            |          | \$ 20,000   |          |                |
| Living Expenses      |         |       |       |          |         |           |            |            |          | \$ (40,000) |          |                |
| •                    |         |       |       |          |         |           |            |            |          | \$ 99,367   | Tota     | Monetary Worth |
| Solution             | 450     | 30    | 100   | 30       | 類0厘     | 2000      | <b>0</b>   | 1063       | 1364     | J \$ 95,307 |          | -              |

Note that the cells for current cows and current hens are not changing cells but fixed amounts.

| Ad | jus | tab | le | Cel | ls |
|----|-----|-----|----|-----|----|
|    |     |     |    |     |    |

| Cell    | Name               | Final<br>Value | Reduced<br>Cost | Objective<br>Coefficient | Allowable<br>Increase | Allowable<br>Decrease |
|---------|--------------------|----------------|-----------------|--------------------------|-----------------------|-----------------------|
| \$B\$17 | Solution sovbean   | 450            | 0               | 70                       | 1E+30                 | 8.400000002           |
| \$C\$17 | Solution corn      | 30             | 0               | 60                       | 8.400000002           | 1E+30                 |
| \$D\$17 | Solution wheat     | 100            | 0               | 40                       | 17.15005129           | 1E+30                 |
| \$F\$17 | Solution cows      | 0              | -53.00000097    | 699.9999983              | 53.00000097           | 1E+30                 |
| \$H\$17 | Solution hens      | 0              | -0.857502564    | 3.499997547              | 0.857502564           | 1E+30                 |
| \$1\$17 | Solution W/S Labor | 1063           | 0               | 5                        | 57.3                  | 0.915371347           |
| \$J\$17 | Solution S/F Labor | 1364           | 0               | 5.5                      | 34.5                  | 0.929824579           |

| COMS | traints |
|------|---------|

| Jo <u>nistranii.</u> |                            | Final | Shadow      | Constraint | Allowable   | Allowable |
|----------------------|----------------------------|-------|-------------|------------|-------------|-----------|
| Cell                 | Name                       | Value | Price       | R.H. Side  | Increase    | Decrease  |
| \$K\$4               | acreage Totals             | 640   | 57.3        | 640        | 974.2857143 | 450       |
| \$K\$5               | barn space Totals          | 30    | 0           | 42         | 1E+30       | 12        |
| \$K\$6               | chicken house space Totals | 2000  | 0           | 5000       | 1E+30       | 3000      |
| \$K\$7               | winter/spring hours Totals | 4000  | 5           | 4000       | 1E+30       | 1063      |
| \$K\$8               | summer/fall hours Totals   | 4500  | 5.5         | 4500       | 1E+30       | 1364      |
| \$K\$9               | investment fund Totals     | 0     | 0           | 20000      | 1E+30       | 20000     |
| \$K\$10              | feed for cows Totals       | 0     | 8.400000002 | 0          | 30          | 450       |
| \$K\$11              | feed for chickens Totals   | 0     | 24.15       | 0          | 100         | 450       |

This model predicts that the family's monetary worth at the end of the coming year will be \$99, 367.

d) Range of optimality soybeans: corn:

61.6 ≤ soybeans value ≤ ∞ -∞ ≤ corn value ≤ 68.4 -∞ ≤ wheat value ≤ 57.15 wheat:

# e) Drought

|                      |              |       |       | Resource | Usage P | er Unit o | f Activity | /         |           |                 |      |                  |
|----------------------|--------------|-------|-------|----------|---------|-----------|------------|-----------|-----------|-----------------|------|------------------|
|                      | acres        | acres | acres | current  | new     | current   | new        | leftover  | leftover  |                 |      | Resource         |
| Resources            | soybean      | corn  | wheat | cows     | cows    | hens      | hens       | W/S Labor | S/F Labor | Totals          |      | Available        |
| acreage              | 1            | 1     | 1     | 2        | 2       | 0         | 0          | 0         | 0         | 259.33333       | ≤    | 640              |
| barn space           | 0            | 0     | 0     | 1        | 1       | 0         | 0          | 0         | 0         | 42              | ≤    | 42               |
| chicken house space  | 0            | 0     | 0     | 0        | 0       | 1         | 1          | 0         | 0         | 2666.6667       | ≤    | 5000             |
| winter/spring hours  | 1            | 0.9   | 0.6   | 60       | 60      | 0.3       | 0.3        | 1         | 0         | 4000            | ≤    | 4000             |
| summer/fall hours    | 1.4          | 1.2   | 0.7   | 60       | 60      | 0.3       | 0.3        | 0         | 1         | 4500            | ≤    | 4500             |
| investment fund      | 0            | 0     | 0     | 0        | 1500    | 0         | 3          | 0         | 0         | 20000           | ≤    | 20000            |
| feed for cows        | 0            | - 1   | 0     | 1        | 1       | 0         | 0          | 0         | 0         | 4.547E-13       | ≤    | 0                |
| feed for chickens    | 0            | 0     | - 1   | 0        | 0       | 0.05      | 0.05       | 0         | 0         | 1.705E-11       | ≤    | 0                |
| Net Income           | \$0          | \$0   | \$0   | \$850    | \$850   | \$4.25    | \$4.25     | \$5       | \$5.50    | \$ 55,544       |      |                  |
| Net Value            | -\$10        | -\$15 | \$0   | \$1,050  | \$1,350 | \$1.88    | \$2.25     | \$0       | \$0       | \$ 52,320       |      |                  |
| Remaining Investment |              |       |       |          |         |           |            |           |           |                 |      |                  |
| Living Expenses      | i            |       |       |          |         |           |            |           |           | <b>(40,000)</b> |      |                  |
|                      |              |       |       |          |         |           |            |           |           | \$ 67,864       | Tota | I Monetary Worth |
| Solution             | <b>⊘</b> 0 ∰ | 42    | 133   | 30       | 12      | 2000      | 667        | 562       | 1036 🖟    |                 |      | •                |

## Flood

|                      |         |       |             | Resource | e Usage P | er Unit c | f Activity |            |           |                   |      |                  |
|----------------------|---------|-------|-------------|----------|-----------|-----------|------------|------------|-----------|-------------------|------|------------------|
|                      | acres   | acres | acres       | current  | new       | current   | new        | leftover   | leftover  |                   |      | Resource         |
| Resources            | soybean | corn  | wheat       | cows     | cows      | hens      | hens       | W/S Labor  | S/F Labor | Totals            |      | Available        |
| acreage              | 1       | 1     | 1           | 2        | 2         | 0         | 0          | 0          | 0         | 640               | 5    | 640              |
| barn space           | 0       | 0     | 0           | 1        | 1         | 0         | 0          | 0          | 0         | 42                | ≤    | 42               |
| chicken house space  | 0       | 0     | 0           | 0        | 0         | 1         | 1          | 0          | 0         | 2666.6667         | ≤    | 5000             |
| winter/spring hours  | 1       | 0.9   | 0.6         | 60       | 60        | 0.3       | 0.3        | 1          | 0         | 4000              | ≤    | 4000             |
| summer/fall hours    | 1.4     | 1.2   | 0.7         | 60       | 60        | 0.3       | 0.3        | 0          | 1         | 4500              | ≤    | 4500             |
| investment fund      | 0       | 0     | 0           | 0        | 1500      | 0         | 3          | 0          | 0         | 20000             | ≤    | 20000            |
| feed for cows        | 0       | - 1   | 0           | 1        | 1         | 0         | 0          | 0          | 0         | -380.6667         | ≤    | 0                |
| feed for chickens    | 0       | 0     | 1           | 0        | 0         | 0.05      | 0.05       | 0          | 0         | -7.11E-15         | ≤ .  | 0                |
| Net Income           | \$0     | \$0   | \$0         | \$850    | \$850     | \$4.25    | \$4.25     | \$5        | \$5.50    | \$ 51.318         |      |                  |
| Net Value            | \$15    | \$20  | \$10        | \$1,050  | \$1,350   | \$1.88    | \$2.25     | \$0        |           | \$ 62,737         |      |                  |
| Remaining Investment | l       |       |             |          |           |           |            |            |           |                   |      |                  |
| Living Expenses      |         |       |             |          |           |           |            |            |           | <b>3</b> (40,000) |      |                  |
|                      | l       |       |             |          |           |           |            |            |           | \$ 74,055         | Tota | i Monetary Worth |
| Solution             | 1 0 M   | 423   | <b>#133</b> | 30       | 12 建      | 2000      | 667        | <b>220</b> | 579       |                   | •    | -                |

## Early Frost

|                      |         |       |       | Resource | usage P | er Unit o | of Activity |           |             |            |           |                   |
|----------------------|---------|-------|-------|----------|---------|-----------|-------------|-----------|-------------|------------|-----------|-------------------|
|                      | acres   | acres | acres | current  | new     | current   | new         | leftover  | leftover    | _          |           | Resource          |
| Resources            | soybean | corn  | wheat | cows     | cows    | hens      | hens        | W/S Labor | r S/F Labor | Totals     |           | Available         |
| acreage              | 1       | 1     | 1     | 2        | 2       | 0         | 0           | 0         | 0           | 640        | S         | 640               |
| barn space           | 0       | 0     | 0     | 1        | 1       | 0         | Q           | 0         | 0           | 30         | ≤         | 42                |
| chicken house space  | 0       | 0     | 0     | 0        | 0       | 1         | 1           | 0         | 0           | 2000       | ≤         | 5000              |
| winter/spring hours  | 1       | 0.9   | 0.6   | 60       | 60      | 0.3       | 0.3         | 1         | 0           | 4000       | ≤         | 4000              |
| summer/fall hours    | 1.4     | 1.2   | 0.7   | 60       | 60      | 0.3       | 0.3         | 0         | 1           | 4500       | ≤         | 4500              |
| investment fund      | 0       | 0     | 0     | 0        | 1500    | 0         | 3           | 0         | 0           | 0          | ≤         | 20000             |
| feed for cows        | 0       | - 1   | 0     | 1        | 1       | 0         | 0           | 0         | 0           | 6.673E-11  | ≤         | 0                 |
| feed for chickens    | 0       | 0     | - 1   | 0        | 0       | 0.05      | 0.05        | 0         | 0           | 7.104E-11  | <u>\$</u> | 0                 |
| Net Income           | \$0     | \$0   | \$0   | \$850    | \$850   | \$4.25    | \$4.25      | \$5       | \$5.50      | \$ 46,817  |           |                   |
| Net Value            | \$50    | \$40  | \$30  | \$1,050  | \$1,350 | \$1.88    | \$2.25      | \$0       | \$0         | \$ 61,950  |           |                   |
| Remaining Investment |         |       |       |          |         |           |             |           |             | \$ 20,000  |           |                   |
| Living Expenses      |         |       |       |          |         |           |             |           |             | \$(40,000) | ]         |                   |
|                      |         |       |       |          |         |           |             |           |             | \$ 88,767  | Tota      | al Monetary Worth |
| Solution             | 450     | 羅 30  | 100   | 30       | 器 0 图   | 2000      | 1 O         | 1063      | 1364        |            | •         | ŕ                 |

# **Drought and Early Frost**

| Resources                                                          | acres<br>soybean | acres        | acres<br>wheat | Resource<br>current<br>cows | Usage P<br>new<br>cows | er Unit o<br>current<br>hens |      | leftover   | leftover<br>S/F Labor | Totals                             |   | Resource<br>Available |
|--------------------------------------------------------------------|------------------|--------------|----------------|-----------------------------|------------------------|------------------------------|------|------------|-----------------------|------------------------------------|---|-----------------------|
| acreage                                                            | 1                | 1            | 1              | 2                           | 2                      | 0                            | 0    | 0          | 0                     | 226                                | ≤ | 640                   |
| barn space                                                         | 0                | 0            | 0              | 1                           | 1                      | 0                            | 0    | 0          | 0                     | 42                                 | ≤ | 42                    |
| chicken house space                                                | 0                | 0            | 0              | 0                           | 0                      | 1                            | 1    | 0          | 0                     | 2000                               | ≤ | 5000                  |
| winter/spring hours                                                | 1                | 0.9          | 0.6            | 60                          | 60                     | 0.3                          | 0.3  | 1          | 0                     | 4000                               | S | 4000                  |
| summer/fall hours                                                  | 1.4              | 1.2          | 0.7            | 60                          | 60                     | 0.3                          | 0.3  | 0          | 1                     | 4500                               | ≤ | 4500                  |
| investment fund                                                    | 0                | 0            | 0              | 0                           | 1500                   | 0                            | 3    | 0          | 0                     | 18000                              | ≤ | 20000                 |
| feed for cows                                                      | 0                | - 1          | 0              | 1                           | 1                      | 0                            | 0    | 0          | 0                     | -1.28E-12                          | ≤ | 0                     |
| feed for chickens                                                  | 0                | 0            | - 1            | . 0                         | 0                      | 0.05                         | 0.05 | 0          | 0                     | 0                                  | ≤ | 0                     |
| Net Income<br>Net Value<br>Remaining Investment<br>Living Expenses | \$0<br>-\$15     | \$0<br>-\$20 | \$0<br>-\$10   | \$850<br>\$1,050            | \$850<br>\$1,350       | \$4.25<br>\$1.88             |      | \$5<br>\$0 | \$5.50<br>\$0         | \$ 55,039<br>\$ 49,610<br>\$ 2,000 |   | _                     |
|                                                                    | <b>20</b> 0      | 42           | 100            | 30                          | 翼 12 副                 | 2000                         | 0    | 782        | 1260                  | \$ (40,049\                        | j | a monetary 110mm      |

## Flood and Early Frost

|                      |         |       |       | Resource | Usage F | er Unit o | f Activity |           |           |           |          | _                 |
|----------------------|---------|-------|-------|----------|---------|-----------|------------|-----------|-----------|-----------|----------|-------------------|
|                      | acres   | acres | acres | current  | new     | current   | new        | leftover  | leftover  |           |          | Resource          |
| Resources            | soybean | corn  | wheat | cows     | cows    | hens      | henş       | W/S Labor | S/F_Labor | Totals    |          | Available         |
| acreage              | 1       | 1     | 1     | 2        | 2       | 0         | 0          | 0         | 0         | 362       | ≤        | 640               |
| barn space           | l٥      | 0     | 0     | 1        | 1       | 0         | 0          | 0         | 0         | 37.333333 | ≤        | 42                |
| chicken house space  | ٥       | 0     | 0     | 0        | 0       | 1         | 1          | 0         | 0         | 5000      | ≤        | 5000              |
| winter/spring hours  | 1 1     | 0.9   | 0.6   | 60       | 60      | 0.3       | 0.3        | 1         | 0         | 4000      | ≤        | 4000              |
| summer/fall hours    | 1.4     | 1.2   | 0.7   | 60       | 60      | 0.3       | 0.3        | 0         | 1         | 4500      | ≤        | 4500              |
| investment fund      | آة ا    | 0     | 0     | o        | 1500    | 0         | 3          | ō         | 0         | 20000     | ≤        | 20000             |
| feed for cows        | 0       | - 1   | Ó     | 1        | 1       | 0         | 0          | 0         | 0         | -2.69E-12 | ≤        | 0                 |
| feed for chickens    | ٥       | 0     | - 1   | 0        | 0       | 0.05      | 0.05       | 0         | 0         | 7.671E-11 | <b>≤</b> | Q                 |
| Net Income           | \$0     | \$0   | \$0   | \$850    | \$850   | \$4,25    | \$4.25     | \$5       | \$5.50    | \$ 56,336 |          |                   |
| Net Value            | \$10    | \$10  | \$5   | \$1,050  | \$1,350 | \$1.88    | \$2.25     | \$0       | \$0       | \$ 53,523 |          |                   |
| Remaining Investment |         |       |       |          |         |           |            |           |           | (0)       |          |                   |
| Living Expenses      |         |       |       |          |         |           |            |           |           | (40,000)  |          |                   |
|                      |         |       |       |          |         |           |            |           |           | (40,000)  | Tot      | al Monetary Worth |
| Solution             | 0 #     | 37.3  | 250   | 30       | 7.333   | 2000      | 3000       | 76        | 540       | \$ 69,860 | J        | •                 |

f)

|                        | Family  | 's monetar | y worth at | year's end if | f the scenario is | s actually: |
|------------------------|---------|------------|------------|---------------|-------------------|-------------|
| Opt. Sol.              | Good    | Drought    | Flood      | Early         | Drought &         | Flood &     |
| Used                   | Weather |            |            | Frost         | Early Frost       | Early Frost |
| Good<br>Weather        | 99,367  | 57,117     | 70,417     | 88,767        | 53,717            | 67,367      |
| Drought                | 76,348  | 67,864     | 70,668     | 74,174        | 66,321            | 69,581      |
| Flood                  | 94,962  | 57,929     | 74,055     | 85,175        | 54,482            | 69,162      |
| Early Frost            | 99,367  | 57,117     | 70,417     | 88,767        | 53,717            | 67,367      |
| Drought & Early Frost  | 75,009  | 67,859     | 70,329     | 73,169        | 66,649            | 69,409      |
| Flood &<br>Early Frost | 80,476  | 67,676     | 71,483     | 77,230        | 64,990            | 69,860      |

The "Flood & Early Frost" solution looks like the best conservative option. The "Flood" option looks good for those who would like more risk.

### g and h)

The expected net value for each of the crops is calculated as follows:

Soybeans: 
$$(\$70)(0.4) + (-\$10)(0.2) + (\$15)(0.1) + (\$50)(0.15) + (-\$15)(0.1) + (\$10)(0.05) = \$34$$
 million,

Corn: 
$$(\$60)(0.4) + (-\$15)(0.2) + (\$20)(0.1) + (\$40)(0.15) + (-\$20)(0.1) + (\$10)(0.05) = \$27.5$$
 million,

Wheat: 
$$(\$40)(0.4) + (\$0)(0.2) + (\$10)(0.1) + (\$30)(0.15) + (-\$10)(0.1) + (\$5)(0.05) = \$20.75$$
 million.

The resulting spreadsheet solution is shown below:

|                      |         |        |        | Resource | Usage Pe  | er Unit of | Activity |           |           |                   |      | _                |
|----------------------|---------|--------|--------|----------|-----------|------------|----------|-----------|-----------|-------------------|------|------------------|
|                      | acres   | acres  | acres  | current  | new       | current    | new      | leftover  | leftover  | _                 |      | Resource         |
| Resources            | soybean | corn   | wheat  | çows     | cows      | hens       | hens     | W/Ş Labor | S/F Labor | Totals            |      | Available        |
| acreage              | 1       | 1      | 1      | 2        | 2         | 0          | 0        | 0         | 0         | 640               | \$   | 640              |
| barn space           | ٥       | 0      | 0      | 1        | 1         | 0          | 0        | 0         | 0         | 42                | ≤    | 42               |
| chicken house space  | ٥       | 0      | 0      | 0        | 0         | 1          | 1        | 0         | 0         | 2000              | ≤    | 5000             |
| winter/spring hours  | 1       | 0.9    | 0.6    | 60       | 60        | 0.3        | 0.3      | 1         | 0         | 4000              | ≤    | 4000             |
| summer/fall hours    | 1.4     | 1.2    | 0.7    | 60       | 60        | 0.3        | 0.3      | 0         | 1         | 4500              | ≤    | 4500             |
| investment fund      | 0       | 0      | 0      | 0        | 1500      | 0          | 3        | 0         | 0         | 18000             | ≤    | 20000            |
| feed for cows        | 0       | - 1    | 0      | 1        | 1         | 0          | 0        | 0         | 0         | 0                 | ≤    | 0                |
| feed for chickens    | 0       | 0      | - 1    | 0        | 0         | 0.05       | 0.05     | 0         | 0         | 0                 | ≤    | 0                |
| Net Income           | \$0     | \$0    | \$0    | \$850    | \$850     | \$4.25     | \$4.25   | \$ 5      | \$5.50    | \$ 49,781         |      |                  |
| Net Value            | \$34.0  | \$27.5 | \$20.8 | \$1,050  | \$1,350   | \$1.88     | \$2.25   | \$0       | \$0       | 68,756            |      |                  |
| Remaining Investment |         |        |        |          |           |            |          |           |           | 2,000             |      |                  |
| Living Expenses      |         |        |        |          |           |            |          |           |           | <b>6</b> (40,000) |      |                  |
| - '                  |         |        |        |          |           |            |          |           |           | \$ 80,537         | Tota | I Monetary Worth |
| Solution             | 414     | 42     | 100    | 30       | <b>12</b> | 2000       | 0        | 368       | 680       |                   |      | ·                |

| Ad | jus | tabi | le | Cel | ls |
|----|-----|------|----|-----|----|
|    |     |      |    |     |    |

| Cell    | Name               | Final<br>Value | Reduced<br>Cost | Objective<br>Coefficient | Allowable<br>Increase | Allowable<br>Decrease |
|---------|--------------------|----------------|-----------------|--------------------------|-----------------------|-----------------------|
| \$B\$17 | Solution soybean   | 414            | 0               | 34                       | 7.499999997           | 0.400002814           |
| \$C\$17 | Solution corn      | 42             | 0               | 27.5                     | 4.899999997           | 22.49999999           |
|         | Solution wheat     | 100            | 0               | 20.75                    | 0.400002814           | 1E+30                 |
| \$F\$17 | Solution cows      | 12             | 0               | 700                      | 1E+30                 | 22.49999999           |
| \$H\$17 | Solution hens      | 0              | -0.020000141    | 3.499999875              | 0.020000141           | 1E+30                 |
| \$1\$17 | Solution W/S Labor | 368            | 0               | 5                        | 0.388601036           | 0.071429073           |
| \$J\$17 | Solution S/F Labor | 680            | 0               | 5.5                      | 0.394736842           | 0.075472229           |

#### Constraints

| Cell    | Name                       | Final<br>Value | Shadow<br>Price | Constraint<br>R.H. Side | Allowable<br>Increase | Allowable<br>Decrease |
|---------|----------------------------|----------------|-----------------|-------------------------|-----------------------|-----------------------|
| \$K\$4  | acreage Totals             | 640            | 21.3            | 640                     | 368.2                 | 414                   |
| \$K\$5  | barn space Totals          | 42             | 22.49999999     | 42                      | 1.333333333           | 12                    |
| \$K\$6  | chicken house space Totals | 2000           | 0               | 5000                    | 1E+30                 | 3000                  |
| \$K\$7  | winter/spring hours Totals | 4000           | 5               | 4000                    | 1E+30                 | 368.2                 |
| \$K\$8  | summer/fall hours Totals   | 4500           | 5.5             | 4500                    | 1E+30                 | 680                   |
| \$K\$9  | investment fund Totals     | 18000          | 0               | 20000                   | 1E+30                 | 2000                  |
| \$K\$10 | feed for cows Totals       | 0              | 4.899999997     | . 0                     | 42                    | 414                   |
| \$K\$11 | feed for chickens Totals   | 0              | 7.399999998     | 0                       | 100                   | 414                   |

This model predicts that the family's monetary worth at the end of the coming year will be \$80,537.

i) The shadow price for the investment constraint is zero, indicating that additional investment funds will not increase their total monetary worth at all. Thus, it is not worthwhile to obtain a bank loan. The shadow price would need to be at least \$1.10 before a loan at 10% interest would be worthwhile.

j) The expected net value for soybeans can increase up to \$7.50 or decrease up to \$0.40; for corn can increase up to \$4.90 or decrease up to \$22.50; for wheat can increase up to \$0.40 or decrease any amount without changing the optimal solution. The expected net value for soybeans and wheat should be estimated most carefully.

The solution is sensitive to decreases in the expected value of soybeans and increases in the expected value of wheat. If the *cumulative* decrease in the expected value of soybeans *and* increase in the expected value of wheat exceeds \$0.40, then the 100% rule will be violated, and the solution might change.

k) Answers will vary.

### 6-3 a)

| Data: | :    | Number of | Percentage<br>in 6th | Percentage<br>in 7th | Percentage in 8th | Bussin   | g Cost (\$/5 | Student) |
|-------|------|-----------|----------------------|----------------------|-------------------|----------|--------------|----------|
| /     | Area | Students  | Grade                | Grade                | Grade             | School 1 | School 2     | School 3 |
|       | 1    | 450       | 0.32                 | 0.38                 | 0.3               | 300      | 0            | 700      |
|       | 2    | 600       | 0.37                 | 0.28                 | 0.35              | -        | 400          | 500      |
|       | 3    | 550       | 0.3                  | 0.32                 | 0.38              | 600      | 300          | 200      |
|       | 4    | 350       | 0.28                 | 0.4                  | 0.32              | 200      | 500          | -        |
|       | 5    | 500       | 0.39                 | 0.34                 | 0.27              | 0        | -            | 400      |
| 1     | 6    | 450       | 0.34                 | 0.28                 | 0.38              | 500      | 300          | 0        |
|       |      |           |                      |                      | Connoitu          | 000      | 1100         | 1000     |

| Solution: | Number     | r of Students A | ssigned    |       |   |     |  |
|-----------|------------|-----------------|------------|-------|---|-----|--|
|           | School 1   | School 2        | School 3   | Total |   |     |  |
| Area 1    | 0          | 450             | 0          | 450   | = | 450 |  |
| Area 2    | 0          | 422.22222       | 177.777778 | 600   | = | 600 |  |
| Area 3    | 0          | 227.777778      | 322.222222 | 550   | = | 550 |  |
| Area 4    | 350        | 0               | 0          | 350   | = | 350 |  |
| Area 5    | 366.666667 | 0               | 133.333333 | 500   | = | 500 |  |
| Area 6    | 83.3333333 | 0               | 366.666667 | 450   | = | 450 |  |
| Total     | 800        | 1100            | 1000       |       |   |     |  |
|           | ≤          | ≤               | ≤          |       |   |     |  |

1000

Total Bussing Cost = \$ 555,555.56

#### Grade Constraints:

Capacity

|              | School 1   | School 2   | School 3   |
|--------------|------------|------------|------------|
| 6th Graders  | 269.333333 | 368.555556 | 339.111111 |
| 7th Graders  | 288        | 362.111111 | 300.888889 |
| 8th Graders  | 242.666667 | 369.333333 | 360        |
| 30% of Total | 240        | 330        | 300        |
| 36% of Total | 288        | 396        | 360        |

1100

900

b)

Adjustable Cells

|         | AN INCOME INCOME. THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT | Final     | Reduced   | Objective   | Allowable | Allowable |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-------------|-----------|-----------|
| Cell    | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Value     | Cost      | Coefficient | Increase  | Decrease  |
| \$B\$14 | Area 1 School 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         | 177.77778 | 300         | 1E+30     | 177.77778 |
| \$C\$14 | Area 1 School 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 450       | 0         | 0           | 177.77778 | 1.554E+17 |
| \$D\$14 | Area 1 School 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         | 266.66667 | 700         | 1E+30     | 266.66667 |
| \$B\$15 | Area 2 School 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         | -800      | 0           | 1E+30     | 800       |
| \$C\$15 | Area 2 School 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 422.22222 | 0         | 400         | 34.210526 | 4.5454555 |
| \$D\$15 | Area 2 School 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177.77778 | 0         | 500         | 4.5454555 | 34.210526 |
| \$B\$16 | Area 3 School 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         | 11.111114 | 600         | 1E+30     | 11.111114 |
| \$C\$16 | Area 3 School 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 227.77778 | 0         | 300         | 4.5454555 | 34.210526 |
| \$D\$16 | Area 3 School 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 322.22222 | 0         | 200         | 34.210526 | 7.6923092 |
| \$B\$17 | Area 4 School 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 350       | 0         | 200         | 366.66667 | 2.339E+16 |
| \$C\$17 | Area 4 School 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         | 366.66667 | 500         | 1E+30     | 366.66667 |
| \$D\$17 | Area 4 School 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         | -433.3333 | 0           | 1E+30     | 433.33333 |
| \$B\$18 | Area 5 School 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 366.66667 | 0         | 0           | 16.66667  | 108.33333 |
| \$C\$18 | Area 5 School 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         | 233.33333 | 0           | 1E+30     | 233.33333 |
| \$D\$18 | Area 5 School 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 133.33333 | 0         | 400         | 108.33333 | 16.66667  |
| \$B\$19 | Area 6 School 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83.333333 | 0         | 500         | 33.333342 | 166.66667 |
| \$C\$19 | Area 6 School 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0         | 200       | 300         | 1E+30     | 200       |
| \$D\$19 | Area 6 School 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 366.66667 | 0         | 0           | 166.66667 | 33.333342 |

### Constraints

| AND THE PROPERTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY O |                      | Final     | Shadow    | Constraint | Allowable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Allowable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|-----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Name                 | Value     | Price     | R.H. Side  | Increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Decrease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| \$B\$30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8th Graders School 1 | 242.66667 | 0         | 0          | 1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45.333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$C\$30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8th Graders School 2 | 369.33333 | 0         | 0          | 1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.666667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$D\$30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8th Graders School 3 | 360       | -6666.667 | 0          | 5.3333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6666667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$B\$20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total School 1       | 800       | 0         | 900        | 1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| \$C\$20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total School 2       | 1100      | -177.7778 | 1100       | 36.363636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.7735849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$D\$20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total School 3       | 1000      | -144.4444 | 1000       | 42.105263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.8834951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$B\$28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6th Graders School 1 | 269.33333 | 0         | 0          | 29.333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| \$C\$28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6th Graders School 2 | 368.55556 | 0         | 0          | 38.555556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| \$D\$28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6th Graders School 3 | 339.11111 | 0         | 0          | 39.111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| \$B\$28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6th Graders School 1 | 269.33333 | 0         | 0          | 1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.666667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$C\$28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6th Graders School 2 | 368.55556 | 0         | 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$D\$28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6th Graders School 3 | 339.11111 | 0         | 0          | 1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.888889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$B\$29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7th Graders School 1 | 288       | 0         | 0          | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1E+30_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| \$C\$29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7th Graders School 2 | 362.11111 | 0         | 0          | 32.111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AND DESCRIPTION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERT |
| \$D\$29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7th Graders School 3 | 300.88889 | 0         | 0          | 0.8888889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TANK THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPE |
| \$B\$29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7th Graders School 1 | 288       | -2777.778 | 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.9090909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$C\$29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7th Graders School 2 | 362.11111 | 0         | 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.888889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$D\$29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7th Graders School 3 | 300.88889 | 0         | 0          | 1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59.111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$B\$30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8th Graders School 1 | 242.66667 | 0         | 0          | 2.6666667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| \$C\$30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8th Graders School 2 | 369.33333 | 0         | 0          | 39.333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| \$D\$30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8th Graders School 3 | 360       | 0         | 0          | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| \$E\$14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Area 1 Total         | 450       | 177.77778 | 450        | A MARIE TO SEE STREET, SEE STREET, SEE STREET, SEE STREET, SEE STREET, SEE STREET, SEE STREET, SEE STREET, SEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.363636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$E\$15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Area 2 Total         | 600       | 577.77778 | 600        | 3.7735849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.363636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$E\$16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Area 3 Total         | 550       | 477.77778 | 550        | 3.7735849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.363636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$E\$17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Area 4 Total         | 350       | 311.11111 | 350        | 72.727273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.4516129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$E\$18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Area 5 Total         | 500       | -55.55556 | 500        | THE RESERVE OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON NAMED OF THE PERSON | 145.45455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \$E\$19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Area 6 Total         | 450       | 277.77778 | 450        | 3.2258065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.363636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

c) The bussing cost from area 6 to school 1 can increase \$33.33 before the current optimal solution would no longer be optimal. The new solution with a 10% increase (\$50) is shown below.

| Data: | Number of | Percentage<br>in 6th | Percentage<br>in 7th | Percentage<br>in 8th | Bussin   | g Cost (\$/5 | Student) |
|-------|-----------|----------------------|----------------------|----------------------|----------|--------------|----------|
| Area  | Students  | Grade                | Grade                | Grade                | School 1 | School 2     | School 3 |
| 1     | 450       | 0.32                 | 0.38                 | 0.3                  | 300      | 0            | 700      |
| 2     | 600       | 0.37                 | 0.28                 | 0.35                 | -        | 400          | 500      |
| 3     | 550       | 0.3                  | 0.32                 | 0.38                 | 600      | 300          | 200      |
| 4     | 350       | 0.28                 | 0.4                  | 0.32                 | 200      | 500          | -        |
| 5     | 500       | 0.39                 | 0.34                 | 0.27                 | 0        | -            | 400      |
| 6     | 450       | 0.34                 | 0.28                 | 0.38                 | 550      | 300          | 0        |
|       |           |                      |                      | Capacity:            | 900      | 1100         | 1000     |

| Solution: | Number     | Assigned |            |       |   |                                    |  |
|-----------|------------|----------|------------|-------|---|------------------------------------|--|
|           | School 1   | School 2 | School 3   | Total |   |                                    |  |
| Area 1    | 0          | 450      | 0          | 450   | = | 450                                |  |
| Area 2    | 0          | 600      | 0          | 600   | = | 600                                |  |
| Area 3    | 72.7272726 | 50       | 427.272727 | 550   | = | 550                                |  |
| Area 4    | 350        | 0        | 0          | 350   | = | 350                                |  |
| Area 5    | 318.181818 | 0        | 181.818182 | 500   | = | 500                                |  |
| Area 6    | 59.0909093 | 0        | 390.909091 | 450   | = | 450                                |  |
| Total     | 800        | 1100     | 1000       |       |   |                                    |  |
|           | ≤          | ≤        | ≤          |       |   |                                    |  |
| Capacity  | 900        | 1100     | 1000       |       |   | Total Bussing Cost = \$ 559,318.18 |  |

#### Grade Constraints:

| _            | School 1 | School 2 | School 3 |
|--------------|----------|----------|----------|
| 6th Graders  | 264      | 381      | 332      |
| 7th Graders  | 288      | 355      | 308      |
| 8th Graders  | 248      | 364      | 360      |
| 30% of Total | 240      | 330      | 300      |
| 36% of Total | 288      | 396      | 360      |

d) The bussing cost from area 6 to school 2 can increase any amount and the current optimal solution will still be optimal.

e) According to the 100% rule, the bussing cost from area 6 can increase uniformly up to 6.67% (\$33 for school 1, and \$20 for school 2) without changing the solution. Beyond that the solution might change. This calculation is shown below.

School 1: \$500 
$$\rightarrow$$
 \$533.33. % of allowable increase =  $100 \left( \frac{533.33 - 500}{33.33} \right) = 100\%$   
School 2: \$300  $\rightarrow$  \$320. % of allowable increase =  $100 \left( \frac{320 - 300}{\infty} \right) = \frac{0\%}{100\%}$ 

The new spreadsheet solution is shown below.

| Data: | Number of | Percentage<br>in 6th | Percentage<br>in 7th | Percentage in 8th | Bussin   | g Cost (\$/S | Student) |
|-------|-----------|----------------------|----------------------|-------------------|----------|--------------|----------|
| Area  | Students  | Grade                | Grade                | Grade             | School 1 | School 2     | School 3 |
| 1     | 450       | 0.32                 | 0.38                 | 0.3               | 300      | 0            | 700      |
| 2     | 600       | 0.37                 | 0.28                 | 0.35              | -        | 400          | 500      |
| 3     | 550       | 0.3                  | 0.32                 | 0.38              | 600      | 300          | 200      |
| 4     | 350       | 0.28                 | 0.4                  | 0.32              | 200      | 500          | -        |
| 5     | 500       | 0.39                 | 0.34                 | 0.27              | 0        | -            | 400      |
| 6     | 450       | 0.34                 | 0.28                 | 0.38              | 550      | 330          | 0        |
|       |           |                      |                      | Canacity          | 900      | 1100         | 1000     |

| Solution: | Number     | Assigned |            |       |   |                         |            |
|-----------|------------|----------|------------|-------|---|-------------------------|------------|
|           | School 1   | School 2 | School 3   | Total |   |                         |            |
| Area 1    | 0          | 450      | 0          | 450   | = | 450                     |            |
| Area 2    | 0          | 600      | 0          | 600   | = | 600                     |            |
| Area 3    | 72.7272727 | 50       | 427.272727 | 550   | = | 550                     |            |
| Area 4    | 350        | 0        | 0          | 350   | = | 350                     |            |
| Area 5    | 318.181818 | 0        | 181.818182 | 500   | = | 500                     |            |
| Area 6    | 59.0909091 | 0        | 390.909091 | 450   | = | 450                     |            |
| Total     | 800        | 1100     | 1000       |       |   |                         |            |
|           | ≤          | ≤        | ≤          |       |   |                         |            |
| Capacity  | 900        | 1100     | 1000       |       |   | Total Bussing Cost = \$ | 559,318.18 |

#### Grade Constraints:

| _            | School I | School 2 | School 3 |
|--------------|----------|----------|----------|
| 6th Graders  | 264      | 381      | 332      |
| 7th Graders  | 288      | 355      | 308      |
| 8th Graders  | 248      | 364      | 360      |
| 30% of Total | 240      | 330      | 300      |
| 36% of Total | 288      | 396      | 360      |

f) The shadow price for school 1 is zero. Thus, adding a temporary classroom at school 1 would not save any money, and thus would not be worthwhile.

The shadow price for school 2 is -\$177.78. Thus, adding a temporary classroom at school 2 would save (\$177.78)(20) = \$3555.60 in bussing cost. This is worthwhile, since it exceeds the \$2500 leasing cost.

The shadow price for school 3 is -\$144.44. Thus, adding a temporary classroom at school 3 would save (\$144.44)(20) = \$2888.80 in bussing cost. This is also worthwhile since it exceeds the \$2500 leasing cost.

g) For school 2, the allowable increase for school capacity is 36. This means the shadow price is only valid for a single additional portable classroom.

For school 3, the allowable increase for school capacity is 42. This means the shadow price is valid for up to two additional portable classrooms.

## h) The following combinations do not violate the 100% rule:

| Portables   | Portables   |                           | Bussing                  |
|-------------|-------------|---------------------------|--------------------------|
| to add      | to add      |                           | Cost                     |
| to school 2 | to school 3 | 100%-rule calculation     | Savings                  |
| 1           | 0           | (20/36) + (0/42) = 55.6%  | (\$177.78)(20)=\$2888.80 |
| 0           | 1           | (0/36) + (20/42) = 47.6%  |                          |
| 0           | 2           | (0/36) + (40/42) = 95.23% |                          |

Each combination yields the following total savings

| <b>Portables</b> | Portables   |                            |        |           |
|------------------|-------------|----------------------------|--------|-----------|
| to add           | to add      |                            | Lease  | Total     |
| to school 2      | to school 3 | Bussing Cost Savings       | Cost   | Savings   |
| 1                | 0           | (\$177.78)(20) = \$3555.60 | \$2500 | \$1055.60 |
| 0                | 1           | (\$144.44)(20) = \$2888.80 | \$2500 | \$388.80  |
| 0                | 2           | (\$144.44)(40) = \$5777.60 | \$5000 | \$777.60  |

Of these combinations, adding one portable to school 2 is best in terms of minimizing total cost. The spreadsheet solution is shown below.

| Data: | Number of | Percentage<br>in 6th | Percentage<br>in 7th | Percentage<br>in 8th | Bussing Cost (\$/Student) |          | Student) |
|-------|-----------|----------------------|----------------------|----------------------|---------------------------|----------|----------|
| Area  | Students  | Grade                | Grade                | Grade                | School 1                  | School 2 | School 3 |
| 1     | 450       | 0.32                 | 0.38                 | 0.3                  | 300                       | 0        | 700      |
| 2     | 600       | 0.37                 | 0.28                 | 0.35                 | -                         | 400      | 500      |
| 3     | 550       | 0.3                  | 0.32                 | 0.38                 | 600                       | 300      | 200      |
| 4     | 350       | 0.28                 | 0.4                  | 0.32                 | 200                       | 500      | -        |
| 5     | 500       | 0.39                 | 0.34                 | 0.27                 | 0                         | -        | 400      |
| 6     | 450       | 0.34                 | 0.28                 | 0.38                 | 500                       | 300      | 0        |

Capacity: 900 1100 1000

| Solution: | Numbe    | r of Students A | ssigned  |       |   |    |
|-----------|----------|-----------------|----------|-------|---|----|
|           | School 1 | School 2        | School 3 | Total |   |    |
| Area 1    | 0        | 450             | 0        | 450   | = |    |
| Area 2    | 0        | 520             | 80       | 600   | = |    |
| Area 3    | 0        | 150             | 400      | 550   | = |    |
| Area 4    | 350      | 0               | 0        | 350   | = |    |
| Area 5    | 340      | 0               | 160      | 500   | = |    |
| Area 6    | 90       | 0               | 360      | 450   | = |    |
| Total     | 780      | 1120            | 1000     |       |   |    |
|           | ≤        | ≤               | ≤        |       |   |    |
| Capacity  | 900      | 1120            | 1000     |       |   | To |

Total Bussing Cost = \$ 552,000.00 Leasing Cost = \$ 2,500.00 Total Cost = \$ 554,500.00

#### Grade Constraints:

| _            | School 1 | School 2 | School 3 |  |
|--------------|----------|----------|----------|--|
| 6th Graders  | 261.2    | 381.4    | 334.4    |  |
| 7th Graders  | 280.8    | 364.6    | 305.6    |  |
| 8th Graders  | 238      | 374      | 360      |  |
| 30% of Total | 234      | 336      | 300      |  |
| 36% of Total | 280.8    | 403.2    | 360      |  |

## i) Adding two portables to school 2 yields the following solution. This is the best plan.

| Data: | Number of | Percentage<br>in 6th | Percentage<br>in 7th | Percentage<br>in 8th | Bussing Cost (\$/Student) |          | Student) |
|-------|-----------|----------------------|----------------------|----------------------|---------------------------|----------|----------|
| Area  | Students  | Grade                | Grade                | Grade                | School 1                  | School 2 | School 3 |
| 1     | 450       | 0.32                 | 0.38                 | 0.3                  | 300                       | 0        | 700      |
| 2     | 600       | 0.37                 | 0.28                 | 0.35                 | -                         | 400      | 500      |
| 3     | 550       | 0.3                  | 0.32                 | 0.38                 | 600                       | 300      | 200      |
| 4     | 350       | 0.28                 | 0.4                  | 0.32                 | 200                       | 500      | -        |
| 5     | 500       | 0.39                 | 0.34                 | 0.27                 | 0                         | -        | 400      |
| 6     | 450       | 0.34                 | 0.28                 | 0.38                 | 500                       | 300      | 0        |
|       |           |                      |                      | O                    | 000                       | 1100     | 1000     |

1000

Capacity: 900 1100 1000

| Solution: | Number     | of Students | Assigned   |       |
|-----------|------------|-------------|------------|-------|
|           | School 1   | School 2    | School 3   | Total |
| Area 1    | 0          | 450         | 0          | 450   |
| Area 2    | 0          | 600         | 0          | 600   |
| Area 3    | 0          | 90          | 460        | 550   |
| Area 4    | 350        | 0           | 0          | 350   |
| Area 5    | 318.947368 | 0           | 181.052632 | 500   |
| Area 6    | 95.2631579 | 0           | 354.736842 | 450   |
| Total     | 764.210526 | 1140        | 995.789474 |       |
|           | ≤          | ≤           | ≤          |       |

1140

450

Total Bussing Cost = \$ 549,052.63

Total Bussing Cost = \$ 549,052.63 Leasing Cost = \$ 5,000.00 Total Cost = \$ 554,052.63

## Grade

Capacity

#### Constraints:

|              | School 1   | School 2 | School 3   |
|--------------|------------|----------|------------|
| 6th Graders  | 254.778947 | 393      | 329.221053 |
|              | 275.115789 | 367.8    | 308.084211 |
| 8th Graders  | 234.315789 | 379.2    | 358.484211 |
| 30% of Total |            | 342      | 298.736842 |
| 36% of Total | 275.115789 | 410.4    | 358.484211 |

900

## **Cases**

6.4 In this case, the decisions to be made are

TV = number of units of advertising on television

PM = number of units of advertising in the printed media

The resulting linear programming model is

Maximize

Cost = 1 TV + 2 PM

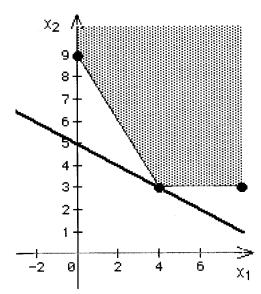
(in millions of dollars)

subject to

Stain remover:

1 PM = 3 (in %)

Liquid detergent:


3 TV + 2 PM = 18 (in %)

Powder detergent: -1 TV + 4 PM =

-1 TV + 4 PM = 4 (in %)

TV = 0, PM = 0

a) Optimal Solution: 4 units of television advertising and 3 units of print media advertising, with a total cost of \$10 million.



b) The Solver find the following optimal advertising plan:

C14 = 4 (Undertake 4 units of advertising on televcision)

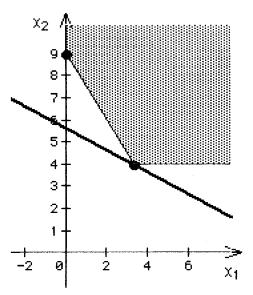
D14 = 3 (Undertake 3 units of advertising in the printed mdia)

The target cell G14 indicates that the total cost of this advertising plan would be \$10 million.

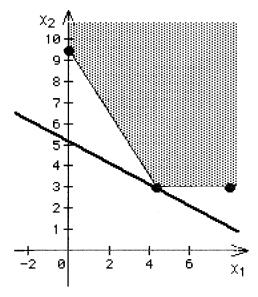

The linear programming spreadsheet model for this problem is shown below.

|    | A 1                    | THE CHARLE            |                     | in menada   | F  | G            |
|----|------------------------|-----------------------|---------------------|-------------|----|--------------|
| 1  | Profit & Gambit Co.    | Advertising-Mix I     | <sup>o</sup> roblem |             |    |              |
| 2  |                        |                       |                     |             |    |              |
| 3  |                        | Television            | Print Media         | vanna araba |    |              |
| 4  | Unit Cost (\$millions) | 1 1                   | 2                   |             |    |              |
| 5  |                        |                       |                     |             |    |              |
| 6  | 228.0.000              |                       |                     | Increased   |    | Minimum      |
| 7  |                        | Increase in Sales per | Unit of Advertising | Sales       |    | Increase     |
| 8  | Stain remover          | 0%                    | 1%                  | 0           | >= | 3%           |
| 9  | Liquid detergent       | 3%                    | 2%                  | 0           | >= | 18%          |
| 10 | Powder detergent       | -1%                   | 4%                  | 0           | >= | 4%           |
| 11 |                        |                       |                     |             |    |              |
| 12 |                        |                       |                     |             |    | Total Cost   |
| 13 |                        | Television            | Print Media         |             |    | (\$millions) |
| 14 | Advertising Units      | 4                     | 3                   |             |    | 10           |

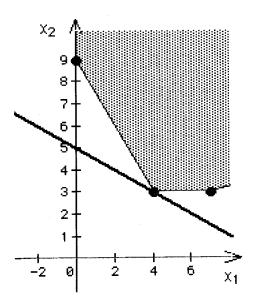
| 6  | Increased                              |
|----|----------------------------------------|
| 7  | Sales                                  |
| 8  | =SUMPRODUCT(C8:D8, AdvertisingUnits)   |
| 9  | =SUMPRODUCT(C9:D9, AdvertisingUnits)   |
| 10 | =SUMPRODUCT(C10:D10, AdvertisingUnits) |


| 12 | Total Cost                              |
|----|-----------------------------------------|
| 13 | (\$millions)                            |
| 14 | =SUMPRODUCT(UnitCost, AdvertisingUnits) |

| AdvertisingUnits   |        |        |       | C14  | :D14 |
|--------------------|--------|--------|-------|------|------|
| IncreasedSales     |        |        |       | E8:E | E10  |
| IncreasedSalesPerU | InitOf | Advert | ising | C8:E | 010  |
| MinimumIncrease    |        |        |       | G8:0 | G10  |
| TotalCost          |        |        |       | G14  |      |
| UnitCost           |        |        |       | C4:E | )4   |




✓ Assume Linear <u>M</u>odel
 ✓ Assume Non-Negative


c) Increasing the required minimum increase in sales for Stain Remover by 1% changes the solution to 3.33 units of television advertising and 4 units of print media advertising, and increases the total cost by \$1.33 million to \$11.33 million.



Increasing the required minimum increase in sales for Liquid Detergent by 1% changes the solution to 4.33 units of television advertising and 3 units of print media advertising,, and increases the total cost by \$0.33 million to \$10.33 million.



Increasing the required minimmum increase in sales for Powder Detergent by 1% has no impact on the solution nor the total cost.



d) Original Solution:

| <u> </u> | В                      | С                   | D                      | E         | F | G            |
|----------|------------------------|---------------------|------------------------|-----------|---|--------------|
| 3        |                        | Television          | Print Media            |           |   |              |
| 4        | Unit Cost (\$millions) | 1                   | 2 1                    |           |   |              |
| 5        |                        |                     |                        |           |   |              |
| 6        |                        |                     |                        | Increased |   | Minimum      |
| 7        |                        | Increase in Sales p | er Unit of Advertising | Sales     |   | Increase     |
| 8        | Stain Remover          | 0%                  | 1%                     | 3%        | 3 | 3%           |
| 9        | Liquid Detergent       | 3%                  | 2%                     | 18%       | 3 | 18%          |
| 10       | Powder Detergent       | -1%                 | 4%                     | 8%        | 3 | 4%           |
| 11       |                        |                     |                        |           |   |              |
| 12       |                        |                     |                        |           |   | Total Cost   |
| 13       |                        | Television          | Print Media            |           |   | (\$millions) |
| 14       | Advertising Units      | 4                   | 3                      |           |   | 10           |

Increasing the required minimum increase in sales for Stain Remover by 1% increases the total cost by \$1.333 million.

|    | В                      | С                    | D                      | E         | F | G            |
|----|------------------------|----------------------|------------------------|-----------|---|--------------|
| 3  |                        | Television           | Print Media            |           |   |              |
| 4  | Unit Cost (\$millions) | 1                    | 2                      |           |   |              |
| 5  |                        |                      |                        |           |   |              |
| 6  |                        |                      |                        | Increased |   | Minimum      |
| 7  |                        | Increase in Sales pe | er Unit of Advertising | Sales     |   | Increase     |
| 8  | Stain Remover          | 0%                   | 1%                     | 4%        | 3 | 4%           |
| 9  | Liquid Detergent       | 3%                   | 2%                     | 18%       | 3 | 18%          |
| 10 | Powder Detergent       | -1%                  | 4%                     | 13%       | 3 | 4%           |
| 11 |                        |                      |                        |           |   |              |
| 12 |                        |                      |                        |           |   | Total Cost   |
| 13 |                        | Television           | Print Media            |           |   | (\$millions) |
| 14 | Advertising Units      | 3.333                | 4                      |           |   | 11.333       |

Increasing the required minimum increase in sales for Liquid Detergent by 1% increases the total cost by \$0.333 million.

|    | В                      | С                    | D                      | E         | F | G            |
|----|------------------------|----------------------|------------------------|-----------|---|--------------|
| 3  |                        | Television           | Print Media            |           |   |              |
| 4  | Unit Cost (\$millions) | <b>1</b> € 1 € 1 € 1 | 2                      |           |   |              |
| 5  |                        |                      |                        |           |   |              |
| 6  |                        |                      |                        | Increased |   | Minimum      |
| 7  |                        | Increase in Sales pe | er Unit of Advertising | Sales     |   | Increase     |
| 8  | Stain Remover          | 0%                   | 1%                     | 3%        | 3 | 3%           |
| 9  | Liquid Detergent       | 3%                   | 2%                     | 19%       | 3 | 19%          |
| 10 | Powder Detergent       | -1%                  | 4%                     | 8%        | 3 | 4%           |
| 11 |                        |                      |                        |           |   |              |
| 12 |                        |                      |                        |           |   | Total Cost   |
| 13 |                        | Television           | Print Media            |           |   | (\$millions) |
| 14 | Advertising Units      | 4.333                | 3                      |           |   | 10.333       |

Increasing the required minimum increase in sales for Powder Detergent by

1% has no impact on the total cost.

|    | В                      | С                    | D                      | E         | F | G            |
|----|------------------------|----------------------|------------------------|-----------|---|--------------|
| 3  |                        | Television           | Print Media            |           |   |              |
| 4  | Unit Cost (\$millions) | 1                    | 2                      |           |   |              |
| 5  |                        |                      |                        |           | _ |              |
| 6  |                        |                      |                        | Increased |   | Minimum      |
| 7  |                        | Increase in Sales pe | er Unit of Advertising | Sales     |   | Increase     |
| 8  | Stain Remover          | 0%                   | 1%                     | 3%        | 3 | 3%           |
| 9  | Liquid Detergent       | 3%                   | 2%                     | 18%       | 3 | 18%          |
| 10 | Powder Detergent       | -1%                  | 4%                     | 8%        | 3 | 5%           |
| 11 |                        |                      |                        |           |   |              |
| 12 |                        |                      |                        |           |   | Total Cost   |
| 13 |                        | Television           | Print Media            |           |   | (\$millions) |
| 14 | Advertising Units      | 4                    | 3                      |           |   | 10           |

e)

|    | В                | С          | D           | E            | F                |
|----|------------------|------------|-------------|--------------|------------------|
| 17 | Minimum Increase | Advertis   | ing Units   | Total Cost   | Incremental      |
| 18 | Stain Remover    | Television | Print Media | (\$millions) | Cost (\$million) |
| 19 |                  | 44         | 3           | 10           |                  |
| 20 | 0%               | 4.571      | 2.143       | 8.857        |                  |
| 21 | 1%               | 4.571      | 2.143       | 8.857        | 0.000            |
| 22 | 2%               | 4.571      | 2.143       | 8.857        | 0.000            |
| 23 | 3%               | 4          | 3           | 10.000       | 1.143            |
| 24 | 4%               | 3.333      | 4           | 11.333       | 1.333            |
| 25 | 5%               | 2.667      | 5           | 12.667       | 1.333            |
| 26 | 6%               | 2          | 6           | 14.000       | 1.333            |

|     | В                | С          | D           | E            | F                |
|-----|------------------|------------|-------------|--------------|------------------|
| 29  | Minimum Increase | Advertis   | ing Units   | Total Cost   | Incremental      |
| 30  | Liquid Detergent | Television | Print Media | (\$millions) | Cost (\$million) |
| 31  |                  | 4          | 3           | 10.000       |                  |
| 32  | 0%               | 0          | 3           | 6.000        |                  |
| 33  | 1%               | 0          | 3           | 6.000        | 0.000            |
| 34  | 2%               | 0          | 3           | 6.000        | 0.000            |
| 35  | 3%               | 0          | 3           | 6.000        | 0.000            |
| 36  | 4%               | 0          | 3           | 6.000        | 0.000            |
| 37  | 5%               | 0          | 3           | 6.000        | 0.000            |
| 38  | 6%               | 0          | 3           | 6.000        | 0.000            |
| 39  | 7%               | 0.333      | 3           | 6.333        | 0.333            |
| 40  | 8%               | 0.667      | 3           | 6.667        | 0.333            |
| 41  | 9%               | 1          | 3           | 7.000        | 0.333            |
| 42  | 10%              | 1.333      | 3           | 7.333        | 0.333            |
| 43  | 11%              | 1.667      | 3           | 7.667        | 0.333            |
| 44  | 12%              | 2          | 3           | 8.000        | 0.333            |
| 45  | 13%              | 2.333      | 3           | 8.333        | 0.333            |
| 46  | 14%              | 2.667      | 3           | 8.667        | 0.333            |
| 47  | 15%              | 3          | 3           | 9.000        | 0.333            |
| 48  | 16%              | 3.333      | 3           | 9.333        | 0.333            |
| 49  | 17%              | 3.667      | 3           | 9.667        | 0.333            |
| 50  | 18%              | 4          | 3           | 10.000       | 0.333            |
| 51  | 19%              | 4.333      | 3           | 10.333       | 0.333            |
| 52  | 20%              | 4.667      | 3           | 10.667       | 0.333            |
| 53  | 21%              | 5          | 3           | 11.000       | 0.333            |
| 54  | 22%              | 5.333      | 3           | 11.333       | 0.333            |
| 55  | 23%              | 5.667      | 3           | 11.667       | 0.333            |
| 56  | 24%              | 6          | 3           | 12.000       | 0.333            |
| 57  | 25%              | 6.333      | 3           | 12.333       | 0.333            |
| 58  | 26%              | 6.667      | 3           | 12.667       | 0.333            |
| 5 9 | 27%              | 7          | 3           | 13.000       | 0.333            |
| 60  | 28%              | 7.333      | 3           | 13.333       | 0.333            |
| 61  | 29%              | 7.667      | 3           | 13.667       | 0.333            |
| 62  | 30%              | 8          | 3           | 14.000       | 0.333            |
| 63  | 31%              | 8.286      | 3.071       | 14.429       | 0.429            |
| 64  | 32%              | 8.571      | 3.143       | 14.857       | 0.429            |
| 65  | 33%              | 8.857      | 3.214       | 15.286       | 0.429            |
| 66  | 34%              | 9.143      | 3.286       | 15.714       | 0.429            |
| 67  | 35%              | 9.429      | 3.357       | 16.143       | 0.429            |
| 68  | 36%              | 9.714      | 3.429       | 16.571       | 0.429            |

|    | В                | С          | D           | Е            | F                |
|----|------------------|------------|-------------|--------------|------------------|
| 71 | Minimum Increase | Advertis   | ing Units   | Total Cost   | Incremental      |
| 72 | Powder Detergent | Television | Print Media | (\$millions) | Cost (\$million) |
| 73 |                  | 4          | 3           | 10           |                  |
| 74 | 0%               | 4          | 3           | 10           |                  |
| 75 | 1%               | 4          | 3           | 10           | 0.000            |
| 76 | 2%               | 4          | 3           | 10           | 0.000            |
| 77 | 3%               | 4          | 3           | 10           | 0.000            |
| 78 | 4%               | 4          | 3           | 10           | 0.000            |
| 79 | 5%               | 4          | 3           | 10           | 0.000            |
| 80 | 6%               | 4          | 3           | 10           | 0.000            |
| 81 | 7%               | 4          | 3           | 10           | 0.000            |
| 82 | 8%               | 4          | 3           | 10           | 0.000            |

### f) Sensitivity Report:

Adjustable Cells

| -       |                               | Final | Reduced | Objective   | Allowable | Allowable |
|---------|-------------------------------|-------|---------|-------------|-----------|-----------|
| Cell    | Name                          | Value | Cost    | Coefficient | Increase  | Decrease  |
| \$C\$14 | Advertising Units Television  | 4     | 0       | 1           | 2         | 1         |
| \$D\$14 | Advertising Units Print Media | 3     | 0       | 2           | 1E+30     | 1.333     |

| Ca |  |  |
|----|--|--|
|    |  |  |
|    |  |  |

| ****    |                        | Final | Shadow | Constraint | Allowable | Allowable   |
|---------|------------------------|-------|--------|------------|-----------|-------------|
| Cell    | Name                   | Value | Price  | R.H. Side  | Increase  | Decrease    |
| \$E\$8  | Stain Remover Sales    | 3%    | 133.33 | 0.03       | 0.06      | 0.008571429 |
| \$E\$9  | Liquid Detergent Sales | 18%   | 33.33  | 0.18       | 0.12      | 0.12        |
| \$E\$10 | Powder Detergent Sales | 8%    | 0      | 0.04       | 0.04      | 1E+30       |

The shadow price indicates the increase in total cost (in \$millions) per unit increase in the right hand side (i.e., per 100% increase). Thus, a 1% increase in the minimum required increase in sales will only increase the total cost by one hundredth of the shadow price, or \$1.33 million for the Stain Remover, \$0.33 million for the Liquid Detergent, and \$0 million for the Powder Detergent.

The allowable range for the required minimum increase in sales constraint for Stain Remover is 2.15% to 9%.

The allowable range for the required minimum increase in sales constraint for Liquid Detergent is 6% to 30%.

The allowable range for the required minimum increase in sales constraint for Powder Detergent is -8% to 8%.

These allowable ranges can also be seen in the results from part (c). For Stain Remover, the incremental cost remains \$1.33 million for each 1% change above 3%. Similarly, for Liquid Detergent, the incremental cost remains \$0.33 million for each 1% change above between 6% and 30%. For Powder Detergent, the incremental cost remains \$0 million for each 1% change throughout the Solver Table.

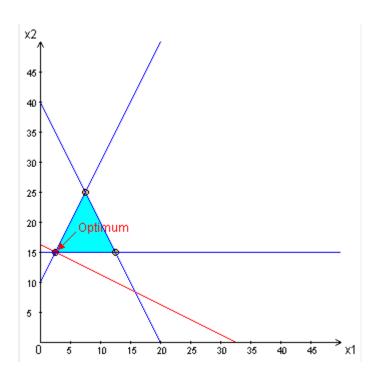
g) Suppose that each of the original numbers in MinimumIncrease (G8:G10) is increased by 1%.

Percent of allowable increase for Stain Remover used = (4% - 3%) / 6% = 16.7%.

Percent of allowable increaes for Liquid Detergent used = (19% - 18%) / 12% = 8.3%.

Percent of allowable increase for Powder Detergent used = (5% - 4%) / 4% = 25%.

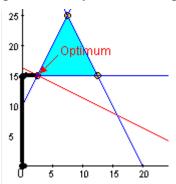
Sum = 50%.


Thus, if each of the original numbers in MinimumIncrease (G8:G10) is increased by 2%, the sum will be 100%. By the 100% rule, this is the most they can be increased before the shadow prices may no longer be valid.

h) Answers will vary.

## **CHAPTER 7: OTHER ALGORITHMS FOR LINEAR PROGRAMMING**

7.1-1.


(a)



(b) Optimal Solution:  $(x_1, x_2) = (2.5, 15), Z = -32.5$ 

| Iteration | BV    | Eq. # | Z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RS    |
|-----------|-------|-------|---|-------|-------|-------|-------|-------|-------|
| 0         | Z     | 0     | 1 | 1     | 2     | 0     | 0     | 0     | 0     |
|           | $x_3$ | 1     | 0 | 2     | 1     | 1     | 0     | 0     | 40    |
|           | $x_4$ | 2     | 0 | 0     | -1    | 0     | 1     | 0     | -15   |
|           | $x_5$ | 3     | 0 | -2    | 1     | 0     | 0     | 1     | 10    |
| 1         | Z     | 0     | 1 | 0     | 0     | 0     | 2     | 0     | -30   |
|           | $x_3$ | 1     | 0 | 2     | 0     | 1     | 1     | 0     | 25    |
|           | $x_2$ | 2     | 0 | 0     | 1     | 0     | -1    | 0     | 15    |
|           | $x_5$ | 3     | 0 | -2    | 0     | 0     | 1     | 1     | -5    |
| 2         | Z     | 0     | 1 | 0     | 0     | 0     | 2.5   | 0.5   | -32.5 |
|           | $x_3$ | 1     | 0 | 0     | 0     | 1     | 2     | 1     | 20    |
|           | $x_2$ | 2     | 0 | 0     | 1     | 0     | -1    | 0     | 15    |
|           | $x_1$ | 3     | 0 | 1     | 0     | 0     | -0.5  | -0.5  | 2.5   |

(c) The path taken by the dual simplex method is  $(0,0) \rightarrow (0,15) \rightarrow (2.5,15)$ .



7.1-2.

| Iteration | BV    | Eq. # | Z  | $x_1$ | $x_2$ | $x_3$          | $x_4$ | $x_5$          | RS              |
|-----------|-------|-------|----|-------|-------|----------------|-------|----------------|-----------------|
| 0         | Z     | 0     | -1 | 5     | 2     | 4              | 0     | 0              | 0               |
|           | $x_4$ | 1     | 0  | -3    | -1    | -2             | 1     | 0              | -4              |
|           | $x_5$ | 2     | 0  | -6    | -3    | -5             | 0     | 1              | -10             |
| 1         | Z     | 0     | -1 | 1     | 0     | $\frac{2}{3}$  | 0     | $\frac{2}{3}$  | $-\frac{20}{3}$ |
|           | $x_4$ | 1     | 0  | -1    | 0     | $-\frac{1}{3}$ | 1     | $-\frac{1}{3}$ | $-\frac{2}{3}$  |
|           | $x_2$ | 2     | 0  | 2     | 1     | $\frac{5}{3}$  | 0     | $-\frac{1}{3}$ | $\frac{10}{3}$  |
| 2         | Z     | 0     | -1 | 0     | 0     | $\frac{1}{3}$  | 1     | $\frac{1}{3}$  | $-\frac{22}{3}$ |
|           | $x_1$ | 1     | 0  | 1     | 0     | $\frac{1}{3}$  | -1    | $\frac{1}{3}$  | $\frac{2}{3}$   |
|           | $x_2$ | 2     | 0  | 0     | 1     | 1              | 2     | -1             | 2               |

Optimal Solution:  $(x_1, x_2, x_3) = (2/3, 2, 0), Z = 22/3$ 

7.1-3.

| Iteration | BV    | Eq. # | Z  | $x_1$ | $x_2$ | $x_3$         | $x_4$ | $x_5$ | $x_6$          | $x_7$ | RS |
|-----------|-------|-------|----|-------|-------|---------------|-------|-------|----------------|-------|----|
| 0         | Z     | 0     | -1 | 7     | 2     | 5             | 4     | 0     | 0              | 0     | 0  |
|           | $x_5$ | 1     | 0  | -2    | -4    | -7            | -1    | 1     | 0              | 0     | -5 |
|           | $x_6$ | 2     | 0  | 8     | -4    | -6            | -4    | 0     | 1              | 0     | -8 |
|           | $x_7$ | 3     | 0  | -3    | -8    | -1            | -4    | 0     | 0              | 1     | -4 |
| 1         | Z     | 0     | -1 | 3     | 0     | 2             | 2     | 0     | $\frac{1}{2}$  | 0     | -4 |
|           | $x_5$ | 1     | 0  | 6     | 0     | -1            | 3     | 1     | -1             | 0     | 3  |
|           | $x_2$ | 2     | 0  | 2     | 1     | $\frac{3}{2}$ | 1     | 0     | $-\frac{1}{4}$ | 0     | 2  |
|           | $x_7$ | 3     | 0  | 13    | 0     | 11            | 4     | 0     | -2             | 1     | 12 |

Optimal Solution:  $(x_1, x_2, x_3, x_4) = (0, 2, 0, 0), Z = 4$ 

## 7.1-4.

## (a) Optimal Solution: $(x_1, x_2) = (10, 10), Z = 250$

| Iter. | BV    | Eq. # | Z | $x_1$ | $x_2$         | $x_3$          | $x_4$          | $x_5$ | RS             | Primal Solution                                    | Dual Solution                          |
|-------|-------|-------|---|-------|---------------|----------------|----------------|-------|----------------|----------------------------------------------------|----------------------------------------|
| 0     | Z     | 0     | 1 | -15   | -10           | 0              | 0              | 0     | 0              | (0,0,40.20,90)                                     | (0,0,0,-15,-10)                        |
|       | $x_3$ | 1     | 0 | 3     | 1             | 1              | 0              | 0     | 40             |                                                    |                                        |
|       | $x_4$ | 2     | 0 | 1     | 1             | 0              | 1              | 0     | 20             |                                                    |                                        |
|       | $x_5$ | 3     | 0 | 5     | 3             | 0              | 0              | 1     | 90             |                                                    |                                        |
| 1     | Z     | 0     | 1 | 0     | -5            | 5              | 0              | 0     | 200            | $(\frac{40}{3}, 0, 0, \frac{20}{3}, \frac{70}{3})$ | (5,0,0,0,-5)                           |
|       | $x_1$ | 1     | 0 | 1     | $\frac{1}{3}$ | $\frac{1}{3}$  | 0              | 0     | $\frac{40}{3}$ |                                                    |                                        |
|       | $x_4$ | 2     | 0 | 0     | $\frac{2}{3}$ | $-\frac{1}{3}$ | 1              | 0     | 20<br>3        |                                                    |                                        |
|       | $x_5$ | 3     | 0 | 0     | $\frac{4}{3}$ | $-\frac{5}{3}$ | 0              | 1     | $\frac{70}{3}$ |                                                    |                                        |
| 2     | Z     | 0     | 1 | 0     | 0             | $\frac{5}{2}$  | $\frac{15}{2}$ | 0     | 250            | (10, 10, 0, 0, 10)                                 | $(\frac{5}{2}, \frac{15}{2}, 0, 0, 0)$ |
|       | $x_1$ | 1     | 0 | 1     | 0             | $\frac{1}{2}$  | $-\frac{1}{2}$ | 0     | 10             |                                                    |                                        |
|       | $x_2$ | 2     | 0 | 0     | 1             | $-\frac{1}{2}$ | $\frac{3}{2}$  | 0     | 10             |                                                    |                                        |
|       | $x_5$ | 3     | 0 | 0     | 0             | -1             | -2             | 1     | 10             |                                                    |                                        |

## (b) The dual problem is:

| Iter. | BV    | Eq. # | Z  | $y_1$ | $y_2$          | $y_3$          | $y_4$          | $y_5$          | RS             | Primal Solution                                    | Dual Solution                          |
|-------|-------|-------|----|-------|----------------|----------------|----------------|----------------|----------------|----------------------------------------------------|----------------------------------------|
| 0     | Z     | 0     | -1 | 40    | 20             | 90             | 0              | 0              | 0              | (0,0,40,20,90)                                     | (0,0,0,-15,-10)                        |
|       | $y_4$ | 1     | 0  | -3    | -1             | -5             | 1              | 0              | -15            |                                                    |                                        |
|       | $y_5$ | 2     | 0  | -1    | -1             | -3             | 0              | 1              | -10            |                                                    |                                        |
| 1     | Z     | 0     | -1 | 0     | 20<br>3        | 70<br>3        | $\frac{40}{3}$ | 0              | -200           | $(\frac{40}{3}, 0, 0, \frac{20}{3}, \frac{70}{3})$ | (5,0,0,0,-5)                           |
|       | $y_1$ | 1     | 0  | 1     | $\frac{1}{3}$  | <u>5</u>       | $-\frac{1}{3}$ | 0              | 5              |                                                    |                                        |
|       | $y_5$ | 2     | 0  | 0     | $-\frac{2}{3}$ | $-\frac{4}{3}$ | $-\frac{1}{3}$ | 1              | -5             |                                                    |                                        |
| 2     | Z     | 0     | -1 | 0     | 0              | 10             | 10             | 10             | -250           | (10, 10, 0, 0, 10)                                 | $(\frac{5}{2}, \frac{15}{2}, 0, 0, 0)$ |
|       | $y_1$ | 1     | 0  | 1     | 0              | 1              | $-\frac{1}{2}$ | $\frac{1}{2}$  | $\frac{5}{2}$  |                                                    |                                        |
|       | $y_2$ | 2     | 0  | 0     | 1              | 2              | $\frac{1}{2}$  | $-\frac{3}{2}$ | $\frac{15}{2}$ |                                                    |                                        |

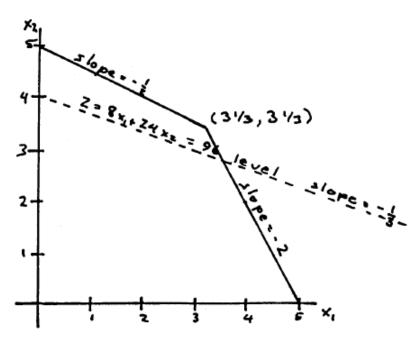
Optimal Solution:  $(y_1, y_2, y_3) = (5/2, 15/2, 0), Z = 250$ 

The sequence of basic and complementary basic solutions is identical to that in part (a).

7.1-5.

| Iteration | BV    | Eq. # | Z | $x_1$         | $x_2$ | $x_3$ | $x_4$          | $x_5$          | RS |
|-----------|-------|-------|---|---------------|-------|-------|----------------|----------------|----|
| 0         | Z     | 0     | 1 | 0             | 0     | 0     | $\frac{3}{2}$  | 1              | 54 |
|           | $x_3$ | 1     | 0 | 0             | 0     | 1     | $\frac{1}{3}$  | $-\frac{1}{3}$ | 6  |
|           | $x_2$ | 2     | 0 | 0             | 1     | 0     | $\frac{1}{2}$  | 0              | 12 |
|           | $x_1$ | 3     | 0 | 1             | 0     | 0     | $-\frac{1}{3}$ | $\frac{1}{3}$  | -2 |
| 1         | Z     | 0     | 1 | $\frac{3}{2}$ | 0     | 0     | 0              | $\frac{5}{2}$  | 45 |
|           | $x_3$ | 1     | 0 | 1             | 0     | 1     | 0              | 0              | 4  |
|           | $x_2$ | 2     | 0 | $\frac{3}{2}$ | 1     | 0     | 0              | $\frac{1}{2}$  | 9  |
|           | $x_4$ | 3     | 0 | -3            | 0     | 0     | 1              | -1             | 6  |

Optimal Solution:  $(x_1, x_2, x_3, x_4, x_5) = (0, 9, 4, 6, 0), Z = 45$ 


7.1-6.

| Iteration | BV    | Eq. # | Z | $x_1$           | $x_2$          | $x_3$ | $x_4$ | $x_5$           | RS  |
|-----------|-------|-------|---|-----------------|----------------|-------|-------|-----------------|-----|
| 0         | Z     | 0     | 1 | 0               | 0              | 2     | 5     | 0               | 150 |
|           | $x_2$ | 1     | 0 | -1              | 1              | 3     | 1     | 0               | 30  |
|           | $x_5$ | 2     | 0 | 16              | 0              | -2    | -4    | 1               | -30 |
| 1         | Z     | 0     | 1 | 16              | 0              | 0     | 1     | 1               | 120 |
|           | $x_2$ | 1     | 0 | 23              | 1              | 0     | -5    | $\frac{3}{2}$   | -15 |
|           | $x_3$ | 2     | 0 | -8              | 0              | 1     | 2     | $-\frac{1}{2}$  | 15  |
| 2         | Z     | 0     | 1 | $\frac{103}{5}$ | $\frac{1}{5}$  | 0     | 0     | $\frac{13}{10}$ | 117 |
|           | $x_4$ | 1     | 0 | $-\frac{23}{5}$ | $-\frac{1}{5}$ | 0     | 1     | $-\frac{3}{10}$ | 3   |
|           | $x_3$ | 2     | 0 | 6<br>5          | $\frac{2}{5}$  | 1     | 0     | $\frac{1}{10}$  | 9   |

Optimal Solution:  $(x_1, x_2, x_3, x_4, x_5) = (0, 0, 9, 3, 0), Z = 117$ 

7.2-1.

(a)

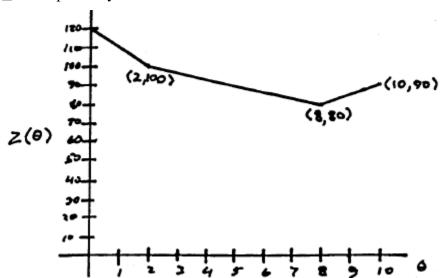


The solution (0,5) is optimal with Z=120. It remains optimal as long as

$$-\frac{8+\theta}{24-2\theta} \le -\frac{1}{2} \Leftrightarrow \theta \le 2,$$

at which point (10/3,10/3) becomes optimal. In turn, this solution remains optimal until

$$-\frac{8+\theta}{24-2\theta} \le -2 \Leftrightarrow \theta \le 8,$$


at which point (5,0) becomes optimal.

| $\theta$              | $(x_1^*, x_2^*)$ | $Z^*(\theta)$        |
|-----------------------|------------------|----------------------|
| $0 \le \theta \le 2$  | (0, 5)           | $120-10\theta$       |
| $2 \le \theta \le 8$  | (10/3, 10/3)     | $(320 - 10\theta)/3$ |
| $8 \le \theta \le 10$ | (5,0)            | $40 + 5\theta$       |

(b)

| Iteration | BV    | Eq. # | Z | $x_1$         | $x_2$                   | $x_3$                  | $x_4$                 | RS                       |
|-----------|-------|-------|---|---------------|-------------------------|------------------------|-----------------------|--------------------------|
| 0         | Z     | 0     | 1 | $-8-\theta$   | $-24+2\theta$           | 0                      | 0                     | 0                        |
|           | $x_3$ | 1     | 0 | 1             | 2                       | 1                      | 0                     | 10                       |
|           | $x_4$ | 2     | 0 | 2             | 1                       | 0                      | 1                     | 10                       |
| 1         | Z     | 0     | 1 | $4-2\theta$   | 0                       | $12 - \theta$          | 0                     | $120-10\theta$           |
|           | $x_2$ | 1     | 0 | $\frac{1}{2}$ | 1                       | $\frac{1}{2}$          | 0                     | 5                        |
|           | $x_4$ | 2     | 0 | $\frac{3}{2}$ | 0                       | $-\frac{1}{2}$         | 1                     | 5                        |
| 2         | Z     | 0     | 1 | 0             | 0                       | $\frac{40-5\theta}{3}$ | $\frac{8-4\theta}{3}$ | $\frac{320-10\theta}{3}$ |
|           | $x_2$ | 1     | 0 | 0             | 1                       | $\frac{2}{3}$          | $-\frac{1}{3}$        | $\frac{10}{3}$           |
|           | $x_1$ | 2     | 0 | 1             | 0                       | $-\frac{1}{3}$         | $\frac{2}{3}$         | $\frac{10}{3}$           |
| 3         | Z     | 0     | 1 | 0             | $\frac{-40+5\theta}{2}$ | 0                      | $\frac{8+\theta}{2}$  | $40 + 5\theta$           |
|           | $x_3$ | 1     | 0 | 0             | $\frac{3}{2}$           | 1                      | $-\frac{1}{2}$        | 5                        |
|           | $x_1$ | 2     | 0 | 1             | $\frac{1}{2}$           | 0                      | $\frac{1}{2}$         | 5                        |

The solutions found in iterations 1, 2 and 3 are optimal for  $0 \le \theta \le 2$ ,  $2 \le \theta \le 8$  and  $8 \le \theta \le 10$  respectively.



(c) The graph in part (b) suggests that  $\theta=0$  is optimal. Since  $Z(\theta)$  is convex in  $\theta$ , the maximum is attained at  $\theta=0$  or  $\theta=10$ . Thus, only the linear programming problems corresponding to  $\theta=0$  and  $\theta=10$  need to be solved.

7.2-2.

| Iteration | BV    | Eq. # | Z | $x_1$         | $x_2$                    | $x_3$                  | $x_4$                     | $x_5$ | $x_6$                   | RS                       |
|-----------|-------|-------|---|---------------|--------------------------|------------------------|---------------------------|-------|-------------------------|--------------------------|
| 0         | Z     | 0     | 1 | $-20-4\theta$ | $-30+3\theta$            | -5                     | 0                         | 0     | 0                       | 0                        |
|           | $x_4$ | 1     | 0 | 3             | 3                        | 1                      | 1                         | 0     | 0                       | 10                       |
|           | $x_5$ | 2     | 0 | 8             | 6                        | 4                      | 0                         | 1     | 0                       | 25                       |
|           | $x_6$ | 3     | 0 | 6             | 1                        | 1                      | 0                         | 0     | 1                       | 15                       |
| 1         | Z     | 0     | 1 | $10-7\theta$  | 0                        | $5-\theta$             | $10 - \theta$             | 0     | 0                       | $100-10\theta$           |
|           | $x_2$ | 1     | 0 | 1             | 1                        | $\frac{1}{3}$          | $\frac{1}{3}$             | 0     | 0                       | $\frac{10}{3}$           |
|           | $x_5$ | 2     | 0 | 2             | 0                        | 2                      | -2                        | 1     | 0                       | 5                        |
|           | $x_6$ | 3     | 0 | 5             | 0                        | $\frac{2}{3}$          | $-\frac{1}{3}$            | 0     | 1                       | $\frac{35}{3}$           |
| 2         | Z     | 0     | 1 | 0             | 0                        | $\frac{55-\theta}{15}$ | $\frac{160-22\theta}{15}$ | 0     | $\frac{-10+7\theta}{5}$ | $\frac{230+19\theta}{3}$ |
|           | $x_2$ | 1     | 0 | 0             | 1                        | $\frac{1}{5}$          | <u>2</u><br>5             | 0     | $-\frac{1}{5}$          | 1                        |
|           | $x_5$ | 2     | 0 | 0             | 0                        | 26<br>15               | $-\frac{28}{15}$          | 1     | $-\frac{2}{5}$          | $\frac{1}{3}$            |
|           | $x_1$ | 3     | 0 | 1             | 0                        | $\frac{2}{15}$         | $-\frac{1}{15}$           | 0     | 1<br>5                  | $\frac{7}{3}$            |
| 3         | Z     | 0     | 1 | 0             | $\frac{-80+11\theta}{3}$ | $\frac{-5+2\theta}{3}$ | 0                         | 0     | $\frac{10+2\theta}{3}$  | $50 + 10\theta$          |
|           | $x_4$ | 1     | 0 | 0             | $\frac{5}{2}$            | $\frac{1}{2}$          | 1                         | 0     | $-\frac{1}{2}$          | $\frac{5}{2}$            |
|           | $x_5$ | 2     | 0 | 0             | $\frac{14}{3}$           | 8 3                    | 0                         | 1     | $-\frac{4}{3}$          | 5                        |
|           | $x_1$ | 3     | 0 | 1             | 1/6                      | $\frac{1}{6}$          | 0                         | 0     | $\frac{1}{6}$           | <u>5</u><br>2            |

| $\theta$                    | $(x_1^*,x_2^*,x_3^*)$ | $Z^*(\theta)$            |
|-----------------------------|-----------------------|--------------------------|
| $0 	 \leq \theta \leq 10/7$ | $(0,\frac{10}{3},0)$  | $100-10\theta$           |
| $10/7 \le \theta \le 80/11$ | $(\frac{7}{3},1,0)$   | $\frac{230+19\theta}{3}$ |
| $80/11 \le \theta$          | $(\frac{5}{2},0,0)$   | $50 + 10\theta$          |

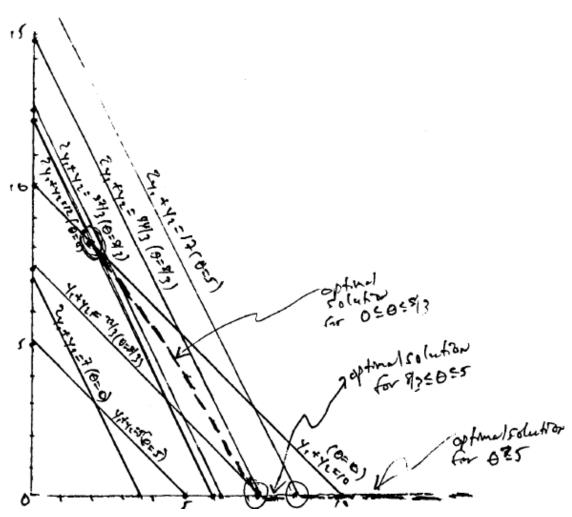
## 7.2-3.

(a) Starting with the optimal tableau for  $\theta = 0$ , after two iterations, we get:

| Iter. | BV    | Eq. # | Z | $x_1$                   | $x_2$       | $x_3$      | $x_4$                 | $x_5$       | RS               |
|-------|-------|-------|---|-------------------------|-------------|------------|-----------------------|-------------|------------------|
| 0     | Z     | 0     | 1 | 0                       | 0           | $5-\theta$ | $2+2\theta$           | $8-3\theta$ | 220              |
|       | $x_2$ | 1     | 0 | 0                       | 1           | 1          | 1                     | -1          | 10               |
|       | $x_1$ | 2     | 0 | 1                       | 0           | 0          | -1                    | 2           | 10               |
| 1     | Z     | 0     | 1 | $\frac{-8+3\theta}{2}$  | 0           | $5-\theta$ | $\frac{12+\theta}{2}$ | 0           | $180 + 15\theta$ |
|       | $x_2$ | 1     | 0 | $\frac{1}{2}$           | 1           | 1          | $\frac{1}{2}$         | 0           | 15               |
|       | $x_5$ | 2     | 0 | $\frac{1}{2}$           | 0           | 0          | $-\frac{1}{2}$        | 1           | 5                |
| 2     | Z     | 0     | 1 | $\frac{-13+4\theta}{2}$ | 0           | 0          | $\frac{7+2\theta}{2}$ | 0           | $105 + 30\theta$ |
|       | $x_3$ | 1     | 0 | $\frac{1}{2}$           | $-5+\theta$ | 1          | $\frac{1}{2}$         | 0           | 15               |
|       | $x_5$ | 2     | 0 | $\frac{1}{2}$           | 0           | 0          | $-\frac{1}{2}$        | 1           | 5                |

| $\theta$                 | $(x_1^*, x_2^*, x_3^*)$ | $Z^*(	heta)$     |
|--------------------------|-------------------------|------------------|
| $0 \leq \theta \leq 8/3$ | (10, 10, 0)             | 220              |
| $8/3 \le \theta \le 5$   | (0, 15, 0)              | $180 + 15\theta$ |
| $5 \leq \theta$          | (0, 0, 15)              | $105 + 30\theta$ |

## (b) The dual problem is:

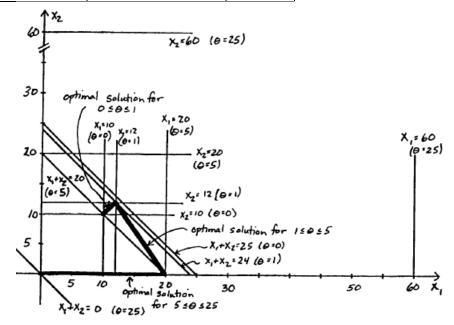

$$\begin{array}{lll} \text{minimize} & 30y_1 + 20y_2 \\ \text{subject to} & y_1 + & y_2 & \geq 10 - \theta \\ & 2y_1 + & y_2 & \geq 12 + \theta \\ & 2y_1 + & y_2 & \geq 7 + 2\theta \\ & & y_1, y_2 & \geq 0. \end{array}$$

Starting with the optimal tableau for  $\theta = 0$ , after two iterations, we get:

| Iter. | BV    | Eq. # | Z  | $y_1$ | $y_2$          | $y_3$ | $y_4$          | $y_5$          | RS               |
|-------|-------|-------|----|-------|----------------|-------|----------------|----------------|------------------|
| 0     | Z     | 0     | -1 | 0     | 0              | 10    | 10             | 0              | -220             |
|       | $y_2$ | 1     | 0  | 0     | 1              | -2    | 1              | 0              | $8-3\theta$      |
|       | $y_1$ | 2     | 0  | 1     | 0              | 1     | -1             | 0              | $2+2\theta$      |
|       | $y_5$ | 3     | 0  | 0     | 0              | 0     | -1             | 1              | $5-\theta$       |
| 1     | Z     | 0     | -1 | 0     | 5              | 0     | 15             | 0              | $-180-15\theta$  |
|       | $y_3$ | 1     | 0  | 0     | $-\frac{1}{2}$ | 1     | $-\frac{1}{2}$ | 0              | $-4+1.5\theta$   |
|       | $y_1$ | 2     | 0  | 1     | $\frac{1}{2}$  | 0     | $-\frac{1}{2}$ | 0              | $6 + 0.5\theta$  |
|       | $y_5$ | 3     | 0  | 0     | 0              | 0     | -1             | 1              | 5-	heta          |
| 2     | Z     | 0     | -1 | 0     | 5              | 0     | 0              | 15             | $-105-30\theta$  |
|       | $y_3$ | 1     | 0  | 0     | $-\frac{1}{2}$ | 1     | 0              | $-\frac{1}{2}$ | $-6.5 + 2\theta$ |
|       | $y_1$ | 2     | 0  | 1     | $\frac{1}{2}$  | 0     | 0              | $-\frac{1}{2}$ | $3.5 + \theta$   |
|       | $y_4$ | 3     | 0  | 0     | 0              | 0     | 1              | -1             | $-5+\theta$      |

| $\theta$                 | $(y_1^st,y_2^st)$        | $Z^*(	heta)$     |
|--------------------------|--------------------------|------------------|
| $0 \leq \theta \leq 8/3$ | $(2+2\theta, 8-3\theta)$ | 220              |
| $8/3 \le \theta \le 5$   | $(6+0.5\theta,0)$        | $180 + 15\theta$ |
| $5 \leq \theta$          | $(3.5 + \theta, 0)$      | $105 + 30\theta$ |

The basic solutions are the same as those in part (a).




 $\begin{array}{ll} 0 \leq \theta \leq 8/3 & :y^* \text{ from } (2,8) \text{ to } (22/3,0) \\ 8/3 \leq \theta \leq 5 & :y^* \text{ from } (22/3,0) \text{ to } (17/2,0) \\ 5 \leq \theta & :y^* = (3.5+\theta,0) \end{array}$ 

7.2-4.

| Bas | Eq  | 1  | l    | (   | Coefficient | of  |    | Right  |
|-----|-----|----|------|-----|-------------|-----|----|--------|
| Var | No  | z  | ΧI   | X2  | Х3          | X4  | X5 | side   |
| Z   | 0   | 1  | -2   | -1  | 0           | 0   | 0  | 0      |
| ХЗ  | 1   | ٥  | 1    | ò   | - 1         | 0   | 0  | 10+20  |
| XΨ  | 2   | 0  | j*   | ĭ   | ó           | ĭ   | 0  | 25-0   |
| X5  | 3   | 0  | 0    | ΄,  | Ö           | 0   | 1  | 10+28  |
| Bas | Eq  |    |      | . ( | Coefficient | of  |    | Right  |
| Var | No  | z  | XI.  | _X2 | Х3          | XΨ  | X5 | side   |
| Z   | 0   | 1  | ٥    | 1   | 0           | 2   | 0  | 50-20  |
| ΧЗ  | 1   | 0  | 0    | -1* | ı           | -1  | 0  | 15+,3€ |
| ΧI  | 2   | 0  | 1    | 1   | 0           | 1   | 0  | 25-0   |
| X5  | 3   |    | 0    | ı   | 0           | 0   | ,  | 10+20  |
| Bas | Eq  |    |      | С   | oefficient  | of  | ,  | Right  |
| Var | 26  | z  | X)   | X2  | Х3          | х4  | X5 | side   |
| z   | 0   | 1  | 0    | 0   | ī           | 1   | 0  | 35+0   |
| X2  | 1   | 0  | 0    | 1   | -1          | 1   | 0  | 15-30  |
| χį  | 2   | 0  | 1    | 0   | 1           | 0   | 0  | 10+28  |
| X5  | 3   | ۱٥ | 0    | 0   | (           | - 1 | 1  | -5+50  |
| Bas | Eq. |    |      | C   | oefficient  | of  | ,  | Right  |
| Var | No. | z  | _XI_ | X2_ | X3          | X4  | X5 | side   |
| z   | 0   | 1  | 0    | 0   | 2           | 0   | 1  | 30+60  |
| XZ  | 1   | 0  | 0    | 1   | 0           | 0   | 1  | 10+20  |
| Χı  | - 1 | 0  | 1    | 0   | 1           | 0   | 0  | 10+20  |
| χųΙ | 3   | 01 | 0    | 0   | -1          | 1   | -1 | 5-50   |
|     |     |    |      |     |             |     |    | , ,,,  |

| $\theta$              | $(x_1^*,x_2^*)$           | $Z^*(\theta)$  |
|-----------------------|---------------------------|----------------|
| $0 \le \theta \le 1$  | $(10+2\theta,10+2\theta)$ | $30 + 6\theta$ |
| $1 \le \theta \le 5$  | $(10+2\theta,15-3\theta)$ | $35 + \theta$  |
| $5 \le \theta \le 25$ | $(25-\theta,0)$           | $50-2\theta$   |



**7.2-5.** Starting with the optimal tableau for  $\theta = 0$ , after two iterations, we get:

| Ва  | s E     | αl      |               |    |                         | Coef             | ficien | t of           |    |                   |            | Right        |
|-----|---------|---------|---------------|----|-------------------------|------------------|--------|----------------|----|-------------------|------------|--------------|
| Va  | r N     | 0       | ZΙ            | X: | L X2                    | X3               | X4     | X5             | X  | 6                 | X7         | side         |
| _   | _ _     | _١.     | ١_            |    |                         |                  |        |                |    |                   |            | _l           |
|     | -       | I       | I             |    |                         |                  |        |                |    |                   |            | I            |
|     | •       | 01      | 1             |    | ) 28                    |                  | 21     | 0              |    | 0                 | 35         | 1050+35t     |
|     | •       | 1       | 01            | (  |                         |                  |        | 1              |    | 0                 | -3         | 45-5t        |
|     | •       | 2       | 01            | (  |                         | -3 *             |        | 0              |    | 1                 | -2         | 18-3t        |
| X   | 1       | 3       | 01            | :  | 1 2                     | 1                | 2      | 0              |    | 0                 | 1          | 30+t         |
| Ва  | s E     | a I     |               |    |                         | Coef             | ficien | t of           |    |                   |            | Right        |
|     | r N     |         | ZΙ            | X  | 1 X2                    | Х3               | X4     | X5             | Х  | 6                 | Х7         | side         |
|     |         |         | - 1           |    |                         |                  |        |                |    | -                 |            | 1            |
| _   | -;-     | -;·     | —;·           |    |                         |                  |        |                |    |                   |            | - <u>i</u>   |
| Z   | i       | o j     | 1             |    | 28                      | 0                | 49/3   | 0              | 7  | /3                | 91/3       | 1092+28t     |
| X   | 5       | 1       | 0             | 1  | 3 –8                    | 0                | -5/3   | 1              | -2 | /3*               | -5/3       | 33-3t        |
| X   | 3       | 2       | 0             | 1  | 0 0                     | 1                | 2/3    | 0              | -1 | /3                | 2/3        | -6+t         |
| X   | 11      | 3       | 0             |    | 1 2                     | 0                | 4/3    | 0              | 1  | /3                | 1/3        | 36           |
|     |         |         |               |    |                         |                  |        |                |    |                   |            |              |
| Bas | -       |         |               |    |                         |                  | icient |                |    |                   | ١          | Right        |
| Var | No      | :       | Z             | X1 | X2                      | X3               | X4     | X5             | Х6 |                   | X7         | side         |
|     | !—      | !–      | -! <i>-</i> - |    |                         |                  |        |                |    |                   | !          |              |
| Z   | <br>  0 | <br>  : | <br>1         | 0  | 0                       | 0                | 21/2   | 7/2            | 0  | 4                 | ا<br>1 9/2 | 1207.5+17.5t |
| X6  |         | •       | ) i           | 0  | 12                      | 0                |        | -3/2           |    |                   | -          | -49.5+4.5t   |
| ХЗ  | 2       | į (     | -             | 0  | 4                       | 1                | 3/2    | -1/2           | 0  |                   |            | -22.5+2.5t   |
| X1  | 3       | į (     | ρį            | 1  | -2                      | 0                | 1/2    | 1/2            | 0  | -                 | 1/2        | 52.5-1.5t    |
| _   |         |         |               |    |                         |                  |        |                |    |                   |            |              |
|     |         |         | $\theta$      |    | $(x_1^*, x_2^*,$        | $x_3^*, x_4^*)$  |        |                |    | $Z^*($            | $\theta)$  |              |
|     | 0       | $\leq$  | $\theta \leq$ | 6  | $(30+\overline{\theta}$ | (0,0,0,0)        | _      |                |    | $105\overline{0}$ | +35        | $\theta$     |
|     | 6       | $\leq$  | $\theta \leq$ | 11 | (36, 0, -               | $-6+\theta$ , (  | 0)     |                |    | 1092              | 2 + 28     | $3\theta$    |
|     | 11      | $\leq$  | $\theta \leq$ | 35 | (52.5 -                 | $-1.5\theta, 0,$ | -22.5  | $+2.5\theta$ , | 0) | 1207              | 7.5 +      | $17.5\theta$ |
| -   |         |         |               |    |                         |                  |        |                |    |                   |            |              |

 $\theta=30$  provides the largest value of the objective function:  $x^*(30)=(7.5,0,52.5,0),$   $Z^*(30)=1732.5.$ 

### 7.2-6.

| Bas        | <b> </b> €q | L   |       | Co   | efficier    | nt of |          | Right     |
|------------|-------------|-----|-------|------|-------------|-------|----------|-----------|
| Var        | No          | ĮZ. | XI_   | X2   | X.3         | X4    | <u> </u> | side      |
| Z          | 0           | 1   | 0     | 0    | 2           | 5     | 0        | 100+100   |
| ΧZ         | 1           | 0   | -1    | 1    | 3           | ,     | 0        | 20+20     |
| X5         | 2           | 0   | 16    | 0    | <i>-2</i> * | -4    | 1        | 10-90     |
| Bas        | Ea          |     | 1     | C    | efficier    | nt of |          | Right     |
| Var        | No          | z   | _X/   | X2   | χ3          | XY    | X5       | side      |
| z          | 0           | 1   | 16    | 0    | 0           | 1     | I        | 110+0     |
| X2         | 1           | 0   | 23    | 1    | 0           | -5 ¥  | 3/2      | 35 · 23 0 |
| Х3         | 2           | 0   | -8    | 0    | 1           | 2     | -1/2     | -5+90     |
| Bas        | <b>Eq</b>   | L   |       | Co   | efficien    | t of  |          | Right     |
| Var        | No          | z   | X1    | X2   | Х3          | _X4   | X5       | side      |
| z          | 0           | 1   | 103/5 | 1/5  | 0           | 0     | 13/10    | 117-18日   |
| X4         | 1           | 0   | -23   | -1/5 | 0           | 1 .   | 3/10     | -7+ 흥ፀ    |
| <b>x</b> 3 | 2           | 0   | 6/5   | 2/5  | 1           | 0     | 1/10     |           |
| ,          |             |     | 12    | 79   | -           |       | 10       | 9- 8      |

| $\theta$                    | $(x_1^st, x_2^st, x_3^st)$       | $Z^*(	heta)$      |
|-----------------------------|----------------------------------|-------------------|
| $0 	 \leq \theta \leq 10/9$ | $(0,20+2\theta,0)$               | $100 + 10\theta$  |
| $10/9 \le \theta \le 70/23$ | $(0,35-11.5\theta,-5+4.5\theta)$ | $110 + \theta$    |
| $70/23 \le \theta \le 90$   | $(0,0,9-0.1\theta)$              | $117 + 1.3\theta$ |

### 7.2-7.

(a) Let  $x^{(k)}$  be the kth optimal solution obtained as  $\theta$  is increased from 0. Each  $x^{(k)}$  is optimal for some  $\theta$ -interval, say  $\theta_k \leq \theta \leq \theta_{k+1}$ , and the objective function value  $Z(\theta) = \alpha_k + \beta_k \theta$  for some  $\alpha_k$  and  $\beta_k$ , so  $Z(\theta)$  is linear in this interval. As the interval changes,  $\alpha_k$  and  $\beta_k$  change so that a different linear function is obtained for each interval.

### (b) The problem is:

maximize 
$$Z(\theta) = \sum_{j=1}^{n} (c_j + \alpha_j \theta) x_j$$
 subject to 
$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i, i = 1, 2, \dots, m$$
 
$$x_j \geq 0, j = 1, 2, \dots, n.$$

Note that the feasible region does not depend on  $\theta$ . Consider  $\theta_1 < \theta_2$  and let  $\theta_3 = \lambda \theta_1 + (1-\lambda)\theta_2$  for some  $0 \le \lambda \le 1$ . Let  $x_j^{(1)}$ ,  $x_j^{(2)}$  and  $x_j^{(3)}$  be the optimal values of  $x_j$   $(j=1,2,\ldots,n)$  for  $\theta_1$ ,  $\theta_2$  and  $\theta_3$  respectively. Let  $Z(\theta,x) = \sum_{j=1}^n (c_j + \alpha_j \theta) x_j$ .

$$Z^*(\theta_1) = Z(\theta_1, x^{(1)}) \ge Z(\theta_1, x^{(3)}) \Rightarrow \lambda Z^*(\theta_1) \ge \lambda Z(\theta_1, x^{(3)})$$

$$Z^*(\theta_2) = Z(\theta_2, x^{(2)}) \ge Z(\theta_2, x^{(3)}) \Rightarrow (1 - \lambda) Z^*(\theta_2) \ge (1 - \lambda) Z(\theta_2, x^{(3)})$$

$$\Rightarrow \lambda Z^{*}(\theta_{1}) + (1 - \lambda)Z^{*}(\theta_{2}) \geq \lambda Z(\theta_{1}, x^{(3)}) + (1 - \lambda)Z(\theta_{2}, x^{(3)})$$

$$= \lambda \sum_{j=1}^{n} (c_{j} + \alpha_{j}\theta_{1})x_{j}^{(3)} + (1 - \lambda)\sum_{j=1}^{n} (c_{j} + \alpha_{j}\theta_{2})x_{j}^{(3)}$$

$$= \sum_{j=1}^{n} [c_{j} + \alpha_{j}(\lambda\theta_{1} + (1 - \lambda)\theta_{2})]x_{j}^{(3)}$$

$$= \sum_{j=1}^{n} (c_{j} + \alpha_{j}\theta_{3})x_{j}^{(3)} = Z(\theta_{3}, x^{(3)}) = Z^{*}(\theta_{3})$$

Hence,  $Z^*(\theta)$  is convex in  $\theta$ .

### 7.2-8.

- (a) The same argument as in part (a) of problem 7.2-7 holds.
- (b) The problem is:

maximize 
$$Z(\theta) = \sum_{j=1}^n c_j x_j$$
 subject to 
$$\sum_{j=1}^n a_{ij} x_j \leq b_i + \alpha_i \theta, \ i=1,2,\ldots,m$$
 
$$x_j \geq 0, \ j=1,2,\ldots,n.$$

Consider  $\theta_1 < \theta_2$  and let  $\theta_3 = \lambda \theta_1 + (1 - \lambda)\theta_2$  for some  $0 \le \lambda \le 1$ . Let  $x_j^{(1)}$ ,  $x_j^{(2)}$  and  $x_j^{(3)}$  be the optimal values of  $x_j$  (j = 1, 2, ..., n) for  $\theta_1$ ,  $\theta_2$  and  $\theta_3$  respectively.

$$\lambda Z^*(\theta_1) + (1 - \lambda) Z^*(\theta_2) = \lambda \sum_{j=1}^n c_j x_j^{(1)} + (1 - \lambda) \sum_{j=1}^n c_j x_j^{(2)}$$
$$= \sum_{j=1}^n c_j (\lambda x_j^{(1)} + (1 - \lambda) x_j^{(2)})$$

If 
$$x'_j = \lambda x_j^{(1)} + (1 - \lambda) x_j^{(2)}$$
  $(j = 1, 2, ..., n)$ , then  $x'$  is feasible for  $\theta = \theta_3$ , since 
$$\sum_{j=1}^n a_{ij} x'_j = \lambda \sum_{j=1}^n a_{ij} x_j^{(1)} + (1 - \lambda) \sum_{j=1}^n a_{ij} x_j^{(2)} = \lambda (b_i + \alpha_i \theta) + (1 - \lambda) (b_i + \alpha_i \theta)$$

$$=b_i+\alpha_i\theta, i=1,2,\ldots,m.$$

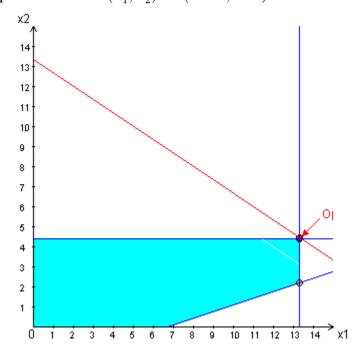
Since  $x^{(3)}$  is optimal for  $\theta_3$ ,

$$\sum_{j=1}^{n} c_j (\lambda x_j^{(1)} + (1 - \lambda) x_j^{(2)}) \le \sum_{j=1}^{n} c_j x_j^{(3)} = Z^*(\theta_3).$$

Hence,  $Z^*(\theta)$  is concave in  $\theta$ .

## 7.2-9.

From duality theory,


$$Z^{**}=$$
 minimum  $\sum\limits_{i=1}^m (b_i+k_i)y_i$  subject to  $\sum\limits_{i=1}^m a_{ij}y_i\geq c_j,\,j=1,2,\ldots,n$   $y_i\geq 0,\,i=1,2,\ldots,m.$ 

 $(y_1^*,y_2^*,\dots,y_m^*)$  is feasible for this problem, so

$$Z^{**} \leq \sum_{i=1}^{m} (b_i + k_i) y_i^* = Z^* + \sum_{i=1}^{m} k_i y_i^*.$$

## 7.3-1.

(a) Optimal Solution:  $(x_1^\ast, x_2^\ast) = \ (13.33, 4.44)$  and  $Z^\ast = 40$ 

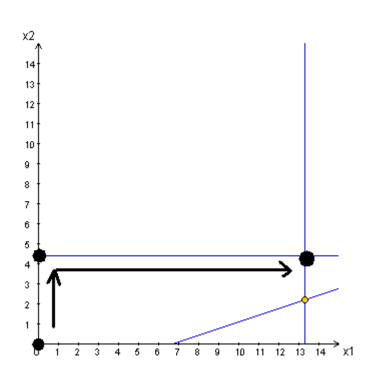


(b) 
$$u_1 = \frac{40}{3}, u_2 = \frac{40}{9}, y_1 = \frac{40}{3} - x_1, y_2 = \frac{40}{9} - x_2$$

Start with the initial solution  $x_1 = x_2 = 0$  and  $x_3 = 20$ .

| T         | Basic    |                        |   | Coeffic        | ient of:       |    | Right |
|-----------|----------|------------------------|---|----------------|----------------|----|-------|
| Iteration | Variable | $\mathbf{E}\mathbf{q}$ | Z | x <sub>1</sub> | X <sub>2</sub> | X3 | Side  |
| 0         | Z        | (0)                    | 1 | -2             | -3             | 0  | 0     |
|           | X3       | (1)                    | 0 | 3              | -9             | 1  | 20    |

Since  $x_2$  has the smallest coefficient in row 0, let it be the entering basic variable. It has no upper bound from Equation (1), so  $x_2$  reaches its upper bound and we replace it by  $y_2$ .


|           | Basic    | _   |   | Coeffic        | ient of: |    | Right |  |
|-----------|----------|-----|---|----------------|----------|----|-------|--|
| Iteration | Variable | Εq  | Z | x <sub>1</sub> | $y_2$    | Х3 | Side  |  |
| 1         | Z        | (0) | 1 | -2             | 3        | 0  | 120/9 |  |
| 1         | X3       | (1) | 0 | 3              | 9        | 1  | 60    |  |

Because it has a negative coefficient,  $x_1$  enters the basis. From Equation (1),  $x_1 \le 20$ , but this is greater than  $u_1$ , so  $x_1$  reaches its upper bound and we replace it by  $y_1$ .

| T         | Basic    |     |   | Coeffic    | ient of: |    | Right |  |
|-----------|----------|-----|---|------------|----------|----|-------|--|
| Iteration | Variable | Eq  | Z | <b>y</b> 1 | $y_2$    | Х3 | Side  |  |
| 2         | Z        | (0) | 1 | 2          | 3        | 0  | 40    |  |
|           | X3       | (1) | 0 | -3         | 9        | 1  | 20    |  |

There are no variables with negative coefficients, hence, the optimal solution is  $x_1 = 40/3$ ,  $x_2 = 40/9$  and Z = 40

(c)



7.3-2.

| BV    | Eq. | Z  | $x_1$ | $x_2$         | $x_3$ | $x_4$          | $x_5$ | RS    |                        |
|-------|-----|----|-------|---------------|-------|----------------|-------|-------|------------------------|
| Z     | 0   | 1  | -1    | -3            | 2     | 0              | 0     | 0     | $x_2 \leq 3$           |
| $x_4$ | 1   | 0  | 0     | 1             | -2    | 1              | 0     | 1     | $x_2 \leq 1$           |
| $x_5$ | 2   | 0  | 2     | 1             | 2     | 0              | 1     | 8     | $x_2 \leq 8$           |
|       |     |    |       |               |       |                |       |       |                        |
| BV    | Eq. | Z  | $x_1$ | $x_2$         | $x_3$ | $x_4$          | $x_5$ | RS    |                        |
| Z     | 0   | 1  | -1    | 0             | -4    | 3              | 0     | 3     | $x_3 \leq 2$           |
| $x_2$ | 1   | 0  | 0     | 1             | -2    | 1              | 0     | 1     | $x_3 \leq 1$           |
| $x_5$ | 2   | 0  | 2     | 0             | 4     | -1             | 1     | 7     | $x_3 \le 1\frac{3}{4}$ |
|       |     |    |       |               |       |                | -     | _ ~ 1 |                        |
| BV    | Eq. | Z  | $x_1$ | $y_2$         | $x_3$ | $x_4$          | $x_5$ | RS    |                        |
| Z     | 0   | 1  | -1    | 0             | -4    | 3              | 0     | 3     | $x_3 \leq 2$           |
| $y_2$ | 1   | 0  | 0     | 1             | 2     | -1             | 0     | 2     | $x_3 \leq 1$           |
| $x_5$ | 2   | 0  | 2     | 0             | 4     | -1             | 1     | 7     | $x_3 \le 1\frac{3}{4}$ |
| DI    |     | 77 | ı     | 1             |       |                | ı     | DC    | T                      |
| BV    | Eq. | Z  | $x_1$ | $y_2$         | $x_3$ | $x_4$          | $x_5$ | RS    |                        |
| Z     | 0   | 1  | -1    | 2             | 0     | 1              | 0     | 7     |                        |
| $x_3$ | 1   | 0  | 0     | $\frac{1}{2}$ | 1     | $-\frac{1}{2}$ | 0     | 1     | $x_1 \leq 1$           |
| $x_5$ | 2   | 0  | 2     | -2            | 0     | 1              | 1     | 3     | $x_1 \le 1\frac{1}{2}$ |
|       |     |    | ı     |               |       |                |       |       | ח                      |
| BV    | Eq. | Z  | $y_1$ | $y_2$         | $x_3$ | $x_4$          | $x_5$ | RS    |                        |
| Z     | 0   | 1  | -1    | 2             | 0     | 1              | 0     | 8     |                        |
| $x_3$ | 1   | 0  | 0     | $\frac{1}{2}$ | 1     | $-\frac{1}{2}$ | 0     | 1     |                        |
| $x_5$ | 2   | 0  | 2     | -2            | 0     | 1              | 1     | 1     | 7                      |

 $(x_1, x_2, x_3) = (1, 3, 1)$  is optimal with Z = 8.

7.3-3.

Initial Tableau

| BV    | Eq. | Z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | RS |
|-------|-----|---|-------|-------|-------|-------|-------|-------|----|
| Z     | 0   | 1 | -2    | -3    | 2     | -5    | 0     | 0     | 0  |
| $x_5$ | 1   | 0 | 2     | 2     | 1     | 2     | 1     | 0     | 5  |
| $x_6$ | 2   | 0 | 1     | 2     | -3    | 4     | 0     | 1     | 5  |

Final Tableau (after five iterations)

| BV    | Eq. | Z | $x_1$ | $y_2$          | $x_3$ | $y_4$           | $x_5$         | $x_6$          | RS             |
|-------|-----|---|-------|----------------|-------|-----------------|---------------|----------------|----------------|
| Z     | 0   | 1 | 0     | $\frac{1}{7}$  | 0     | $\frac{3}{7}$   | $\frac{4}{7}$ | $\frac{6}{7}$  | $\frac{54}{7}$ |
| $x_1$ | 1   | 0 | 1     | $-\frac{8}{7}$ | 0     | $-\frac{10}{7}$ | $\frac{3}{7}$ | $\frac{1}{7}$  | $\frac{2}{7}$  |
| $x_3$ | 2   | 0 | 0     | $\frac{2}{7}$  | 1     | $\frac{6}{7}$   | $\frac{1}{7}$ | $-\frac{2}{7}$ | $\frac{3}{7}$  |

 $(x_1, x_2, x_3, x_4) = (2/7, 1, 3/7, 1)$  is optimal with Z = 54/7.

**7.3-4.** Initial Tableau

| BV    | Eq. | Z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | RS |
|-------|-----|---|-------|-------|-------|-------|-------|-------|-------|----|
| Z     | 0   | 1 | -2    | -5    | -3    | -4    | -1    | 0     | 0     | 0  |
| $x_6$ | 1   | 0 | 1     | 3     | 2     | 3     | 1     | 1     | 0     | 6  |
| $x_7$ | 2   | 0 | 4     | 6     | 5     | 7     | 1     | 0     | 1     | 15 |

Final Tableau (after seven iterations)

| BV    | Eq. | Z | $y_1$          | $y_2$ | $y_3$          | $y_4$ | $x_5$          | $x_6$          | $x_7$ | RS |
|-------|-----|---|----------------|-------|----------------|-------|----------------|----------------|-------|----|
| Z     | 0   | 1 | $\frac{2}{3}$  | 1     | $\frac{1}{3}$  | 0     | $\frac{1}{3}$  | $\frac{4}{3}$  | 0     | 10 |
| $y_4$ | 1   | 0 | $\frac{1}{3}$  | 1     | $\frac{2}{3}$  | 1     | $-\frac{1}{3}$ | $-\frac{1}{3}$ | 0     | 1  |
| $x_7$ | 2   | 0 | $-\frac{5}{3}$ | 1     | $-\frac{1}{3}$ | 0     | $-\frac{4}{3}$ | $-\frac{7}{3}$ | 1     | 0  |

 $(x_1, x_2, x_3, x_4, x_5) = (1, 1, 1, 0, 0)$  is optimal with Z = 10.

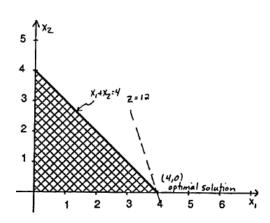
7.3-5.

| Bas<br>Var     | €0 | L  | 1   |     | coefficient | of | -  | Right         |         |
|----------------|----|----|-----|-----|-------------|----|----|---------------|---------|
| Var            | No | Z_ | X)  | _X2 | X3          | XH | X5 | Right<br>side |         |
| -z             | 0  | 1  | 3   | 4   | 2           | 0  | 0  |               | X, £ 25 |
| X4             | 1  | 0  | -1* | -1  | 0           | ı  | 0  | -15           | X 5 15  |
| -z<br>X4<br>X5 | 2  | ٥  | 0   | -1  | -1          | 0  | 1  | -10           |         |

| Ras                    | ΙFα |   |    | C  | oefficient | Diahe |    |               |         |
|------------------------|-----|---|----|----|------------|-------|----|---------------|---------|
|                        | _   |   | ΧI | X2 | χ3         | X4    | X5 | Right<br>side |         |
| -z<br>XI<br><i>X</i> 5 | 0   | 1 | 0  | 1  | a          | 3     | 0  | -45           | X2 =5   |
| ΧI                     | 1   | ٥ | ı  | 1  | 0          | 1     | 0  |               | X2 ± 15 |
| X5                     | 2   | 0 | 0  | -1 | 1          | 0     | 1  | -10           | X2 5 10 |

| Bas                    | Fo | 1   |       | Co   |     | Right |     |      |         |
|------------------------|----|-----|-------|------|-----|-------|-----|------|---------|
| Bas<br>Var             | No | z   | _X.t. | . Y2 | Х3  | 24    | 7.5 | side |         |
|                        |    |     | _     | -1   | 2   | 3     | 0   | -50  | X3 ± 15 |
| Χı                     | 1  | 0 0 | 1     | -1   | 0   | 1     | 0   | 10   |         |
| -z<br>X <i>1</i><br>X5 | 2  | 0   | 0     | 1    | -1* | 0     | I   | -5   | X3 ≤5   |

| Ras        | l En | _ | l    | Coefficient of |    |    |    |               |  |  |  |
|------------|------|---|------|----------------|----|----|----|---------------|--|--|--|
| Bas<br>Var | No   | z | _XI_ | <i>Y2</i>      | Х3 | X4 | Χ5 | Right<br>side |  |  |  |
| -z         | 0    | 1 | 0    | 1              | 0  | 3  | 2  | -60           |  |  |  |
| χı         | 1    | 0 | 1    | -1             | 0  | 1  | 0  | 10            |  |  |  |
| X3         | 2    | ٥ | 0    | - 1            | 1  | 0  | -1 | 5             |  |  |  |

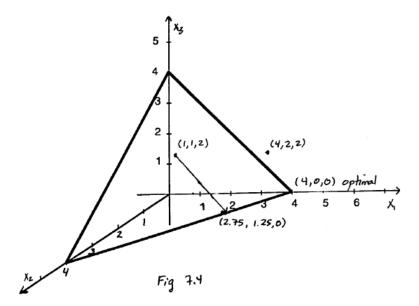

 $(x_1, x_2, x_3) = (10, 5, 5)$  is optimal with Z = 60.

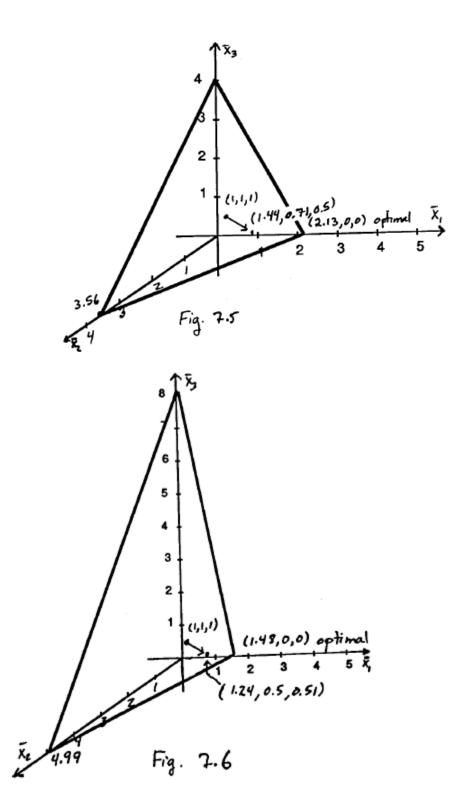
**7.4-1.** 

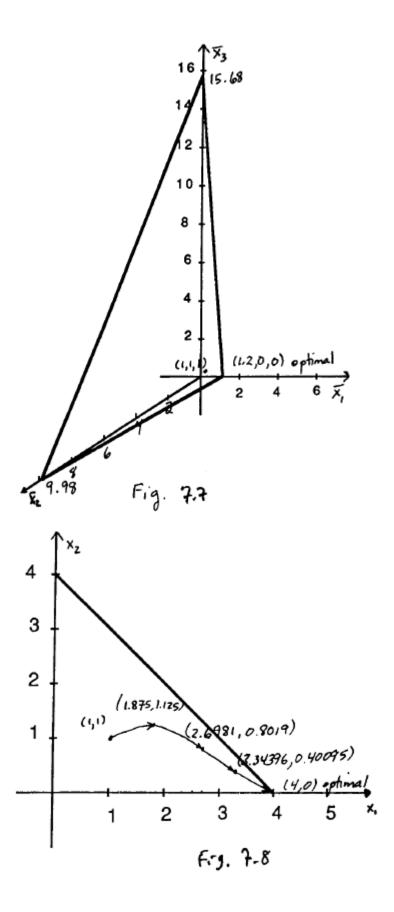
| It. | $X_1$   | $X_2$   | $X_3$   |
|-----|---------|---------|---------|
| 0   | 1       | 3       | 7       |
| 1   | 1.04605 | 4.95395 | 10.9539 |
| 2   | 0.93406 | 6.06594 | 13.0659 |

# **7.4-2.**

(a)





The feasible corner point solutions are  $(0,0),\,(0,4)$  and (4,0). The last one is optimal with Z=12.


(b)

| Iter. | $x_1$   | $x_2$   | Z       |
|-------|---------|---------|---------|
| 0     | 1       | 1       | 4       |
| 1     | 1.875   | 1.125   | 6.75    |
| 2     | 2.6981  | 0.8019  | 8.89621 |
| 3     | 3.34396 | 0.40095 | 10.4328 |
| 4     | 3.6671  | 0.20047 | 11.2018 |

(c)

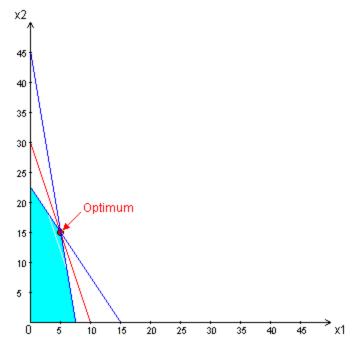






**7.4-3.** 

(a)


| Iter. | $x_1$   | $x_2$   | Z       |
|-------|---------|---------|---------|
| 0     | 4       | 4       | 12      |
| 1     | 2       | 6       | 14      |
| 2     | 1       | 7       | 15      |
| 3     | 0.5     | 7.5     | 15.5    |
| 4     | 0.25    | 7.75    | 15.75   |
| 5     | 0.125   | 7.875   | 15.875  |
| 6     | 0.0625  | 7.9375  | 15.9375 |
| 7     | 0.03125 | 7.96875 | 15.9688 |
| 8     | 0.01562 | 7.98438 | 15.9844 |
| 9     | 0.00781 | 7.99219 | 15.9922 |

(b) The value of  $x_1$  is halved at each step so subsequent trial solutions should be of the form  $(x_1,x_2)=(2^{-i},8-2^{-i})$  for  $i=1,2,\ldots$ 

(c) The smallest integer i such that  $2^{-i} - 2^{-(i+1)} = 2^{-(i+1)} \le 0.01$  is 6, so  $(x_1, x_2) = (2^{-7}, 8 - 2^{-7}) = (0.0078, 7.9922)$  in iteration 9.

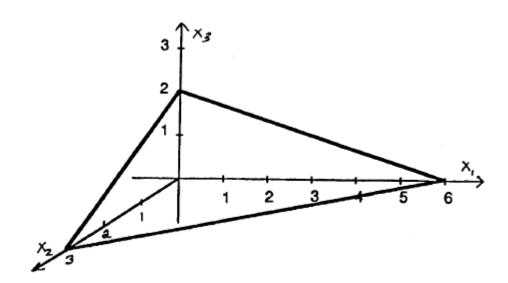
7.4-4.

(a) Optimal Solution:  $(x_1, x_2) = (5, 15), Z = 30$ 



(b) The gradient is (3,1). Moving from the origin in the direction (3,1), the first boundary point encountered is the optimal solution (5,15).

(c) 
$$\alpha = 0.5$$


| Iter. | X1    | X2     | Z      |
|-------|-------|--------|--------|
| 0     | 1     | 1      | 4      |
| 1     | 3.999 | 2.006  | 14.003 |
| 2     | 5.547 | 2.217  | 18.859 |
| 3     | 6.293 | 2.492  | 21.371 |
| 4     | 6.582 | 3.131  | 22.878 |
| 5     | 6.454 | 5.089  | 24.451 |
| 6     | 5.668 | 10.133 | 27.137 |
| 7     | 5.254 | 12.686 | 28.449 |
| 8     | 5.059 | 13.946 | 29.122 |
| 9     | 4.98  | 14.547 | 29.487 |
| 10    | 4.964 | 14.812 | 29.705 |

# (d) $\alpha = 0.9$

| Iter. | X1    | X2     | Z      |
|-------|-------|--------|--------|
| 0     | 1     | 1      | 4      |
| 1     | 6.398 | 2.811  | 22.005 |
| 2     | 6.668 | 4.614  | 24.617 |
| 3     | 5.107 | 14.051 | 29.372 |
| 4     | 4.962 | 14.979 | 29.863 |
| 5     | 5.002 | 14.962 | 29.969 |
| 6     | 4.997 | 15.001 | 29.992 |
| 7     | 5     | 14.998 | 29.998 |
| 8     | 5     | 15     | 29.999 |
| 9     | 5     | 15     | 30     |
| 10    | 5     | 15     | 30     |

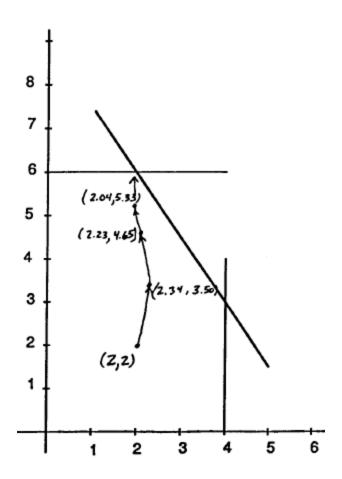
# 7.4-5.

(a)



(b) Gradient: (2 5 7)

Projected Gradient: 
$$P \begin{pmatrix} 2 \\ 5 \\ 7 \end{pmatrix} = \begin{bmatrix} I - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} (1 & 2 & 3) \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \end{bmatrix} \begin{pmatrix} 2 \\ 5 \\ 7 \end{pmatrix}$$


$$= \begin{pmatrix} 2 \\ 5 \\ 7 \end{pmatrix} - \frac{1}{14} \begin{pmatrix} 33 \\ 66 \\ 99 \end{pmatrix} = \frac{1}{14} \begin{pmatrix} -5 \\ 4 \\ -1 \end{pmatrix}$$

(c) - (d)

| Iter. | $x_1$   | $x_2$   | $x_3$   | Z       |
|-------|---------|---------|---------|---------|
| 0     | 1       | 1       | 1       | 14      |
| 1     | 0.5     | 1.4     | 0.9     | 14.3    |
| 2     | 0.25969 | 2.19516 | 0.45    | 14.6452 |
| 3     | 0.17947 | 2.57276 | 0.225   | 14.7978 |
| 4     | 0.1069  | 2.7778  | 0.1125  | 14.8903 |
| 5     | 0.05595 | 2.88765 | 0.05625 | 14.9439 |
| 6     | 0.0281  | 2.94376 | 0.02812 | 14.9719 |
| 7     | 0.01406 | 2.97188 | 0.01406 | 14.9859 |
| 8     | 0.00703 | 2.98594 | 0.00703 | 14.993  |
| 9     | 0.00352 | 2.99297 | 0.00352 | 14.9965 |
| 10    | 0.00176 | 2.99648 | 0.00176 | 14.9982 |

# **7.4-6.**

| Iter. | $x_1$   | $x_2$   | Z       |
|-------|---------|---------|---------|
| 0     | 2       | 2       | 16      |
| 1     | 2.336   | 3.496   | 24.488  |
| 2     | 2.23067 | 4.65399 | 29.962  |
| 3     | 2.03597 | 5.32699 | 32.7429 |
| 4     | 1.95211 | 5.6635  | 34.1738 |
| 5     | 1.95054 | 5.83175 | 35.0104 |
| 6     | 1.97169 | 5.91587 | 35.4944 |
| 7     | 1.98588 | 5.95788 | 35.7471 |
| 8     | 1.99296 | 5.97891 | 35.8734 |
| 9     | 1.99648 | 5.98945 | 35.9367 |
| 10    | 1.99824 | 5.99473 | 35.9684 |
| 11    | 1.99912 | 5.99736 | 35.9842 |
| 12    | 1.99956 | 5.99868 | 35.9921 |
| 13    | 1.99978 | 5.99934 | 35.996  |
| 14    | 1.99989 | 5.99967 | 35.998  |
| 15    | 1.99995 | 5.99984 | 35.999  |



#### SUPPLEMENT TO CHAPTER 7

### LINEAR GOAL PROGRAMMING AND ITS SOLUTION PROCEDURES

### 7S-1.

(a) 
$$3x_1 + 4x_2 + 2x_3 - y^+ + y^- = 60$$

(b) Let  $c^+$  be the coefficient of  $y^+$  and  $c^-$  be the one for  $y^-$ , so  $c^+ = 2c^-$ .

#### 7S-2.

(a)

minimize sum of amounts under market share for product 1 and 2 subject to 
$$x_1+x_2+x_3 \leq 55$$
 
$$x_3 \geq 10$$
 
$$x_1,x_2 > 0$$

(b) 
$$y_1=0.5x_1+0.2x_3-15, y_1=y_1^+-y_1^-, y_2=0.3x_2+0.2x_3-10, y_2=y_2^+-y_2^-$$
 minimize  $y_1^-+y_2^-$  subject to  $0.5x_1+0.2x_3-y_1^++y_1^-=15$   $0.3x_2+0.2x_3-y_2^++y_2^-=10$   $x_1+x_2+x_3\leq 55$   $x_3\geq 10$   $x_1,x_2,y_1^+,y_1^-,y_2^+,y_2^-\geq 0$ 

(c)

|                  | Unit Contribut | ion Per Unit of | Each Activity | Level    |      |   | Amount     | Amount   |        |   | Right-Hand |
|------------------|----------------|-----------------|---------------|----------|------|---|------------|----------|--------|---|------------|
| Goals            | Campaign 1     | Campaign 2      | Campaign 3    | Achieved | Goal |   | Over       | Under    | Totals |   | Side       |
| Market Share 1   | 0.5            | 0               | 0.2           | 15       | ≥ 1  | 5 | 量20多级      | 20 10 日本 | 15     | _ | 15         |
| Market Share 2   | 0              | 0.3             | 0.2           | 8.33333  | ≥ 10 | 0 | <b>100</b> | \$1667E  | 10     | = | 10         |
| Budget           | 1              | 1               | 1             | 55       | ≤ 5  | 5 |            |          | 55     | ≤ | 55         |
| Campaign 3 budge | 0              | 0               | 1             | 41.6667  | ≥ 10 | 0 |            | - 1      | 41.667 | 2 | 10         |
| Solution         | AA333326       | <b>有限性()基本的</b> | #41867#S      |          |      |   |            |          |        |   |            |

### Weighted Sumiof/Deviations was 1667.

### 7S-3.

(a) 
$$6x_1 + 4x_2 + 5x_3 - y_1^+ + y_1^- = 50$$
$$8x_1 + 7x_2 + 5x_3 - y_2^+ + y_2^- = 75$$
$$P = 20x_1 + 15x_2 + 25x_3$$

(b) 
$$Z = 20x_1 + 15x_2 + 25x_3 - 6y_1^+ - 6y_1^- - 3y_2^-$$

(c)

maximize 
$$20x_1 + 15x_2 + 25x_3 - 6y_1^+ - 6y_1^- - 3y_2^-$$
 subject to 
$$6x_1 + 4x_2 + 5x_3 - y_1^+ + y_1^- = 50$$
 
$$8x_1 + 7x_2 + 5x_3 - y_2^+ + y_2^- = 75$$
 
$$x_1, x_2, x_3, y_1^+, y_1^-, y_2^+, y_2^- \ge 0$$

(d)

| Goals                | Unit Contributi<br>Product 1 | on Per Unit of<br>Product 2 |            | Level<br>Achieved | G  | oal | Amount<br>Over | Amount<br>Under | Totals |   | Right-Hand |
|----------------------|------------------------------|-----------------------------|------------|-------------------|----|-----|----------------|-----------------|--------|---|------------|
| Profit<br>Employment | 20                           | 15                          | 25         | 375               | _  | -   |                | Ondel           | Jolais | _ | Side       |
| Earnings             | 8                            | 7                           | 5          | 75<br>75          |    | 50  | 2584           | 0.5             | 50     | = | 50         |
| Solution             | 4 0.                         | 0.00                        | - 15 Aug 1 | /3                | ٤_ | 75  | 産がの種次が         | ST ROME         | 75     | = | 7.5        |

## Weighted Sum of Deviations ¥ ≥ 225 74

### 7S-4.

(a) No, we would not expect the optimal solution to change. Goal 1 is already met, so increasing the weight on that goal would not change anything. Goal 2 is already exceeded, so decreasing the penalty weight for this goal would only decrease our desire to avoid exceeding this goal.

(b)

| Goals                              | Product 1         | Product 2               | Product 3     | Achieved                  | G | Boal | Over                               | Under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Totals                    |   | Side            |   |
|------------------------------------|-------------------|-------------------------|---------------|---------------------------|---|------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---|-----------------|---|
| Profit                             | 12                | 9                       | 15            |                           |   |      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |   |                 |   |
| Employment                         | - 5               | ě                       | ,,            |                           | • | 140  |                                    | <b>第一条</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 140                       | = | 140             |   |
|                                    |                   | 3                       | 4             | 58.3333                   | = | 40   | 883333                             | <b>於於(0.48</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40                        | = | 40              |   |
|                                    |                   | _ 7                     | 8             | 58.3333                   | < | 55   | B 50 97 198                        | <b>法裁价数</b> 。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5                       | _ | 6.6             |   |
| Solution                           | <b>编</b> 33667.45 | CONTRACTOR OF THE PARTY | CONTRACTOR OF |                           | _ |      |                                    | AND DESCRIPTION OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON | - 55                      |   | - 55            |   |
| Profit<br>Employment<br>Investment | 12<br>5<br>5      | 9<br>3<br>7             | 15<br>4<br>8  | 140<br>58.3333<br>58.3333 |   |      | Over<br>8 8 3 5 6<br>5 1 3 5 3 5 5 | Under<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Totals<br>140<br>40<br>55 | = | 140<br>40<br>55 | • |

## Weighted Sum of Deviations \$246,6667.

(c)

|            | Unit Contribu | rtion Per Unit  | of Each Act  | Level    |   |      | Amount      |                          |        | Right-Hand |      |
|------------|---------------|-----------------|--------------|----------|---|------|-------------|--------------------------|--------|------------|------|
| Goals      | Product 1     | Product 2       | Product 3    | Achieved | G | ioal | Over        | Amount<br>Under          | Totals |            | Side |
| Profit     | 12            | 9               | 15           | 140      | Σ | 140  |             | の大学の基準は                  | 140    | _          | 140  |
| Employment | 5             | 3               | 4            | 58.3333  | = | 40   | 10 Oct.     | (25                      | 40     | -          |      |
| investment | 5             | 7               |              | 58.3333  |   | 55   |             |                          |        | -          | 40   |
| Solution   | ANASSALISM    | SECTION SECTION | 2010 O STATE |          | _ | -    | DECEMBER 25 | and the same of the same | - 55   | -          | 55   |

## Weighted Sum of Doviations (\$288333)

### 7S-5.

(a)

minimize 0.01(amount under foreign capital goal)

+ (amount under citizens fed goal)

+ (amount under goal for citizens employed)

+ (amount over goal for citizens employed)

(b)

minimize 
$$0.01y_1^- + y_2^- + y_3^+ + y_3^-$$
 subject to 
$$1000x_1 + 1000x_2 + 1000x_3 + x_4 = 15\text{M}$$
 
$$3000x_1 + 5000x_2 + 4000x_3 - y_1^+ + y_1^- = 70\text{M}$$
 
$$150x_1 + 75x_2 + 100x_3 - y_2^+ + y_2^- = 1.75\text{M}$$
 
$$10x_1 + 15x_2 + 12x_3 - y_3^+ + y_3^- = 0.2\text{M}$$
 
$$x_1, x_2, x_3, x_4, y_1^+, y_1^-, y_2^+, y_2^-, y_3^+, y_3^- \ge 0$$

(c)

|                   | Unit Contribution Per Unit of Each Activity |           |           | Level    |                          | Amount | Amount       |          | Right-Hand                |
|-------------------|---------------------------------------------|-----------|-----------|----------|--------------------------|--------|--------------|----------|---------------------------|
| Goals             | Product 1                                   | Product 2 | Product 3 | Achieved | Goal                     | Over   | Under        | Totals   | Side                      |
| Foreign Capital   | 3000                                        | 5000      | 4000      | 58333333 | ≥ 70000000               | as D链点 | 11666666.7   | 70000000 | <b>=</b> 70000000         |
| Citizens Fed      | 150                                         | 75        | 100       | 1750000  | ≥ 1750000                | 0 4    | Of 25 0      | 1750000  | <ul><li>1750000</li></ul> |
| Citizens Employed | 10                                          | 15        | 12        | 183333.3 | <ul><li>200000</li></ul> | 300    | 201.6666.7 W | 200000   | = 200000                  |
| Acres             | 1000                                        | 1000      | 1000      | 15000000 | ≤ 15000000               |        |              |          |                           |
| Solution          | #e333/893 ·                                 | 16666.667 | 5 T . O   |          |                          |        |              |          |                           |

#### \* Weighted Sum of Deviations # 13333335

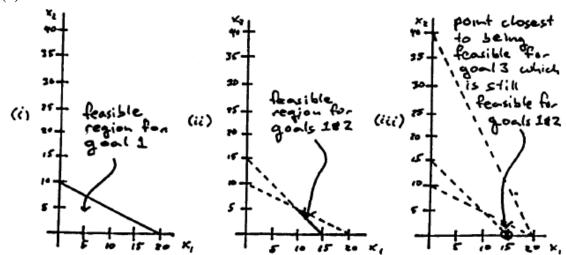
(d) minimize 
$$\begin{aligned} M_2y_1^- + M_1y_2^- + y_3^+ + y_3^- \\ \text{subject to} & 1000x_1 + 1000x_2 + 1000x_3 + x_4 = 15\text{M} \\ 3000x_1 + 5000x_2 + 4000x_3 - y_1^+ + y_1^- = 70\text{M} \\ 150x_1 + 75x_2 + 100x_3 - y_2^+ + y_2^- = 1.75\text{M} \\ 10x_1 + 15x_2 + 12x_3 - y_3^+ + y_3^- = 0.2\text{M} \\ x_1, x_2, x_3, x_4, y_1^+, y_1^-, y_2^+, y_2^-, y_3^+, y_3^- \geq 0 \end{aligned}$$

(e) Optimal Solution:  $(x_1, x_2, x_3) = (50000/6, 20000/6, 0)$  thousand acres  $Z = (35 \cdot 10^6/3) M_2 + 50000/3.$ 

| в٧      | Ego              | =     | ×.                         | ×z                      | ×a                                       | ×                               | <b>y.</b> + | ν-      | · v_+                              | ., -                           |        | ٠               |                                                              |
|---------|------------------|-------|----------------------------|-------------------------|------------------------------------------|---------------------------------|-------------|---------|------------------------------------|--------------------------------|--------|-----------------|--------------------------------------------------------------|
| z       | 0                | -1    | -150M,<br>-3000Mz<br>-10   | -754,<br>-5000M2<br>-15 | -100 M                                   |                                 | MZ          | 0       | M,                                 | 0                              | 2<br>2 | . <del>У.</del> | -115H,<br>-7000H,<br>-20                                     |
| 14 14 X | 1<br>2<br>3<br>4 | 0000  | 1000<br>1000<br>1504<br>10 | 1000<br>5000<br>75      | 1000                                     | 1000                            | 0700        | 0 1 0 0 | -1                                 | 0 0 1                          | 0007   | - 0 0 0         | 1500<br>1000<br>175<br>20                                    |
| 2       | 0                | -1    | 0                          | -3500 Hz                | -2000M                                   | 0                               | Mz          | 0       | -20M                               |                                |        | 0               | 3500 Mg                                                      |
| ×       | 1234             | 0000  | 00-0                       | 3500<br>1/2<br>10       | 1000/3<br>2000<br>2/3<br>12              | 1000                            | 0700        | 0 - 0 0 | 20/3<br>20<br>- 4/50<br>4/5        | -20/3<br>-20<br>1/150<br>-1/15 | 000    | -000            | 100/3<br>3500<br>7/6                                         |
| SXXXXXX | 0 1 2 7 4        | 70000 | 00010                      | 0 -                     | 73H2+4/3<br>2/3<br>1000/3<br>1/3<br>-4/3 | 742+11<br>1/500<br>-7<br>-1/500 | -l<br>-0    |         | 175<br>-175<br>-10/3<br>0<br>-1/15 |                                |        | 0000            | 25/3<br>25/2<br>25/2<br>25/2<br>25/2<br>25/2<br>25/2<br>25/2 |

(f) With only  $M_1y_2^-$  in the objective function, we get  $y_2^-=Z=0$ , so fix  $y_2^-=0$  and bring  $M_2y_1^-$  into the objective function. Now  $y_1^-=11,666,666\frac{2}{3}$ . Fix  $y_1^-$  at this value (remembering subtract from RHS) and optimize for the third priority. Then the solution in part (c) is obtained:  $(x_1,x_2,y_1^-,y_3^-)=\left(8333\frac{1}{3},6666\frac{2}{3},11666666\frac{2}{3},16666\frac{2}{3}\right)$ .

### 7S-6.


(a) minimize 
$$M_1y_1^+ + M_2y_2^+ + M_2y_2^- + y_3^-$$
 subject to 
$$x_1 + 2x_2 - y_1^+ + y_1^- = 20$$
 
$$x_1 + x_2 - y_2^+ + y_2^- = 15$$
 
$$2x_1 + x_2 - y_3^+ + y_3^- = 40$$
 
$$x_1, x_2, y_1^+, y_1^-, y_2^+, y_2^-, y_3^+, y_3^- \geq 0$$

(b) - (c)

Optimal Solution:  $(x_1, x_2) = (15, 0), Z = 10$ 

|   | BV      | Е | Z  | $x_1$      | $x_2$      | $y_1^+$ | $y_1^-$ | $y_2^+$   | $y_2^-$   | $y_3^+$ | $y_3^-$ | RHS           |
|---|---------|---|----|------------|------------|---------|---------|-----------|-----------|---------|---------|---------------|
| 0 | Z       | 0 | -1 | $-M_{2}-2$ | $-M_2 - 1$ | $M_1$   | 0       | $2M_2$    | 0         | 1       | 0       | $-15M_2 - 40$ |
|   | $y_1^-$ | 1 | 0  | 1          | 2          | -1      | 1       | 0         | 0         | 0       | 0       | 20            |
|   | $y_2^-$ | 2 | 0  | 1          | 1          | 0       | 0       | -1        | 1         | 0       | 0       | 15            |
|   | $y_3^-$ | 3 | 0  | 2          | 1          | 0       | 0       | 0         | 0         | -1      | 1       | 40            |
| 1 | Z       | 0 | -1 | 0          | 1          | $M_1$   | 0       | $M_2 - 2$ | $M_2 + 2$ | 1       | 0       | -10           |
|   | $y_1^-$ | 1 | 0  | 0          | 1          | -1      | 1       | 1         | -1        | 0       | 0       | 5             |
|   | $x_1$   | 2 | 0  | 1          | 1          | 0       | 0       | -1        | 1         | 0       | 0       | 15            |
|   | $y_3^-$ | 3 | 0  | 0          | -1         | 0       | 0       | 2         | -2        | -1      | 1       | 10            |

(d)



(e) minimize 
$$Z_1=M_1y_1^+$$
 subject to  $x_1+2x_2-y_1^++y_1^-=20$   $[x_1+x_2-y_2^++y_2^-=15]$   $[2x_1+x_2-y_3^++y_3^-=40]$   $x_1,x_2\geq 0$ 

The feasible region is a shown in figure (i) of part (d). Fix  $y_1^+=0$ .

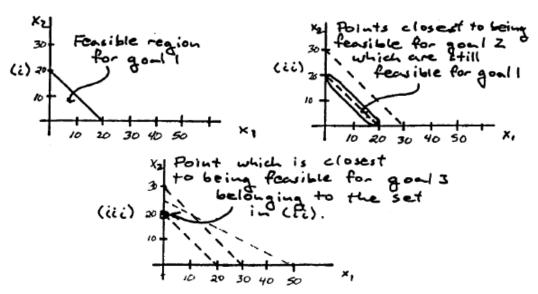
minimize 
$$Z_2 = M_2 y_2^+ + M_2 y_2^-$$
 subject to 
$$x_1 + 2x_2 - y_1^+ + y_1^- = 20$$
 
$$x_1 + x_2 - y_2^+ + y_2^- = 15$$
 
$$[2x_1 + x_2 - y_3^+ + y_3^- = 40]$$
 
$$x_1, x_2 \ge 0$$

The feasible region is a shown in figure (ii) of part (d). Fix  $y_1^+ = y_2^+ = y_2^- = 0$ .

minimize 
$$Z_3=y_3^-$$
 subject to  $x_1+2x_2-y_1^++y_1^-=20$   $x_1+x_2-y_2^++y_2^-=15$   $2x_1+x_2-y_3^++y_3^-=40$   $x_1,x_2>0$ 

The solution is (15,0) with  $Z_3 = 10$ .

## 7S-7.


(a) minimize 
$$M_1y_1^+ + M_2y_2^- + y_3^-$$
 subject to 
$$x_1 + x_2 - y_1^+ + y_1^- = 20$$
 
$$x_1 + x_2 - y_2^+ + y_2^- = 30$$
 
$$x_1 + 2x_2 - y_3^+ + y_3^- = 50$$
 
$$x_1, x_2, y_1^+, y_1^-, y_2^+, y_2^-, y_3^+, y_3^- \geq 0$$

$$(b) - (c)$$

Optimal Solution:  $(x_1, x_2) = (0, 20), Z = 10M_2 + 10$ 

|   | BV      | Е | Z  | $x_1$      | $x_2$      | $y_1^+$         | $y_1^-$   | $y_2^+$ | $y_2^-$ | $y_3^+$ | $y_3^-$ | RHS           |
|---|---------|---|----|------------|------------|-----------------|-----------|---------|---------|---------|---------|---------------|
| 0 | Z       | 0 | -1 | $-M_2 - 1$ | $-M_2 - 2$ | $M_1$           | 0         | $M_2$   | 0       | 1       | 0       | $-30M_2 - 50$ |
|   | $y_1^-$ | 1 | 0  | 1          | 1          | -1              | 1         | 0       | 0       | 0       | 0       | 20            |
|   | $y_2^-$ | 2 | 0  | 1          | 1          | 0               | 0         | -1      | 1       | 0       | 0       | 30            |
|   | $y_3^-$ | 3 | 0  | 1          | 2          | 0               | 0         | 0       | 0       | -1      | 1       | 50            |
| 1 | Z       | 0 | -1 | 1          | 0          | $M_1 - M_2 - 2$ | $M_2 + 2$ | $M_2$   | 0       | 1       | 0       | $-10M_2 - 10$ |
|   | $x_2$   | 1 | 0  | 1          | 1          | -1              | 1         | 0       | 0       | 0       | 0       | 20            |
|   | $y_2^-$ | 2 | 0  | 0          | 0          | 1               | -1        | -1      | 1       | 0       | 0       | 10            |
|   | $y_3^-$ | 3 | 0  | -1         | 0          | 2               | -2        | 0       | 0       | -1      | 1       | 10            |

(d)



## 7S-8.

If  $z_i = z_i^+ - z_i^-$ , where  $z_i^+, z_i^- \ge 0$ , then  $|z_i| = z_i^+ + z_i^-$ .

(a) minimize 
$$\sum_{i=1}^{n} (z_i^+ + z_i^-)$$
 subject to 
$$z_i^+ - z_i^- = y_i - (a + bx_i), i = 1, 2, \dots, n$$
 
$$z_i^+, z_i^- \geq 0, i = 1, 2, \dots, n$$

(b) minimize 
$$z$$
 subject to 
$$z_i^+-z_i^-=y_i-(a+bx_i),\,i=1,2,\ldots,n$$
 
$$0\leq z_i^+\leq z,\,i=1,2,\ldots,n$$
 
$$0\leq z_i^-\leq z,\,i=1,2,\ldots,n$$

## Cases

7S.1 a) We need to develop a goal programming problem whose solution characterizes Mr.

Baker's shipping policy. The decision variables are the number (in 1000's) of basic,
advanced, and supreme packages to send, and the number of doctors to send. Note:
measuring most variables in 1000's greatly improves the reliability of the Excel Solver.

Mr. Baker faces three hard constraints. Because of the size limitation, the total number of package must not exceed 40,000. Second, the total weight can not exceed 6 million pounds. Finally, the total number of Supreme packages cannot exceed 100 times the number of doctors. These constraints are included in the spreadsheet as follows.

TotalPackages (E14) = SizeLimit (E16) TotalWeight (E10) = WeightRestriction (G10) SupremePackages (D14) = SafetyRestriction (D16)

In addition, we need to include three constraints for Mr. Baker's goals. We measure the deviations from the goals using changing cells (Deviations in I4:J6), and enforce the correct value of these changing cells with the constraints in columns L through N.

Finally, the penalty weights are entered in I15:J17, and the weight sum of deviations calculated in L15.

The spreadsheet follows.

|                | Α Ι                          | В     | С           | D          | E          | F  | G           | н          | Ī         | J         | K       | L                  | М                                            | N     | 0          |
|----------------|------------------------------|-------|-------------|------------|------------|----|-------------|------------|-----------|-----------|---------|--------------------|----------------------------------------------|-------|------------|
| -,-            |                              |       |             |            | Goals      |    |             | Deviations |           | Constrain | ts      |                    |                                              |       |            |
| -2             |                              |       |             |            | Level      |    |             |            | Amount    | Amount    |         | Balance            |                                              |       |            |
| 3              |                              | Basic | Advanced    | Supreme    | Achieved   |    | Goal        |            | Over      | Under     |         | (Level-Over+Under) |                                              | Goal  |            |
| 4              | Goal 1 (Cost)                | \$300 | \$350       | \$720      | 21,000     | 2  | 20,000      |            | 1,000     | 0         |         | 20,000             | Ξ                                            |       | \$thousand |
| -5-            | Goal 2 (Packages Sent)       | 1     | 1           | 1          | 40         | ,  | 3           |            | 37        | . 0       |         | 3                  | =                                            | 3     | thousand   |
| -6             | Goal 3 (Population Reached)  | 30    | 35          | 54         | 1,488      | 3  | 2,200       |            | 0         | 712       | 匚       | 2,200              | =                                            | 2,200 | thousand   |
| 7              | , ,                          |       |             |            |            |    |             |            |           |           |         |                    |                                              |       | <u> </u>   |
| 8              |                              |       |             |            | Total      |    | Weight      |            |           |           |         |                    |                                              |       |            |
| 9              |                              |       |             |            | Weight     | L. | Restriction | L          | L         |           |         |                    | <u> </u>                                     | ļ     |            |
| 10<br>11<br>12 | Weight                       | 120   | 180         | 220        | 6,000      | 2  | 6,000       | thou       | sand pour | nds       |         |                    | <u> </u>                                     |       | 1          |
| 11             |                              |       |             |            |            |    |             |            |           |           |         |                    |                                              |       |            |
| 12             |                              |       |             |            | Total      |    |             |            |           |           | ₩.      |                    |                                              |       |            |
| 13             |                              | Basic | Advanced    | Supreme    | Packages_  |    | Pen         |            | Over      | Under     | <u></u> | Weighted Sum       | _                                            |       |            |
| 14             | Packages Sent (thousands)    | 28    | 0           | 12         | 40         | T  | Weig        | hts        | Goal      | Goal      | L       | of Deviations      |                                              |       |            |
| 15             |                              |       | 1           | 2          | 2          |    | Go          | al 1       | 0.001     |           |         | 50.84              |                                              |       |            |
| 16             | Doctors                      | 120   | Safety      | 12         | 40         |    |             | al 2       |           | 1         |         |                    |                                              |       | ļ          |
| 17             |                              |       | Restriction | 0.1        | Size Limit |    | G           | al 3       |           | 0.07      |         |                    | L.                                           | 1     | L          |
| 18             |                              |       |             | per Doctor |            |    |             |            |           |           | Ĺ       |                    | <u> </u>                                     | ļ     | L          |
| 19             | Cost per Doctor (\$thousand) | 33    |             |            |            |    | L           | <u> </u>   | L         | L         |         | J                  | <u>.                                    </u> | L     | L          |

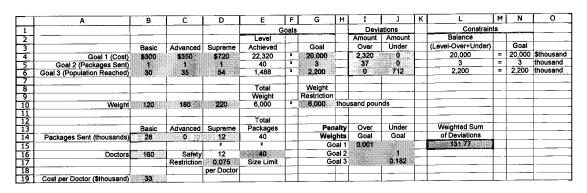
| Range Name        | Cells   |
|-------------------|---------|
| AmountOver        | 14:16   |
| AmountUnder       | J4:J6   |
| Balance           | L4:L6   |
| CostPerDoctor     | B19     |
| Deviations        | 14:J6   |
| Doctors           | B16     |
| Goal              | G4:G6   |
| LevelAchieved     | E4:E6   |
| PackagesSent      | B14:D14 |
| PenaltyWeights    | 115:J17 |
| SafetyRestriction | D16     |
| SizeLimit         | E16     |
| SumOfDeviations   | L15     |
| SupremePackages   | D14     |
| TotalPackages     | E14     |
| TotalWeight       | E10     |
| Weight            | B10:D10 |
| WeightRestriction | G10     |

|    | F                                                     |
|----|-------------------------------------------------------|
|    |                                                       |
| 2  | Level                                                 |
| 3  | Achieved                                              |
| 4  | =SUMPRODUCT(B4:D4,PackagesSent)+Doctors*CostPerDoctor |
| 5  | =SUMPRODUCT(B5:D5,PackagesSent)                       |
| 6  | =SUMPRODUCT(B6:D6,PackagesSent)                       |
| 7  |                                                       |
| 8  | Total                                                 |
| 9  | Weight                                                |
| 10 | =SUMPRODUCT(Weight,PackagesSent)                      |
| 11 |                                                       |
| 12 | Total                                                 |
| 13 | Packages                                              |
| 14 | =SUM(PackagesSent)                                    |

|     | L                                     | M | N     |
|-----|---------------------------------------|---|-------|
| 2   | Balance                               |   |       |
| 3   | (Level-Over+Under)                    | 1 | Goal  |
| 4   | =LevelAchieved-AmountOver+AmountUnder | = | =Goal |
| - 5 | =LevelAchieved-AmountOver+AmountUnder | = | =Goal |
| 6   | =LevelAchieved-AmountOver+AmountUnder | = | =Goal |

|    | С           | D            |
|----|-------------|--------------|
| 16 | Safety      | =D17*Doctors |
| 17 | Restriction | 0.1          |

|    | L L                                    |
|----|----------------------------------------|
| 13 | Weighted Sum                           |
| 14 | of Deviations                          |
| 15 | =SUMPRODUCT(PenaltyWeights,Deviations) |


Mr. Baker should send 28,000 basic packages and 12,000 supreme packages along with 120 doctors to Cuba.

b) The penalty weight for being under goal 3 changes. One-half percent of the population is 55,000. Therefore, the new penalty weight is 10 points / 55 (thousand people) = 0.182. The new solution follows.

|    | A I                          | В     | С           | D          | Е          | F    | G           | Н    | Ĭ          | J      | K       | L                  | М        | N     | 0          |
|----|------------------------------|-------|-------------|------------|------------|------|-------------|------|------------|--------|---------|--------------------|----------|-------|------------|
| 1  |                              |       |             |            | G          | oals |             |      | Deviations |        |         | Constrain          | ts       |       |            |
| 2  |                              |       |             |            | Level      |      |             |      | Amount     | Amount |         | Balance            |          |       |            |
| 3  |                              | Basic | Advanced    | Supreme    | Achieved   |      | Goal        |      | Over       | Under  |         | (Level-Over+Under) |          | Goal  |            |
| 4  | Goal 1 (Cost)                | \$300 | \$350       | \$720      | 21,000     | 2    | 20,000      |      | 1,000      | 0      |         | 20,000             | =        |       | \$thousand |
| 5  | Goal 2 (Packages Sent)       | 1     | - 1         | 1          | 40         | 3    | 3           |      | 37         | 0      |         | 3                  | =        |       | thousand   |
| 6  | Goal 3 (Population Reached)  | 30    | 35          | 54         | 1,488      | 3    | 2,200       |      | 0          | 712    |         | 2,200              | =        | 2,200 | thousand   |
| 7  |                              |       |             |            |            |      |             |      |            |        |         |                    | _        |       |            |
| 8  |                              |       |             |            | Total      | 1    | Weight      |      |            |        |         |                    |          |       |            |
| 9  |                              | •     |             |            | Weight     | Γ.   | Restriction |      | L          | L      |         |                    |          |       | ļ          |
| 10 | Weight                       | 120   | 180         | 220        | 6,000      | 2    | 6,000       | thou | sand pour  | nds    |         |                    |          |       | <u> </u>   |
| 11 |                              |       |             |            |            | L    |             |      |            |        |         |                    | _        |       |            |
| 12 |                              |       |             |            | Total      |      |             |      |            |        | <u></u> |                    | _        |       | ļ —        |
| 13 |                              | Basic | Advanced    | Supreme    | Packages   |      | Pen         |      |            | Under  | _       | Weighted Sum       | L        |       | ļ. — —     |
| 14 | Packages Sent (thousands)    | 28    | D           | 12         | 40         |      | Weig        |      | Goal       | Goal   | L       | of Deviations      | L_       |       |            |
| 15 |                              |       |             | 2          | 2          | 1    | Go          | al t | 0.001      |        |         | 130.45             |          |       |            |
| 16 | Doctors                      | 120   | Safety      | 12         | 40         |      |             | al 2 |            | 1      |         |                    |          |       |            |
| 17 |                              |       | Restriction | 0.1        | Size Limit |      | Go          | al 3 |            | 0.182  |         |                    |          |       |            |
| 18 |                              |       |             | per Doctor |            |      |             |      |            |        |         |                    | <u> </u> |       |            |
| 19 | Cost per Doctor (\$thousand) | 33    |             |            |            |      |             | L.,  | L          | L      |         |                    | L        |       |            |

The optimal shipping policy did not change. The plan appears to be insensitive to increases in the penalty weight for violating the goal to reach at least 20% of the Cuban population.

c) The doctors needed per thousand supreme packages changes from 0.1 to 0.075. The new solution follows.



While the number of packages Mr. Baker should ship has not changed, the number of doctors is now 160.

d) The budget restriction is now a hard constraint and the penalty variables for the cost goal can be eliminated.

|    | Α                            | В     | С           | D          | E          | F    | G           | Н    | I          | J      | K         | L                  | М | N     | 0          |
|----|------------------------------|-------|-------------|------------|------------|------|-------------|------|------------|--------|-----------|--------------------|---|-------|------------|
| 1  |                              |       |             |            | G          | oals |             |      | Deviations |        | Constrain | ts                 |   | _     |            |
| _2 |                              |       |             |            | Level      |      |             |      | Amount     | Amount |           | Balance            | Ī | 1     |            |
| 3  |                              | Basic | Advanced    | Supreme    | Achieved   |      | Goal        |      | Over       | Under  |           | (Level-Over+Under) |   | Goal  |            |
| 4  | Cost (Hard Constraint)       | \$300 | \$350       | \$720      | 20,000     | 2    | 20,000      |      |            |        |           |                    |   |       | \$thousand |
| -5 | Goal 2 (Packages Sent)       | 1     | 1           | 1          | 40         | 3    | 3           |      | 37         | 0      |           | 3                  | = | 3     | thousand   |
| 6  | Goal 3 (Population Reached)  | 30    | 35          | 54         | 1,465      | 3    | 2,200       |      | 0          | 735.5  |           | 2,200              | = | 2,200 | thousand   |
| 7  |                              |       |             |            |            |      |             |      |            |        |           |                    |   |       |            |
| -8 |                              |       | _           |            | Total      |      | Weight      |      |            |        |           |                    | _ |       |            |
| 9  |                              |       |             | i          | Weight     |      | Restriction |      |            |        |           |                    |   |       |            |
| 10 | Weight                       | 120   | 180         | 220        | 6,000      | 2    | 8,000       | thou | isand pour | nds    |           |                    |   |       |            |
| 11 |                              |       |             |            | ~          |      |             |      |            |        |           |                    |   |       |            |
| 12 |                              |       |             |            | Total      |      |             |      |            |        |           |                    |   |       |            |
| 13 |                              | Basic | Advanced    |            | Packages   |      |             |      |            |        | L.        |                    |   |       |            |
| 14 | Packages Sent (thousands)    | 27    | 2.5         | 10.5       | 40         |      | Pen         |      | Over       | Under  |           | Weighted Sum       |   |       |            |
| 15 |                              |       |             | 2          | 2          | Ĺ    | Weig        |      | Goal       | Goal   |           | of Deviations      |   |       |            |
| 16 | Doctors                      | 105   | Safety      | 10.5       | 40         |      | Go          | al 2 |            | 1      |           | 51,49              |   |       |            |
| 17 |                              |       | Restriction | 0.1        | Size Limit |      | Go          | ai 3 |            | 0.07   |           |                    |   |       |            |
| 18 |                              |       |             | per Doctor |            |      |             |      |            |        |           |                    |   |       |            |
| 19 | Cost per Doctor (\$thousand) | 33    |             |            |            |      |             |      |            |        |           |                    |   |       | _          |

Mr. Baker should send 27,000 basic packages, 2,500 advanced packages, and 10,500 supreme packages along with 105 doctors to Cuba.

e) We start by minimizing the amount over goal 1 (total cost = \$20 million).

|                | A                            | В     | С           | D          | E           | F      | G           | Н | 1          | , , , , , , , , , , , , , , , , , , , | K         | <del>Г                                    </del> | М | N      | 0          |
|----------------|------------------------------|-------|-------------|------------|-------------|--------|-------------|---|------------|---------------------------------------|-----------|--------------------------------------------------|---|--------|------------|
| 1              |                              |       |             |            | G           | oals   |             |   | Deviations |                                       | Constrain | ts                                               |   |        |            |
| 2              |                              |       |             |            | Levei       |        |             | 1 | Amount     | Amount                                |           | Balance                                          | 7 |        |            |
| 3              |                              | Basic | Advanced    | Supreme    | Achieved    |        | Goal        |   | Over       | Under                                 |           | (Level-Over+Under)                               |   | Goal   |            |
| 4              | Goal 1 (Cost)                | \$300 | \$350       | \$720      | 20,000      | 2      | 20,000      |   | 0          | 0                                     |           | 20,000                                           | = | 20,000 | \$thousand |
| 5              | Goal 2 (Packages Sent)       | 1     | 1           | 1          | 19.024      | 3      | 3           |   | 16.024     | 0                                     |           | 3                                                | = | 3      | thousand   |
| 6              | Goal 3 (Population Reached)  | 30    | 35          | 54         | 1,027       | 3      | 2,200       |   | 0          | 1,173                                 |           | 2,200                                            | = | 2,200  | thousand   |
| 7              |                              |       |             |            |             |        |             |   |            | L                                     | <u> </u>  |                                                  | l |        |            |
| 8              |                              |       |             |            | Total       |        | Weight      |   | Minimize ( | Over Goal 1                           |           |                                                  |   |        |            |
| 9              |                              |       |             |            | Weight      | $\Box$ | Restriction |   |            |                                       |           |                                                  |   |        |            |
| 10<br>11       | Weight                       | 120   | 180         | 220        | 4,185       | 2      | 6,000       |   |            |                                       |           |                                                  |   |        | ļ          |
| 11             |                              |       |             |            |             |        |             |   |            |                                       |           |                                                  |   |        | ]          |
| 12             | 1                            |       |             | l I        | Total       |        |             |   |            |                                       |           |                                                  |   |        |            |
| 12<br>13<br>14 |                              | Basic | Advanced    |            | Packages    |        |             |   |            |                                       |           |                                                  |   | ĺ      |            |
| 14             | Packages Sent (thousands)    | D     | 0           | 19.024     | 19.02361111 |        |             |   |            |                                       |           |                                                  |   |        |            |
| 15             |                              |       |             | 2          | 2           |        |             |   |            |                                       |           |                                                  |   |        |            |
| 16             | Doctors                      | 191   | Safety      | 19.1       | 40          |        |             |   |            |                                       |           |                                                  |   |        |            |
| 17<br>18       |                              |       | Restriction | 0.1        | Size Limit  | П      |             |   |            |                                       |           |                                                  |   |        |            |
|                |                              |       |             | per Doctor |             |        |             |   |            |                                       |           |                                                  |   |        |            |
| 19             | Cost per Doctor (\$thousand) | 33    |             |            |             |        |             |   |            |                                       |           |                                                  |   |        |            |

Then, since goal 2 is already met, we move on to goal 3. We minimize the amount under goal 3 (population reached = 20%), while constraining (amount over goal 1 = 0) and (amount under goal 2 = 0).

|            | A                            | В     | С           | D          | É          | F     | G           | Н | I          | J          | К | L                  | М | N      | 0          |
|------------|------------------------------|-------|-------------|------------|------------|-------|-------------|---|------------|------------|---|--------------------|---|--------|------------|
| 1          |                              |       |             |            | G          | Goals |             |   | Deviations |            | Ī | Constraints        |   |        |            |
| 2          |                              |       |             | 1          | Level      | T     |             |   | Amount     | Amount     |   | Balance            |   |        | 1          |
| 3          |                              | Basic | Advanced    | Supreme    | Achieved   |       | Goal        |   | Over       | Under      |   | (Level-Over+Under) |   | Goal   |            |
| 4          | Goal 1 (Cost)                |       | \$350       | \$720      | 20,000     | 2     | 20,000      |   | 0          | 0          | l | 20,000             | = | 20,000 | \$thousand |
| 5          | Goal 2 (Packages Sent)       |       | 1           | 1          | 40         | 3     | 3           |   | 37         | 0          |   | 3                  | = | 3      | thousand   |
| 6          | Goal 3 (Population Reached)  | 30    | 35          | 54         | 1,464      | 3     | 2,200       |   | 0          | 735        |   | 2,200              | = | 2,200  | thousand   |
| <b>□</b> 7 |                              | ,     |             |            |            |       |             |   |            |            |   |                    | _ |        |            |
| 8          |                              |       |             |            | Total      |       | Weight      |   | Minimize I | Jnder Goal | 3 |                    |   |        |            |
| 9          |                              |       | _           |            | Weight     |       | Restriction |   | (Over Goa  | l 1 = 0)   |   |                    |   |        |            |
| 10         | Weight                       | 120   | 180         | 220        | 6,000      | 2     | 6,000       |   | (Under Go  | al 2 = 0)  |   |                    | , |        |            |
| 11         |                              |       |             |            |            |       |             |   |            |            |   |                    |   |        |            |
| 12         |                              |       |             |            | Total      |       |             |   |            |            |   |                    |   |        |            |
| 13         |                              | Basic | Advanced    |            | Packages   |       |             |   |            |            |   |                    |   |        |            |
| 14         | Packages Sent (thousands)    | 27    | 2.5         | 10.5       | 40         |       |             |   |            |            |   |                    |   |        |            |
| 15         |                              |       |             | 2          | 2          |       |             |   |            |            |   |                    |   |        |            |
| 16         | Doctors                      | 105   | Safety      |            | 40         |       |             |   |            |            |   |                    |   |        |            |
| 17         |                              |       | Restriction | 0.1        | Size Limit |       |             |   |            |            |   |                    |   |        | I          |
| 18         |                              |       |             | per Doctor |            |       |             |   |            |            |   |                    |   |        |            |
| [19]       | Cost per Doctor (\$thousand) | 33    |             |            |            |       |             |   |            |            |   |                    |   |        |            |

Mr. Baker should send 27 thousand basic packages, 2,500 advanced packages, and 10,500 supreme packages, along with 105 doctors.

- 7S.2 a) The two decisions to be made are how much to spend on the two security systems. Hence, we define the following two variables.
  - Let PS = thousands of dollars spent per portal system SS = thousands of dollars spent per screening system.
  - b) Preemptive goal programming is appropriate because there is a clear order of priorities.

Priority 1 is met by all possible systems.

Priority 2 (hereafter referred to as goal 1) is that the false alarm rate should not exceed 10%. The false alarm rate of the two systems is as follows:

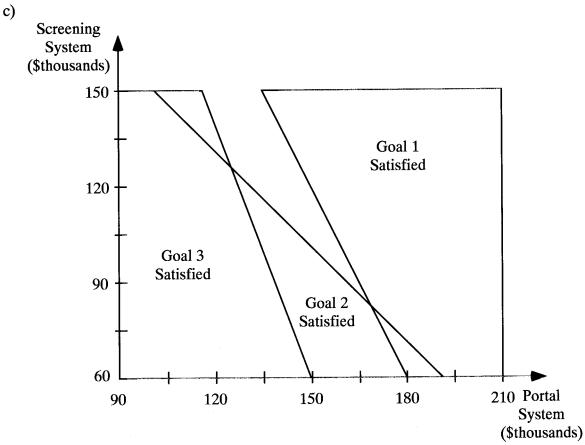
Portal System: 10% - (1%)(PS - 90) / 15Screening System: 6% - (1%)(SS - 60) / 30

Goal 1 is thus

$$[10\% - (1\%)(PS - 90) / 15] + [6\% - (1\%)(SS - 60) / 30] = 10\%$$

Priority 3 (hereafter referred to as goal 2) is that the first budgetary guideline should be met (total expenditures = \$250,000). Goal 2 is thus

$$PS + SS = 250$$


Priority 4 (hereafter referred to as goal 3) is that the second budgetary guideline should be met (average total maintenance cost \$30,000). The maintenance cost of the two systems is as follows:

Portal System: 15 + (PS - 90) / 10

Screening System: 9 + (SS - 60) / 25

Goal 3 is thus

$$[15 + (PS - 90) / 10] + [9 + (SS - 60) / 25] = 30$$



Goal 1 is satisfied inside the rightmost polygon. Goal 2 is satisfied in the polygon in the middle. The small triangle with vertices at (180, 60), (170, 80), (190, 60) is the only area where both goal 1 and goal 2 are satisfied.

Applying preemptive goal programming, the first solution will be somewhere inside the region where goal 1 is satisfied.

The second solution (minimizing the amount over goal 2 while constraining goal 1 to be met) will give a solution inside the small triangle where both goal 1 and goal 2 are met.

The third solution (minimizing the amount over goal 3 while constraining goal 1 and 2 to be met) will pick the solution inside the small triangle (since goal 1 and 2 must remain to be met) that is closest to meeting goal 3. This occurs at (170, 80). That is, they should spend \$170 thousand on the portal system and \$80 thousand on the screening system.

d) We start by minimizing the amount over goal 1 (false alarm rate = 10%).

|          | A                               | В        | C         | D    | E          | F          | G         | Н        | I                  | ]                                      | К            | L            |
|----------|---------------------------------|----------|-----------|------|------------|------------|-----------|----------|--------------------|----------------------------------------|--------------|--------------|
| 1        |                                 | Goals    |           |      |            | Devia      | ations    |          | Constraints        |                                        |              |              |
| 2        |                                 | Level    |           |      |            | Amount     | Amount    |          | Balance            |                                        |              |              |
| 3        |                                 | Achieved |           | Goal |            | Over       | Under     |          | (Level-Over+Under) |                                        | Goal         |              |
| 4        | Goal 1 (False Alarm Rate)       | 10%      | 2         | 10%  |            | 0          | 0         |          | 10%                | =                                      | 10%          |              |
| 5        | Goal 2 (Total Expenditure)      | 250      | 2         | 250  |            | 0          | 0         |          | 250                | =                                      | 250          | (\$thousand) |
| 6        | Goal 3 (Maintenance Cost)       | 32.8     | 2         | 30   |            | 2.8        | 0         |          | 30                 | =                                      | 30           | (\$thousand) |
| 7        |                                 |          |           |      |            |            |           | <u> </u> |                    | L.                                     |              |              |
| 8        |                                 | Portal   | Screening |      |            | Minimize ( | Over Goal | 1        |                    | -                                      |              |              |
| 9        |                                 | System   | System    |      |            |            |           |          |                    | <u> </u>                               |              |              |
| 10       | Minimum                         | 90       | 60        |      | _          |            |           |          |                    |                                        |              | -            |
| 11<br>12 |                                 | 2        | 2         |      |            |            |           |          |                    | <u> </u>                               | <u> </u>     |              |
|          | Expenditure (\$thousand/system) |          | 80        |      |            |            |           |          |                    |                                        |              |              |
| 13       |                                 | 2        | 2         |      | _          |            |           |          |                    | ⊢                                      | <del> </del> | ļ            |
| 14       | Maximum                         | 210      | 150       |      |            |            |           |          |                    | ļ                                      | ļ            |              |
| 15       |                                 |          |           |      |            |            |           | <u> </u> |                    | ļ                                      | Ļ            |              |
| 16       | False Alarm Rate                | 5%       | 5%        |      | <u> </u>   |            |           | <u> </u> |                    | -                                      |              |              |
| 17       | Base Rate                       | 10%      | 6%        |      | _          | ` <u> </u> |           | <u> </u> | ļ                  | -                                      | <u> </u>     |              |
| 18       | Minus 1% per (\$x thousand)     | 15       | 30        |      | _          |            |           | _        | -                  | ļ_                                     | <u> </u>     | <del> </del> |
| 19       |                                 |          |           |      | ļ          |            |           |          |                    | ₩                                      | ļ. —         |              |
| 20       | Maintenance Cost (\$thousand)   |          | 9.8       |      | <b>↓</b> — |            |           |          |                    | ┼                                      | <del> </del> |              |
| 21       | Base Rate                       | 15       | 9         |      | 1          |            |           | -        |                    | +                                      | -            |              |
| 22       | Plus \$1 per \$x                | 10       | 25        |      |            |            | L         |          | <u> </u>           | ــــــــــــــــــــــــــــــــــــــ | J            | L            |

|   | В                     |
|---|-----------------------|
| 2 | Level                 |
| 3 | Achieved              |
| 4 | =SUM(FalseAlarmRate)  |
| 5 | =SUM(Expenditure)     |
| 6 | =SUM(MaintenanceCost) |

|   | I                                     | J | К     |
|---|---------------------------------------|---|-------|
| 2 | Balance                               |   |       |
| 3 | (Level-Over+Under)                    |   | Goal  |
| 4 | =LevelAchieved-AmountOver+AmountUnder | = | =Goal |
| 5 | =LevelAchieved-AmountOver+AmountUnder | = | =Goal |
| 6 | =LevelAchieved-AmountOver+AmountUnder | = | =Goal |

|    | Α                             | В                                   | C                                   |
|----|-------------------------------|-------------------------------------|-------------------------------------|
| 16 | False Alarm Rate              | =B17-(1%)*(Expenditure-Minimum)/B18 | =C17-(1%)*(Expenditure-Minimum)/C18 |
| 17 | Base Rate                     |                                     | 0.06                                |
| 18 | Minus 1% per (\$x thousand)   | 15                                  | 30                                  |
| 19 | ····                          |                                     |                                     |
| 20 | Maintenance Cost (\$thousand) | =B21+(Expenditure-Minimum)/B22      | =C21+(Expenditure-Minimum)/C22      |
| 21 | Base Rate                     | 15                                  | 9                                   |
| 22 | Plus \$1 per \$x              | 10                                  | =30/1.2                             |

| Range Name      | Cells   |
|-----------------|---------|
| AmountOver      | F4:F6   |
| AmountUnder     | G4:G6   |
| Balance         | 14:16   |
| Deviations      | F4:G6   |
| Expenditure     | B12:C12 |
| FalseAlarmRate  | B16:C16 |
| Goal            | D4:D6   |
| LevelAchieved   | B4:B6   |
| MaintenanceCost | B20:C20 |
| Maximum         | B14:C14 |
| Minimum         | B10:C10 |

Since goal 2 is already met, we move on to minimizing the amount over goal 3 (maintenance cost = \$30,000), while constraining (amount over goal 1 = 0) and

(amount over goal 2 = 0).

| $\overline{}$ | A A                                | В        | С         | D      | E        | F            | G         | Н | I                  | ]_       | K           | L            |
|---------------|------------------------------------|----------|-----------|--------|----------|--------------|-----------|---|--------------------|----------|-------------|--------------|
| 1             |                                    |          | Goals     |        |          | Devia        | ations    |   | Constraints        |          |             |              |
| 2             |                                    | Level    | 1         | facini |          | Amount       | Amount    |   | Balance            |          |             |              |
| 3             |                                    | Achieved |           | Goal   | <u> </u> | Over         | Under     |   | (Level-Over+Under) |          | Goal        |              |
| 4             | Goal 1 (False Alarm Rate)          | 10%      | 2         | 10%    |          | -0           | 0         |   | 10%                | =        | 10%         |              |
| 5             | Goal 2 (Total Expenditure)         |          | 2         | 250    |          | ō            | 0         |   | 250                | =        | 250         | (\$thousand) |
|               | Goal 3 (Maintenance Cost)          |          | 2         | 30     |          | 2.8          | 0         |   | 30                 | =        | 30          | (\$thousand) |
| 6             | Goal 3 (Maintenance Cost)          | 32.0     | <u> </u>  | •••    | ┡        |              | -         |   |                    |          |             |              |
| 7             |                                    | Portal   | Screening |        | -        | Minimize (   | Over Goal | 3 |                    |          |             |              |
| 8             |                                    | System   | System    |        | -        | (Over Goa    |           | Ť |                    |          |             |              |
| 9             | Minimum                            | 90       | 60        |        |          | (Over Goa    |           |   |                    |          |             |              |
| 10            | Millimain                          | 2        | 2         |        | _        | (0.00.000    | <u> </u>  |   |                    |          |             |              |
| 11<br>12      | Expenditure (\$thousand/system)    | 170      | 80        |        |          |              |           |   |                    |          |             |              |
| 13            | Experialiture (all lousand/system) | 2        | 2         |        |          |              |           |   |                    |          |             |              |
| 14            | Maximum                            | 210      | 150       |        |          |              |           |   |                    |          |             |              |
| 15            | Waxinan                            |          |           |        | 1        | <del> </del> |           |   |                    |          |             |              |
| 16            | False Alarm Rate                   | 5%       | 5%        |        | <u> </u> |              |           |   |                    |          |             | 1            |
| 17            | Base Rate                          |          | 6%        |        |          | -            |           |   |                    |          |             |              |
| 18            | Minus 1% per (\$x thousand)        |          | 30        |        | _        |              |           |   |                    |          | i           |              |
| 19            | Willias 170 por (4x troadaria)     |          | 1         |        |          |              |           |   |                    |          |             |              |
| 20            | Maintenance Cost (\$thousand)      | 23       | 9.8       |        |          |              |           |   |                    |          |             |              |
| 21            | Base Rate                          |          | 9         |        |          |              |           |   |                    | <u> </u> |             |              |
| 22            | Plus \$1 per \$x                   |          | 25        |        |          |              |           |   |                    | <u> </u> | <u>L.</u> . | l            |

e) The first two goals are now hard constraints, and we minimize the amount over goal 3.

| 111                | tiist two goais air             | 2 HO W   | nara oc   | 711761                                  | dilles, dill    |            |           |   |                    |              |      | <i></i>      |
|--------------------|---------------------------------|----------|-----------|-----------------------------------------|-----------------|------------|-----------|---|--------------------|--------------|------|--------------|
|                    | Α Ι                             | В        | С         | D                                       | E               | F          | G         | Н | I                  | [נ]          | K    | L            |
| $\vdash_{i}\dashv$ |                                 |          | Goals     |                                         |                 | Devia      | ations    |   | Constraints        |              |      |              |
| 2                  |                                 | Level    |           | *************************************** | 1               | Amount     | Amount    |   | Balance            |              |      |              |
| 3                  |                                 | Achieved |           | Goal                                    |                 | Over       | Under     |   | (Level-Over+Under) |              | Goal |              |
| 4                  | Goal 1 (False Alarm Rate)       | 10%      | 2         | 10%                                     | Hard Constraint |            |           |   |                    |              |      |              |
| 5                  | Goal 2 (Total Expenditure)      |          | 2         | 250                                     | Hard Constraint |            |           |   |                    |              |      | (\$thousand) |
| 6                  | Goal 3 (Maintenance Cost)       |          | 2         | 30                                      |                 | 2.8        | 0         |   | 30                 | =            | 30   | (\$thousand) |
| 7                  | ,                               |          |           | ************************                |                 |            |           |   |                    |              |      | ļ            |
| 8                  |                                 | Portal   | Screening |                                         |                 | Minimize ( | Over Goal | 1 |                    | L-           | -    |              |
| 9                  |                                 | System   | System    |                                         |                 |            |           |   |                    | <u> </u>     |      |              |
| 10                 | Minimum                         | 90       | 60        |                                         |                 |            |           |   |                    | <del> </del> |      |              |
| 11                 |                                 | 2        | 2         |                                         |                 |            |           |   |                    | <del>-</del> |      |              |
| 12                 | Expenditure (\$thousand/system) | 170      | 80        |                                         |                 |            | -         |   |                    | <del> </del> | -    |              |
| 13                 |                                 | _        | 150       | L                                       |                 |            |           |   |                    | -            |      |              |
| 14                 | Maximum                         | 210      | 100       |                                         |                 |            |           | - |                    | +            |      |              |
| 15                 | False Alarm Rate                | 5%       | 5%        |                                         |                 |            | _         |   |                    |              |      |              |
| 16<br>17           | Faise Alarm Rate<br>Base Rate   | 10%      | 6%        |                                         |                 |            |           |   |                    |              |      |              |
| 18                 | Minus 1% per (\$x thousand)     |          | 30        |                                         |                 |            |           | - |                    | 1            |      |              |
| 19                 | Willias 170 per (4x triousaria) |          | 1         | <u> </u>                                |                 |            |           |   |                    |              |      |              |
| 20                 | Maintenance Cost (\$thousand)   | 23       | 9.8       |                                         |                 |            |           |   |                    | L.           |      |              |
| 21                 | Base Rate                       | 15       | 9         |                                         |                 |            |           |   |                    | <b>├</b>     |      |              |
| 22                 | Plus \$1 per \$x                | 10       | 25        |                                         | 1               |            |           |   |                    | L            | L    |              |

If the linear program had no feasible solution, this would imply that it is not possible to meet all of the higher priority goals that were turned into hard constraints.

f) We no longer use goal programming. The goal is to minimize the total false alarm rate subject to meeting the first budgetary guideline (total expenditure), but ignoring the second budgetary guideline (maintenance cost). The spreadsheet model follows.

|    | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В        | C         | D           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------------|
| 1  | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA | Level    |           |             |
| 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Achieved |           | Maximum     |
| 3  | Total False Alarm Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9%       |           | Expenditure |
| 4  | Total Expenditure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 250      | 2         | 250         |
| 5  | Maintenance Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34       |           |             |
| 6  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |             |
| 7  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Portal   | Screening |             |
| 8  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | System   | System    |             |
| 9  | Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90       | 60        |             |
| 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 2         |             |
| 11 | Expenditure (\$thousand/system)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190      | 60        |             |
| 12 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2        | 2         |             |
| 13 | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210      | 150       |             |
| 14 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |             |
| 15 | False Alarm Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3%       | 6%        |             |
| 16 | Base Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10%      | 6%        |             |
| 17 | Minus 1% per (\$x thousand)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15       | 30        |             |
| 18 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |             |
| 19 | Maintenance Cost (\$thousand)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25       | 9         |             |
| 20 | Base Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15       | 9         |             |
| 21 | Plus \$1 per \$x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10       | 25        |             |

The total false alarm rate can be lowered to 9% by ignoring the second budgetary guideline (maintenance cost).

g) Further what-if analysis might look at how low the false-alarm rate can be lowered by ignoring the first budgetary guideline, but meeting the second. Also, it would be interesting to look at how the minimum false alarm rate changes as both of the budgetary guidelines are varied.

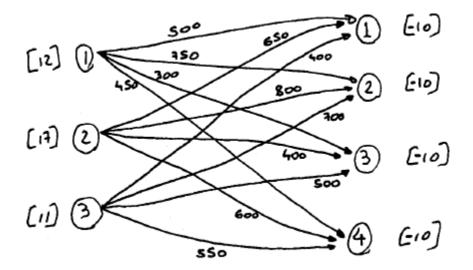
#### CHAPTER 8: THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

### 8.1-1.

While growing continuously as a global company, Procter & Gamble faced the need to restructure for enhanced effectiveness. The goal was to optimize work processes and to minimize expenses while maintaining customer satisfaction. Lowered transportation costs due to changes in the trucking industry and reduced product packages suggested that the total transportation costs could be decreased. In the meantime, shorter product life cycles justified smaller number of plants. Consequently, P&G had to decide on where to locate the plants, what and how much to produce in each. This would be impossible without reviewing the distribution system. Hence, two problems for each product category needed to be solved: a distribution-location problem and a product-sourcing problem.

First, optimal distribution center (DC) locations and optimal customer assignments are found by solving an uncapacitated facility-location model. The objective in this problem is to minimize the total cost of transportation and supply while the primary restriction is to satisfy customer demand. Fixed costs involved in locating DCs are ignored. The total number of DCs is determined beforehand subjectively. The solution of this problem is an input to the product sourcing problem.

With fixed DC locations and their capacities, product sourcing is modeled as a transportation problem. Sources are plants, destinations are DCs and customers. The location and capacity of the plants are specified by the product-strategy teams. Decision variables are the amounts of demand at each destination to be met from each source. The objective is to minimize the total cost while satisfying the demand at each destination without exceeding the capacity of each source. The costs consist of manufacturing, warehousing and transportation costs. An out-of-kilter algorithm is used to solve this problem for each product category.


The benefits of this study included a reduction in the number of plants in North America by 20% and savings of over \$200 million per year. The reduction in manufacturing costs, due to lowered number of plants and personnel coupled with improved efficiency of the supply chain, outweighs the increase in delivery costs. The gains from this study led P&G to making OR/MS a part of its decision-making process.

## **8.1-2.**

(a)

|         |   | Desti | Unit Cost (\$) Destination (Distribution Center) |     |     |    |  |  |  |  |  |  |  |
|---------|---|-------|--------------------------------------------------|-----|-----|----|--|--|--|--|--|--|--|
|         |   | 1     | 1 2 3 4                                          |     |     |    |  |  |  |  |  |  |  |
| Source  | 1 | 500   | 750                                              | 300 | 450 | 12 |  |  |  |  |  |  |  |
| (Plant) | 2 | 650   | 800                                              | 400 | 600 | 17 |  |  |  |  |  |  |  |
|         | 3 | 400   | 700                                              | 500 | 550 | 11 |  |  |  |  |  |  |  |
| Demand  |   | 10    | 10                                               | 10  | 10  |    |  |  |  |  |  |  |  |

(b)



(c)

| Shipment | Quantities  |
|----------|-------------|
| Chipment | Qualitities |

|         |   | Destinat | ion (Dis | tribution | Center | )          |   |                               |
|---------|---|----------|----------|-----------|--------|------------|---|-------------------------------|
|         |   | _1_      | 2        | 3         | 4      | Totals     |   | Supply                        |
| Source  | 1 | 0        | ~ O      | 2         | 10     | 12         | = | 12                            |
| (Plant) | 2 | 0        | 944      | .8        | 0*/    | 17         | = | 17                            |
|         | 3 | 110      | 1 1      | 0≠        | 704    | 11         | = | 11                            |
| Totals  |   | 10       | 10       | 10        | 10     |            |   |                               |
|         |   | =        | =        | =         | =      | Total Cost | = | \$ 20,200                     |
| Demand  |   | 10       | 10       | 10        | 10     |            |   | Contractive solutions for the |

## 8.1-3.

(a) Let  $x_1$  and  $x_2$  be the number of pints purchased from Dick today and tomorrow respectively,  $x_3$  and  $x_4$  be the number of pints purchased from Harry today and tomorrow respectively.

INITIAL TABLEAU

| Bas   Eq  |           | Coefficient of |           |      |    |    |    |    | Right |      |
|-----------|-----------|----------------|-----------|------|----|----|----|----|-------|------|
| Var No Z  | <b>x1</b> | X2             | <b>x3</b> | Х4   | X5 | Х6 | X7 | 8X | х9    | side |
| _ _ _     |           |                |           |      |    |    |    |    |       |      |
| 111       | -1M       | - 1M           | - 1M      | - 1M | 1M |    |    |    |       | -7M  |
| z i 0j-1j | 3         | 2.7            | 2.9       | 2.8  | 0  | 0  | 0  | 0  | 0     | 0    |
| x6j 1j 0j | 1         | 1              | 0         | 0    | 0  | 1  | 0  | 0  | 0     | 5    |
| X7 2 0    | 0         | 0              | 1         | 1    | 0  | 0  | 1  | 0  | 0     | 4    |
| X8 3 0    | 1         | 0              | 1         | 0    | 0  | 0  | 0  | 1  | 0     | 3    |
| X9 4 0    | 0         | 1              | 0         | 1    | -1 | 0  | 0  | 0  | 1     | 4    |

(b)

|        |    | Des   | ı        |      |        |
|--------|----|-------|----------|------|--------|
|        | 1  | 1     | 2        | 3    | Supply |
|        | _  | Today | Tomerrow | Dumy |        |
|        | -  |       |          |      |        |
| Dick   |    |       | 2.7      | 0    | 5      |
| Harry  | 2  | 2.9   | 2.8      | 0    | 4      |
|        | _1 |       |          |      |        |
| Demand |    | 3     | 4        | 2    |        |

(c)

|          | Desti | 1 |   |         |
|----------|-------|---|---|---------|
|          | 1     | 2 | 3 | Supply  |
| 1        |       | 4 | 1 | 5       |
| Source 2 | 3     |   | 1 | 4       |
| Demand   | 3     | 4 | 2 | Cost is |
|          |       |   |   | 19.5    |

# 8.1-4.

(a)

# Cost Per Unit Distributed

|        |   |     | Product |     |       |        |
|--------|---|-----|---------|-----|-------|--------|
|        |   | 1   | 2       | 3   | Dummy | Supply |
|        | 1 | 41  | 55      | 48  | 0     | 400    |
|        | 2 | 39  | 51      | 45  | 0     | 600    |
| Plant  | 3 | 42  | 56      | 50  | 0     | 400    |
|        | 4 | 38  | 52      | 1M  | 0     | 600    |
|        | 5 | 39  | 53      | 1M  | 0     | 1000   |
| Demand |   | 700 | 1000    | 900 | 400   |        |

(b)

|            | D1  | D2   | D3  | D4  | Supply        |    |
|------------|-----|------|-----|-----|---------------|----|
| S1         |     |      | 400 |     | 400           |    |
| S2         |     | 100  | 500 |     | 600           |    |
| <b>S</b> 3 |     |      |     | 400 | 400           |    |
| S4         |     | 600  |     |     | 600           |    |
| ສ5         | 700 | 300  |     |     | 1000          |    |
| Demand     | 700 | 1000 | 900 | 400 | Cost is 12120 | 00 |

# 8.1-5.

Adjustable Cells

| Cell    | Name                      | Final<br>Value | Reduced<br>Cost | Objective<br>Coefficient | Allowable<br>Increase | Allowable<br>Decrease |
|---------|---------------------------|----------------|-----------------|--------------------------|-----------------------|-----------------------|
| \$D\$15 | Bellingham Sacramento     | 0              | 14.9999999      | 464                      | 1E+30                 | 15                    |
| \$E\$15 | Bellingham Salt Lake City | 20             | 0               | 513                      | 15                    | 21                    |
| \$F\$15 | Bellingham Rapid City     | 0              | 83.9999996      | 654                      | 1E+30                 | 84                    |
| \$G\$15 | Bellingham Albuquerque    | 55             | 0               | 867                      | 21                    | 351                   |
| \$D\$16 | Eugene Sacramento         | 80             | 0               | 352                      | 15                    | 1E+30                 |
| \$E\$16 | Eugene Salt Lake City     | 45             | 0               | 416                      | 21                    | 15                    |
| \$F\$16 | Eugene Rapid City         | 0              | 217             | 690                      | 1E+30                 | 217                   |
| \$G\$16 | Eugene Albuquerque        | 0              | 20.9999997      | 791                      | 1E+30                 | 21                    |
| \$D\$17 | Albert Lea Sacramento     | 0              | 728             | 995                      | 1E+30                 | 728                   |
| \$E\$17 | Albert Lea Salt Lake City | 0              | 351             | 682                      | 1E+30                 | 351                   |
| \$F\$17 | Albert Lea Rapid City     | 70             | 0               | 388                      | 84                    | 1E+30                 |
| \$G\$17 | Albert Lea Albuquerque    | 30             | 0               | 685                      | 351                   | 84                    |

### Constraints

| Cell    | Name                  | Final<br>Value | Shadow<br>Price | Constraint<br>R.H. Side | Allowable<br>Increase | Allowable<br>Decrease |
|---------|-----------------------|----------------|-----------------|-------------------------|-----------------------|-----------------------|
| \$D\$18 | Totals Sacramento     | 80             | 267             | 80                      | 0                     | 20                    |
| \$E\$18 | Totals Salt Lake City | 65             | 331             | 65                      | 0                     | 20                    |
| \$F\$18 | Totals Rapid City     | 70             | 388             | 70                      | 0                     | 70                    |
| \$G\$18 | Totals Albuquerque    | 85             | 685             | 85                      | 0                     | 30                    |
| \$H\$15 | Bellingham Totals     | 75             | 182             | 75                      | 30                    | 0                     |
| \$H\$16 | Eugene Totals         | 125            | 85              | 125                     | 20                    | 0                     |
| \$H\$17 | Albert Lea Totals     | 100            | 0               | 100                     | 0                     | 1E+30                 |

|        |            | Range of Optimality Destination |                |            |             |  |  |
|--------|------------|---------------------------------|----------------|------------|-------------|--|--|
|        |            | Sacramento                      | Salt Lake City | Rapid City | Albuquerque |  |  |
| Source | Bellingham | 449 to ∞                        | 492 to 528     | 570 to ∞   | 516 to 888  |  |  |
|        | Eugene     | -∞ to 367                       | 401 to 437     | 473 to ∞   | 770 to ∞    |  |  |
|        | Albert Lea | 267 to ∞                        | 331 to ∞       | -∞ to 472  | 601 to 1036 |  |  |

These ranges tell the management how much each individual cost can be changed without changing the optimal solution.

8.1-6.

(a) Introduce a dummy customer 5 to represent the excess amount sent to customer 3 and a dummy plant 4 to represent the units that are sold to, but not received by customers 4 and 5.

|          |        |          | Profit per o | unit distribu | ited |     |                 |
|----------|--------|----------|--------------|---------------|------|-----|-----------------|
|          |        | 1        | 2            | 3             | 4    | 5   | Supply          |
|          | 1      | 800      | 700          | 500           | 200  | 500 | 60              |
| Plant    | 2      | 500      | 200          | 100           | 300  | 100 | 80              |
|          | 3      | 600      | 400          | 300           | 500  | 300 | 40              |
|          | 4      | 1.00E+06 | 1.00E+06     | 1.00E+06      | 0    | 0   | 60              |
|          | Demand | 40       | 60           | 20            | 60   | 60  |                 |
|          |        |          |              |               |      |     |                 |
|          |        |          | Shipments    |               |      |     |                 |
|          |        |          | Customer     |               |      |     |                 |
|          |        |          | 2 3          | 3 4           | 1    | 5   | Supply          |
|          | 7      |          | 60           |               |      |     | 60              |
| Plant    | 2      | 40       |              | 4             | 10   |     | 80              |
|          | 3      | l        | 2            | 20 2          | 20   |     | 40              |
|          | 4      |          |              |               |      | 60  | 60              |
|          | Demand | 40       | 60 2         | 20 €          | 30   | 60  | Profit is 90000 |
| b) - (e) |        |          |              |               |      |     |                 |

| 1 | 1 \ |     | /  | , |
|---|-----|-----|----|---|
| 1 | h١  | ١ ـ | 10 | ٠ |
|   | .,, | , – | 11 | , |

|       |        |          | Cost per unit distributed Customer |          |      |      |        |  |
|-------|--------|----------|------------------------------------|----------|------|------|--------|--|
|       |        | 1        | 2                                  | 3        | 4    | 5    | Supply |  |
|       | 1      | -800     | -700                               | -500     | -200 | -500 | 60     |  |
| Plant | 2      | -500     | -200                               | -100     | -300 | -100 | 80     |  |
|       | 3      | -600     | -400                               | -300     | -500 | -300 | 40     |  |
|       | 4      | 1.00E+06 | 1.00E+06                           | 1.00E+06 | 0    | 0    | 60     |  |
|       | Demand | 40       | 60                                 | 20       | 60   | 60   |        |  |
|       |        |          | Shipments<br>Customer              |          |      |      |        |  |
|       |        | 1        | 2 .                                | 2 4      |      | 5    | Supply |  |

|       |        |    | Custon | ner |    |    |                |  |  |
|-------|--------|----|--------|-----|----|----|----------------|--|--|
|       |        | 1  | 2      | 3   | 4  | 5  | Supply         |  |  |
|       | 1      | T  | 60     |     |    |    | 60             |  |  |
| Plant | 2      | 40 |        |     | 40 |    | 80             |  |  |
|       | 3      | 1  |        | 20  | 20 |    | 40             |  |  |
|       | 4      | 1  |        |     |    | 60 | 60             |  |  |
|       | Demand | 40 | 60     | 20  | 60 | 60 | Cost is -90000 |  |  |

The profit is \$90,000.

## **8.1-7.**

## (a) - (b)

|       |        |     | Distribu | ition center |         |        |
|-------|--------|-----|----------|--------------|---------|--------|
|       |        | 1   | 2        | 3            | 4 Dummy | Supply |
| Plant | 1      | 800 | 700      | 400          | 0       | 50     |
|       | 2      | 600 | 800      | 500          | 0       | 50     |
|       | Demand | 20  | 20       | 20           | 40      |        |

(c)

|       |        |    | Distribu | ution center | •       |               |
|-------|--------|----|----------|--------------|---------|---------------|
|       |        | 1  | 2        | 3            | 4 Dummy | Supply        |
| Plant | 1      | T  | 20       | 20           | 10      | 50            |
|       | 2      | 20 |          |              | 30      | 50            |
|       | Demand | 20 | 20       | 20           | 40      | Cost is 34000 |

## **8.1-8.**

(a) - (b) Let destination 2i - 1 represent the demand of 10 at center i and destination 2i represent the extra demand up to 20 shipped to center i = 1, 2, 3.

|       |        |          | Cost per unit distributed  Destination |          |     |          |     |          |        |  |  |
|-------|--------|----------|----------------------------------------|----------|-----|----------|-----|----------|--------|--|--|
|       |        | 1        | 2                                      | 3        | 4   | 5        | 6   | 7 Dummy  | Supply |  |  |
| plant | 1      | 800      | 800                                    | 700      | 700 | 400      | 400 | 0        | 50     |  |  |
| plant | 2      | 600      | 600                                    | 800      | 800 | 500      | 500 | 0        | 50     |  |  |
| dummy | 3      | 1.00E+06 |                                        | 1.00E+06 | 0   | 1.00E+06 | 0   | 1.00E+06 | 30     |  |  |
| ,     | Demand | 10       | 20                                     | 10       | 20  | 10       | 20  | 40       |        |  |  |

(c)

|       |        |    | Cost pe<br>Destina | er unit distri<br>ation | buted |    |    |         |               |
|-------|--------|----|--------------------|-------------------------|-------|----|----|---------|---------------|
|       |        | 1  | 2                  | 3                       | 4     | 5  | 6  | 7 Dummy | Supply        |
| plant | 1      |    |                    | 10                      |       | 10 | 20 | 10      | 50            |
| plant | 2      | 10 | 10                 |                         |       |    |    | 30      | 50            |
| dummy | 3      |    | 10                 |                         | 20    |    |    |         | 30            |
| ,     | Demand | 10 | 20                 | 10                      | 20    | 10 | 20 | 40      | Cost is 31000 |

## 8.1-9.

(a) Let source 2i-1 be regular time production and 2i be overtime production in month i=1,2,3. Let destination 2i-1 represent the contracted sales for product 1 and 2i represent the contracted sales for product 2 in month i=1,2,3. Destination 7 is dummy.

|        |     | Cost Per Unit Distributed (in \$1,000'S) Destination |    |    |    |    |    |    |        |  |
|--------|-----|------------------------------------------------------|----|----|----|----|----|----|--------|--|
|        |     | 1                                                    | 2  | 3  | 4  | 5  | 6  | 7  | Supply |  |
|        | 1   | 15                                                   | 16 | 16 | 18 | 18 | 19 | 0  | 10     |  |
|        | 2   | 18                                                   | 20 | 19 | 22 | 21 | 23 | 0  | 3      |  |
|        | 3   | 1M                                                   | 1M | 17 | 15 | 19 | 16 | ō  | 8      |  |
| Source | 4   | 1M                                                   | 1M | 20 | 18 | 22 | 19 | ñ  | 2      |  |
|        | 5   | 1M                                                   | 1M | 1M | 1M | 19 | 17 | ŏl | 10     |  |
|        | 6   | 1M                                                   | 1M | 1M | 1M | 22 | 22 | ŏ  | 3      |  |
| Dema   | and | 5                                                    | 3  | 3  | 5  | 4  | 4  | 12 |        |  |

(b)

|        |     |   |   | Desti | nation |   |   |    |                         |
|--------|-----|---|---|-------|--------|---|---|----|-------------------------|
|        |     | 1 | 2 | 3     | 4      | 5 | 6 | 7  | Supply                  |
|        | 1   | 5 | 3 | 2     |        |   |   |    | 10                      |
|        | 2   |   |   |       |        |   |   | 3  | 3                       |
| _      | 3   |   |   | 1     | 5      |   | 2 |    | 8                       |
| Source | 4   |   |   |       |        |   |   | 2  | 2                       |
|        | 5   |   |   |       |        | 4 | 2 | 4  | 10                      |
|        | _ 6 |   |   |       |        |   |   | 3  | 3                       |
| Dem    | and | 5 | 3 | 3     | 5      | 4 | 4 | 12 | Cost is                 |
|        |     |   |   |       |        |   |   |    | Cost is 389 <b>,0</b> ∞ |

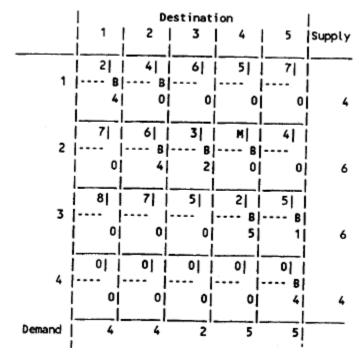
Hence, the total cost is \$389,000 and no overtime is necessary.

# **8.2-1.**

(a) Vogel's approximation method would choose  $x_{21}$  as the first basic variable.

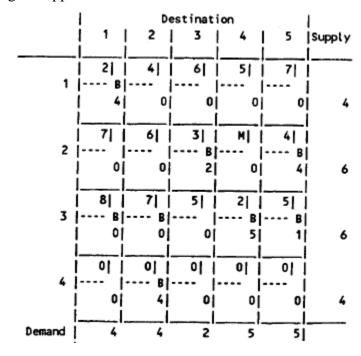
|         | Cost | Per Un | it Distr | ibuteo | 1      |             |
|---------|------|--------|----------|--------|--------|-------------|
|         | - 1  | Dest   | ination  | I      |        | Row         |
|         | - 1  | 1      | 2        | 3      | Supply | Difference  |
|         | 1_   |        |          | I      | l      |             |
|         | 1    | 15     | 9        | 13     | 7      | 4           |
| Source  | 2    | 11     | 1 M      | 17     | 5      | 6 < Maximum |
|         | 3    | 9      | 11       | 9      | 3      | 0           |
|         | 1    |        |          |        | l      |             |
| Demand  | I    | 7      | 3        | 5      |        |             |
| Column  |      |        |          |        |        |             |
| Differe | nce  | 2      | 2        | 4      |        |             |

(b) Russell's approximation method would choose  $x_{12}$  as the first basic variable.


|         | Cos | st Pe         |      |        | ributed |     |       | D      |   |
|---------|-----|---------------|------|--------|---------|-----|-------|--------|---|
|         |     |               |      | inatio |         | ! - |       | Row .  |   |
|         |     |               | 1    | 2      | 3       | ន   | upply | Maximu | m |
|         | ا   |               |      |        |         | ا   |       |        |   |
|         | 1   |               | 15   | 9      | 13      |     | 7     | 15     |   |
| Source  | 2   |               | 11   | 1 M    | 17      | 1   | 5     | 1 M    |   |
|         | 3   |               | 9    | 11     | 9       | I   | 3     | 11     |   |
|         |     |               |      |        |         | 1   |       |        |   |
| Demand  |     |               | 7    | 3      | 5       | 1   |       |        |   |
| Column  |     |               |      |        |         |     |       |        |   |
| Maximum |     |               | 15   | 1 M    | 17      |     |       |        |   |
|         | ĺ   | Α             | 1    |        |         |     | 0     | ī      |   |
|         |     | $\Delta_{ij}$ |      | 1      | 2       |     | 3     |        |   |
|         |     | 1             | -15  |        | -1M $-$ | - 6 | -19   |        |   |
|         |     | 2             | _1 \ | I = I  | -1M     |     | -1M   | 1      |   |

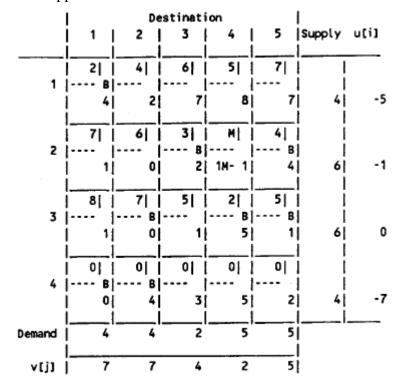
(c) Initial BF solution using northwest corner rule:

|        |   | D |   |   |        |
|--------|---|---|---|---|--------|
|        |   | 1 | 2 | 3 | Supply |
|        | 1 | 7 | 1 | 1 | 7      |
| Source | 2 | - | 3 | 2 | 5      |
|        | 3 | - | - | 3 | 3      |
| Demand |   | 7 | 3 | 5 |        |


8.2-2.

(a) Northwest Corner Rule



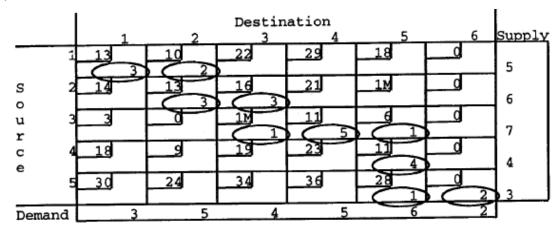

Cost: 53

# (b) Vogel's Approximation Method



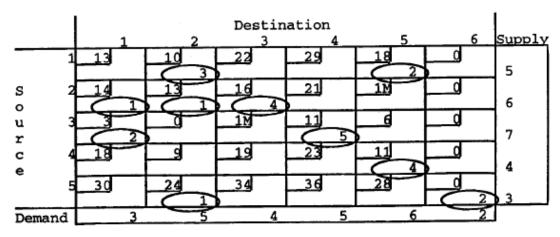
Cost: 45

## (c) Russell's Approximation Method



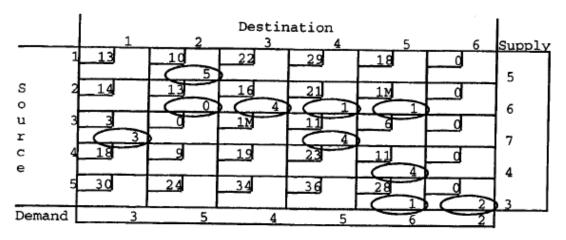

Cost: 45

Note that Vogel's and Russell's approximation methods return an optimal solution.

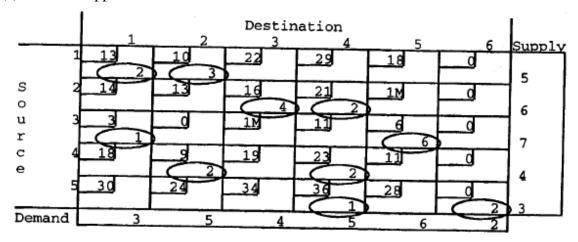

8.2-3.

## (a) Northwest Corner Rule




Cost: M+279

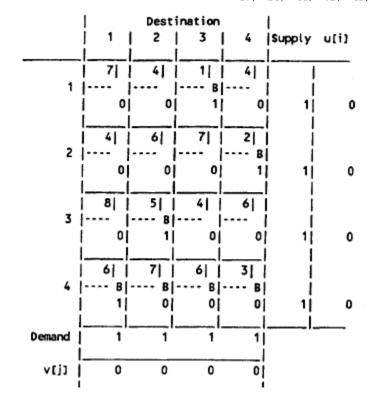
## (b) Vogel's Approximation Method




Cost: 286

Arbitrarily breaking the tie differently returns the solution below with cost M+260.




(c) Russell's Approximation Method



Cost: 301

### 8.2-4.

- (a) All the supply and demand values are integers. By the integer solutions property, the resulting basic feasible solutions will be integral. All the supplies and demands are one, so the only possible values of the variables in a basic feasible solution are 0 and 1. The 1's indicate the assignment of a source to a destination.
- (b) There are 7 basic variables in every basic feasible solution and 3 of them are degenerate.
- (d) The variables are chosen in the order  $x_{13}, x_{24}, x_{44}, x_{32}, x_{41}, x_{43}, x_{42}$ .



(c) - (e) Destination (0) |Supply u[i] 7 4 11 1 41 1 | -7 1 -5 2 4| | 61 1 7| | 2 | 2 | ٥į 1 2 0 -1 1 8| | 5| | 4| | 3 0 5| 1 1| 5 -2 6| | 7| | 6 | 3| | 4 0 1 이 1| 11 0 1 ī 1 Demand | 1 3 v(j) | 5 7 6 Destination (1) Supply u[i] 7| | 4| 1| -- B| 7 2| 1| 6 71 4| | 61 1 21 1 2 | 1 0 2 0 5 8 5| | 41 1 6| | 3 5| 1 0 5 6| | 7| | 6| | - B 0| 0| 1[ 11 1 1 Demand 1 -3

Optimal assignment (source, destination): (1,3),(2,1),(3,2),(4,4), cost: 13

O

1

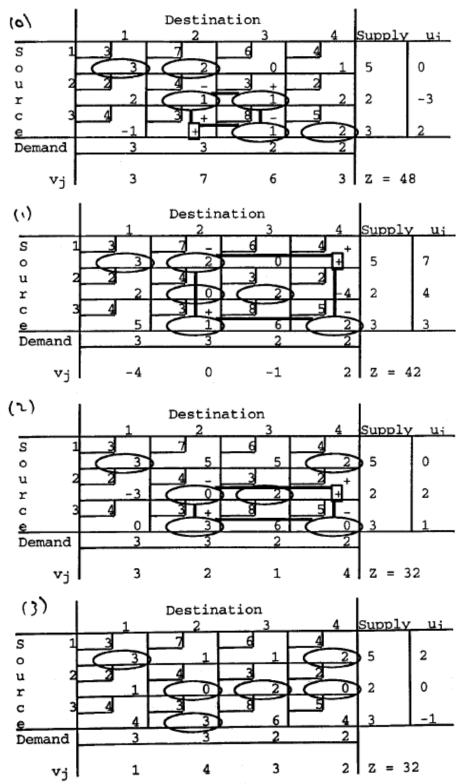
-1

v[j]

8.2-5.

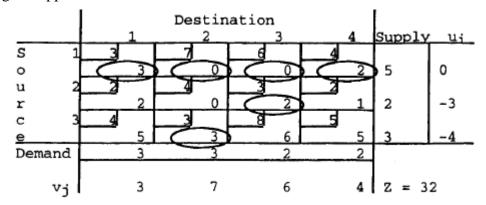
|      | 464        | 513        | 654        | 867                       | u.  |
|------|------------|------------|------------|---------------------------|-----|
|      | 15         | 0          | 84         | (3)                       | 182 |
|      | 352<br>Ø   | 416        | 690<br>217 | 791                       | 85  |
|      | 115<br>128 | 682<br>351 | 388        | <b>68</b> 5<br><b>3</b> 0 | 0   |
| γ. ' | 267        | 331        | 388        | 685                       |     |

Cost: \$152, 535,  $c_{ij}-u_i-v_j\geq 0$  for all i and j, so the solution is optimal. **8.2-6.** 


|        | l   | De      | I  |            |    |            |      |
|--------|-----|---------|----|------------|----|------------|------|
| (0)    | 1 1 | 2       | 3  | 4 .        | 5  | Supply<br> | u[i] |
|        | 8]  | 6       | 3  | 7          | 5  |            |      |
| 1      | . 1 | 3       | 20 | 1          | 2  | 20         | 2    |
|        | 5   | H       | 8  | 4          | 7  | i          |      |
| 2      | 25  | 1M- 1   | 7  | 5          | 6  | 30         | 0    |
| 3      | 6   | 3 <br>P | 9  | 6  <br>  P | 8  | i i        |      |
|        | -1  | 25      | 6  | 5          | 5  | j 30 j     | 2    |
| 4      | 이   | 0       | 0  | 0          | 0  | i i        |      |
| •      | -4  | 0       | 0  | -3         |    |            | -1   |
| Demand | 25  | 25      | 20 | 10         | 20 | <br> <br>  |      |
| v[j]   | 5   | 1       | 1  | 4          | 1  | į          |      |

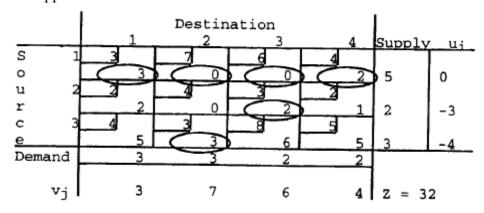
| Destination |                                                      |                                                                |                                                      |                                        |                                                         |                                                |                                                                  |  |  |
|-------------|------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|----------------------------------------|---------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|--|--|
| (1)         | 1                                                    | 2                                                              | 3                                                    | 4                                      | 5                                                       | Supply                                         | u[i]                                                             |  |  |
| 1           | 8                                                    | 61                                                             | 3                                                    | 71                                     | 5                                                       |                                                |                                                                  |  |  |
| ' '         | 5                                                    | 7                                                              | 20                                                   | 5                                      | 2                                                       | 20                                             | 3                                                                |  |  |
|             | 5]                                                   | M                                                              | 8                                                    | 41                                     | 7                                                       |                                                |                                                                  |  |  |
| 2           | 25                                                   | 1M- 1                                                          | 3                                                    | 5                                      | 2                                                       | 30                                             | 5                                                                |  |  |
| _           | 61                                                   | 3                                                              | श                                                    | 6                                      | 8                                                       | į                                              |                                                                  |  |  |
| 3           | E                                                    | 25                                                             | 2                                                    | 5                                      | 1                                                       | 30                                             | 7                                                                |  |  |
|             | 01                                                   | 01                                                             | 0                                                    | 01                                     | 0 <br>  B                                               | į                                              |                                                                  |  |  |
| 4           | B <br>  0                                            | 4                                                              | 0                                                    | 1                                      | 20                                                      |                                                | 0                                                                |  |  |
| Demand      | 25                                                   | 25                                                             | 20                                                   | 10                                     | 20                                                      |                                                |                                                                  |  |  |
| v[j]        | 0                                                    | -4                                                             | 0                                                    | -1                                     | 0                                                       |                                                |                                                                  |  |  |
|             | 1                                                    | D                                                              | estinat                                              | ion                                    |                                                         | 1                                              |                                                                  |  |  |
| 101         |                                                      |                                                                |                                                      |                                        |                                                         | i                                              |                                                                  |  |  |
| (2)         | <u> </u>                                             | 2<br>                                                          | 3                                                    | 4                                      | <u>.i</u>                                               | Supply                                         | / u[i]                                                           |  |  |
|             | 1                                                    | 2<br>                                                          | 3<br>  3                                             | 71                                     | 3                                                       | Supply                                         |                                                                  |  |  |
| 1           | .! <del></del>                                       | i<br>  6 <br>                                                  | <br>  3 <br>  B                                      | <br>  7 <br>                           | <br>  5 <br>                                            | Supply<br> <br> <br> <br>  2  20               |                                                                  |  |  |
| 1           | 8 <br> <br>  5<br>  5                                | i<br>  6 <br>                                                  | <br>  3 <br>  B                                      | <br>  7 <br>                           | <br>  5 <br>                                            | . <br> <br>                                    |                                                                  |  |  |
|             | 8 <br> <br>  5<br>  5                                | 6 <br> <br>  6<br>  M                                          | <br>  3 <br>  B<br>  20                              | 7 <br> <br>  !<br>  4 <br>             | 5 <br> <br> 5  7<br>  7                                 | . <br> <br>                                    | <br> <br> 0  3                                                   |  |  |
| 1           | 8 <br> <br>  5 <br>  8<br>  20                       | 6 <br> <br>  6<br>  H <br> <br>  1H- 2                         | 3 <br>  B<br>  20<br>  8 <br>                        | 7 <br> <br>                            | 5 <br> <br>  7 <br>  7 <br>  8                          | - <br> <br> <br> 2  20<br> <br>                | <br> <br> 0  3                                                   |  |  |
| 1           | 8 <br> <br>  5<br>  5 <br>  8                        | 6 <br> <br>  6<br>  M <br> <br>  1H- 2                         | 3 <br>  B<br>  20<br>  8 <br>                        | 7                                      | 5 <br> <br>  7 <br>  7 <br>  8 <br>  8                  | - <br> <br> <br> 2  20<br> <br>                | <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> |  |  |
| 1 2         | 8 <br> <br>  5 <br>  8<br>  20<br>  6 <br>  8        | 6 <br> <br>  6<br>  M <br> <br>  1H- 2                         | 3 <br>  B<br>  20<br>  8 <br>                        | 7                                      | 5 <br> <br>  7 <br>  7 <br>  8 <br>  8                  | - <br> <br> 2  20<br> - <br> -<br> -<br> 2  30 | <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> |  |  |
| 1           | 8 <br> <br>  5 <br>  8<br>  20<br>  6 <br>  8        | 6 <br> <br>  6<br>  M <br> <br>  1H- 2<br>  3 <br>  B<br>  25  | 3 <br>  8<br>  20<br>  8 <br> <br>  3<br>  9 <br>  8 | 7                                      | 5 <br> <br>  7 <br>  7 <br>  8 <br>  8 <br> <br>  0     | 2   20   20   2   30   30   30   30            | <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> |  |  |
| 1 2         | 8 <br> <br>  5 <br>  8<br>  6 <br>  8<br>  0 <br>  8 | 6 <br> <br>  6 <br> <br>  1M- 2<br>  3 <br>  B<br>  25         | 3 <br>  B<br>  20<br>  8 <br> <br>  3<br>  9 <br>  B | 7                                      | 5 <br> <br>  7 <br>  8 <br>  8 <br> <br>  0 <br>  1  2  | 20   20   20   20   20   30   30   30          | <br>  3<br>  5<br>  5<br>  6<br>  6                              |  |  |
| 1 2 3       | 8 <br>                                               | 6 <br> <br>  6 <br>  M <br> <br>  1M- 2<br>  3 <br>  B<br>  25 | 3 <br>  B<br>  20<br>  8 <br>  3<br>  9 <br>  8      | 7 <br> <br>  4 <br>  6 <br>  6 <br>  0 | 5 <br> <br>  7 <br>  8 <br>  8 <br> <br>  0 <br>  1  20 | -                                              | <br>  3<br>  5<br>  5<br>  6<br>  6                              |  |  |

The current solution is optimal:  $x_{13}=20, x_{21}=20, x_{24}=10, x_{31}=5, x_{32}=25$  and  $x_{45}=20$ , with cost 305. The optimality condition  $c_{ij}-u_i-v_j\geq 0$  for all i and j is met.


8.2-7.

### (a) Northwest Corner Rule




3 iterations are required to reach optimality.

### (b) Vogel's Approximation Method



The solution is optimal, no iteration of network simplex is needed.

### (c) Russell's Approximation Method



The solution is optimal, no iteration of network simplex is needed.

### **8.2-8.**

(a)

|        |   |     | Unit Shipping Cost |        |     |        |  |  |
|--------|---|-----|--------------------|--------|-----|--------|--|--|
|        |   |     | Retail             | Outlet |     |        |  |  |
|        |   | 1   | 2                  | 3      | 4   | Supply |  |  |
|        | 1 | 700 | 800                | 500    | 200 | 10     |  |  |
|        | 2 | 200 | 900                | 100    | 400 | 20     |  |  |
| Plant  | 3 | 400 | 500                | 300    | 100 | 20     |  |  |
|        | 4 | 200 | 100                | 400    | 300 | 10     |  |  |
| Demand |   | 20  | 10                 | 10     | 20  |        |  |  |

(b)

|        | I              | Destin |     |                 |         |      |
|--------|----------------|--------|-----|-----------------|---------|------|
|        | 1              | 2      | 3   | 4               | Supply  | u[i] |
|        | lI             | I      |     |                 |         |      |
|        | 700            | 800    | 500 | 200             |         |      |
| 1      | B              |        |     |                 | 101     | _    |
|        | 10             | 01     | 01  | 0               | 10      | 0    |
|        | <br>  200      | 900    | 100 | 400             | l       |      |
| 2      | 200   <br>  Bl | BI     | 1   | <del>1</del> 00 | I       |      |
| _      | 10             | - 1    | 01  | . 01            | 201     | 0    |
|        | <br>I I        | <br>i  |     | -               |         |      |
|        | 400            | 500    | 300 | 100             | i       |      |
| 3      |                | B      | B   | B               | 1       |      |
|        | 0              | 0      | 10  | 10              | 20      | 0    |
|        | II             | I      |     |                 |         |      |
|        | 200            | 100    | 400 | 300             |         |      |
| 4      |                |        |     | B               | 1.5     | _    |
|        | . 01           | 01     | 01  | 10              | 10      | 0    |
| Demand | <br>  20       | '      |     | 20              | '       |      |
| Demand | 1 40<br>1      | 10     | 10  | 102             |         |      |
|        | ¦              | 0      | 0   |                 |         |      |
| 2.131  | İ              | _      | _   | - 1             | Z = 250 | 000  |
|        |                |        |     |                 |         |      |

(c)

|        | I                   | Destin       | 1        |                     |          |      |
|--------|---------------------|--------------|----------|---------------------|----------|------|
|        | 1                   | 2            | 3        | 4                   | Supply   | u[i] |
|        | <br>  700           | 8001         | 500      | <br>  200   <br>  E |          |      |
| -      | 10                  | -600         | -700     |                     |          | 700  |
| 2      | <br>  200   <br>  P | 900   <br>PI | 100      | 400                 |          |      |
| 2      | 10                  | - 1          | -600     | -100                | 20       | 200  |
|        | <br>  400           | I<br>500     |          |                     |          |      |
| 3      | <br>  600           | P <br>O      | B <br>10 | - '                 |          | -200 |
|        | <br>  200           | <br>100      | 400      | <br>  300           |          |      |
| 4      | <br>  200           | <br>-600     | <br>-100 | B <br>  10          | <br>  10 | 0    |
| Demand | <br>  20            | I            |          | 20                  | 1        |      |
|        | i                   |              |          |                     |          |      |
| V[ċ]   | 0<br>               | 700          | 500      | 300                 | Z = 25   | 000  |

|   |        |           | Destin   |          |            |          |      |
|---|--------|-----------|----------|----------|------------|----------|------|
|   |        | 1         | 2        | 3        | 4          | Supply   | u[i] |
| _ |        | I         | I        |          |            |          |      |
|   |        | 700       | 800      | 500      | 200        |          |      |
|   | 1      | <br>  800 | 200      | 100      | B <br>  10 | <br>  10 | 100  |
|   |        | <br>  200 | l<br>900 | 100      | <br>  400  | <br>     |      |
|   | 2      | B         | L        | E        |            |          |      |
|   | - 1    | 20        | 0        | -600     | -100       | 20       | 400  |
|   |        | <u> </u>  | !        | !        |            |          |      |
|   |        | 400       | 500      | 300      |            |          |      |
|   | 3      | <br>  600 | 10       | P <br>10 | B <br>  O  | <br>  20 | 0    |
|   |        |           | 1        |          |            | 10       | _    |
|   | i      | 200       | 100      | 400      | 300        | İ        |      |
|   | 4      |           |          |          | B          |          |      |
|   |        | 200       | -600     | -100     | 10         | 10       | 200  |
|   | _      |           | I        |          | l          | I        |      |
|   | Demand | 20        | 10       | 10       | 20         |          |      |
| - |        | 200       | 500      | 200      | 100        |          |      |
|   | A[]]   | -200      | 300      | 300      | 100        |          | 2000 |
|   | '      |           |          |          | '          |          | 000  |
|   |        |           |          |          |            |          |      |
| - | v[i]v  | -200      | 500      | 300      | 100        |          | 7000 |

| 1      |                      | Destin    | 1    |               |        |      |
|--------|----------------------|-----------|------|---------------|--------|------|
| 1      | 1                    | 2         | 3    | 4             | Supply | u[i] |
|        | lI                   | I         |      | ll            |        |      |
| ı      | 700                  | 800       | 500  | 200           | 1      |      |
| 1      |                      |           |      | B             | I      |      |
|        | 200                  | 2001      | 100  | 10            | 10     | 100  |
|        | <u> </u>             | !         |      |               | l l    |      |
|        | 200                  | 900       | 100  | 400           |        |      |
| 2      | B                    |           | B    |               |        |      |
|        | 201                  | 600       | 0    | 500           | 20     | -200 |
|        | <br>  4001           |           | 300  | 1001          |        |      |
| 3      | 400   <br>           | 500       | BI   | 100   <br>  P | I      |      |
| J      |                      | 10        |      | - 1           | '      | 0    |
|        |                      | 101       | 10,  |               |        | ·    |
|        | ' <u></u> '<br>  200 | '<br>1001 | 400  | ' <u></u> '   |        |      |
| 4      |                      | EI        |      | P             | i      |      |
|        | _400 i               | -600      | -100 | 10            | 10     | 200  |
| i      | İ                    | i         | i    |               | İ      |      |
| Demand | 20                   | 10        | 10   | 20            |        |      |
|        |                      |           |      |               |        |      |
| v[j]   | 400                  | 500       | 300  | 100           |        |      |
| 1      |                      |           |      | I             | Z = 17 | 000  |

|                                         | <br>  1  <br>                                                                         |                                                                                          | nation<br>  3  <br>                                                            | 4<br>                                                                        | <br> Supply<br>                    | u[i]            |
|-----------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------|-----------------|
|                                         | 700                                                                                   |                                                                                          | 500                                                                            |                                                                              | !                                  | <u> </u>        |
| 1                                       |                                                                                       | 800                                                                                      | <br>  100 <br>                                                                 |                                                                              | •                                  | <br>  200<br>   |
|                                         | 200                                                                                   | 900                                                                                      | 100                                                                            | 400                                                                          | i<br>I                             | İ               |
| 2                                       |                                                                                       | 1200                                                                                     | oj                                                                             | 500                                                                          | <br>  20                           | <br>  -100<br>  |
|                                         | 400                                                                                   | 500                                                                                      | <br>  300                                                                      | 100                                                                          | •                                  | İ               |
| 3                                       | 0                                                                                     | 600                                                                                      | P <br>  10                                                                     | 10                                                                           |                                    | <br>  100       |
|                                         |                                                                                       |                                                                                          | <br>  400                                                                      |                                                                              | I<br>                              | <br>            |
| 4                                       | E                                                                                     | В                                                                                        |                                                                                | L                                                                            | I                                  |                 |
|                                         |                                                                                       |                                                                                          | -100 <br>                                                                      |                                                                              |                                    | 300<br>         |
| Demand                                  |                                                                                       |                                                                                          | 10                                                                             |                                                                              |                                    | '               |
| v[j]                                    | 300                                                                                   | -200                                                                                     | 200                                                                            |                                                                              | '                                  |                 |
|                                         | I                                                                                     |                                                                                          |                                                                                |                                                                              | Z = 1:                             | 1000            |
|                                         |                                                                                       |                                                                                          |                                                                                |                                                                              |                                    |                 |
|                                         |                                                                                       | Dogtin                                                                                   | ation                                                                          |                                                                              |                                    |                 |
|                                         | 1                                                                                     |                                                                                          | nation<br>3                                                                    | 4                                                                            | Supply                             | u[i]            |
| !                                       | i                                                                                     | 2  <br>l                                                                                 | 3  <br>l                                                                       | I                                                                            |                                    | u[i]            |
|                                         | 1  <br> <br>700                                                                       | 2  <br>l                                                                                 | 3  <br>l                                                                       | I                                                                            |                                    | u[i]            |
| 1                                       | i                                                                                     | 2  <br> <br>800   <br>                                                                   | 3  <br> <br>500   <br>                                                         | <br>200   <br>B                                                              | <br>  <br>                         | u[i]<br>        |
| 1                                       | 700   <br> <br>200                                                                    | 2  <br> <br>800   <br> <br>400                                                           | 3  <br> <br>500   <br>                                                         | <br>200   <br>B <br>10                                                       | 10                                 |                 |
| 1                                       | 700   <br> <br>200 <br> <br>200   <br>B                                               | 2  <br>800   <br>800   <br>400 <br>900                                                   | 3  <br> <br>500   <br> <br>100 <br>                                            | 200   <br>B <br>10 <br> <br>400                                              | 10  <br>10  <br>10                 | 300             |
| 1  <br> <br> <br>                       | 700   <br>700   <br>200 <br>200   <br>200   <br>B <br>20                              | 2  <br>800   <br> <br>400 <br> <br>900   <br> <br>800                                    | 3  <br>  500   <br> <br>100   <br> <br>100                                     | 200   <br>200   <br>B <br>10 <br> <br>400   <br>500                          | 10  <br>10  <br>10                 | 300             |
| 1  <br> <br> <br>                       | 700   <br>700   <br>200 <br>200   <br>200   <br>20 <br>400                            | 2   800    400  400  900    900    500                                                   | 3  <br>500   <br>500   <br>100 <br>100   <br>100   <br>0 <br>0 <br>300   <br>B |                                                                              |                                    | 300             |
| 1  <br> <br> <br>  2  <br> <br>         | 700   <br>700   <br>200   <br>200   <br>200   <br> <br>400   <br>                     | 2  <br>800   <br> <br>400 <br>900   <br> <br>800 <br>500   <br>200                       | 3     500      100    B  0  B  300    B  10                                    | 200   <br>B <br>10 <br>400   <br> <br>500 <br>100   <br>B                    |                                    | 300             |
| 1  <br>   <br>  2  <br>   <br>  3  <br> | 700   <br>700   <br>200 <br>200   <br>200   <br>B <br>20 <br>400   <br> <br>0 <br>200 | 2  <br>800   <br> <br>400 <br>900   <br> <br>800 <br>500   <br> <br>200                  | 3   500    500    100    100    100    300    300    10  400                   | 200   <br>B <br>10 <br>400   <br> <br>500 <br>100   <br>B <br>10             |                                    | 300             |
| 1  <br>   <br>  2  <br>   <br>  3  <br> | 700    700    200  200    200    400      0  200    B                                 | 2   800    800    400  900    900    500    200  100                                     | 3     500      100    100    B  0  B  10    400                                | 200   <br>B <br>10 <br>400   <br> <br>500 <br>100   <br>B <br>300            |                                    | 300<br>0<br>200 |
| 1                                       | 700    700    200  200    200    400      00  200    B  00                            | 2  <br>800   <br> <br>400 <br>900   <br>900   <br>500   <br>500   <br>100   <br>B <br>10 | 3   500    500    100    100    100    300    300    10  400                   | 200   <br>B <br>10 <br>400   <br>500 <br>B <br>10   <br>B <br>300   <br>400  |                                    | 300<br>0<br>200 |
| 1  <br>   <br>  2  <br>   <br>  3  <br> | 700    700    200  200    200    200    400      0  200    B  0                       | 2  <br>800   <br> <br>400 <br>900   <br>900   <br>500   <br>500   <br>100   <br>B <br>10 | 3   500    500    100    100    100    300    300    B  10  400    300         | 200   <br>B <br>10 <br>400   <br>500 <br>B <br>100   <br>B <br>300   <br>400 |                                    | 300<br>0<br>200 |
| 1                                       | 700    700    200  200    200    400      00  200    B  00                            | 2   800      400  900      800  500      200  100    B  10  10                           | 3     500      100    100    B  300    B  400      300    10                   | 200    200    100    500    100    300    400    20                          | 10  <br>20  <br>20  <br>10  <br>10 | 300<br>0<br>200 |

Optimal Solution:  $x_{14}=10, x_{21}=20, x_{33}=10, x_{34}=10, x_{42}=10, \text{cost: } \$11,000$ 

### 8.2-9.

(a) Since there is no limit on the electricity and natural gas available, let the supply of electricity be the sum of demands for electricity, water and space heating and the supply of natural gas be the sum of demands for water and space heating.

|                  |             | Product |       |       |        |
|------------------|-------------|---------|-------|-------|--------|
|                  | Electricity | Water   | Space | Dummy | Supply |
|                  | (1)         | (2)     | (3)   | (4)   |        |
| Electricity (1)  | 50          | 50      | 140   | 0     | 100    |
| Natural Gas (2)  | M           | 110     | 100   | 0     | 70     |
| Solar Heater (3) | M           | 70      | 90    | 0     | 40     |
| Demand           | 30          | 20      | 50    | 110   |        |

### (b) Northwest Corner Rule

|        | I          | Destin | 1   |     |        |      |
|--------|------------|--------|-----|-----|--------|------|
|        | 1          | 2      | 3   | 4   | Supply | u[i] |
|        | lI.        | I      |     |     | l      |      |
|        | 50         | 50     | 140 | 0   |        |      |
| 1      | B          | B      | B   |     |        |      |
|        | ] 30]      | 20     | 50  | 0   | 100    | 0    |
|        | II         | 1      | I   |     | 1      |      |
|        | M          | 110    | 100 | 0   | 1      |      |
| 2      |            |        | B   | B   | 1      |      |
|        | 0          | 0      | 0   | 70  | 70     | 0    |
|        | 1          | 1      | - 1 | -   | 1      |      |
|        | <u>M </u>  | 70     | 90  | 0   | 1      |      |
| 3      |            |        |     | B   | 1      |      |
|        | 0          | 0      | 0   | 40  | 40     | 0    |
|        | lI         | I      |     |     | lI     |      |
| Demand | 30         | 20     | 50  | 110 |        |      |
|        | l          |        |     |     |        |      |
|        | ı <u> </u> | 0      | 0   |     |        |      |
|        | I          |        |     | Ì   | Z = 95 | 00   |

(c)

|        | I     | Destin | 1   |     |        |      |
|--------|-------|--------|-----|-----|--------|------|
|        | 1     | 2      | 3   | 4   | Supply | u[i] |
|        | lI    | ١      |     | I   |        |      |
|        | 50    | 50     | 140 | 0   | I      |      |
| 1      | B     | B      | L   | E   | - 1    |      |
|        | ] 30] | 20     | 50  | -40 | 100    | 0    |
|        | II    | I      |     | I   | - 1    |      |
|        | M     | 110    | 100 | 0   | 1      |      |
| 2      |       | I      | P   | P   | - 1    |      |
|        | 1M-10 | 100    | 0   | 70  | 70     | -40  |
|        | 11    | I      |     | 1   | - 1    |      |
|        | M     | 70     | 90  | 0   | - 1    |      |
| 3      |       | I      | I   | B   | - 1    |      |
|        | 1M-10 | 60     | -10 | 40  | 40     | -40  |
|        | 11    | 1      |     | 1   | 1      |      |
| Demand | 30    | 20     | 50  | 110 |        |      |
|        | I     |        |     | 1   |        |      |
| v[j]   | 50    | 50     | 140 | 40  |        |      |
|        | I     |        |     | - 1 | Z = 95 | 00   |

|        |                                                                                   | Destin<br>2  <br>                                                  | 3                                                      |                                        | Supply                                         | u[i]             |
|--------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|------------------------------------------------|------------------|
|        | 50                                                                                | 50                                                                 | 140                                                    | 0                                      | •                                              |                  |
| 1      |                                                                                   | B <br>20 <br>                                                      | 40                                                     | 50                                     |                                                | 0                |
|        | M                                                                                 | 110                                                                | 100                                                    | 0                                      | •                                              |                  |
|        | <br>  1M-50 <br>                                                                  | 60 J                                                               |                                                        | 20                                     |                                                | 0                |
|        | <u> </u>                                                                          | 70                                                                 | 90                                                     | 01                                     |                                                |                  |
|        | <br>  1M-50                                                                       |                                                                    | -10                                                    | 40                                     |                                                | 0                |
| Demand | 30                                                                                | 20                                                                 | 50                                                     | 110                                    | '                                              |                  |
| v[j]   | <br>  50<br>                                                                      | 50                                                                 | 100                                                    |                                        | Z = 75                                         | 500              |
|        |                                                                                   |                                                                    |                                                        |                                        |                                                |                  |
|        | I                                                                                 | Destir                                                             | nation                                                 |                                        | I                                              |                  |
|        |                                                                                   | 2                                                                  | 3                                                      |                                        | <br> Supply                                    | u[i]             |
|        | <br>  50                                                                          | 2  <br> <br>50                                                     | 3  <br> <br>140                                        | <u> </u>                               | l                                              | u[i]             |
| 1      | <br>  50   <br>  B <br>  30                                                       | 2  <br> <br>50   <br>B <br>20                                      | 3  <br> <br>140  <br> <br>40                           | <br>  O <br>  B<br>  50                | l<br>I                                         | <br>             |
|        | <br>  50   <br>  B <br>  30 <br>                                                  | 2  <br>50   <br>B <br>20 <br>110                                   | 3  <br> <br>140   <br> <br>40 <br> <br>100             | <br>  B<br>  50                        | <br>   <br>  100 <br>                          | <br>             |
| 2      | <br>  50   <br>  B <br>  30 <br>  <br>  M   <br>                                  | 2  <br>50   <br>B <br>20 <br>110   <br> <br>60                     | 3  <br>140   <br> <br>40 <br>100   <br>B <br>10        | 0  <br>  B<br>  50<br>  B<br>  B       | <br>       <br>  100 <br>     <br>  70         | <br> <br>  0<br> |
| 2      | <br>  50    <br>  B <br>  30  <br>   <br>  M   <br>   <br>  1M-50                 | 2  <br>50   <br>B <br>20 <br>110   <br> <br>60 <br>70              | 3  <br>140   <br> <br>40 <br>100   <br>B <br>10 <br>90 | O   O   O   O   O   O   O   O   O   O  | <br>  100 <br>  100 <br>    70 <br>  70        | <br> <br>  0<br> |
| 2      | <br>  50    <br>  B <br>  30  <br>   <br>  M   <br>  1M-50  <br>   <br>  M   <br> | 2  <br>50   <br>B <br>20 <br>110   <br>60 <br>70   <br>70   <br>30 | 3     140      40    100      90      40               | O <br>B<br>50<br>B<br>60<br><br>0 <br> | <br>  100 <br>  100 <br>  70 <br>  70          |                  |
| 2      | <br>  50    <br>  B <br>  30  <br>   <br>  M   <br>  1M-50  <br>   <br>  M   <br> | 2  <br>50   <br>B <br>20 <br>110   <br> <br>70   <br> <br>30 <br>  | 3       100      100      90      40                   | O <br>B<br>50<br>B<br>60<br><br>0 <br> | <br>  100 <br>  100 <br>  70 <br>  70 <br>  40 |                  |

The optimal solution is to meet 30 units of electricity, 20 units of water heating and 40 units of space heating with electricity, 10 units of space heating with natural gas and 40 units of space heating with solar heater. This costs \$7,100.

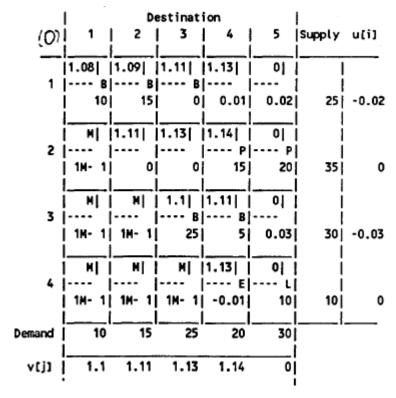
# (d) Vogel's Approximation Method

|        |    | Destin | ation | - 1 |         |      |
|--------|----|--------|-------|-----|---------|------|
|        | 1  | 2      | 3     | 4   | Supply  | u[i] |
|        | ll | I      |       | I   |         |      |
|        | 50 | 50     | 140   | 0   | - 1     |      |
| 1      | B  | B      | B     |     | - 1     |      |
|        | 30 | 20     | 50    | 0   | 100     | 0    |
|        | ll | I      |       | I   | - 1     |      |
|        | M  | 110    | 100   | 0   | - 1     |      |
| 2      |    | I      | I     | B   | - 1     |      |
|        | 0  | 0      | 0     | 70  | 70      | 0    |
|        | lI |        |       | I   | - 1     |      |
|        | M  | 70     | 90    | 0   | - 1     |      |
| 3      |    | I      | B     | B   | 1       |      |
|        | 0  | 0      | 0     | 40  | 40      | 0    |
|        | lI |        |       | I   |         |      |
| Demand | 30 | 20     | 50    | 110 |         |      |
|        | l  |        |       | I   |         |      |
| v[j]   | 0  | 0      | 0     | 01  |         |      |
|        | I  |        |       | - 1 | Z = 950 | 00   |

(e)

|        |       | Destin | ation | 1   |         |      |
|--------|-------|--------|-------|-----|---------|------|
|        | 1     | 2      | 3     | 4   | Supply  | u[i] |
|        | lI    | I      | I     | I   |         |      |
| l      | 50    | 50     | 140   | 0   |         |      |
| 1      | B     | B      | P     | E   | I       |      |
|        | 30    | 20     | 50    | -50 | 100     | 0    |
|        | lI    | I      | I     | I   |         |      |
|        | M     | 110    | 100   | 0   | - 1     |      |
| 2      |       |        |       | B   |         |      |
|        | 1M+ O | 110    | 10    | 70  | 70      | -50  |
|        | lI    | I      | I     | I   | - 1     |      |
|        | M     | 70     | 90    | 0   | - 1     |      |
| 3      |       | I      | P     | L   | - 1     |      |
|        | 1M+ 0 | 70     | 0     | 40  | 40      | -50  |
|        | lI    | I      | I     | I   |         |      |
| Demand | 30    | 20     | 50    | 110 |         |      |
|        |       |        |       | I   |         |      |
| v[j]   | 50    | 50     | 140   | 50  |         |      |
|        |       |        |       | - 1 | Z = 950 | 00   |

|                                         |                                                                                         |                                                                              | 3                                                                           |                          | <br> Supply                           | u[i] |
|-----------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------|---------------------------------------|------|
|                                         |                                                                                         | I                                                                            |                                                                             |                          | <br>                                  |      |
| 1                                       |                                                                                         | 20                                                                           | 10                                                                          | 40                       |                                       | 0    |
|                                         | M                                                                                       | <br>110                                                                      | 100                                                                         | 0                        |                                       |      |
|                                         | <br>  1M-50                                                                             |                                                                              | -40                                                                         | 70                       |                                       | 0    |
| 3                                       | ''<br>  M   <br>                                                                        | 70                                                                           |                                                                             | 0                        |                                       |      |
|                                         | 1M+ 0                                                                                   | 70                                                                           | 40                                                                          | 50                       | 40                                    | -50  |
| Demand                                  |                                                                                         | l                                                                            | 50                                                                          | 110                      |                                       |      |
| v[i]                                    | <br>  50<br>                                                                            | 50                                                                           | 140                                                                         |                          | <br> <br>  Z = 75                     | 500  |
|                                         |                                                                                         |                                                                              |                                                                             |                          |                                       |      |
|                                         | I                                                                                       | Destin                                                                       | ation                                                                       |                          | l                                     |      |
|                                         |                                                                                         | 2                                                                            | 3 I                                                                         |                          | <br> Supply                           | u[i] |
|                                         | 1  <br>  <br>  50                                                                       | 2  <br> <br>50                                                               | 3  <br> <br>140                                                             | <u> </u>                 |                                       | u[i] |
| 1                                       | 1  <br>  <br>  50   <br>  B                                                             | 2  <br> <br>50                                                               | 3  <br> <br>140   <br> <br>40                                               | O <br>B<br>50            | <br>                                  |      |
|                                         | 1  <br>   <br>  30 <br>    8 <br>    1                                                  | 2  <br>50   <br>B <br>20 <br>110                                             | 3  <br> <br>140   <br> <br>40 <br> <br>100                                  | <br>B<br>50<br>          | <br>       <br>  100 <br>             |      |
| <br> <br>  2                            | 1  <br>  <br>  50   <br>  B <br>  30 <br>  <br>  M   <br>                               | 2  <br>50   <br>B <br>20 <br>110   <br> <br>60                               | 3  <br>140   <br> <br>40 <br>100   <br>B <br>10                             | O <br>B<br>50<br>B<br>60 | <br>         <br>    100 <br>         | 0    |
| 2<br> <br>                              | 1  <br>  B <br>  30 <br>  M   <br>   <br>  1M-50                                        | 2  <br>50   <br>50   <br>20 <br>20 <br>110   <br>60 <br>70                   | 3  <br>—  <br>140   <br> <br>40 <br>—  <br>100   <br>B <br>10 <br>—  <br>90 | O <br>B<br>50<br>B<br>60 | <br>  100 <br>  100 <br>     <br>  70 | 0    |
| 2  <br>2  <br> <br> <br> <br> <br> <br> | 1  <br>   <br>  50    <br>  B <br>  30  <br>  M   <br>   <br>  1M-50  <br>  M   <br>  M | 2  <br>50   <br>50   <br>20 <br>20 <br>110   <br>60 <br>70   <br>70   <br>30 | 3   140    140    40  100    100    B  10  90    40                         | O  B 50 B 60 10          |                                       | 0    |
| 2  <br>2  <br> <br> <br> <br> <br> <br> | 1                                                                                       | 2   50    50    B  20  110    60  70    30                                   | 3     140      40  B  100    B  90    B  40                                 | O  B B B B 10            |                                       | 0    |


(f) Russell's Approximation Method

|        |    | Destin | ation | - 1 |        |      |
|--------|----|--------|-------|-----|--------|------|
|        | 1  | 2      | 3     | 4   | Supply | u[i] |
|        | lI | I      | I     | I   |        |      |
|        | 50 | 50     | 140   | 0   | - 1    |      |
| 1      | B  | B      | B     | I   | - 1    |      |
|        | 30 | 20     | 50    | 0   | 100    | 0    |
|        | lI | I      | I     | I   | - 1    |      |
|        | M  | 110    | 100   | 0   | - 1    |      |
| 2      |    |        | B     | B   | - 1    |      |
|        | 0  | 0      | 0     | 70  | 70     | 0    |
|        | lI | I      | I     |     | - 1    |      |
|        | M  | 70     | 90    | 0   | I      |      |
| 3      |    |        |       | B   | - 1    |      |
|        | 0  | 01     | 01    | 40  | 40     | 0    |
|        | lI | I      | I     |     |        |      |
| Demand | 30 | 20     | 50    | 110 |        |      |
|        |    |        |       |     |        |      |
| v[j]   | 0  | 0      | 0     | 0   |        |      |
|        | l  |        |       | I   | Z = 95 | 00   |

Note that different solutions may be obtained, since ties are broken arbitrarily.

(g) Russell's approximation method returns the same initial solution as the northwest corner rule, so the solution is the same as in (c). The initial BF solution using Vogel's and Russell's methods provides the same optimal solution as in (c). The optimal solution obtained starting from each of the three rules is the same. Also, in each case, the number of iterations required by the transportation simplex method is two.

**8.2-10.** Vogel's Approximation Method



# Optimal Solution:

| Quantity | Production Month | Installation Month |
|----------|------------------|--------------------|
| 10       | 1                | 1                  |
| 15       | 1                | 2                  |
| 5        | 2                | 4                  |
| 25       | 3                | 3                  |
| 5        | 3                | 4                  |
| 10       | 4                | 4                  |

This schedule incurs a cost of 77.3 million dollars.

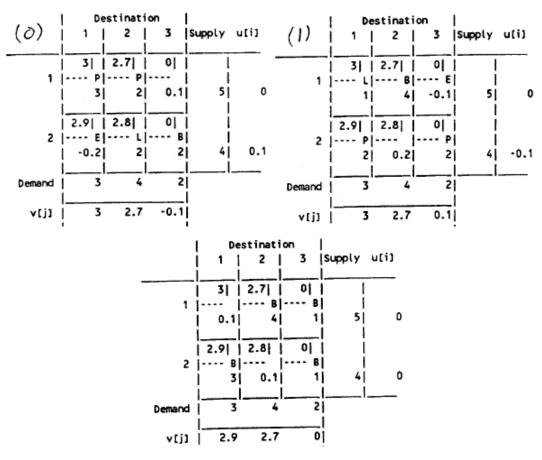
**8.2-11.** 

(a)

|        | 1    | Dest | ination |          | ł      |      |
|--------|------|------|---------|----------|--------|------|
| (0)    | 1    | 2    | 3       | 4        | Supply | u[i] |
|        |      |      |         |          |        |      |
|        | 500  | 750  | 300     | 450      | 1      |      |
| 1      | P    | P    |         |          | İİ     |      |
|        | 10   | 2    | -50     | 50       | 12     | 0    |
|        | l    |      |         | <b> </b> | i i    |      |
|        | 650  | 800  | 400     | 600      |        |      |
| 2      | 1 1  | P    | P       |          | i      |      |
|        | 100  | 8    | 9       | 150      | 17     | 50   |
|        |      |      |         |          | - 1    |      |
|        | 400  | 700  | 500]    | 550      | - 1    |      |
| 3      | E    |      | L       | B        | 1      |      |
|        | -250 | -200 | 1       | 10       | 11     | 150  |
| i      |      |      |         | i        | i      |      |
| Demand | 10   | 10   | 10      | 10]      |        |      |
| - 1    |      |      |         | i        |        |      |
| v[j]   | 500  | 750  | 350     | 400      |        |      |

(b)

|        | !                   | Dest                | ination          |     | l      |      |
|--------|---------------------|---------------------|------------------|-----|--------|------|
| (1)    | 1                   | 2                   | 3                | 4   | Supply | u[i] |
| 1      | 500 <br>  L <br>  9 | 750 <br>  8<br>  3  |                  | E   | 12     |      |
| 2      | 650                 | 800 <br>  B <br>  7 |                  |     | 17     | 50   |
| 3      | 400 <br>P <br>1     | 700                 | 500  <br><br>250 | P   | 11     | -100 |
| Demand | 10                  | 10                  | 10               | 10  |        |      |
| vtii   | 500                 | 750                 | 350              | 650 |        |      |


| 121    | ı        | Dest | ination |     | 1      |      |
|--------|----------|------|---------|-----|--------|------|
| (a)    | 1        | 5    | 3       | 4   | Supply | u[i] |
|        | 500      | 750  | 300     | 450 | 1      |      |
| 1      |          | L    | E       | B   | 1      |      |
|        | 200      | 3    | -50     | 9   | 12     | 0    |
|        | <u> </u> |      |         |     | !!     |      |
|        | 650      | 800  | 400     | 600 |        |      |
| 2      |          | P    | P       |     | !      |      |
|        | 300      | 7    | 10      | 100 | 17     | 50   |
|        |          |      |         |     |        |      |
|        | 400      | 700  | 500     | 550 |        |      |
| 3      | B        |      |         | B   |        |      |
|        | 10       | -150 | 50      | 1   | 11     | 100  |
|        |          |      |         |     |        |      |
| Demand | 10       | 10   | 10      | 10  |        |      |
|        |          |      |         |     |        |      |
| v[j]   | 300      | 750  | 350     | 450 |        |      |
|        | -        |      |         |     | -      |      |
|        | 1        | Dest | ination | ı   | I      |      |
| 13)    | j 1      | 2    | 3       | 4   | Supply | u(i) |

|        | 1                   | Dest              | ination            |          | I           |      |
|--------|---------------------|-------------------|--------------------|----------|-------------|------|
| (3)    | 1                   | 2                 | 3                  | 4        | Supply      | u(i) |
|        | 500                 | 750               | 300                | 450      | <br>        |      |
| 1      | 200                 | <br>  50          | P <br>  3          | P<br>  9 | <br>  12    | 0    |
| 2      | 650                 | <br>  800 <br>  P | P                  | 600      | <br>   <br> |      |
|        | 250                 |                   |                    | 50       | i i         | 100  |
| 3      | 400 <br>  B<br>  10 | E                 | 500 <br> <br>  100 | L        | 11          | 100  |
| Demand | 10                  | 10                | 10                 | 10       | 1           |      |
| v[j]   | 300                 | 700               | 300                | 450      |             |      |

| 11/1   | 1   | Dest | ination |     | 1      |      |
|--------|-----|------|---------|-----|--------|------|
| (4)    | ļ 1 | 2    | 3       | 4   | Supply | u[i] |
|        |     |      |         | ļ   | l      |      |
|        | 500 | 750  | 300     | 450 | 1 1    |      |
| 1      |     |      | B       | B   | i i    |      |
|        | 100 | 50   | 2       | 10  | 12     | 0    |
|        |     |      |         |     | 1      |      |
|        | 650 | 800  | 400     | 600 | i i    |      |
| 2      |     | B    | B       |     | 1      |      |
|        | 150 | 9    | 8       | 50  | 17     | 100  |
|        | ll  |      |         |     | - 1    |      |
|        | 400 | 700  | 500     | 550 | i      |      |
| 3      | B   | B    |         |     | i      |      |
|        | 10  | 1    | 200     | 100 | 11     | 0    |
|        |     |      |         | i   | i      |      |
| Demand | 10  | 10   | 10      | 10  |        |      |
| - 1    |     |      |         | i   |        |      |
| v(j)   | 400 | 700  | 300     | 450 |        |      |
| i      |     |      |         | i   |        |      |

The optimal solution is to send 2 shipments from plant 1 to center 3, 10 to center 4, 9 from plant 2 to center 2, 8 to center 3, 10 from plant 3 to center 1 and 1 to center 2. This has a total cost of \$20, 200.

8.2-12.



The optimal solution is to purchase 4 pints from Dick tomorrow and 3 pints from Harry today, with a cost \$19.50.

8.2-13.

|             |                                                                |                                                   | nation                                                                          |                                                                                            |                                             |             |
|-------------|----------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------|-------------|
|             | 1  <br>                                                        |                                                   | 3  <br>l                                                                        |                                                                                            | Supply<br>                                  | u[i]        |
|             | 41   <br>  B                                                   | 55                                                | 48                                                                              | 01                                                                                         |                                             |             |
|             | 400                                                            | 2                                                 |                                                                                 | -1                                                                                         | 400 <br>  400                               | 41          |
|             | 39                                                             | 51                                                | 45                                                                              | 01                                                                                         | į                                           |             |
| 2           |                                                                |                                                   | -1M+46                                                                          |                                                                                            |                                             | 39          |
|             | 42                                                             | 56                                                | 50                                                                              | 01                                                                                         | į                                           |             |
|             | <br>  -2 <br>                                                  | 400                                               |                                                                                 | -4                                                                                         | <br>  400 <br>                              | 44          |
| į           | 38                                                             | 52                                                | M                                                                               | 01                                                                                         | į                                           |             |
| 4           |                                                                | 300                                               | 300                                                                             | 0                                                                                          |                                             | 40          |
| _           | 39                                                             | 53                                                | <u>M </u>                                                                       | 01                                                                                         |                                             |             |
| 5           | <br>  -1                                                       | 1                                                 | 600                                                                             | 400                                                                                        | 1000                                        | 40          |
| Demand      | <br>  700                                                      | 1000                                              | 900 g                                                                           | 400                                                                                        | '<br>                                       |             |
| (t]v        | 0                                                              | 12                                                | 1M<br>- 40                                                                      |                                                                                            |                                             | )OM+81400   |
|             |                                                                |                                                   |                                                                                 |                                                                                            |                                             |             |
|             | I                                                              | Destin                                            | nation                                                                          |                                                                                            | I                                           |             |
|             | 1  <br>                                                        |                                                   | 3  <br>                                                                         |                                                                                            | <br> Supply<br>                             | u[i]        |
|             | 1  <br>  <br>  41                                              | <br>                                              | 3  <br>  <br>  48                                                               |                                                                                            | <br> Supply<br>                             | u[i]        |
| 1           | 1  <br>  <br>  41   <br>  B                                    | <br>                                              | 3  <br>  <br>  48   <br>                                                        | <br>                                                                                       | <br> Supply<br> <br>   <br>  400            |             |
|             | 1  <br>   <br>  41   <br>    B <br>  400 <br>                  | 2<br><br>2<br><br>51                              | 3  <br>                                                                         | 0 <br><br>1M-47                                                                            | l<br>l                                      |             |
| 2           | 1  <br>  8 <br>  400 <br>  39   <br>  300                      | 2<br>55 <br>2<br>51 <br>B<br>0                    | 3  <br>   <br>   <br>   <br>  P <br>  300                                       | 0 <br><br>1M-47<br>0 <br><br>1M-45                                                         | <br>                                        | 2           |
| 2           | 1  <br>  8 <br>  400 <br>  39   <br>  300 <br>  42             | 2   55    2   51    B   0   56                    | 3               300                                                             | O <br><br>1M-47<br>O <br><br>1M-45                                                         | <br>                                        | 2           |
| 2           | 1  <br>  8 <br>  8 <br>  400 <br>  1 <br>  300                 | 2   55  B   0   56  B                             | 3                                                                               | O <br><br>1M-47<br>O <br><br>1M-45                                                         |                                             | 2           |
| 2           | 1  <br>  B <br>  400 <br>  L <br>  300 <br>  L <br>  42   <br> | 55 <br>2<br>51 <br>B<br>0<br>B<br>400             | 3   48   48   11   45   300   50     0   M                                      | O  1M-47  O  1M-45  O  1M-50                                                               | <br>  400 <br>  400 <br>    1<br>  600 <br> | 2           |
| 2           | 1  <br>  8 <br>  400 <br>  L <br>  300 <br>  L <br>  42   <br> | 55 <br>2<br>51 <br>B<br>0<br>B<br>400<br>B<br>600 | 3   48   1   48   1   45   1   300   1   50   1   1   1   1   1   1   1   1   1 | O  1M-47 O  1M-45 O  1M-50                                                                 |                                             | 2           |
| 3           | 1                                                              | 55  2  51  B  400  52  B  600                     | 3   48   48   48   48   48   48   48   4                                        | O  1M-47  O  1M-45  O  1M-50  O  1M-46                                                     |                                             | 2           |
| 2<br>3<br>4 | 1                                                              | 55  2  51  B 400  52  B 600  53 1M+47             | 3   48   48   11   45   300   50   50   10   11   11   11   11   11   600       | O <br><br>1M-47<br>O <br><br>1M-45<br>O <br><br>1M-50<br>O <br><br>1M-46<br>O <br>B<br>400 |                                             | 2<br>0<br>5 |
| 2<br>3<br>4 | 1                                                              | 55  2  51  B 400  52  B 600  53 1M+47             | 3   48   48   11   45   300   50   50   11   11   11   11   11   11   11   1    | O <br><br>1M-47<br>O <br><br>1M-45<br>O <br><br>1M-50<br>O <br><br>1M-46<br>O <br>B<br>400 |                                             | 2 0 5       |

| - 1              |                                                             | Destin                                                                  |                                                                                                                    |                                                   |                 |                                                         |
|------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------|---------------------------------------------------------|
| 1                | 1                                                           | 2  <br>                                                                 | 3  <br>                                                                                                            | 4  <br>                                           | Supply          | u[i]                                                    |
|                  |                                                             | 55                                                                      | 48                                                                                                                 |                                                   | - 1             |                                                         |
| 1                | 400 -<br>  400 -                                            |                                                                         | <br>-1M+46                                                                                                         | -2                                                | 400  <br>1      | 2                                                       |
| i                | 39                                                          |                                                                         | 45                                                                                                                 | i                                                 |                 |                                                         |
| 2                |                                                             | 01                                                                      | 600                                                                                                                | 1M-45                                             | 600             | -1M<br>+ 45                                             |
|                  |                                                             |                                                                         | 50                                                                                                                 |                                                   | į               |                                                         |
| 3  <br>          | -<br>  1M-47 <br>                                           |                                                                         | 0                                                                                                                  |                                                   | 400  <br>       |                                                         |
| 4                | 38                                                          |                                                                         | M                                                                                                                  |                                                   | į               |                                                         |
| 1                | 1M-47                                                       | 600                                                                     | 1M-46                                                                                                              | 1M-46                                             |                 | -1M<br>+ 46                                             |
| _ [              | 39                                                          | 53                                                                      | M                                                                                                                  | I                                                 | - 1             |                                                         |
| 5                |                                                             | -1M+47                                                                  | 300 <br>                                                                                                           | 400                                               | 1000            |                                                         |
| Demand           | 700                                                         | 1000                                                                    | 900                                                                                                                | 400                                               | '               |                                                         |
| <br>  [ز]v       | 39                                                          | 1 M                                                                     | 1 M                                                                                                                | I<br>0                                            |                 |                                                         |
| ı                |                                                             | + 6                                                                     |                                                                                                                    | I                                                 | Z = 30          | OM+1E5                                                  |
|                  |                                                             |                                                                         |                                                                                                                    |                                                   |                 |                                                         |
|                  | 1                                                           | Desti:                                                                  | nation                                                                                                             |                                                   | I               |                                                         |
|                  |                                                             |                                                                         | nation<br>  3  <br>                                                                                                | 4<br>                                             | <br> Supply<br> | u[i]                                                    |
|                  | 1   1                                                       | 2<br>                                                                   | 3<br>  <br>  48                                                                                                    | <br>                                              | I               | u[i]                                                    |
| 1                | 1  <br>                                                     | 55 <br><br>0                                                            | 3<br>                                                                                                              | <br>                                              | <br>  <br>      | <br>                                                    |
|                  | 1   1                                                       | 2<br>55 <br><br>0<br>51                                                 | 3<br>                                                                                                              | <br>  0 <br> <br>  -2<br>                         | <br>  <br>      | <br>                                                    |
| 1 2              | 1   1                                                       | 2<br>55 <br><br>0<br>51 <br>                                            | 3<br> <br>  48 <br>  E <br> -1M+46                                                                                 | <br>  0 <br> <br>  -2<br> <br>  0 <br>            | <br>            | <br>  2<br>  2<br>   <br>  -1M                          |
| 2                | 1  <br>  P <br>  400 <br>  39   <br>   <br>  1M-45 <br>  42 | 2<br>55 <br>0<br>51 <br><br>1M-47<br>56                                 | 3                                                                                                                  | <br>  O <br> <br>  O <br> <br>  1M-45             | <br>            | <br>                                                    |
| 2                | 1  <br>  P <br>  400 <br>   <br>  39   <br>   <br>  1M-45   | 2<br>55 <br>0<br>51 <br><br>1M-47<br>56 <br>B                           | 3<br>  48<br>  48<br>  E<br>  -1M+46<br>  45<br>  600<br>  50                                                      | <br>  O <br> <br>  O <br> <br>  1M-45<br>  O <br> | <br>            | 2<br>  2<br>    2<br>     <br>  -1M<br>  + 45           |
| 2                | 1                                                           | 2<br>55 <br>0<br>51 <br><br>1M-47<br>56 <br>B<br>400                    | 3<br>  E<br> -1M+46<br>  B<br>  45<br>  600<br> <br>  50<br> <br> -1M+47                                           | <br>  O <br> <br>  O <br> <br>  1M-45<br>  O <br> | <br>            | 2<br>  2<br>    2<br>     <br>  -1M<br>  + 45           |
| 2                | 1                                                           | 2<br>55 <br>0<br>51 <br><br>1M-47<br>56 <br>B<br>400<br>52 <br>B<br>600 | 3<br>  48<br>  48<br>  E<br>  -1M+46<br>  45<br>  600<br>  50<br> <br>  -1M+47<br>  M<br>  1                       |                                                   |                 | 2<br>  2<br>  3<br>  -1M<br>  45<br>  3<br>  3          |
| 2<br>3<br>4      | 1                                                           | 2<br>55 <br><br>51 <br><br>1M-47<br>56 <br>B<br>400<br>52 <br>B<br>600  | 3                                                                                                                  |                                                   |                 | 2<br>  2<br>  3<br>  -1M<br>  45<br>  3<br>  3          |
| 2                | 1                                                           | 2<br>55 <br>0<br>51 <br>B<br>400<br>52 <br>B<br>600<br>53 <br>B         | 3<br>  48<br>  48<br>  E<br>  -1M+46<br>  45<br>  600<br>  50<br> <br>  1M+47<br>  M <br> <br>  M <br>  1<br>  300 |                                                   |                 | 2<br>  2<br>  3<br>  -1M<br>  45<br>  3<br>  3          |
| 2<br>3<br>4      | 1                                                           | 2<br>55 <br>0<br>51 <br>B<br>400<br>52 <br>B<br>600<br>53 <br>B         | 3                                                                                                                  |                                                   |                 | 2<br>  2<br>  3<br>  -1M<br>  + 45<br>  3<br>  3<br>  1 |
| 2<br>3<br>4<br>5 | 1                                                           | 2<br>55 <br><br>51 <br>B<br>400<br>52 <br>B<br>600<br>53 <br>B<br>0     | 3                                                                                                                  |                                                   |                 | 2<br>  2<br>  3<br>  -1M<br>  + 45<br>  3<br>  3<br>  1 |

|                         | I                                                                                |                                                                          | nation                                                                            |                                                   | I                                                      |          |
|-------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|----------|
|                         |                                                                                  | 2  <br>                                                                  |                                                                                   |                                                   | Supply<br>                                             | u[i]     |
|                         | 41                                                                               | 55                                                                       | 48                                                                                | 01                                                | ¦                                                      | Ī        |
| 1                       | B <br>  100                                                                      |                                                                          | 300                                                                               |                                                   | -                                                      | l<br>I 2 |
|                         |                                                                                  | l 1                                                                      |                                                                                   |                                                   | !                                                      |          |
| 2                       | 39   <br>                                                                        | 51                                                                       |                                                                                   |                                                   | <br>                                                   | <br>     |
|                         |                                                                                  | -1 <br>                                                                  |                                                                                   |                                                   | 600<br>                                                | -1<br>   |
| _                       | 42                                                                               | 56                                                                       | 50                                                                                | 0                                                 | İ                                                      | İ        |
| 3                       |                                                                                  | L <br>  400                                                              |                                                                                   |                                                   |                                                        | l<br>I 3 |
|                         | ii                                                                               | ıi                                                                       |                                                                                   | İ                                                 | i                                                      | İ        |
| 4                       | 38   <br>                                                                        | 52  <br>  B                                                              |                                                                                   |                                                   | <br>                                                   | <br>     |
|                         | 0                                                                                | 600 j                                                                    | 1M-45                                                                             | 1                                                 | 600<br>                                                | -1<br>   |
|                         | 39                                                                               | 53                                                                       | M                                                                                 | 01                                                | i<br>İ                                                 | İ        |
| 5                       | B <br>  600                                                                      | P <br>  O                                                                |                                                                                   |                                                   | <br>  1000                                             | l<br>I 0 |
|                         | li                                                                               | ıi                                                                       |                                                                                   |                                                   | İ                                                      | i        |
| Demand                  | 700<br>                                                                          | 1000                                                                     | 900                                                                               | 400                                               | <br>                                                   |          |
| v[j]                    | 39<br>                                                                           | 53                                                                       | 46                                                                                |                                                   | <br>  Z = 12                                           | 22500    |
|                         |                                                                                  |                                                                          |                                                                                   |                                                   |                                                        |          |
| 1                       |                                                                                  | Destin                                                                   |                                                                                   | I                                                 |                                                        |          |
| <br>                    | 1                                                                                |                                                                          |                                                                                   | 4  <br>1                                          | Supply                                                 | u[i]     |
|                         | 41                                                                               | 2  <br> <br>55                                                           | 3  <br> <br>48                                                                    | <br>                                              |                                                        | u[i]     |
|                         | I                                                                                | 2  <br> <br>55   <br>                                                    | 3  <br> <br>48   <br>B                                                            | <br>  O   <br>  E                                 |                                                        | u[i]<br> |
|                         | 41   <br>P <br>100                                                               | 2  <br> <br>55   <br> <br>O                                              | 3  <br> <br>48   <br>B <br>300                                                    | <br>  O   <br>  E <br>  -2                        |                                                        |          |
| <br>                    | 41   <br>P <br>100 <br>                                                          | 2  <br> <br>55   <br> <br>0                                              | 3  <br>48   <br>48   <br>B <br>300 <br>45                                         | <br>  O   <br>  E <br>  -2 <br>  O                |                                                        |          |
| <br>                    | 41   <br>P <br>100 <br>                                                          | 2  <br> <br>55   <br> <br>0  <br> <br>51                                 | 3  <br>48   <br>48   <br>B <br>300 <br>45                                         | <br>  O   <br>  E <br>  -2 <br>  O   <br>         | 400  <br> <br>                                         | 2        |
| <br>                    | 41   <br>P <br>100 <br> <br>39                                                   | 2  <br>55   <br>55   <br>0 <br>51   <br> <br>-1                          | 3  <br>8   <br>300 <br>8 <br>8                                                    | <br>O   <br>E <br>-2 <br>O   <br> <br>1           | 400  <br> <br>                                         | 2        |
| <br> <br>  2  <br> <br> | 41    <br>P <br>100  <br>39    <br> <br>1  <br>42                                | 2                                                                        | 3   48    48    300  45    600  50                                                | O   <br>E <br>-2 <br>O   <br> <br>1 <br>O   <br>B | 400 <br>  400 <br>   <br>  600 <br>                    | 2 -1     |
| <br> <br>  2  <br> <br> | 41   <br>P  100 <br>39   <br> <br>1  42   <br>                                   | 2                                                                        | 3   48     48     300   45     600   50     41                                    | O   <br>E <br>-2 <br> <br> <br>1 <br>             | 400  <br> <br>                                         | 2        |
| <br>  2                 | 41    <br>P <br>100  <br>39    <br> <br>1  <br>42    <br> <br>3  <br>38          | 2                                                                        | 3   48    48    300  45    600  50    41  M                                       | O   <br>E <br>-2 <br>O   <br> <br>1 <br>O   <br>B | 400 <br>  400 <br>   <br>  600 <br>                    | 2 -1     |
| <br> <br>  2  <br> <br> | 41   <br>P  100 <br>39   <br> <br>1  42   <br>                                   | 2  <br>55   <br> <br>51   <br> <br>56   <br> <br>31<br> <br>52   <br>600 | 3   48   1   48   1   48   1   48   1   45   1   45   1   45   1   41   4         |                                                   | 400 <br>  400 <br>   <br>  600 <br>                    | 2 -1     |
| <br>  2                 | 41    <br>P <br>100  <br>39    <br>1  <br> <br>42    <br> <br>3  <br>38    <br>0 | 2                                                                        | 3   48   1   48   1   300   45   1   600   50   1   1   1   1   1   1   1   1   1 |                                                   | 400 <br>  400 <br>  600 <br>  400                      |          |
| <br>  2                 | 41     P  100  39       42       38       39     P                               | 2                                                                        | 3   48     48     300   45     50     50     11   11   11   11   11   11   11     |                                                   | 400 <br>  400 <br>  600 <br>  400 <br>  600 <br>  1000 |          |
| <br>  2                 | 41     P  100  39       42       38       39     P  600                          | 2                                                                        | 3   48    48    300  45    600  50    50    111-45  M    111-46                   |                                                   | 400 <br>  400 <br>  600 <br>  400 <br>  600 <br>  1000 |          |
| <br>  2                 | 41     P  100  39       42       38       39     P  600                          | 2                                                                        | 3   48    48    300  45    600  50    50    111-45  M    111-46                   |                                                   | 400 <br>  400 <br>  600 <br>  400 <br>  600 <br>  1000 |          |

| I                |                                  | Destin                                                          | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                          |                         |                                                          |
|------------------|----------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------|----------------------------------------------------------|
| <br>             |                                  |                                                                 | 3  <br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            | Supply                  | u[i]                                                     |
|                  |                                  | 55                                                              | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                          |                         |                                                          |
|                  | 100                              | 0                                                               | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                          |                         | 0                                                        |
| l<br>I           | 39                               |                                                                 | l<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                         |                                                          |
| 2                | <br>1                            |                                                                 | P <br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |                         | -3                                                       |
| į                | I                                |                                                                 | i<br>i<br>i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | į                       |                                                          |
| 3                | I                                | I                                                               | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B                                                          |                         |                                                          |
| <br>             |                                  |                                                                 | 2  <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            | 400  <br>               | 0                                                        |
| I<br>4 I         | 38                               |                                                                 | <br>  M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            | į                       |                                                          |
|                  | 0                                | 600                                                             | 1M-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                          | 600                     | -3                                                       |
| <br>             | 39                               | I<br>53                                                         | <br>  M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            | <br>                    |                                                          |
| 5  <br>          |                                  | 400                                                             | 1M-46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                          | 1000                    |                                                          |
| <br>  Demand     | 700                              | 1000                                                            | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 400                                                        | 1                       |                                                          |
| ا<br>ا [ز]v      | 41                               | 55                                                              | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                         |                                                          |
| I                |                                  |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            | Z = 12                  | 1300                                                     |
|                  |                                  |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                         |                                                          |
|                  |                                  | Desti                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 4                                                        | <br>                    | ,,[i]                                                    |
|                  | 1 1                              | 2                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            | <br> Supply<br>         | u[i]                                                     |
| 1                | 1<br>  1<br>  41                 | 2<br>                                                           | 3<br> <br>  48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l <u></u><br>I 01                                          | I                       | u[i]                                                     |
| 1                | 1 41                             | 55 <br><br>1                                                    | 3<br> <br>  48 <br>  B<br>  400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <br>  O <br>  B                                            | <br> <br>               | u[i]<br> <br> <br>  54                                   |
|                  | 1<br>  <br>  41<br>  <br>  1<br> | 55 <br> <br>  1<br>  51                                         | 3<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>  O <br>  B<br>  O                                     | <br> <br>               | <br> <br>                                                |
|                  | 1                                | 2<br> <br>  55 <br>  1<br>  51 <br>  B<br>  100                 | 3<br>  B<br>  400<br>  B<br>  45<br>  500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <br>  O <br>  B<br>  O<br>  O <br>  O <br>                 | <br> <br>  400<br> <br> | <br> <br>  54<br> <br>                                   |
| 2                | 1                                | 55 <br> <br>  1<br>  B<br>  100                                 | 3<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            | <br> <br>  400<br> <br> | <br> <br>  54<br> <br>                                   |
|                  | 1                                | 55 <br><br>1<br>51 <br>B<br>100                                 | 3<br>  8<br>  400<br>  8<br>  45<br>  500<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            | <br>                    | <br>  54<br>  54<br>   <br>  51<br>  51                  |
| 2                | 1                                | 55 <br>1<br>51 <br>B<br>100<br>56 <br>2                         | 3<br>  8<br>  400<br>  8<br>  45<br>  500<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B<br>  O <br>  O <br>  O <br>  O <br>  O <br>  O <br>  400 | <br>                    | <br>  54<br>  54<br>   <br>  51<br>  51                  |
| 2                | 1                                | 55 <br>1<br>51 <br>B<br>100<br>56 <br>2                         | 3<br>  B<br>  400<br>  B<br>  45<br>  500<br> <br>  50<br>  50<br>  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B<br>  O <br>  O <br>  O <br>  O <br>  O <br>  O <br>  400 |                         | 54<br>  54<br>  51<br>  51<br>  54                       |
| 2                | 1                                | 55 <br>  B<br>  100<br>  B<br>  56 <br>  2                      | 3<br>  B<br>  400<br>  B<br>  500<br>    50 <br>  2<br>  M <br>    1M-46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B<br>  O <br>  O <br>  O <br>  O <br>  O <br>  O <br>  400 |                         | 54<br>  54<br>  51<br>  51<br>  54                       |
| 2                | 1                                | 55  B 100 2 B 52  B 600 B                                       | 3   48   48   400   45   500   50   1 M   1 M   1 M   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H   1 H |                                                            |                         | 54<br>  54<br>  51<br>  51<br>  54<br>  52<br>  52       |
| 2<br>3<br>4<br>5 | 1                                | 55 <br>1<br>51 <br>B<br>100<br>56 <br>2<br>B<br>600<br>B<br>300 | 3   48   400   45   500   50   1M-46   M   1M-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                         | 54<br>  54<br>  51<br>  51<br>  54<br>  52<br>  52       |
| 2<br>3<br>4      | 1                                | 55  B 100 2 B 52  B 600 B 300                                   | 3   48   400   45   500   50   1M-46   M   1M-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                            |                         | 54<br>  54<br>  51<br>  51<br>  54<br>  52<br>  52       |
| 2<br>3<br>4<br>5 | 1                                | 55  B 100 2 B 600 B 600 B 600 B 300 B                           | 3   48   400   45   500   50   1M-46   1M-47   900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                         | <br>  54<br>  51<br>  51<br>  54<br>  52<br>  52<br>  53 |

## Optimal Solution:

 $x_{13}=x_{34}=400, x_{22}=100, x_{23}=500, x_{42}=600, x_{51}=700, x_{52}=300,$  Cost: \$121, 200

**8.2-14.** Using Russell's approximation method:

|        |        | . 1 .            |                |           | Destina     | tion             |                 |         | I     |      |       |
|--------|--------|------------------|----------------|-----------|-------------|------------------|-----------------|---------|-------|------|-------|
| (0)    |        | 1                |                | 2         | 3           | 4                | 5               | Sı      | ipply | u[   | 1]    |
|        | 1      | -800             | L<br>40        | 700       |             | 600              | -500<br>300     | -       | 60    | _    | 500   |
|        | 2      | <del>-5</del> 00 | È              | -200<br>1 | -           | -300 <br>P<br>60 | 200             |         | 80    |      | 0     |
|        | 3      | <del>-600</del>  |                |           | •           | -500             | -300            |         | 40    | _    | 200   |
|        | 4      | M                | Г              | м         | м           | B                | B               |         |       |      |       |
| _      |        |                  |                |           |             |                  |                 |         |       |      | 300   |
| Dema   | nd     | 4                | 10             | 60        | 20          | 60               | 60              |         |       |      |       |
| ]۷     | 3 -100 |                  |                |           |             |                  |                 |         |       |      |       |
|        | l      |                  |                | Des       | tinatio     | on               |                 |         |       |      |       |
| u)     |        | 1                |                | 2         | 3           | 4                | 5               |         | Supp  | oly  | u[i]  |
| 1      | -80    | 00 <br>P         | <del>-</del> 7 | 700 <br>P | -500 <br>   | -200<br>         | <del>-500</del> | Γ       |       |      |       |
|        |        | 40               |                | 20        | -100        | 400              | 10              | 00      |       | 60   | -300  |
| 2      | -50    | 00  <br>P        | - <u>-</u> 2   | 200       | -100 <br>L  | -300<br>I        |                 | •       |       |      |       |
|        |        | 0                |                | 200       | 20          | 60               | 20              | 00      |       | 80   | 0     |
| 3      |        | 00               | =4             | 100 P     | -300  <br>E | <del>-500</del>  | -300            | Γ       |       | 40   | 0     |
|        | -      | -100             |                | 40        | -200        | -200             |                 | 0       |       | 40   |       |
| 4      |        | M                | -              | М         | M           |                  | 0               | В<br>60 |       | 60   | 300   |
|        | 111    | M+2e             |                | lM+le     | 1M-2e       |                  |                 |         |       |      |       |
| Demand |        | 40               | _              | 60        | 20          | 60               | )               | 60      |       |      |       |
| v[j]   | -      | -500             |                | -400      | -100        | -300             | 0 -3            | 00      | Z =   | = -{ | 32000 |

| (z)    | 1                 | Des<br>2          | stinatio           | on<br>4             | 5                 | Supply   | u[i]  |
|--------|-------------------|-------------------|--------------------|---------------------|-------------------|----------|-------|
| 1      | -800  <br>P<br>20 | -700  <br>P<br>40 | -500<br>-00<br>100 | -200<br><br>400     | -500<br><br>100   | 60       | 0     |
| 2      | -500  <br>P<br>20 | 200               | -100  <br>-200     | -300 <br>P<br>60    | -100<br><br>200   | 80       | 300   |
| 3      | -600 <br>-100     | -400  <br>L<br>20 | -300 <br>B<br>20   | -500  <br>E<br>-200 | <del>-300</del> 0 | 40       | 300   |
| 4      | M <br>            | M <br>            | M <br>             | B                   | 0 B               | 60       | 600   |
| Demand | 40                | 60                | 20                 | 60                  | 60                |          |       |
| [t]v   | -800              | -700              | -600               | -600                | -600              | z = -    | 86000 |
| ->     | 1                 | De<br>  2         | stinati<br>  3     | on<br>  4           | 5                 | Supply   | u[i]  |
| (3)    | -800              | 700               | -500               | -200                | -500]             | - Juppiy |       |
| 1      | В 0               | 60                | -100               | 400                 | 100               | 60       | -600  |
| 2      | -500 B            | -200              | -100               | -300                | -100              |          |       |
| -      | 40                | 200               | 0                  | B<br>40             | 200               | 80       | -300  |
| 3      | -600              | -400              | -300 B             | -500 <br>B          | -300              |          |       |
|        | 100               | 200               | 20                 | 20                  | 200               | 40       | -500  |
| 4      | M  <br><br>1M+2e  | M<br>1M+1e        | M<br><br>1M-2e     | 0 B<br>0            | В<br>60           | 60       | 0     |
| Demand | 40                | 60                | 20                 | 60                  | 60                |          |       |
| [t]v   | -200              | -100              | 200                | 0                   | 0                 | z = -9   | 0000  |

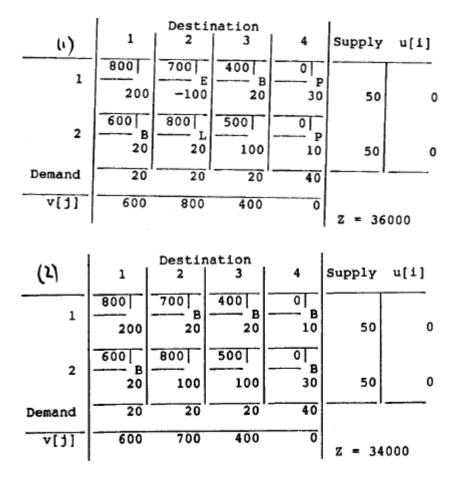
The optimal solution is to ship 60 units from plant 1 to customer 2, 40 from plant 2 to customer 1, 40 from plant 2 to customer 4, 20 from plant 3 to customer 3 and 4. This offers a profit of \$90,000.

8.2-15.

Using northwest corner rule:

| (6)       | 1     | Desti<br>2 | nation<br>3 | 4       | Supply | u[i] |
|-----------|-------|------------|-------------|---------|--------|------|
| ,         | 800   | 700        | 400         | 0       |        |      |
| . 1       | 20    | 20         | 10          |         | 50     | -100 |
| 2         | 600 E | 800        | 500 L       | 01      |        |      |
| _         | -300  | 0          | 10          | 40      | 50     | 0    |
| Demand    | 20    | 20         | 20          | 40      |        |      |
| [t]v      | 900   | 800        | 500         | 0       | Z = 39 | 9000 |
|           |       |            |             | ,       |        | ,000 |
| 7.        | Ι     | Desti      | nation      |         | I      |      |
| $(\iota)$ | 1     | 2          | 3           | 4       | Supply | u[i] |
|           | 800   | 700        | 400         | 0       |        |      |
| 1         | 10    | 20         | 20          | -200    | 50     | 0    |
| 2         | 600 P | 800        | 500         | 0 <br>P |        |      |
| -         | 10    | 300        | 300         | 40      | 50     | -200 |
| Demand    | 20    | 20         | 20          | 40      |        |      |
| [t]v      | 800   | 700        | 400         | 200     | z = 36 | 5000 |
| ,         |       |            |             | '       | 2 - 30 |      |
|           |       | Destin     |             |         | Supply | u[i] |
| (2)       | 1     | 2          | 3           | 4       | Suppry |      |
| 1         | 800   | 700 B      | 400 B       | 0 B     |        | _    |
| -         | 200   | 20         | 20          | 10      | 50     | 0    |
|           | 600   | 800        | 500         | 0]      |        |      |
| 2         | B     | 100        | 100         | 30      | 50     | 0    |
| Demand    | 20    | 20         | 20          | 40      |        |      |
| [t]v      | 600   | 700        | 400         | 0       | z = 34 | 1000 |

With northwest corner rule, it took 22 seconds to find the initial BF solution and its objective value is 15% above the optimal cost. The two iterations took 48 seconds.


Using Vogel's approximation method:

| 6      | 1           | Destin<br>2 | ation<br>3  | 4              | Supply | u[i] |
|--------|-------------|-------------|-------------|----------------|--------|------|
| 1      | 800 L<br>10 | 700 B<br>20 | 400 B<br>20 | 0  <br>-200    | 50     | 200  |
| 2      | 600 P       | 300         | 300         | 0  <br>P<br>40 | 50     | c    |
| Demand |             | 20          | 20          | 40             |        |      |
| [t]v   | 600         | 500         | 200         | 0              | z = 36 |      |
| (1)    | 1           | Desti<br>2  | nation 3    | 4              | Supply | u[1] |
| 1      | 800         | 700 E       |             | 0  <br>        |        | 0    |
| 2      | 600 B       | 800         | 500         | - O  <br>      |        |      |
| Demand | 20          |             | ·           | 40             | 1.     |      |
| v[j]   | 600         | 700         | 400         | 0              | 1      | 4000 |

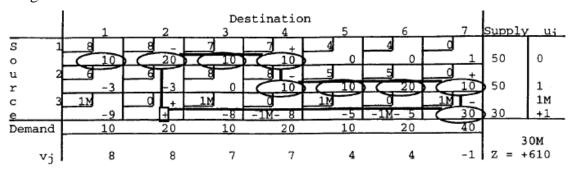
With Vogel's approximation method, it took 44 seconds to find the initial BF solution and its objective value is 6% above the optimal cost. One iteration took 28 seconds.

Using Russell's approximation method:

|        | 1     | Desti | nation | _    | 1      |      |
|--------|-------|-------|--------|------|--------|------|
| (6)    | 1     | 2     | 3      | 4    | Supply | u[i} |
| 1      | 800   | 700   | 400 P  | P    |        |      |
|        | 300   | 0     | 10     | 40   | 50     | 0    |
| 2      | 600 B | 800 B | 500 L  | 0 E  |        |      |
|        | 20    | 20    | 10     | -100 | 50     | 100  |
| Demand | 20    | 20    | 20     | 40   |        |      |
| [t]v   | 500   | 700   | 400    | 0    | Z = 37 | 000  |
|        |       |       |        | '    | 2 - 3/ | 000  |

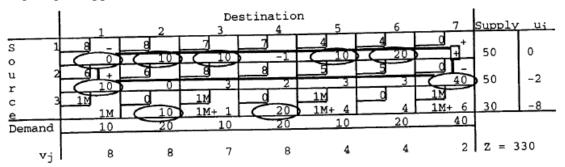


With Russell's approximation method, it took 25 seconds to find the initial BF solution and its objective value is 9% above the optimal cost. The two iterations took 45 seconds.


Let  $x_0$  denote the initial BF solution. The results are summarized in the following table.

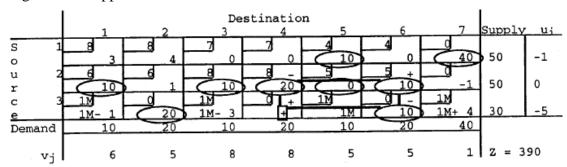
| Method    | Time to Get $x_0$ | Opt. Gap of $x_0$ | No. Iter.'ns | Time Iter.'ns | Total Time |
|-----------|-------------------|-------------------|--------------|---------------|------------|
| NW Corner | 22 seconds        | 15%               | 2            | 48 seconds    | 70 seconds |
| Vogel's   | 44 seconds        | 6%                | 1            | 28 seconds    | 72 seconds |
| Russell's | 25 seconds        | 9%                | 2            | 45 seconds    | 70 seconds |

### 8.2-16.


$$(a) - (b) - (c)$$

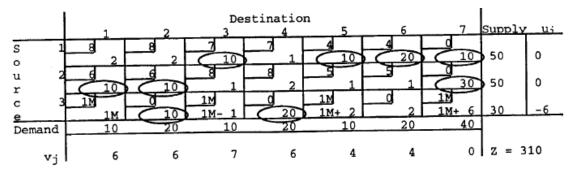
Using northwest corner rule:




With northwest corner rule, it took 40 seconds to find the initial BF solution and its objective value is M% above the optimal cost. The seven iterations took 4 minutes.

Using Vogel's approximation method:



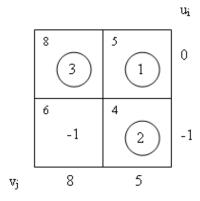

With Vogel's approximation method, it took 55 seconds to find the initial BF solution and its objective value is 6% above the optimal cost. The two iterations took 1 minute.

Using Russell's approximation method:

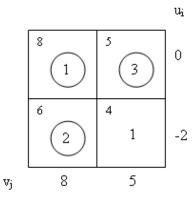


With Russell's approximation method, it took 63 seconds to find the initial BF solution and its objective value is 26% above the optimal cost. The five iterations took 2 minutes.

Optimal Solution: cost 31,000




Let  $x_0$  denote the initial BF solution. The results are summarized in the following table.


| Method    | Time to Get $x_0$ | Opt. Gap of $x_0$ | No. Iter.'ns | Time Iter.'ns | Total Time  |
|-----------|-------------------|-------------------|--------------|---------------|-------------|
| NW Corner | 40 seconds        | M%                | 7            | 4 minutes     | 280 seconds |
| Vogel's   | 55 seconds        | 6%                | 2            | 1 minute      | 115 seconds |
| Russell's | 63 seconds        | 26%               | 5            | 2 minutes     | 183 seconds |

### 8.2-17.

(a) Initial solution using northwest corner rule:



Final tableau: cost 35



(b) minimize  $8x_{11} + 5x_{12} + 6x_{21} + 4x_{22}$  subject to  $x_{11} + x_{12} = 4$   $x_{21} + x_{22} = 2$   $x_{11} + x_{21} = 3$   $x_{12} + x_{22} = 3$   $x_{11}, x_{12}, x_{21}, x_{22} \geq 0$ 

| Iter: | B.V.           | Eq. # | Z  | X11   | XIA  | Xas  | Xxx  | W1.  | Wa   | W <sub>3</sub> | W4 | RHS  |
|-------|----------------|-------|----|-------|------|------|------|------|------|----------------|----|------|
|       | 2              | 0     | -1 | 8-2 M | 5-2M | 6-2M | 4-2M | 0    | 0    | 0              | 0  | -12M |
|       | W <sub>1</sub> | 1     | 0  | 1     | 1    | 0    | 0    | 1    | 0    | 0              | 0  | 4    |
| 0     | Wa             | 2     | 0  | 0     | 0    | 1    | 1    | 0    | 1    | 0              | 0  | 2    |
|       | W5             | 3     | 0  | . 1   | Q    | 1    | Ŏ,   | 0    | ٥    | 1              | Ò  | 3    |
|       | Wi             | 4     | 0  |       | 1_   |      | 1_   | 0    | 0    |                | 1  | 3    |
|       | 쿤              | 0     | -1 | 0     | ٥    | 0    | 1    | 2M-8 | 2M-6 | 0              | 3  | -35  |
| 1     | X14            | 1     | 10 | 1     | 0    | 0    | -1   | 1    | 0    | D              | -1 | 1    |
| 14    | XA1            | 1     | 0  | 0     | 0    | 1    | 1    | 0    | 1    | D              | 0  | 2    |
| l     | W <sub>3</sub> | 3     | Ò  | 0     | 0    | 0    | 0    | -1   | -1   | 1              | 1  | 0    |
| L     | ×12            | 4     | Lo | 0     | 1    | 0    | 1_   | 0    | 0    | 0              | 1  | 3    |

Hence, the transportation simplex method takes one iteration while the general simplex method takes four iterations. The computation times vary.

### 8.2-18.

Let 
$$z_1 = x_1 - 10$$
,  $z_2 = x_1 + x_2 - 25$ ,  $z_3 = x_1 + x_2 + x_3 - 50$ ,  $z_4 = x_1 + x_2 + x_3 + x_4 - 70$ . minimize  $1.08x_1 + 1.11x_2 + 1.10x_3 + 1.13x_4 + 0.15(z_1 + z_2 + z_3 + z_4)$  subject to 
$$x_1 - z_1 = 10$$

$$x_1 + x_2 - z_2 = 25$$

$$x_1 + x_2 + x_3 - z_3 = 50$$

$$x_1 + x_2 + x_3 + x_4 - z_4 = 70$$

$$0 \le x_1 \le 25$$

$$0 \le x_2 \le 35$$

$$0 \le x_2 \le 35$$

$$0 \le x_3 \le 30$$

$$0 \le x_4 \le 10$$

$$z_1, z_2, z_3, z_4 > 0$$

Initial simplex tableau:

| B.V. | Eq.# | z  | X,       | Х,     | χ,   | X     | Z١     | 2. | ₹,     | 24 4   | v, w, | wi  | WH | Υ, | Y | Y, \ | 4 RHS   |
|------|------|----|----------|--------|------|-------|--------|----|--------|--------|-------|-----|----|----|---|------|---------|
| Z    | 0    | -1 | -4141.06 | -3M+Uf | 2141 | -M+U3 | M+.015 |    | M+.015 | M+.015 | 0 0   | 0   | 0  | 0  | 0 | 0    | 0 -155N |
| w,   | 4    |    | 1        |        |      |       | -1     |    |        |        | †     |     |    |    |   |      | 40      |
| Wa   | 2    |    | 1        | 1      |      |       |        | -1 |        |        | 1     |     |    |    |   |      | 25      |
| Ws   | 3    |    | 1        | 1      | 1    |       |        |    | -1     |        |       | . 1 |    |    |   |      | 50      |
| W4   | 4    |    | 1        | 1      | 1    | 1     |        |    |        | -1     |       |     | ١  |    |   |      | 70      |
| 1/4  | 5    |    | 1        |        |      |       |        |    |        |        |       |     |    | 1  |   |      | 25      |
| Y2   | 6    |    |          | 1      |      |       |        |    |        |        |       |     |    |    | 1 |      | 30      |
| Y3   | 7    |    |          |        | 1    |       |        |    |        |        |       |     |    |    |   | 1    | 30      |
| 74   | 8    |    |          |        |      | 1     |        |    |        |        |       |     |    |    |   | _1   | 110     |

Simplex tableau: 16 variables and 8 constraints

Transportation tableau: 20 variables and 9 constraints

Even though the transportation tableau is larger, it requires less work than the simplex tableau.

#### 8.2-19.

If we multiply the demand constraints by -1, each constraint column will have exactly two nonzero entries, one -1 and one +1. Summing all these constraints gives the equality:

$$0x = \sum \text{supplies} - \sum \text{demands} = 0,$$

since the total supply equals the total demand. Hence, there is a redundant constraint.

#### 8.2-20.

In the initialization step, after selecting the next basic variable, the allocation made is equal to either the (remaining) supply or demand for that row or column. Since these quantities are known to be integer, the allocation will be integer.

Given a current BF solution that is integer, step 3 of an iteration adds and subtracts, around the chain-reaction cycle, the current value of the leaving basic variable. Since we know this is an integer, and all the other basic variables on the cycle began with integer values, the new BF solution must be all integer.

During the initialization step, we can select the next basic variable for allocation arbitrarily from among the rows and columns not already eliminated. Thus, by altering our selections, we can construct any BF solution as our initial one. Because we have shown that the initialization step gives integer solutions, all BF solutions must be integer.

#### 8.2-21.

(a) Let  $x_{ij}$  be the number of tons hauled from pit i = 1, 2 (North, South) to site j = 1, 2, 3.

minimize 
$$400x_{11} + 490x_{12} + 460x_{13} + 600x_{21} + 530x_{22} + 560x_{23}$$
 subject to 
$$x_{11} + x_{12} + x_{13} \le 18$$
 
$$x_{21} + x_{22} + x_{23} \le 14$$
 
$$x_{11} + x_{21} = 10$$
 
$$x_{12} + x_{22} = 5$$
 
$$x_{13} + x_{23} = 10$$
 
$$x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23} \ge 0$$

#### Initial tableau:

| Bas Eq    |        |        | Co     | pefficie | ent of |        |    |    |    |     |     | Ι   | Right |
|-----------|--------|--------|--------|----------|--------|--------|----|----|----|-----|-----|-----|-------|
| Var No  Z | X11    | X12    | X13    | X21      | X22    | X23    | X7 | X8 | Х9 | X10 | X11 | -   | side  |
| II        |        |        |        |          |        |        |    |    |    |     |     | _١_ |       |
| 1 1 1     |        |        |        |          |        |        |    |    |    |     |     |     |       |
| Z   0 -1  | -M+400 | -M+490 | -M+460 | -M+600   | -M+530 | -M+560 | 0  | 0  | 0  | 0   | 0   |     | -25M  |
| X7  1  0  | 1      | 1      | 1      | 0        | 0      | 0      | 1  | 0  | 0  | 0   | 0   |     | 18    |
| X8  2  0  | 0      | 0      | 0      | 1        | 1      | 1      | 0  | 1  | 0  | 0   | 0   |     | 14    |
| X9  3  0  | 1      | 0      | 0      | 1*       | 0      | 0      | 0  | 0  | 1  | 0   | 0   |     | 10    |
| X1  4  0  | 0      | 1      | 0      | 0        | 1      | 0      | 0  | 0  | 0  | 1   | 0   |     | 5     |
| X1  5  0  | 0      | 0      | 1      | 0        | 0      | 1      | 0  | 0  | 0  | 0   | 1   | -   | 10    |

(b) This table is much smaller than the simplex tableau and it stores the same information.

|        |     | Cost Pe | r Unit  | Distrib | uted |        |
|--------|-----|---------|---------|---------|------|--------|
|        | - 1 |         | Destina | ation   | - 1  |        |
|        | - 1 | 1       | 1 2 3   |         | 4    | Supply |
|        | 1_  |         |         |         | I    |        |
| Source | 1   | 400     | 490     | 460     | 0    | 18     |
|        | 2   | 600     | 530     | 560     | 0    | 14     |
|        | 1_  |         |         |         | I    |        |
| Demand |     | 10      | 5       | 10      | 7 I  |        |

(c) The solution is not optimal, since  $c_{13} - u_1 - v_3 = -100$ .

|        | I   | Destin |      |    |         |      |
|--------|-----|--------|------|----|---------|------|
|        | 1   | 2      | 3    | 4  | Supply  | u[i] |
|        | lI  | I      | I    |    |         |      |
|        | 400 | 490    | 460  | 0  | I       |      |
| 1      | B   | B      |      | B  | 1       |      |
|        | 10  | 5      | -100 | 3  | 18      | 0    |
|        | II  | I      | I    | I  | 1       |      |
|        | 600 | 530    | 560  | 0  | - 1     |      |
| 2      |     | I      | B    | B  | 1       |      |
|        | 200 | 40     | 10   | 4  | 14      | 0    |
|        | lI  | I      | I    | I  |         |      |
| Demand | 10  | 5      | 10   | 71 |         |      |
|        | l   |        |      | I  |         |      |
| v[j]   | 400 | 490    | 560  | 0  |         |      |
|        | l   |        |      | I  | Z = 120 | 050  |

(d)

| 1           |             | Destin            | ation    |      | l                 |      |
|-------------|-------------|-------------------|----------|------|-------------------|------|
| İ           | 1           | 2                 | 3  <br>I | 4    | Supply            | u[i] |
|             |             | 490               |          | 01   | i <del></del>     |      |
| 1           | B <br>10    | B <br>5           | B <br>3  | 0    | <br>  18          | 0    |
|             | 600         | I<br>530          |          | 01   |                   |      |
| 2           | 0           | I                 | B <br>7  | B    | '                 | 0    |
| <br> Demand | 10          | l                 | l        | 7    | <u> </u> '        |      |
| [j]         | 0           | 0                 | 0        | 0    | <br> <br>  Z = 11 | 750  |
| '           |             |                   |          |      | , 2 11            | 100  |
| I           |             | Destin            | ation    |      |                   |      |
|             | 1           | 2  <br>           | 3  <br>  | 4    | Supply<br>        | u[i] |
| i           | 400   <br>B | 490   <br>L       |          | 01   |                   |      |
| 1           | 10          | 5                 | 3        | 100  |                   | 0    |
|             | 600         | !<br>530   <br>E! | I<br>    |      |                   |      |
| 2           | 100         | -60               | P <br>7  | B    | '                 | 100  |
| <br> Demand | 10          | I                 | l        | 7    | <sup> </sup>      |      |
| v[j]        | 400         | 490               | 460      | -100 |                   |      |

|        |     | Destir | nation |     |        |      |
|--------|-----|--------|--------|-----|--------|------|
|        | 1   | 2      | 3      | 4   | Supply | u[i] |
|        | lI  | I      |        |     |        |      |
|        | 400 | 490    | 460    | 0   |        |      |
| 1      | B   | I      | B      |     |        |      |
|        | 10  | 60     | 8      | 100 | 18     | -100 |
|        | lI  | l      |        |     |        |      |
|        | 600 | 530    | 560    | 0   |        |      |
| 2      |     | B      | B      | B   | 1      |      |
|        | 100 | 5      | 2      | 7   | 14     | 0    |
|        | lI  | I      | I      |     | lI     |      |
| Demand | 10  | 5      | 10     | 7   |        |      |
|        | l   |        |        |     |        |      |
| v[j]   | 500 | 530    | 560    | 0   |        |      |
|        | l   |        |        |     | Z = 11 | 450  |

The optimal solution is to haul 10 tons from the north pit to site 1 and 8 tons to site 3, 5 tons from the south pit to site 2 and 2 tons from the south pit to site 3. This incurs a cost of \$11,450.

(e) From the reduced costs  $(c_{ij} - u_i - v_j)$  in the final tableau, we see that

$$\Delta c_{12} \ge -60 \quad \Rightarrow c_{12} \ge 430$$

$$\Delta c_{21} \ge -100 \implies c_{21} \ge 500.$$

If the contractor can negotiate a hauling cost per ton of 130 or less from the north pit to site 2, or of 80 or less from the south pit to site 1, a new solution using these options would give a cost at least as small as the current optimal cost \$11,450.

#### 8.2-22.

#### Adjustable Cells

| Cell    | Name               | Final<br>Value | Reduced<br>Cost | Objective<br>Coefficient | Allowable<br>Increase | Allowable<br>Decrease |
|---------|--------------------|----------------|-----------------|--------------------------|-----------------------|-----------------------|
| \$D\$15 | Colombo Berdoo     | 2.22045E-16    | 0               | 160                      | 0                     | 20                    |
| \$E\$15 | Colombo Los Devils | 5              | 0               | 130                      | 20                    | 1E+30                 |
| \$F\$15 | Colombo San Go     | 0              | 10              | 220                      | 1E+30                 | 10                    |
| \$G\$15 | Colombo Hollyglass | Ô              | 0               | 170                      | 1E+30                 | 10                    |
| \$D\$16 |                    | 2              | 0               | 140                      | 10                    |                       |
| \$E\$16 | Sacron Los Devils  | 0              | 20              | 130                      | 1E+30                 | 0                     |
| \$F\$16 | Sacron San Go      | 2.5            | 0               | 190                      | 10                    | 20                    |
| \$G\$16 | Sacron Hollyglass  | 1.5            | 0               | 150                      |                       | 10                    |
| \$D\$17 | Calorie Berdoo     | 1.0            | 10              |                          | 0                     | 1E+30                 |
| \$E\$17 | Calorie Los Devils |                |                 | 190                      | 1E+30                 | 10                    |
|         | Calorie San Go     |                | 50              | 200                      | 1E+30                 | 50                    |
|         | Calorie Hollyglass | 1.5            | 0               | 230                      | 10                    | 20                    |
| 40417   | Calone Hollyglass  | 0              | -190            | 0                        | 1E+30                 | 190                   |

#### Constraints

| Cell Name                | Final<br>Value | Shadow<br>Price | Constraint<br>R.H. Side | Allowable<br>Increase | Allowable<br>Decrease |
|--------------------------|----------------|-----------------|-------------------------|-----------------------|-----------------------|
| \$H\$15 Colombo Tota     | als5           | -20             | 5                       | 1.5                   | 0                     |
| \$H\$16 Sacron Totals    | 6              | -40             | 6                       | 1.5                   | 2.5                   |
| \$H\$17 Calorie Totals   | 1.5            | 0.0             | 5                       | 1E+30                 | 3.5                   |
| \$D\$18 Totals Berdoo    | 2              | 180             | 2                       | 2.5                   | 1.5                   |
| \$E\$18 Totals Los Dev   | ils 5          | 150             | 5                       | 2.5                   | 1.5                   |
| \$F\$18 Totals San Go    | 4              | 230             | 4                       | 3.5                   |                       |
| \$G\$18 Totals Hollyglas | 38 1.5         | 190             | 1.5                     | 2.5                   | 1.5                   |

- (a) The optimal solution would change because the decrease of \$30 million is outside the allowable decrease of \$20 million.
- (b) The optimal solution would remain the same, since the allowable increase is  $\infty$ .
- (c) By the 100% rule for simultaneous changes, the optimal solution must remain the same.

$$C_{CS}$$
: \$230 \to \$215 % of allowable decrease =  $100 \left( \frac{230 - 215}{20} \right) = 75\%$ 

$$C_{SL}$$
: \$130 \to \$145 % of allowable decrease =  $100 \left( \frac{130-145}{\infty} \right) = 0\%$ 

These sum up to 75%.

(d) By the 100% rule for simultaneous changes, the shadow prices may or may not remain valid.

$$C_S$$
: \$6 \to \$5.5 % of allowable decrease =  $100 \left( \frac{6-5.5}{2.5} \right) = 20\%$ 

$$C_S$$
:  $\$6 \rightarrow \$5.5$  % of allowable decrease =  $100\left(\frac{6-5.5}{2.5}\right) = 20\%$   $C_H$ :  $\$1.5 \rightarrow \$1$  % of allowable decrease =  $100\left(\frac{1.5-1}{0}\right) = \infty\%$ 

These sum up to  $\infty$ %.

8.2-23.

(a) 
$$\Delta c_{34} = -3 \Rightarrow \Delta (c_{34} - u_3 - v_4)^* = -3, (c_{34} - u_3 - v_4)^* = -2$$

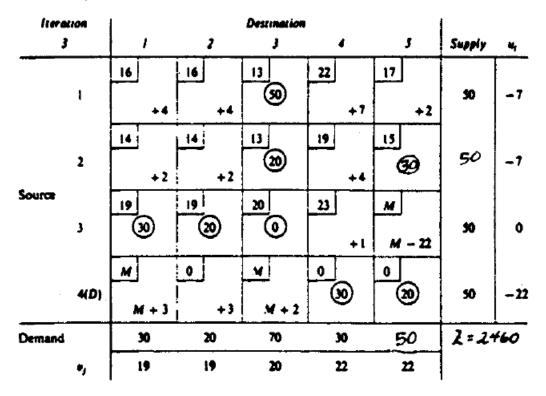
| Iteration |      |            |      | Destination      |          |        |        |      |
|-----------|------|------------|------|------------------|----------|--------|--------|------|
| 3         |      | 1 2        |      | 3 4              |          | 5      | Supply | ٤,   |
|           | ı    | 16 +4      | 16   | 13<br><b>9</b> 0 | 22<br>+7 | +2     | 50     | -7   |
|           | 2    | 14 i<br>+2 | +2   | 28               | 19 +4    | 15     | 60     | -7   |
| Source    | 3    | 19         | 29   | 20               | <u>2</u> | M - 22 | 50     | . 0  |
|           | 4(D) | M + 3      | +3   | M + 2            | 30       | 28     | 50     | - 22 |
| Demand    |      | 30         | · 20 | 70               | 30       | 60     | 2=2    | +60  |
|           | •,   | 19         | 19   | 20               | 22       | 22     | 1      |      |

The current feasible solution is feasible, but not optimal.

(b) 
$$\Delta c_{23} = 3 \Rightarrow \Delta (c_{23} - u_2 - v_3)^* = 3$$

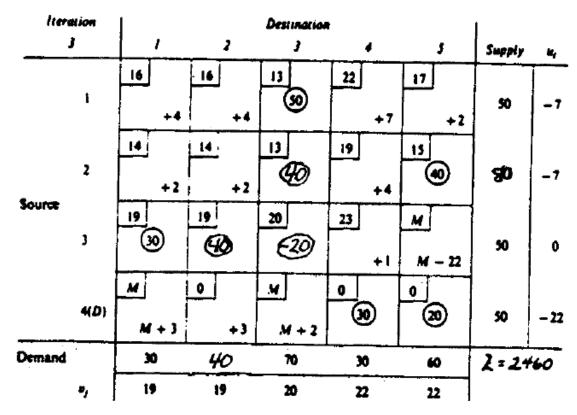
We can revise the tableau by changing  $u_2$  from -7 to -7+3=-4. This causes  $v_5$  to change to 22-3=19,  $u_4$  to -22+3=-19, and  $v_4$  to 22-3=19.

$$\Delta(\text{reduced cost }x_{41})=\Delta(\text{reduced cost }x_{42})=\Delta(\text{reduced cost }x_{43})=-\Delta u_4=-3$$


$$\Delta$$
(reduced cost  $x_{34}$ ) =  $\Delta$ (reduced cost  $x_{14}$ ) =  $-\Delta v_4 = 3$ 

$$\Delta({
m reduced\ cost\ }x_{35})=\Delta({
m reduced\ cost\ }x_{15})=-\Delta v_5=3$$

| itera    | Destination |    |          |    |          |     |          |    |          | I   |          |        |     |
|----------|-------------|----|----------|----|----------|-----|----------|----|----------|-----|----------|--------|-----|
| <u> </u> |             | 1  |          | 2  |          | _ 3 |          |    | 4        |     | 5        | Supply | 44, |
| _        | ı           | 16 | +4       | 16 | +4       | 13  | 9        | 22 | 10       | 17  | 5        | 50     | -7  |
|          | 2           | 14 | +2       | 14 | +2       | 16  | <b>1</b> | 19 | +4       | 15  | <b>®</b> | 60     | -4  |
| Source   | 3           | 19 | <u>j</u> | 19 | <b>6</b> | 30  | 9        | 23 | 4        | M   | 1-19     | 50     |     |
|          | 4(D)        | М  | M        | ٥  | 0        | X   | n-1      | 9  | <b>®</b> | •   | <b>9</b> | 50     | -19 |
| Demand   |             |    | 30       | 7  | 0        |     | to       |    | 30       | - ( | 50       | 2 = 21 | 160 |
|          | •,          |    | 19       | l  | •        |     | 20       |    | 19       | t.  | 9        |        |     |


The basic solution remains feasible and optimal.

(c) 
$$\Delta s_2 = -10, \Delta d_5 = 10 \Rightarrow \Delta x_{25} = 10$$



The basic solution remains feasible and optimal.

(d) 
$$\Delta s_2=\Delta d_2=20\Rightarrow \Delta x_{23}=\Delta x_{32}=20$$
 and  $\Delta x_{33}=-20$ 



This solution satisfies the optimality criterion, but it is infeasible.

### 8.3-1.

(a)



(b) - (c)

|          |   |   |    | cost (\$) |   | _      |
|----------|---|---|----|-----------|---|--------|
|          |   | i | Τε | ask       |   | l      |
|          |   | 1 | 2  | 3         | 4 | Supply |
|          | Α | 8 | 6  | 5         | 7 | 1      |
| Assignee | В | 6 | 5  | 3         | 4 | 1      |
|          | С | 7 | 8  | 4         | 6 | 1      |
|          | D | 6 | 7  | 5         | 6 | 1      |
| Demand   |   | 1 | 1  | 1         | 1 |        |

(d)

|          |   |            | -     | nments<br>ask |     |            |   |        |
|----------|---|------------|-------|---------------|-----|------------|---|--------|
|          |   | 1          | 2 '   | 3             | 4   | Totals     |   | Supply |
|          | Α | <b>8</b> 0 | 1类。   | 0             | 0.4 | 1          | = | 1      |
| Assignee | В | 01         | 0     | 0#            | 1.1 | 1          | = | 1      |
|          | С | +0+        | Ottri | 10            | 04  | 1          | = | 1      |
|          | D | 1          | 104   | 0,5-          | 0.  | 1          | = | 1      |
| Totals   |   | 1          | 1     | 1             | 1   |            |   |        |
|          |   | =          | =     | =             | =   | Total Cost | = | \$ 20  |
| Demand   |   | 1          | 1     | 1             | 1   |            | _ |        |

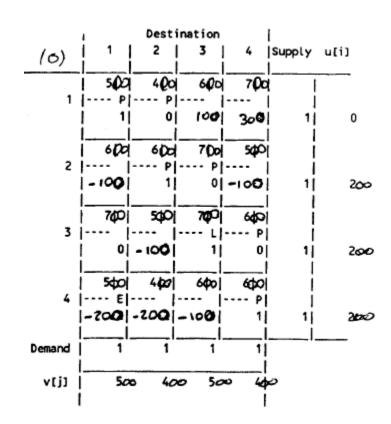
# 8.3-2.

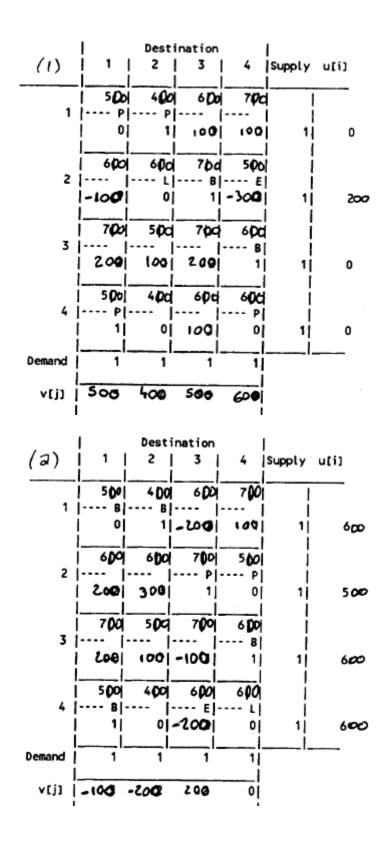
(a) Ships are assignees and ports are assignments.

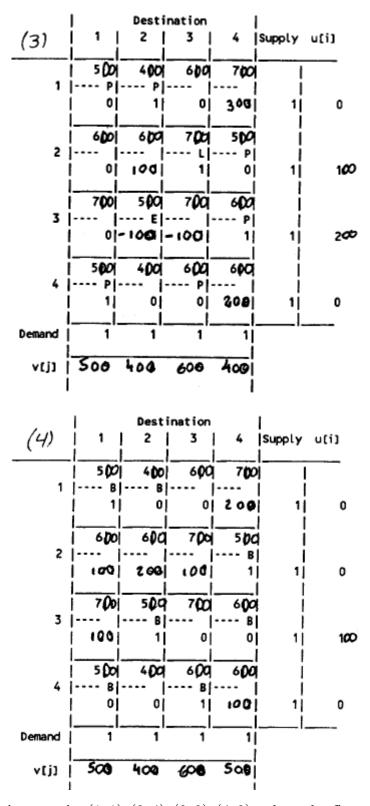
(b)

|         |     |     | 7   | Γask |     |   |
|---------|-----|-----|-----|------|-----|---|
| Assigne | e   | A   | В   | С    | D   |   |
|         | I_  |     |     |      |     | _ |
| 1       |     | 500 | 400 | 600  | 700 | _ |
| 2       | - 1 | 600 | 600 | 700  | 500 |   |
| 3       | - 1 | 700 | 500 | 700  | 600 |   |
| 4       | - 1 | 500 | 400 | 600  | 600 |   |
|         | - 1 |     |     |      |     |   |

# Optimal Solution:

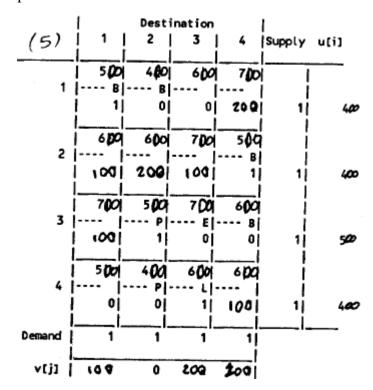

Task A is assigned to Assignee 1 Task D is assigned to Assignee 2 Task B is assigned to Assignee 3 Task C is assigned to Assignee 4


This incurs a cost of \$2, 100.

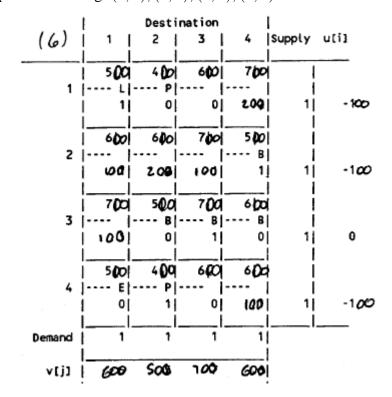

(c)

| De   | stinat            | ion                                  | 1                                                                  |                                                                  |
|------|-------------------|--------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|
| 1    | 2                 | 3                                    | 4                                                                  | Supply                                                           |
|      |                   |                                      |                                                                    |                                                                  |
| 500  | 400               | 600                                  | 70d                                                                | 1                                                                |
|      |                   |                                      |                                                                    |                                                                  |
| 7000 | 5∞                | 7∞                                   | 600                                                                |                                                                  |
| 500  | 400               | 600                                  | 6ccd                                                               |                                                                  |
|      |                   |                                      | i.                                                                 |                                                                  |
| 1    | 1                 | 1                                    | 1                                                                  |                                                                  |
|      | 500<br>600<br>700 | 1 2<br>500 400<br>600 600<br>700 500 | Destination 1 2 3  500 400 600 600 600 700 700 500 700 500 400 600 | 1 2 3 4<br>500 400 600 704<br>600 600 700 500<br>700 500 700 600 |

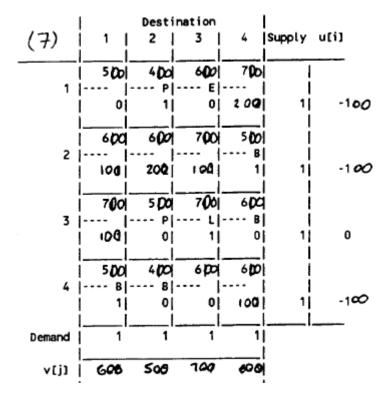
(d) - (e)






One optimal assignment is: (1,1),(2,4),(3,2),(4,3), where the first entry is ship and the second port.


(f) Continuing to pivot where reduced costs are zero:



Alternative optimal matching: (1,1), (2,4), (3,3), (4,2)



Alternative optimal matching: (1, 2), (2, 4), (3, 3), (4, 1)



Alternative optimal matching: (1,3), (2,4), (3,2), (4,1)

## 8.3-3.

(a) Costs are expressed in thousands of dollars.

| Assignee | A     | В    | Task<br>C | D | E |
|----------|-------|------|-----------|---|---|
|          |       |      |           |   |   |
| 1        | 11.48 | 22   | 16.8      | 0 | 0 |
| 2        | 10.92 | 20.4 | 15.75     | 0 | 0 |
| 3        | 11.76 | 22.4 | 17.5      | 0 | 0 |
| 4        | 10.64 | 20.8 | M         | 0 | 0 |
| 5        | 10.92 | 21.2 | M         | 0 | 0 |
| 1        |       |      |           |   |   |

(b) The optimal cost is 47.47 thousand dollars.

Task D is assigned to Assignee 1
Task C is assigned to Assignee 2
Task E is assigned to Assignee 3
Task B is assigned to Assignee 4
Task A is assigned to Assignee 5

(c)

|        |     | Cost  | : Per U | nit Dist | ributed |     |        |
|--------|-----|-------|---------|----------|---------|-----|--------|
|        | - 1 |       | Des     | tination | 1       | - 1 |        |
|        | - 1 | 1     | 2       | 3        | 4       | 5   | Supply |
|        |     |       |         |          |         | I   |        |
|        | 1   | 11.48 | 22      | 16.8     | 0       | 0   | 1      |
|        | 2   | 10.92 | 20.4    | 15.75    | 0       | 0   | 1      |
| Source | 3   | 11.76 | 22.4    | 17.5     | 0       | 0   | 1      |
|        | 4   | 10.64 | 20.8    | 1 M      | 0       | 0   | 1      |
|        | 5   | 10.92 | 21.2    | 1 M      | 0       | 0   | 1      |
|        | 1   |       |         |          |         | 1   |        |
| Demand |     | 1     | 1       | 1        | 1       | 1   |        |

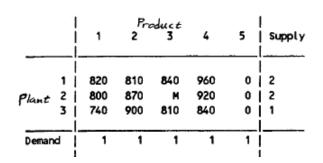
(d)

|        | I                | Des         | stinatio   | n        | 1          |         |       |
|--------|------------------|-------------|------------|----------|------------|---------|-------|
|        | 1                | 2           | 3          | 4        | 5          | Supply  | u[i]  |
|        | <u></u><br> 11.5 | <br>  22    | <br> 16.8  | ¦        | '          | <br>    |       |
| 1      | B<br>  0         | '           | B          | B        |            |         | 0.56  |
|        |                  | 0.24        | 0 <br>     | 1 <br>   | 0          | 1 <br>  | 0.30  |
|        | 10.9             | 20.4        | 15.8       | <u> </u> | <u> </u>   | İ       |       |
| 2      | <br>  0.49       | <br>  -0.31 | B <br>  1  | 1.05     | 1.05       | <br>  1 | -0.49 |
|        | i                | ii          | ii         | i        | i          | i i     |       |
| 3      | 11.8             | 22.4        | 17.5       |          | 0   <br>BI |         |       |
| ŭ      | 0.28             | 0.64        | 0.7        | 01       | 1          | '       | 0.56  |
|        | <u> </u>         | <br> 20_8   | <br>  M    | l        | l          |         |       |
| 4      | -                | B           |            |          |            |         |       |
|        | 0.12             | 1           | 1M-16      | 0.96     | 0.96       | 1       | -0.4  |
|        | <br> 10.9        | <br> 21.2   | <br>  M    | ——;      | ——-        | <br>    |       |
| 5      | _                | В           | '          |          | j          | ĺ       | _     |
|        | 1 <br>           | U <br>      | 1M-16 <br> | 0.56     | 0.56       | 1 <br>  | 0     |
| Demand | 1                | 1           | 1          |          | 1          | ·       |       |
|        | <br>  10.92      | 21.2        | 16.24      | -0.56    | l<br>-0.56 |         |       |
| . [3]  | 10.52            | 51.5        | 10.01      | 0.00     | 0.00       | Z = 47  | .47   |

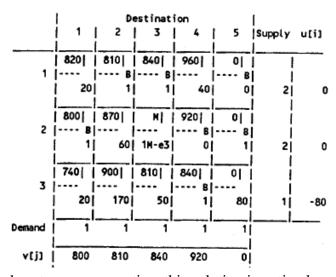
The initial solution from Vogel's approximation method is optimal. Plant 2 produces product 3, plant 4 produces product 2, plant 5 produces product 1. This incurs a cost of \$47,470.

#### 8.3-4.

(a) After adding a dummy stroke, which everyone can swim in zero seconds, the problem becomes that of assigning 5 swimmers to 5 strokes. The optimal solution turns out to be the following: David swims the backstroke, Tony swims the breaststroke, Chris swims the butterfly, and Carl swims the freestyle.


|        |      |      |       | Task  |      |      |         |
|--------|------|------|-------|-------|------|------|---------|
|        |      | Carl | Chris | David | Tony | Ken  |         |
| Assi   | gnee | A    | В     | С     | D    | E    | Row Min |
|        |      | 1    |       |       |      |      | 1       |
| Back   | 1    | 37.7 | 32.9  | 33.8  | 37   | 35.4 | 32.9    |
| Breast | 2    | 43.4 | 33.1  | 42.2  | 34.7 | 41.8 | 33.1    |
| Fly    | 3    | 33.3 | 28.5  | 38.9  | 30.4 | 33.6 | 28.5    |
| Free   | 4    | 29.2 | 26.4  | 29.6  | 28.5 | 31.1 | 26.4    |
| Dummy  | 5    | 0    | 0     | 0     | 0    | 0    | 0       |
|        |      | 1    |       |       |      |      | 1       |

(b) Cost: 126.2


Task C is assigned to Assignee 1
Task D is assigned to Assignee 2
Task B is assigned to Assignee 3
Task A is assigned to Assignee 4
Task E is assigned to Assignee 5

#### 8.3-5.

(a)



(b) - (c)



Since all the reduced costs are nonnegative, this solution is optimal.

(d)

|         | -   |     | Pro | duct |     |   | ł       |
|---------|-----|-----|-----|------|-----|---|---------|
|         | - [ | 1   | 2   | 3    | 4   | 5 | Supply  |
|         | !   |     |     |      |     |   | !       |
|         | 1   | 820 | 810 | 840  | 960 | 0 | <br>  1 |
| :       | 2   | 820 | 810 | 840  | 960 | 0 | 1       |
| Plant : | 3 j | 800 | 870 | M    | 920 | 0 | 1       |
| 4       | 1   | 800 | 870 | M    | 920 | 0 | 1       |
| :       | 5   | 740 | 900 | 810  | 840 | H | 1       |
|         | _1. |     |     |      |     |   |         |
| Demand  | - [ | 1   | 1   | 1    | 1   | 1 |         |

This is identical to the table in (a) except that plants 1 and 2 have been split into two plants each.

(e)

|        | ı   | De  | estinat | ion    |       | l      |      |
|--------|-----|-----|---------|--------|-------|--------|------|
| ,      | 1   | 2   | 3       | ! 4    | 5     | Supply | u[i] |
|        | 820 | 810 | 840     | 960    | 01    |        |      |
| 1      |     | В   | j`      | j`     | j`    | i i    |      |
|        | 20  | 1   | 0       | 40     | 0     | 1      | 0    |
|        | 820 | 810 | 840     | 960    | 0     | i      |      |
| 2      |     | B   | B       |        | B     | 1      |      |
|        | 20  | 0   | 1       | 40<br> | 0     | 1      | 0    |
|        | 800 | 870 | M       | 920    | 0     | i i    |      |
| 3      | B   |     |         |        |       |        |      |
|        | 1 1 | 60  | 1M-e3   | 0      | 0     | 1      | 0    |
|        | 800 | 870 | H       | 920    | 0 1   | ļ      |      |
| 4      | B   | -,  |         | B      | B     | - 1    |      |
|        | 0   | 60  | 1M-e3   | 0      | 1     | 1      | 0    |
|        | 740 | 900 | 810     | 840    | MI I  | i      |      |
| 5      |     |     |         | B      |       | - 1    |      |
|        | 20  | 170 | 50      | 1      | 1M+80 | 1      | -80  |
| Demand | 1   | 1   | 1       | 1      | 1     | 1.     |      |
| v[j]   | 800 | 810 | 840     | 920    |       |        |      |

The basic feasible solution for the transformed problem above corresponds to that given in part (c).

|           | 1                                                   | Dest                                                                            | ination                               |                                           | 1                      |                |
|-----------|-----------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|------------------------|----------------|
| 0         | į 1                                                 |                                                                                 | 3                                     |                                           | Supply                 | u[i]           |
|           | 13                                                  | 16                                                                              | 12                                    |                                           |                        |                |
| 1         |                                                     |                                                                                 |                                       | B                                         |                        |                |
|           | 7                                                   | 8                                                                               | 8                                     | 1                                         | 1                      | -9             |
|           | 15                                                  | H                                                                               |                                       |                                           |                        |                |
| 2         | B <sub>:</sub><br>  1                               | 1M-17                                                                           | P                                     |                                           | 1                      | 0              |
| ,         | 5]                                                  | 7]                                                                              | 10                                    | 6                                         |                        |                |
| 3         | 0                                                   | B <br>  1                                                                       | 7                                     | -4                                        | 1                      | -10            |
|           | 0                                                   | 0                                                                               | 0                                     | 01                                        | i i                    |                |
| 4         | <br>  -2                                            | -4                                                                              | P <br> 1                              |                                           | 1                      | -13            |
| Demand    | <u> </u>                                            | ا                                                                               |                                       |                                           |                        |                |
| Delina Na |                                                     | '                                                                               | '                                     |                                           |                        |                |
| v(j)      | 15                                                  | 17                                                                              | 13                                    | 20                                        |                        |                |
|           |                                                     |                                                                                 |                                       |                                           |                        |                |
| (1)       | 1 1                                                 | Desti<br>2                                                                      | nation<br>3                           | 4                                         | Supply                 | u[i]           |
| (1)       | 1  <br>  <br>  13                                   | 2                                                                               |                                       |                                           | Supply                 | u(i)           |
| 1)        |                                                     | 2                                                                               | 3                                     |                                           | Supply                 | u[i]<br>       |
| 1         | 13                                                  | 2  <br> <br>16                                                                  | 3                                     |                                           | Supply                 |                |
|           | 13                                                  | 16   <br> <br>1                                                                 | 12  <br> <br>1                        | 11   <br>B <br>1 <br>20                   | Supply                 |                |
| 2         | 13                                                  | 2  <br>16  <br> <br>1  <br>  H   <br>                                           | 12 <br>1<br>13 <br>P                  | 11   <br>B <br>1 <br>20   <br>7           | <br>  1 <br>   <br>  1 | -2             |
| 1         | 13 <br> <br>0 <br> <br>15   <br>L                   | 2  <br>16  <br> <br>1  <br>  H   <br>                                           | 3  <br>12  <br> <br>1  <br>P          | 11   <br>B <br>1 <br>20   <br>7           | 1 1 1 1 1 1            | -2             |
| 2         | 13 <br> <br>0 <br>15 <br>  L <br>  1 <br>  P        | 2  <br>16  <br> <br>1  <br>  H   <br>                                           | 3  <br>12  <br>13  <br>13  <br>P<br>0 | 20   <br>7                                | 1 1 1 1 1 1            | <br>0          |
| 2         | 13  <br> <br>0  <br>L  <br>1  <br>5  <br>  P        | 2  <br>16  <br>1  <br>1  <br>1  <br>1  <br>1  <br>1  <br>1  <br>1  <br>1  <br>1 | 12 <br>12 <br>13 <br>P<br>0<br>10     | 11   <br>B <br>1 <br>20   <br>7<br> <br>6 | 1 1 1 1 1 1            | <br>0          |
| 2         | 13  <br> <br>15  <br>  L  <br>  5  <br>  P  <br>  0 | 2  <br>16  <br>1  <br>1  <br>1  <br>1  <br>1  <br>1  <br>1  <br>1  <br>1  <br>1 | 12 <br>12 <br>13 <br>P<br>0<br>10     | 20   <br>7  6  3                          | 1 1 1 1 1 1            | -2<br>0<br>-10 |

| 1           |                                            | Desti                                             | nation                                                                        | 1                             |                                        |                                 |
|-------------|--------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------|----------------------------------------|---------------------------------|
| (a)         | 1                                          | 2                                                 | 3                                                                             | 4                             | Supply                                 | u[i]                            |
|             | 13                                         | 16                                                | 12                                                                            | 11                            |                                        |                                 |
| 1           | ,                                          | [                                                 |                                                                               | B                             |                                        | 11                              |
| - 1         | 4                                          | 5                                                 | 1                                                                             |                               | i 'i                                   |                                 |
| i           | 15                                         | H]                                                | 13                                                                            | 20                            | !                                      |                                 |
| 2           | 4                                          | 1H-13                                             | 1 1                                                                           | 7                             | 1                                      | 13                              |
| i           | 51                                         | 7                                                 | 10                                                                            | 6                             | į                                      |                                 |
| 3           | B                                          | L                                                 | 3                                                                             | E                             | 1                                      | 7                               |
|             | 0                                          | 0                                                 | 0                                                                             | 0                             | i                                      |                                 |
| 4           | ·`_i                                       | P                                                 | В                                                                             | P                             | ! !                                    |                                 |
|             | 2                                          | 1                                                 | 0                                                                             | 0<br>                         | <u>'</u>                               | 0                               |
| Demand      | 1                                          | - 1                                               | 1                                                                             | 1                             | i<br>I                                 |                                 |
| v[j]        | -2                                         | 0                                                 | 0                                                                             | 0                             | į                                      |                                 |
| 1           | ı                                          |                                                   |                                                                               |                               | l                                      |                                 |
|             |                                            |                                                   |                                                                               |                               |                                        |                                 |
|             | ł                                          |                                                   | ination                                                                       |                               | I                                      |                                 |
| (3)         | 1                                          | Dest<br>  2                                       |                                                                               |                               | <br> Supply                            | u[i]                            |
| (3)         |                                            |                                                   | 3                                                                             |                               | <br> Supply<br>                        | u(i)                            |
| (3)         | 13                                         | 2<br> <br>  16 <br>                               | 3<br> <br>  12 <br>                                                           | 4<br> <br>  11 <br>  8        | <br> Supply<br> <br>                   | <br> <br>                       |
|             |                                            | 2<br> <br>  16 <br>                               | 3<br> <br>  12 <br>                                                           | 4<br> <br>  11 <br>  8        | <br> Supply<br> <br> <br> <br> <br>  1 | u(i)                            |
| 1           | 13                                         | 2<br> <br>  16 <br>                               | 3<br> <br>  12 <br>                                                           | 4<br> <br>  11 <br>  8        | <br> Supply<br> <br> <br> <br>  1      | <br> <br>                       |
|             | 13                                         | 2<br> <br>  16 <br> <br>  5<br>                   | 3<br> <br>  12<br> <br>  1<br>  B                                             | 4<br> <br>  11 <br>  B<br>  1 | <br>                                   | <br> <br>                       |
| 1           | 13 <br> <br>  3<br>  15                    | 2<br>  16<br> <br>  5<br>  M <br> <br>  1M-13     | 3<br>  12<br> <br>  1<br>  13<br>  B<br>  1                                   | 4<br>                         | <br>                                   | <br> <br> <br>  11<br> <br>     |
| 1           | 13 <br> <br>  3<br> <br>  15 <br>          | 2<br>  16<br> <br>  5<br>  M <br> <br>  1M-13     | 3<br>  12<br> <br>  1<br>  13<br>  B<br>  1                                   | 4<br>                         | <br>                                   | <br>  11<br>  13<br>  13        |
| 2           | 13 <br> <br>  3<br> <br>  15 <br>          | 2<br>  16<br> <br>  5<br>  M <br> <br>  1M-13     | 3<br>  12<br> <br>  1<br>  13<br>  B<br>  1                                   | 4<br>                         | <br>                                   | <br> <br> <br>  11<br> <br>     |
| 2           | 13 <br> <br>  3<br> <br>  15 <br>          | 2<br>  16<br> <br>  5<br>  M <br> <br>  1M-13     | 3<br>  12<br> <br>  1<br>  13<br>  8<br>  1<br>  10<br> <br>  4               | 4<br>                         | <br>                                   | <br>  11<br>  13<br>  13        |
| 2           | 13 <br> <br>  3<br> <br>  5 <br>  B<br>  1 | 2<br>  16<br>  5<br>  M <br>  1M-13<br>  7<br>  1 | 3<br>  12<br> <br>  1<br>  13<br>  8<br>  1<br>  10<br> <br>  4<br>  0<br>  8 | 4<br>                         |                                        | <br>  11<br>  13<br>  13        |
| 1<br>2<br>3 | 13 <br> <br>  3<br> <br>  5 <br>  B<br>  1 | 2<br>  16<br>  5<br>  M <br>  1M-13<br>  7<br>  1 | 3<br>  12<br> <br>  1<br>  13<br>  B<br>  1<br>  10<br> <br>  4<br>  0<br>  0 | 4<br>                         |                                        | <br>  11<br>  13<br>  13<br>  6 |
| 2           | 13 <br> <br>  3<br> <br>  5 <br>  B<br>  1 | 2<br>  16<br>  5<br>  M <br>  1M-13<br>  7<br>  1 | 3<br>  12<br> <br>  1<br>  13<br>  8<br>  1<br>  10<br> <br>  4<br>  0<br>  8 | 4<br>                         |                                        | <br>  11<br>  13<br>  13<br>  6 |

This solution corresponds to that given in Section 8.3; although the set of basic variables is different, the values of the variables are the same.

# 8.3-7.

(a) Let assignees 1 and 2 represent plant A, assignees 3 and 4 represent plant B, and the tasks be the distribution centers.

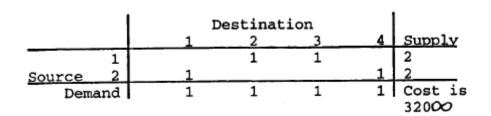
|          |   | Cost Table    |       |       |       |  |  |
|----------|---|---------------|-------|-------|-------|--|--|
|          |   |               | dummy |       |       |  |  |
|          |   | 1             | 2     | 3     | au 41 |  |  |
| _        | 1 | 8000          | 140∞  | 12000 | 0     |  |  |
|          | 2 | 8000          | 140∞  | 120∞  | 0     |  |  |
| Assignee | 3 | 60∞           | 160∞  | 15000 | 0     |  |  |
| _        | 4 | 60 <b>0</b> 0 | 16000 | 150∞  | 0     |  |  |

(b) Cost: 32,000

|          |   | Task |   |   |    |  |  |  |
|----------|---|------|---|---|----|--|--|--|
|          |   | 1_   | 2 | 3 | 4_ |  |  |  |
|          | 1 |      | х |   |    |  |  |  |
|          | 2 | }    |   | X |    |  |  |  |
| Assignee | 3 | x    |   |   |    |  |  |  |
| -        | 4 | ĺ    |   |   | Х  |  |  |  |

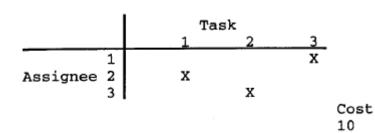
(c)

|        | ,       |      |             |       |   |   |  |
|--------|---------|------|-------------|-------|---|---|--|
|        |         | D    | Destination |       |   |   |  |
|        | 1 2 3 4 |      |             |       |   |   |  |
|        | 1       | 8000 | 14000       | 12000 | 0 | 1 |  |
|        | 2       | 8000 | 14000       | 12000 | 0 | 1 |  |
| Source | 3       | 6000 | 16000       | 15000 | 0 | 1 |  |
| _      | 4       | 60€  | 16000       | 15000 | 0 | 1 |  |
| Dema   | and     | 1    | 1           | 1     | 1 |   |  |


(d)

|        | 1 |   | Destination |   |     |                |  |
|--------|---|---|-------------|---|-----|----------------|--|
|        |   | 1 | 2           | 3 | 44_ | Supply         |  |
|        | 1 |   | 1           |   |     | 1              |  |
|        | 2 |   |             | 1 |     | 1              |  |
| Source | 3 | 1 |             |   |     | 1              |  |
| bource | 4 |   |             |   | 1_  | 1              |  |
| Demand |   | 1 | 1           | 1 | 1   | Cost is        |  |
| Dem    |   |   |             |   |     | 320 <i>0</i> 0 |  |

(e)


| Cost Per Unit Distributed |   |             |       |       |   |        |  |  |
|---------------------------|---|-------------|-------|-------|---|--------|--|--|
|                           |   | Destination |       |       |   |        |  |  |
|                           |   | 1           | 2     | 3     | 4 | Supply |  |  |
|                           | 1 | 8000        | 14000 | 12000 | 0 | 2      |  |  |
| Source                    | 2 | 6005        | 16000 | 15000 | 0 | 2      |  |  |
| Demand                    |   | 1           | 1     | 1     | 1 |        |  |  |

(f)



8.3-8.

(a)



(b)

|        | Co    | st Per Uni | t Distr | ibute | đ      |
|--------|-------|------------|---------|-------|--------|
|        |       | Desti      |         |       |        |
|        |       | 1          | 2       | 3     | Supply |
|        | 1     | 5          | 7       | 4     | 1      |
| Source | 2     | 3          | 6       | 5     | 1      |
|        | 3     | 2          | 3       | 4     | 1      |
| Dema   | and : | 1          | 1       | 1     |        |

(c)

|        |   | Desti |       |   |         |
|--------|---|-------|-------|---|---------|
|        |   | 1     | 1 2 3 |   |         |
|        | 1 |       |       | 1 | 1       |
| Source | 2 | 1     |       |   | 1       |
|        | 3 |       | 1     |   | 1       |
| Demand |   | 1     | 1     | 1 | Cost is |
|        |   |       |       |   | 10      |

- (d) A transportation problem of size  $m \times n$  has m+n-1 basic variables. Since m=n for the assignment problem, there are 2(3)-1=5 basic variables, but only 3 assignments. Thus, 2 basic variables are degenerate, they equal zero. Assignment problems are always highly degenerate. This can be seen using the interactive routine in the OR Courseware.
- (e)  $x_{A1}, x_{A2}, x_{B2}$  and one of  $(x_{B3}, x_{C3})$  are nonbasic, too.  $x_{C1}$  and one of  $(x_{B3}, x_{C3})$  are basic and equal zero.

Dual variables:

|    |   |    |   |    |   |   | $\mathbf{u_i}$ |
|----|---|----|---|----|---|---|----------------|
|    | 5 | +3 | 7 | +4 | 4 | 1 | 0              |
|    | 3 | 1  | 6 | +2 | 5 | 0 | 1              |
|    | 2 | 0  | 3 | 1  | 4 | 0 | 0              |
| 7j |   | 2  |   | 3  |   | 4 |                |

Looking at  $c_{ij} - u_i - v_j$ , we see that the allowable ranges for this solution to stay optimal are:  $c_{A1} \ge 2$ ,  $c_{A2} \ge 3$ ,  $c_{B1} \ge 4$ ,  $c_{B2} \ge 5$ .

#### 8.3-9.

minimize 
$$\sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$
 subject to 
$$\sum_{j=1}^n x_{ij} = 1 \qquad \text{for } i=1,2,\ldots,n$$
 
$$\sum_{i=1}^n x_{ij} = 1 \qquad \text{for } j=1,2,\ldots,n$$
 
$$x_{ij} \geq 0 \qquad \text{for } i,j=1,2,\ldots,n$$

The table of constraint coefficients is identical to that for the transportation problem (Table 8.6). The assignment problem has a more special structure because m = n and  $s_i = d_i = 1$  for every i.

#### 8.4-1.

Start with:

| 5 | 4 | 6 | 7 |
|---|---|---|---|
| 6 | 6 | 7 | 5 |
| 7 | 5 | 7 | 6 |
| 5 | 4 | 6 | 6 |
|   |   |   |   |

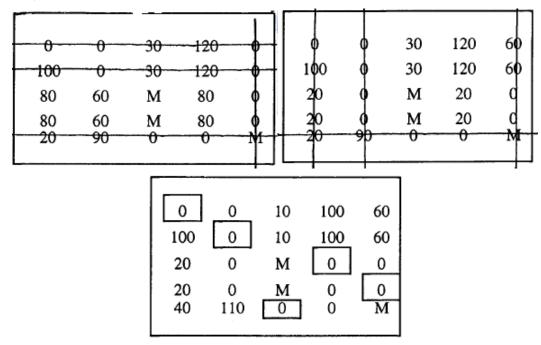
Subtract the minimum element from each element in the column and continue the algorithm.

$$\begin{bmatrix} 0 & 0 & 0 & 2 \\ 1 & 2 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 2 \end{bmatrix}$$

One optimal solution is to assign ships (1, 2, 3, 4) to ports (3, 4, 2, 1), with cost 21.

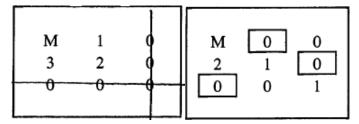
#### 8.4-2.

Subtract the minimum element in each row from each element in the row and continue the algorithm.


| 10.3     0     9.1     1.6     8.7       4.8     0     10.4     1.9     5.1       2.8     0     3.2     2.1     4.7       0     0     0     0     0       3.9     0.7     0     3.2     1.6       8.7     0     7.5     0     7.1       2.7     0.7     0     3.2     0       7.5     0     7.5     0     5.1 |                    |             |                    |                   |                   |                   |             |                   |                 |                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|--------------------|-------------------|-------------------|-------------------|-------------|-------------------|-----------------|-------------------------------|
| 8.7 0 7.5 0 7.1 7.5 0 7.5 0 5.                                                                                                                                                                                                                                                                                | 10.3<br>4.8<br>2.8 | 0<br>0<br>0 | 9.1<br>10.4<br>3.2 | 1.6<br>1.9<br>2.1 | 8.7<br>5.1<br>4.7 | 9.4<br>3.9<br>1.9 | 0<br>0<br>0 | 8.2<br>9.5<br>2.3 | 0.7<br>1<br>1.2 | 1.6<br>7.8<br>4.2<br>3.6<br>0 |
| 1.2 0 1.6 0.5 2.9 0 0 1.6 0.5 1.                                                                                                                                                                                                                                                                              | 8.7<br>3.2<br>1.2  | 0<br>0<br>0 | 7.5<br>8.8<br>1.6  | 0<br>0.3<br>0.5   | 7.1<br>3.5<br>2.9 | 7.5<br>2.0<br>0   | 0 0         | 7.5<br>8.8<br>1.6 | 0<br>0.3<br>0.5 | 0.4<br>5.9<br>2.3<br>1.7      |

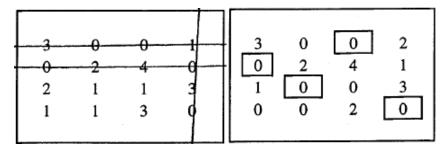
One optimal solution is that David swims the backstroke, Tony the breaststroke, Chris the butterfly and Carl the freestyle. The total time is 126.2.

Note: This application of the Hungarian algorithm uses the table in Problem 8.3-4 just as shown, where the strokes (including a dummy stroke) are the rows (assignees) and the swimmers are the columns (tasks). It would be more natural to first take the extra step of rewriting the table in the form shown in the back of the book for the solution for Problem 8.3-4, where the swimmers are the rows (assignees) and the strokes (including a dummy stroke) are the columns (tasks). However, the Hungarian algorithm leads to an optimal solution with either formulation.


8.4-3.

Cost: 3, 260




## 8.4-4.

Subtract the minimum element in each row from every element in the row and continue the algorithm. This gives an optimal solution with cost 12.



## 8.4-5.

Subtract the minimum element in each column from every element in the column and continue the algorithm.



An optimal assignment is (A, 3), (B, 1), (C, 2), (D, 4), with cost 3.

**8.4-6.** 

|          |   |   | Газк |   |     |         |
|----------|---|---|------|---|-----|---------|
| Assignee | A | В | С    | D | - 1 | Row Min |
|          | 1 |   |      |   | 1   |         |
| 1        | 5 | 8 | 6    | 7 | I   | 5       |
| 2        | 9 | 5 | 7    | 8 | - 1 | 5       |
| 3        | 5 | 9 | 8    | 4 | - 1 | 4       |
| 4        | 6 | 3 | 5    | 9 | - 1 | 3       |
|          |   |   |      |   |     |         |

Subtract the smallest number in each row from every number in the row.

|         |    |   |   | Task |   |   |
|---------|----|---|---|------|---|---|
| Assigne | e  | A | В | С    | D | 1 |
|         | _1 |   |   |      |   | I |
| 1       | _  | 0 | 3 | 1    | 2 |   |
| 2       |    | 4 | 0 | 2    | 3 | I |
| 3       |    | 1 | 5 | 4    | 0 | I |
| 4       |    | 3 | 0 | 2    | 6 | 1 |
| Col Min |    | 0 | 0 | 1    | 0 | 1 |

Subtract the smallest number in each column of the new table from every number in the column

|          |   |   | Task |   |     |  |
|----------|---|---|------|---|-----|--|
| Assignee | A | В | С    | D | - 1 |  |
| I        |   |   |      |   | I   |  |
| 1        | 0 | 3 | 0    | 2 | ı_  |  |
| 2        | 4 | 0 | 1    | 3 | I   |  |
| 3        | 1 | 5 | 3    | 0 |     |  |
| 4        | 3 | 0 | 1    | 6 |     |  |
| I        |   |   |      |   | 1   |  |

Determine the minimum number of lines needed to cross out all zeros.

|          |    | Т | 'ask |   |   |
|----------|----|---|------|---|---|
| Assignee | A  | В | С    | D | 1 |
|          |    |   |      |   | I |
|          |    | 1 |      |   | 1 |
| 1        | -0 | 3 | 0    | 2 |   |
|          |    | 1 |      |   | 1 |
| 2        | 4  | 0 | 1    | 3 | 1 |
|          |    | 1 |      |   |   |
| 3        | -1 | 5 | 3    | 0 |   |
|          |    | 1 |      |   |   |
| 4        | 3  | 0 | 1    | 6 |   |
| 1        |    | 1 |      |   | I |

Select the smallest number from all the uncovered numbers.

|         |      |   | Task |   |     |
|---------|------|---|------|---|-----|
| Assigne | e  A | В | С    | D | 1   |
|         | _1   |   |      |   | I   |
| 1       | 0    | 3 | 0    | 2 | I   |
| 2       | 4    | 0 | [1]  | 3 | I   |
| 3       | 1    | 5 | 3    | 0 | - 1 |
| 4       | 3    | 0 | 1    | 6 | - 1 |
|         | 1    |   |      |   | - 1 |

Subtract this number from every uncovered number and add it to every number at the intersection of covering lines.

|        |         |   | Task |   |   |
|--------|---------|---|------|---|---|
| Assign | ee  A   | В | С    | D | I |
|        | I       |   |      |   | I |
| 1      | _ I _ O | 4 | 0    | 2 |   |
| 2      | 3       | 0 | 0    | 2 | I |
| 3      | 1       | 6 | 3    | 0 | I |
| 4      | 2       | 0 | 0    | 5 | I |
|        | 1       |   |      |   | I |

Determine the minimum number of lines needed to cross out all zeros.

|          |    | 7 | Task |   |   |
|----------|----|---|------|---|---|
| Assignee | A  | В | С    | D | 1 |
| 1        | l  |   |      |   | I |
|          |    | I |      |   |   |
| 1        | -0 | 4 | 0    | 2 |   |
| 1        | l  | I | I    |   | 1 |
| 2        | 3  | 0 | 0    | 2 | 1 |
| 1        | l  | I | I    |   | 1 |
| 3        | -1 | 6 | 3    | 0 |   |
|          | l  | I | - 1  |   | 1 |
| 4        | 2  | 0 | 0    | 5 | 1 |
| i        | l  | I | ı    |   | Ī |

| Assignee <br> | A   | В | Task<br>C | D |  |
|---------------|-----|---|-----------|---|--|
| 1             | [0] | 4 | 0         | 2 |  |
| 2             | 3   | 0 | 0         | 2 |  |
| 3             | 1   | 6 | 3         | 0 |  |
| 4             | 2   | 0 | [0]       | 5 |  |

Task A is assigned to Assignee 1 Task B is assigned to Assignee 2 Task D is assigned to Assignee 3 Task C is assigned to Assignee 4

**CASES** 

# **CASE 8.1 Shipping Wood to Market**

# Option 1:

|          |   |    |        | Cost (1, | -        |    | ı          |   |          |
|----------|---|----|--------|----------|----------|----|------------|---|----------|
|          |   |    | Destin | ation (N | farket)  |    |            |   |          |
|          |   | 1  | 2      | 3        | 4        | 5  | Supply     |   |          |
|          | 1 | 61 | 72     | 45       | 55       | 66 | 15         |   |          |
| Source 1 | 2 | 69 | 78     | 60       | 49       | 56 | 20         |   |          |
|          | 3 | 59 | 66     | 63       | 61       | 47 | 15         |   |          |
| Demand   |   | 11 | 12     | 9        | 10       | 8  |            |   |          |
|          |   | _  | Unit ( | Cost (1, | 000's)   |    |            |   |          |
|          |   | l  | Destin | ation (N | /larket) |    |            |   |          |
|          |   | 1  | 2      | 3        | 4        | 5  | Totals     |   | Supply   |
|          | 1 | 6  | 0      | 9        | 0 -      | 0  | 15         | = | 15       |
| Source 1 | 2 | 2  | _ 0    | 0        | 10       | 8  | 20         | = | 20       |
|          | 3 | 3  | 12     | . 0 .    | O ·      | 0  | 15         | = | 15       |
| Totals   |   | 11 | 12     | 9        | 10       | 8  |            |   |          |
|          |   | =  | =      | =        | =        | =  | Total Cost | = | 2,816.00 |
| Demand   |   | 11 | 12     | 9        | 10       | 8  |            |   |          |

# Option 2:

|          |   |      | Unit ( |          |         |      |    |
|----------|---|------|--------|----------|---------|------|----|
|          |   | l    | Destin | ation (N | Market) |      | l  |
|          |   | 1    | 2      | 5        | Supply  |      |    |
|          | 1 | 58.5 | 68.3   | 47.8     | 55      | 63.5 | 15 |
| Source 1 | 2 | 65.3 | 74.8   | 55       | 49      | 57.5 | 20 |
|          | 3 | 59   | 61.3   | 63.5     | 58.8    | 50   | 15 |
| Demand   |   | 11   | 12     | 9        | 10      | 8    |    |

|          |   | _       | Unit C  | Cost (1, | 000's)   |      |            |   |          |
|----------|---|---------|---------|----------|----------|------|------------|---|----------|
|          |   | 1       | Destina | ation (N | /larket) |      |            |   |          |
|          |   | 1       | 2       | 3        | 4        | 5    | Totals     |   | Supply   |
|          | 1 | 6 -     | 0.€     | 94       | 0.€      | 0.   | 15         | = | 15       |
| Source 1 | 2 | ± 5 ⋅ t | 0.      | -0=      | 10#      | ∵ 5≢ | 20         | = | 20       |
|          | 3 | 0       | 12      | 0-2      | 0.₽      | 3₫   | 15         | = | 15       |
| Totals   |   | 11      | 12      | 9        | 10       | 8    |            |   |          |
|          |   | , =     | =       | =        | =        | =    | Total Cost | = | 2,770.80 |
| Demand   |   | 11      | 12      | 9        | 10       | 8    | l          |   |          |

Option 3:

|          |   | _    | Unit Cost (1,000's)  |    |      |      |        |  |  |  |  |
|----------|---|------|----------------------|----|------|------|--------|--|--|--|--|
|          |   | 1    | Destination (Market) |    |      |      |        |  |  |  |  |
|          |   | 1    | 2                    | 3  | 4    | 5    | Supply |  |  |  |  |
|          | 1 | 58.5 | 68.3                 | 45 | 55   | 63.5 | 15     |  |  |  |  |
| Source 1 | 2 | 65.3 | 74.8                 | 55 | 49   | 56   | 20     |  |  |  |  |
|          | 3 | 59   | 61.3                 | 63 | 58.8 | 47   | 15     |  |  |  |  |
| Demand   |   | 11   | 12                   | 9  | 10   | 8    |        |  |  |  |  |

|          |   |      | Unit 0 | Cost (1, | 000's)   |       |            |   |          |
|----------|---|------|--------|----------|----------|-------|------------|---|----------|
|          |   |      | Destin | ation (N | /larket) |       |            |   |          |
|          |   | 1    | 2      | 3        | 4        | 5     | Totals     |   | Supply   |
|          | 1 | s: 6 | 0.     | 9        | 0        | i 0 👆 | 15         | = | 15       |
| Source 1 | 2 | . 5  | - 0    | 0        | 10 🗀     | 5     | 20         | = | 20       |
|          | 3 | -0.  | 12 -   | ∴0.      | 0 :      | 3     | 15         | = | 15       |
| Totals   |   | 11   | 12     | 9        | 10       | 8     |            |   |          |
|          |   | =    | =      | =        | =        | =     | Total Cost | = | 2,729.10 |
| Demand   |   | 11   | 12     | 9        | 10       | 8     | l          |   |          |

The combination plan, i.e., shipping by either rail or water offers the best cost whereas shipping by rail is the most expensive. If the costs of shipping by water are expected to rise considerably more than those of shipping by rail, it is best to use option 1 and ship by rail. If the reverse is true, then it is better to use option 2. If the cost comparisons will remain roughly the same, then using option 3 is best. This option is clearly the most feasible, but it may not be chosen if it is logistically too cumbersome. Further information is needed to determine this.

Case 8.2
a) \$20 million is saved in comparison with the results in Figure 6.13 by shipping 20 million fewer barrels to Charleston and 20 million more to St. Louis.

| 2011 | В                      | c c            | D T                    | E I        | F       | G         | Н             | I        | J            |
|------|------------------------|----------------|------------------------|------------|---------|-----------|---------------|----------|--------------|
| 3    | В                      |                |                        | Refin      | eries   |           |               |          |              |
|      | Unit Cost (\$millions) |                | New Orleans Charleston |            | Seattle | St. Louis |               |          |              |
| 4    | OTHE COSE              | Texas          |                        | 4          | 5       | 1         |               |          |              |
| 5    | Oil                    | California     | 5                      | 5          | 3       | 4         |               |          |              |
| 6    | Fields                 | Alaska         | 5                      | 7          | 3       | 7         |               |          |              |
| 7    | Fields                 |                |                        | 3          | 5       | À         |               |          |              |
| 8    |                        | Middle East    | , <b>4</b>             | J          | -       | 1         |               |          |              |
| 9_   |                        |                |                        |            |         |           |               |          |              |
| 10   |                        |                |                        | l          |         |           |               | <u> </u> |              |
| 11   | Shipment               | Quantity       |                        | Refin      |         |           |               |          |              |
| 12   | (millions              | of barrels)    | New Orleans            | Charleston | Seattle | St. Louis | Total Shipped |          | Supply       |
| 13   |                        | Texas          | 0                      | 0          | 0       | 80        | 80            | 트        | 80           |
| 14   | Oil                    | California     | 0                      | 0          | 0       | 60        | 60            | =        | 60           |
| 15   | Fields                 | Alaska         | 20                     | 0          | 80      | 0         | 100           | =        | 100          |
| 16   |                        | Middle East    | 80                     | 40         | 0       | 0         | 120           | =.       | 120          |
| 17   |                        | Total Received | 100                    | 40         | 80      | 140       |               |          |              |
| 18   |                        |                | 2                      | 2          | 2       | 2         |               |          | Total Cost   |
| 19   |                        | Capacity       | 100                    | 60         | 80      | 150       |               |          | (\$millions) |
| 20   |                        | 5.0            | ]                      |            |         |           |               |          | 940          |

b) \$40 million is saved in comparison with the results in Figure 6.17.

|    | В             | С              | D          | E        | F            | G             | Н             | I | J           |
|----|---------------|----------------|------------|----------|--------------|---------------|---------------|---|-------------|
| 3  |               |                |            | Distribu | tion Center  |               |               |   |             |
| 4  | Unit Cost (\$ | millions)      | Pittsburgh | Atlanta  | Kansas City  | San Francisco |               |   |             |
| 5  |               | New Orleans    | 6.5        | 5.5      | 6            | 8             |               |   |             |
| 6  | Refineries    | Charleston     | 7          | 5        | 4            | 7             |               |   |             |
| 7  | 1             | Seattle        | 7          | 8        | 4            | 3             |               |   |             |
| 8  | 1             | St. Louis      | 4          | 3        | 1            | 5             |               |   |             |
| 9  |               |                |            |          |              |               |               |   |             |
| 10 |               |                |            |          |              |               |               |   |             |
| 11 | Shipment Q    | uantity        |            | Distribu | ution Center |               |               |   |             |
| 12 | (millions of  | barrels)       | Pittsburgh | Atlanta  | Kansas City  | San Francisco | Total Shipped |   | Supply      |
| 13 | ,             | New Orleans    | 100        | 0        | 0            | 0             | 100           | = | 100         |
| 14 | Refineries    | Charleston     | 0          | 20       | 0            | 20            | 40            | = | 40          |
| 15 |               | Seattle        | 0          | 0        | 0            | . 80          | 80            | = | 80          |
| 16 |               | St. Louis      | 0          | 60       | 80           | 0             | 140           | = | 140         |
| 17 |               | Total Received | 100        | 80       | 80           | 100           |               |   |             |
| 18 |               |                | =          | =        | =            | =             |               |   | Total Cos   |
| 19 |               | Demand         | 100        | 80       | 80           | 100           |               | L | (\$millions |
| 20 |               |                |            | MARKET   |              |               |               |   | 1,390       |

The cost of shipping both crude oil and finished product under this plan is \$940 million + \$1,390 million = \$2,330 million or \$2.33 billion — a savings of \$60 million compared to the original results in Table 6.20.

c) \$35 million is saved in comparison with the results in part (b). \$75 million is saved in comparison with the results in Figure 6.17.

|    | В              | c I            | D          | E        | F            | G             | H             | I  | J            |
|----|----------------|----------------|------------|----------|--------------|---------------|---------------|----|--------------|
| 3  |                |                |            | Distribu | ition Center |               |               |    |              |
| 4  | Unit Cost (\$r | nillions)      | Pittsburgh | Atlanta  | Kansas City  | San Francisco |               | L_ |              |
| 5  |                | New Orleans    | 6.5        | 5.5      | 6            | 8             |               |    |              |
| 6  | Refineries     | Charleston     | 7          | 5        | 4            | 7             |               |    |              |
| 7  |                | Seattle        | 7          | 8        | 4            | 3             |               |    |              |
| 8  |                | St. Louis      | 4          | 3        | 1            | 5             |               |    |              |
| 9  | 1              |                |            |          |              |               |               |    |              |
| 10 |                |                |            |          |              |               |               |    |              |
| 11 | Shipment Qu    | uantity        |            |          |              |               |               |    |              |
| 12 | (millions of I | parrels)       | Pittsburgh | Atlanta  | Kansas City  | San Francisco | Total Shipped |    | Capacity     |
| 13 | ,              | New Orleans    | 50         | 20       | 0 0          |               | 70            | 2  | 100          |
| 14 | Refineries     | Charleston     | 0          | 60       | 0            | 0             | 60_           | 2  | 60           |
| 15 |                | Seattle        | 0          | 0        | 0            | 80            | 80            | 2  | 80           |
| 16 |                | St. Louis      | 50         | 0        | 80           | 20            | 150           | 2  | 150          |
| 17 | 1              | Total Received | 100        | 80       | 80           | 100           | Ĺ             | ļ  |              |
| 18 |                |                | =          | =        | =            | =             |               | ļ  | Total Cost   |
| 19 |                | Demand         | 100        | 80       | 80           | 100           |               |    | (\$millions) |
| 20 |                |                |            |          |              |               |               |    | 1,355        |

d) This solution costs \$40 million more than the solution in part (a). This solution costs \$20 million more than the solution is Figure 6.13.

| I 1117 | Solutio          | 11 CUSIS \$20  |             | 710 tilali til |         |           |               |   |              |
|--------|------------------|----------------|-------------|----------------|---------|-----------|---------------|---|--------------|
|        | В                | С              | D           | E              | F       | G         | H             | I | J            |
| 3      |                  |                |             | Refin          | eries   |           |               |   |              |
| 4      | <b>Unit Cost</b> | (\$millions)   | New Orleans | Charleston     | Seattle | St. Louis |               |   |              |
| 5      |                  | Texas          | 2           | 4              | 5       | 1         |               |   |              |
| 6      | Oil              | California     | 5           | 5              | 3       | 4         |               |   |              |
| 7      | Fields           | Alaska         | 5           | 7              | 3       | 7         |               |   |              |
| 8      | 1                | Middle East    | 2           | 3              | 5       | 4         |               |   |              |
| 9      |                  |                |             |                |         |           |               |   |              |
| 10     |                  |                |             |                |         | 1         |               |   |              |
| 11     | Shipment         | Quantity       |             | Refin          |         |           |               |   |              |
| 12     | (millions        | of barrels)    | New Orleans | Charleston     | Seattle | St. Louis | Total Shipped |   | Supply       |
| 13     | 1                | Texas          | 0           | 0              | 0       | 80        | 80            | = | 80           |
| 14     | Oil              | California     | 0           | 0              | 0       | 60        | 60            | = | 60           |
| 15     | Fields           | Alaska         | 10          | 0              | 80      | 10        | 100           | = | 100          |
| 16     |                  | Middle East    | 60          | 60             | 0       | 0         | 120           | = | 120          |
| 17     |                  | Total Received | 70          | 60             | 80      | 150       |               |   |              |
| 18     |                  |                | =           | =              | =       | =         |               |   | Total Cost   |
| 19     |                  | Demand         | 70          | 60             | 80      | 150       |               |   | (\$millions) |
| 20     | 1                |                |             |                |         |           |               |   | 980          |

The total cost of shipping both crude oil and finished product under this plan is \$1,355 million + \$980 million = \$2,335 million or \$2.335 billion. This is \$5 million more than the cost of the combined total obtained in part (b), but \$55 million less than the total in Table 6.20.

e) The two transportation problems (shipping to refineries and shipping to distributions centers) are combined into a single model. The amount shipped to the refineries is constrained to be no more than capacity: TotalReceived(D16:G16) = Capacity(D18:G18). The total shipped out of the refineries is constrained to equal the total amount shipped in: ShippedOut(H31:H34) = ShippedIn(J31:J34). The goal is to minimize the total combined cost (in J45) which is the sum of the two intermediate costs (in J20 and J39).

|               | А В                                              | Гс                           | Ι д Ι                                   | E           | F                                                                                                              | G             | н             | I            | J                          |
|---------------|--------------------------------------------------|------------------------------|-----------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|---------------|---------------|--------------|----------------------------|
|               |                                                  | to Refineries                |                                         |             |                                                                                                                |               |               |              |                            |
|               | Shipping                                         | to Keillielles               | ļl                                      | Dofi        | ineries                                                                                                        |               |               |              |                            |
| _2            | 11-14-04                                         | st (\$millions)              | New Orleans                             |             | Seattle                                                                                                        | St. Louis     |               |              | -                          |
| 3             | Unit Co                                          | Texas                        |                                         | 4           | 5                                                                                                              | 1             |               |              |                            |
| <u>4</u><br>5 | Oil                                              | California                   |                                         | 5           | 3                                                                                                              | 4             |               |              |                            |
| _             | Fields                                           |                              | _10000000000000000000000000000000000000 | 7           | 3                                                                                                              | 7             |               |              |                            |
| <u>6</u><br>7 | rielus                                           | Middle East                  |                                         | 3           | 5                                                                                                              | 4             |               |              |                            |
| 8             |                                                  | Wildlie East                 | . <b>.</b>                              | J           |                                                                                                                | 7             |               |              |                            |
| 9             |                                                  |                              |                                         |             | <del>                                     </del>                                                               |               |               |              |                            |
| 10            | Shinme                                           | ent Quantity                 |                                         | Ref         | ineries                                                                                                        |               |               |              |                            |
| 11            |                                                  | s of barrels)                | New Orleans                             |             | Seattle                                                                                                        | St. Louis     | Total Shipped |              | Supply                     |
| 12            | (11111101                                        | Texas                        |                                         | 0           | 0                                                                                                              | 80            | 80            | =            | 80                         |
| 13            | Oil                                              | California                   | 4                                       | ō           | 0                                                                                                              | 60            | 60            | =            | 60                         |
| 14            | Fields                                           |                              | 20                                      | 0           | 80                                                                                                             | 0             | 100           | =            | 100                        |
| 15            | i i i i i i i i i i i i i i i i i i i            | Middle East                  |                                         | 30          | 0                                                                                                              | 10            | 120           | =            | 120                        |
| 16            |                                                  | Total Received               |                                         | 30          | 80                                                                                                             | 150           |               |              |                            |
| 17            | l                                                | TOTAL INCOCITOR              | 2                                       | 2           | 2                                                                                                              | 2             |               |              | Cost                       |
| 18            | <del> </del>                                     | Capacity                     | 100                                     | 60          | 80                                                                                                             | 150           |               |              | (Oil Fields -> Refineries) |
| 19            |                                                  | Capacity                     | 100                                     |             |                                                                                                                | ,             |               |              | (\$millions)               |
| _             | Chii                                             | 4- Distribution              | Conton                                  |             | -                                                                                                              |               |               |              | 950                        |
| 20            | Suibbing                                         | to Distribution              | Centers                                 |             | <u> </u>                                                                                                       | L             |               |              |                            |
| 21            |                                                  |                              |                                         |             | tion Center                                                                                                    | 0 5           |               |              |                            |
| 22            | Unit Co                                          | st (\$millions)              | Pittsburgh                              | Atlanta     | alaanaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan ahaan | San Francisco |               | -            |                            |
| 23            |                                                  | New Orleans                  | 6.5                                     | 5.5         | 6                                                                                                              | 8             |               |              |                            |
| 24            | Refiner                                          |                              | 7                                       | 5           | 4                                                                                                              | 7             |               |              |                            |
| 25            |                                                  | Seattle                      | 7                                       | 8           | 4                                                                                                              | . 5           |               | <del> </del> |                            |
| 26            |                                                  | St. Louis                    | 4                                       | 3           | 1                                                                                                              | 5             |               |              |                            |
| 27            | <del>                                     </del> |                              |                                         |             |                                                                                                                |               |               |              |                            |
| 28            |                                                  | 1.0                          |                                         | Dieteibu    | tion Center                                                                                                    |               |               | -            |                            |
| 29            |                                                  | ent Quantity                 | Dittabusah                              | Atlanta     |                                                                                                                | San Francisco | Shipped Out   | -            | Shipped In                 |
| 30            | (millioi                                         | s of barrels)                | Pittsburgh<br>100                       | Auania<br>0 | Cansas City                                                                                                    | 0             | 100           | =            | 100                        |
| 31            | Refiner                                          | New Orleans<br>es Charleston | 0                                       | 10          | 0                                                                                                              | 20            | 30            | =            | 30                         |
| 32            | Renner                                           | Seattle                      | 0                                       | 0           | 0                                                                                                              | 80            | 80            | =            | 80                         |
| 33            |                                                  | St. Louis                    | 0                                       | 70          | 80                                                                                                             | 0             | 150           | =            | 150                        |
| 34            | <del> </del>                                     | Total Received               |                                         | 80          | 80                                                                                                             | 100           | 100           | -            |                            |
| 36            | <del>                                     </del> | TOTAL RECEIVED               | 100                                     | =           | =                                                                                                              | =             |               |              | Cost                       |
| 37            | <del>                                     </del> | Demand                       | 100                                     | 80          | 80                                                                                                             | 100           |               |              | (Refineries> D.C.'s)       |
| 38            | 1                                                | Demand                       | 100                                     | ~~          |                                                                                                                |               |               |              | (\$millions)               |
|               | <del>                                     </del> |                              |                                         |             |                                                                                                                |               |               | †            | 1.370                      |
| 39            | <del>                                     </del> |                              |                                         |             | <del> </del>                                                                                                   | -             |               | $\vdash$     |                            |
| 40            | <b>!</b>                                         |                              |                                         |             |                                                                                                                |               |               | +            | Combined                   |
| 41            | <b>_</b>                                         |                              | -                                       | ··          | <del> </del>                                                                                                   |               |               | ⊢            | Total                      |
| 42            | <del></del>                                      |                              |                                         | ·           | +                                                                                                              | 1             |               | $\vdash$     | Cost                       |
| 43            |                                                  |                              |                                         |             | <del> </del>                                                                                                   | ļ — —         |               | +-           | (\$millions)               |
| 44            |                                                  |                              |                                         |             |                                                                                                                |               |               | -            | 2,320                      |
| 45            | 1                                                | 1                            |                                         |             | L                                                                                                              | l             |               | 1            | Z,8ZV                      |

The total combined cost is \$2,320 million or \$2.32 billion, which is \$10 million less than in part (b), \$15 million less than in part (d), and \$70 million less than in Table 6.20.

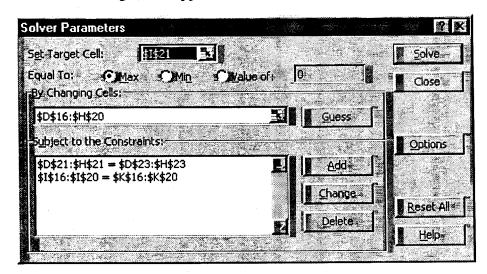
# f) If the Los Angeles refinery is chosen instead, then the combined shipping cost is \$2,450 million.

|    | A     | В          | С              | D           | Е          | F            | G             | Н             | I        | J,                       |
|----|-------|------------|----------------|-------------|------------|--------------|---------------|---------------|----------|--------------------------|
| 1  | Sh    | ippina to  | Refineries     |             |            |              | .,,           |               |          |                          |
| 2  | † · · |            |                |             | Refi       | neries       |               |               |          |                          |
| 3  | 1     | Unit Cost  | (\$millions)   | New Orleans | Charleston | Seattle      | Los Angeles   |               |          |                          |
| 4  | 1     |            | Texas          | 2           | 4          | 5            | 3             |               |          |                          |
| 5  |       | Oil        | California     | 5           | - 5        | 3            | 1             |               |          |                          |
| 6  |       | Fields     | Alaska         | 5           | 7          | 3            | 4             |               |          |                          |
| 7  |       |            | Middle East    | 2           | 3          | 5            | 4             |               |          |                          |
| 8  | ]     |            |                |             |            |              |               |               |          |                          |
| 9  |       |            |                |             |            |              |               |               |          |                          |
| 10 | ]     | Shipment   |                |             |            | neries       |               |               |          |                          |
| 11 |       | (millions  | of barrels)    | New Orleans | Charleston | Seattle      | St. Louis     | Total Shipped |          | Supply                   |
| 12 | 1     |            | Texas          | 40          | 0          | 0            | 40            | 80            | =        | 80                       |
| 13 |       | Oil        | California     | 0           | 0          | 0            | 60            | 60            | =        | 60                       |
| 14 |       | Fields     | Alaska         | 0           | 0          | 80           | 20            | 100           | =        | 100                      |
| 15 |       |            | Middle East    | 60          | 60         | 0            | 0             | 120           | =        | 120                      |
| 16 |       |            | Total Received | 100         | 60         | 80           | 120           |               |          |                          |
| 17 |       |            |                | 2           | 2          | 2            | 2             |               |          | Cost                     |
| 18 |       |            | Capacity       | 100         | 60         | 80           | 150           |               |          | (Oil Fields> Refineries) |
| 19 | 1     |            |                |             |            |              |               |               |          | (\$millions)             |
| 20 | Sh    | ipping to  | Distribution   | Centers     |            |              |               |               |          | 880                      |
| 21 | 1     | T 1        |                |             | Distribut  | tion Center  |               |               |          |                          |
| 22 |       | Unit Cost  | (\$millions)   | Pittsburgh  | Atlanta    | Kansas City  | San Francisco |               |          |                          |
| 23 | 1     |            | New Orleans    | 6.5         | 5.5        | 6            | 8             |               |          |                          |
| 24 | 1     | Refineries |                | 7           | 5          | - 4          | 7             |               |          |                          |
| 25 | 1     | 1          | Seattle        | 7           | - 6        | 4            | 3             |               |          |                          |
| 26 | 1     |            | Los Angeles    | 8           | 6          | 3            | 2             |               |          |                          |
| 27 | 1 -   |            |                |             |            |              |               |               |          |                          |
| 28 | 1     |            |                |             |            |              |               |               |          |                          |
| 29 | 1     | Shipment   | Quantity       |             | Distribut  | tion Center  |               |               |          |                          |
| 30 |       |            | of barrels)    | Pittsburgh  | Atlanta    | Kansas City  | San Francisco | Shipped Out   |          | Shipped In               |
| 31 | 1     | <b>'</b>   | New Orleans    | 80          | 20         | 0            | 0             | 100           | =        | 100                      |
| 32 | 1     | Refineries | Charleston     | l o         | 60         | 0            | 0             | 60            | =        | 60                       |
| 33 | T     |            | Seattle        | 20          | 0          | 60           | 0             | 80            | =        | 80                       |
| 34 | 1     |            | St. Louis      | 0           | 0          | 20           | 100           | 120           | =        | 120                      |
| 35 | 1     |            | Total Received | 100         | 80         | 80           | 100           |               |          |                          |
| 36 | 1     |            |                | =           | =          | =            | =             |               |          | Cost                     |
| 37 |       |            | Demand         | 100         | 80         | 80           | 100           |               |          | (Refineries> D.C.'s)     |
| 38 |       |            |                |             |            |              |               |               |          | (\$millions)             |
| 39 | 1 -   |            |                |             |            |              |               |               |          | 1,570                    |
| 40 | T     |            |                |             |            |              |               |               |          |                          |
| 41 | T     |            |                |             | -          |              |               |               | <u> </u> | Combined                 |
| 42 | 1     |            |                |             |            |              |               |               |          | Total                    |
| 43 | 1     | 1          |                |             |            |              |               |               |          | Cost                     |
| 44 | 1     |            |                |             |            |              |               |               |          | (\$millions)             |
|    | 4     | +          |                | l           |            | <del> </del> |               |               |          | 2,450                    |

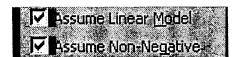
If the Galveston refinery is chosen instead, then the combined shipping cost is \$2,470 million.

| 1 St<br>2 3 4 5 6 7 8 9 10 11 12           | Unit Cost Oil Fields Shipment | Texas<br>California<br>Alaska<br>Middle East     | New Orleans 2 5 2 2 |                           | reries Seattle 5 3 | Galveston       | н             | I            | J                        |
|--------------------------------------------|-------------------------------|--------------------------------------------------|---------------------|---------------------------|--------------------|-----------------|---------------|--------------|--------------------------|
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | Oil Fields                    | (\$millions) Texas California Alaska Middle East | 2<br>5<br>5         | Charleston<br>4<br>5<br>7 | Seattle<br>5<br>3  | 1               |               | _            |                          |
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10      | Oil<br>Fields                 | Texas<br>California<br>Alaska<br>Middle East     | 2<br>5<br>5         | Charleston<br>4<br>5<br>7 | Seattle<br>5<br>3  | 1               |               |              |                          |
| 4<br>5<br>6<br>7<br>8<br>9<br>10           | Oil<br>Fields                 | Texas<br>California<br>Alaska<br>Middle East     | 2<br>5<br>5         | 4<br>5<br>7               | 5<br>3             | 1               |               |              |                          |
| 5<br>6<br>7<br>8<br>9<br>10                | Fields                        | California<br>Alaska<br>Middle East              | 5<br>5              | 5<br>7                    | 3                  | —               |               |              |                          |
| 6<br>7<br>8<br>9<br>10                     | Fields                        | Alaska<br>Middle East                            | 5                   | 7                         |                    |                 |               |              |                          |
| 7<br>8<br>9<br>10                          | Shipment                      | Middle East                                      |                     |                           | 4                  | 3               |               |              |                          |
| 8<br>9<br>10<br>11                         |                               |                                                  | 2                   | 3                         |                    | 5               | _             |              |                          |
| 9<br>10<br>11                              |                               |                                                  |                     |                           | 5                  | 3               |               |              |                          |
| 10<br>11                                   |                               |                                                  |                     |                           |                    |                 |               |              |                          |
| 11                                         |                               |                                                  |                     |                           |                    |                 |               |              |                          |
|                                            |                               | Quantity                                         |                     |                           | nenes              |                 |               |              |                          |
| 12                                         | (millions o                   | of barrels)                                      | New Orleans         | Charleston                | Seattle            | Galveston       | Total Shipped |              | Supply                   |
| 141                                        | 1                             | Texas                                            | 0                   | 0                         | 0                  | 80              | 80            | =            | 80                       |
| 13                                         | Oil                           | California                                       | 0                   | 0                         | 0                  | 60              | 60            | =            | 60                       |
| 14                                         | Fields                        | Alaska                                           | 10                  | 0                         | 80                 | 10              | 100           | =            | 100                      |
| 15                                         |                               | Middle East                                      | 90                  | 30                        | 0                  | 0               | 120           | =            | 120                      |
| 16                                         | 1 - 1                         | Total Received                                   | 100                 | 30                        | 80                 | 150             |               |              |                          |
| 17                                         |                               |                                                  | 2                   | 2                         | 2                  | 2               |               |              | Cost                     |
| 18                                         |                               | Capacity                                         | 100                 | 60                        | 80                 | 150             |               |              | (Oil Fields> Refineries) |
| 19                                         |                               |                                                  |                     |                           |                    |                 |               |              | (\$millions)             |
|                                            | hinning to                    | Distribution                                     | Centers             |                           |                    |                 |               |              | 870                      |
|                                            | inpping to                    | Distribution                                     | 00111010            | Dietribut                 | tion Center        |                 |               | _            |                          |
| 21                                         |                               | (A101)                                           | Pittsburgh          | Atlanta                   |                    | San Francisco   |               | _            |                          |
| 22                                         | Unit Cost                     | (\$millions)<br>New Orleans                      | 6.5                 | 5.5                       | Railsas Oily       | Sair i Ianoisco |               |              |                          |
| 23                                         | ·                             |                                                  | -                   | 5.5<br>5                  | 4                  | 7               |               |              |                          |
| 24                                         | Refineries                    | Charleston                                       | 7                   | 8                         | 4                  | 3               |               | -            |                          |
| 25                                         |                               | Seattle                                          | 5                   | 4                         | 3                  | 2               |               | ,            |                          |
| 26                                         |                               | Galveston                                        | o<br>I              | •                         |                    |                 |               | i -          |                          |
| 27                                         |                               |                                                  |                     |                           |                    |                 |               |              |                          |
| 28                                         |                               |                                                  |                     | Dietribus                 | tion Center        |                 | ·             | -            | <u> </u>                 |
| 29                                         | Shipment                      | Quantity                                         | Dittabureb          | Atlanta                   |                    | San Francisco   | Shipped Out   |              | Shipped In               |
| 30                                         | (millions                     | of barrels)                                      | Pittsburgh          | Aliania<br>0              | Nansas Ony         | 0               | 100           | =            | 100                      |
| 31                                         |                               | New Orleans                                      | 100                 | 0                         | 30                 | 0               | 30            | =            | 30                       |
| 32                                         | Refineries                    | Charleston                                       | 0                   | 0                         | 0                  | 80              | 80            | =            | 80                       |
| 33                                         |                               | Seattle                                          | 0                   | 80<br>80                  | 50                 | 20              | 150           | E            | 150                      |
| 34                                         |                               | Galveston                                        | 100                 | 80                        | 80                 | 100             | 100           | <del>-</del> |                          |
| 35                                         |                               | Total Received                                   | 100                 | =                         | =                  | =               |               |              | Cost                     |
| 36                                         | _                             | D                                                | 100                 | =<br>80                   | 80                 | 100             |               | -            | (Refineries -> D.C.'s)   |
| 37                                         |                               | Demand                                           | 100                 | ou                        | 00                 | 100             |               |              | (\$millions)             |
| 38                                         |                               |                                                  |                     |                           | <del></del>        |                 |               | -            | 1.600                    |
| 39                                         |                               |                                                  |                     |                           | <u> </u>           |                 |               | -            | 1,000                    |
| 40                                         |                               |                                                  |                     |                           |                    |                 |               | <u> </u>     | Combined                 |
| 41                                         |                               |                                                  | ļ., <u></u> -       |                           |                    |                 |               | <u> </u>     | Combined<br>Total        |
| 42                                         |                               |                                                  |                     |                           | 1                  |                 |               |              | Cost                     |
| 43                                         |                               |                                                  |                     |                           |                    |                 |               | <u> </u>     |                          |
| 44                                         |                               |                                                  |                     |                           |                    |                 |               | ļ -          | (\$millions)             |
| 45                                         | -                             |                                                  |                     |                           |                    | <u> </u>        |               | L            | 2,470                    |

| Site        | Total Cost<br>of Shipping<br>Crude Oil | Total Cost<br>of Shipping<br>Finished<br>Product | Operating Cost<br>for New<br>Refinery | Total<br>Variable<br>Cost |
|-------------|----------------------------------------|--------------------------------------------------|---------------------------------------|---------------------------|
| Los Angeles | \$880 million                          | \$1.57 billion                                   | \$620 million                         | \$3.07 billion            |
| Galveston   | 870 million                            | 1.60 billion                                     | 570 million                           | 3.12 billion              |
| St. Louis   | 950 million                            | 1.37 billion                                     | 530 million                           | 2.92 billion              |


# g) Answers will vary.

# The problem in this case can be solved using assignment problem. 8.3 Throughout thin case, we use the template for the assignment problem.


a) The projects are the tasks, and the scientists are the assignees in this assignment problem.

|    | Α | В        | С       | D            | Е       | F        | G        | Н          |          | J  | K            |
|----|---|----------|---------|--------------|---------|----------|----------|------------|----------|----|--------------|
| 1  |   |          |         |              |         |          |          |            |          |    |              |
| 2  |   |          |         |              |         | Point s  |          |            |          |    |              |
| 3  |   |          |         |              |         | Task     | <u>-</u> |            |          |    |              |
| 4  |   |          |         | Up           | Stable  | Choice   | Hope     | Release    | Supply   |    |              |
| 5  |   |          | Kvaal   | 1 00         | 4 00    | 200      | 200      | 100        | 1        |    |              |
| 6  |   | Assignee | Zuner   | 0            | 200     | 800      | 0        | 0          | 11       |    |              |
| 7  |   |          | Tsai    | 1 00         | 1 00    | 100      | 100      | 600        | 1        |    |              |
| 8  |   |          | Mickey  | 2 67         | 1 53    | 99       | 451      | 30         | 1        |    |              |
| 9  |   |          | Rollins | 1 00         | 33      | 33       | 34       | 800        | . 1      |    |              |
| 10 |   | Demand   |         | 1            | 1       | 1        | 11       | 1          |          |    |              |
| 11 |   |          |         |              | <u></u> |          |          |            |          |    |              |
| 12 |   |          |         |              |         |          |          |            |          |    |              |
| 13 | L |          |         |              | A       | ssignmer | nts      |            |          |    |              |
| 14 |   |          |         |              |         | Task     |          |            |          |    |              |
| 15 |   |          |         | Up           | Stable  | Choice   | Hope     | Release    | Totals   |    | Supply       |
| 16 | ] |          | Kvaal   | <b>3</b> 2 0 | 1       | 0        | 0        | - 0        | 1        | =  | 1            |
| 17 |   | Assignee | Zuner   | . 0          | 0       | 1        | 0 3      | 0          | 11       | =  | 1            |
| 18 |   |          | Tsai    | - 1          | - 0     | 0        | 0<br>1   | 0          | 1        | =  | 1            |
| 19 |   |          | Mickey  | <b>∌</b> 0   | . '0    | 0        | 1        | 0          | 1        | =  | 1            |
| 20 | Г |          | Rollins | ** O         | 0       | 0 4      | 0        | <b>35.</b> | 1        | =  | 1            |
| 21 | 1 | Totals   |         | 1            | 1       | 1        | 1        | 1 1        | 2551     | _= | Total Points |
| 22 |   |          |         | =            | =       | =        | =        | =          |          |    |              |
| 23 |   | Demand   | ]       | 1            | 1 1     | 1 1      | 11       | 11         | <u> </u> |    |              |

The solver dialogue box appears as follows:



The solver options throughout this case are:



To maximize the scientists preferences you want to assign Dr. Tsai to lead project Up, Dr. Kvaal to lead project Stable, Dr. Zuner to lead project Choice, Dr. Mickey to lead project Hope, and Dr. Rollins to lead project Release.

b) Since there are only four assignees we introduce a dummy assignee with preferences of -1. The task that gets assigned the dummy assignee will not be done.

|    | Α | В        | С      | D                                       | E      | F          | G                                     | Н       |              | j        | K             |
|----|---|----------|--------|-----------------------------------------|--------|------------|---------------------------------------|---------|--------------|----------|---------------|
| 1  |   |          |        |                                         |        |            |                                       |         |              |          |               |
| 2  |   |          |        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |        | Points     |                                       |         |              |          |               |
| 3  |   |          |        |                                         |        | Task       | , , , , , , , , , , , , , , , , , , , |         |              |          |               |
| 4  |   |          |        | Up                                      | Stable | Choice     | Hope                                  | Release | Supply       |          |               |
| 5  |   |          | Kvaal  | 100                                     | 400    | 200        | 200                                   | 100     | 1            |          |               |
| 6  |   | Assignee | Zuner  | 0                                       | 200    | 800        | 0                                     | 0       | 11           |          |               |
| 7  |   |          | Tsai   | 100                                     | 100    | 100        | 100                                   | 600     | 1            |          |               |
| 8  |   |          | Mickey | 267                                     | 153_   | 99         | 451                                   | 30      | 1            |          |               |
| 9  |   |          | dummy  | -1                                      | -1     | -1         | -1                                    | -1      | 1            |          |               |
| 10 |   | Demand   |        | 1                                       | 1      | 1          | 11_                                   | 1       |              |          |               |
| 11 |   |          |        |                                         |        |            |                                       |         |              |          |               |
| 12 |   |          |        |                                         |        |            |                                       |         |              |          |               |
| 13 |   |          |        |                                         | As     | signment s | 3                                     |         |              |          |               |
| 14 |   |          |        |                                         | ,      | Task       | ,                                     |         |              | _        |               |
| 15 |   |          |        | Up                                      | Stable | Choice     | Hope                                  | Release | Totals       |          | Supply        |
| 16 |   |          | Kyaal  | 0.25                                    | -1     | 0          | 0                                     | 0       | 1            | =        | 1             |
| 17 |   | Assignee | Zuner  | 0                                       | - 0    | . 1        | 0                                     | 0       | 1            | =        | 1             |
| 18 |   |          | Tsai   | 0                                       | 0      | 0          | - 0                                   | 1.      | 1            | =        | 1             |
| 19 |   |          | Mickey | . 0 .                                   | 0      | 0.         |                                       | 0       |              | =        | 1             |
| 20 |   |          | dummy  | 1.12                                    | • 0    | - 0        | 0                                     | 0       | 1            | =        | 1             |
| 21 |   | Totals   |        | 11                                      | 111    | 1          | 11                                    | 11      | <b>£2250</b> | _=       | To tal Points |
| 22 |   |          |        | =                                       | =      | =          | _=_                                   |         |              | <u> </u> |               |
| 23 |   | Demand   |        | 1                                       | 11     | 11         | 1_1_                                  | l1      | <u> </u>     |          |               |

The solver dialogue box remains the same.

We give up on project Up.

c) Since two of the assignees can do two tasks we need to double them. We include assignees Zuner-1, Zuner-2, Mickey-1, and Mickey-2 into the problem. In order to have an equal number of assignees and tasks we also need to include one dummy task. In order to ensure that neither Dr. Kvaal nor Dr. Tsai can get assigned the dummy task and thus no project, we insert a large negative number as their point bid for the dummy project.

|          | Α  | В        | С        | D   | E       | F       | G     | Н           | ı            | J      | К    | L            |
|----------|----|----------|----------|-----|---------|---------|-------|-------------|--------------|--------|------|--------------|
| 1        | _  |          |          |     |         |         |       | l l         |              |        |      |              |
| 2        |    |          |          |     |         | Points  | 3     |             |              |        |      |              |
| 3        |    |          |          |     | - · · · | Task    |       | <del></del> |              |        |      |              |
| 4        |    |          |          | Up  | Stable  | Choice  | Hope  | Release     | dummy        | Supply |      |              |
| 5        |    |          | Kvaal    | 100 | 400     | 200     | 200   | 100         | -10000       | 1      | L    |              |
| 6        |    |          | Zuner-1  | 0   | 200     | 8 00    | 0     | 0           | -1           | 11     |      |              |
| 7        |    | Assignee | Zuner-2  | 0   | 200     | 8 00    | 0     | 0           | -1           | 1      |      |              |
| 8        |    |          | Tsai     | 100 | 100     | 1 00    | 1 00  | 600         | -10000       | 11     |      |              |
| 9        |    |          | Mickey-1 | 267 | 153     | 99      | 4 5 1 | 30          | -1           | 11     |      |              |
| 10       | ll |          | Mickey-2 | 267 | 153     | 99      | 4 51  | 30          | -1           | 1      | ] _] |              |
| 11       |    | Dem and  |          | 1   | 1       | 1       | 1     | 1           | 1            |        |      |              |
| 12       |    |          |          |     |         |         |       |             |              |        |      |              |
| 13       |    |          |          |     |         |         |       |             |              |        |      |              |
| 14       |    |          |          |     | •       | Assignm | ents  |             |              |        |      |              |
| 15       | П  |          |          |     | ,       | Task    |       |             |              |        |      |              |
| 16       |    |          |          | Up  | Stable  | Choice  | Hope  | Release     | dummy        | Totals |      | Supply       |
| 17       |    |          | Kvaal    | 6 O | 1.7     |         | . 0   | . 0         | <b>**</b> =0 | 1      | =    | 1            |
| 18       |    |          | Zuner-1  | 1 0 | 0       | -0      | 0     | . 0         | /1 T         | 1      | =    | 1            |
| 18<br>19 |    | Assignee | Zuner-2  | - 0 | 0       | -1      | 0     | 0 €         | 0            | 1      | =    | 1            |
| 20       |    |          | Tsai     | 0   | 0       | . 0     | 0 🖭   | ^ <b>1</b>  | 0            | 1      | =    | 11           |
|          |    |          | Mickey-1 | - 0 | 0       | 0 1     | . 1   | . 0         | * TO *       | 1      | =    | 1            |
| 21<br>22 | 1  |          | Mickey-2 |     | Ö       | 0 *     | 0     | 0 "         | 0            | 1      | =    | 1            |
| 23       |    | Totals   |          | 11  | 1       | 1       | 1     | 1           | 1            | 2517   | =    | Total Points |
| 24       |    |          |          | 200 | =       | =       | =     | ==          | =            |        |      |              |
| 25       |    | Demand   |          | 1   | 1       | 1       | 1     | 1           | 1            |        |      |              |

Dr. Kvaal leads project Stable, Dr. Zuner leads project Choice, Dr. Tsai leads project Release, and Dr. Mickey leads the projects Hope and Up.

d) Under the new bids of Dr. Zuner the assignment does not change:

|          | A        | В        | с        | D    | E               | F        | G     | Н        |         | J       | κ         | L           |
|----------|----------|----------|----------|------|-----------------|----------|-------|----------|---------|---------|-----------|-------------|
| 2        |          |          |          |      |                 | Point    | s     |          |         |         |           |             |
| 3        |          |          |          |      |                 | Task     |       |          |         |         | $\sqcup$  |             |
| 4        |          |          |          |      | Stable          | Choice   | Hone  | Release  | dummy   | Supply  |           |             |
| 5        |          |          | Kvaal    | 100  | 4 00            | 200      | 200   | 100      | -10.000 | 11      | 1         |             |
| ـهـا     |          |          | Zuner-1  | 20   | 4.50            | 451      | 39    | 40       | 1       | 11      | 1_1       |             |
| 7        |          | Assignee | Zuner-2  | 20   | 4.50            | 451      | 39    | 40       | 1       |         | 1-1       |             |
| -8-      |          |          | Tsai     | 100  | 100_            | _100_    | _100  | 600      | -10000  | 11      | 1-1       |             |
| 9        |          |          | Mickey-1 | 267  | 1.53            | 99       | 451   | 30       | 1       | 1       | ╁╌┤       |             |
| مد       |          |          | Mickey-2 | 267  | 153             | 99       | 451   | 30       |         | 1_      | 1         |             |
| 111      | <b>L</b> | Demand   |          | 1    | 1               | 1        | 1     | 11       | 1       | ļ       | 4-4       |             |
| 12       |          |          |          |      |                 |          |       |          |         | ļ       | $\vdash$  |             |
| 13       | 4        |          |          |      | <u> </u>        | <u> </u> |       | <u> </u> |         |         | 1-1       |             |
| 14       |          |          |          |      |                 | Assignm  |       |          |         | ·       | +         |             |
| 1.6      |          |          |          | l ln | Stable          | Choice-  |       | Release  | dummy_  | Totals  |           | Supply      |
| 17<br>18 | 1        |          | -Kvaal   | 0    | 1=              | 0        | 0.3   | 0        | 0       | 11      | -         | 1           |
|          |          |          | Zunor 1  | 0    | 'O <sub>~</sub> |          | 0.5   | 0 *      | 0#4     | <b></b> | +-        | 1           |
| 40       |          | Assignee | Zuner-2  | 0    | 0               | * 0      | 0     | -0-      |         |         | <b>↓-</b> | 1           |
| 20       | <b> </b> |          | Tsai -   | 0    | 90              | .0 ⋅     | 0≪¢   | 1 🕴      | 0       | 11      | -         | 1           |
| 21       |          |          | Mickey-1 |      | : 30 €          | • 0      | 1 🔻   |          |         | 1       | =         | 1           |
| 22       | 4        |          | Mickey-2 | 1    | <u> </u>        | <u> </u> | 0 * * | <u> </u> | n       | 1       | -         | 1           |
| 23       |          | Totals   | -        | 1    | 1 -1 -          | 1-1-     | 1-1-  | 1-1-     | 1       | 2468    |           | Total Point |
| 24       |          | Demand   |          | 1    | 1 1             | 1        | 11    | 1        | 1       |         | Ĭ         |             |

- e) Certainly Dr. Zuner could be disappointed that she is not assigned to project Stable, especially when she expressed a higher preference for that project than the scientist assigned. The optimal solution maximizes the preferences overall, but individual scientists may be disappointed. We should therefore make sure to communicate the reasoning behind the assignments to the scientists.
- f) Whenever a scientist cannot lead a particular project we use a large negative number as the point bid.

|    | Α       | В        | С       | D      | E      | F         | G        | Н       |         | J | К             |
|----|---------|----------|---------|--------|--------|-----------|----------|---------|---------|---|---------------|
| 1  |         |          |         |        |        |           |          |         |         |   |               |
| 2  |         |          |         |        |        | Points    |          |         |         |   |               |
| 3  |         |          |         |        |        | Task      |          |         |         |   |               |
| 4  |         |          |         | Up     | Stable | Choice    | Hope     | Release | Supply  |   |               |
| 5  |         |          | Kvaal   | 86     | 343    | 171       | -1000d   | -10000  | 1       |   |               |
| 6  |         | Assignee | Zuner   | 0      | 200    | 800       | 0        | 0       | 1       |   |               |
| 7  |         |          | Tsai    | 100    | 100    | 100       | 100      | 600     | 1       |   |               |
| 8  |         |          | Mickey  | 300    | -10000 | 125       | -10000   | 175     | 1       |   |               |
| 9  |         |          | Rollins | -10000 | 50     | 50        | 100      | 600     | 1       |   |               |
| 10 |         | Demand   |         | 1      | 1      | 1         | 1        | 1       |         |   |               |
| 11 |         |          |         |        |        |           |          |         |         |   |               |
| 12 |         |          |         |        |        |           |          |         |         |   |               |
| 13 |         |          |         |        | Ass    | ignmen ts | <b>.</b> |         |         |   |               |
| 14 |         |          |         |        |        | Task      |          |         |         |   |               |
| 15 |         |          |         | Up     | Stable | Choice    | Hope     | Release | Tot als |   | Supply        |
| 16 |         |          | Kvaal   | 0 🖅    |        | 0         | 0        | 0       | 1       | = | 1             |
| 17 |         | Assignee | Zuner   | 0.75   | 0      | -1        | 0        | 0       | 1       | = | 1             |
| 18 |         |          | Tsai    | 0      | 0      | 0         | -1       | .0      | 1_      | = | 11            |
| 19 |         |          | Mickey  | 1 0    | 0      | 0         | . 0      | 0       | 11      | = | 1             |
| 20 |         |          | Rollins | 0      | ×0     | 0         | 0        | 7.1     | 1       | = | 1             |
| 21 |         | Totals   |         | 1      | 1      | 1         | 1        | 1       | 2143    | = | Tot al Points |
| 22 | $\perp$ |          | +       | =      | =      | =         |          |         |         |   |               |
| 23 |         | Demand   |         | 1      | 1      | 1         | 11       | 1       |         |   |               |

Dr. Kvaal leads project Stable, Dr. Zuner leads project Choice, Dr. Tsai leads project Hope, Dr. Mickey leads project Up, and Dr. Rollins leads project Release.

g) When we want to assign two assignees to the same task we need to duplicate that task.

| Ģ        | Α | В        | С       | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E        | F          | G              | Н      |           | J         | К       | ļL.    | M                                                |
|----------|---|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----------------|--------|-----------|-----------|---------|--------|--------------------------------------------------|
| 2        |   |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u> |            |                | 1      |           | l         |         | +      | <u> </u>                                         |
| 3        |   |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            | Points<br>Task |        |           |           | <b></b> | +      |                                                  |
| 4        |   |          |         | Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stable   | Choice     | Hope-A         | Hope-B | Release-A | Release-B | Supply  | +-     | <del>                                     </del> |
| 5        |   |          | Kvaa    | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 343      | 171        | -10000         | -10000 | -10000    | -10000    | 1<br>1  | ╣      |                                                  |
| 6        |   | Assignee | Zuner   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200      | 800        | 0              | 0      | 0         | 0         | 1       | +-     |                                                  |
| 7        |   |          | Tsai    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100      | 100        | 100            | 100    | 600       | 600       | 1       | 1      |                                                  |
| 8        |   |          | Mickey  | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -10000   | 125        | -10000         | -10000 | 175       | 175       | 1 1     | +-     |                                                  |
| 9        |   |          | Rollins | -10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50       | 50         | 100            | 100    | 600       | 600       | 1       | +      |                                                  |
| 10       |   |          | Arriaga | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250      | -10000     | 250            | 250    | 250       | 250       | 1       | +      |                                                  |
| 11       |   |          | Sant os | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        | -10000     | 333            | 333    | 555       | 555       | 1       | 1      |                                                  |
| 12       |   | Demand   |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | 1          | 1              | 1      | 1         | 1         |         | ╁┈     |                                                  |
| 13       |   |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |                |        |           |           |         |        |                                                  |
| 14       |   |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            |                |        |           |           |         | $\top$ |                                                  |
| 15       |   |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            | Assignment s   | 3      |           |           |         | 1      |                                                  |
| 16<br>17 | 1 |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |            | Task           |        |           |           |         | T      |                                                  |
|          |   |          |         | Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Stable   | Choice     | Hope-A         | Hope-B | Helease-A | Helease-B | Totals  |        | Supply                                           |
| 18       | [ |          | Kvaal   | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 8      | 0          | 0              | 0      | 0         | 0         | 1       | =      | 1                                                |
| 19       |   | Assignee | Zuner   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0        | 1          | : 0            | 0      | 0         | 0         | 1       | =      | 1                                                |
| 20       |   |          | Tsai    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0        | <b>*</b> 0 | 0              | 0      | 1         | 0         | 1       | =      | 1                                                |
| 21       |   |          | Mickey  | 4 4 Sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0        | 0          | . F 0          | 0 💸    | 0<br>0 ≠  | 0         | 1       | =      | 1                                                |
| 22       |   |          | Rollins | 30 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST 10 ST | - U      | ~~·U       | -0             | 0 🥖    | 0 =       | .1        | 1       | =_     | 1                                                |
| 23       |   |          | Arriaga |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - O 🦸    | 0          | 0              | - 1    | 0         | 70        | 1       | =      | 1                                                |
| 24       |   |          | Sant os | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 💐      | 0          | 1              | 0 🔭    | 0         | *0        | 11      | =      | 1                                                |
| 25       |   | Tot als  |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | 1          | 1              | 1      | 1         | 1         | 3226    | . =    | Total Points                                     |
| 26       |   |          |         | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =        | =          | =              | Ξ      | 立         | æ         |         |        |                                                  |
| 27       |   | Demand   |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | 1          | 1              | 1      | 1         | 1         |         | Ι      |                                                  |

Project Up is led by Dr. Mickey, Stable by Dr. Kvaal, Choice by Dr. Zuner, Hope by Dr. Arriaga and Dr. Santos, and Release by Dr. Tsai and Dr. Rollins.

h) No. Maximizing overall preferences does not maximize individual preferences. Scientists who do not get their first choice may become resentful and therefore lack the motivation to lead their assigned project. For example, in the optimal solution of part (g), Dr. Santos clearly elected project Release as his first choice, but he was assigned to lead project Hope.

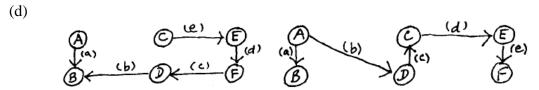
In addition, maximizing preferences ignores other considerations that should be factored into the assignment decision. For example, the scientist with the highest preference for a project may not be the scientist most qualified to lead the project.

#### **CHAPTER 9: NETWORK OPTIMIZATION MODELS**

#### 9.2-1.

(a) Directed path: AD-DC-CE-EF  $(A \rightarrow D \rightarrow C \rightarrow E \rightarrow F)$ 

Undirected paths: AD-FD  $(A \rightarrow D \rightarrow F)$ 


CA-CE-EF (A  $\rightarrow$  C  $\rightarrow$  E  $\rightarrow$  F) AD-ED-EF (A  $\rightarrow$  D  $\rightarrow$  E  $\rightarrow$  F)

(b) Directed cycles: AD-DC-CA

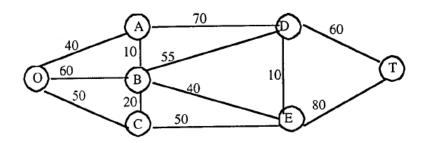
DC-CE-ED DC-CE-EF-FD

Undirected cycle that includes every node: CA-CE-EF-FD-DB-AB

(c) {CA, CE, DC, FD, DB} is a spanning tree.



#### 9.3-1.


Prior to this study, Canadian Pacific Railway (CPR) used to run trains only after a sufficient level of freight was attained. This policy resulted in unreliable delivery times, so poor customer service. In order to improve customer service and utilization of available resources, CPR designed the railway operating plan called Integrated Operating Plan (IOP). "The problem of designing a railway operating plan is to satisfy a set of customer requirements expressed in terms of origin-destination traffic movements, using a blocking plan and a train plan. Thus, the primary variables are the blocks and trains. The constraints are the capacities of the lines and yards, the customer-service requirements, and the availability of various assets, such as crews and locomotives. The objective function in an abstract sense is to maximize profits" [p. 8].

Developing the blocking plan, i.e., determining the group of railcars to move together at some point during their trips, involves solving a series of shortest-path problems over a directed graph. The train plan is based on the blocking plan. It includes departure and arrival times for the trains, blocks they pick up and crew schedules. This problem is solved for each train using heuristics. Following this, simulation models and locomotive cycle plans are developed.

This study enabled CPR to save \$170 million in half a year. "Total documented cost savings through the end of 2002 have exceeded half a billion dollars" [p. 12]. More savings are expected in following years. The improvements in CPR's profitability and operations can be attributed to the decrease in transit and dwelling times, lowered fuel consumption, reduction of the workforce and of the number of railcars, and balanced workloads. CPR can now schedule the trains and the crew more efficiently and provide a more reliable customer service. By allowing variability in the parameters of its plans, CPR gained flexibility and agility. It can now respond to disruptions more effectively by shifting resources quickly. These improvements earned CPR many awards and more importantly a significant competitive advantage.

# 9.3-2.

(a)

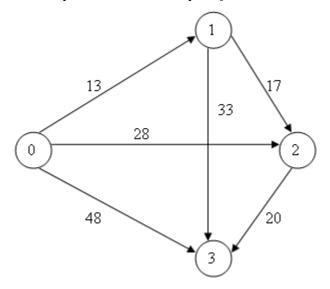


(b)

| n    | Solved Nodes<br>Directly Connected<br>to Unsolved Nodes | Closest<br>Connected<br>Unsolved Node | Total<br>Distance<br>Involved             | nth<br>Nearest<br>Node | Minimum<br>Distance | Last<br>Connection |
|------|---------------------------------------------------------|---------------------------------------|-------------------------------------------|------------------------|---------------------|--------------------|
| 1    | 0                                                       | A                                     | 40                                        | Α                      | 40                  | OA                 |
| 2, 3 | O<br>A                                                  | C<br>B                                | 50<br>40+10 = 50                          | ОВ                     | 50<br>50            | OC<br>AB           |
| 4    | А<br>В<br>С                                             | D<br>E<br>E                           | 40+70 = 110<br>50+40 = 90<br>50+50 = 100  | E                      | 90                  | BE                 |
| 5    | А<br>В<br>Е                                             | D<br>D                                | 40+70 = 110<br>50+55 = 115<br>90+10 = 100 | D                      | 100                 | ED                 |
| 6    | D<br>E                                                  | T<br>T                                | 100+60 = 160<br>90+80 = 170               | Т                      | 160                 | DT                 |

The shortest path from the origin to the destination is  $O \to A \to B \to E \to D \to T$ , with a total distance of 160 miles.

(c)


| From   | То               | On Route | Distance |  |
|--------|------------------|----------|----------|--|
| Origin | Α                | 1        | 40       |  |
| Origin | - B              | 0        | 60       |  |
| Origin | С                | 0        | 50       |  |
| Ă      | В                | 1        | 10       |  |
| Α      | D                | 0        | 70       |  |
| В      | C                | 0        | 20       |  |
| В      | D                | ٥        | 55       |  |
| В      | E                | 1        | 40       |  |
| С      | E                | 0        | 50       |  |
| D      | E                | 0        | 10       |  |
| D      | Destination      | 1        | 60       |  |
| E      | Destination      | 0        | 80       |  |
| E      | Ð                | 1        | 10       |  |
|        | Total Distance = | 160      |          |  |

| Net Flow |                       | Supply/Demand             |
|----------|-----------------------|---------------------------|
| 1        | =                     | 1                         |
| 0        | =                     | 0                         |
| 0        | =                     | 0                         |
| 0        | =                     | 0                         |
| 0        | =                     | 0                         |
| 0        | =                     | 0                         |
| -1       | =                     | -1                        |
|          | 1<br>0<br>0<br>0<br>0 | 1 = 0 = 0 = 0 = 0 = 0 = 0 |

- (d) Yes.
- (e) Yes.

# 9.3-3.

(a) The nodes represent the years. Let  $d_{ij}$  be the cost (in thousand dollars) of using the same tractor from the end of year i to the end of year j.

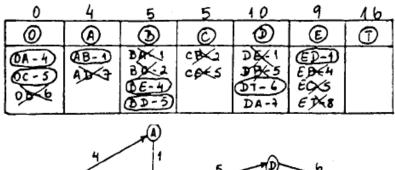


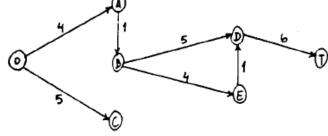
(b)

| п | Solved Nodes Directly Connected to Unsolved Nodes | Closest<br>Connected<br>Unsolved Node | Total<br>Distance<br>Involved | nth<br>Nearest<br>Node | Minimum<br>Distance | Last<br>Connection |
|---|---------------------------------------------------|---------------------------------------|-------------------------------|------------------------|---------------------|--------------------|
| 1 | 0                                                 | 1                                     | 13                            | 1                      | 13                  | 01                 |
| 2 | 0                                                 | 2                                     | 28                            | 2                      | 28                  | 02                 |
|   | 1                                                 | 2                                     | 13+17=30                      |                        | 40                  | 02                 |
|   | 0                                                 | 3                                     | 48                            |                        |                     |                    |
| 3 | 1                                                 | 3                                     | 13+33=46                      | 3                      | 46                  | 13                 |
|   | 2                                                 | 3                                     | 28+20=48                      |                        |                     |                    |

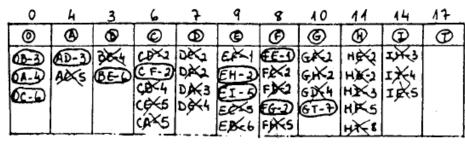
The minimum-cost strategy is to replace the tractor at the end of the first year and keep the new one until the end of the third year. This incurs a total cost of 46 thousand dollars.

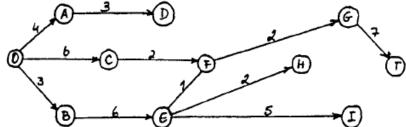
(c)


| From | To | On Route | Cost     |
|------|----|----------|----------|
| 0    | 1  | 1        | \$13,000 |
| 0    | 2  | 0        | \$28,000 |
| 0    | 3  | 0        | \$48,000 |
| 1    | 2  | 0        | \$17,000 |
| 1    | 3  | 1        | \$33,000 |
| 2    | 3  | 0        | \$20,000 |


Total Cost= \$46,000

| Nodes | Net Flow |   | Supply<br>demand |
|-------|----------|---|------------------|
| 0     | 1        | = | 1                |
| 1     | 0        | = | 0                |
| 2     | 0        | = | 0                |
| 3     | -1       | = | -1               |


# 9.3-4.


(a) Length of the shortest path: 16





(b) Length of the shortest path: 17





9.3-5.

The shortest-path problem is a minimum cost flow problem with a unit supply at the origin and a unit demand at the destination. Label the origin as node 1 and the destination as node n. Then, the LP formulation is as follows:

minimize 
$$z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$
 subject to 
$$\sum_{j=1}^{n} x_{1j} - \sum_{j=1}^{n} x_{j1} = 1$$
 
$$\sum_{j=1}^{n} x_{ij} - \sum_{j=1}^{n} x_{ji} = 0, \text{ for } 2 \le i \le n-1$$
 
$$\sum_{j=1}^{n} x_{nj} - \sum_{j=1}^{n} x_{jn} = -1$$
 
$$0 \le x_{ij} \le 1, \text{ for } 1 \le i, j \le n.$$

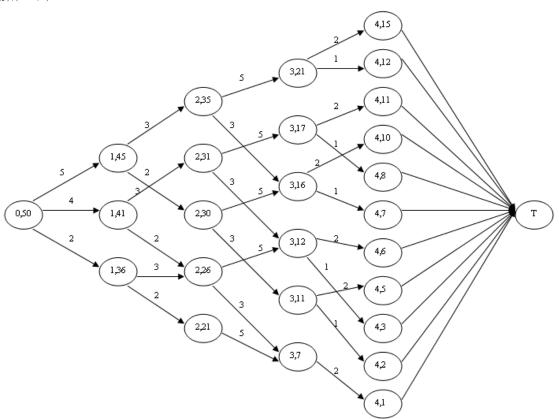
9.3-6.

(a) The flying times play the role of "distances."

(b) Shortest path: SE  $\rightarrow$  C  $\rightarrow$  E  $\rightarrow$  LN, with total flight time 11.3

| n | Solved Nodes<br>Directly Connected<br>to Unsolved Nodes | Closest<br>Connected<br>Unsolved Node | Total Distance<br>Involved                                         | <i>n</i> th<br>Nearest<br>Node | Minimum<br>Distance | Last<br>Connection |
|---|---------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|--------------------------------|---------------------|--------------------|
| 1 | SE                                                      | С                                     | 4.2                                                                | С                              | 4.2                 | SE-C               |
| 2 | SE<br>C                                                 | A<br>F                                | 4.6<br>4.2+3.4 = 7.6                                               | А                              | 4.6                 | SE-A               |
| 3 | SE<br>C<br>A                                            | B<br>F<br>E                           | 4.7<br>4.2+3.4 = 7.6<br>4.6+3.4 = 8                                | В                              | 4.7                 | SE-B               |
| 4 | A B C                                                   | EEF                                   | 4.6+3.4 = 8<br>4.7+3.2 = 7.9<br>4.2+3.4 = 7.6                      | F                              | 7.6                 | C-F                |
| 5 | A<br>B<br>C<br>F                                        | Ешш                                   | 4.6+3.4 = 8<br>4.7+3.2 = 7.9<br>4.2+3.5 = 7.7<br>7.6+3.8 = 11.4    | E                              | 7.7                 | C-E                |
| 6 | A<br>B<br>F<br>E                                        | 5500                                  | 4.6+3.5 = 8.1<br>4.7+3.6 = 8.3<br>7.6+3.8 = 11.4<br>7.7+3.6 = 11.3 | D                              | 8.1                 | A-D                |
| 7 | D<br>E<br>F                                             | Z Z Z                                 | 8.1+3.4 = 11.5<br>7.7+3.6 = 11.3<br>7.6+3.8 = 11.4                 | Ш                              | 11.3                | E-LN               |

(c)


| From | To | On Route | Time |
|------|----|----------|------|
| SE   | Α  | 0        | 4.6  |
| SE   | В  | 0        | 4.7  |
| SE   | С  | 4        | 4.2  |
| Α    | D  | 0        | 3.5  |
| Α    | E  | 0        | 3.4  |
| В    | D  | 0        | 3.6  |
| В    | E  | 0        | 3.2  |
| В    | F  | 0        | 3.3  |
| С    | E  | 71 11    | 3.5  |
| С    | F  | 0        | 3.4  |
| D    | LN | 0        | 3.4  |
| E    | LN | <b>1</b> | 3.6  |
| F    | LN | 0 1      | 3.8  |

Total Time = 11.3 🕸

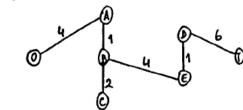
| Nodes | Net Flow |     | Supply/Demand |
|-------|----------|-----|---------------|
| SE    | 1        | =   | 1             |
| Α     | 0        | =   | 0             |
| В     | 0        | =   | 0             |
| С     | 0        | =   | 0             |
| D     | 0        | E   | 0             |
| E     | 0        | . = | 0             |
| F     | 0        | =   | 0             |
| LN    | -1       | =   | 1             |
|       |          |     |               |

# 9.3-7.

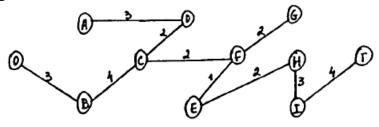
(a) Let node (i,j) denote phase i being completed with j million dollars left to spent and  $t_{(i,j),(i+1,k)}$  be the time to complete phase i+1 if a cost of (j-k) million dollars is spent.



(b)


|     | Solved Nodes       | Closest       | Total    | иth     | W:       | T4            |
|-----|--------------------|---------------|----------|---------|----------|---------------|
| n   | Directly Connected | Connected     | Distance | Nearest | Minimum  | Last          |
|     | to Unsolved Nodes  | Unsolved Node | Involved | Node    | Distance | Connection    |
| 1   | (0,50)             | (1,36)        | 2        | (1,36)  | 2        | (0,50)-(1,36) |
| 2   | (0,50)             | (1,41)        | 4        | (1,41)  | 4        | (0,50)-(1,41) |
|     | (1,36)             | (2,21)        | 2+2=4    | (2,21)  | 4        | (1,36)-(2,21) |
|     | (0,50)             | (1,45)        | 5        | (1,45)  | 5        | (0,50)-(1,45) |
| 4   | (1,36)             | (2,26)        | 2+3=5    | (2,26)  | 5        | (1,36)-(2,26) |
| 4   | (1,41)             | (2,26)        | 4+2=6    |         |          |               |
|     | (2,21)             | (3,7)         | 4+5=9    |         |          |               |
|     | (1,41)             | (2,31)        | 4+3=7    | (2,31)  | 7        | (1,41)-(2,31) |
| 6   | (1,45)             | (2,30)        | 5+2=7    | (2,30)  | 7        | (1,45)-(2,30) |
| l ° | (2,21)             | (3,7)         | 4+5=9    |         |          |               |
|     | (2,26)             | (3,7)         | 5+3=8    |         |          |               |
|     | (1,45)             | (2,35)        | 5+3=8    | (2,35)  | 8        | (1,45)-(2,35) |
|     | (2,21)             | (3,7)         | 4+5=9    |         |          |               |
| 8   | (2,26)             | (3,7)         | 5+3=8    | (3,7)   | 8        | (2,26)-(3,7)  |
|     | (2,30)             | (3,11)        | 7+3=10   |         |          |               |
|     | (2,31)             | (3,12)        | 7+3=10   |         |          |               |
|     | (2,26)             | (3,12)        | 5+5=10   | (3,12)  | 10       | (2,26)-3,12)  |
|     | (2,30)             | (3,11)        | 7+3=10   | (3,11)  | 10       | (2,30)-(3,11) |
| 10  | (2,31)             | (3,12)        | 7+3=10   | (3,12)  | 10       | (2,31)-(3,12) |
|     | (2,35)             | (3,16)        | 8+3=11   |         |          |               |
|     | (3,7)              | (4,1)         | 8+2=10   | (4,1)   | 10       | (3,7)-(4,1)   |
|     | (2,30)             | (3,16)        | 7+5=12   |         |          |               |
|     | (2,31)             | (3,17)        | 7+5=12   |         |          |               |
| 13  | (2,35)             | (3,16)        | 8+3=11   |         |          |               |
| 13  | (3,11)             | (4,2)         | 10+1=11  |         |          |               |
|     | (3,12)             | (4,3)         | 10+1=11  |         |          |               |
|     | (4,1)              | T             | 10+0=10  | T       | 10       | (4,1)-T       |

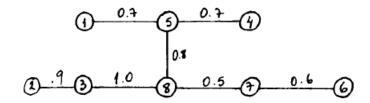
Shortest path:  $(0,50) \xrightarrow{2} (1,36) \xrightarrow{3} (2,26) \xrightarrow{3} (3,7) \xrightarrow{2} (4,1) \xrightarrow{0} T$ , with a total time of 10 months.


| Phase       | Level    | Cost | Time |
|-------------|----------|------|------|
| Research    | Crash    | 14   | 2    |
| Development | Priority | 10   | 3    |
| Design      | Crash    | 19   | 3    |
| Production  | Priority | 6    | 2    |

## 9.4-1.

(a) Length: 18

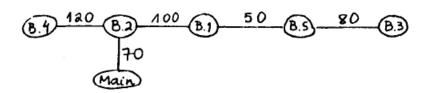



(b) Length: 26



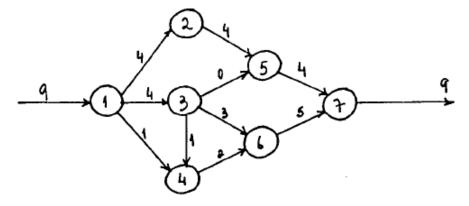
#### 9.4-2.

(a) The nodes represent the groves and the branches represent the roads.


(b) Length: 5.2



## 9.4-3.


(a) The nodes are Main Office, Branch 1, Branch 2, Branch 3, Branch 4, and Branch 5. The branches are the phones lines.

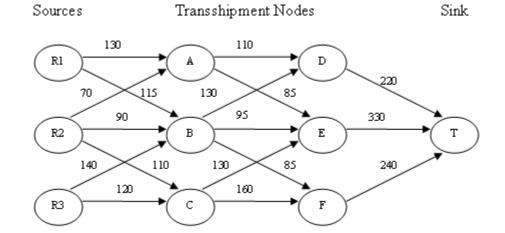
(b)



#### 9.5-1.

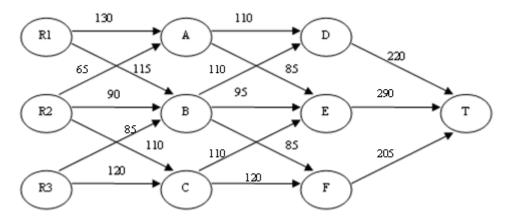
Maximum flow: 9




## 9.5-2.

Let node 1 be the source and node N be the sink.

maximize 
$$z=\sum_{j=2}^N x_{1j}$$
 subject to 
$$\sum_{j=1,j\neq i}^N x_{ij} - \sum_{j=1,j\neq i}^N x_{ji} = 0, \text{ for } i=2,3,\ldots,N-1$$
 
$$0 \leq x_{ij} \leq c_{ij}, \text{ where } c_{ij}=0 \text{ if } (i,j) \text{ is not a branch.}$$


## 9.5-3.

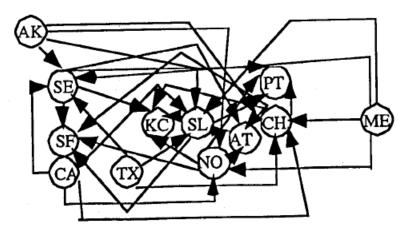
(a)



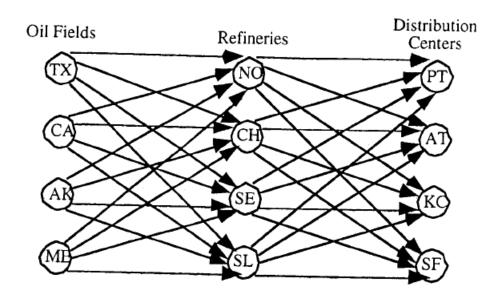
Source Sink Transshipment Nodes D Rl R3

## (b) Maximum flow: 715

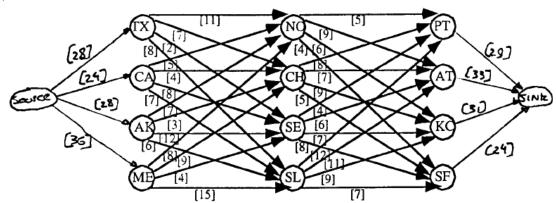



# (c) Maximum flow: 715

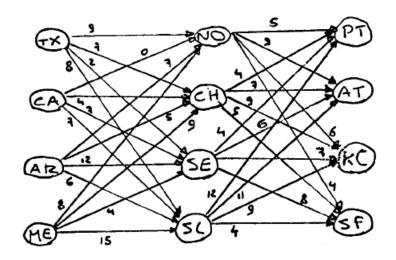
| From | To | Ship | Capacity |
|------|----|------|----------|
| R1   | Α  | 130  | 130      |
| R1   | В  | 115  | 115      |
| R2   | Α  | 65   | 70       |
| R2   | В  | 90   | 90       |
| R2   | С  | 110  | 110      |
| R3   | В  | 85   | 140      |
| R3   | С  | 120  | 120      |
| A    | D  | 110  | 110      |
| A    | Е  | 85   | 85       |
| В    | D  | 110  | 130      |
| В    | Е  | 95   | 95       |
| В    | F  | 85   | 85       |
| С    | Е  | 75   | 130      |
| С    | F  | 155  | 160      |
| D    | Τ  | 220  | 220      |
| E    | Τ  | 255  | 330      |
| F    | Τ  | 240  | 240      |


| Nodes | Net Flow |   | Supply/D<br>emand |
|-------|----------|---|-------------------|
| R1    | 245      |   |                   |
| R2    | 265      |   |                   |
| R3    | 205      |   |                   |
| Α     | 0        | = | 0                 |
| В     | 0        | = | 0                 |
| С     | 0        | = | 0                 |
| D     | 0        | = | 0                 |
| E     | 0        | = | 0                 |
| F     | 0        | = | 0                 |
| Т     | -715     |   |                   |

9.5-4.


(a)




(b)



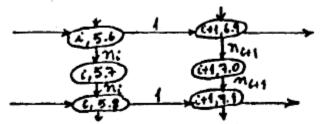
(c)



(d)



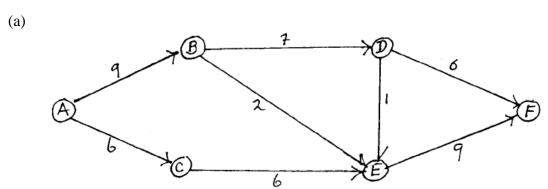
(e)


| From | To  | Ship   | Capacity |
|------|-----|--------|----------|
| TX   | NO  | 9      | 11       |
| TX   | CH  |        | 7        |
| TX   | SE  | 7<br>2 | 2        |
| TX   | SL  | - 8    | 8        |
| CA   | NO  | 0      | 5        |
| CA   | CH  | 4      | 4        |
| CA   | SE  | 7<br>7 | 8        |
| CA   | SL  |        | 7        |
| AK   | NO  | 7      | 7        |
| AK   | CH  | 5      | 5        |
| AK   | SE  | 12     | 12       |
| AK   | SL  | 6      | 6        |
| ME   | NO  | 8      | 8        |
| ME   | CH  | 9      | 9        |
| ME   | SE  | 4      | 4        |
| ME   | SL  | 15     | 15       |
| NO   | PT  | 5      | 5        |
| NO   | ΑT  | 9      | 9        |
| NO   | KC  | 6      | 6        |
| NO   | SF  | 4      | 4        |
| СН   | PT  | 4      | 8        |
| CH   | ΑT  | 7      | 7        |
| СН   | KC  | 9 9    | 9        |
| CH   | SF  | 5      | 5        |
| SE   | PT  | 4      | 4        |
| SE   | AT  | 6      | 6        |
| SE   | KC  | 7      | 7        |
| SE   | SF  | 8      | 8        |
| SL   | PT  | 12     | 12       |
| SL   | ΑT  | 11     | 11       |
| SL   | KC  | 9      | 9        |
| SL   | SF_ | 4      | 7        |

| Nodes | Net Flow |   | Supply/Demand |
|-------|----------|---|---------------|
| TX    | 26       |   |               |
| CA    | 18       |   |               |
| AK    | 30       |   |               |
| ME    | 36       |   |               |
| NO    | 0        | = | 0             |
| CH    | 0        | = | 0             |
| SE    | 0        | = | 0             |
| SL    | 0        | = | 0             |
| PT    | -25      |   |               |
| ΑT    | -33      |   |               |
| KC    | -31      |   |               |
| SF    | -21      | _ |               |

Maximum Flow = 110

#### 9.5-5.


For convenience, call the Faireparc station siding 0 and the Portstown station siding s+1. Let node (i,j) represent siding i at time j for  $i=0,1,\ldots,s,s+1$  and  $j=0.0,0.1,0.2,\ldots,23.9$ . Node (0,0) is the source and node (s+1,23.9) is the sink. Arcs with unit capacity exist between nodes (i,j) and  $(i+1,j+t_i)$  if and only if a freight train leaving siding i at time j could not be overtaken by a scheduled passenger train before it reached siding i+1. Arcs with capacity  $n_i$  exist between nodes (i,j) and (i,j+1) for  $j=0.0,0.1,0.2,\ldots,23.8$ . There are no other arcs. For example, if  $t_i=1.3$  and a scheduled passenger train could overtake a freight train leaving siding i at time i0.7 before it reached siding i1, the following is part of the network:



The maximum flow problem in this case maximizes the number of sent freight trains.

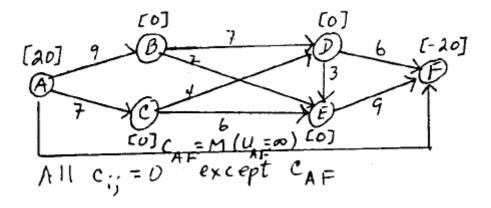
#### 9.5-6.

(b)



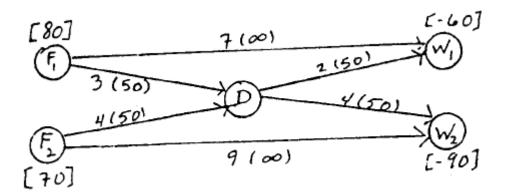
| ` | /    |    |      |          |
|---|------|----|------|----------|
|   | From | То | Ship | Capacity |
|   | Α .  | В  | 8    | 9        |
|   | Α    | С  | 7    | 7        |
|   | В    | D  | 7    | 7        |
|   | В    | E  | 1    | 2        |
|   | С    | D  | 2    | 4        |
|   | С    | Ε  | 5    | 6        |
|   | D    | E  | 3    | 3        |
|   | D    | F  | 6    | 6        |
|   | E    | F  | 9    | 9        |
| - |      |    |      |          |

| Nodes | Net Flow |   | Supply/Demand |
|-------|----------|---|---------------|
| A     | 15       |   |               |
| В     | 0        | = | 0             |
| С     | 0        | = | 0             |
| D     | 0        | = | 0             |
| Ε     | 0        | = | 0             |
| F     | -15      |   |               |
|       |          |   |               |


#### 9.6-1.

In this study, flight delay and cancellation problems faced by United Airlines (UA) are modeled as minimum-cost-flow network models. The overall objective is to minimize a weighted sum of various measures related to delay. These include the total number of delay minutes for every passenger, the number of passengers affected by delays and the number of aircraft swaps. Nodes represent "arriving and departing aircraft, spare aircraft, and recovered aircraft" on a two-dimensional network, with time and airport being the two dimensions. Arcs represent "scheduled flights, connections, and aircraft substitutions" [p. 56]. Costs include the revenue loss, the costs from swapping aircraft and from delaying aircraft.

The delay problem is solved for each airport separately as a minimum-cost-flow network problem. The flow on each arc can be at most one. The solution is a set of arcs starting at a supply node and ending at a demand node, which determines flight delays due to shortage in aircraft. The cancellation model is a minimum-cost-flow network problem on the entire network. Again, the flow on each arc cannot exceed one. The solution determines which flight is canceled and what flight its aircraft is assigned to.

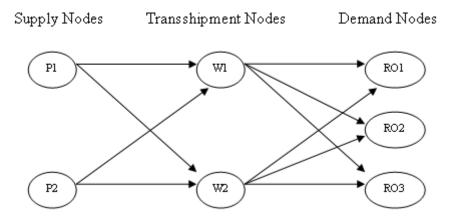

This study has saved UA over half a billion dollars in delay costs alone in less than a year. Many potential delays were prevented and hence the number of flight delays was reduced by 50%. Customer inconveniences due to delays and cancellations were reduced. Additionally, developing an efficient way of addressing these problems helped UA respond to changes in the conditions quickly.

#### 9.6-2.

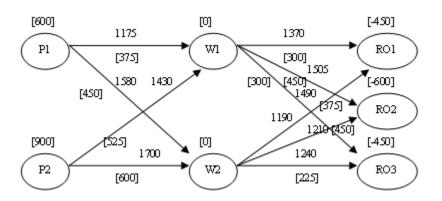


#### 9.6-3.

(a)




(b) minimize 
$$7x_{F_1W_1} + 3x_{F_1D} + 2x_{DW_1} + 4x_{F_2D} + 4x_{DW_2} + 9x_{F_2W_2}$$
 subject to 
$$x_{F_1W_1} + x_{F_1D} = 80$$
 
$$x_{F_2D} + x_{F_2W_2} = 70$$
 
$$x_{F_1W_1} + x_{DW_1} = 60$$
 
$$x_{DW_2} + x_{F_2W_2} = 90$$
 
$$x_{F_1D} - x_{DW_1} + x_{F_2D} - x_{DW_2} = 0$$
 
$$0 \le x_{F_1D}, x_{DW_1}, x_{F_2D}, x_{DW_2} \le 50$$


# 9.6-4. Please see paperclip attachment for solution:

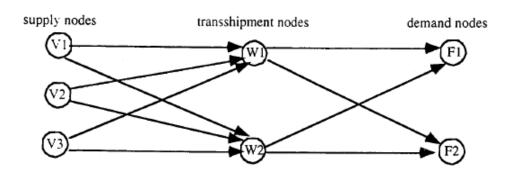
## 9.6-5.

(a)

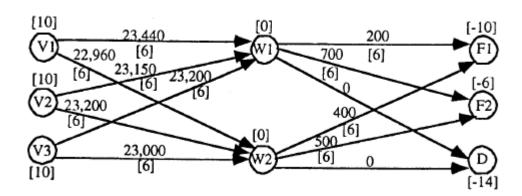


(b)




(c) Total cost: \$4, 217, 625

| From | Τo  | Ship | Capacity | Unit Cost |
|------|-----|------|----------|-----------|
| P1   | VV1 | 375  | 375      | \$1,175   |
| P1   | W2  | 225  | 450      | \$1,580   |
| P2   | VV1 | 375  | 525      | \$1,430   |
| P2   | W2  | 525  | 600      | \$1,700   |
| VV1  | RO1 | 300  | 300      | \$1,370   |
| VV1  | RO2 | 150  | 450      | \$1,505   |
| VV1  | RO3 | 300  | 300      | \$1,490   |
| W2   | RO1 | 150  | 375      | \$1,190   |
| W2   | RO2 | 450  | 450      | \$1,210   |
| W2   | RO3 | 150  | 225      | \$1,240   |


| Nodes | Net Flow |   | Output/<br>Demand |
|-------|----------|---|-------------------|
| P1    | 600      | = | 600               |
| P2    | 900      | = | 900               |
| VV1   | 0        | = | 0                 |
| W2    | 0        | = | 0                 |
| R01   | -450     | = | -450              |
| R02   | -600     | = | -600              |
| R03   | -450     | = | -450              |

## 9.6-6.

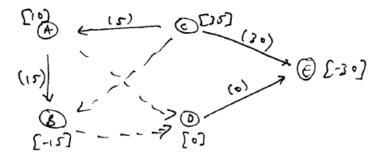
(a)



(b)



(c)


| Fro | m | То | Ship  |   | Capacity | Unit Cost |
|-----|---|----|-------|---|----------|-----------|
|     | 1 | W1 | 4,049 | ≤ | 6        | \$23,440  |
| ٧   | 1 | W2 | 6 to  | ≤ | 6        | \$22,960  |
| V   | 2 | W1 | 6.4   | ≤ | 6        | \$23,150  |
| V   | 2 | W2 | 4.5   | ≤ | 6        | \$23,200  |
| V   | 3 | W1 | 74    | ≤ | 6        | \$23,200  |
| V   | 3 | W2 | 6.    | ≤ | 6        | \$23,000  |
| W   | 1 | F1 | 6 6   | ≤ | 6        | \$200     |
| W   | 1 | F2 | 70%   | ≤ | 6        | \$700     |
| W   | 1 | D  | 8.8   |   |          | \$0       |
| W   | 2 | F1 | #APPE | ≤ | 6        | \$400     |
| W   | 2 | F2 | 46 A  | ≤ | 6        | \$500     |
| W   | 2 | D  | 6 H   |   | •        | \$0       |

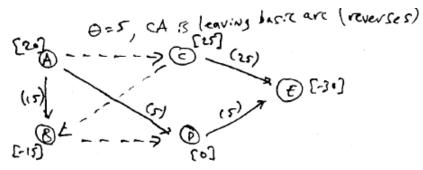
| Nodes | Net Flow | Οι | tput/Demand |
|-------|----------|----|-------------|
| V1    | 10       | =  | 10          |
| V2    | 10       | =  | 10          |
| V3    | 10       | =  | 10          |
| W1    | 0        | =  | 0           |
| W2    | 0        | =  | 0           |
| F1    | -10      | == | -10         |
| F2    | -6       | =  | -6          |
| D     | -14      | =  | -14         |

Total Cost = 5ab99.820

#### 9.7-1.

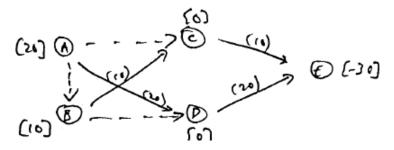
(a)




(b) Compute  $\Delta$  for nonbasic arcs:

$$\Delta_{BD} = 5 + 4 - 3 + (-6) + 2 = 2$$

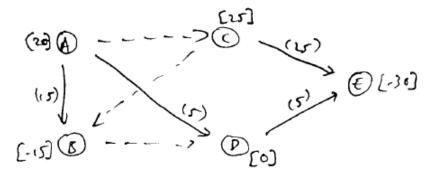
$$\Delta_{AD} = 5 + 4 - 3 + (-6) = 0$$


$$\Delta_{\rm CB} = (-3) - 2 - (-6) = 1$$

All of them are nonnegative, so this solution is optimal. Since  $\Delta_{AD} = 0$ , multiple optima exist. Network simplex:



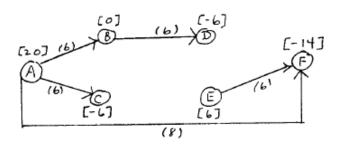
Optimal nonbasic solutions have  $x_{AB}=15$ ,  $x_{AC}=\theta$ ,  $x_{AD}=5-\theta$ ,  $x_{CE}=25+\theta$ , and  $x_{DE}=5-\theta$ , where  $0\leq\theta\leq5$  and  $C\to B$  and  $B\to D$  are nonbasic arcs.


(c) Start with:

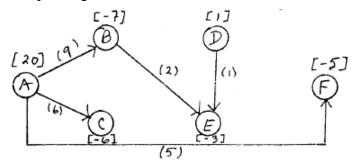


Network simplex:

$$\begin{array}{l} \Delta_{\rm AC} = 6 + 3 - 4 - 5 = 0 \\ \Delta_{\rm AB} = 2 + 3 + 3 - 4 - 5 = -1 < 0 \leftarrow \text{entering arc} \\ \Delta_{\rm BD} = 5 + 4 - 3 - 3 = 3 \end{array}$$


 $\theta=15$  and BC is leaving arc (reverses). The next BF solution is:

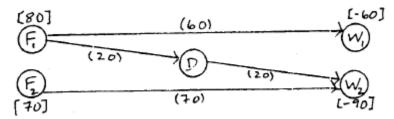



From (b), we recognize this solution as optimal.

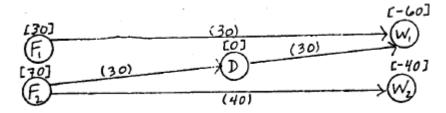
9.7-2.

(a)

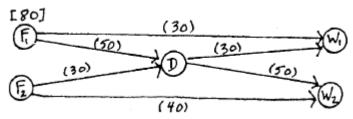



(b) The final feasible spanning tree is:




The flow to which it corresponds is the same as in Prob. 9.5-6.

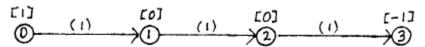
## 9.7-3.


(a) There are no reverse arcs in this solution.

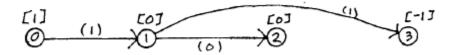


(b) The optimal BF spanning tree is:




which corresponds to a real flow of:



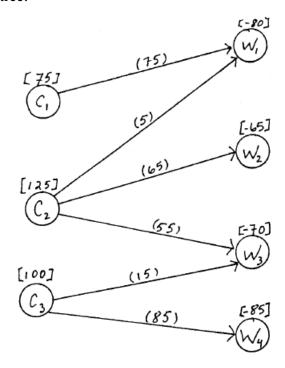

with cost 1, 100.

#### 9.7-4.

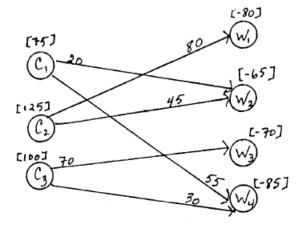
Initial BF spanning tree:



Optimal BF spanning tree:




which has a real flow of:

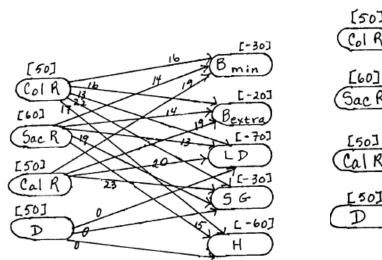


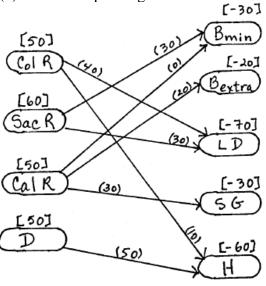

with cost 46.

**9.7-5.** Initial BF spanning tree:

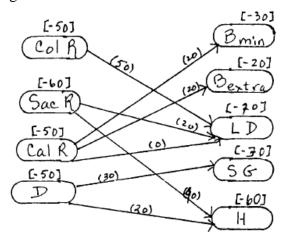


## Optimal BF spanning tree:



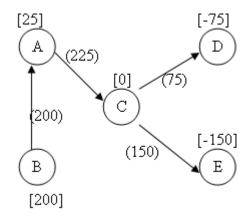


which corresponds to the optimal solution given in Sec. 8.1.

## 9.7-6.

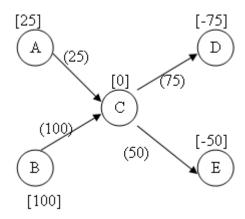



## (b) Initial BF spanning tree:

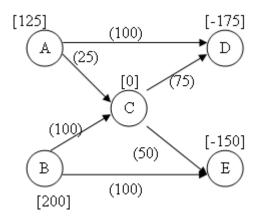





#### (c) Optimal BF spanning tree:




The sequence of basic feasible solutions is identical with the transportation simplex method.


9.7-7.



Optimal BF spanning tree:



which correspond to the real flow of:



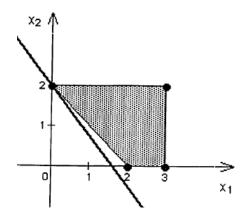
with a total cost of 2925.

## 9.8-1.

|                   |            | Length | of Path |
|-------------------|------------|--------|---------|
| Activity to Crash | Crash Cost | A-C    | B-D     |
|                   |            | 14     | 16      |
| B                 | \$5,000    | 14     | 15      |
| B                 | \$5,000    | 14     | 15      |
| D                 | \$6,000    | 14     | 14      |
| C                 | \$4,000    | 13     | 14      |
| D                 | \$6,000    | 13     | 13      |
| C                 | \$4,000    | 12     | 13      |
| D                 | \$6,000    | 12     | 12      |

## 9.8-2.

(a) Let  $x_A$  and  $x_C$  be the reduction in A and C respectively, due to crashing.


minimize  $C = 5000x_A + 4000x_C$ 

subject to  $x_A \leq 3$ 

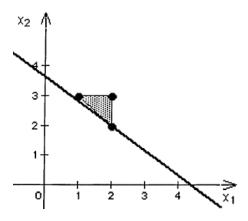
 $x_A \le 3$  $x_C \le 2$ 

 $x_A + x_C \ge 2$ 

and  $x_A + x_C \ge 1$ 



Optimal Solution:  $(x_A, x_C) = (0, 2)$  and  $C^* = 8,000$ .


(b) Let  $x_B$  and  $x_D$  be the reduction in B and D respectively, due to crashing.

 $minimize \qquad C = 5000x_B + 6000x_D$ 

subject to  $x_B \le 2$  $x_D \le 3$ 

 $x_B + x_D \ge 4$ 

and  $x_B, x_D \ge 0$ 



Optimal Solution:  $(x_B, x_D) = (2, 2)$  and  $C^* = 22,000$ .

(c) Let  $x_A$ ,  $x_B$ ,  $x_C$ , and  $x_D$  be the reduction in the duration of A, B, C, and D respectively, due to crashing.

$$\begin{array}{ll} \text{minimize} & C = 5000x_A + 5000x_B + 4000x_C + 6000x_D \\ \text{subject to} & x_A \leq 3 \\ & x_B \leq 2 \\ & x_C \leq 2 \\ & x_D \leq 3 \\ & x_A + x_C \geq 2 \\ & x_B + x_D \geq 4 \\ \text{and} & x_A, x_B, x_C, x_D \geq 0 \end{array}$$

Optimal Solution:  $(x_A, x_B, x_C, x_D) = (0, 2, 2, 2)$  and  $C^* = 30,000$ .

(d) Let  $x_j$  be the reduction in the duration of activity j due to crashing for j = A, B, C, D. Also let  $y_j$  denote the start time of activity j for j = C, D and  $y_{\text{FINISH}}$  the project duration.

$$\begin{array}{ll} \text{minimize} & C = 5000x_A + 5000x_B + 4000x_C + 6000x_D \\ \text{subject to} & x_A \leq 3, x_B \leq 2, x_C \leq 2, x_D \leq 3 \\ & y_C \geq 0 + 8 - x_A \\ & y_D \geq 0 + 9 - x_B \\ & y_{\text{FINISH}} \geq y_C + 6 - x_C \\ & y_{\text{FINISH}} \geq y_D + 7 - x_D \\ & y_{\text{FINISH}} \leq 12 \\ \text{and} & x_A, x_B, x_C, x_D, y_C, y_D, y_{\text{FINISH}} \geq 0 \end{array}$$

(e)

|          | Tim    | ne    |         | Cost    | Maximum<br>Time | Crash Cost<br>per Week |      | Time      | Finish |
|----------|--------|-------|---------|---------|-----------------|------------------------|------|-----------|--------|
| Activity | Normal | Crash | Normal  | Crash   | Reduction       | saved                  | Time | Reduction | Time   |
| A        | 8      | 5     | \$25000 | \$40000 | 3               | \$5000                 | 0    | A O       | 8      |
| В        | ۶      | 7     | \$20000 | \$30000 | 2               | \$5000                 | 0    | 2         | 7      |
| С        | 6      | 4     | \$16000 | \$24000 | 2               | \$4000                 | 8    | 2.        | 12     |
| D        | 7      | 4     | \$27000 | \$45000 | 3               | \$6000                 | 7    | 2         | 12     |

Finish Time = 12 Total Cost = \$118000 (f) The solution found using LINGO agrees with the solution in (e), i.e., it is optimal to reduce the duration of activities B, C, and D by two months. Then the entire project takes 12 months and costs 25 + 30 + 24 + (27 + 12) = 118 thousand dollars.

| ole   | Value                                             | Reduced Cost                              |
|-------|---------------------------------------------------|-------------------------------------------|
| XA    | 0.000000                                          | 0.000000                                  |
| XB    | 2.000000                                          | 0.000000                                  |
| XC    | 2.000000                                          | 0.000000                                  |
| XD    | 2.000000                                          | 0.000000                                  |
|       |                                                   |                                           |
| Slack | or Surplus                                        | Dual Price                                |
| 3     | 0000.00                                           | -1.000000                                 |
| 3     | .000000                                           | 0.000000                                  |
| C     | .000000                                           | 1000.000                                  |
| C     | .000000                                           | 1000.000                                  |
| 1     | 000000                                            | 0.000000                                  |
| C     | .000000                                           | -5000.000                                 |
| C     | .000000                                           | -6000.000                                 |
|       | XA<br>XB<br>XC<br>XD<br>Slack<br>3<br>3<br>0<br>0 | XA 0.000000<br>XB 2.000000<br>XC 2.000000 |

#### (g) Deadline of 11 months

|          | Tim    | ne    |         | Cost    | Maximum<br>Time | Crash Cost<br>per Week | Start | Time      | Finish |
|----------|--------|-------|---------|---------|-----------------|------------------------|-------|-----------|--------|
| Activity | Normal | Crash | Normal  | Crash   | Reduction       | saved                  | Time  | Reduction | Time   |
| A        | 8      | 5     | \$25000 | \$40000 | 3               | \$5000                 | 0     | 1         | 7      |
| В        | 9      | 7     | \$20000 | \$30000 | 2               | \$5000                 | 0     | 2         | 7      |
| С        | 6      | 4     | \$16000 | \$24000 | 2               | \$4000                 | 7     | 2         | 11     |
| D ,      | 7      | 4     | \$27000 | \$45000 | 3               | \$6000                 | 7     | 3         | 11     |

Finish Time = 11 Total Cost = \$129000

#### Deadline of 13 months

|          | Tim    | ne    |         | ost     | Maximum<br>Time | Crash Cost<br>per Week |      | Time      | Finish |
|----------|--------|-------|---------|---------|-----------------|------------------------|------|-----------|--------|
| Activity | Normal | Crash | Normal  | Crash   | Reduction       | saved                  | Time | Reduction | Time_  |
| Α        | 8      | 5     | \$25000 | \$40000 | 3               | \$5000                 | 0    | 0         | 8      |
| В        | 9      | 7     | \$20000 | \$30000 | 2               | \$5000                 | 0    | 2         | 7      |
| С        | 6      | 4     | \$16000 | \$24000 | 2               | \$4000                 | 8    |           | 13     |
| D        | 7      | 4     | \$27000 | \$45000 | 3               | \$6000                 | 7    | THE TANK  | 13     |

Finish Time = 13 Total Cost = \$108000

9.8-3.(a) \$7,834 is saved by the new plan given below.

|                   |            | Length of Path |       |       |  |  |  |  |
|-------------------|------------|----------------|-------|-------|--|--|--|--|
| Activity to Crash | Crash Cost | A - B - D      | A-B-E | A-C-E |  |  |  |  |
|                   |            | 10             | 11    | 12    |  |  |  |  |
| C                 | \$1,333    | 10             | 11    | 11    |  |  |  |  |
| E                 | \$2,500    | 10             | 10    | 10    |  |  |  |  |
| D & E             | \$4,000    | 9              | 9     | 9     |  |  |  |  |
| B & C             | \$4,333    | 8              | 8     | 8     |  |  |  |  |

| Activity | Duration | Cost     |
|----------|----------|----------|
| A        | 3 weeks  | \$54,000 |
| B        | 3 weeks  | \$65,000 |
| C        | 3 weeks  | \$58,666 |
| D        | 2 weeks  | \$41,500 |
| E        | 2 weeks  | \$80,000 |

(b)

|          | Tim    |       |         | ost     | Maximum<br>Time | Crash Cost<br>per Week |      | Time          | Finish |
|----------|--------|-------|---------|---------|-----------------|------------------------|------|---------------|--------|
| Activity | Normal | Crash | Normal  | Crash   | Reduction       | saved                  | Time | Reduction     | Time   |
| A        | 3      | 2     | \$54000 | \$60000 | 1               | \$6000                 | 0    | <b>製の 168</b> | 3      |
| В        | 4      | 3     | \$62000 | \$65000 | 1               | \$3000                 | 4    | ñ             | 8      |
| С        | 5      | 2     | \$66000 | \$70000 | 3               | \$1333                 | 3    | ő             | А      |
| D        | 3      | 1     | \$40000 | \$43000 | 2               | \$1500                 | 9    | o ii          | 12     |
| E        | 4      | 2     | \$75000 | \$80000 | 2               | \$2500                 | . 8  | ŏ             | 12     |

Finish Time = 12 Total Cost = \$297000

|          | Tim    | ne    | 0       | ost     | Maximum<br>Time | Crash Cost<br>per Week |      |         | Time       | Finish |
|----------|--------|-------|---------|---------|-----------------|------------------------|------|---------|------------|--------|
| Activity | Normal | Crash | _Normal | Crash   | Reduction       | saved                  | Time |         | Reduction  | Time   |
| Α        | 3      | 2 .   | \$54000 | \$60000 | 1               | \$6000                 | 0    | and the | 0          |        |
| В        | 4      | 3     | \$62000 | \$65000 | 1               | \$3000                 | 3    |         | Ö          | 7      |
| С        | 5      | 2     | \$66000 | \$70000 | 3               | \$1333                 | 3    |         | <b>1</b> 1 | 7      |
| D        | 3      | 1     | \$40000 | \$43000 | 2               | \$1500                 | - 8  |         | 0          | 11     |
| E        | 4      | 2     | \$75000 | \$80000 | 2               | \$2500                 | 7    |         | Ŏ          | 11     |

Finish Time = 11 Total Cost = \$298333

|          | Tim    | ne    |         | Cost    | Maximum<br>Time | Crash Cost<br>per Week |      | Time      | Finish |
|----------|--------|-------|---------|---------|-----------------|------------------------|------|-----------|--------|
| Activity | Normal | Crash | Normal  | Crash   | Reduction       | saved                  | Time | Reduction | Time   |
| Α .      | 3      | 2     | \$54000 | \$60000 | 1               | \$6000                 | 0    | 0         | 3      |
| В        | 4      | 3     | \$62000 | \$65000 | 1               | \$3000                 | 3    | 0         | 7      |
| С        | 5      | 2     | \$66000 | \$70000 | 3               | \$1333                 | 3    |           | 7      |
| D        | 3      | 1     | \$40000 | \$43000 | 2               | \$1500                 | 7 🖤  | 1.22E-15  | 10     |
| E        | 4      | 2     | \$75000 | \$80000 | 2               | \$2500                 | 7    |           | 10     |

Finish Time = 10 Total Cost = \$300833

|          | Tim    | ne    |         | Cost    | Maximum<br>Time | Crash Cost<br>per Week |           | Time      | Finish |
|----------|--------|-------|---------|---------|-----------------|------------------------|-----------|-----------|--------|
| Activity | Normal | Crash | Normal  | Crash   | Reduction       | saved                  | Time      | Reduction | Time   |
| Α        | 3      | 2     | \$54000 | \$60000 | 1               | \$6000                 | 0         | 0         | 3      |
| В        | 4      | 3     | \$62000 | \$65000 | 1               | \$3000                 | 3 3       | 4.66E-12  | 7      |
| С        | 5      | 2     | \$66000 | \$70000 | 3               | \$1333                 | 3         |           | 7      |
| D        | 3      | 1     | \$40000 | \$43000 | 2               | \$1500                 | t 37 1880 | 520       | 9      |
| Ε        | 4      | 2     | \$75000 | \$80000 | 2               | \$2500                 | 7         | 2         | 9      |

Finish Time = 9 Total Cost = \$304833

|          | Tim    | ne    | 0       | cost    | Maximum<br>Time | Crash Cost<br>per Week |      | Time .    | Finish |
|----------|--------|-------|---------|---------|-----------------|------------------------|------|-----------|--------|
| Activity | Normal | Crash | Normal  | Crash   | Reduction       | saved                  | Time | Reduction | Time   |
| Α        | 3      | 2     | \$54000 | \$60000 | 1               | \$6000                 | 0    | 3.66E-11  | 3      |
| В        | 4      | 3     | \$62000 | \$65000 | ı               | \$3000                 | 3    |           | 6      |
| С        | 5      | 2     | \$66000 | \$70000 | 3               | \$1333                 | 3    | . 2       | 6      |
| D        | 3      | 1     | \$40000 | \$43000 | 2               | \$1500                 | 6    |           | 8      |
| Ε        | 4      | 2     | \$75000 | \$80000 | 2               | \$2500                 | 6    | 2         | 8      |

Finish Time = 8 Total Cost = \$309167

|          | Tim    | ne    |         | ost     | Maximum<br>Time | Crash Cost<br>per Week |     | Start | Time        | Finish |
|----------|--------|-------|---------|---------|-----------------|------------------------|-----|-------|-------------|--------|
| Activity | Normal | Crash | Normal  | Crash   | Reduction       | saved                  |     | Time  | _ Reduction | Time   |
| Α        | 3      | 2     | \$54000 | \$60000 | 1               | \$6000                 | ₩.  | 0     |             | 2      |
| В        | 4      | 3     | \$62000 | \$65000 | 1               | \$3000                 | 175 | 2     | 1           | 5      |
| С        | 5      | 2     | \$66000 | \$70000 | 3               | \$1333                 |     | 2     | 2           | 5      |
| D        | 3      | 1     | \$40000 | \$43000 | 2               | \$1500                 |     | 5     |             | 7      |
| E        | 4      | 2     | \$75000 | \$80000 | 2               | \$2500                 |     | 5     | 2           | 7      |

Finish Time = 7 Total Cost = \$315167

Crash to 8 weeks.

#### 9.8-4.

(a) Let  $x_j$  be the reduction in the duration of activity j and  $y_j$  be the start time of activity j.

$$\begin{array}{lll} \text{minimize} & C = 6x_A + 12x_B + 4x_C + 6.67x_D + 10x_E + 7.33x_F + 5.75x_G + 8x_H \\ \text{subject to} & 0 \leq x_A \leq 2 & 0 \leq x_B \leq 1 & 0 \leq x_C \leq 2 & 0 \leq x_D \leq 3 \\ & 0 \leq x_E \leq 1 & 0 \leq x_F \leq 3 & 0 \leq x_G \leq 4 & 0 \leq x_H \leq 2 \\ & y_A + 5 - x_A \leq y_C & y_A + 5 - x_A \leq y_D \\ & y_B + 3 - x_B \leq y_E & y_B + 3 - x_B \leq y_F \\ & y_C + 4 - x_C \leq y_G & y_D + 6 - x_D \leq y_H \\ & y_E + 5 - x_E \leq y_G & y_F + 7 - x_F \leq y_H \\ & y_G + 9 - x_G \leq y_{\text{FINISH}} & y_H + 8 - x_H \leq y_{\text{FINISH}} \\ & 0 \leq y_{\text{FINISH}} \leq 15 \\ & y_j \geq 0 \end{array}$$

(b) Finish Time: 15 weeks, total crashing cost: \$45.75 million, total cost: \$259.75 million.

| Activity | Normal<br>Time | Crash<br>Time | Normal<br>Cost | Crash<br>Cost | Maximum<br>Time<br>Reduction | Crash Cost<br>per Week<br>Saved | Start<br>Time | Time<br>Reduction | Finish<br>Time |
|----------|----------------|---------------|----------------|---------------|------------------------------|---------------------------------|---------------|-------------------|----------------|
| Α        | 5              | 3             | 24             | 36            | 2                            | 6.00                            | 0             | 2                 | 3              |
| В        | 3              | 2             | 13             | 25            | 1                            | 12.00                           | 0             | 1                 | 2              |
| С        | 4              | 2             | 21             | 29            | 2                            | 4.00                            | 3             | 0                 | 7              |
| D        | 6              | 3             | 30             | 50            | 3                            | 6.67                            | 3             | 0                 | 9              |
| E        | 5              | 4             | 26             | 36            | 1                            | 10.00                           | 2             | 0                 | 7              |
| F        | 7              | 4             | 35             | 57            | 3                            | 7.33                            | 2             | 0                 | 9              |
| G        | 9              | 5             | 30             | 53            | 4                            | 5.75                            | 7             | 1                 | 15             |
| Н        | 8              | 6             | 35             | 51            | 2                            | 8.00                            | 9             | 2                 | 15             |

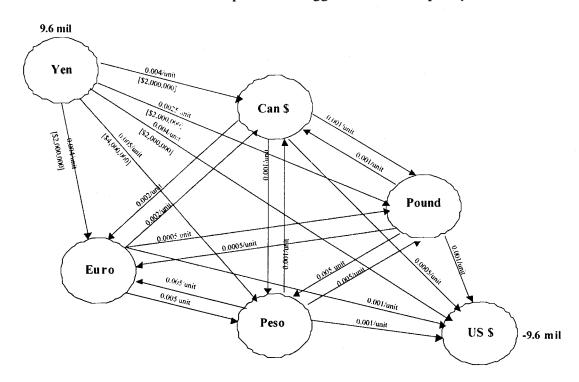
#### 9.8-5.

(a) Let  $x_j$  be the reduction in the duration of activity j and  $y_j$  be the start time of activity j.

(b) Finish Time: 92 weeks, total crashing cost: \$43 million, total cost: \$1.388 billion.

| Activity | Normal<br>Time | Crash<br>Time | Normal<br>Cost | Crash<br>Cost | Maximum<br>Time<br>Reduction | Crash Cost<br>per Week<br>Saved | Start<br>Time | Time<br>Reduction | Finish<br>Time |
|----------|----------------|---------------|----------------|---------------|------------------------------|---------------------------------|---------------|-------------------|----------------|
| Α        | 32             | 28            | 160            | 180           | 4                            | 5                               | 8             | 0                 | 40             |
| В        | 28             | 25            | 125            | 146           | 3                            | 7                               | 0             | 3                 | 25             |
| С        | 36             | 31            | 170            | 210           | 5                            | 8                               | 40            | 0                 | 76             |
| D        | 16             | 13            | 60             | 72            | 3                            | 4                               | 25            | 0                 | 41             |
| E        | 32             | 27            | 135            | 160           | 5                            | 5                               | 26            | 0                 | 58             |
| F        | 54             | 47            | 215            | 257           | 7                            | 6                               | 25            | 3                 | 76             |
| G        | 17             | 15            | 90             | 96            | 2                            | 3                               | 41            | 0                 | 58             |
| Н        | 20             | 17            | 120            | 132           | 3                            | 4                               | 58            | 0                 | 78             |
|          | 34             | 30            | 190            | 226           | 4                            | 9                               | 58            | 0                 | 92             |
| J        | 18             | 16            | 80             | 84            | 2                            | 2                               | 76            | 2                 | 92             |

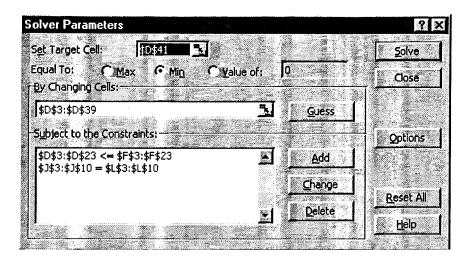
#### 9.9-1.


Answers will vary.

#### 9.9-2.

Answers will vary.

## Cases


7.1 a) There are three supply nodes – the Yen node, the Rupiah node, and the Ringgit node. There is one demand node – the US\$ node. Below, we draw the network originating from only the Yen supply node to illustrate the overall design of the network. In this network, we exclude both the Rupiah and Ringgit nodes for simplicity.

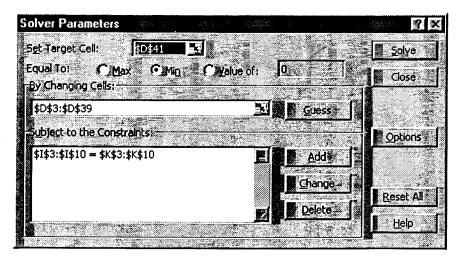


b) Since all transaction limits are given in the equivalent of 1000 dollars we define the flow variables as the amount in 1000's of dollars that Jake converts from one currency into another one. His total holdings in Yen, Rupiah, and Ringgit are equivalent to \$9.6 million, \$1.68 million, and \$5.6 million, respectively. So, the supplies at the supply nodes Yen, Rupiah, and Ringgit are -\$9.6 million, -\$1.68 million, and -\$5.6 million, respectively. The demand at the only demand node US\$ equals \$16.88 million. The transaction limits are capacity constraints for all arcs leaving from the nodes Yen, Rupiah, and Ringgit. The unit cost for every arc is given by the transaction cost for the currency conversion.

| 37         Peso         Can\$         0         -         0.001           38         Peso         Euro         0         -         0.005           39         Peso         Pound         0         -         0.005           40         -         0.005         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | Α        | В      | C         | D                                       | E    | F                                                | G         | Н |       | J            | К | L                                                | М  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|--------|-----------|-----------------------------------------|------|--------------------------------------------------|-----------|---|-------|--------------|---|--------------------------------------------------|----|
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2  |          | From   | То        | Ship                                    |      | Capacity                                         | Unit Cost |   | Nodes | Net Flow     | S | Lupoly /Dema                                     | nd |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3  |          | Yen    | Rupiah    |                                         | <=   |                                                  |           |   |       |              |   |                                                  |    |
| 5         Yen         US\$         2000         <=         2000         0.004         Hinggit         -5600         =         -5600           7         Yen         Euro         2000         <=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4  |          |        |           |                                         |      |                                                  |           |   |       |              |   |                                                  |    |
| 6         Yen         Can\$         2000         <=         2000         0.004         US\$         16880         =         16880           7         Yen         Euro         2000         <=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5  |          | Yen    | UŠ\$      |                                         |      |                                                  |           |   |       |              |   |                                                  |    |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |          | Yen    | Can\$     | 2000                                    | <=   | 2000                                             | 0.004     |   |       | 16880        | = | 16880                                            |    |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7  |          | Yen    |           |                                         |      |                                                  |           |   |       |              |   |                                                  |    |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          | Yen    | Pound     | 2000                                    | <=   | 2000                                             | 0.0025    |   | Euro  | 0            | = | 0                                                |    |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |        | Peso      | 1600                                    | <=   | 4000                                             | 0.005     |   | Pound | 0            | = | 0                                                |    |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | [        | Rupiah |           | 0                                       | <=   | 5000                                             | 0.005     |   | Peso  | 0            | = | 0                                                |    |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |        | Ringgit   |                                         | · <= |                                                  |           |   |       |              |   | T                                                |    |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          | Rupiah | US\$      | 200                                     | <=   | 200                                              | 0.005     |   |       |              |   |                                                  |    |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |        | Can\$     |                                         | <=   | 200                                              | 0.003     |   |       |              |   |                                                  |    |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |        |           |                                         | <=   |                                                  |           |   |       |              |   |                                                  |    |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |        | Pound     |                                         | <=   | 500                                              | 0.0075    |   |       |              |   |                                                  |    |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | _        |        |           |                                         | <=   |                                                  |           |   |       |              |   |                                                  |    |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | [        |        |           |                                         | <=   | 3000                                             |           |   |       |              |   |                                                  |    |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | _        |        |           |                                         | <=   |                                                  | 0.007     |   |       |              |   |                                                  |    |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |        |           |                                         | <=   |                                                  |           |   |       |              |   | 1                                                |    |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | _4       |        |           |                                         | <=   |                                                  |           |   |       |              |   |                                                  |    |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21 | ļ        |        |           |                                         |      |                                                  |           |   |       |              |   |                                                  |    |
| 24         Can\$         US\$         2200         - 0.0005           25         Can\$         Euro         0         - 0.002           26         Can\$         Pound         0         - 0.001           27         Can\$         Peso         0         - 0.001           28         Euro         US\$         5500         - 0.001           29         Euro         Can\$         0         - 0.002           30         Euro         Pound         0         - 0.002           31         Euro         Peso         0         - 0.005           32         Pound         US\$         3080         - 0.001           33         Pound         Can\$         0         - 0.001           34         Pound         Euro         0         - 0.001           35         Pound         Peso         0         - 0.005           36         Peso         US\$         2800         - 0.001           37         Peso         Can\$         0         - 0.001           38         Peso         Euro         0         - 0.005           39         Peso         Pound         0         - 0.005 </td <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |        |           |                                         |      |                                                  |           |   |       |              |   |                                                  |    |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |        |           |                                         | <=   |                                                  |           |   | -     |              |   | 1                                                |    |
| 26         Can\$         Pound         0         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.002         -         0.002         -         0.002         -         0.002         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |        |           |                                         |      | · • •                                            |           |   |       |              |   | <del>  </del>                                    |    |
| 27         Can\$         Peso         0         -         0.001         -         0.001         -         0.001         -         0.002         -         0.002         -         0.002         -         0.002         -         0.002         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.001         33         -         0.001         -         0.001         -         0.001         -         0.001         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |        |           |                                         |      | •                                                |           |   |       |              |   |                                                  |    |
| 28         Euro         US\$         5500         - 0.001         - 0.002           29         Euro         Can\$         0         - 0.002         - 0.002         - 0.005         - 0.005         - 0.005         - 0.005         - 0.005         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001         - 0.001 <td></td> <td><math>\dashv</math></td> <td></td> <td></td> <td></td> <td></td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ļ</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | $\dashv$ |        |           |                                         |      | ·                                                |           |   |       |              |   | ļ                                                |    |
| 29         Euro         Can\$         0         -         0.002         -         0.002         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.001         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -         0.005         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | _        |        |           |                                         |      | · · · · · · · · · · · · · · · · · · ·            |           |   |       |              |   | <del>                                     </del> |    |
| Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S |    |          |        |           |                                         |      |                                                  |           |   |       |              |   | L                                                |    |
| Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   S |    | -        |        |           | - 10000000 0000000000000000000000000000 |      | •                                                |           |   |       |              |   | 1                                                |    |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | _        |        |           | 0 1                                     |      | <u> </u>                                         |           |   |       |              |   |                                                  |    |
| 33         Pound         Can\$         0         -         0.001           34         Pound         Euro         0         -         0.0005           35         Pound         Peso         0         -         0.005           36         Peso         US\$         2800         -         0.001           37         Peso         Can\$         0         -         0.001           38         Peso         Euro         0         -         0.005           39         Peso         Pound         0         -         0.005           40         -         0.005         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | -+       |        |           |                                         |      |                                                  |           |   |       |              |   |                                                  |    |
| 34         Pound         Euro         0         -         0.0005           35         Pound         Peso         0         -         0.005           36         Peso         US\$         2800         -         0.001           37         Peso         Can\$         0         -         0.001           38         Peso         Euro         0         -         0.005           39         Peso         Pound         0         -         0.005           40         -         0.005         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |        |           |                                         |      |                                                  |           |   | _     |              |   | <del> </del>                                     |    |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |          |        |           |                                         |      | <u> </u>                                         |           | - |       |              |   | <del> </del>                                     |    |
| 36         Peso         US\$         2800         -         0.001           37         Peso         Can\$         0         -         0.001           38         Peso         Euro         0         -         0.005           39         Peso         Pound         0         -         0.005           40         -         0.005         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |          |        |           |                                         |      | <u> </u>                                         |           |   |       |              |   | +                                                |    |
| 37         Peso         Can\$         0         -         0.001           38         Peso         Euro         0         -         0.005           39         Peso         Pound         0         -         0.005           40         -         0.005         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | -        |        |           | 1276V, A. 1 ANAVARGO2298                |      |                                                  |           |   |       |              |   | <del>                                     </del> |    |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | -+       |        |           |                                         |      |                                                  |           |   |       |              |   | 1                                                |    |
| 39 Peso Pound 0 - 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | $\dashv$ |        |           |                                         |      | <del>                                     </del> |           |   |       |              |   | <del> </del>                                     |    |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | $\dashv$ |        |           |                                         |      | l                                                |           |   |       | <del> </del> |   | 1                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | $\dashv$ | resu   | Poulid    | U                                       |      | <del> </del>                                     | 0.005     |   |       |              |   | +                                                |    |
| 41 Total Cost \$83,380,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | -+       |        | otal Cost | \$83 380 00                             |      | <b></b>                                          |           |   |       |              |   | <del> </del>                                     |    |

|    | J                                    |
|----|--------------------------------------|
| 1  |                                      |
| Z  | Net Flow                             |
|    | =-SUM(D3:D9)+D10+D17                 |
|    | =-SUM(D10:D16)+D3+D18                |
| 5  | =-SUM(D17:D23)+D4+D11                |
| 6  | =D5+D12+D19+D24+D28+D32+D36          |
| 7  | =D6+D13+D20-SUM(D24:D27)+D29+D33+D37 |
|    | =D7+D14+D21+D25-SUM(D28:D31)+D34+D38 |
|    | =D8+D15+D22+D26+D30-SUM(D32:D35)+D39 |
| 10 | =D9+D16+D23+D27+D31+D35-SUM(D36:D39) |
| 71 |                                      |




Assume Linear Model

Assume Non-Negative

Jake should convert the equivalent of \$2 million from Yen to each US\$, Can\$, Euro, and Pound. He should convert \$1.6 million from Yen to Peso. Moreover, he should convert the equivalent of \$200,000 from Rupiah to each US\$, Can\$, and Peso, \$1 million from Rupiah to Euro, and \$80,000 from Rupiah to Pound. Furthermore, Jake should convert the equivalent of \$1.1 million from Ringgit to US\$, \$2.5 million from Ringgit to Euro, and \$1 million from Ringgit to each Pound and Peso. Finally, he should convert all the money he converted into Can\$, Euro, Pound, and Peso directly into US\$. Specifically, he needs to convert into US\$ the equivalent of \$2.2 million, \$5.5 million, \$3.08 million, and \$2.8 million Can\$, Euro, Pound, and Peso, respectively. Assuming Jake pays for the total transaction costs of \$83,380 directly from his American bank accounts he will have \$16,880,000 dollars to invest in the US.

c) We eliminate all capacity restrictions on the arcs.

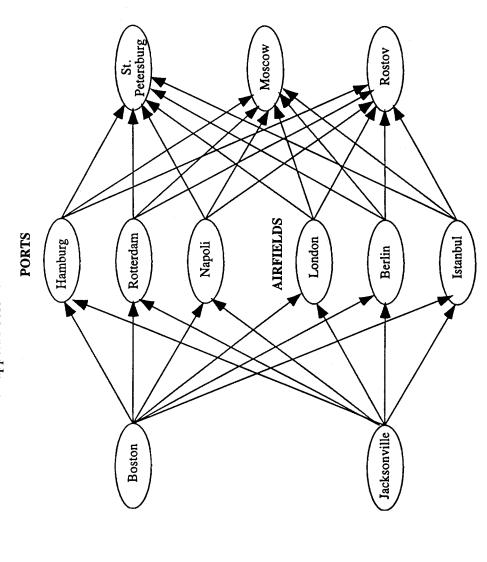
| ГТ       | Α | В         | С         | В                                     | Е            | FI        | G | Н       | 1 1                                   | J | К            | L   |
|----------|---|-----------|-----------|---------------------------------------|--------------|-----------|---|---------|---------------------------------------|---|--------------|-----|
| 1        |   |           |           |                                       | <del>_</del> |           |   |         | · · · · · · · · · · · · · · · · · · · |   | \\ <u>``</u> |     |
| 2        |   | From      | То        | Ship                                  | Capacity     | Unit Cost |   | Nodes   | Net Flow                              |   | Supply /Dem  | and |
| 3        |   | Yen       | Rupiah    | . 0                                   | -            | 0.005     |   | Yen     | -9600                                 | = | -9600        |     |
| 4        |   | Yen       | Ringgit   |                                       |              | 0.005     |   | Rupiah  | -1680                                 | = | -1680        |     |
| 5        |   | Yen       | US\$      | ] ō                                   |              | 0.004     |   | Ringait | -5600                                 | * | -5600        |     |
| 6        |   | Yen       | Can\$     |                                       | -            | 0.004     |   | US\$    | 16880                                 | = | 16880        |     |
| 7        |   | Yen       | Euro      | · 0                                   | -            | 0.004     |   | Can\$   | 0                                     | = | 0            |     |
| 8        |   | Yen       | Pound     | 9600                                  |              | 0.0025    |   | Euro    | Ö                                     | = | 0            |     |
| 9        |   | Yen       | Peso      | 0                                     | -            | 0.005     | - | Pound   | 0                                     | = | 0            |     |
| 10       |   | Rupiah    | Yen       | 0                                     | -            | 0.005     |   | Peso    | 0                                     | = | 0            |     |
| 11       |   | Rupiah    | Ringgit   | - 0                                   | -            | 0.007     |   |         |                                       |   |              |     |
| 12       |   | Rupiah    | US\$      | 7 o 1                                 | -            | 0.005     |   |         |                                       |   |              |     |
| 13       |   | Rupiah    | Can\$     | 1680                                  | •            | 0.003     |   |         | 1                                     |   |              |     |
| 14       |   | Rupiah    | Euro      | 0 [                                   | -            | 0.003     |   |         |                                       |   |              |     |
| 15       |   | Rupiah    | Pound     | 0                                     |              | 0.0075    |   |         |                                       |   |              |     |
| 16       |   | Rupiah    | Peso      | 0                                     |              | 0.0075    |   |         |                                       |   |              |     |
| 17       |   | _Ringgit_ | Yen       | _ o                                   |              | 0.005     |   |         |                                       |   |              |     |
| 18       |   | _Ringgit_ | Rupiah    | 」 o                                   |              | 0.007     |   |         |                                       |   |              |     |
| 19       |   | Ringgit   | US\$      | ] 0 [                                 |              | 0.007     |   |         | į                                     |   |              |     |
| 20       |   | _Pinggit_ | Can\$     | 0 [                                   | -            | 0.007     |   |         |                                       |   |              |     |
| 21       |   | Ringgit   | Euro      | 5600 🕾                                |              | 0.004     |   |         |                                       |   | İİ           |     |
| 22       |   | Ringgit   | Pound     | ] * 0 * [                             |              | 0.0045    |   |         |                                       |   |              |     |
| 23       |   | Ringgit   | Peso      | 0                                     |              | 0.005     |   |         |                                       |   |              |     |
| 24       |   | Can\$     |           | 1680                                  |              | 0.0005    |   |         |                                       |   |              |     |
| 25       |   | Can\$     | Euro      | [                                     |              | 0.002     |   |         |                                       |   |              |     |
| 26       |   | Can\$     | Pound     | 8                                     |              | 0.001     |   |         |                                       |   |              |     |
| 27       |   | Can\$     | Peso      |                                       |              | 0.001     |   |         |                                       |   |              |     |
| 28       |   | Euro      | US\$      | 5600                                  |              | 0.001     |   |         |                                       |   |              |     |
| 29       |   | Euro      | Can\$     | . 0                                   |              | 0.002     |   |         |                                       |   |              |     |
| 30       |   | Euro      | Pound     | 0                                     |              | 0.0005    |   |         |                                       |   |              |     |
| 31       |   | Euro      | Peso      | 0.5                                   |              | 0.005     |   |         |                                       |   |              |     |
| 32<br>33 |   | Pound     | US\$      | 9600                                  |              | 0.001     |   |         |                                       |   |              |     |
| 34       |   | Pound     | Can\$     | ] <u>0</u> ]                          |              | 0.001     |   |         |                                       |   |              |     |
|          |   | Pound     | Euro      |                                       |              | 0.0005    |   |         |                                       |   |              |     |
| 35       |   | Pound     | Peso      | 0 23                                  |              | 0.005     |   |         |                                       |   | ļ            |     |
| 36       |   | Peso      | US\$      | 0 ]                                   |              | 0.001     |   |         |                                       |   |              |     |
| 37       |   | Peso      | Can\$     | . 0                                   |              | _0.001    |   |         |                                       |   |              |     |
| 38<br>39 |   | Peso      | Euro      |                                       | - $ +$       | _0.005    |   |         |                                       |   |              |     |
|          |   | Peso      | Pound     | 0                                     |              | 0.005     |   |         |                                       |   |              |     |
| 40       |   |           |           | III PIJŠKIJI, PIJOŠPICKOJ, ČIŽANSKI I |              |           |   |         |                                       |   |              |     |
| 41       |   | <u>T</u>  | otal Cost | <u> \$6748000</u>                     |              |           |   |         |                                       |   |              |     |
| 42       |   |           |           | 1 <u>1</u>                            | <b>.</b>     |           | 1 |         |                                       |   |              |     |



Jake should convert the entire holdings in Japan from Yen into Pound and then into US\$, the entire holdings in Indonesia from Rupiah into Can\$ and then into US\$, and the entire holdings in Malaysia from Ringgit into Euro and then into US\$. Without the capacity limits the transaction costs are reduced to \$67,480.00.

d) We multiply all unit cost for Rupiah by 6.

|               | Α | В             | C         | D           | E          | F         | G | Н       |          | J | K          | L   |
|---------------|---|---------------|-----------|-------------|------------|-----------|---|---------|----------|---|------------|-----|
| 2             |   |               | _         |             |            |           |   |         |          |   |            |     |
| $\frac{2}{3}$ |   | From          | То        | Ship        | Capacity   | Unit Cost |   | Nodes   | Net Flow |   | pply/ Dema | and |
|               |   | Yen           | Rupiah    | 0           | •          | 0.005     |   | Yen     | -9600    | = | -9600      |     |
| 4             |   | Yen           | Ringgit   | . O         | <u> </u>   | 0.005     |   | Rupiah  | -1680    | = | -1680      |     |
|               |   | Yen           | US\$      | 0           | •          | 0.004     |   | Finggit | -5600    | = | -5600      |     |
| 6             |   | Yen           | Can\$     | ] 0         |            | 0.004     |   | US\$    | 16880    | 2 | 16880      |     |
| 7             |   | Yen           | Euro      | ] 0         | -          | 0.004     |   | Can\$   | 0        | = | 0          |     |
| 8             |   | Yen           | Pound     | 9600        | •          | 0.0025    |   | Euro    | 0        | = | 0          |     |
| 9<br>10       |   | Yen           | Peso      | 0           | -          | 0.005     |   | Pound   | 0        | = | 0          |     |
|               |   | Aupiah        | Yen       | 0           | •          | 0.03      |   | Peso    | 0        | = | 0          |     |
| 11            |   | <u>Pupiah</u> | Finggit   | ] 0 .       | •          | 0.042     |   |         |          |   |            |     |
| 12            |   | Rupiah        | US\$      | ] 0 :       |            | 0.03      |   |         |          |   |            |     |
| 13            |   | Rupiah        | Can\$     | 1680        | -          | 0.018     |   |         |          |   |            |     |
| 14            |   | Pupiah        | Euro      | 0 .         |            | 0.018     |   |         |          |   |            |     |
| 15            |   | Rupiah        | Pound     | 0           | •          | 0.045     |   |         |          |   |            |     |
| 16            |   | Rupiah        | Peso      | 0,          |            | 0.045     |   |         |          |   |            |     |
| 17            |   | Finggit       | Yen       | 0 .         | -          | 0.005     |   |         |          |   |            |     |
| 18            |   | Ringgit       | Rupiah    | ] 0 [       | -          | 0.007     |   |         |          |   |            |     |
| 19            |   | Ringgit       | US\$      | ] 0 [       |            | 0.007     |   |         |          |   |            |     |
| 20            |   | Finggit       | Can\$     | 0           | -          | 0.007     |   |         |          |   |            |     |
| 21            |   | Hinggit       | Euro      | 5600        |            | 0.004     |   |         |          |   |            |     |
| 22            |   | Ringgit       | Pound     | 0           | -          | 0.0045    |   |         |          |   |            |     |
| 23            |   | Pinggit       | Peso      |             | -          | 0.005     |   |         |          |   |            |     |
| 24            |   | Can\$         | US\$      | 1680        | <u>-</u> ` | 0.0005    |   |         |          |   |            |     |
| 25            |   | Can\$         | Euro      | 0           | - 1        | 0.002     |   |         |          |   |            |     |
| 26            |   | Can\$         | Pound     |             | -          | 0.001     |   |         |          |   |            |     |
| 27            |   | Can\$         | Peso      | 0.          |            | 0.001     |   |         |          |   |            | ,   |
| 28            | [ | Euro          | US\$      | 5600        | -          | 0.001     |   |         |          |   |            |     |
| 29            |   | Euro          | Can\$     | 0           | -          | 0.002     |   |         |          |   |            |     |
| 30            |   | Euro          | Pound     | 0 [         |            | 0.0005    |   |         |          |   |            |     |
| 31            |   | Euro          | Peso      | 0           | -          | 0.005     |   |         |          |   |            |     |
| 32            |   | Pound         | US\$      | 9600        |            | 0.001     |   |         |          |   |            |     |
| 33            |   | Pound         | Can\$     | 0           |            | 0.001     |   |         |          |   |            |     |
| 34            |   | Pound         | Euro      | 0.          | -          | 0.0005    |   |         |          |   |            |     |
| 35            |   | Pound         | Peso      | 0           | -          | 0.005     |   |         |          |   |            |     |
| 36            |   | Peso          | US\$      | 0 _         |            | 0.001     |   |         |          |   |            |     |
| 37            |   | Peso          | Can\$     | 0 [         | •          | 0.001     |   |         |          |   |            |     |
| 38            | T | Peso          | Euro      | 0 [         |            | 0.005     |   |         |          |   |            |     |
| 39            |   | Peso          | Pound     | 0 -         |            | 0.005     |   |         |          |   |            |     |
| 40            |   |               |           |             |            |           |   |         |          |   |            |     |
| 41            |   | T             | otal Cost | \$92,680.00 |            |           |   |         |          |   |            |     |
| 42            |   |               |           |             |            |           |   |         |          |   |            |     |


The optimal routing for the money doesn't change, but the total transaction costs are now increased to \$92,680.

e) In the described crisis situation the currency exchange rates might change every minute. Jake should carefully check the exchange rates again when he performs the transactions.

The European economies might be more insulated from the Asian financial collapse than the US economy. To impress his boss Jake might want to explore other investment opportunities in safer European economies that provide higher rates of return than US bonds.

Cases

The network showing the different routes troops and supplies may follow to reach the Russian Federation appears below. a)



b) The President is only concerned about how to most quickly move troops and supplies from the United States to the three strategic Russian cities. Obviously, the best way to achieve this goal is to find the fastest connection between the US and the three cities. We therefore need to find the shortest path between the US and each of the three cities.

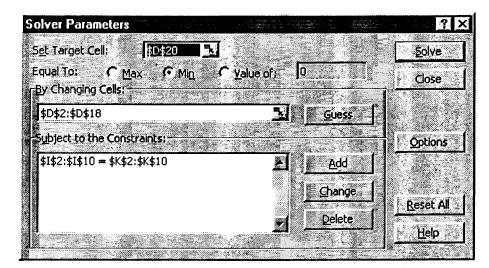
The President only cares about the time it takes to get the troops and supplies to Russia. It does not matter how great a distance the troops and supplies cover. Therefore we define the arc length between two nodes in the network to be the time it takes to travel between the respective cities. For example, the distance between Boston and London equals 6,200 km. The mode of transportation between the cities is a Starfighter traveling at a speed of 400 miles per hour \* 1.609 km per mile = 643.6 km per hour. The time is takes to bring troops and supplies from Boston to London equals 6,200 km / 643.6 km per hour = 9.6333 hours. Using this approach we can compute the time of travel along all arcs in the network.

By simple inspection and common sense it is apparent that the fastest transportation involves using only airplanes. We therefore can restrict ourselves to only those arcs in the network where the mode of transportation is air travel. We can omit the three port cities and all arcs entering and leaving these nodes.

Finally, we define a new node ("dummy" node) in the network called "US," and we introduce two new arcs: one going from the US to Boston and the other going from the US to Jacksonville. The arc length on both new arcs equals 0. The objective is now to find the shortest path from the US to each of the three Russian cities. We define the US node to be a supply node with supply 3, and we define each of the three nodes representing Russian cities as demand nodes with a demand of -1. The nodes representing the three European airfields – London, Berlin, and Istanbul – are all transshipment nodes.

The following spreadsheet shows the entire linear programming model, which identifies the three shortest paths.

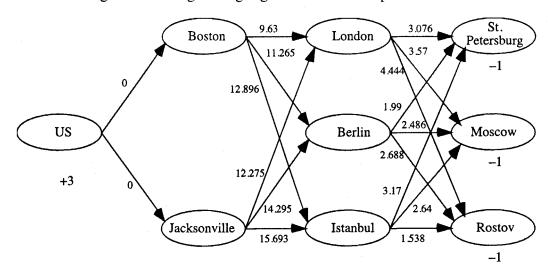
|    | Α   | В            | С              | D           | E        | F         | G.       | Н              |          | J        | κ               |
|----|-----|--------------|----------------|-------------|----------|-----------|----------|----------------|----------|----------|-----------------|
| 1  |     | From         | To             |             | Distance | Time (hr) |          | Nodes          | Net Flow | L        | Supply/Demand   |
| 2  | Г   | US           | Boston         | 3           | 0        | 0         |          | US             | 3        | E        | 3               |
| 3  | 1   | us           | Jacksonville   | 0 👢         | 0        | 0         |          | Boston         | 0        | F.       | 0               |
| 4  | i - | Boston       | London         | 2           | 6200     | 9.63331   |          | Jacksonville   | 0        | =        | 0               |
| 5  | 1   | Boston       | Berlin         | 1           | 7250     | 11.2648   |          | London         | 0        | F        | 0               |
| 6  |     | Boston       | Istanbul       | 0           | 8300     | 12.8962   |          | Berlin         | 0        | E_       | 0               |
| 7  |     | Jacksonville | London         | 0           | 7900     | 12.2747   | _        | Istanbul       | 0        | =        | 0               |
| 8  |     | Jacksonville | Berlin         | . 0         | 9200     | 14.2946   |          | St. Petersburg | 1        | =        | <del>  -1</del> |
| 9  |     | Jacksonville | Istanbul       | 0           | 10100    | 15.693    | <u> </u> | Moscow         | -1       | =        | <del>1</del>    |
| 10 | Г   | London       | St. Petersburg | 1           | 1980     | 3.07644   |          | Rostov         | -1       | 丰        | -1              |
| 11 |     | London       | Moscow         | 1 1         | 2300     | 3.57365   | L.       |                |          | ┺        |                 |
| 12 | 1   | London       | Rostov         | 0           | 2860     | 4.44375   | L.       |                |          | ↓_       |                 |
| 13 | Γ   | Berlin       | St. Petersburg | 0           | 1280     | 1.98881   |          |                |          |          |                 |
| 14 |     | Berlin       | Moscow         |             | 1600     | 2,48602   |          |                |          | -        |                 |
| 15 |     | Berlin       | Rostov         | 1           | 1730     | 2.688     |          | -              |          | +-       |                 |
| 16 | ] _ | Istanbul     | St. Petersburg | 0           | 2040     | 3.16967   |          |                |          | $\vdash$ | <del></del>     |
| 17 |     | Istanbul     | Moscow         | 0           | 1700     | 2.64139   | ļ        |                |          | +-       | <del> </del>    |
| 18 |     | Istanbul     | Rostov         | 0           | 990      | 1.53822   | 丄        | L              | <u> </u> | +        | <u> </u>        |
| 19 |     |              |                |             | ļ        |           | 1        | ļ              |          | $\vdash$ | <u> </u>        |
| 20 | 1   |              | Total Time =   | 39.86948415 |          |           | <u> </u> | <u> </u>       |          | 1_       | <u> </u>        |


The spreadsheet contains the following formulas:

|    | F                |
|----|------------------|
| 1  | Time (hr)        |
| 2  | 0                |
| 3  | 0                |
| 4  | =E4/(400*1.609)  |
| 5  | =E5/(400*1.609)  |
| 6  | =E6/(400*1.609)  |
| 7  | =E7/(400*1.609)  |
| 8  | =E8/(400*1.609)  |
| 9  | =E9/(400*1.609)  |
| 10 | =E10/(400*1.609) |
| 11 | =E11/(400*1.609) |
| 12 | =E12/(400*1.609) |
| 13 | =E13/(400*1.609) |
| 14 | =E14/(400*1.609) |
| 15 | =E15/(400*1.609) |
| 16 | =E16/(400*1.609) |
| 17 | =E17/(400*1.609) |
| 18 | =E18/(400*1.609) |
| 19 |                  |
| 20 |                  |

|    | <del>                                      </del> |
|----|---------------------------------------------------|
|    | l l                                               |
| 1  | Net Flow                                          |
| 2  | =SUM(D2:D3)                                       |
| 3  | =-D2+SUM(D4:D6)                                   |
| 4  | =-D3+SUM(D7:D9)                                   |
| 5  | =-D4-D7+D10+D11+D12                               |
| 6  | =-D5-D8+D13+D14+D15                               |
| 7  | =-D6-D9+D16+D17+D18                               |
| 8  | =-D10-D13-D16                                     |
| 9  | =-D11-D14-D17                                     |
| 10 | =-D12-D15-D18                                     |
| 11 |                                                   |

|    | С            | D                          |
|----|--------------|----------------------------|
| 20 | Total Time = | =SUMPRODUCT(D2:D18,F2:F18) |


The solver dialogue box appears as follows.



Throughout the analysis of this case we use the following solver options.



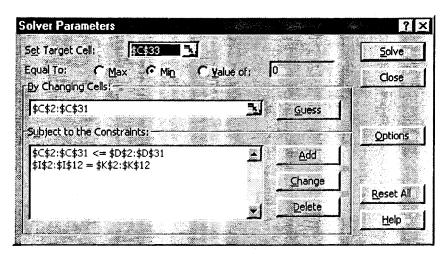
From the optimal solution to the linear programming model we see that the shortest path from the US to Saint Petersburg is Boston  $\rightarrow$  London  $\rightarrow$  Saint Petersburg with a total travel time of 12.710 hours. The shortest path from the US to Moscow is Boston  $\rightarrow$  London  $\rightarrow$  Moscow with a total travel time of 13.207 hours. The shortest path from the US to Rostov is Boston  $\rightarrow$  Berlin  $\rightarrow$  Rostov with a total travel time of 13.953 hours. The following network diagram highlights these shortest paths.



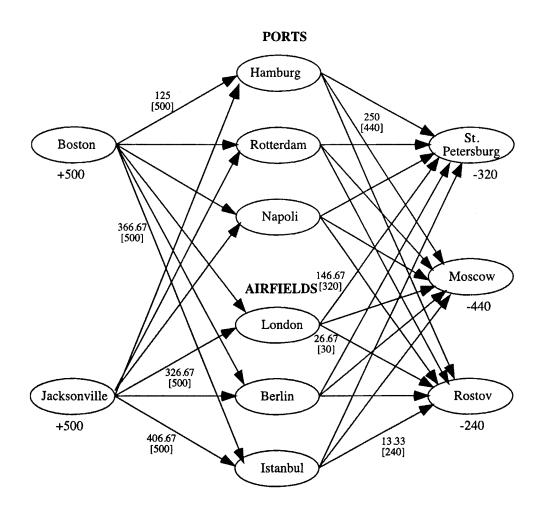
c) The President must satisfy each Russian city's military requirements at minimum cost. Therefore, this problem can be solved as a minimum-cost network flow problem. The two nodes representing US cities are supply nodes with a supply of 500 each (we measure all weights in 1000 tons). The three nodes representing Saint Petersburg, Moscow, and Rostov are demand nodes with demands of -320. -440, and -240, respectively. All nodes representing European airfields and ports are transshipment nodes. We measure the flow along the arcs in 1000 tons. For some arcs, capacity constraints are given. All arcs from the European ports into Saint Petersburg have zero capacity. All truck routes from the European ports into Rostov have a transportation limit of 2,500\*16 = 40,000 tons. Since we measure the arc flows in 1000 tons, the corresponding arc capacities equal 40. An analogous computation yields arc capacities of 30 for both the arcs connecting the nodes London and Berlin to Rostov. For all other nodes we determine natural arc capacities based on the supplies and demands at the nodes. We define the unit costs along the arcs in the network in \$1000 per 1000 tons. For example, the cost of transporting 1 ton of material from Boston to Hamburg equals \$30,000 / 240 = \$125, so the costs of transporting 1000 tons from Boston to Hamburg equals \$125,000.

The objective is to satisfy all demands in the network at minimum cost. The following spreadsheet shows the entire linear programming model.

|          | I            | I в            | l c         | Т р                     | I E               | T F                                 | G             | I н            | I ,      | Τī       | ΙK                                    |
|----------|--------------|----------------|-------------|-------------------------|-------------------|-------------------------------------|---------------|----------------|----------|----------|---------------------------------------|
| 1        | From         | То             | Ship        | Capacity (in 1000 tons) | Cost of Transport | Unit Cost (in \$1000 per 1000 tons) |               | Nodes          | Net Flow | 1        | Supply/Demand                         |
| 2        | Boston       | Hamburg        | 440         | 500                     | 30000             | 125                                 | 1             | Boston         | 500      | 1=       |                                       |
| 3        | Boston       | Rotterdam      | ] # o       | 500                     | 30000             | 125                                 | ١.            | Jacksonville   | 500      | =        | 500                                   |
| 4        | Boston       | Napoli         | 0           | 500                     | 32000             | 133.3333333                         |               | Hamburg        | 0        | =        | 0                                     |
| 5        | Boston       | London         | 1 × 0       | 500                     | 45000             | 300                                 |               | Rotterdam      | 0        | =        | 0                                     |
| _6_      | Boston       | Berlin         | 0           | 500                     | 50000             | 333 3333333                         |               | Napoli         | 0        | =        | 0                                     |
| 7        | Boston       | Istanbul       | 60          | 500                     | 55000             | 366.6666667                         |               | London         | 0        | Ξ        |                                       |
| _8_      | Jacksonville | Hamburg        | ] 💮 🤊       | 500                     | 48000             | 200                                 | L             | Berlin         | 0        | =        | 0                                     |
|          | Jacksonville | Rotterdam      | 0           | 500                     | 44000             | 183 3333333                         | L             | Istanbul       | 0        | =        |                                       |
|          | Jacksonville | Napoli         | 1 0         | 500                     | 56000             | 233.3333333                         | <u>l.    </u> | St. Petersburg | -320     | =        |                                       |
|          | Jacksonville | London         | 350         | 500                     | 49000             | 326 6666667                         | <u> </u>      | Moscow         | -440     | =        |                                       |
| 12       | Jacksonville | Berlin         | - 0         | 500                     | 57000             | 380                                 | i             | Rostov         | -240     | =        | -240                                  |
| 13       |              | Istanbul       | 150         | 500                     | 61000             | 406.6666667                         |               |                |          | Ш        | L                                     |
| 14       |              | St. Petersburg | ] * 0       | 0                       | 3000              | 187.5                               |               |                |          | Ш        | <u> </u>                              |
| 15       |              | St. Petersburg | 0           | . 0                     | 3000              | 187.5                               | _             |                |          | 1        | l                                     |
| 16       |              | St. Petersburg | . 0         | 0                       | 5000              | 312.5                               |               |                |          |          |                                       |
| 17       | London       | St. Petersburg | 320         | 320                     | 22000             | 146.666667                          |               |                |          | ш        |                                       |
| 18       | Berlin       | St. Petersburg | 0           | 320                     | 24000             | 160                                 | Ŀ             |                |          | L        |                                       |
| 10       | I stanbul    | St. Petersburg |             | 320                     | 28000             | 186.666667                          | ⊢             |                |          | $\vdash$ |                                       |
| 20       | Hamburg      | Moscow         | 440         | 440                     | 4000              | 250                                 | L.            | ,              |          | 1        |                                       |
| 21       | Rotterdam    | Moscow         | 0           | 440                     | 5000              | 312.5                               | Ļ.,           |                |          | L        |                                       |
| 22       | Napoli       | Moscow         | <b>0</b>    | 440                     | 5000              | 312.5                               | ├-            |                |          | 1        | ļ                                     |
| 23       | London       | Moscow         | . 0         | 440                     | 19000             | 126 6666667                         | <u> </u>      |                |          | Н        |                                       |
| 24<br>25 | Berlin       | Moscow         | ě           | 440                     | 22000             | 146.666667                          | L.            |                |          | 1        |                                       |
|          | Istanbul     | Moscow         | 200         |                         | 25000             | 166.666867                          |               |                |          | Н        |                                       |
| 26       | Hamburg      | Rostov         | -0          | 40                      | 7000              | 437.5                               |               |                |          | H        | <del>-</del>                          |
| 27       | Rotterdam    | Rostov         | o o         | 40                      | 8000              | 500                                 |               |                |          | 1-1      | · · · · · · · · · · · · · · · · · · · |
| 28       | Napoli       | Rostoy         | 3339053955  | 40                      | 9000              | 562.5                               | -             |                |          | Н        |                                       |
| 29       | London       | Rostov         | 30          | 30                      | 4000              | 26.6666667                          |               |                |          | H        |                                       |
| 30       | Berlin       | Rostov         | 0           | 30                      | 23000             | 153,333,333                         | -             |                |          | Н        |                                       |
| 31       | Istanbul     | Rostov         | 210         | 240                     | 2000              | 13.33333333                         | Ш             |                |          | Н        |                                       |
| 32       |              | l              |             |                         |                   | ,                                   | -             |                |          | $\perp$  |                                       |
| 33       |              | Total Cost =   | 412866.6667 |                         | 1                 |                                     |               |                | l        | ΙI       |                                       |


The following formulas appear in the spreadsheet.

|    | F                                   |
|----|-------------------------------------|
| 1  | Unit Cost (in \$1000 per 1000 tons) |
| 2  | =E2/240                             |
| 3  | =E3/240                             |
| 4  | =E4/240                             |
| 5  | =E5/150                             |
| 6  | =E6/150                             |
| 7  | =E7/150                             |
| 8  | =E8/240                             |
| 9  | =E9/240                             |
| 10 | =E10/240                            |
|    | =E11/150                            |
|    | =E12/150                            |
| 13 | =E13/150                            |
|    | =E14/16                             |
| -, | =E15/16                             |
| 16 | =E16/16                             |
| 17 | =E17/150                            |
| 18 | =E18/150                            |
| 1  | =E19/150                            |
|    | =E20/16                             |
| 21 | =E21/16                             |
| 22 | =E22/16                             |
|    | =E23/150                            |
| 24 | =E24/150                            |
| 25 | =E25/150                            |
| 26 | =E26/16                             |
| 27 | =E27/16                             |
| 28 | =E28/16                             |
| 29 | =E29/150                            |
| 30 | =E30/150                            |
| 31 | =E31/150                            |
| 32 |                                     |


|    | 1                    |
|----|----------------------|
| 1  | Net Flow             |
| 2  | =SUM(C2:C7)          |
| 3  | =SUM(C8:C13)         |
| 4  | =-C2-C8+C14+C20+C26  |
| 5  | =-C3-C9+C15+C21+C27  |
| 6  | =-C4-C10+C16+C22+C28 |
| 7  | =-C5-C11+C17+C23+C29 |
| 8  | =-C6-C12+C18+C24+C30 |
| 9  | =-C7-C13+C19+C25+C31 |
| 10 | =-SUM(C14:C19)       |
| 11 | =-SUM(C20:C25)       |
| 12 | =-SUM(C26:C31)       |
| 13 |                      |

|    | В            | С                          |
|----|--------------|----------------------------|
| 33 | Total Cost = | =SUMPRODUCT(C2:C31,F2:F31) |

We use the following solver dialogue box for this model.

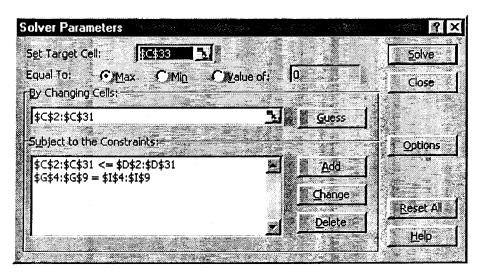


The total cost of the operation equals \$412,866,666.67. The entire supply for Saint Petersburg is supplied from Jacksonville via London. The entire supply for Moscow is supplied from Boston via Hamburg. Of the 240 (= 240,000 tons) demanded by Rostov, 60 are shipped from Boston via Istanbul, 150 are shipped from Jacksonville via Istanbul, and 30 are shipped from Jacksonville via London. The paths used to ship supplies to Saint Petersburg, Moscow, and Rostov are highlighted on the following network diagram.

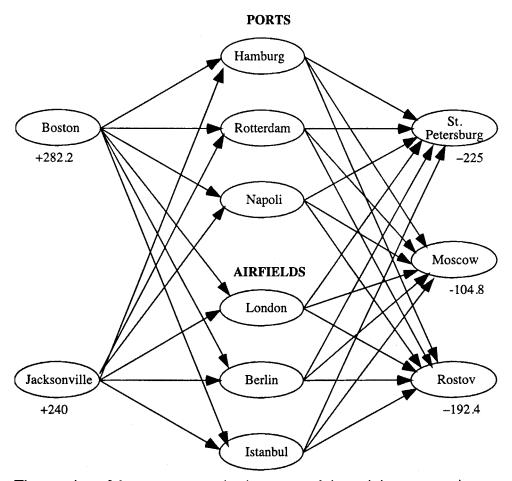


d) Now the President wants to maximize the amount of cargo transported from the US to the Russian cities. In other words, the President wants to maximize the flow from the two US cities to the three Russian cities. All the nodes representing the European ports and airfields are once again transshipment nodes. The flow along an arc is again measured in thousands of tons. The new restrictions can be transformed into arc capacities using the same approach that was used in part (c). The objective is now to maximize the combined flow into the three Russian cities.

The linear programming model describing the maximum flow problem appears as follows.


|    | Α            | В              | С     | D                       | E                                                | F              | G        | П | 1 1           |
|----|--------------|----------------|-------|-------------------------|--------------------------------------------------|----------------|----------|---|---------------|
| 1  | From         | То             | Ship  | Capacity (in 1000 tons) |                                                  | Nodes          | Net Flow |   | Supply/Demand |
| 2  | Boston       | Hamburg        | 19.2  | 500                     | <del>                                     </del> | Boston         | 282.2    | Н |               |
| 3  | Boston       | Rotterdam      | 21.6  | 500                     |                                                  | Jacksonville   | 240      | П |               |
| 4  | Boston       | Napoli         | 46.4  | 500                     |                                                  | Hamburg        | 0        | = | 0             |
| 5  | Boston       | London         | 75    | 75                      |                                                  | Rotterdam      | 0        | = | 0             |
| 6  | Boston       | Berlin         | 45    | 45                      |                                                  | Napoli         | 0        | = | 0             |
| 7  | Boston       | Istanbul       | 75    | 75                      |                                                  | London         | 0        | = | 0             |
| 8  | Jacksonville | Hamburg        | 0     | 500                     |                                                  | Berlin         | 0        | = | 0             |
| 9  | Jacksonville | Rotterdam      | 0     | 500                     |                                                  | Istanbul       | 0        | = | 0             |
| 10 | Jacksonville | Napoli         | 0     | 500                     |                                                  | St. Petersburg | -225     | П |               |
| 11 | Jacksonville | London         | 90    | 90                      |                                                  | Moscow         | -104.8   |   |               |
| 12 | Jacksonville | Berlin         | /5    | /5                      |                                                  | Kostov         | -192.4   | П |               |
| 13 | Jacksonville | Istanbul       | 75    | 105                     |                                                  |                |          |   |               |
| 14 | Hamburg      | St. Petersburg | 0     | 0                       |                                                  |                |          | Н |               |
| 15 | Rotterdam    | St. Petersburg | 0     | 0                       |                                                  |                |          |   |               |
| 16 | Napoli       | St. Petersburg | 0     | 0                       |                                                  |                | •        |   |               |
| 17 | London       | St. Petersburg | 150   | 150                     |                                                  |                |          |   |               |
| 18 | Berlin       | St. Petersburg | 75    | 75                      |                                                  |                |          |   |               |
| 19 | Istanbul     | St. Petersburg | 0     | 0                       |                                                  |                |          |   |               |
| 20 | Hamburg      | Mos∞w          | 11.2  | 11.2                    |                                                  |                |          |   |               |
| 21 | Rotterdam    | Mosœw          | 9.6   | 9.6                     |                                                  |                |          |   |               |
| 22 | Napoli       | Mos∞w          | 24    | 24                      |                                                  |                |          |   |               |
| 23 | London       | Moscow         | 0     | 30                      |                                                  |                |          |   |               |
| 24 | Berlin       | Mos∞w          | 45    | 45                      |                                                  |                |          |   |               |
| 25 | Istanbul     | Mosow          | 15    | 15                      |                                                  |                |          |   |               |
| 26 | Hamburg      | Rostov         | 8     | 8                       |                                                  |                |          | П |               |
| 27 | Rotterdam    | Rostov         | 12    | 12                      |                                                  |                | /40/-    |   |               |
| 28 | Napoli       | Rostov         | 22.4  | 22.4                    |                                                  |                |          | П |               |
| 29 | London       | Rostov         | 15    | 15                      |                                                  |                |          |   |               |
| 30 | Berlin       | Rostov         | 0     | 0                       |                                                  |                |          |   |               |
| 31 | ารเลทอนเ     | Rosiov         | 135   | 135                     |                                                  |                |          |   |               |
| 32 |              |                |       |                         |                                                  |                |          |   |               |
| 33 |              | Total Cost =   | 522.2 |                         |                                                  |                |          |   | ·····         |
|    |              |                |       |                         |                                                  |                |          |   |               |

The following formulas appear in the spreadsheet.


|    | G                    |
|----|----------------------|
| 1  | Net Flow             |
| 2  | =SUM(C2:C7)          |
| 3  | =SUM(C8:C13)         |
| 4  | =-C2-C8+C14+C20+C26  |
| 5  | =-C3-C9+C15+C21+C27  |
| 6  | =-C4-C10+C16+C22+C28 |
| 7  | =-C5-C11+C17+C23+C29 |
| 8  | =-C6-C12+C18+C24+C30 |
| 9  | =-C7-C13+C19+C25+C31 |
| 10 | =-SUM(C14:C19)       |
| 11 | =-SUM(C20:C25)       |
| 12 | =-SUM(C26:C31)       |
| 13 |                      |

|    | В            | С           |
|----|--------------|-------------|
| 33 | Total Cost = | =SUM(G2:G3) |

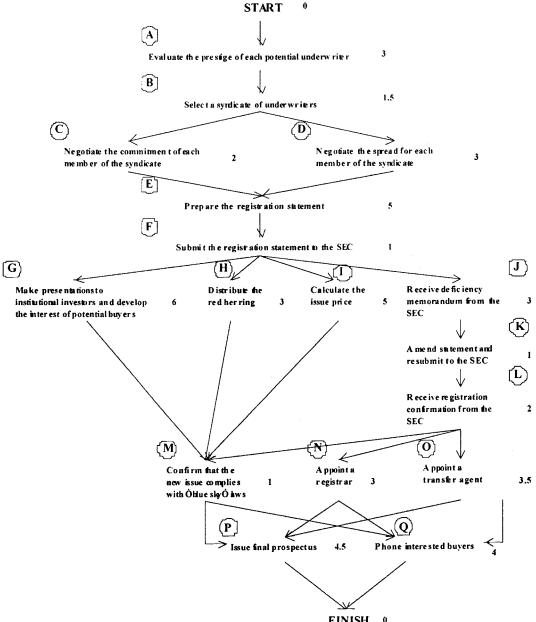
We use the following solver dialogue box.



The worksheet shows all the amounts that are shipped between the various cities. The total supply for Saint Petersburg, Moscow, and Rostov equals 225,000 tons, 104,800 tons, and 192,400 tons, respectively. The following network diagram highlights the paths used to ship supplies between the US and the Russian Federation.



e) The creation of the new communications network is a minimum spanning tree problem. As usual, a greedy algorithm solves this type of problem.


Arcs are added to the network in the following order (one of several optimal solutions):

| Rostov - Orenburg    | 120 |
|----------------------|-----|
| Ufa - Orenburg       | 75  |
| Saratov - Orenburg   | 95  |
| Saratov - Samara     | 100 |
| Samara - Kazan       | 95  |
| Ufa – Yekaterinburg  | 125 |
| Perm – Yekaterinburg | 85  |

The minimum cost of reestablishing the communication lines is \$695,000.

# Cases

**9.3** a) A diagram of the project network appears below.

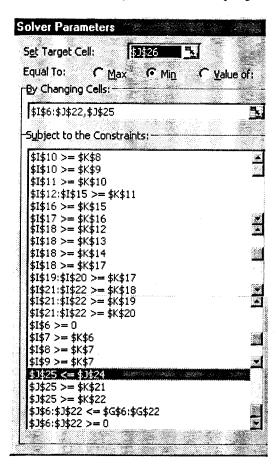


By inspection, the longest path and so the critical path is START  $\rightarrow A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow J \rightarrow K \rightarrow L \rightarrow 0 \rightarrow P \rightarrow Finish.$  The length of this path and so the duration of the initial public offering process is 27.5 weeks.

|                | Α           | В        | C                      | D    | E                     | F             | G         | Н                     | l        | J                      |
|----------------|-------------|----------|------------------------|------|-----------------------|---------------|-----------|-----------------------|----------|------------------------|
| 3              |             | Activity | Description            | Time | ES                    | ₽ E           | LS        | U U                   | Slack    | Critical?              |
| 4              |             | Α        | Evaluate prestige      | 3    | 0                     | =E4+D4        | =H4-D4    | =G5                   | =H4 -F4  | = F(14=0, "Yes", "No " |
| 5              |             | В        | Select syndicate       | 1.5  | = MAX(F4)             | =E5+D5        | =H5-D5    | =MIN(G6,G7)           | ≖H5 -F5  | =IF(15=0, "Yes", "No " |
|                |             | C        | Negotiate commitmen    | t 2  | = MAX(F5)             | =E6+D6        | =H6-D6    | =G8                   | ≈H6-F6   | =IF(16=0, "Yes", "No " |
| 7              |             | D        | Negotiate spread       | 3    | = MAX(P5)             | =E7+D7        | =H7-D7    | =G8                   | ±H7 -F7  | =IF(17=0, "Yes", "No " |
| 8              |             | Æ        | Prepare registration   | 5    | = MAX(F6,F7)          | =E8+D8        | =H8-D8    | =G9                   | #H8-F8   | =IF(18=0, "Yes", "No " |
|                |             | F        | Submit registration    | 1    | = MAX(FB)             | =E9+D9        | =H9-D9    | =MIN(G10,G11,G12,G13) | =H9 -F9  | =IF(I9=0, 'Yes', 'No " |
| 10             |             | G        | Present                | 6    | = MAX(F9)             | =E10+D10      | =H1 0-D10 | =G16                  | =H10 F10 | =IF(I10=0." Yes"," No  |
| 11             |             | Н        | Distribute red herring | 3    | = MAX(F9)             | =E11+D11      | =H1 1-D11 | =G16                  |          | =IF(I11 =0." Yes"," No |
| 12             |             |          | Calculate price        | 5    | = MAX(F9)             | =E 1 2+D1 2   | =H1 2-D12 | =G16                  | =H12+12  | =IF(I12=0."Yes","No    |
| 13             |             | J        | Receive defidency      | 3    | = MAX(F9)             | =E13+D13      | =H1 3-D13 | =G1 4                 | =H13-F13 | =IF(I13=0," Yes"," No  |
| 14             |             | К        | Amend stat ement       | 1    | = MAX(F1 3 )          | =E14+D14      | =H1 4-D14 | =G15                  | =H14-F14 | =IF(I14=0, Yes", No    |
| 15             |             | <u></u>  | Receive registration   | 2    | = MAX(F1 4 )          | =E15+D15      | =H1 5-D15 | =MIN(G18,G17,G16)     | =H15-F15 | =IF(115=0, Yes", No    |
| 16             |             | M        | Confirm blue sky       | 1    | = MAX(F10,F11,F12,F15 | )=E16+D16     | =H1 6-D16 | =MIN(G19,G20)         | =H16-F16 | =IF( 16=0."Yes","No    |
| 17             |             | N        | Appoint registrar      | 3    | = MAX(F1 5 )          | =E17+D17      | =H1 7-D17 | =MIN(G19,G20)         | =H17 F17 | =IF(117=0, "Yes", "No  |
| 18             |             | 0        | Appoint t ransfer      | 3.5  | = MAX(F1 5 )          | =E 1 8+D1 8   | =H1 8-D18 | =MIN(G19,G20)         | =H18-F18 | =IF(I18=0, "Yes", "No  |
| 19             | $\neg \neg$ | Р        | Issue prospectus       | 4.5  | = MAX(F1 6,F1 7,F1 8) | =E19+D19      | =H1 9-D19 | =F22                  | =H19-F19 | =IF(119 =0," Yes"," No |
| 19<br>20<br>21 |             | a        | Phone buyers           | 4    | = MAX(F1 6,F1 7,F1 8) | =E20+D20      | =H2 0-D20 | =F22                  | =H20-F20 | =IF(120 =0," Yes"," No |
| 21             |             |          |                        |      |                       |               |           |                       |          |                        |
| 22             |             |          |                        |      | Project Duration      | =MAX(F19,F20) |           |                       |          |                        |

The values in the new spreadsheet appear below.

|    | Α | В        | С                      | D        | Е         | F      | G    | Н    | ı     | J         |
|----|---|----------|------------------------|----------|-----------|--------|------|------|-------|-----------|
| 3  |   | Activity | Description            | Time     | ES        | EF     | LS   | LF   | Slack | Critical? |
| 4  |   | Α        | Evaluate prestige      | 3        | 0         | 3      | 0    | 3    | 0     | Yes       |
| 5  |   | В        | Select syndicate       | 1.5      | 3         | 4.5    | 3    | 4.5  | 0     | Yes       |
| 6  |   | С        | Negotiate commitmen    | t 2      | 4.5       | 6.5    | 5.5  | 7.5  | 1     | No        |
| 7  |   | D        | Negotiate spread       | 3        | 4.5       | 7.5    | 4.5  | 7.5  | 0     | Yes       |
| 8  |   | E        | Prepare registration   | 5        | 7.5       | 12.5   | 7.5  | 12.5 | 0     | Yes       |
| 9  |   | F        | Submit registration    | 1        | 125       | 13.5   | 12.5 | 13.5 | 0     | Yes       |
| 10 |   | G        | Present                | 6        | 135       | 19.5   | 16   | 22   | 2.5   | No        |
| 11 |   | Н        | Distribute red herring | 3        | 13.5      | 16.5   | 19   | 22   | 5.5   | No        |
| 12 |   | Ì        | Calculate price        | 5        | 135       | 18.5   | 17   | 22   | 3.5   | No        |
| 13 |   | J        | Receive deficiency     | 3        | 13.5      | 16.5   | 13.5 | 16.5 | 0     | Yes       |
| 14 |   | K        | Amend statement        | 1        | 16.5      | 17.5   | 16.5 | 17.5 | 0     | Yes       |
| 15 |   | L        | Receive registration   | 2        | 1 7.5     | 19.5   | 17.5 | 19.5 | 0     | Yes       |
| 16 |   | М        | Confirm blue sky       | 1        | 1 9.5     | 20.5   | 22   | 23   | 2.5   | No        |
| 17 |   | Ν        | Appoint registrar      | 3        | 1 9.5     | 22.5   | 20   | 23   | 0.5   | No        |
| 18 |   | 0        | Appoint transfer       | 3.5      | 1 9.5     | 23     | 19.5 | 23   | 0     | Yes       |
| 19 |   | Р        | Issue prospectus       | 4.5      | 23        | 27.5   | 23   | 27.5 | 0     | Yes       |
| 20 |   | Q        | Phone buyers           | 4        | 23        | 27     | 23.5 | 27.5 | 0.5   | No        |
| 21 |   |          |                        |          |           |        |      |      |       |           |
| 22 |   |          | Pr                     | oject Du | uration : | = 27.5 |      |      |       |           |


# **b)** We formulate a linear programming problem to make the crashing decisions.

|                            | Ä | В        | С      | D     | E      | F      | G         | Н                | 1             | T           | J                         | K                     |
|----------------------------|---|----------|--------|-------|--------|--------|-----------|------------------|---------------|-------------|---------------------------|-----------------------|
| 3                          |   |          |        |       |        |        | Maximum   | Crash Cost       |               |             |                           |                       |
|                            |   |          | Tir    | ne    | Co     | st     | Time      | per Week         | Start         |             | Time                      | Finish                |
| 5                          |   | Activity | Normal | Crash | Normal | Crash  | Reduction | saved            | Time          |             | Reduction                 | Time                  |
| 6                          |   | Α        | 3      | 1.5   | 8000   | 1 400  | 0=C6-D6   | = (F6-E6)/G6     | Ō             | 1.5         |                           | =16+C6-J6             |
| 7                          |   | В        | 1.5    | 0.5   | 4 50 0 | 8000   | = C7-D7   | = (F7-E7 )/ G7   | 1.5           | 1           |                           | =I7 +C7 J7            |
| 8                          |   | C        | 2      | 2     | 9000   | 0      | = Č8-D8   | 0                | 2             | 0           | # 1 P                     | =18+C8-J8             |
| 4<br>5<br>6<br>7<br>8<br>9 |   |          | 3      | 3     | 1 2000 |        | = C9-D9   | 0                | 2             | 0           |                           | =19 +C9 J9            |
| 10                         |   | E        | 5      | 4     |        | 9 50 0 |           | =(F10-E10)/G10   | 05            | 0           |                           | =l1 0+ C10 √1 0       |
|                            |   | F        | 1      | 1     | 1 00 0 | 0      | =C11-D11  |                  | 710           | 0           |                           | <u>=111+C11J11</u>    |
| 12                         |   | G        | 6      | 4     |        |        |           | = (F12-E12)/ G1  |               | 0           |                           | =11 2+ C12 J1 2       |
| 13<br>14<br>15             |   | Н        | 3      | 2     |        |        |           | =(F13-E13)/G1    |               | 0           |                           | <u>=I1 3+ C13 √13</u> |
| 7 4                        |   |          |        | 3.5   | 12000  | 3 1000 |           | =(F14-E14)/G14   | <b>4</b> 11   | 0           | 7                         | =11 4+ C14 J1 4       |
|                            |   | J        | 3      | З     | р      | 0      | =C15-D15  | 0                | 11            | 0           |                           | ≡I1 5+ C15 J1 5       |
| 16<br>17<br>18             |   | K        | 1      | 0.5   | 6 00 0 | 9000   | =C16-D16  | = (F16-E16)/ G16 |               | 0.5         |                           | =I1 6+ C16 J1 6       |
| 17                         |   | L        | 2      | 2     | 0      | 0      | =C17-D17  |                  | 14.5          | 0           |                           | =11 7+ C17 J17        |
| 18                         |   | M        | 1      | 0.5   |        |        |           | = (F18-E18)/ G18 |               | 0           |                           | =11 8+ C18 J1 8       |
| 19                         |   | N        | 3      | 1.5   | 1 2000 |        |           | =(F19-E19)/G19   |               | 1.5         |                           | =11 9+ C19 J1 9       |
| 20<br>21<br>22             |   |          | 3.5    | 1.5   |        |        |           | = (F20-E20)/ G20 |               | 2           |                           | =12 0+ C20 J2 0       |
| 21                         |   | P        | 4.5    | 2     |        |        |           | = (F21-E21 )/ G2 |               | 0.5         |                           | =I2 1+C21 J2 1        |
| 22                         |   | Q        | 4      | 1.5   | 9 00 0 | 20000  | )=C22-D22 | = (F22-E22)/ G2  | 218           | 0           |                           | * - 12 2+ C22 J2 2    |
| 23                         |   |          |        |       |        |        |           |                  | J. M. Barrier |             | ndi 4.g                   |                       |
|                            |   | Ī        |        |       |        |        |           |                  | Desired Fini  | sh 22       |                           |                       |
| 25                         |   |          |        |       |        |        |           |                  | Finish Time : |             | 9 35 35                   |                       |
| 26                         |   |          |        |       |        |        |           |                  | Total Cos     | t ##SUM(E6E | 22)+SUMPRODUCT (H&H22,J6; | J2 2)                 |

The values used in the spreadsheet appear below.

|    | Α | В        | С      | D     | Е        | F      | G                                       | Н          | 1              | J                                                                                                              | Κ      |
|----|---|----------|--------|-------|----------|--------|-----------------------------------------|------------|----------------|----------------------------------------------------------------------------------------------------------------|--------|
| 3  |   |          |        |       |          |        | Maximum                                 | Crash Cost |                |                                                                                                                |        |
| 4  |   |          | Tin    | ne    | Co       | st     | Time                                    | per Week   | Start          | Time                                                                                                           | Finish |
| 5  |   | Activity | Normal | Crash | Normal   | Crash  | Reduction                               | saved      | Time           | Reduction                                                                                                      | Time   |
| 6  |   | Α        | 3      | 1.5   | \$8000   | \$1400 | 0 1.5                                   | \$4000     | 0.0            | 1.5                                                                                                            | 1.5    |
| 7  |   | В        | 1.5    | 0.5   | \$4500   | \$8000 | 1                                       | \$3500     | 1.5            | 1 11                                                                                                           | 2<br>4 |
| 8  |   | C        | 2      | 2     | \$ 90 00 | \$0    | 0                                       | \$0        | 2.0            | 0                                                                                                              |        |
| 9  |   | D        | 3      | 3     | \$12000  |        | 0                                       | \$0        | 2.0            | 0                                                                                                              | 5      |
| 10 |   | E        | 5      | 4     | \$50000  | \$9500 | ) 1                                     | \$45000    | 5.0            | 0                                                                                                              | 10     |
| 11 |   | F        | 1      | _ 1   | \$1000   | \$0    | 0                                       | \$0        | 10.0           | 0                                                                                                              | 11     |
| 12 |   | G        | 6      | 4     | \$25000  | \$6000 | ) 2                                     | \$ 17 50 0 | 11.0           | 0                                                                                                              | 17     |
| 13 |   | Н        | 3      | 2     | \$15000  | \$2200 | 1                                       | \$7000     | 14,0           | - ∜0.÷.                                                                                                        | 17     |
| 14 |   | 1        | 5      | 3.5   | \$12000  | \$3100 | 1.5                                     | \$ 12 66 7 | 11.0           | 20 A TO 10 A TO 10 A TO 10 A TO 10 A TO 10 A TO 10 A TO 10 A TO 10 A TO 10 A TO 10 A TO 10 A TO 10 A TO 10 A T | 16     |
| 15 |   | J        | 3      | 3     | \$0      | \$0    | 0                                       | \$0        | 11.0           | 0                                                                                                              | 14     |
| 16 |   | K        | 1      | 0.5   | \$60 00  | \$9000 | 0.5                                     | \$6000     | 14.0           | 0,5                                                                                                            | 14.5   |
| 17 |   | L        | 2      | 2     | \$0      | \$0    | 0                                       | \$0        | 14.5           | .0                                                                                                             | 1 6.5  |
| 18 |   | М        | 1      | 0.5   | \$5000   | \$8300 | 0.5                                     | \$6600     | 17.0           | ÷ 0 🗼                                                                                                          | 18     |
| 19 |   | N        | 3      | 1.5   | \$12000  | \$1900 | 1.5                                     | \$4667     | 16.5           | ₹1,5                                                                                                           | 18     |
| 20 |   | 0        | 3.5    | 1.5   | \$13000  | \$2100 | ) 2                                     | \$4000     | 165            | 2.0                                                                                                            | 18     |
| 21 |   | Р        | 4.5    | 2     | \$40000  | \$9900 | 2.5                                     | \$23600    | 18.0           | 0.5                                                                                                            | 22     |
| 22 |   | Q        | 4      | 1.5   | \$9000   | \$2000 |                                         | \$4400     | 18.0           | 0                                                                                                              | 22     |
| 23 |   |          |        |       |          |        |                                         |            | 1 2            |                                                                                                                |        |
| 24 |   |          |        |       |          |        |                                         |            | Desired Finish | 22                                                                                                             |        |
| 25 |   |          |        |       |          |        |                                         |            | Finish Time =  | 22                                                                                                             |        |
| 26 |   |          |        |       |          |        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |            | Total Cost =   | \$260800                                                                                                       |        |

The Solver settings for the linear programming appear below.



Janet and Gilbert should reduce the time for step A (evaluating the prestige of each potential underwriter) by 1.5 weeks, the time for step B (selecting a syndicate of underwriters) by one week, the time for step K (amending statement and resubmitting it to the SEC) by 0.5 weeks, the time for step N (appointing a registrar) by 1.5 weeks, the time for step O (appointing a transfer agent) by two weeks, and the time for step P (issuing final prospectus) by 0.5 weeks. Janet and Gilbert can now meet the new deadline of 22 weeks at a total cost of \$260,800.

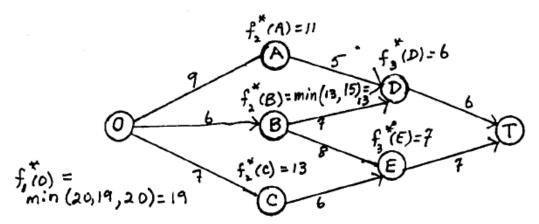
**C**) We use the same model formulation that was used in part (c). We change one constraint, however. The project duration now has to be greater than or equal to 24 weeks instead of 22 weeks. We obtain the following solution in Excel.

|    | Α | В                                       | С      | D     | Е       | F          | G         | Н          | l I            | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K      |
|----|---|-----------------------------------------|--------|-------|---------|------------|-----------|------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 3  |   |                                         |        |       |         |            | Maximum   | Crash Cost |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 4  | ļ | *************************************** | Tin    | ne    | Co      | ost        | Time      | per Week   | Start          | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Finish |
| 5  |   | Activit y                               | Normal | Crash | Normal  | Crash      | Reduction | saved      | Time           | Reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time   |
| 6  |   | Α                                       | 3      | 1.5   |         | \$14000    | 1.5       | \$4000     | 0.0            | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5    |
| 7  |   | В                                       | 1.5    | 0.5   | \$4500  | \$8000     | 1         | \$3500     | 1.5            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2      |
| 8  |   | С                                       | 2      | 2     | \$9000  | \$0        | 0         | \$0        | 2.0            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4      |
| 9  |   | D                                       | 3      | 3     | \$12000 | \$0        | 0         | \$0        | 2.0            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5      |
| 10 |   | Ε                                       | 5      | 4     | \$50000 | \$ 95 O O  | 1         | \$45000    | 5.0            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10     |
| 11 |   | F                                       | 1      | 1     | \$1000  |            | 0         | \$0        | 1 0.0          | <u>;</u> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11     |
| 12 |   | G                                       | 6      | 4     | \$25000 | \$ 60 0 00 | 2         | \$17500    | 12.5           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.5   |
| 13 |   | Н                                       | 3      | 2     | \$15000 |            | 1         | \$7000     | 15.5           | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.5   |
| 14 |   |                                         | 5      | 3.5   | \$12000 | \$31000    | 1.5       | \$12667    | 11.0           | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16     |
| 15 |   | · J                                     | 3      | 3     | \$0     | \$0        | 0         | \$0        | 11.0           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14     |
| 16 |   | K                                       | 1      | 0.5   | \$6000  | \$9000     | 0.5       | \$6000     | 14.0           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.5   |
| 17 |   | L                                       | 2      | 2     | \$0     | \$0        | 0         | \$0        | 14.5           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.5   |
| 18 |   | M                                       | 1      | 0.5   | \$5000  | \$8300     | 0.5       | \$6600     | 18.5           | - O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.5   |
| 19 |   | N                                       | 3      | 1.5   | \$12000 |            |           | \$4667     | 1 6.5          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 9.5  |
| 20 |   | 0                                       | 3.5    | 1.5   | \$1300  | \$2100     | 2         | \$4000     | 1 6.5          | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.5   |
| 21 |   | Р                                       | 4.5    | 2     | \$4000  |            |           | \$23600    | 19.5           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24     |
| 22 |   | Q                                       | 4      | 1.5   |         | \$20000    |           | \$4400     | 19.5           | # O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.5   |
| 23 |   |                                         |        |       |         |            |           |            |                | # in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |        |
| 24 |   |                                         |        |       |         |            |           |            | Desired Finish | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| 25 |   |                                         |        |       |         |            |           |            | Finish Time =  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| 26 |   |                                         |        |       |         |            |           |            | Total Cost =   | \$236000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |

Janet and Gilbert should reduce the time for step A (evaluating the prestige of each potential underwriter) by 1.5 weeks, the time for step B (selecting a syndicate of underwriters) by one week, the time for step K (amending statement and resubmitting it to the SEC) by 0.5 weeks, and the time for step O (appointing a transfer agent) by 0.5 weeks. Janet and Gilbert can now meet the new deadline of 24 weeks at a total cost of \$236,000.

#### **CHAPTER 10: DYNAMIC PROGRAMMING**

#### 10.2-1.


(a) The nodes of the network can be divided into "layers" such that the nodes in the nth layer are accessible from the origin only through the nodes in the (n-1)st layer. These layers define the stages of the problem, which can be labeled as n=1,2,3,4. The nodes constitute the states.

Let  $S_n$  denote the set of the nodes in the nth layer of the network, i.e.,  $S_1 = \{O\}$ ,  $S_2 = \{A, B, C\}$ ,  $S_3 = \{D, E\}$  and  $S_4 = \{T\}$ . The decision variable  $x_n$  is the immediate destination at stage n. Then the problem can be formulated as follows:

$$f_n^*(s) = \min_{x_n \in S_{n+1}} [c_{sx_n} + f_{n+1}^*(x_n)] \equiv \min_{x_n \in S_{n+1}} f_n(s, x_n) \quad \text{for } s \in S_n \text{ and } n = 1, 2, 3$$

$$f_4^*(T) = 0$$

(b) The shortest path is O - B - D - T.



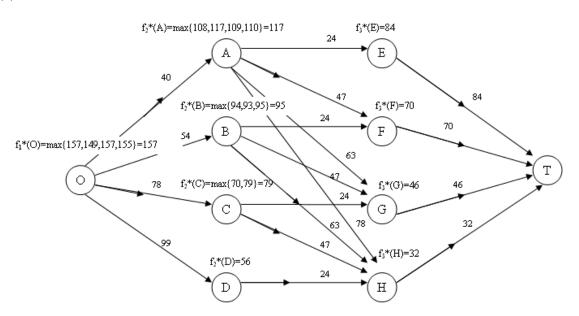
(c) Number of stages: 3

| $s_3$ | $f_3^*(s)$ | $x_3^*$ |
|-------|------------|---------|
| D     | 6          | T       |
| E     | 7          | T       |

| $s_2$ | $f_2(s,D)$ | $f_2(s,E)$ | $f_2^*(s)$ | $x_2^*$ |
|-------|------------|------------|------------|---------|
| A     | 11         |            | 11         | D       |
| B     | 13         | 15         | 13         | D       |
| C     | _          | 13         | 13         | E       |

| $s_1$ | $f_1(s,A)$ | $f_1(s,B)$ | $f_1(s,C)$ | $f_1^*(s)$ | $x_1^*$ |
|-------|------------|------------|------------|------------|---------|
| O     | 20         | 19         | 20         | 19         | B       |

Optimal Solution:  $x_1^* = B$ ,  $x_2^* = D$  and  $x_3^* = D$ .


# (d) Shortest-Path Algorithm:

|   | Solved nodes       | Closest       |             | nth     | Distance to |            |
|---|--------------------|---------------|-------------|---------|-------------|------------|
|   | directly connected | connected     | total       | nearest | nth nearest | Last       |
| n | to unsolved nodes  | unsolved node | distance    | node    | node        | connection |
| 1 | 0                  | B             | 6           | B       | 6           | OB         |
| 2 | O                  | C             | 7           | C       | 7           | OC         |
|   | В                  | D             | 6 + 7 = 13  |         |             |            |
| 3 | 0                  | A             | 9           | A       | 9           | OA         |
|   | В                  | D             | 6 + 7 = 13  |         |             |            |
|   | C                  | E             | 7 + 6 = 13  |         |             |            |
| 4 | A                  | D             | 9 + 5 = 14  | D       | 13          | BD         |
|   | В                  | D             | 6 + 7 = 13  |         |             |            |
|   | C                  | E             | 7 + 6 = 13  | E       |             | CE         |
| 5 | D                  | T             | 13 + 6 = 19 | T       | 19          | DT         |
|   | E                  | T             | 13 + 7 = 20 |         |             |            |

The shortest-path algorithm required 8 additions and 6 comparisons whereas dynamic programming required 7 additions and 3 comparisons. Hence, the latter seems to be more efficient for shortest-path problems with "layered" network graphs.

# 10.2-2.

(a)



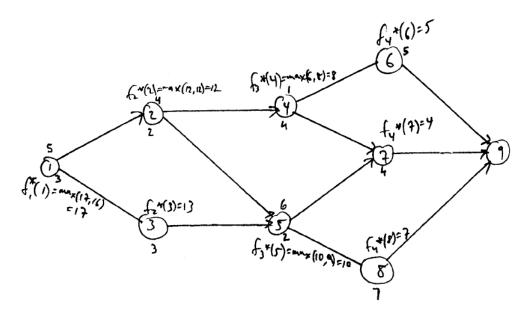
The optimal routes are O-A-F-T and O-C-H-T, the associated sales income is 157. The route O-A-F-T corresponds to assigning 1, 2, and 3 salespeople to regions 1, 2, and 3 respectively. The route O-C-H-T corresponds to assigning 3, 2, and 1 salespeople to regions 1, 2, and 3 respectively.

(b) The regions are the stages and the number of salespeople remaining to be allocated at stage n are possible states at stage n, say  $s_n$ . Let  $x_n$  be the number of salespeople assigned to region n and  $c_n(x_n)$  be the increase in sales in region n if  $x_n$  salespeople are assigned to it. Number of stages: 3.

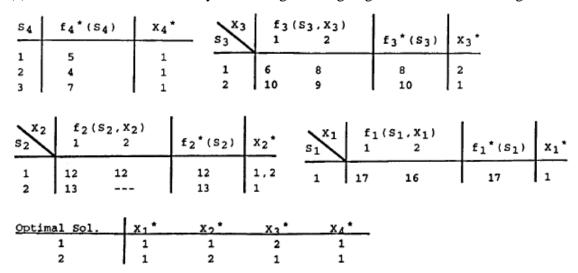
| $s_3$ | $f_3^*(s_3)$ | $x_3^*$ |
|-------|--------------|---------|
| 1     | 32           | 1       |
| 2     | 46           | 2       |
| 3     | 70           | 3       |
| 4     | 84           | 4       |

|       | J   | $f_2(s_2, s_2)$ |     |     |               |         |
|-------|-----|-----------------|-----|-----|---------------|---------|
| $s_2$ | 1   | 2               | 3   | 4   | $f_2^st(s_2)$ | $x_2^*$ |
| 2     | 56  | _               | _   | _   | 56            | 1       |
| 3     | 70  | 79              | _   | _   | 79            | 2       |
| 4     | 94  | 93              | 95  | _   | 95            | 3       |
| 5     | 108 | 117             | 109 | 110 | 117           | 2       |

|       | J   | $f_1(s_1, s_2)$ |     |     |              |         |
|-------|-----|-----------------|-----|-----|--------------|---------|
| $s_1$ | 1   | 2               | 3   | 4   | $f_1^*(s_1)$ | $x_1^*$ |
| 6     | 157 | 149             | 157 | 155 | 157          | 1,3     |


The optimal solutions are  $(x_1^* = 1, x_2^* = 2, x_3^* = 3)$  and  $(x_1^* = 3, x_2^* = 2, x_3^* = 1)$ .

# 10.2-3.


(a) The five stages of the problem correspond to the five columns of the network graph. The states are the nodes of the graph. Given the activity times  $t_{ij}$ , the problem can be formulated as follows:

$$f_n^*(s) = \max_{x_n} \left[ t_{sx_n} + f_{n+1}^*(x_n) \right]$$
  
$$f_6^*(9) = 0$$

(b) The critical paths are  $1 \to 2 \to 4 \to 7 \to 9$  and  $1 \to 2 \to 5 \to 7 \to 9$ .



(c) Interactive Deterministic Dynamic Programming Algorithm: Number of stages: 4



# 10.2-4.

- (a) FALSE. It uses a recursive relationship that enables solving for the optimal policy for stage n given the optimal policy for stage (n+1) [Feature 7, Section 10.2, p.446].
- (b) FALSE. Given the current state, an optimal policy for remaining stages is independent of the policy decisions adopted in previous stages. Therefore, the optimal immediate decision depends on only the current state and not on how you got there. This is the Principle of Optimality for dynamic programming [Feature 5, Section 10.2, p.446].
- (c) FALSE. The optimal decision at any stage depends on only the state at that stage and not on the past. This is again the Principle of Optimality [Feature 5, Section 10.2, p.446].

#### 10.3-1.

The Military Airlift Command (MAC) employed dynamic programming in scheduling its aircraft, crew and mission support resources during Operation Desert Storm. The primary goal was to deliver cargo and passengers on time in an environment with time and space constraints. The missions are scheduled sequentially. The schedule of a mission imposes resource constraints on the schedules of following missions. A balance among various objectives is sought. In addition to maximizing timely deliveries, MAC aimed at reducing late deliveries, total flying time of each mission, ground time and frequency of crew changes. Maximizing on-time deliveries is included in the model as a lower bound on the load of the mission. The problem for any given mission is then to determine a feasible schedule that minimizes a weighted sum of the remaining objectives. The constraints are the lower bound constraints, crew and ground-support availability constraints. Stages are the airfields in the network and states are defined as airfield, departure time, and remaining duty day. The solution of the problem is made more efficient by exploiting the special structure of the objective function.

The software developed to solve the problems cost around \$2 million while the airlift operation cost over \$3 billion. Hence, even a small improvement in efficiency meant a considerable return on investment. A systematic approach to scheduling yielded better

coordination, improved efficiency, and error-proof schedules. It enabled MAC not only to respond quickly to changes in the conditions, but also to be proactive by evaluating different scenarios in short periods of time.

# 10.3-2.

Let  $x_n$  be the number of crates allocated to store n,  $p_n(x_n)$  be the expected profit from allocating  $x_n$  to store n and  $s_n$  be the number of crates remaining to be allocated to stores  $k \geq n$ . Then  $f_n^*(s_n) = \max_{0 \leq x_n \leq s_n} \left[ p_n(x_n) + f_{n+1}^*(s_n - x_n) \right]$ . Number of stages: 3

| <b>S</b> 3 | ļ   | £3*(\$3) | 1  | X3* |
|------------|-----|----------|----|-----|
| 0          | -¦- | 0        | -¦ | 0   |
| 1          | i   | 4        | i  | 1   |
| 2          | i   | 9        | i  | 2   |
| 3          | Ì   | 13       | i  | 3   |
| 4          | i   | 18       | Ì  | 4   |
| 5          | - i | 20       | Ì  | 5   |

| \ X2 | ļ            |    | f2(S | 2, X2) |       |     | 1       | !       |
|------|--------------|----|------|--------|-------|-----|---------|---------|
| \$2\ | 0            | 1  | 2    | 3      | 4     | 5   | f2*(S2) | X2*     |
| -0   | <del>-</del> |    |      |        |       |     | 0       | 0       |
| 1    | 4            | 6  |      |        | • • • |     | 6       | 1       |
| 2    | 9            | 10 | 11   |        | • • • | ••• | 11      | 2       |
| 3    | 13           | 15 | 15   | 15     | •••   | ,-  | 15      | 1,2,3   |
| 4    | 18           | 19 | 20   | 19     | 19    |     | 20      | 1 2     |
| 5    | 20           | 24 | 24   | 24     | 23    | 22  | 24      | 1 1,2,3 |

| \ X1 |    |    | f1(S1 | , X1) |    |    | !!!         |
|------|----|----|-------|-------|----|----|-------------|
| \$1\ | 0  | 1  | 2.    | 3     | 4  | 5  | f1*(S1) X1* |
| -5   | 24 | 25 | 24    | 25    | 23 | 21 | 25 1,3      |

| Optimal   solution | X1* | X2* | X3* |
|--------------------|-----|-----|-----|
| 1                  | 1   | 2   | 2   |
| 2                  | 3   | 2   | 0   |

# 10.3-3.

Let  $x_n$  be the number of study days allocated to course n,  $p_n(x_n)$  be the number of grade points expected when  $x_n$  days are allocated to course n and  $s_n$  be the number of study days remaining to be allocated to courses  $k \ge n$ . Then

$$f_n^*(s_n) = \max_{1 \leq x_n \leq \min(s_n, 4)} \left[ p_n(x_n) + f_{n+1}^*(s_n - x_n) \right].$$

Number of stages: 4

| $s_4$ | $f_4^*(s_4)$ | $x_4^*$ |
|-------|--------------|---------|
| 1     | 4            | 1       |
| 2     | 4            | 2       |
| 3     | 5            | 3       |
| 4     | 8            | 4       |

|       |    | $f_3(s_3)$ |    |    |              |         |
|-------|----|------------|----|----|--------------|---------|
| $s_3$ | 1  | 2          | 3  | 4  | $f_3^*(s_3)$ | $x_3^*$ |
| 2     | 8  | _          | _  | _  | 8            | 1       |
| 3     | 8  | 10         | _  | _  | 10           | 2       |
| 4     | 9  | 10         | 11 | _  | 11           | 3       |
| 5     | 12 | 11         | 11 | 13 | 13           | 4       |

|       |    | $f_2(s_2)$ | $(x_{2}, x_{2})$ |    |               |         |
|-------|----|------------|------------------|----|---------------|---------|
| $s_2$ | 1  | 2          | 3                | 4  | $f_2^st(s_2)$ | $x_2^*$ |
| 3     | 13 | -          | _                | _  | 13            | 1       |
| 4     | 15 | 14         | _                | _  | 15            | 1       |
| 5     | 16 | 16         | 16               | _  | 16            | 1, 2, 3 |
| 6     | 18 | 17         | 18               | 16 | 18            | 1,3     |

|       |    | $f_1(s)$ | $(1, x_1)$ |    |              |         |
|-------|----|----------|------------|----|--------------|---------|
| $s_1$ | 1  | 2        | 3          | 4  | $f_1^*(s_1)$ | $x_1^*$ |
| 7     | 19 | 19       | 21         | 21 | 21           | 3, 4    |

| Optimal Solution | $x_1^*$ | $x_2^*$ | $x_3^*$ | $x_4^*$ |
|------------------|---------|---------|---------|---------|
| 1                | 3       | 1       | 2       | 1       |
| 2                | 4       | 1       | 1       | 1       |

# 10.3-4.

Let  $x_n$  be the number of commercials run in area n,  $p_n(x_n)$  be the number of votes won when  $x_n$  commercials are run in area n and  $s_n$  be the number of commercials remaining to be allocated to areas  $k \geq n$ . Then

$$f_n^*(s_n) = \max_{0 \le x_n \le s_n} [p_n(x_n) + f_{n+1}^*(s_n - x_n)].$$

Number of stages: 4

| S4  | £4*(\$4) | ı   | X4* |
|-----|----------|-----|-----|
|     |          | _1_ |     |
| 0 [ | 0        | - 1 | 0   |
| 1   | 3        | i   | 1   |
| 2   | 7        | Ì   | 2   |
| 3   | 12       | İ   | 3   |
| 4 1 | 14       | İ   | 4   |
| 5   | 16       | ĺ   | 5   |

| / X3 | !   |    | f3(S | 3, X3) |    | !!    |         |       |  |
|------|-----|----|------|--------|----|-------|---------|-------|--|
| s3\  | 0   | 1  | 2    | 3      | 4, | 5     | f3*(S3) | X3*   |  |
| 0    | -   |    |      |        |    |       | ¦       | 0     |  |
| 1    | j 3 | 5  |      |        |    |       | j 5     | 1     |  |
| 2    | 7   | 8  | 9    |        |    | • • • | j 9     | 2     |  |
| 3    | 12  | 12 | 12   | 11     |    |       | 12      | 0,1,2 |  |
| 4    | 14  | 17 | 16   | 14     | 10 |       | j 17    | 1     |  |
| 5    | 16  | 19 | 21   | 18     | 13 | 9     | 21      | 2     |  |

| \ X2 | !  |    | f2(S | 2, X2) |       |    | !            | !         |
|------|----|----|------|--------|-------|----|--------------|-----------|
| s2\  | 0  | 1  | 2    | 3      | 4     | 5  | f2*(S2)      | <br>  X2* |
| 0    | ¦  |    |      |        |       |    | <del>-</del> | 0         |
| 1    | 5  | 6  |      |        |       |    | 6            | 1         |
| 2    | 9  | 11 | 8    | • • •  | •••   |    | 11           | 1         |
| 3    | 12 | 15 | 13   | 10     | • • • |    | 15           | 1         |
| 4    | 17 | 18 | 17   | 15     | 11    |    | 18           | 1         |
| 5    | 21 | 23 | 20   | 19     | 16    | 12 | 23           | 1         |

| \ X1 | I   |    | f1(S1 | , X1) |    |    | I       | Į.             |
|------|-----|----|-------|-------|----|----|---------|----------------|
| \ i  | ! _ |    |       | •     |    |    |         |                |
| \$1\ | 0   | 1  | 2     | 3     | 4  | 5  | f1*(S1) | i<br>Î Xī∗     |
| 5    | 23  | 22 | 22    | 20    | 18 | 15 | 23      | <del>  0</del> |

| Optimal  <br>solution | X1* | X2* | <b>X</b> 3* | X4* |
|-----------------------|-----|-----|-------------|-----|
| 1                     | 0   | 1   | 1           | 3   |

# 10.3-5.

Let  $x_n$  be the number of workers allocated to precinct n,  $p_n(x_n)$  be the increase in the number of votes if  $x_n$  workers are assigned to precinct n and  $s_n$  be the number of workers remaining at stage n. Then

$$f_n^*(s_n) = \max_{0 \le x_n \le s_n} [p_n(x_n) + f_{n+1}^*(s_n - x_n)].$$

Number of stages: 4

| <b>S</b> 4 | £4*(\$4) | X4* |
|------------|----------|-----|
| 0          | 0        | 0   |
| 1          | 1 6      | 1   |
| 2          | 11       | 2   |
| 3          | 1 14     | j 3 |
| 4          | 15       | 4   |
| 5          | 17       | 5   |
| 6          | 18       | j 6 |

| \ X3 | !  | £3(\$3, X3) |    |    |    |    |    | !       | ļ   |
|------|----|-------------|----|----|----|----|----|---------|-----|
| s3\  | 0  | 1           | 2  | 3  | 4  | 5. | 6  | f3*(S3) | х3* |
| 0    | -  |             |    |    |    |    |    | ¦       | 0   |
| 1    | 6  | 5           |    |    |    |    |    | j 6     | 0   |
| 2    | 11 | 11          | 10 |    |    |    |    | į 11    | 0,1 |
| 3    | 14 | 16          | 16 | 15 |    |    |    | 16      | 1,2 |
| 4    | 16 | 19          | 21 | 21 | 18 |    |    | j 21    | 2,3 |
| 5    | 17 | 21          | 24 | 26 | 24 | 21 |    | 26      | j 3 |
| 6    | 18 | 22          | 26 | 29 | 29 | 27 | 22 | 29      | 3,4 |

| \ X2        | !    |     | £2(\$2, X2) |     |       |    |     | £2(S2, X2) |     |  |  | ! |
|-------------|------|-----|-------------|-----|-------|----|-----|------------|-----|--|--|---|
| <b>52</b> \ | 0    | 1   | 2           | 3   | 4     | 5  | 6   | f2*(S2)    | X2* |  |  |   |
| 0           | -    | ••• |             |     | •••   |    |     | 1-0        | -   |  |  |   |
| 1           | 6    | 7   |             | ••• | •••   |    |     | j 7        | į 1 |  |  |   |
| 2           | j 11 | 13  | 11          |     | • • • |    |     | 13         | 1   |  |  |   |
| 3           | 16   | 18  | 17          | 16  | • • • | •  |     | j 18       | į ı |  |  |   |
| 4           | j 21 | 23  | 22          | 22  | 18    |    | ••• | i 23       | iı  |  |  |   |
| 5           | 26   | 28  | 27          | 27  | 24    | 20 |     | j 28       | j 1 |  |  |   |
| 6           | 29   | 33  | 32          | 32  | 29    | 26 | 21  | 33         | j 1 |  |  |   |

| \ X1  |    | f  | 1(S1, | X1) |    |    | I s     |     |
|-------|----|----|-------|-----|----|----|---------|-----|
| \     | 1  | 2  | 3     | 4   | 5  | 6  | fl*(S1) | X1* |
| 6 -33 | 32 | 32 | 33    | 31  | 29 | 24 | 33      | 0,3 |

| Optimal  <br>solution | X1* | X2* | <b>X</b> 3* | X4* |
|-----------------------|-----|-----|-------------|-----|
| 1                     | 0   | 1   | 3           | 2   |
| 2 j                   | 3   | 1   | 0           | 2   |
| 3 i                   | 3   | 1   | 1           | 1   |

# 10.3-6.

Let  $5x_n$  be the number of jet engines produced in month n and  $s_n$  be the inventory at the beginning of month n. Then  $f_n^*(s_n)$  is:

$$\min_{\max(r_n-s_n,0)\leq x_n\leq m_n}[c_nx_n+d_n\max(s_n+x_n-r_n,0)+f_{n+1}^*(\max(s_n+x_n-r_n,0))]$$

and 
$$f_4^*(s_4) = c_4 \max(s_4 - r_4, 0)$$
.

Using the following data adjusted to reflect that  $x_n$  is one fifth of the actual production,

| Month | $r_n$ | $m_n$ | $c_n$ | $d_n$ |
|-------|-------|-------|-------|-------|
| 1     | 2     | 5     | 5.40  | 0.075 |
| 2     | 3     | 7     | 5.55  | 0.075 |
| 3     | 5     | 6     | 5.50  | 0.075 |
| 4     | 4     | 2     | 5.65  | 0.075 |

the following tables are produced:

| $s_4$ | $f_4^st(s_4)$ | $x_4^*$ |
|-------|---------------|---------|
| 2     | 11.30         | 2       |
| 3     | 5.65          | 1       |
| 4     | 0.00          | 0       |

|       | $f_3(s_3,x_3)$ |        |        |        |        |        |        |              |         |
|-------|----------------|--------|--------|--------|--------|--------|--------|--------------|---------|
| $s_3$ | 0              | 1      | 2      | 3      | 4      | 5      | 6      | $f_3^*(s_3)$ | $x_3^*$ |
| 1     | _              | _      | _      |        | _      | _      | 44.45  | 44.45        | 6       |
| 2     | _              | _      | _      |        | _      | 38.95  | 38.875 | 38.875       | 6       |
| 3     | _              | _      | _      | _      | 33.45  | 33.375 | 33.30  | 33.30        | 6       |
| 4     | _              | _      | _      | 27.95  | 27.875 | 27.80  | _      | 27.80        | 5       |
| 5     | _              | _      | 22.45  | 22.375 | 22.30  | _      | _      | 22.30        | 4       |
| 6     | _              | 16.95  | 16.875 | 16.80  | _      | _      | _      | 16.80        | 3       |
| 7     | 11.45          | 11.375 | 11.30  | _      | _      | _      | _      | 11.30        | 2       |

|       |   | $f_2(s_2,x_2)$ |            |                  |        |        |        |        |              |         |
|-------|---|----------------|------------|------------------|--------|--------|--------|--------|--------------|---------|
| $s_2$ | 0 | 1              | 2          | 3                | 4      | 5      | 6      | 7      | $f_2^*(s_2)$ | $x_2^*$ |
| 0     | _ | _              | _          | _                | 66.725 | 66.775 | 66.825 | 66.95  | 66.725       | 4       |
| 1     | _ | _              | _          | 61.175           | 61.225 | 61.275 | 61.40  | 61.525 | 61.175       | 3       |
| 2     | _ | _              | 55.625     | 55.675           | 55.725 | 55.85  | 55.975 | 56.10  | 55.625       | 2       |
| 3     |   | 50.075         | 50.125     | 50.175           | 50.30  | 50.425 | 50.55  | 50.675 | 50.075       | 1       |
|       |   |                | $f_1(s_1,$ | $\overline{x_1}$ | ·      |        |        |        |              | •       |

| $s_1$ | 0 | 0 1 2 3 4 5 |        |       |        |       |       | $x_1^*$ |
|-------|---|-------------|--------|-------|--------|-------|-------|---------|
| 0     | _ | ı           | 77.525 | 77.45 | 77.375 | 77.30 | 77.30 | 5       |

Hence, the optimal production schedule is to produce  $5 \cdot 5 = 25$  units in the first month,  $1 \cdot 5 = 5$  in the second,  $6 \cdot 5 = 30$  in the third and  $2 \cdot 5 = 10$  in the last month.

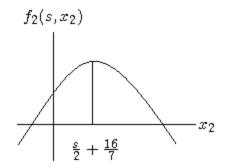
# 10.3-7.

(a) Let  $x_n$  be the amount in million dollars spent in phase n,  $s_n$  be the amount in million dollars remaining,  $p_1(x_1)$  be the initial share of the market attained in phase 1 when  $x_1$  is spent in phase 1, and  $p_n(x_n)$  be the fraction of this market share retained in phase n if  $x_n$  is spent in phase n, for n = 2, 3. Number of stages: 3

| $s_3$ | $f_3^*(s_3)$ | $x_3^*$ |
|-------|--------------|---------|
| 0     | 0.3          | 0       |
| 1     | 0.5          | 1       |
| 2     | 0.6          | 2       |
| 3     | 0.7          | 3       |

|       |      | $f_2(s_2,$ |      |      |               |         |
|-------|------|------------|------|------|---------------|---------|
| $s_2$ | 0    | 1          | 2    | 3    | $f_2^st(s_2)$ | $x_2^*$ |
| 0     | 0.06 | _          | _    | _    | 0.06          | 0       |
| 1     | 0.1  | 0.12       | _    | _    | 0.12          | 1       |
| 2     | 0.12 | 0.2        | 0.15 | _    | 0.2           | 1       |
| 3     | 0.14 | 0.24       | 0.25 | 0.18 | 0.25          | 2       |

|       | $f_1(s_1,x_1)$ |   |     |   |              |         |
|-------|----------------|---|-----|---|--------------|---------|
| $s_1$ | 1              | 2 | 3   | 4 | $f_1^*(s_1)$ | $x_1^*$ |
| 4     | 5              | 6 | 4.8 | 3 | 6            | 2       |


The optimal solution is  $x_1^* = 2$ ,  $x_2^* = 1$ , and  $x_3^* = 1$ . Hence, it is optimal to spend two million dollars in phase 1 and one million dollar in each one the phases 2 and 3. This will result in a final market share of 6%.

| s               | $f_3^*(s)$  | $x_3^*$ |
|-----------------|-------------|---------|
| $0 \le s \le 4$ | 0.6 + 0.07s | s       |

Phase 2: 
$$f_2(s, x_2) = (0.4 + 0.1x_2)[0.6 + 0.07(s - x_2)]$$

$$= -0.07x_2^2 + (0.07s + 0.032)x_2 + (0.24 + 0.028s)$$

$$\frac{\partial f_2(s,x_2)}{\partial x_2} = -0.014x_2 + 0.007s + 0.032 = 0 \implies x_2^* = \frac{s}{2} + \frac{16}{7}$$



If  $s \leq \frac{s}{2} + \frac{16}{7}$ :  $x_2^* = s$  because  $f_2(s, x_2)$  is strictly increasing on the interval  $[0, \frac{s}{2} + \frac{16}{7}]$ , so on [0, s].

If  $s > \frac{s}{2} + \frac{16}{7}$ :  $x_2^* = \frac{s}{2} + \frac{16}{7}$  because then the global maximizer is feasible.

We can summarize this result as:

$$x_2^*(s) = \min\left(\frac{s}{2} + \frac{16}{7}, s\right).$$

Now since  $0 \le s \le 4 \le \frac{32}{7}$ ,  $s \le \frac{s}{2} + \frac{16}{7}$ , so  $x_2^*(s) = s$  and  $f_2^*(s) = 0.06s + 0.24$ .

Phase 1: 
$$f_1(4, x_1) = (10x_1 - x_1^2)[0.06(4 - x_1) + 0.24]$$
  
 $= 0.06x_1^3 - 1.08x_1^2 + 4.8x_1$   
 $\frac{\partial f_1(4, x_1)}{\partial x_1} = 0.18x_1^2 - 2.16x_1 + 4.8 = 0$   
 $\Rightarrow x_1^* = \frac{2.16 \pm \sqrt{2.16^2 - 4(0.18)(4.8)}}{2(0.18)} = 2.945 \text{ or } 9.055.$ 



The derivative of  $f_1(4, x_1)$  is nonnegative for  $x_1 \le 2.945$  and  $x_1 \ge 9.055$  and nonpositive otherwise, so  $f_1(4, x_1)$  is nonincreasing on the interval [2.945, 9.055], and nondecreasing else. Thus,  $f_1(4, x_1)$  attains its maximum over the interval [0, 4] at  $x_1^* = 2.945$  with  $f_1^*(4) = 6.302$ . Accordingly, it is optimal to spend 2.945 million dollars in Phase 1, 1.055 in Phase 2 and Phase 3. This returns a market share of 6.302%.

#### 10.3-8.

Let  $x_n$  be the number of parallel units of component n that are installed,  $p_n(x_n)$  be the probability that the component will function if it contains  $x_n$  parallel units,  $c_n(x_n)$  be the cost of installing  $x_n$  units of component n,  $s_n$  be the amount of money remaining in hundreds of dollars. Then

$$f_n^*(s_n) = \max_{x_n = 0, \dots, \min(3, \alpha_{s_n})} [p_n(x_n) f_{n+1}^*(s_n - c_n(x_n))]$$

where  $\alpha_{s_n} \equiv \max\{\alpha : c_n(\alpha) \leq s_n, \alpha \text{ integer}\}.$ 

| $s_4$              | $f_4^*(s_4)$ | $x_4^*$ |
|--------------------|--------------|---------|
| 0, 1               | 0            | 0       |
| 2                  | 0.5          | 1       |
| 3                  | 0.7          | 2       |
| $4 \le s_4 \le 10$ | 0.9          | 3       |

$$f_3(s_3, x_3) = P_3(x_3) f_4^*(s_3 - c_3(x_3))$$

|                    |   | $f_3(s)$ | $(x_3, x_3)$ |      |              |         |
|--------------------|---|----------|--------------|------|--------------|---------|
| $s_3$              | 0 | 1        | 2            | 3    | $f_3^*(s_3)$ | $x_3^*$ |
| 0                  | 0 | _        |              | _    | 0            | 0       |
| 1,2                | 0 | 0        | _            | _    | 0            | 0, 1    |
| 3                  | 0 | 0.35     | 0            | _    | 0.35         | 1       |
| 4                  | 0 | 0.49     | 0            | 0    | 0.49         | 1       |
| 5                  | 0 | 0.63     | 0.40         | 0    | 0.63         | 1       |
| 6                  | 0 | 0.63     | 0.56         | 0.45 | 0.63         | 1       |
| 7                  | 0 | 0.63     | 0.72         | 0.63 | 0.72         | 2       |
| $8 \le s_3 \le 10$ | 0 | 0.63     | 0.72         | 0.81 | 0.81         | 3       |

 $f_2(s_2, x_2) = P_2(x_2) f_3^*(s_2 - c_2(x_2))$ 

|       |   | $f_2(s_2)$ | $,x_{2})$ |       |              |         |
|-------|---|------------|-----------|-------|--------------|---------|
| $s_2$ | 0 | 1          | 2         | 3     | $f_2^*(s_2)$ | $x_2^*$ |
| 0, 1  | 0 | ı          |           | _     | 0            | 0       |
| 2,3   | 0 | 0          | _         | _     | 0            | 0, 1    |
| 4     | 0 | 0          | 0         | _     | 0            | 0, 1, 2 |
| 5     | 0 | 0.210      | 0         | 0     | 0.210        | 1       |
| 6     | 0 | 0.294      | 0         | 0     | 0.294        | 1       |
| 7     | 0 | 0.378      | 0.245     | 0     | 0.378        | 1       |
| 8     | 0 | 0.378      | 0.343     | 0.280 | 0.378        | 1       |
| 9     | 0 | 0.432      | 0.441     | 0.392 | 0.441        | 2       |
| 10    | 0 | 0.486      | 0.441     | 0.504 | 0.504        | 3       |

 $f_1(s_1, x_1) = \mathbf{P}_1(x_1) f_2^*(s_1 - c_1(x_1))$   $f_1(s_1, x_1)$ 

|       |   | $f_1(s)$ | $(x_1, x_1)$ |       |              |         |
|-------|---|----------|--------------|-------|--------------|---------|
| $s_1$ | 0 | 1        | 2            | 3     | $f_1^*(s_1)$ | $x_1^*$ |
| 10    | 0 | 0.22     | 0.227        | 0.302 | 0.302        | 3       |

The optimal solution is  $x_1^* = 3$ ,  $x_2^* = 1$ ,  $x_3^* = 1$  and  $x_4^* = 3$ , yielding a system reliability of 0.3024.

# 10.3-9.

The stages are n = 1, 2 and the state is the amount of slack remaining in the constraint, the goal is to find  $f_1^*(4)$ .

| $s_2$ | $f_2^st(s_2)$ | $x_2^*$ |
|-------|---------------|---------|
| 0     | 0             | 0       |
| 1     | 0             | 0       |
| 2     | 4             | 1       |
| 3     | 4             | 1       |
| 4     | 12            | 2       |

|       |    | $f_1$ | $(s_1,$ | $x_1)$ |     |              |         |
|-------|----|-------|---------|--------|-----|--------------|---------|
| $s_1$ | 0  | 1     | 2       | 3      | 4   | $f_1^*(s_1)$ | $x_1^*$ |
| 4     | 12 | 6     | 8       | 0      | -16 | 12           | 0       |

The optimal solution is  $x_1^* = 0$  and  $x_2^* = 2$ .

10.3-10.

The stages are n = 1, 2, 3 and the state is the slack remaining in the constraint, the goal is to find  $f_1^*(20)$ .

| $s_3$   | $f_3^*(s_3)$ | $x_3^*$ |
|---------|--------------|---------|
| 0 - 4   | 0            | 0       |
| 5 - 9   | 20           | 1       |
| 10 - 14 | 40           | 2       |
| 15 - 19 | 60           | 3       |
| 20      | 80           | 4       |

|         | $f_2(s_2,x_2)$ |    |    |               |         |
|---------|----------------|----|----|---------------|---------|
| $s_2$   | 0              | 1  | 2  | $f_2^st(s_2)$ | $x_2^*$ |
| 0 - 4   | 0              |    | _  | 0             | 0       |
| 5 - 6   | 20             | _  | _  | 20            | 0       |
| 7 - 9   | 20             | 30 | _  | 30            | 1       |
| 10 - 11 | 40             | 30 | _  | 40            | 0       |
| 12 - 13 | 40             | 50 | _  | 50            | 1       |
| 14      | 40             | 50 | 60 | 60            | 2       |
| 15 - 16 | 60             | 50 | 60 | 60            | 0,2     |
| 17 - 18 | 60             | 70 | 60 | 70            | 1       |
| 19      | 60             | 70 | 80 | 80            | 2       |
| 20      | 80             | 70 | 80 | 80            | 0,2     |

|       |    |     | $f_1(s_1,$ | $x_1)$ |     |     |     |              |         |
|-------|----|-----|------------|--------|-----|-----|-----|--------------|---------|
| $s_1$ | 0  | 1   | 2          | 3      | 4   | 5   | 6   | $f_1^*(s_1)$ | $x_1^*$ |
| 20    | 80 | 100 | 116        | 118    | 126 | 130 | 120 | 130          | 5       |

The optimal solution is  $x_1^* = 5$ ,  $x_2^* = 0$ ,  $x_3^* = 1$  with an objective value  $z^* = 130$ .

#### 10.3-11.

Let  $s_n$  denote the slack remaining in the constraint.

$$f_2^*(s_2) = \max_{0 \le x_2 \le s_2} (36x_2 - 3x_2^3)$$

$$\frac{\partial f_2(s,x_2)}{\partial x_2} = 36 - 9x_2^2 \begin{cases} > 0 & \text{for } 0 \le x_2 < 2 \\ = 0 & \text{for } x_2 = 2 \\ < 0 & \text{for } x_2 > 2 \end{cases} \Rightarrow x_2^* = \begin{cases} s_2 & \text{for } 0 \le s_2 < 2 \\ 2 & \text{for } 2 \le s_2 \le 3 \end{cases}$$

$$f_1^*(3) = \max_{0 \le x_1 \le 3} [36x_1 + 9x_1^2 - 6x_1^3 + f_2^*(3 - x_1)]$$

$$= \max \left\{ \begin{array}{l} \max\limits_{0 \leq x_1 \leq 1} [36x_1 + 9x_1^2 - 6x_1^3 + 48] \\ \max\limits_{1 \leq x_1 \leq 3} [36x_1 + 9x_1^2 - 6x_1^3 + 36(3 - x_1) - 3(3 - x_1)^3] \end{array} \right.$$

$$= \max \left\{ \begin{array}{l} \max_{0 \leq x_1 \leq 1} [36x_1 + 9x_1^2 - 6x_1^3 + 48] \\ \max_{1 \leq x_1 \leq 3} [36x_1 + 9x_1^2 - 6x_1^3 + 36(3 - x_1) - 3(3 - x_1)^3] \\ \\ \frac{\partial f_1(3, x_1)}{\partial x_1} = \left\{ \begin{array}{l} -18(x_1^2 - x_1 - 2) > 0 & \text{for } 0 \leq x_1 \leq 1 \ \Rightarrow x_1^{\max} = 1 \\ \\ -9(x_1^2 + 4x_1 - 9) \begin{cases} > 0 & \text{for } 1 \leq x_1 < -2 + \sqrt{13} \\ = 0 & \text{for } x_1 = -2 + \sqrt{13} \\ < 0 & \text{for } x_1 > -2 + \sqrt{13} \end{array} \right\} \Rightarrow x_1^{\max} = -2 + \sqrt{13}$$

Since  $f_1(3,1) < f_1(3,-2+\sqrt{13}), x_1^* = -2+\sqrt{13} \simeq 1.61$  and  $x_2^* = 5-\sqrt{13} \simeq 1.39$ with the optimal objective value being  $f_1^*(3) \simeq 98.23$ .

#### 10.3-12.

$$f_n^*(s_n) = \min_{r_n < x_n < 255} \left[ 100(x_n - s_n)^2 + 2000(x_n - r_n) + f_{n+1}^*(x_n) \right]$$

n = 4:

| $s_4$                 | $f_4^st(s_4)$    | $x_4^*$ |
|-----------------------|------------------|---------|
| $200 \le s_4 \le 255$ | $100(255-s_4)^2$ | 255     |

$$\underline{n=3:} \ f_3(s_3, x_3) = 100(x_3 - s_3)^2 + 2000(x_3 - 200) + 100(255 - x_3)^2$$
$$\frac{\partial f_3(s_3, x_3)}{\partial x_3} = 200(x_3 - s_3) + 2000 - 200(255 - x_3)$$
$$= 200[2x_3 - (s_3 + 245)] = 0 \implies x_3 = \frac{s_3 + 245}{2}$$

If  $155 \le s_3 \le 265$ ,  $200 \le \frac{s_3 + 245}{2} \le 255$ , so  $x_3 = \frac{s_3 + 245}{2}$  is feasible for  $240 \le s_3 \le 255$  and  $f_3^*(s_3) = 25(245 - s_3)^2 + 25(265 - s_3)^2 + 1000(s_3 - 155)$ .

| $s_3$                 | $f_3^st(s_3)$                                         | $x_3^*$               |
|-----------------------|-------------------------------------------------------|-----------------------|
| $240 \le s_3 \le 255$ | $25(245 - s_3)^2 + 25(265 - s_3)^2 + 1000(s_3 - 155)$ | $\frac{s_3 + 245}{2}$ |

$$\underline{n=2:} \ f_2(s_2, x_2) = 100(x_2 - s_2)^2 + 2000(x_2 - 240) + f_3^*(x_2)$$
$$\frac{\partial f_2(s_2, x_2)}{\partial x_2} = 200(x_2 - s_2) + 2000 - 50(245 - x_2) - 50(265 - x_2) + 1000$$
$$= 100[3x_2 - (2s_2 + 225)] = 0 \implies x_2 = \frac{2s_2 + 225}{3}$$

If 
$$247.5 \le s_2 \le 255$$
,  $240 \le \frac{2s_2+225}{3} \le 255$ , so  $x_2^* = \frac{2s_2+225}{3}$  and

$$f_2^*(s_2) = 100 \left(\frac{2s_2 + 225}{3} - s_2\right)^2 + 2000 \left(\frac{2s_2 + 225}{3} - 240\right) + f_3^* \left(\frac{2s_2 + 225}{3}\right)$$
$$= \frac{100}{9} [(225 - s_2)^2 + (255 - s_2)^2 + (285 - s_2)^2 + 60(3s_2 - 615)].$$

If  $220 \le s_2 \le 247.5$ ,  $\frac{2s_2+225}{3} \le 240 \le x_2$ , so  $\frac{\partial f_2(s_2,x_2)}{\partial x_2} \ge 0$  and hence  $x_2^* = 240$  and

$$f_2^*(s_2) = 100(240 - s_2)^2 + 2000(240 - 240) + f_3^*(240) = 100(240 - s_2)^2 + 101,250.$$

| $s_2$                   | $f_2^*(s_2)$                                                      | $x_2^*$              |
|-------------------------|-------------------------------------------------------------------|----------------------|
| $220 \le s_2 \le 247.5$ | $100(240 - s_2)^2 + 101,250$                                      | 240                  |
| $247.5 \le s_2 \le 255$ | $\frac{100}{9}[(225-s_2)^2+(255-s_2)^2+(285-s_2)^2+60(3s_2-615)]$ | $\frac{2s_2+225}{3}$ |

$$\underline{n=1}$$
:  $f_1(255,x_1) = 100(x_1 - 255)^2 + 2000(x_1 - 220) + f_2^*(x_1)$ 

If  $220 \le x_1 \le 247.5$ :

$$\frac{\partial f_2(255,x_1)}{\partial x_1} = 200(x_1 - 485) = 0 \implies x_1^* = 242.5.$$

If  $247.5 < x_1 < 255$ :

$$\frac{\partial f_2(255,x_1)}{\partial x_1} = \frac{800}{3}(x_1 - 240) > 0 \implies x_1^* = 247.5.$$

The optimal solution is  $x_1^* = 242.5$  and

$$f_1^*(255) = 100(242.5 - 255)^2 + 2000(242.5 - 220) + f_2^*(242.5) = 162,500.$$

| $s_1$ | $f_1^*(s_1)$ | $x_1^*$ |
|-------|--------------|---------|
| 255   | 162,500      | 242.5   |

| Summer | Autumn | Winter | Spring |
|--------|--------|--------|--------|
| 242.5  | 240    | 242.5  | 255    |

#### 10.3-13.

Let  $s_n$  be the amount of the resource remaining at beginning of stage n.

$$\begin{array}{|c|c|c|c|c|} \hline s_3 & f_3^*(s_3) & x_3^* \\ \hline 0 \leq s_3 \leq 2 & 4s_3 - s_3^2 & s_3 \\ \hline 2 \leq s_3 \leq 4 & 4 & 2 \\ \hline \end{array}$$

$$\underline{n=2:} \qquad \max_{0 \le x_2 \le s_2} [2x_2 + f_3^*(s_2 - x_2)]$$

If 
$$0 \le s_2 - x_2 \le 2$$
:  $\max_{0 \le x_2 \le s_2} [2x_2 + 4(s_2 - x_2) - (s_2 - x_2)^2]$ 

$$\frac{\partial}{\partial x_2} [2x_2 + 4(s_2 - x_2) - (s_2 - x_2)^2] = -2 + 2s_2 - 2x_2 = 0 \Rightarrow x_2^* = s_2 - 1$$

$$\frac{\partial^2}{\partial x_2^*} [2x_2 + 4(s_2 - x_2) - (s_2 - x_2)^2] = -2 < 0 \Rightarrow x_2^* = s_2 - 1 \text{ is a maximum.}$$

$$f_2^*(s_2) = 2s_2 + 1.$$

If 
$$2 \le s_2 - x_2 \le 4$$
:  $\max_{0 \le x_2 \le s_2} (2x_2 + 4)$ ,  $x_2^* = s_2 - 2$  and  $f_2^*(s_2) = 2s_2 < 2s_2 + 1$ .

| $s_2$             | $f_2^*(s_2)$   | $x_2^*$   |
|-------------------|----------------|-----------|
| $0 \le s_2 \le 1$ | $4s_2 - s_2^2$ | 0         |
| $1 \le s_2 \le 4$ | $2s_2 + 1$     | $s_2 - 1$ |

$$\underline{n=1:} \qquad \max_{0 \le x_1 \le s_1} [2x_1^2 + f_2^*(4-2x_1)]$$

If 
$$0 \le 4 - 2x_1 \le 1$$
:  $\max_{0 \le x_1 \le s_1} [2x_1^2 + 4(4 - 2x_1) - (4 - 2x_1)^2] = (-2x_1^2 + 8x_1)$ 

$$\frac{\partial}{\partial x_1} (-2x_1^2 + 8x_1) = -4x_1 + 8 = 0 \Rightarrow x_1^* = 2$$

$$\frac{\partial^2}{\partial x_1^2} (-2x_1^2 + 8x_1) = -4 < 0 \Rightarrow x_1^* = 2 \text{ is a maximum.}$$

$$f_1(4, 2) = 8.$$

If 
$$1 \le 4 - 2x_1 \le 4$$
:  $\max_{0 \le x_1 \le s_1} [2x_1^2 + 2(4 - 2x_1) + 1] = (2x_1^2 - 4x_1 + 9)$   
 $\frac{\partial}{\partial x_1} (2x_1^2 - 4x_1 + 9) = 4x_1 - 4 = 0 \Rightarrow x_1 = 1$ 

$$\frac{\partial^2}{\partial x_1^2}(2x_1^2 - 4x_1 + 9) = 4 > 0 \Rightarrow x_1 = 1 \text{ is a minimum.}$$

Corner points: 
$$1 = 4 - 2x_1 \Rightarrow x_1 = 3/2, f_1(4, 3/2) = 7.5$$

$$4 = 4 - 2x_1 \Rightarrow x_1 = 0, f_1(4, 0) = 9$$
 is maximum.

Hence,  $x_1^* = 0$ ,  $x_2^* = 3$ ,  $x_3^* = 1$  and  $f_1^*(4) = 9$ .

# 10.3-14.

$$\underline{n=2:} \qquad \min_{x_2^2 \ge s_2} 2x_2^2 \Rightarrow x_2^* = \sqrt{s_2} \text{ and } f_2^*(s_2) = 2s_2,$$

where  $s_2$  represents the amount of 2 used by  $x_2^2$ .

$$\underline{n=1:} \qquad \underline{\min}_{x_1}[x_1^4 + f_2^*((2-x_1^2)^+)] = [x_1^4 + 2(2-x_1^2)^+],$$

where  $(2 - x_1^2)^+ = \max\{0, 2 - x_1^2\}$ .

If 
$$x_1^2 \le 2$$
:  $\frac{\partial}{\partial x_1}(x_1^4 + 4 - 2x_1^2) = 4x_1^3 - 4x_1 = 0 \Rightarrow x_1 = 0, 1, -1.$ 

$$\frac{\partial^2}{\partial x_1^2}(x_1^4 + 4 - 2x_1^2) = 12x_1^2 - 4$$

$$x_1 = 0, \frac{\partial^2}{\partial x_1^2}(x_1^4 + 4 - 2x_1^2) = -4 < 0, \text{ so } x_1 = 0 \text{ is a local maximum.}$$

$$x_1=1,-1, \frac{\partial^2}{\partial x_1^2}(x_1^4+4-2x_1^2)=8>0, \text{ so } x_1=1,-1 \text{ are local minima}$$

with z = 3.

If 
$$x_1^2 \ge 2$$
:  $x_1 = 0$  and  $z = 4 > 3$ .

Hence, 
$$(x_1^*, x_2^*) \in \{(1, 1), (1, -1), (-1, 1), (-1, -1)\}$$
, all with  $z^* = 3$ .

# 10.3-15.

(a) Let  $s_n \in \{1, 2, 4\}$  be the remaining factor 4 entering stage n.

 $\underline{n=2}$ :

$$n = 3$$
:

| $s_3$ | $f_3^*(s_3)$ | $x_3^*$ |
|-------|--------------|---------|
| 1     | 16           | 1       |
| 2     | 32           | 2       |
| 4     | 64           | 3       |

|       | $f_2(s_2,x_2)$ |    |    |               |         |
|-------|----------------|----|----|---------------|---------|
| $s_2$ | 1              | 2  | 4  | $f_2^st(s_2)$ | $x_2^*$ |
| 1     | 20             | _  | _  | 20            | 1       |
| 2     | 36             | 32 | _  | 36            | 1       |
| 4     | 68             | 48 | 80 | 80            | 4       |

# n = 1:

|       | $f_1(s_1,x_1)$ |    |    |              |         |
|-------|----------------|----|----|--------------|---------|
| $s_1$ | 1              | 2  | 4  | $f_1^*(s_1)$ | $x_1^*$ |
| 4     | 81             | 44 | 84 | 84           | 4       |

The optimal solution is  $(x_1^*, x_2^*, x_3^*) = (4, 1, 1)$  with  $z^* = 84$ .

(b) As in part (a), let  $s_n$  be the remaining factor (not necessarily integer) at stage n.

$$f_3^*(s_3) = 16s_3 \text{ and } x_3^* = s_3$$

$$\begin{split} f_2^*(s_2) &= \max_{1 \leq x_2 \leq s_2} \{4x_2^2 + f_3^*(s_2/x_2)\} = \max_{1 \leq x_2 \leq s_2} \{4x_2^2 + 16s_2/x_2\} \\ &\frac{\partial f_2(s_2,x_2)}{\partial x_2} = 4x_2 - 16s_2/x_2^2 \text{ and } \frac{\partial^2 f_2(s_2,x_2)}{\partial x_2^2} = 4 + 32s_2/x_2^3 > 0 \end{split}$$

when  $s_2$ ,  $x_2 \ge 0$ . Thus  $f_2(s_2, x_2)$  is convex in  $x_2$  when  $s_2$ ,  $x_2 \ge 0$ . The maximum should occur at one of the endpoints.

$$\begin{split} x_2 &= 1, \, f_2(s_2,1) = 4 + 16s_2 \\ x_2 &= s_2, \, f_2(s_2,s_2) = 4s_2^2 + 16 \\ 4 + 16s_2 &\geq 4s_2^2 + 16 \, \Leftrightarrow (s_2 - 3)(s_2 - 1) \leq 0 \Leftrightarrow 1 \leq s_2 \leq 3 \\ x_2^* &= \left\{ \begin{matrix} 1 & \text{if } 1 \leq s_2 \leq 3 \\ s_2 & \text{if } 3 \leq s_2 \leq 4 \end{matrix} \right. \text{and } f_2^*(s_2) = \left\{ \begin{matrix} 4 + 16s_2 & \text{if } 1 \leq s_2 \leq 3 \\ 4s_2^2 + 16 & \text{if } 3 \leq s_2 \leq 4 \end{matrix} \right. \\ f_1^*(s_1) &= & \max_{1 \leq x_1 \leq 4} \left\{ x_1^3 + f_2^*(4/x_1) \right\} \\ &= & \max \left\{ \max_{1 \leq x_1 \leq 4/3} \left\{ x_1^3 + 4 \left( \frac{16}{x_1^2} \right) + 16 \right\}, \quad \max_{4/3 \leq x_1 \leq 4} \left\{ x_1^3 + 4 + 16 \left( \frac{4}{x_1} \right) \right\} \right\} \\ &= \frac{\partial^2}{\partial x_1^2} \left\{ x_1^3 + 4 \left( \frac{16}{x_1^2} \right) + 16 \right\} = 6x_1 + 204/x_1^4 > 0 \text{ when } x_1 \geq 0 \\ &= \frac{\partial^2}{\partial x_1^2} \left\{ x_1^3 + 4 + 16 \left( \frac{4}{x_1} \right) \right\} = 6x_1 + 128/x_1^2 > 0 \text{ when } x_1 \geq 0 \end{split}$$

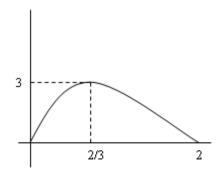
Hence, the maximum occurs at an endpoint.

$$x_1 = 1, f_1(s_1, 1) = 81$$
  
 $x_1 = 4/3, f_1(s_1, 4/3) \approx 54.37$   
 $x_1 = 4, f_1(s_1, 4) = 84$ 

 $f_1^*(s_1) = \max\{81, 54.37, 84\} = 84$  and  $(x_1^*, x_2^*, x_3^*) = (4, 1, 1)$ , just as when the variables are restricted to be integers.

# 10.3-16.

Let  $s_n$  be the slack remaining in the constraint  $x_1 - x_2 + x_3 \le 1$ , entering the nth stage.


$$\begin{split} f_3^*(s_3) &= \max_{0 \leq x_3 \leq s_3} x_3 = s_3 \text{ and } x_3^* = s_3 \\ f_2^*(s_2) &= \max_{s_2^- \leq x_2} \{(1-x_2)f_3^*(s_2+x_2)\} = \max_{s_2^- \leq x_2} \{(1-x_2)(s_2+x_2)\} \\ \text{where } s_2^- &= \max\{-s_2, 0\}. \\ \frac{\partial f_2(s_2,x_2)}{\partial x_2} &= -2x_2 - (s_2-1) = 0 \Rightarrow x_2 = (1-s_2)/2 \\ \frac{\partial^2 f_2(s_2,x_2)}{\partial x_2^2} &= -2 < 0, \text{ so } f_2(s_2,x_2) \text{ is concave in } x_2. \\ x_2 &= (s_2-1)/2, \, f_2(s_2,(1-s_2)/2) = (1+s_2)^2/4 \\ x_2 &= s_2^-, \, f_2(s_2,s_2^-) = \begin{cases} 0 & \text{if } s_2 \leq 0 \\ s_2 & \text{if } s_2 > 0 \end{cases} \end{split}$$

$$(1+s_2)^2/2 \ge \max\{0, s_2\}$$

 $x_2=(1-s_2)/2$  is feasible if and only if  $s_2^-\leq (1-s_2)/2$ , equivalently when  $s_2\geq -1$ .

$$\begin{split} f_2^*(s_2) &= \begin{cases} 0 & \text{if } s_2 \leq -1 \\ (1+s_2)^2/4 & \text{if } s_2 \geq -1 \end{cases} \text{ and } x_2^* = \begin{cases} s_2^- = -s_2 & \text{if } s_2 \leq -1 \\ (1-s_2)/2 & \text{if } s_2 \geq -1 \end{cases} \\ f_1^*(s_1) &= & \max_{x_1 \geq 0} \{ x_1 f_2^*(1-x_1) \} = & \max \left\{ \max_{0 \leq x_1 \leq 2} \left\{ x_1 \left( \frac{x_1^2}{4} + (1-x_1) \right) \right\}, 0 \right\} \\ &= & \max_{0 \leq x_1 \leq 2} \left\{ \frac{x_1^3}{4} - x_1^2 + x_1 \right\} \end{split}$$

$$\frac{\partial}{\partial x_1} \left\{ \frac{x_1^3}{4} - x_1^2 + x_1 \right\} = \frac{3x_1^2}{4} - 2x_1 + 1 = 0 \Rightarrow x_1 = \frac{2 \pm \sqrt{4 - 3}}{3/2} = \frac{4}{3} \pm \frac{2}{3}$$



Hence,  $(x_1^*, x_2^*, x_3^*) = (2/3, 1/3, 2/3)$  and  $z^* = 8/27$ .

#### 10.3-17.

Let  $s = (R_1, R_2)$ , where  $R_i$  is the slack in the *i*th constraint.

$$\underline{n=2}$$
:  $f_2(R_1, R_2, x_2) = 2x_2, 0 \le x_2 \le \min\{R_1/2, R_2\}$ 

| s                                          | $f_2^*(s)$            | $x_2^*$             |
|--------------------------------------------|-----------------------|---------------------|
| $\begin{pmatrix} R_1 \\ R_2 \end{pmatrix}$ | $10\min\{R_1/2,R_2\}$ | $\min\{R_1/2,R_2\}$ |

$$\underline{n=1:} \ f_1(6,8,x_1) = 15x_1 + f_2^*(6-x_1,8-3x_1)$$

$$= 15x_1 + 10\min\{(6-x_1)/2,8-3x_1\}, \text{ for } 0 \le x_1 \le 8/3$$

$$= \begin{cases} 10x_1 + 30 & \text{if } 0 \le x_1 \le 2\\ 80 - 15x_1 & \text{if } 2 \le x_1 \le 8/3 \end{cases}$$

$$\max_{0 \le x_1 \le 8/3} f_1(6, 8, x_1) = \max \left\{ \max_{0 \le x_1 \le 2} f_1(6, 8, x_1), \max_{2 \le x_1 \le 8/3} f_1(6, 8, x_1) \right\} = 50$$

and  $x_1^* = 2$ .

The optimal solution is  $(x_1^*, x_2^*) = (2, 2)$  and  $z^* = 50$ .

#### 10.3-18.

Let  $s = (R_1, R_2)$ , where  $R_i$  is the slack in the *i*th constraint.

$$\begin{split} f_3(R_1,R_2,x_3) &= \begin{cases} 0 & \text{if } x_3 = 0 \\ -1 + x_3 & \text{if } x_3 > 0 \end{cases} \\ f_3^*(R_1,R_2) &= \max \left\{ 0, & \max_{0 \leq x_3 \leq R_1/2} (-1 + x_3) \right\} = \max \{0,-1 + (R_1/2)\} \\ &= \begin{cases} -1 + (R_1/2) & \text{if } 0 \leq R_1 \leq 2 \\ 0 & \text{if } R_1 \geq 2 \end{cases} \\ x_3^* &= \begin{cases} R_1/2 & \text{if } 0 \leq R_1 \leq 2 \\ 0 & \text{if } R_1 \geq 2 \end{cases} \\ f_2(R_1,R_2,x_2) &= 7x_2 + f_3^*(R_1 - 3x_2,R_2) \\ &= \begin{cases} 7x_2 - 1 + (R_1 - 3x_2)/2 & \text{if } 0 \leq R_1 - 3x_2 \leq 2 \\ 7x_2 & \text{if } R_1 - 3x_2 \geq 2 \end{cases} \\ f_2^*(R_1,R_2) &= \max_{0 \leq x_2 \leq \min\{R_1/3,R_2\}} \left\{ 0, \max_{0 \leq x_3 \leq R_1/2} (-1 + x_3) \right\} = \max \{0,-1 + (R_1/2)\} \\ &= \begin{cases} \frac{7R_1}{3} & \text{if } \frac{R_1}{3} \leq R_2 \\ 7R_2 & \text{if } \frac{R_1-2}{3} \leq R_2 \leq \frac{R_1}{3} \end{cases} \\ \frac{17R_2}{1} - 1 + \frac{R_1}{2} & \text{if } R_2 \leq \frac{R_1-2}{3} \end{cases} \\ x_2^* &= \begin{cases} \frac{R_1}{3} & \text{if } \frac{R_1}{3} \leq R_2 \\ R_2 & \text{if } \frac{R_1-2}{3} \leq R_2 \leq \frac{R_1}{3} \end{cases} \\ R_2 & \text{if } R_2 \leq \frac{R_1-2}{3} \end{cases} \\ f_1^*(6,5) &= \max_{0 \leq x_1 \leq 5} [3x_1 + f_2^*(6 - x_1, 5 - x_1)] \\ &= \max \left\{ \begin{array}{c} \max_{0 \leq x_1 \leq 9/2} \left[3x_1 + \frac{7(6-x_1)}{3}\right], & \max_{9/2 \leq x_1 \leq 5} [3x_1 + 7(5 - x_1)] \right\} \\ &= \max \left\{ \begin{array}{c} \max_{0 \leq x_1 \leq 9/2} \left[\frac{2x_1}{3} + 14\right], & \max_{9/2 \leq x_1 \leq 5} [35 - 2x_1] \right\} = 17 \end{cases} \end{aligned} \end{cases}$$

The optimal solution is  $(x_1^*, x_2^*, x_3^*) = (\frac{9}{2}, \frac{1}{2}, 0)$  and  $z^* = 17$ .

#### 10.4-1.

Let  $s_n$  be the current fortune of the player, A be the event to have \$100 at the end and  $X_n$  be the amount bet at the nth match.

$$f_3^*(s_3) = \max_{0 \le x_3 \le s_3} \{ P\{A|s_3\} \}$$
  
 
$$0 < s_3 < 50, f_2^*(s_3) = 0.$$

$$50 \le s_3 < 100, f_3^*(s_3) = \begin{cases} 0 & \text{if } x_3^* \ne 100 - s_3 \\ 1/2 & \text{if } x_3^* = 100 - s_3 \end{cases}$$

$$s_3 = 100, f_3^*(s_3) = \begin{cases} 0 & \text{if } x_3^* > 0 \\ 1 & \text{if } x_3^* = 0 \end{cases}$$

$$s_3 > 100, f_3^*(s_3) = \begin{cases} 0 & \text{if } x_3^* \ne s_3 - 100 \\ 1/2 & \text{if } x_3^* = s_3 - 100 \end{cases}$$

| $s_3$              | $f_3^*(s_3)$ | $x_3^*$              |
|--------------------|--------------|----------------------|
| $0 \le s_3 < 50$   | 0            | $0 \le x_3^* \le 50$ |
| $50 \le s_3 < 100$ | 1/2          | $100 - s_3$          |
| $s_3 = 100$        | 1            | 0                    |
| $100 < s_3$        | 1/2          | $s_3 - 100$          |

$$f_2^*(s_2) = \max_{0 \le x_2 \le s_2} \left[ rac{1}{2} f_3^*(s_2 - x_2) + rac{1}{2} f_3^*(s_2 + x_2) 
ight]$$

| $f_2^st(s_2)$ | $x_2^*$                                                                                                   |
|---------------|-----------------------------------------------------------------------------------------------------------|
| 0             | $0 \le x_2 \le s_2$                                                                                       |
| 0             | $0 \le x_2 \le 50 - s_2$                                                                                  |
| 1/4           | $50 - s_2 \le x_2 \le s_2$                                                                                |
| 1/4           | $0 \le x_2 < 50$                                                                                          |
| 1/2           | $x_2 = 50$                                                                                                |
| 1/2           | $0 \le x_2 < s_2 - 50$                                                                                    |
| 1/4           | $s_2 - 50 < x_2 < 100 - s_2$                                                                              |
| 1/2           | $x_2 = 100 - s_2$                                                                                         |
| 1/4           | $100 - s_2 < x_2 \le s_2$                                                                                 |
| 1/2           | $0 \le x_2 < 25$                                                                                          |
| 3/4           | $x_2 = 25$                                                                                                |
| 1/4           | $25 \le x_2 \le 75$                                                                                       |
| 1/2           | $0 \le x_2 < 100 - s_2$                                                                                   |
| 3/4           | $x_2 = 100 - s_2$                                                                                         |
| 1/2           | $100 - s_2 < x_2 \le s_2 - 50$                                                                            |
|               | $s_2 - 50 < x_2 \le s_2$                                                                                  |
| 1             | $x_2 = 0$                                                                                                 |
|               | $0 < x_2 \le 50$                                                                                          |
|               | $50 \le x_2 \le 100$                                                                                      |
| 1/2           | $0 \le x_2 \le s_2 - 100$                                                                                 |
| 3/4           | $x_2 = s_2 - 100$                                                                                         |
| 1/2           | $s_2 - 100 < x_2 \le s_2 - 50$                                                                            |
| 1/4           | $s_2 - 50 < x_2 \le s_2$                                                                                  |
|               | 0 1/4 1/4 1/2 1/4 1/2 1/4 1/2 1/4 1/2 3/4 1/2 1/4 1/2 1/4 1/2 1/4 1/2 1/4 1/2 1/4 1/2 1/4 1/2 1/4 1/2 1/4 |

The entries in bold represent the maximum value in each case.

$$f_1^*(75) = \max_{0 \le x_1 \le 75} \left[ \frac{1}{2} f_2^*(75 - x_1) + \frac{1}{2} f_2^*(75 + x_1) \right]$$

$$f_1(75, x_1) = \begin{cases} 3/4 & \text{if } x_1 = 0\\ 5/8 & \text{if } 0 < x_1 < 25\\ 3/4 & \text{if } x_1 = 25\\ 1/2 & \text{if } 25 < x_1 \le 50\\ 3/8 & \text{if } 50 < x_1 \le 75 \end{cases}$$

| s | 1 | $f_1^*(s_1)$ | $x_1^*$ |
|---|---|--------------|---------|
| 7 | 5 | 3/4          | 0 or 25 |

| Ī | Policy | $x_1$ | won 1st bet | lost 1st bet | won 2nd bet | lost 2nd bet |
|---|--------|-------|-------------|--------------|-------------|--------------|
|   | 1      | 0     | 25          | 25           | 0           | 50           |
| ĺ | 2      | 25    | 0           | 50           | 0           | 0            |

#### 10.4-2.

(a) Let  $x_n \in \{0, A, B\}$  be the investment made in year n,  $s_n$  be the amount of money on hand at the beginning of year n and  $f_n(s_n, x_n)$  be the maximum expected amount of money by the end of the third year given  $s_n$  and  $x_n$ .

For  $0 \le s_n < 10,000$ , since one cannot invest less than \$10,000,  $f_n(s_n, x_n) = f_{n+1}^*(s_n)$  and  $x_n^* = 0$ .

For  $s_n \ge 10,000$ ,

$$f_n(s_n, x_n) = \begin{cases} f_{n+1}^*(s_n) & \text{if } x_n = 0\\ 0.25 f_{n+1}^*(s_n - 10,000) + 0.75 f_{n+1}^*(s_n + 10,000) & \text{if } x_n = A\\ 0.9 f_{n+1}^*(s_n) + 0.1 f_{n+1}^*(s_n + 10,000) & \text{if } x_n = B \end{cases}$$

| $s_3$                | $f_3^st(s_3)$ | $x_3^*$ |
|----------------------|---------------|---------|
| $0 \le s_3 < 10,000$ | $s_3$         | 0       |
| $s_3 \ge 10,000$     | $s_3 + 5,000$ | A       |

| $s_2$                     | 0             | A              | B             | $f_2^st(s_2)$  | $x_2^*$ |
|---------------------------|---------------|----------------|---------------|----------------|---------|
| $0 \le s_2 < 10,000$      | $s_2$         |                | _             | $s_2$          | 0       |
| $10,000 \le s_2 < 20,000$ | $s_2 + 5,000$ | $s_2 + 8,750$  | $s_2 + 6,000$ | $s_2 + 8,750$  | A       |
| $s_2 \ge 20,000$          | $s_2 + 5,000$ | $s_2 + 10,000$ | $s_2 + 6,000$ | $s_2 + 10,000$ | A       |

|        | $f_1$  | $(s_1,x_1)$ |        |              |         |
|--------|--------|-------------|--------|--------------|---------|
| $s_1$  | 0      | A           | B      | $f_1^*(s_1)$ | $x_1^*$ |
| 10,000 | 18,750 | 22,500      | 19,875 | 22,500       | B       |

The optimal policy is to invest in A as long as there is enough money. The expected fortune after three years using this strategy is \$22,500.

(b) Let  $x_n$  and  $s_n$  be defined as in (a). Let  $f_n(s_n, x_n)$  be the maximum probability of having at least \$20,000 after 3 years given  $s_n$  and  $x_n$ .

|                           | $f_3(s_3,x_3)$ |      |     |              |         |
|---------------------------|----------------|------|-----|--------------|---------|
| $s_3$                     | 0              | A    | B   | $f_3^*(s_3)$ | $x_3^*$ |
| $0 \le s_3 < 10,000$      | 0              | _    | _   | 0            | 0       |
| $10,000 \le s_3 < 20,000$ | 0              | 0.75 | 0.1 | 0.75         | A       |
| $20,000 \le s_3 < 30,000$ | 1              | 0.75 | 1   | 1            | 0, B    |
| $s_3 \ge 30,000$          | 1              | 1    | 1   | 1            | 0, A, B |

|                           | $f_2(s_2,x_2)$ |      |       |               |         |
|---------------------------|----------------|------|-------|---------------|---------|
| $s_2$                     | 0              | A    | B     | $f_2^st(s_2)$ | $x_2^*$ |
| $0 \le s_2 < 10,000$      | 0              | _    | _     | 0             | 0       |
| $10,000 \le s_2 < 20,000$ | 0.75           | 0.75 | 0.775 | 0.775         | B       |
| $s_2 \ge 20,000$          | 1              | 0.75 | 1     | 1             | 0, B    |

|        |       | $f_1(s_1, s_1)$ |              |         |   |
|--------|-------|-----------------|--------------|---------|---|
| $s_1$  | 0     | A               | $f_1^*(s_1)$ | $x_1^*$ |   |
| 10,000 | 0.775 | 0.75            | 0.7975       | 0.7975  | B |

With this objective, there is a number of optimal policies. The optimal action in the first period is to invest in B. If the return from it is only \$10,000, one is indifferent between investing in B or not investing at all in the second year. Depending on the second year's investment choice and its return, third year's starting budget can be either \$10,000, \$20,000 or \$30,000. If it is \$10,000, then it is best to invest it in A. If it is \$20,000, investing in B or not investing are best. Finally if it is \$30,000, anything is optimal, since \$20,000 is guaranteed. Using this policy, the probability of having at least \$20,000 by the end of the third year is 0.7975.

10.4-3.

$$f_n(1, x_n) = K(x_n) + x_n + \left(\frac{1}{3}\right)^{x_n} f_{n+1}^*(1) + \left[1 - \left(\frac{1}{3}\right)^{x_n}\right] f_{n+1}^*(0)$$
$$= K(x_n) + x_n + \left(\frac{1}{3}\right)^{x_n} f_{n+1}^*(1)$$

since  $f_n^*(0) = 0$  for every n.  $f_3^*(1) = 16$ ,  $f_3^*(0) = 0$  and  $K(x_n) = 0$  if  $x_n = 0$ ,  $K(x_n) = 3$  if  $x_n > 0$ .

|       | $f_2(s_2,x_2)$ |      |      |      |      |               |         |
|-------|----------------|------|------|------|------|---------------|---------|
| $s_2$ | 0              | 1    | 2    | 3    | 4    | $f_2^st(s_2)$ | $x_2^*$ |
| 0     | 0              | _    | _    |      |      | 0             | 0       |
| 1     | 16             | 9.33 | 6.78 | 6.59 | 7.20 | 6.59          | 3       |

|       | $f_1(s_1,x_1)$ |      |      |      |      |              |         |
|-------|----------------|------|------|------|------|--------------|---------|
| $s_1$ | 0              | 1    | 2    | 3    | 4    | $f_1^*(s_1)$ | $x_1^*$ |
| 1     | 6.59           | 6.20 | 5.73 | 6.24 | 7.08 | 5.73         | 2       |

The optimal policy is to produce two in the first run and to produce three in the second run if none of the items produced in the first run is acceptable. The minimum expected cost is \$573.

10.4-4.

$$f_n^*(s_n) = \max_{x_n \ge 0} \Big\{ \frac{1}{3} f_{n+1}^*(s_n - x_n) + \frac{2}{3} f_{n+1}^*(s_n + x_n) \Big\},$$

with  $f_6^*(s_6) = 0$  for  $s_6 < 5$  and  $f_6^*(s_6) = 1$  for  $s_6 \ge 5$ .

| $s_5$        | $f_5^*(s_5)$ | $x_5^*$             |
|--------------|--------------|---------------------|
| 0            | 0            | 0                   |
| 1            | 0            | 0                   |
| 2            | 0            | 0                   |
| 3            | 2/3          | $x_5^* \ge 2$       |
| 4            | 2/3          | $x_5^* \ge 1$       |
| $s_5 \geq 5$ | 1            | $x_5^* \le s_5 - 5$ |

|              |     | $f_4$ | $(s_4, x_4)$ | 4)  |     |              |                     |
|--------------|-----|-------|--------------|-----|-----|--------------|---------------------|
| $s_4$        | 0   | 1     | 2            | 3   | 4   | $f_4^*(s_4)$ | $x_4^*$             |
| 0            | 0   | _     | _            | _   | _   | 0            | 0                   |
| 1            | 0   | 0     | _            | _   | _   | 0            | 0                   |
| 2            | 0   | 4/9   | 4/9          | _   | _   | 4/9          | 1,2                 |
| 3            | 2/3 | 4/9   | 2/3          | 2/3 | _   | 2/3          | 0.2, 3              |
| 4            | 2/3 | 8/9   | 2/3          | 2/3 | 2/3 | 8/9          | 1                   |
| $s_4 \geq 5$ | 1   | _     | _            | _   | _   | 1            | $x_4^* \le s_4 - 5$ |

|              |     | $f_3(s)$ | $(x_3, x_3)$ |     |     |              |                     |
|--------------|-----|----------|--------------|-----|-----|--------------|---------------------|
| $s_3$        | 0   | 1        | 2            | 3   | 4   | $f_3^*(s_3)$ | $x_3^*$             |
| 0            | 0   | _        | _            | _   | _   | 0            | 0                   |
| 1            | 0   | 8/27     | _            | _   | _   | 8/27         | 1                   |
| 2            | 4/9 | 4/9      | 16/27        | _   | _   | 16/27        | 2                   |
| 3            | 2/3 | 20/27    | 2/3          | 2/3 | _   | 20/27        | 1                   |
| 4            | 8/9 | 8/9      | 22/27        | 2/3 | 2/3 | 22/27        | 0,1                 |
| $s_3 \geq 5$ | 1   | _        | _            | _   | _   | 1            | $x_3^* \le s_3 - 5$ |

|              |       | $f_2(s_2, s_2)$ | $x_2)$ |       |     |               |                     |
|--------------|-------|-----------------|--------|-------|-----|---------------|---------------------|
| $s_2$        | 0     | 1               | 2      | 3     | 4   | $f_2^st(s_2)$ | $x_2^*$             |
| 0            | 0     | _               | _      | _     | _   | 0             | 0                   |
| 1            | 8/27  | 32/81           | _      | _     | _   | 32/81         | 1                   |
| 2            | 16/27 | 48/81           | 48/81  | _     | _   | 48/81         | 0, 1, 2             |
| 3            | 20/27 | 64/81           | 62/81  | 2/3   | _   | 64/81         | 1                   |
| 4            | 24/27 | 74/81           | 70/81  | 62/81 | 2/3 | 74/81         | 1                   |
| $s_2 \geq 5$ | 1     |                 | _      | _     | _   | 1             | $x_2^* \le s_2 - 5$ |

|       |       | $f_1(s_1, x_1)$ |         |              |         |
|-------|-------|-----------------|---------|--------------|---------|
| $s_1$ | 0     | 1               | 2       | $f_1^*(s_1)$ | $x_1^*$ |
| 2     | 48/81 | 160/243         | 124/243 | 160/243      | 1       |

The probability of winning the bet using the policy given above is 160/243 = 0.658.

#### 10.4-5.

Let  $x_n \in \{A, D\}$  denote the decision variable of quarter n = 1, 2, 3, where A and D represent advertising or discontinuing the product respectively. Let  $s_n$  be the level of sales (in millions) above  $(s_n \ge 0)$  or below  $(s_n \le 0)$  the break-even point for quarter (n-1). Let  $f_n(s_n, x_n)$  represent the maximum expected discounted profit (in millions) from the beginning of quarter n onwards given the state  $s_n$  and decision  $x_n$ .

$$f_n(s_n, x_n) = -30 + 5 \left[ s_n + \frac{1}{b_n - a_n} \int_{a_n}^{b_n} t dt \right] + \frac{1}{b_n - a_n} \int_{a_n}^{b_n} f_{n+1}^*(s_n + t) t dt,$$

where  $a_n$  and  $b_n$  are given in the table that follows.

| n | $a_n$ | $b_n$ |
|---|-------|-------|
| 1 | 1     | 5     |
| 2 | 0     | 4     |
| 3 | -1    | 3     |

For  $1 \le n \le 3$ ,

$$f_n(s_n, A) = -30 + 5\left[s_n + \frac{a_n + b_n}{2}\right] + \frac{1}{b_n - a_n} \int_{a_n}^{b_n} f_{n+1}^*(s_n + t) dt,$$

$$f_n(s_n, D) = -20.$$

Note that once discontinuing is chosen the process stops.

$$f_n^*(s_n) = \max\{f_n(s_n, A), f_n(s_n, D)\}\$$

n = 4:

$$f_4^*(s_4) = \begin{cases} -20 & \text{if } s_4 < 0\\ 40s_4 & \text{if } s_4 \ge 0 \end{cases}$$

n = 3:

$$f_3(s_3, D) = -20$$

$$f_3(s_3, A) = -30 + 5(s_3 + 1) + \frac{1}{4} \int_{-1}^3 f_4^*(s_3 + t) dt,$$

For 
$$-3 \le s_3 \le 1$$
,

$$f_3(s_3, A) = -30 + 5(s_3 + 1) + \frac{1}{4} \left[ \int_{-1}^{-s_3} -20dt + \int_{-s_3}^{3} 40(s_3 + t)dt \right] = 5(s_3 + 4)^2 - 65$$

$$f_3^*(s_3) = \max\{5(s_3+4)^2 - 65, -20\} = \begin{cases} -20 & \text{if } -3 \le s_3 \le -1, \text{ and } x_3^* = D, \\ 5(s_3+4)^2 - 65 & \text{if } -1 \le s_3 \le 1, \text{ and } x_3^* = A. \end{cases}$$

For  $1 \le s_3 \le 5$ ,

$$f_3(s_3, A) = -30 + 5(s_3 + 1) + \frac{1}{4} \int_{-1}^{3} 40(s_3 + t) dt = 15 + 45s_3$$

$$f_3^*(s_3) = \max\{15 + 45s_3, -20\} = 15 + 45s_3 \text{ and } x_3^* = A.$$

| $s_3$               | $f_3^*(s_3)$    | $x_3^*$ |
|---------------------|-----------------|---------|
| $-3 \le s_3 \le -1$ | -20             | D       |
| $-1 \le s_3 \le 1$  | $5(s_3+4)^2-65$ | A       |
| $1 \le s_3 \le 5$   | $15 + 45s_3$    | A       |

# n = 2:

$$f_2(s_2, D) = -20$$

$$f_2(s_2, A) = -30 + 5(s_2 + 1) + \frac{1}{4} \int_{-1}^{3} f_3^*(s_2 + t) dt,$$

For 
$$-3 \le s_2 \le -1$$
,

$$\int_{-1}^{3} f_3^*(s_2 + t) dt = \int_{-1}^{-s_2 - 1} -20 dt + \int_{-s_2 - 1}^{1 - s_2} [5(s_2 + t + 4)^2 - 65] dt + \int_{1 - s_2}^{4} [15 + 45(s_2 + t)] dt$$
$$f_2(s_2, A) = \frac{5}{4} (\frac{9}{2} s_2^2 + 47 s_2 + \frac{427}{6})$$

Observe that  $f_2(-3,A) = -110/3 < f_2(s_2,D) = -20 < f_2(-1,A) = 215/6$ , so we need to find  $-3 \le s_2 \le -1$  such that  $f_2(s_2,A) = f_2(s_2,D)$ .

$$\frac{5}{4}(\frac{9}{2}s_2^2 + 47s_2 + \frac{427}{6}) = -20 \& -3 \le s_2 \le -1 \Rightarrow s_2^* = \frac{-47 + 8\sqrt{10}}{9} = -2.411$$

For 
$$-1 \le s_2 \le 1$$
,

$$\int_{-1}^{3} f_3^*(s_2 + t) dt = \int_{0}^{1 - s_2} [5(s_2 + t + 4)^2 - 65] dt + \int_{1 - s_2}^{4} [15 + 45(s_2 + t)] dt$$

$$f_2(s_2, A) = \frac{5}{4} \left[ -\frac{1}{3}(s_2 + 4)^3 + \frac{9}{2}(s_2 + 4)^2 + 20s_2 + \frac{103}{6} \right]$$

Since  $f_2(-1, A) = 215/6$  and  $f_2(s_2, A)$  is increasing in  $-1 \le s_2 \le 1$ ,  $x_2^* = A$  is the optimal decision in this interval.

| $s_2$                  | $f_2^*(s_2)$                                                                                            | $x_2^*$ |
|------------------------|---------------------------------------------------------------------------------------------------------|---------|
| $-3 \le s_2 \le s_2^*$ | -20                                                                                                     | D       |
| $s_2^* < s_2 \le -1$   | $\frac{5}{4}(\frac{9}{2}s_2^2 + 47s_2 + \frac{427}{6})$                                                 | A       |
| $-1 \le s_2 \le 1$     | $\frac{5}{4} \left[ -\frac{1}{3} (s_2 + 4)^3 + \frac{9}{2} (s_2 + 4)^2 + 20s_2 + \frac{103}{6} \right]$ | A       |

#### n = 1:

$$f_1(-4, D) = -20$$

$$f_1(-4, A) = -30 + 5(-4 + 3) + \frac{1}{4} \int_1^5 f_2^* (-4 + t) dt$$

$$= -35 + \frac{1}{4} \left[ \int_1^{s_2^* + 4} -20 dt + \frac{5}{4} \int_{s_2^* + 4}^3 (\frac{9}{2} (-4 + t)^2 + 47(-4 + t) + \frac{427}{6}) dt \right]$$

$$+ \frac{5}{4} \int_3^5 \left[ -\frac{1}{3} t^3 + \frac{9}{2} t^2 + 20(-4 + t) + \frac{103}{6} \right] dt = 4.77$$

| $s_1$ | $f_1^*(s_1)$ | $x_1^*$ |
|-------|--------------|---------|
| -4    | 4.77         | A       |

| 1st Quarter | 2nd Quarter                         | 3rd Quarter                     |
|-------------|-------------------------------------|---------------------------------|
| Advertise.  | If $s_2 \leq -2.411$ , discontinue. | If $s_3 \leq -1$ , discontinue. |
|             | If $s_2 > -2.411$ , advertise.      | If $s_3 > -1$ , advertise.      |

#### **CHAPTER 11: INTEGER PROGRAMMING**

#### 11.1-1.

(a) 
$$x_j = \begin{cases} 1 & \text{if the decision is to build a factory in city } j, \\ 0 & \text{otherwise} \end{cases}$$
 
$$y_j = \begin{cases} 1 & \text{if the decision is to build a factory in city } j, \\ 0 & \text{otherwise} \end{cases}$$
 for  $j = \text{LA, SF, SD.}$  
$$\text{maximize} \qquad \text{NPV} = 9x_{\text{LA}} + 5x_{\text{SF}} + 7x_{\text{SD}} + 6y_{\text{LA}} + 4y_{\text{SF}} + 5y_{\text{SD}}$$
 
$$\text{subject to} \qquad 6x_{\text{LA}} + 3x_{\text{SF}} + 4x_{\text{SD}} + 5y_{\text{LA}} + 2y_{\text{SF}} + 3y_{\text{SD}} \leq 10$$

bject to 
$$6x_{\text{LA}} + 3x_{\text{SF}} + 4x_{\text{SD}} + 5y_{\text{LA}} + 2y_{\text{SF}} + 3y_{\text{SD}} \leq 10$$

$$y_{\text{LA}} + y_{\text{SF}} + y_{\text{SD}} \leq 1$$

$$-x_{\text{LA}} + y_{\text{LA}} \leq 0$$

$$-x_{\text{SF}} + y_{\text{SF}} \leq 0$$

$$-x_{\text{SD}} + y_{\text{SD}} \leq 0$$

$$x_{\text{LA}}, x_{\text{SF}}, x_{\text{SD}}, y_{\text{LA}}, y_{\text{SF}}, y_{\text{SD}} \text{ binary}$$

(b) - (c)

|                      |           | ı                                                     |        |                   |        |        |        |   |      |
|----------------------|-----------|-------------------------------------------------------|--------|-------------------|--------|--------|--------|---|------|
|                      | Warehouse | Warehouse Factory Warehouse Factory Warehouse Factory |        |                   |        |        |        |   |      |
| Constraint           | in LA?    | in LA?                                                | in SD? | in SD?            | in SF? | in SF? | Totals |   | Side |
| Capital (\$millions) | 5         | 6                                                     | 3      | 4                 | 2      | 3      | 10     | ≤ | 10   |
| ≤ 1 Warehouse        | 1         | 0                                                     | 1      | 0                 | 1      | 0      | _ 1    | ≤ | 11   |
| NPV (\$millions)     | 6         | 9                                                     | 5      | 7                 | 4      | 5      | 17     |   |      |
| Solution             | 6 0 - ≤   | <b>0</b>                                              |        | ≤ <b>(1)</b> 10 % | 0 .    |        |        |   |      |

# 11.1-2.

$$(a) \qquad M_j = \begin{cases} 1 & \text{if } j \text{ does marketing,} \\ 0 & \text{otherwise} \end{cases} \qquad C_j = \begin{cases} 1 & \text{if } j \text{ does cooking,} \\ 0 & \text{otherwise} \end{cases}$$
 
$$D_j = \begin{cases} 1 & \text{if } j \text{ does dishwashing,} \\ 0 & \text{otherwise} \end{cases} \qquad L_j = \begin{cases} 1 & \text{if } j \text{ does laundry,} \\ 0 & \text{otherwise} \end{cases}$$
 for  $j = E$  (Eve), S (Steven). 
$$\min \quad T = 4.5M_E + 7.8C_E + 3.6D_E + 2.9L_E + 4.9M_S + 7.2C_S + 4.3D_S + 3.1L_S$$
 st 
$$M_E + C_E + D_E + L_E = 2$$
 
$$M_S + C_S + D_S + L_S = 2$$
 
$$M_E + M_S = 1$$
 
$$C_E + C_S = 1$$
 
$$D_E + D_S = 1$$
 
$$L_E + L_S = 1$$
 
$$M_E, M_S, C_E, C_S, D_E, D_S, L_E, L_S \text{ binary}$$

$$(b) - (c)$$

|                 | l                   |     | l     |        |     |       |                   |                      |       |     |                    |
|-----------------|---------------------|-----|-------|--------|-----|-------|-------------------|----------------------|-------|-----|--------------------|
| Constraint      | Marketing<br>by Eve |     |       |        |     |       | Laundry<br>by Eve | Laundry<br>by Steven | Total |     | Right-Hand<br>Side |
| Eve's Chores    | 1                   | 0   | 1     | 0      | 1   | 0     | 1                 | 0                    | 2     | =   | 2                  |
| Steven's Chores | 0                   | 1   | 0     | 1      | 0   | 1     | 0                 | 1                    | 2     | =   | 2                  |
| Marketing       | 1                   | . 1 | 0     | 0      | 0   | 0     | 0                 | 0                    | 1     | =   | 1                  |
| Cooking         | Ó                   | 0   | 1     | 1      | 0   | 0     | 0                 | 0                    | 1     | =   | 1                  |
| Dishwashing     | 0                   | 0   | 0     | 0      | 1   | 1     | 0                 | 0                    | 1     | =   | 1                  |
| Laundry         | 0                   | 0   | 0     | 0      | 0   | 0     | 1                 | 1                    | 1     | =   | 1                  |
| Time Needed     | 4.5                 | 4.9 | 7.8   | 7.2    | 3.6 | 4.3   | 2.9               | 3.1                  | 18.4  | hou | ra de la           |
| Solution        | 1                   | 0.4 | . O 3 | A CALL | 大型  | (2.0) | .0                | 學 達型                 |       |     |                    |

#### 11.1-3.

(a) 
$$x_j = \begin{cases} 1 & \text{if the decision is to invest in project } j, \\ 0 & \text{otherwise} \end{cases}$$

for 
$$j = 1, 2, 3, 4, 5$$
.

maximize 
$$\begin{aligned} & \text{NPV} = x_1 + 1.8x_2 + 1.6x_3 + 0.8x_4 + 1.4x_5 \\ & \text{subject to} & & 6x_1 + 12x_2 + 10x_3 + 4x_4 + 8x_5 \leq 20 \\ & & & x_1, x_2, x_3, x_4, x_5 \text{ binary} \end{aligned}$$

|                   |           | Yes       | i         |           | Right-Hand |                 |        |                                      |
|-------------------|-----------|-----------|-----------|-----------|------------|-----------------|--------|--------------------------------------|
| Constraint        | Project 1 | Project 2 | Project 3 | Project 4 | Project 5  | Total           |        | Side                                 |
| Capital           | 6         | 12        | 10        | 4         | 8          | 20              | ≤      | 20                                   |
| Net Present Value | 1         | 1.8       | 1.6       | 0.8       | 1.4        | \$3.4           | millio | n A Line                             |
| Solution          | 2.11      | 0,5       | 11.1      |           | * & o      | No. 7 or Calabo |        | s. strategic being sommer die School |

#### 11.1-4.

(a) 
$$x_j = \begin{cases} 1 & \text{if the decision is to invest in opportunity } j, \\ 0 & \text{otherwise} \end{cases}$$

for 
$$j = 1, 2, 3, 4, 5, 6$$
.

Let  $p_j$  denote the estimated profit of opportunity j and  $c_j$  the capital required for opportunity j in millions of dollars.

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^6 x_j p_j \\ \\ \text{subject to} & \sum_{j=1}^6 x_j c_j \leq 100 \\ & x_1 + x_2 \leq 1 \\ & x_3 + x_4 \leq 1 \\ & x_3 \leq x_1 + x_2 \\ & x_4 \leq x_1 + x_2 \\ & x_j \text{ binary, for } j = 1, \dots, 6 \end{array}$$

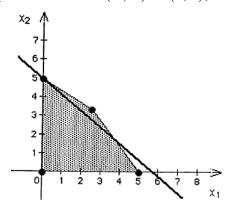
(b) Solution: Invest in opportunities 1, 3 and 5.

|                    |     | Inve | stment | Opport | unity |    |
|--------------------|-----|------|--------|--------|-------|----|
|                    | 1   | 2    | З      | 4      | 5     | 6  |
| Estimated Profit   | 15  | 12   | 16     | 18     | 9     | 11 |
| Capital Required   | 38  | 33   | 39     | 45     | 23    | 27 |
| Invest or Not      | 1   | 0    | 1      | 0      | 1     | 0  |
| Total Profit       | 40  |      |        |        |       |    |
| Total Capital Req. | 100 | 100  |        |        |       |    |
| x1 +x2≤1           | 1   | 1    |        |        |       |    |
| x3+x4≤1            | 1   | 1    |        |        |       |    |
| x3≤x1+x2           | 1   | 1    |        |        |       |    |
| x4≤x1+x2           | 0   | 1    |        |        |       |    |

# 11.1-5.

| Unit Cost (Seconds) |                           |      |                |      |      |      |   |  |  |  |  |  |
|---------------------|---------------------------|------|----------------|------|------|------|---|--|--|--|--|--|
|                     |                           | l    | Task (Swimmer) |      |      |      |   |  |  |  |  |  |
|                     | Carl Chris David Tony Ken |      |                |      |      |      |   |  |  |  |  |  |
|                     | Back                      | 37.7 | 32.9           | 33.8 | 37   | 35.4 | 1 |  |  |  |  |  |
| Assignee            | Breast                    | 43.4 | 33.1           | 42.2 | 34.7 | 41.8 | 1 |  |  |  |  |  |
| (Stroke)            | Fly                       | 33.3 | 28.5           | 38.9 | 30.4 | 33.6 | 1 |  |  |  |  |  |
|                     | Free                      | 29.2 | 26.4           | 29.6 | 28.5 | 31.1 | 1 |  |  |  |  |  |
| Demand              |                           | 1    | 1              | 1    | 1    | 1    |   |  |  |  |  |  |

| Assignment |        |      |       |               |      |              |            |   |        |  |  |  |
|------------|--------|------|-------|---------------|------|--------------|------------|---|--------|--|--|--|
|            |        | ŀ    |       |               |      |              |            |   |        |  |  |  |
|            |        | Carl | Chris | David         | Tony | Ken          | Totals     |   | Supply |  |  |  |
|            | Back   | 101  | 0 %   | <b>9</b> 31 3 | 10 👊 | . 0          | 1          | = | 1      |  |  |  |
| Assignee   | Breast | 0.   | 0     | T 0           | 217  | 7.0          | 1          | = | 1      |  |  |  |
| (Stroke)   | Fly    | 0.≃  |       | 0             | 0 '  | 0            | 1          | = | 1 1    |  |  |  |
|            | Free   | 13   | 0 4   | . 0           | 0 💎  | <b>∦</b> 0 * | 1          | = | 11     |  |  |  |
| Totals     |        | 1    | 1     | 1             | 1    | 0            |            |   | _      |  |  |  |
|            |        | ≤    | ≤     | ≤             | ≤    | ≤            | Total Cost | = | 126.20 |  |  |  |
| Demand     |        | 1    | 1     | 1             | 1    | 1            |            |   |        |  |  |  |


Each swimmer can swim only one stroke and each stroke can be assigned to only one swimmer.

# 11.1-6.

(a) Let T be the number of tow bars produced and S be the number of stabilizer bars produced.

$$\begin{array}{ll} \text{maximize} & P = 130T + 150S \\ \text{subject to} & 3.2T + 2.4S \leq 16 \\ & 2T + 3S \leq 15 \\ & T,S \geq 0 \text{ integers} \end{array}$$

(b) Optimal Solution: (T, S) = (0, 5), P = \$750



(c)

| Res         | Resource Usage Per Unit of Each Activity |            |        |        |              |           |  |  |  |  |  |  |
|-------------|------------------------------------------|------------|--------|--------|--------------|-----------|--|--|--|--|--|--|
| Resource    | Tow Bars                                 | Stabilizer | r Bars | Totals |              | Available |  |  |  |  |  |  |
| Machine 1   | 3.2                                      | 2.4        |        | 12     | ≤            | 16        |  |  |  |  |  |  |
| Machine 2   | 2                                        | 3          |        | 15     | ≤            | 15        |  |  |  |  |  |  |
| Unit Profit | \$ 130.00                                | \$ 15      | 0.00   | \$750  | 16.3         | 型的核       |  |  |  |  |  |  |
| Solution    | 0 1                                      | - 5        | 他生     |        | and a rainem |           |  |  |  |  |  |  |

# 11.1-7.

(a) Let  $x_{ij}$  be the number of trucks hauling from pit i to site j and  $y_{ij}$  be the number of tons of gravel hauled from pit i to site j, for i = N, S and j = 1, 2, 3.

minimize 
$$C=400y_{N1}+490y_{N2}+460y_{N3}+600y_{S1}+530y_{S2}+560y_{S3} +150(x_{N1}+x_{N2}+x_{N3}+x_{S1}+x_{S2}+x_{S3})$$
 subject to 
$$y_{N1}+y_{N2}+y_{N3}\leq 18 \\ y_{S1}+y_{S2}+y_{S3}\leq 14 \\ y_{ij}\leq 5x_{ij}, \text{ for } i=N,S \text{ and } j=1,2,3 \\ y_{N1}+y_{S1}\geq 10 \\ y_{N2}+y_{S2}\geq 5 \\ y_{N3}+y_{S3}\geq 10 \\ y_{ij}\geq 0, x_{ij}\geq 0 \text{ integers, for } i=N,S \text{ and } j=1,2,3$$

(b)

| Resource Usage Per Unit of Each Activity |     |              |     |     |     |     |     |     |     |     |     |     |          |   |           |
|------------------------------------------|-----|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|---|-----------|
|                                          |     | Truck Gravel |     |     |     |     |     |     |     |     | l   |     | Resource |   |           |
| Resource                                 | N1  | N2           | N3  | S1  | S2  | S3  | N1  | N2  | N3  | S1  | S2  | S3  | Total    |   | Available |
| North                                    | 0   | 0            | 0   | 0   | 0   | 0   | 1   | 1   | 1   | 0   | 0   | 0   | 18       | ≤ | 18        |
| South                                    | 0   | 0            | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 1   | 7        | ≤ | 14        |
| N1                                       | -5  | 0            | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 0        | ≤ | 0         |
| N2                                       | 0   | -5           | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | 0   | 0        | ≤ | 0         |
| N3                                       | 0   | 0            | -5  | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0   | -2       | ≤ | 0         |
| S1                                       | 0   | 0            | 0   | -5  | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0   | 0        | ≤ | 0         |
| S2                                       | 0   | 0            | 0   | 0   | -5  | 0   | 0   | 0   | 0   | 0   | 1   | 0   | 0        | ≤ | 0         |
| S3                                       | 0   | 0            | 0   | 0   | 0   | -5  | 0   | 0   | 0   | 0   | 0   | 1   | -3       | ≤ | 0         |
| Site 1                                   | 0   | 0            | 0   | 0   | 0   | 0   | -1  | 0   | 0   | -1  | 0   | 0   | -10      | ≤ | -10       |
| Site 2                                   | 0   | 0            | 0   | 0   | 0   | 0   | 0   | -1  | 0   | 0   | -1  | 0   | -5       | ≤ | -5        |
| Site 3                                   | 0   | 0            | 0   | 0   | 0   | 0   | 0   | 0   | -1  | 0   | 0   | -1  | -10      | ≤ | -10       |
| Unit Cost                                | 150 | 150          | 150 | 150 | 150 | 150 | 400 | 490 | 460 | 600 | 530 | 560 | 12350    |   |           |
| Solution                                 | 2   | 0            | 2   | 0   | 1   | 1   | 10  | 0   | 8   | 0   | 5   | 2   |          |   |           |

### 11.2-1.

Air New Zealand used integer programming to solve its aircrew-scheduling problem that consists of two subproblems: the tours-of-duty (ToD) planning and rostering. A ToD is a sequence of duty and rest periods for a single crew member. The ToD planning problem is to construct minimum-cost ToDs to crew all scheduled flights. The last duty period in a ToD should end at the crew base where the first duty period started. A ToD has to satisfy a number of rules and regulations pertaining to the length of duty and rest periods, the latest possible starting time for a flight, maximum allowable flight time, the number of crew members needed to operate a flight, etc. The second subproblem, rostering assigns planned ToDs to individual crew members. Just like ToDs, rosters should meet some rules such as minimum number of days off, total duty time, flight time limits, minimum rest time between ToDs and qualifications needed to perform a ToD. Both subproblems are instances of generalized set-partitioning problem. A set partitioning problem is of the form:

minimize 
$$c^Tx$$
 subject to  $Ax = e$  
$$x \in \{0,1\}^n,$$

where e is a column-vector of ones and the elements of A are zeros and ones. The generalized set-partitioning problem also includes constraints with right-hand-sides that are not one. To solve these problems, revised simplex method is used together with various pricing and constraint branching techniques.

The new scheduling approach has saved Air New Zealand over NZ\$15 million annually whereas it cost only NZ\$2 million. Direct savings resulted from reduced crew size and eliminated expenses of the crew that had to stay overseas because of inefficient scheduling practices. Additionally, the cost of scheduling has decreased. While the airline has expanded, the number of people needed to solve the scheduling problem has decreased. This study allowed Air New Zealand to obtain high-quality schedules that respect individual preferences and meet regulations. Furthermore, robust schedules are obtained quickly, so responding to changes promptly is now possible. The airline's dependence on a small number of highly skilled schedulers is eliminated. Schedulers can now concentrate their efforts on analyzing and evaluating solutions. Managers can review strategic decisions in the light of the information provided by optimizers. As a consequence of these improvements, Air New Zealand provides a better customer service.

#### 11.2-2.

Answers will vary.

### 11.2-3.

Answers will vary.

# 11.3-1.

(a) Let M be a very large number, say 100 million.

$$\begin{array}{ll} \max & 70x_1-50,000y_1+60x_2-40,000y_2+90x_3-70,000y_3+80x_4-60,000y_4\\ \mathrm{st} & y_1+y_2+y_3+y_4\leq 2\\ & y_3\leq y_1+y_2\\ & y_4\leq y_1+y_2\\ & 5x_1+3x_2+6x_3+4x_4\leq 6000+My_5\\ & 4x_1+6x_2+3x_3+5x_4\leq 6000+M(1-y_5)\\ & 0\leq xi\leq My_i, \ \mathrm{for} \ i=1,2,3,4\\ & y_i \ \mathrm{binary}, \ \mathrm{for} \ i=1,2,3,4 \end{array}$$

(b)

| Constraint                   | Product 1           | Product 2                 | Product 3      | Product 4             | Totals        |        | Right-Hand<br>Side | Right-Hand<br>Side |   |
|------------------------------|---------------------|---------------------------|----------------|-----------------------|---------------|--------|--------------------|--------------------|---|
| First<br>Second              | 5<br>4              | 3<br>6                    | 6<br>3         | 4<br>5                | 6000<br>12000 | ≤<br>≤ | 6000<br>105999     | 6000<br>6000       | _ |
| Marginal revenue<br>Solution | \$70<br>0<br>≤<br>0 | \$60<br>2000<br>≤<br>9999 | \$90<br>≤<br>0 | \$80<br>- 0<br>≤<br>0 | \$80000       |        |                    |                    | - |
| Set Up?<br>Start-up Cost     | \$50,000            | \$40,000                  | \$70,000       | \$60,000              | 1             | ≤      | 2                  |                    |   |

|   | Contingency Constraints: |   |   |   |                 |
|---|--------------------------|---|---|---|-----------------|
| ľ | Product 3:               | 0 | ≤ | 1 | :Product 1 or 2 |
| I | Product 4:               | 0 | ≤ | 1 | :Product 1 or 2 |

| Which Constraint (0 = First, 1 = Secon | nd): Fix 0 编版 |
|----------------------------------------|---------------|

# 11.3-2.

$$x_1 - x_2 = 0y_1 + 3y_2 - 3y_3 + 6y_4 - 6y_5, y_i \in \{0, 1\}, \text{ for } i = 1, \dots, 5.$$

# 11.3-3.

1. 
$$3x_1 - x_2 - x_3 + x_4 \le 12 + My_1$$
  
 $x_1 + x_2 + x_3 + x_4 \le 15 + M(1 - y_1)$   
 $y_1$  binary

2. 
$$2x_1 + 5x_2 - x_3 + x_4 \le 30 + My_2$$
$$-x_1 + 3x_2 + 5x_3 + x_4 \le 40 + My_3$$
$$3x_1 - x_2 + 3x_3 - x_4 \le 60 + My_4$$
$$y_2 + y_3 + y_4 \le 1$$
$$y_i \text{ binary, for } i = 2, 3, 4$$

# 11.3-4.

(a) Let  $y_1$  and  $y_2$  be binary variables that indicate whether or not toys 1 and 2 are produced. Let  $x_1$  and  $x_2$  be the number of toys 1 and 2 that are produced. Also, let z be 0 if factory 1 is used and 1 if factory 2 is used.

$$\begin{array}{ll} \text{maximize} & 10x_1+15x_2-50,000y_1-80,000y_2\\ \text{subject to} & x_1 \leq My_1\\ & x_2 \leq My_2\\ & \frac{1}{50}x_1+\frac{1}{40}x_2 \leq 500+Mz\\ & \frac{1}{40}x_1+\frac{1}{25}x_2 \leq 700+M(1-z)\\ & x_1,x_2 \geq 0 \text{ integers}\\ & y_1,y_2,z \text{ binary} \end{array}$$

(b)

|             |          |          |          |   | Modified   | Original   |
|-------------|----------|----------|----------|---|------------|------------|
|             | _        |          | _        |   | Right-Hand | Right-Hand |
| Constraint  | Toy 1    | Toy 2    | Totals   |   | Side       | Side       |
| Factory 1   | 0.02     | 0.025    | 560      | ≤ | 10499      | 500        |
| Factory 2   | 0.025    | 0.04     | 700      | ≤ | 700        | 700        |
| Unit Profit | \$10     | \$15     | \$230000 |   |            |            |
| Solution    | 28000    | 0        |          |   |            |            |
|             | ≤        | ≤        |          |   |            |            |
|             | 99999    | 0        |          |   |            |            |
| Set Up?     | det e 1  | 0        |          |   |            |            |
| Setup Cost  | \$50,000 | \$80,000 |          |   |            |            |

# 11.3-5.

(a) Let L, M, and S be the number of long-, medium-, and short-range jets to buy respectively.

**1**13

maximize 
$$P=4.2L+3M+2.3S$$
 subject to 
$$67L+50M+35S\leq 1500$$
 
$$L+M+S\leq 30$$
 
$$\frac{5}{3}L+\frac{4}{3}M+S\leq 40$$
 
$$L,M,S\geq 0 \text{ integers}$$

Which factory? (0=Factory 1, 1=Factory 2)

(b)

|             |              | Resource     |             |        |      |           |
|-------------|--------------|--------------|-------------|--------|------|-----------|
| Resource    | Long-range   | Medium-range | Short-range | Totals |      | Available |
| Money       | 67           | 50           | 35          | 1498   | _≤   | 1500      |
| Pilots      | 1            | 1            | 1           | 30     | ≤    | 30        |
| Maintenance | 1.667        | 1.333        | 1           | 39.338 | ≤    | 40        |
| Profit      | \$ 4.20      | \$ 3.00      | \$ 2.30     | \$95.6 | S.F. | others.   |
| Solution    | 3 3 12 · · · | 0 2          | *10 16 + ** |        |      |           |

$$(c) \qquad L \leq \min\left\{\frac{1500}{67}, \frac{30}{1}, \frac{40}{5/3}\right\} = 24$$

$$M \leq \min\left\{\frac{1500}{50}, \frac{30}{1}, \frac{40}{4/3}\right\} = 30$$

$$S \leq \min\left\{\frac{1500}{35}, \frac{30}{1}, \frac{40}{1}\right\} = 30$$

$$L = 2^{0}l_{0} + 2^{1}l_{1} + 2^{2}l_{2} + 2^{3}l_{3} + 2^{4}l_{4}$$

$$M = 2^{0}m_{0} + 2^{1}m_{1} + 2^{2}m_{2} + 2^{3}m_{3} + 2^{4}m_{4}$$

$$S = 2^{0}s_{0} + 2^{1}s_{1} + 2^{2}s_{2} + 2^{3}s_{3} + 2^{4}s_{4}$$

$$\max imize \qquad P = 4.2\sum_{i=0}^{4} 2^{i}l_{i} + 3\sum_{i=0}^{4} 2^{i}m_{i} + 2.3\sum_{i=0}^{4} 2^{i}s_{i}$$

$$\text{subject to} \qquad 67\sum_{i=0}^{4} 2^{i}l_{i} + 50\sum_{i=0}^{4} 2^{i}m_{i} + 35\sum_{i=0}^{4} 2^{i}s_{i} \leq 1500$$

$$\sum_{i=0}^{4} 2^{i}l_{i} + \sum_{i=0}^{4} 2^{i}m_{i} + \sum_{i=0}^{4} 2^{i}s_{i} \leq 30$$

$$\frac{5}{3}\sum_{i=0}^{4} 2^{i}l_{i} + \frac{4}{3}\sum_{i=0}^{4} 2^{i}m_{i} + \sum_{i=0}^{4} 2^{i}s_{i} \leq 40$$

$$l_{i}, m_{i}, s_{i} \text{ binary, for } i = 0, 1, 2, 3, 4$$

(d) Solution: 
$$l_0 = l_4 = 0, l_1 = l_2 = l_3 = 1, \sum_{i=0}^4 2^i l_i = 14$$
  
 $m_0 = m_1 = m_2 = m_3 = m_4 = 0, \sum_{i=0}^4 2^i m_i = 0$   
 $s_0 = s_1 = s_2 = s_3 = 0, s_4 = 1, \sum_{i=0}^4 2^i s_i = 16$   
 $P = \$95.6 \text{ (same as in (b))}$ 

### 11.3-6.

(a) 
$$x_1 = y_{11} + 2y_{12}, \ x_2 = y_{21} + 2y_{22}$$
  
maximize  $Z = y_{11} + 2y_{12} + 5y_{21} + 10y_{22}$   
subject to  $y_{11} + 2y_{12} + 10y_{21} + 20y_{22} \le 20$   
 $y_{11} + 2y_{12} \le 2$   
 $y_{ij}$  binary, for  $i, j = 1, 2$ 

(b) Solution: 
$$y_{11} = y_{12} = 0 \Rightarrow x_1 = 0, y_{21} = 0, y_{22} = 1 \Rightarrow x_2 = 2, Z = 10$$

# 11.3-7.

(a) Let  $x_i$  be the number of units to produce of product i = 1, 2, 3.

$$y_i = \begin{cases} 1 & \text{if product } i \text{ is produced,} \\ 0 & \text{otherwise} \end{cases}$$
 
$$2x_1 + 3x_2 + 0.8x_3 - 3y_1 - 2y_2$$
 
$$\text{subject to} \qquad 0.2x_1 + 0.4x_2 + 0.2x_3 \leq 1$$
 
$$x_1 \leq My_1$$
 
$$x_2 \leq My_2$$
 
$$0 \leq x_1 \leq 3 \text{ integer}$$
 
$$0 \leq x_2 \leq 2 \text{ integer}$$
 
$$0 \leq x_3 \leq 5 \text{ integer}$$

 $y_1, y_2$  binary

(b)

|                         | Amt. For   | Amt. For   | Amt. For     |        | F      | Right-Hand |
|-------------------------|------------|------------|--------------|--------|--------|------------|
| Constraint              | Customer 1 | Customer 2 | Customer 3   | Totals |        | Side       |
| Capacity                | 0.2        | 0.4        | 0.2          | 1      | ≤      | 1          |
| Max. Sales - Customer 1 | 1          | 0          | 0            | 0      | ≤      | 3          |
| Max. Sales - Customer 2 | 0          | 1          | 0            | 2      | ≤      | 2          |
| Max. Sales - Customer 3 | 0          | 0          | 1            | 1      | ≤      | 5          |
| Marginal Net Revenue    | \$2        | \$3        | \$1          | \$4.8  | millio | n          |
| Solution                | 0,0        | 2          | 人。刘廷、二       |        |        |            |
|                         | ≤          | ≤          | ≤            |        |        |            |
|                         | 0          | 99         | 99           |        |        |            |
| Set Up?                 | 0.70       | 1          | <b>第15</b> 5 |        |        |            |
| Setup Cost( millions)   | \$3        | \$2        | \$0          |        |        |            |

# 11.4-1.

(a) 
$$y_{ij} = \begin{cases} 1 & \text{if } x_i = j \text{ (i.e., produce } j \text{ units of } i), \\ 0 & \text{otherwise} \end{cases}$$

for 
$$i = 1, 2, 3$$
 and  $j = 1, 2, 3, 4, 5$ .

$$\max \quad -y_{11} + 2y_{12} + 4y_{13} + y_{21} + 5y_{22} + y_{31} + 3y_{32} + 5y_{33} + 6y_{34} + 7y_{35}$$

st 
$$y_{11} + y_{12} + y_{13} \le 1$$
  
 $y_{21} + y_{22} \le 1$ 

$$y_{31} + y_{32} + y_{33} + y_{34} + y_{35} \le 1$$

$$y_{11} + 2y_{12} + 3y_{13} + 2y_{21} + 4y_{22} + y_{31} + 2y_{32} + 3y_{33} + 4y_{34} + 5y_{35} \le 5$$

$$y_{ij} \text{ binary}$$

(b) Solution: 
$$y_{ij} = 0$$
 except for  $(i, j) = (3, 5)$ ,  $y_{35} = 1 \Rightarrow x_3 = 5$ ,  $Z = 7$ 

(c) 
$$y_{ij} = \begin{cases} 1 & \text{if } x_i \ge j, \\ 0 & \text{otherwise} \end{cases}$$

for 
$$i = 1, 2, 3$$
 and  $j = 1, 2, 3, 4, 5$ .

$$\begin{array}{ll} \max & -y_{11}+3y_{12}+2y_{13}+y_{21}+4y_{22}+y_{31}+2y_{32}+2y_{33}+y_{34}+y_{35} \\ \mathrm{st} & y_{13} \leq y_{12} \leq y_{11} \\ & y_{22} \leq y_{21} \\ & y_{35} \leq y_{34} \leq y_{33} \leq y_{32} \leq y_{31} \\ & y_{11}+y_{12}+y_{13}+2y_{21}+2y_{22}+y_{31}+y_{32}+y_{33}+y_{34}+y_{35} \leq 5 \\ & y_{ij} \ \mathrm{binary} \end{array}$$

(d) Solution: 
$$y_{ij} = 0$$
 for  $i = 1, 2, y_{3j} = 1$  for  $j = 1, ..., 5 \Rightarrow x_3 = 5, Z = 7$ 

# 11.4-2.

Introduce the binary variables  $y_1$  and  $y_2$  and add constraints  $x_1 \leq My_1$ ,  $x_2 \leq My_2$ ,  $y_1 + y_2 = 1$ .

### 11.4-3.

(a) Introduce the binary variables  $y_1$ ,  $y_2$ , and  $y_3$  to represent positive (nonzero) production levels.

$$\begin{array}{ll} \text{maximize} & Z = 50x_1 + 20x_2 + 25x_3 \\ \text{subject to} & 9x_1 + 3x_2 + 5x_3 \leq 500 \\ 5x_1 + 4x_2 & \leq 350 \\ 3x_1 & + 2x_3 \leq 150 \\ & x_3 \leq 20 \\ & x_1 \leq My_1, \, x_2 \leq My_2, \, x_3 \leq My_3 \\ & y_1 + y_2 + y_3 \leq 2 \\ & x_1, x_2, x_3 \geq 0 \\ & y_1, y_2, y_3 \text{ binary} \end{array}$$

(b)

|                 |           |                 |           | _                                  |   | Right-Hand |
|-----------------|-----------|-----------------|-----------|------------------------------------|---|------------|
| Constraint      | Product 1 | Product 2       | Product 3 | Total                              |   | Side       |
| Milling         | 9         | 3               | 5         | 498                                | ≤ | 500        |
| Lathe           | 5         | 4               | 0         | 349                                | ≤ | 350        |
| Grinder         | 3         | 0               | 2         | 135                                | ≤ | 150        |
| Sales Potential | 0         | 0               | 1         | 0                                  | ≤ | 20         |
| Unit Profit     | 50        | 20              | 25        | \$2870                             |   |            |
| Solution        | 45        | 31              | 0 5       | CONTRACTOR INCOMPRESSOR CONTRACTOR |   |            |
|                 | ≤         | ≤               | ≤         |                                    |   |            |
|                 | 999       | 999             | 0         |                                    |   |            |
| Produce?        | 14        | . <b>1</b> 2. 3 | 0         | 2                                  | ≤ | 2          |

D1-1-4 | | | | |

### 11.4-4.

(a) 
$$y_{ij} = \begin{cases} 1 & \text{if } x_i = j, \\ 0 & \text{otherwise} \end{cases}$$

for 
$$i = 1, 2$$
 and  $j = 1, 2, 3$ .

Work out by hand the objective function contribution for  $x_1, x_2 = 0, 1, 2, 3$ .

$$\begin{array}{ll} \text{maximize} & 3y_{11} + 8y_{12} + 9y_{13} + 9y_{21} + 24y_{22} + 9y_{23} \\ \text{subject to} & y_{11} + y_{12} + y_{13} \leq 1 \\ & y_{21} + y_{22} + y_{23} \leq 1 \\ & y_{11} + y_{23} \leq 1 \\ & y_{13} + y_{23} \leq 1 \\ & y_{12} + y_{23} \leq 1 \\ & y_{12} + y_{22} \leq 1 \\ & y_{13} + y_{22} \leq 1 \\ & y_{13} + y_{21} \leq 1 \\ & y_{ij} \text{ binary} \end{array}$$

(b) Solution: 
$$y_{ij} = 0$$
 except  $y_{11} = y_{22} = 1 \Rightarrow x_1 = 1, x_2 = 2, Z = 27$ 

(c) 
$$y_{ij} = \begin{cases} 1 & \text{if } x_i \ge j, \\ 0 & \text{otherwise} \end{cases}$$

for 
$$i = 1, 2$$
 and  $j = 1, 2, 3$ .

Work out by hand the objective function contribution for  $x_1, x_2 = 0, 1, 2, 3$ .

$$\begin{array}{ll} \text{maximize} & 3y_{11} + 5y_{12} + y_{13} + 9y_{21} + 15y_{22} - 15y_{23} \\ \text{subject to} & y_{13} \leq y_{12} \leq y_{11} \\ & y_{23} \leq y_{22} \leq y_{21} \\ & y_{11} + y_{23} \leq 1 \\ & y_{12} + y_{22} \leq 1 \\ & y_{13} + y_{21} \leq 1 \\ & y_{ij} \text{ binary} \end{array}$$

(d) Solution: 
$$y_{ij} = 0$$
 except  $y_{11} = y_{21} = y_{22} = 1 \Rightarrow x_1 = 1, x_2 = 2, Z = 27$ 

### 11.4-5.

(a) 
$$x_{ij} = \begin{cases} 1 & \text{if arc from node } i \text{ to node } j \text{ is in the shortest path,} \\ 0 & \text{otherwise} \end{cases}$$

(1), (2), (3) ensure that exactly one arc is used at each stage and they represent mutually exclusive alternatives. (4), (5), (6) ensure that node i is left only if it is entered and they represent contingent decisions.

(b) Solution: 
$$x_{ij} = 0$$
 except  $x_{12} = x_{25} = x_{56} = 1$ ,  $Z = 10$   
Shortest path:  $1 \to 2 \to 5 \to 6$ 

# 11.4-6.

(a) 
$$y_j = \begin{cases} 1 & \text{if route } j \text{ is chosen,} \\ 0 & \text{otherwise} \end{cases}$$

Let  $x_{ij}$  be the ijth element of the location/route matrix, for  $i=A,\ldots,I$  and  $j=1,\ldots,10$ . Let  $c_j$  denote the cost of route j, for  $j=1,\ldots,10$ .

minimize 
$$\sum_{j=1}^{10} c_j y_j$$
 subject to 
$$\sum_{j=1}^{10} x_{ij} y_j \geq 1, \text{ for } i=A,\dots,I$$
 
$$\sum_{j=1}^{10} y_j = 3$$
 
$$y_j \text{ binary, for } j=1,\dots,10$$

(b)

| Delivery |     |    |          |           | Yes-c        |      |          |                |             |     | <b>.</b>  |         | Right-Hand          |
|----------|-----|----|----------|-----------|--------------|------|----------|----------------|-------------|-----|-----------|---------|---------------------|
| Location | 1   | 2  | 3_       | 4         | 5            | 6    | 7        | 8              | _9_         | 10  | Total     |         | Side                |
| A        | 1   | 0  | 0        | 0         | 1            | 0    | 0        | 0              | 1           | 0   | 1         | ≥       | 1                   |
| В        | ٥   | 1  | 0        | 1         | 0            | 1    | 0        | 0              | 1           | 1   | 1         | ≥       | 1                   |
| c        | 0   | 0  | 1        | 1         | 0            | 0    | 1        | 0              | 1           | 0   | 1         | ≥       | 1                   |
| D        | Ιĭ  | 0  | 0        | 0         | 0            | 1    | 0        | 1              | 0           | 0   | 1         | ≥       | 1                   |
| E        | ò   | 0  | 1        | 1         | 0            | 1    | 0        | 0              | 0           | 0   | 1         | ≥       | 1                   |
| F        | ٥   | 1  | 0        | 0         | 1            | 0    | 0        | 0              | 0           | 0   | 1         | ≥       | 1                   |
| G        | ١ĭ  | ò  | 0        | 0         | 0            | 0    | 1        | 1              | 0           | 1   | 1         | ≥       | 1                   |
| н        | ò   | 0  | 1        | 0         | 1            | ō    | 0        | 0              | 0           | 1   | 1         | ≥       | 1                   |
| 7        | ŏ   | 4  | Ö        | 1         | Ô            | o.   | 1        | 0              | 0           | 0   | 1         | ≥       | 1                   |
| 0        | ľ   |    | 4        |           | 1            | 1    | 1        | 1              | 1           | 1   | 3         | =       | 3                   |
| 3 routes | 1   | !_ | <u> </u> | <u></u> - | <del>-</del> |      | <u> </u> | <del>_</del> - | ÷           | 6   | \$ 1235   |         |                     |
| Cost     | 6   | 4  | 7        |           | 4            | - 6  | 5        | 3<br>          | MADE 12 6 7 | 0.  | Sel LANGE | Bally . | SECONOMINA PROPERTY |
| Solution | . 0 | 0  | 1.0      | 2. 1m     | ~1.          | 1 0. | 0.1      | 器人名            | 0.          | 0.5 | i         |         |                     |

### 11.4-7.

$$x_{ij} = \begin{cases} 1 & \text{if tract } j \text{ is assigned to station located in tract } i, \\ 0 & \text{otherwise} \end{cases}$$

Let  $a_{ij}$  be the response time to a fire in tract j if that tract is served by a station located in tract i.

$$\min \quad 2\sum_{i=1}^{5} a_{i1}x_{i1} + \sum_{i=1}^{5} a_{i2}x_{i2} + 3\sum_{i=1}^{5} a_{i3}x_{i3} + \sum_{i=1}^{5} a_{i4}x_{i4} + 3\sum_{i=1}^{5} a_{i5}x_{i5}$$

st 
$$\sum_{i=1}^{5} x_{ii} = 2$$

(1) Two fire stations have to be located.

$$\sum_{i=1}^{5} x_{ij} = 1$$
, for  $j = 1, \dots, 5$ 

(2) Each tract needs to be assigned to a

station.

 $x_{ij} \le x_{ii}$ , for i = 1, ..., 5 and j = 1, ..., 5 (3) Tract j can be assigned to the station tract i only if there is a station located in tract i.

$$x_{ij}$$
 binary

(1) and (2) correspond to mutually exclusive alternatives and (3) represent contingent decisions.

### 11.4-8.

$$x_i = \begin{cases} 1 & \text{if a station is located in tract } i, \\ 0 & \text{otherwise} \end{cases}$$
 
$$\min \text{minimize} \qquad 300x_1 + 350x_2 + 600x_3 + 450x_4 + 700x_5$$
 
$$\text{subject to} \qquad x_1 + x_5 \geq 1$$
 
$$x_1 + x_2 \geq 1$$
 
$$x_3 \geq 1$$
 
$$x_2 + x_4 + x_5 \geq 1$$

 $x_3 + x_4 + x_5 \ge 1$ 

(b) Yes, this is a set covering problem. The activities are locating stations and the characteristics are the fires.  $S_i$  is the set of all locations that could cover a fire in tract i, e.g.,  $S_1 = \{1, 5\}$ . There has to be at least one station, so  $\sum_{j \in S_i} x_j \ge 1$  for all i.

(c) Solution:  $x_1 = x_2 = x_3 = 1$ , Z = \$1,250 thousand

 $x_i$  binary

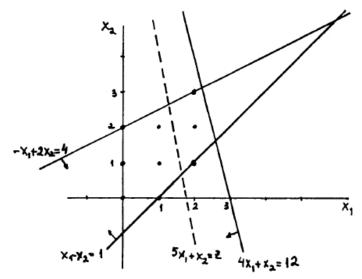
### 11.4-9.

$$x_j = \begin{cases} 1 & \text{if district } j \text{ is chosen,} \\ 0 & \text{otherwise} \end{cases}$$

Let  $y_j$  be auxiliary variables that are zero for all j, except for the index of the district with largest  $c_j$  that is chosen,  $y_j$  is 1.

minimize 
$$\sum_{j=1}^N c_j y_j$$
 subject to 
$$\sum_{j=1}^N y_j = 1$$
 
$$\sum_{j=1}^N c_j y_j \geq c_i x_i \text{, for } i=1,\dots,N$$
 
$$\sum_{j=1}^N x_j = R$$
 
$$\sum_{j=1}^N a_{ij} x_j = 1 \text{, for } i=1,\dots,D$$
 
$$x_j, y_j \text{ binary}$$

This is a set partitioning problem with additional constraints.


### 11.5-1.

This study uses integer programming to model employee scheduling problem of Taco Bell restaurants. In this integer program, the decision variables correspond to the number of employees scheduled to start working at time t and to work for s time units. The objective is to minimize the total payroll for the scheduling horizon. At any point in time, the labor requirements in each store have to be met. The total number of employees is bounded above. Without the upper bound, the problem could be solved efficiently as a network flow problem using out-of-kilter algorithms, so the upper bound is eliminated from the constraint set by using generalized Lagrange multipliers.

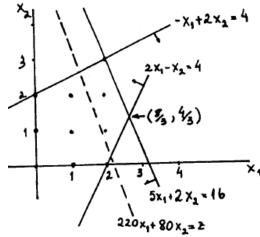
The new scheduling approach increased labor cost savings significantly. Additional benefits include enhanced flexibility, elimination of variability among stores, improved customer service and quality. Mathematical modeling served as a rational basis for the evaluation of new ideas, buildings, equipment and menu items. It also allowed Taco Bell to eliminate redundant tasks and to schedule balanced workloads. Consequently, productivity is improved and Taco Bell saved \$13 million each year in labor costs.

# 11.5-2.

(a) The dots represent the feasible solutions in the graph below.



Optimal Solution:  $(x_1, x_2) = (2, 3), Z = 5x_1 + x_2 = 13$ 


(b) The optimal solution of the LP relaxation is  $(x_1, x_2) = (2.6, 1.6), Z = 14.6$ . The nearest integer point is  $(x_1, x_2) = (3, 2)$ , which is not feasible, since  $4 \cdot 3 + 2 > 12$ .

| Rounded Solutions | Violated Constraints | Z  |
|-------------------|----------------------|----|
| (3,2)             | 3rd                  | _  |
| (3,1)             | 2nd and 3rd          | _  |
| (2,2)             | none                 | 12 |
| (2,1)             | none                 | 11 |

Hence, none of the feasible rounded solutions is optimal for the IP problem.

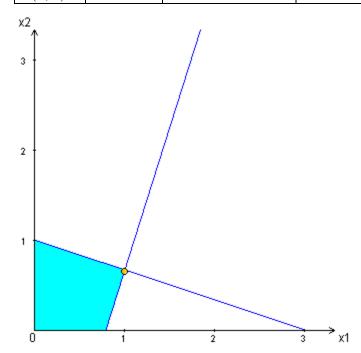
# 11.5-3.

(a) The dots represent the feasible solutions in the graph below.



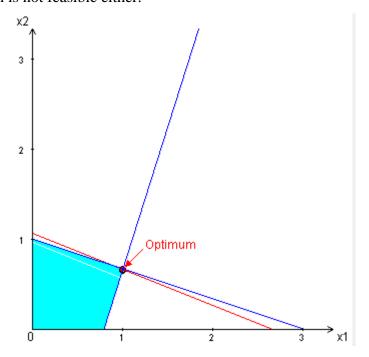
Optimal Solution:  $(x_1, x_2) = (2, 3), Z = 220x_1 + 80x_2 = 680$ 

(b) The optimal solution of the LP relaxation is  $(x_1, x_2) = (8/3, 4/3), Z = 2080/3$ . The nearest integer point is  $(x_1, x_2) = (3, 1)$ , which is not feasible, since  $5 \cdot 3 + 2 \cdot 1 > 16$ .


| Rounded Solutions | Violated Constraints | Z   |
|-------------------|----------------------|-----|
| (3, 2)            | 2nd                  | _   |
| (3,1)             | 2nd and 3rd          | _   |
| (2,2)             | none                 | 600 |
| (2,1)             | none                 | 520 |

Hence, none of the feasible rounded solutions is optimal for the IP problem.

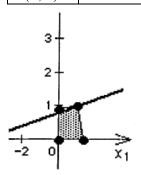
# 11.5-4.


(a)

| Solution | Feasible? | $P = 10x_1 + 25x_2$ | Optimal? |
|----------|-----------|---------------------|----------|
| (0,0)    | Yes       | 0                   | No       |
| (1,0)    | No        |                     |          |
| (0,1)    | Yes       | 25                  | Yes      |
| (1,1)    | No        |                     |          |

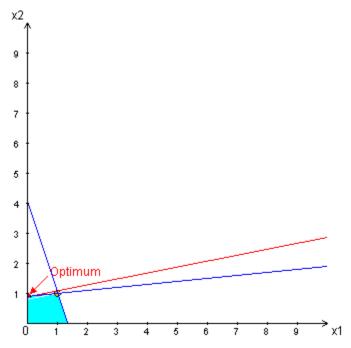


Optimal Solution:  $(x_1, x_2) = (0, 1)$ 


(b) The optimal solution of the LP relaxation is  $(x_1, x_2) = (1, 0.667)$ . The nearest integer point is  $(x_1, x_2) = (1, 1)$ , which is not feasible. The other rounded solution is (1, 0), which is not feasible either.



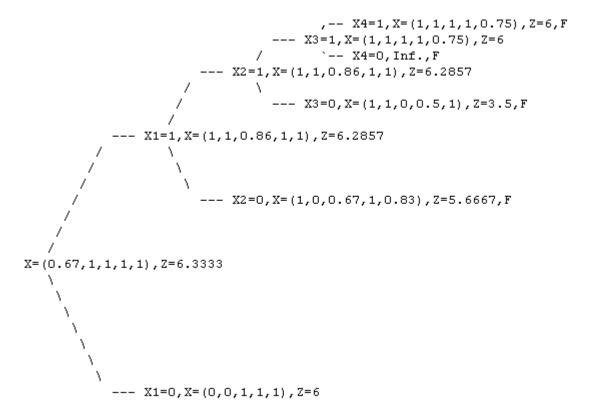
11.5-5.


(a)

| Solution | Feasible? | $P = -5x_1 + 25x_2$ | Optimal? |
|----------|-----------|---------------------|----------|
| (0,0)    | Yes       | 0                   | No       |
| (1,0)    | Yes       | -5                  | No       |
| (0,1)    | No        |                     |          |
| (1,1)    | Yes       | 20                  | Yes      |

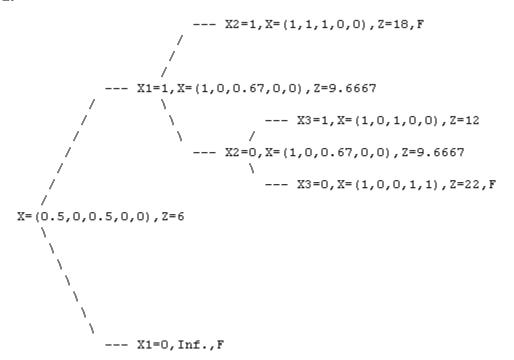


Optimal Solution:  $(x_1, x_2) = (1, 1)$ 


(b) The optimal solution of the LP relaxation is  $(x_1, x_2) = (0, 0.9)$ . The nearest integer point is  $(x_1, x_2) = (0, 1)$ , which is not feasible. The other rounded solution is (0, 0), which is feasible, but not optimal.

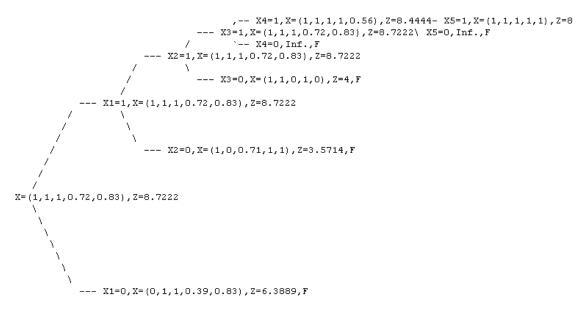


11.5-6.


- (a) TRUE, Sec. 11.5, 4th paragraph, p. 501.
- (b) TRUE, Sec. 11.5, 9th paragraph, p. 502.
- (c) FALSE, the result need not be feasible, see Fig. 11.2 for a counterexample, p. 503. Sec. 11.5, 11th paragraph explains this pitfall.

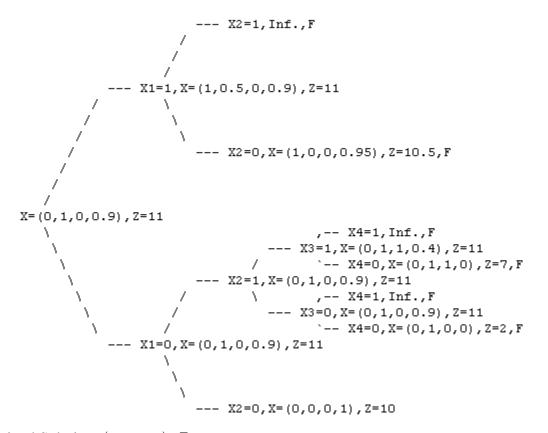
# 11.6-1.




Optimal Solution: (0, 0, 1, 1, 1), Z = 6

# 11.6-2.




Optimal Solution: (1, 0, 1, 0, 0), Z = 12

# 11.6-3.



Optimal Solution: (1, 1, 1, 1, 1), Z = 8

# 11.6-4.



Optimal Solution: (0, 0, 0, 1), Z = 10

### 11.6-5.

```
Optimal Solution:

(X1, X2, X3, X4, X5) = (1, 1, 1, 0, 0)

Z = 1250
```

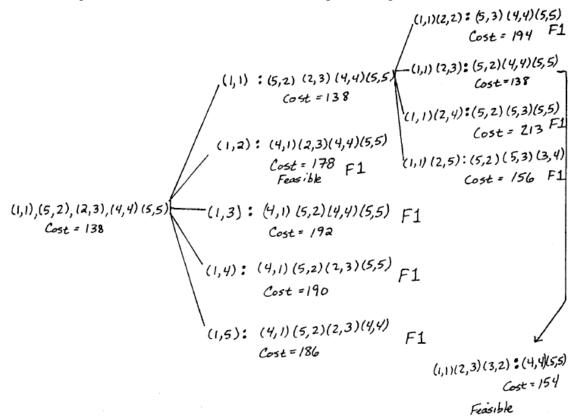
### 11.6-6.

- (a) FALSE. The feasible region for the IP problem is a subset of the feasible region for the LP relaxation. It is called a relaxation because it relaxes the feasible region.
- (b) TRUE. If the optimal solution for the LP relaxation is integer, then it is feasible for the IP problem and since the solution for the latter cannot be better than the solution for the former, it has to be optimal.
- (c) FALSE. Figure 11.2 is a counterexample for this statement.

#### 11.6-7.

(a) <u>Initialization</u>: Set  $Z^* = +\infty$ . Apply the bounding and fathoming steps and the optimality test as described below for the whole problem. If the whole problem is not fathomed, then it becomes the initial subproblem for the first iteration below.

### Iteration:


- 1. Branching: Choose the most recently created unfathomed subproblem (in case of a tie, select the one with the smallest bound). Among the assignees not yet assigned for the current subproblem, choose the first one in the natural ordering to be the branching variable. Subproblems correspond to each of the possible remaining assignments for the branching assignee. Form a subproblem for each remaining assignment by deleting the constraint that each of the unassigned assignees must perform exactly one assignment.
- 2. Bounding: For each new subproblem, obtain its bound by choosing the cheapest assignee for each remaining assignment and totaling the costs.
- 3. Fathoming: For each new subproblem, apply the two fathoming tests:

```
Test 1. bound > Z^*
```

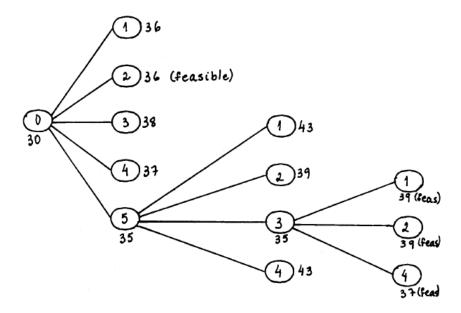
Test 2. The optimal solution for its relaxation is a feasible assignment (If this solution is better than the incumbent, it becomes the new incumbent and Test 1 is reapplied to all unfathomed subproblems with the new smaller  $Z^*$ ).

Optimality Test: Identical to the one given in the text.

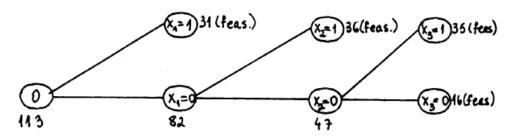
(b) Matchings are indicated with the notation (assignee, assignment).



Optimal matching: (1, 1), (2, 3), (3, 2), (4, 4), (5, 5), with total cost 154.


# 11.6-8.

(a) Branch Step: Use the best bound rule.


Bound Step: Given a partial sequencing  $J_1, \ldots, J_k$  of the first k jobs, a lower bound on the time for the setup of the remaining 5-k jobs is found by adding the minimum elements of the columns corresponding to the remaining jobs, excluding those elements in rows "None",  $J_1, J_2, \ldots, J_{k-1}$ .

<u>Fathoming Step:</u> see the summary of the Branch-and-Bound technique in Sec. 11.6.

(b) The optimal sequence is 2 - 1 - 4 - 5 - 3, with a total setup time of 36.



# 11.6-9.



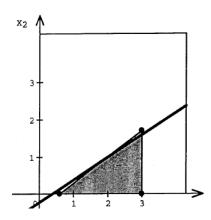
Optimal Solution:  $(x_1, x_2, x_3, x_4) = (0, 1, 1, 0), Z^* = 36$ 

### 11.6-10.

(a) The only constraints of the Lagrangian relaxation are nonnegativity and integrality. Since  $\mathbf{x}$  is feasible for an MIP problem, it already satisfies these constraints, so it is feasible for the corresponding Lagrangian relaxation.

(b)  $\mathbf{x}^*$  is feasible for an MIP problem, so from (a), it has to be feasible for its Lagrangian relaxation. Also,  $A\mathbf{x}^* \leq b$  and  $\lambda \geq 0$ , so  $Z_R^* \geq c\mathbf{x}^* - \lambda(A\mathbf{x}^* - b) \geq c\mathbf{x}^* = Z$ .

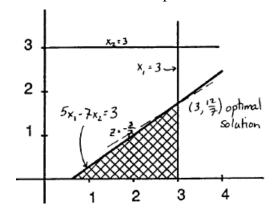
### 11.7-1.


Prior to this study, Waste Management, Inc. (WM) encountered several operational inefficiencies concerning the routing of its trucks. The routes served by different trucks had overlaps and route planners or drivers determined in what order they were going to visit the stops. The result was inefficient sequences and communication gaps between customers and customer-service personnel. The problem is formulated as a mixed integer program, or more specifically as a vehicle routing problem with time windows. The goal is to obtain routes with minimum number of vehicles and travel time, maximum visual attractiveness and a balanced workload. First, a network with nodes that represent actual stops, landfills, lunch break and the depot is constructed. The binary variables  $x_{ijk}$  refer to whether arc (i,j) is included in the route of vehicle k or not. The integer variables  $N_k$ denote the number of disposal trips and the continuous variables  $w_{ik}$  correspond to the beginning time of service for node i by vehicle k. The objective function to be minimized is the total travel time. The constraints make sure that each stop is served by exactly one truck, each truck starts at the depot, the amount of garbage at the stops does not exceed the vehicle capacity and each route includes a lunch break. An iterative two-phase algorithm enhanced with metaheuristics is employed to solve the problem.

Financial benefits of this study include savings of approximately \$18 million in 2003 and estimated savings of \$44 million in 2004. WM expects to save more and to increase its cash flow by \$648 million over a five-year interval. The savings in operational costs over five years is expected to be \$498 million. By using mathematical modeling, WM now generates more efficient routes with minimal overlaps, a reduced number of vehicles and cost-effective sequences. All these contribute to the decrease in operational costs. At the same time, centralized routing made communication in the organization and with the customers easier. Customer-service personnel can now address customer problems more quickly, since they know the routes of the vehicles. As a result, WM provides a more reliable customer service. Operational efficiency also affected the environment and the employees positively. Emissions and noise are reduced. Finally, the benefits from this study led WM to exploit operations research techniques in other operational areas, too.

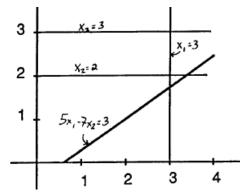
### 11.7-2.

(a)


| Corner Points | Z      |
|---------------|--------|
| (3, 1.7143)   | -0.429 |
| (0.6,0)       | -1.8   |
| (3,0)         | -9     |

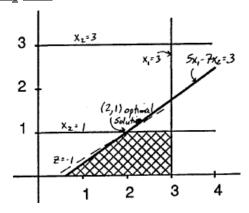


Optimal solution for the LP relaxation: (3, 1.7143) with  $Z^{*} = -0.429$ 


Optimal integer solution: (2,1) with  $Z^*=-1$ 

(b) LP relaxation of the entire problem:




Optimal Solution:  $(x_1, x_2) = (3, 12/7), Z = -3/7$ 

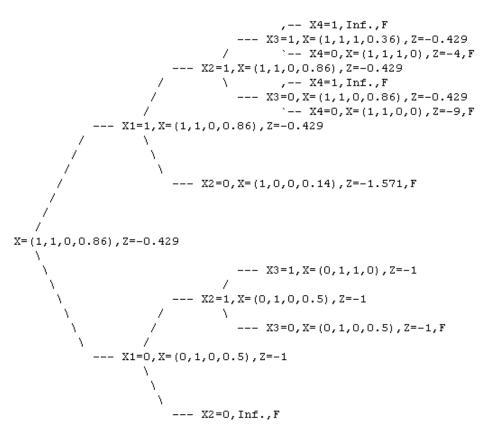
Branch  $x_2 > 2$ :



This subproblem is infeasible, so the branch is fathomed.

Branch  $x_2 \leq 1$ :

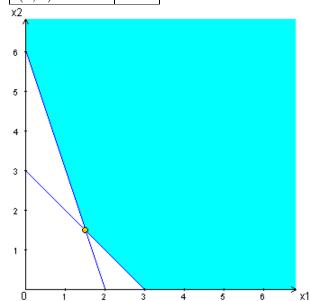



Optimal Solution:  $(x_1, x_2) = (2, 1), Z = -1$ , feasible for the original problem

Hence, the optimal solution for the original problem is  $(x_1, x_2) = (2, 1)$  with Z = -1.

(c) Let 
$$x_1 = y_{11} + 2y_{12}$$
 and  $x_2 = y_{21} + 2y_{22}$ .

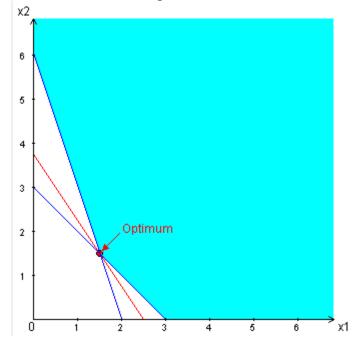
maximize 
$$Z = -3y_{11} - 6y_{12} + 5y_{21} + 10y_{22}$$
  
subject to  $5y_{11} + 10y_{12} - 7y_{21} - 14y_{22} \ge 3$   
 $y_{11}, y_{12}, y_{21}, y_{22}$  binary


(d) Optimal Solution:  $(y_{11}, y_{12}, y_{21}, y_{22}) = (0, 1, 1, 0), Z = -1$ , so  $x_1 = 2$  and  $x_2 = 1$  as in (a).



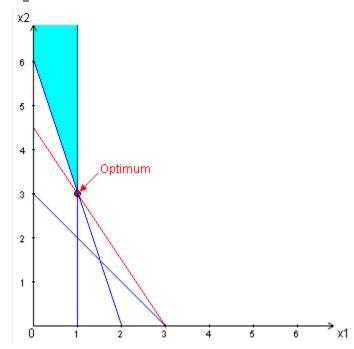
# 11.7-3.

(a)

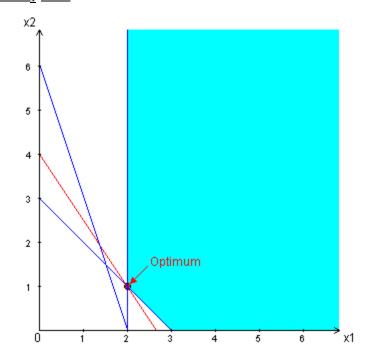

| Corner Points | Z    |
|---------------|------|
| (1.5, 1.5)    | 37.5 |
| (0,6)         | 60   |
| (3,0)         | 45   |



Optimal solution for the LP relaxation: (1.5, 1.5) with  $Z^{\ast}=37.5$ 


Optimal integer solution: (2,1) with  $Z^*=40$ 

(b) LP relaxation of the entire problem:




Optimal Solution:  $(x_1, x_2) = (1.5, 1.5), Z = 37.5$ 

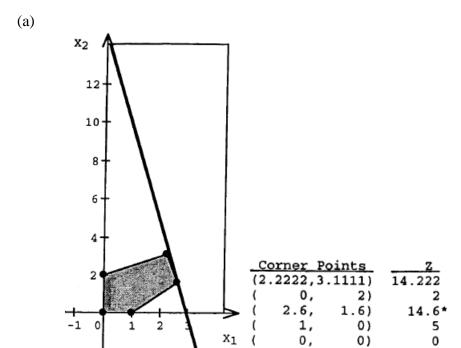
# Branch $x_1 \le 1$ :



Optimal Solution:  $(x_1, x_2) = (1, 2)$ , Z = 45, feasible for the original problem Branch  $x_1 \ge 2$ :



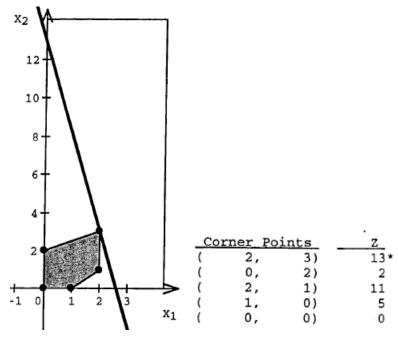

Optimal Solution:  $(x_1, x_2) = (2, 1), Z = 40$ 


Hence, the optimal solution for the original problem is  $(x_1, x_2) = (2, 1)$  with Z = 40.

(c) Let 
$$x_1=y_{11}+2y_{12}$$
 and  $x_2=y_{21}+2y_{22}$ . minimize  $Z=15y_{11}+30y_{12}+10y_{21}+20y_{22}$  subject to  $15y_{11}+30y_{12}+5y_{21}+10y_{22}\geq 30$   $10y_{11}+20y_{12}+10y_{21}+20y_{22}\geq 30$   $y_{11},y_{12},y_{21},y_{22}$  binary

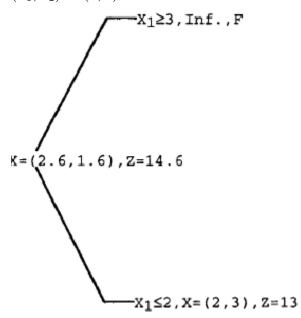
(d) Optimal Solution:  $(y_{11}, y_{12}, y_{21}, y_{22}) = (0, 1, 1, 0), Z = 40$ , so  $x_1 = 2$  and  $x_2 = 1$  as in part (a).




# 11.7-4.

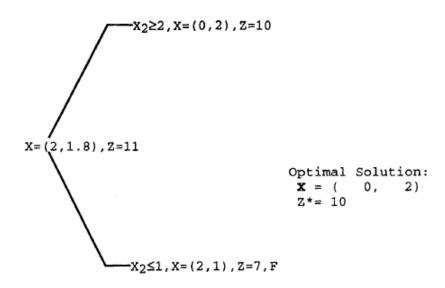


Optimal Solution:  $(x_1, x_2) = (2.6, 1.6), Z = 14.6$ 


Branch  $x_1 \ge 3$ : Infeasible

# Branch $x_1 \leq 2$ :




Optimal Solution:  $(x_1, x_2) = (2, 3)$ , Z = 13, feasible for the original problem Hence, the optimal solution for the original problem is  $(x_1, x_2) = (2, 3)$  with Z = 13.

(b) Optimal Solution:  $(x_1, x_2) = (2, 3), Z = 13$ 



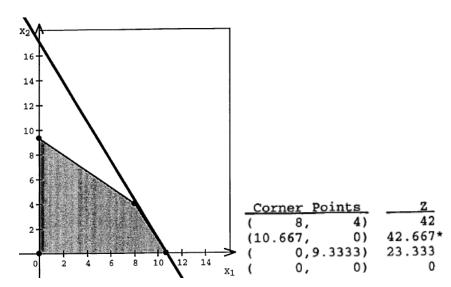
(c) Solution:  $(x_1, x_2) = (2, 3), Z = 13$ 

# 11.7-5.



11.7-6.

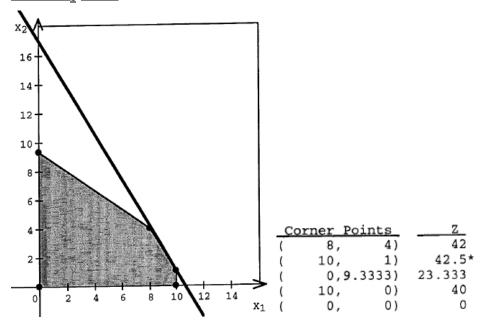



Optimal Solution:  $\mathbf{x} = (14, 0, 16), Z = 95.6.$ 

11.7-7.

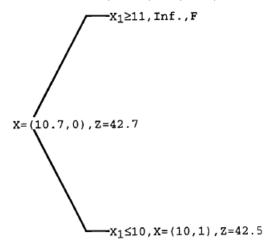
(a) Let  $x_i$  be the number of  $\frac{1}{4}$  units of product i to be produced, for i = 1, 2.

$$\begin{array}{ll} \text{maximize} & 4x_1+2.5x_2\\ \text{subject to} & \frac{3}{4}x_1+\frac{1}{2}x_2\leq 8\\ & \frac{1}{2}x_1+\frac{3}{4}x_2\leq 7\\ & x_1,x_2\geq 0 \text{ integers} \end{array}$$


(b)

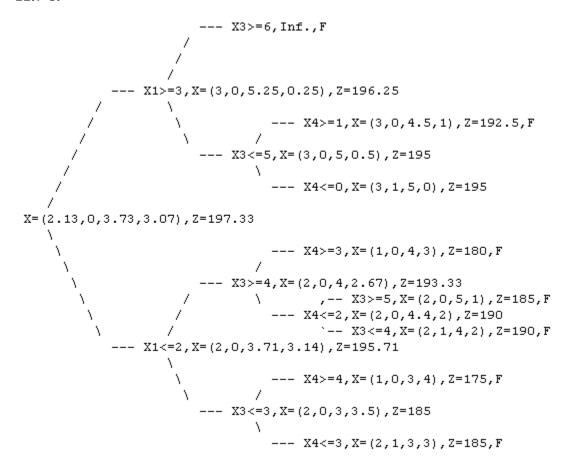


Optimal Solution:  $(x_1, x_2) = (10.667, 0), Z = 42.667$ 


(c) Branch  $x_1 > 11$ : Infeasible

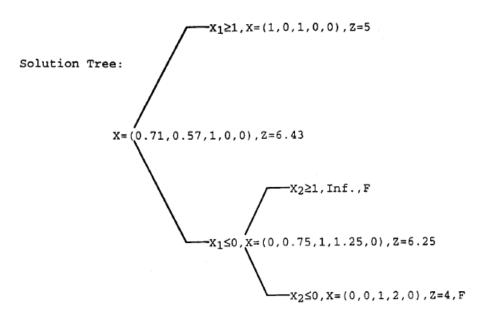
Branch 
$$x_1 \leq 10$$
:




Optimal Solution:  $(x_1, x_2) = (10, 1)$ , Z = 42.5, feasible for the original problem Hence, the optimal solution for the original problem is  $(x_1, x_2) = (10, 1)$  with Z = 42.5.

(d) Optimal Solution:  $(x_1, x_2) = (10, 1), Z = 42.5$ 




(e) Solution:  $(x_1, x_2) = (10, 1), Z = 42.5$ 

# 11.7-8.



Optimal Solution:  $\mathbf{x} = (3, 1, 5, 0), Z = 195$ 

# 11.7-9.



Optimal Solution:  $\mathbf{x} = (1, 0, 1, 0, 0), Z = 5$ 

# 11.7-10.

Solution Tree:



Optimal Solution:  $\mathbf{x} = (1, 0, 1, 0, 2)$  and  $\mathbf{x} = (2, 2, 0, 0, 0)$ , Z = 12

# 11.8-1.

(a) 
$$x_1 = 0, x_3 = 0$$

(b) 
$$x_1 = 0$$

(c) 
$$x_1 = 1, x_3 = 1$$

### 11.8-2.

(a) 
$$x_1 = 0$$

(b) 
$$x_1 = 1, x_2 = 0$$

(c) 
$$x_1 = 0, x_2 = 1$$

### 11.8-3.

From the first equation,  $x_3 = 0$ . Then, this equation becomes redundant. From the third equation,  $x_5 = 0$  and  $x_6 = 1$ . Now, this equation is redundant, too. Since  $x_6 = 1$ , from the second equation,  $x_2 = x_4 = 0$  and this equation becomes redundant. Finally, the fourth equation reduces to  $x_1 = 0$ . Consequently, all equations become redundant. The solution is then fixed to  $(0, 0, 0, 0, 0, 1, x_7)$ .

### 11.8-4.

- (a) Redundant. Even if all the variables are set to their upper bounds,  $x_i = 1, 2 + 1 + 2 \le 5$ .
- (b) Not redundant. For example, (1, 0, 1) violates this constraint.
- (c) Not redundant. For example (0.0.0) violates this constraint.
- (d) Redundant. The least value of  $3x_1 x_2 2x_3$  is attained by (0, 1, 1) and it is -3, so the constraint is still satisfied.

### 11.8-5.

$$4x_1 - 3x_2 + x_3 + 2x_4 \le 5$$

$$b = 5, S = 7, S < b + |a_1| \Rightarrow \overline{a}_1 = S - b = 2, \overline{b} = S - a_1 = 3$$

$$\Rightarrow 2x_1 - 3x_2 + x_3 + 2x_4 \le 3$$

$$b = 3, S = 5, S < b + |a_2| \Rightarrow \overline{a}_2 = b - S = -2$$

$$\Rightarrow 2x_1 - 2x_2 + x_3 + 2x_4 \le 3$$

$$b = 3, S = 5, S \ge b + |a_j| \text{ for } j = 1, 2, 3, 4$$

### 11.8-6.

$$5x_1 - 10x_2 + 15x_3 \le 15$$

$$b = 15, S = 20, S < b + |a_2| \Rightarrow \overline{a}_2 = b - S = -5$$

$$\Rightarrow 5x_1 - 5x_2 + 15x_3 \le 15$$

$$b = 15, S = 20, S < b + |a_3| \Rightarrow \overline{a}_3 = S - b = 5, \overline{b} = S - a_3 = 5$$

$$\Rightarrow 5x_1 - 5x_2 + 5x_3 \le 5$$

$$b = 5, S = 10, S \ge b + |a_j| \text{ for } j = 1, 2, 3$$

# 11.8-7.

$$\begin{array}{c} x_1 - x_2 + 3x_3 + 4x_4 \geq 1 \\ \Leftrightarrow \quad -x_1 + x_2 - 3x_3 - 4x_4 \leq -1 \\ b = -1, S = 1, S < b + |a_3| \Rightarrow \overline{a}_3 = b - S = -2 \\ \Rightarrow \quad -x_1 + x_2 - 2x_3 - 4x_4 \leq -1 \\ b = -1, S = 1, S < b + |a_4| \Rightarrow \overline{a}_4 = b - S = -2 \\ \Rightarrow \quad -x_1 + x_2 - 2x_3 - 2x_4 \leq -1 \\ b = -1, S = 1, S \geq b + |a_j| \text{ for } j = 1, 2, 3, 4 \end{array}$$

# 11.8-8.

(a) 
$$x_1 + 3x_2 - 4x_3 \le 2$$
  
 $b = 2, S = 4, S < b + |a_2| \Rightarrow \overline{a}_2 = S - b = 2, \overline{b} = S - a_2 = 1$   
 $\Rightarrow x_1 + 2x_2 - 4x_3 \le 1$   
 $b = 1, S = 3, S < b + |a_3| \Rightarrow \overline{a}_3 = b - S = -2$   
 $\Rightarrow x_1 + 2x_2 - 2x_3 \le 1$   
 $b = 1, S = 3, S \ge b + |a_j| \text{ for } j = 1, 2, 3$   
(b)  $3x_1 - x_2 + 4x_3 \ge 1$   
 $\Rightarrow -3x_1 + x_2 - 4x_3 \le -1$   
 $b = -1, S = 1, S < b + |a_1| \Rightarrow \overline{a}_1 = b - S = -2$   
 $\Rightarrow -2x_1 + x_2 - 4x_3 \le -1$ 

$$b = -1, S = 1, S < b + |a_3| \Rightarrow \overline{a}_3 = b - S = -2$$
  
 $\Rightarrow -2x_1 + x_2 - 2x_3 \le -1$   
 $b = -1, S = 1, S \ge b + |a_j|$  for  $j = 1, 2, 3$ 

### 11.8-9.

The minimum cover for the constraint  $2x_1 + 3x_2 \le 4$  is  $\{x_1, x_2\}$ , so the resulting cutting plane is  $x_1 + x_2 \le 1$ , which is the same constraint obtained using the tightening procedure.

### 11.8-10.

$$\{x_2, x_4\} \to x_2 + x_4 \le 1$$

$$\{x_3, x_4\} \to x_3 + x_4 \le 1$$

$$\{x_1, x_2, x_3\} \to x_1 + x_2 + x_3 \le 2$$

### 11.8-11.

$$\{x_1, x_2\} \to x_1 + x_2 \le 1$$

$$\{x_1, x_3\} \to x_1 + x_3 \le 1$$

$$\{x_2, x_3, x_4\} \rightarrow x_2 + x_3 + x_4 \le 2$$

### 11.8-12.

$$\{x_1, x_4\} \rightarrow x_1 + x_4 \le 1$$

$$\{x_2, x_4\} \to x_2 + x_4 \le 1$$

$$\{x_3, x_4\} \rightarrow x_3 + x_4 < 1$$

$$\{x_1, x_2, x_3\} \to x_1 + x_2 + x_3 \le 2$$

### 11.8-13.

$$\{x_1, x_3\} \rightarrow x_1 + x_3 \le 1$$

$$\{x_1, x_5\} \rightarrow x_1 + x_5 < 1$$

$$\{x_2, x_3\} \rightarrow x_2 + x_3 < 1$$

$$\{x_3, x_4\} \rightarrow x_3 + x_4 < 1$$

$$\{x_3, x_5\} \rightarrow x_3 + x_5 \le 1$$

$$\{x_4, x_5\} \rightarrow x_4 + x_5 \le 1$$

$$\{x_1, x_2, x_4\} \rightarrow x_1 + x_2 + x_4 \le 2$$

# 11.8-14.

(1) 
$$3x_2 + x_4 + x_5 \ge 3 \Rightarrow x_2 = 1$$

(2) 
$$x_1 + x_2 \le 1$$
 and  $x_2 = 1 \Rightarrow x_1 = 0$ 

(3) 
$$x_2 + x_4 - x_5 - x_6 \le -1$$
 and  $x_2 = 1 \Rightarrow x_4 = 0, x_5 = x_6 = 1$ 

(4) 
$$x_2 + 2x_6 + 3x_7 + x_8 + 2x_9 \ge 4$$
 and  $x_2 = x_6 = 1$ 

$$\Rightarrow 3x_7 + x_8 + 2x_9 \ge 1 \Rightarrow x_7 + x_8 + x_9 \ge 1$$

$$(5) -x_3 + 2x_5 + x_6 + 2x_7 - 2x_8 + x_9 \le 5 \text{ and } x_5 = x_6 = 1$$

$$\Rightarrow -x_3 + 2x_7 - 2x_8 + x_9 \le 2 \Rightarrow -x_3 + x_7 - x_8 + x_9 \le 1$$

Hence, the problem is reduced to finding binary variables  $x_3, x_7, x_8, x_9$  that

maximize 
$$x_3 + 2x_7 + x_8 + 3x_9$$
  
subject to  $x_7 + x_8 + x_9 \ge 1$   
 $-x_3 + x_7 - x_8 + x_9 \le 1$ .

The objective is maximized when all variables with positive coefficients are set to their upper bounds, so when  $x_3 = x_7 = x_8 = x_9 = 1$ . This solution also satisfies the constraints, so it is optimal.

Optimal Solution:  $\mathbf{x} = (0, 1, 1, 0, 1, 1, 1, 1, 1), Z = 15$ 

### 11.9-1.

Since the variables  $x_1, x_2, x_3$  take values from the set  $\{2, 3, 4\}$  and all the variables must have different values,  $x_4 = 1$ . There are two feasible solutions, (2, 4, 3, 1) and (3, 2, 4, 1). Their objective function values are Z = 290 and Z = 280 respectively, so (2, 4, 3, 1) is optimal.

### 11.9-2.

 $\underline{x_1 = 12}$ :  $x_4 = 6$ ,  $x_2 = 3$ , and  $x_3 = 9$ , but 12 + 9 + 6 > 25, so this is not feasible.

 $\underline{x_1} = \underline{6}$ :  $x_2 = 3$ ,  $x_4 = 12$ , and  $x_3 = 9$ , 6 + 9 + 12 > 25, so this is not feasible.

 $\underline{x_1} = 3$ :  $x_2 = 6$ ,  $x_4 = 12$ , and  $x_3 = 9$ ,  $3 + 9 + 12 \le 25$ , so this is feasible. There are two feasible solutions, (3, 6, 9, 12, 15) with Z = 138 and (3, 6, 9, 12, 18) with Z = 99. Hence, (3, 6, 9, 12, 15) is optimal.

### 11.9-3.

 $\underline{x_1} = 25$ :  $x_4 = 20$  and  $x_3 = 30$ , but 25 + 30 > 55, so this is not feasible.

 $\underline{x_1} = 30$ :  $x_3 \in \{20, 25\}$ , but 30 + 25 > 55, so  $x_3 = 20$  and  $x_4 = 25$ . There are two feasible solutions, (30, 35, 20, 25) with Z = 11825 and (30, 40, 20, 25) with Z = 11950, so (30, 40, 20, 25) is optimal.

### 11.9-4.

Let  $y_i$  denote the task to which the assignee i is assigned.

$$\begin{array}{ll} \text{minimize} & z_1+z_2+z_3+z_4\\ \text{subject to} & \text{element}(y_1,[13,16,12,11],z_1)\\ & \text{element}(y_2,[15,\mathbf{M},13,20],z_2)\\ & \text{element}(y_3,[5,7,10,6],z_3)\\ & \text{element}(y_4,[0,0,0,0],z_4)\\ & \text{all-different}(y_1,y_2,y_3,y_4)\\ & y_i \in \{1,2,3,4\}, \text{ for } i=1,2,3,4 \end{array}$$

### 11.9-5.

Relabel Carl, Chris, David, Tony and Ken as assignee 1, 2, 3, 4, 5 respectively. Relabel Backstroke, Breaststroke, Butterfly, Freestyle and Dummy as tasks 1, 2, 3, 4, 5 respectively. Let  $y_i$  be the task to which assignee i is assigned.

```
minimize  z_1 + z_2 + z_3 + z_4 + z_5 \\ \text{subject to} \qquad \text{element}(y_1, [37.7, 43.4, 33.3, 29.2, 0], z_1) \\ \text{element}(y_2, [32.9, 33.1, 28.5, 26.4, 0], z_2) \\ \text{element}(y_3, [33.8, 42.2, 38.9, 29.6, 0], z_3) \\ \text{element}(y_4, [37.0, 34.7, 30.4, 28.5, 0], z_4) \\ \text{element}(y_5, [35.4, 41.8, 33.6, 31.1, 0], z_5) \\ \text{all-different}(y_1, y_2, y_3, y_4, y_5) \\ y_i \in \{1, 2, 3, 4, 5\}, \text{ for } i = 1, 2, 3, 4, 5
```

# 11.9-6.

Let  $y_i$  be the number of study days allocated to course i for i = 1, 2, 3, 4.

```
\begin{array}{ll} \text{minimize} & z_1+z_2+z_3+z_4\\ \text{subject to} & \text{element}(y_1,[1,3,6,8],z_1)\\ & \text{element}(y_2,[5,6,8,8],z_2)\\ & \text{element}(y_3,[4,6,7,9],z_3)\\ & \text{element}(y_4,[4,4,5,8],z_4)\\ & y_1+y_2+y_3+y_4\leq 7\\ & y_i\in\{1,2,3,4\}, \text{ for } i=1,2,3,4 \end{array}
```

### 11.9-7.

Let  $y_i$  be the number of crates allocated to store i for i = 1, 2, 3.

```
minimize  z_1 + z_2 + z_3 \\ \text{subject to} \\ \begin{aligned} z_1 + z_2 + z_3 \\ \text{element}(y_1 + 1, [0, 5, 9, 14, 17, 21], z_1) \\ \text{element}(y_2 + 1, [0, 6, 11, 15, 19, 22], z_2) \\ \text{element}(y_3 + 1, [0, 4, 9, 13, 18, 20], z_3) \\ y_1 + y_2 + y_3 \leq 5 \\ y_i \in \{0, 1, 2, 3, 4, 5\}, \text{ for } i = 1, 2, 3 \end{aligned}
```

# 11.9-8.

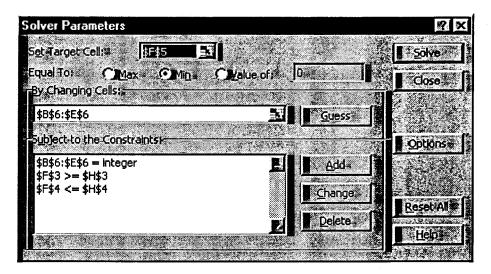
minimize 
$$Z=\sum\limits_{j=1}^n c_{x_jx_{j+1}}$$
 subject to  $x_j\in\{2,3,\ldots,n\},$  for  $j=2,3,\ldots,n$   $x_1=1$   $x_{n+1}=1$  all-different $(x_2,\ldots,x_n)$ 

# 11.10-1.

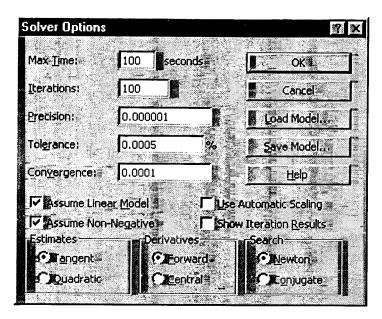
Answers will vary.

### 11.10-2.

Answers will vary.


# **Cases**

a) With this approach, we need to formulate an integer program for each month and optimize each month individually.

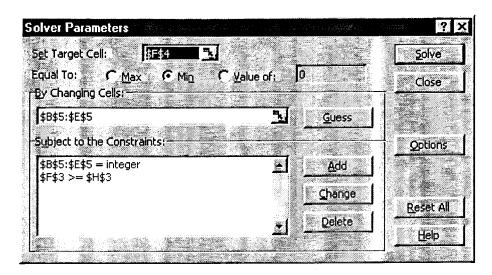

In the first month, Emily does not buy any servers since none of the departments implement the intranet in the first month. In the second month she must buy computers to ensure that the Sales Department can start the intranet. Emily can formulate her decision problem as an integer problem. Her objective is to minimize the purchase cost. She has to satisfy to constraints. She cannot spend more than \$9500 (she still has her entire budget for the first two months since she didn't buy any computers in the first month) and the computer(s) must support at least 60 employees. She solves her integer programming problem using the Excel solver.

|    | Α          | В                                              | С        | D                          | E       | F       | G  | Н      |
|----|------------|------------------------------------------------|----------|----------------------------|---------|---------|----|--------|
| 1  |            |                                                |          |                            |         |         |    |        |
| 2  | Server     | Std. PC                                        | Enh. PC  | SGI                        | Sun     | Totals  |    |        |
| 3  | Support    | 30                                             | 80       | 200                        | 2000    | 80      | >= | 60     |
| 4  | Capital m2 | \$2500                                         | \$5000   | \$9000                     | \$18750 | \$5000  | <= | \$9500 |
| 5  | Capital    | \$2500                                         | \$5000   | \$9000                     | \$18750 | \$5000. |    |        |
| 6  | Solution   | 0.                                             | 444      | 0.                         | 0       |         |    |        |
| 7  |            | ·                                              |          |                            |         |         |    |        |
| 8  |            | Formula in o                                   | cell F3: | "=SUMPRODUCT(B3:E3,B6:E6)" |         |         |    |        |
| 9  |            | Formula in o                                   | cell F4: | "=SUMPRODUCT(B4:E4,B6:E6)" |         |         |    |        |
| 10 |            | Formula in cell F5: "=SUMPRODUCT(B5:E5,B6:E6)" |          |                            |         |         |    |        |

The solver dialogue box looks as follows:



Emily uses the following options throughout her entire analysis of this case:




Notice that the price of the SGI server is 10 percent less than the actual price and the price of the Sun server is 25 percent less than the actual price because these two manufacturers offer discounts in the second month. Emily decides to buy one enhanced PC in the second month.

Note, that there is a second optimal solution to this integer programming problem. For the same amount of money Emily could buy two standard PC's that would also support 60 employees. However, since Emily knows that she needs to support more employees in the near future, she decides to buy the enhanced PC since it supports more users.

For the third month Emily needs to support 260 users. Since she has already computing power to support 80 users, she now needs to figure out how to support additional 180 users at minimum cost. She can disregard the constraint that the Manufacturing Department needs one of the three larger servers, since she already bought such a server in the previous month. Her task leads her to the following integer programming problem:

|   | Α        | В            | С        | D                          | Ε        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G  | Н       |
|---|----------|--------------|----------|----------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|
| 1 |          |              |          |                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | Support |
| 2 | Server   | Std. PC      | Enh. PC  | SGI                        | Sun      | Totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | Needed  |
| 3 | Support  | 30           | 80       | 200                        | 2000     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >= | 180     |
| 4 | Capital  | \$2,500      | \$5,000  | \$10,000                   | \$25,000 | \$10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |         |
| 5 | Solution | 0.           | 04       | 11                         | 0        | To the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th |    |         |
| 6 |          | -            |          |                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         |
| 7 |          |              |          |                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         |
| 8 |          | Formula in   | cell F3: | "=SUMPRODUCT(B3:E3,B6:E6)" |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         |
| 9 |          | Formula in o | cell F4: | "=SUMPRODUCT(B4:E4,B6:E6)" |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |         |



Emily decides to buy one SGI Workstation in month 3. The network is now able to support 280 users.

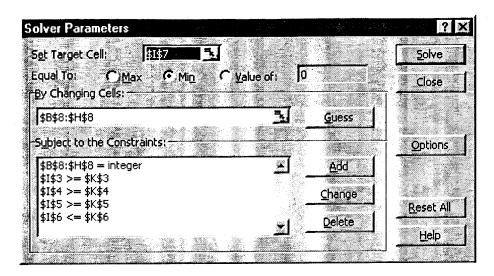
In the fourth month Emily needs to support a total of 290 users. Since she has already computing power to support 280 users, she now needs to figure out how to support additional 10 users at minimum cost. This task leads her to the following integer programming problem:

|   | Α        | В            | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                          | E                                | F  | G  | Н       |
|---|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|----|----|---------|
| 1 |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                  |    |    | Support |
| 2 | Server   | Std. PC      | Enh. PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SGI                        | SGI Sun                          |    |    | Needed  |
| 3 | Support  | 30           | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                        | 2000                             | 30 | >= | 10      |
| 4 | Capital  | \$2,500      | \$5,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$10,000                   | \$10,000 \$25,000 <b>\$2,500</b> |    |    |         |
| 5 | Solution | 1 1          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 -                        | * O -                            |    |    |         |
| 6 |          |              | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th |                            |                                  |    |    |         |
| 7 |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                  |    |    |         |
| 8 |          | Formula in o | cell F3:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | "=SUMPRODUCT(B3:E3,B6:E6)"       |    |    |         |
| 9 |          | Formula in o | cell F4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "=SUMPRODUCT(B4:E4,B6:E6)" |                                  |    |    |         |

The solver dialogue box appears just as in her previous problem. Emily decides to buy a standard PC in the fourth month. The network is now able to support 310 users.

Finally, in the fifth and last month Emily needs to support the entire company with a total of 365 users. Since she has already computing power to support 310 users, she now needs to figure out how to support additional 55 users at minimum cost. This task leads her to the following integer programming problem:

|   | Α        | В            | С        | D                          | Е        | F       | G  | Н       |
|---|----------|--------------|----------|----------------------------|----------|---------|----|---------|
| 1 |          |              |          |                            |          |         |    | Support |
| 2 | Server   | Std. PC      | Enh. PC  | SGI                        | Sun      | Totals  |    | Needed  |
| 3 | Support  | 30           | 80       | 200                        | 2000     | 80      | >= | 55      |
| 4 | Capital  | \$2,500      | \$5,000  | \$10,000                   | \$25,000 | \$5,000 |    |         |
| 5 | Solution | 0            | 1        | 0 🚉                        | 0        |         |    |         |
| 6 |          |              |          |                            |          |         |    |         |
| 7 |          |              |          |                            |          |         |    |         |
| 8 |          | Formula in o |          | "=SUMPRODUCT(B3:E3,B6:E6)" |          |         |    |         |
| 9 |          | Formula in o | cell F4: | "=SUMPRODUCT(B4:E4,B6:E6)" |          |         |    |         |


Again, the solver dialogue box has not changed. Emily decides to buy another enhanced PC in the fifth month. (Note that again she could have also bought two standard PC's, but clearly the enhanced PC provides more room for the workload of the system to grow.) The entire network of CommuniCorp consists now of 1 standard PC, 2 enhanced PC's and 1 SGI workstation and it is able to support 390 users. The total purchase cost for this network is \$22,500.

b) Emily realizes that she will not be able to buy a Sun workstation during the first and second month, since the cost of such a server exceeds her budget even after the 25% discount. However, she could buy any one of the other three servers during the first two months. Due to the budget restriction she faces in the first two months she needs to distinguish between the computers she buys in those early months and in the later months. Therefore, Emily introduces two variables for each of the first three servers but only one for the Sun workstation:

Std. PC m2 = number of standard PCs bought during the first two months Std. PC = number of standard PCs bought during the later three months Enh. PC m2 = number of enhanced PCs bought during the first two months Enh. PC = number of enhanced PCs bought during the later three months SGI m2 = number of SGI workstations bought during the first two months SGI = number of SGI workstations bought during the later three months Sun = number of Sun workstations bought during the later three months

Emily essentially faces four constraints. First, she must support the 60 users in the sales department in the second month. She realizes that, since she no longer buys the computers sequentially after the second month, that it suffices to include only the constraint on the network to support the all users in the entire company. This second constraint requires her to support a total of 365 users. The third constraint requires her to buy at least one of the three large servers. Finally, Emily has to make sure that she stays within her budget during the second month.

|    | Α           | В             | С        | D          | E          | F       | G        | Н        | ı        | J       | K      |
|----|-------------|---------------|----------|------------|------------|---------|----------|----------|----------|---------|--------|
| 1  |             |               |          |            |            |         |          |          |          | 1_1     |        |
| 2  | Server      | Stdd. PC m2   | Stdd. PC | Enh. PC m2 | Enh. PC    | SGI m2  | SGI      | Sun      | Totals   |         |        |
| 3  | Support m2  | 30            | 0        | 80         | 0          | 200     | 0        | 0        | 200      | >=      | 60     |
| 4  | Support     | 30            | 30       | 80         | 80         | 200     | 200      | 2000     | 400      | >=      | 365    |
| 5  | Large Comp. | 0             | 0        | 1          | 1          | 1       | 1        | 11       | 2        | >=      | 11     |
| 6  | Capital m2  | \$2500        | \$0      | \$5,000    | \$0        | \$9,000 | \$0      | \$0      | \$9000   | <=      | \$9500 |
| 7  | Capital     | \$2,500       | \$2,500  | \$5,000    | \$5,000    | \$9,000 | \$10,000 | \$25,000 | \$19,000 | Ř       |        |
| 8  | Solution    | 0             | ' O 💮    | 0 0        | O          | 1       | 1        | 0        |          |         |        |
| 9  |             |               |          |            |            |         | l        | l        |          |         |        |
| 10 |             |               |          |            |            |         |          |          |          |         |        |
| 11 |             | Formula for o | cell 13: | "=SUMPROD  | UCT(B3:H3, | B8:H8)" |          |          |          |         |        |
| 12 |             | Formula for o | cell I4: | "=SUMPROD  | UCT(B4:H4, | B8:H8)" |          |          |          | -       |        |
| 13 |             | Formula for o | cell 15: | "=SUMPROD  | UCT(B5:H5, | B8:H8)" |          |          |          | $\perp$ |        |
| 14 |             | Formula for o | cell 16: | "=SUMPROD  | UCT(B6:H6, | B8:H8)" |          | 1        |          | $\perp$ |        |
| 15 |             | Formula for o | cell 17: | "=SUMPROD  | UCT(B7:H7, | B8:H8)" |          |          |          |         |        |



Emily should purchase a discounted SGI workstation in the second month, and another regular priced one in the third month. The total purchase cost is \$19,000.

- c) Emily's second method in part (b) finds the cost for the best overall purchase policy. The method in part (a) only finds the best purchase policy for the given month, ignoring the fact that the decision in a particular month has an impact on later decisions. The method in (a) is very short-sighted and thus yields a worse result that the method in part (b).
- d) Installing the intranet will incur a number of other costs. These costs include:

# Training cost,

Labor cost for network installation,

Additional hardware cost for cabling, network interface cards, necessary hubs, etc., Salary and benefits for a network administrator and web master, Cost for establishing or outsourcing help desk support.

e) The intranet and the local area network are complete departures from the way business has been done in the past. The departments may therefore be concerned that the new technology will eliminate jobs. For example, in the past the manufacturing department has produced a greater number of pagers than customers have ordered. Fewer employees may be needed when the manufacturing department begins producing only enough pagers to meet orders. The departments may also become territorial about data and procedures, fearing that another department will encroach on their business. Finally, the departments may be concerned about the security of their data when sending it over the network.

We want to maximize the number of pieces displayed in the exhibit. For each piece, we therefore need to decide whether or not we should display the piece. Each piece becomes a binary decision variable. The decision variable is assigned 1 if we want to display the piece and assigned 0 if we do not want to display the piece.

We group our constraints into four categories – the artistic constraints imposed by Ash, the personal constraints imposed by Ash, the constraints imposed by Celeste, and the cost constraint. We now step through each of these constraint categories.

## Artistic Constraints Imposed by Ash

Ash imposes the following constraints that depend upon the type of art that is displayed. The constraints are as follows:

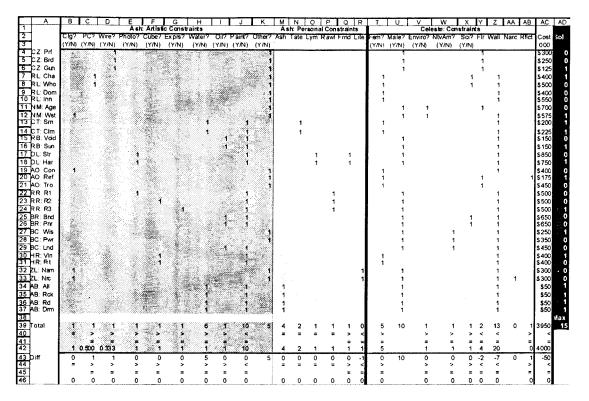
- 1. Ash wants to include only one collage. We have four collages available: "Wasted Resources" by Norm Marson, "Consumerism" by Angie Oldman, "My Namesake" by Ziggy Lite, and "Narcissism" by Ziggy Lite. This constraint forces us to include only one of these four pieces.
- 2. Ash wants at least one wire-mesh sculpture displayed if a computer-generated drawing is displayed. We have three wire-mesh sculptures available and two computer-generated drawings available. Thus, if we include either one or two computer-generated drawings, we have to include at least one wire-mesh sculpture.
- 3. Ash wants at least one computer-generated drawing displayed if a wire-mesh sculpture is displayed. We have two computer-generated drawings available and three wire-mesh sculptures available. Thus, if we include one, two, or three wire-mesh sculptures, we have to include either one or two computer-generated drawings.
- 4. Ash wants at least one photo-realistic painting displayed. We have three photo-realistic paintings available: "Storefront Window" by David Lyman, "Harley" by David Lyman, and "Rick" by Rick Rawls. At least one of these three paintings has to be displayed.
- 5. Ash wants at least one cubist painting displayed. We have three cubist paintings available: "Rick II" by Rick Rawls, "Study of a Violin" by Helen Row, and "Study of a Fruit Bowl" by Helen Row. At least one of these three paintings has to be displayed.
- 6. Ash wants at least one expressionist painting displayed. We have only one expressionist painting available: "Rick III" by Rick Rawls. This painting has to be displayed.
- 7. Ash wants at least one watercolor painting displayed. We have six watercolor paintings available: "Serenity" by Candy Tate, "Calm Before the Storm" by Candy Tate, "All That Glitters" by Ash Briggs, "The Rock" by Ash Briggs, "Winding Road" by Ash Briggs, and "Dreams Come True" by Ash Briggs. At least one of these six paintings has to be displayed.

- 8. Ash wants at least one oil painting displayed. We have five oil paintings available: "Void" by Robert Bayer, "Sun" by Robert Bayer, "Beyond" by Bill Reynolds, "Pioneers" by Bill Reynolds, and "Living Land" by Bear Canton. At least one of these five paintings has to be displayed.
- 9. Finally, Ash wants the number of paintings to be no greater than twice the number of other art forms. We have 18 paintings available and 16 other art forms available. We classify the following pieces as paintings: "Serenity," "Calm Before the Storm," "Void," "Sun," "Storefront Window," "Harley," "Rick," "Rick II," "Rick III," "Beyond," "Pioneers," "Living Land," "Study of a Violin," "Study of a Fruit Bowl," "All That Glitters," "The Rock," "Winding Road," and "Dreams Come True." The maximum number of these paintings that we display has to be less than or equal to twice the number of other art forms we display.

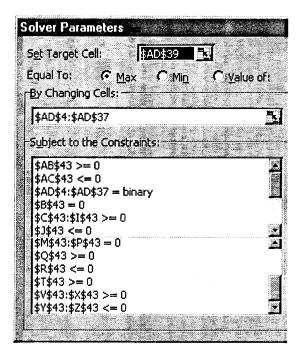
## Personal Constraints Imposed by Ash

- 1. Ash wants all of his own paintings included in the exhibit, so we must include "All That Glitters," "The Rock," "Winding Road," and "Dreams Come True."
- 2. Ash wants all of Candy Tate's work included in the exhibit, so we must include "Serenity" and "Calm Before the Storm."
- 3. Ash wants to include at least one piece from David Lyman, so we have to include one or more of the following pieces: "Storefront Window" and "Harley."
- 4. Ash wants to include at least one piece from Rick Rawls, so we have to include one or more of the following pieces: "Rick," "Rick II," and "Rick III."
- 5. Ash wants to display as many pieces from David Lyman as from Rick Rawls. Because the number of displayed pieces from David Lyman has to equal the number of displayed pieces from Rick Rawls and because David Lyman only has two pieces available, we can only display a maximum of two pieces from each of these artists.
- 6. Finally, Ash wants at most one piece from Ziggy Lite displayed. We can therefore include either none or one of the following pieces: "My Namesake" and "Narcissism."

### Constraints Imposed by Celeste


- 1. Celeste wants to include at least one piece from a female artist for every two pieces included from a male artist. We have 11 pieces by female artists available: "Chaos Reigns" by Rita Losky, "Who Has Control?" by Rita Losky, "Domestication" by Rita Losky, "Innocence" by Rita Losky, "Serenity" by Candy Tate, "Calm Before the Storm" by Candy Tate, "Consumerism" by Angie Oldman, "Reflection" by Angie Oldman, "Trojan Victory" by Angie Oldman, "Study of a Violin" by Helen Row, and "Study of a Fruit Bowl" by Helen Row. One or more of these pieces has to be displayed for every two pieces by male artists displayed.
- 2. Celeste wants either one or both of the pieces "Aging Earth" and "Wasted Resources" displayed.

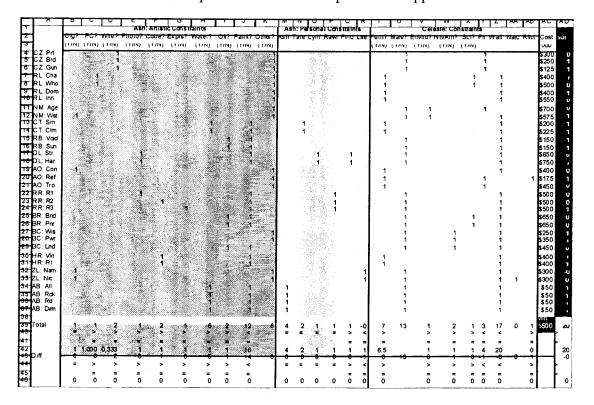
- 3. Celeste wants to include at least one piece by Bear Canton, so we must include one or more of the following pieces: "Wisdom," "Superior Powers," and "Living Land."
- 4. Celeste wants to include one or more of the following pieces: "Chaos Reigns," "Who Has Control," "Beyond," and "Pioneers."
- 5. Celeste knows that the museum only has enough floor space for four sculptures. We have six sculptures available: "Perfection" by Colin Zweibell, "Burden" by Colin Zweibell, "The Great Equalizer" by Colin Zweibell, "Aging Earth" by Norm Marson, "Reflection" by Angie Oldman, and "Trojan Victory" by Angie Oldman. We can only include a maximum of four of these six sculptures.
- 6. Celeste also knows that the museum only has enough wall space for 20 paintings, collages, and drawings. We have 28 paintings, collages, and drawings available: "Chaos Reigns," "Who Has Control," "Domestication," "Innocence," "Wasted Resources," "Serenity," "Calm Before the Storm," "Void," "Sun," "Storefront Window," "Harley," "Consumerism," "Rick," "Rick II," "Rick III," "Beyond," "Pioneers," "Wisdom," "Superior Powers," "Living Land," "Study of a Violin," "Study of a Fruit Bowl," "My Namesake," "Narcissism," "All That Glitters," "The Rock," "Winding Road," and "Dreams Come True." We can only include a maximum of 20 of these 28 wall pieces.
- 7. Finally, Celeste wants "Narcissism" displayed if "Reflection" is displayed. So if the decision variable for "Reflection" is 1, the decision variable for "Narcissism" must also be 1. However, the decision variable for "Narcissism" can still be 1 even if the decision variable for "Reflection" is 0.

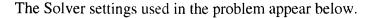

### Cost Constraint

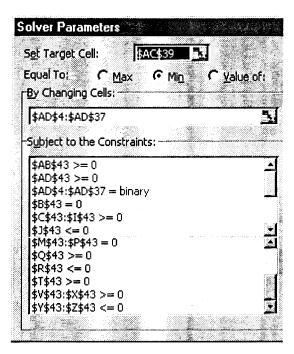
The cost of all of the pieces displayed has to be less than or equal to \$4 million.

The problem formulation in an Excel spreadsheet follows.




The Solver settings used in the problem are shown below.



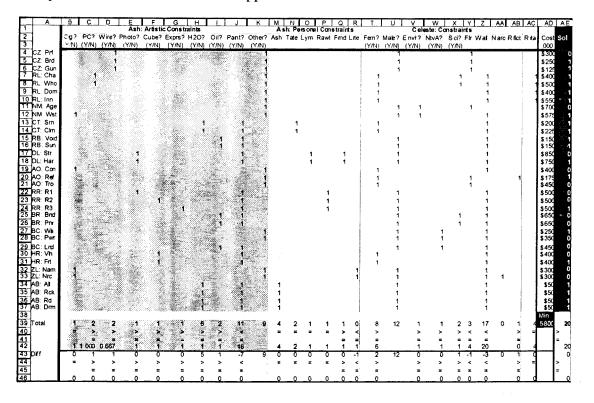


In the optimal solution, 15 pieces are displayed at a cost of \$3.95 million. The following pieces are displayed:

- 1. "The Great Equalizer" by Colin Zweibell
- 2. "Chaos Reigns" by Rita Losky
- 3. "Wasted Resources" by Norm Marson
- 4. "Serenity" by Candy Tate
- 5. "Calm Before the Storm" by Candy Tate
- 6. "Sun" by Robert Bayer
- 7. "Harley" by David Lyman
- 8. "Reflection" by Angie Oldman
- 9. "Rick III" by Rick Rawls
- 10. "Wisdom" by Bear Canton
- 11. "Study of a Violin" by Helen Row
- 12. "All That Glitters" by Ash Briggs
- 13. "The Rock" by Ash Briggs
- 14. "Winding Road" by Ash Briggs
- 15. "Dreams Come True" by Ash Briggs
- b) The formulation of this problem is the same as the formulation in part (a) except that the objective function from part (a) now becomes a constraint and the cost constraint from part (a) now becomes the objective function. Thus, we have the new constraint that we need to select 20 or more pieces to display in the exhibit. We also have the new objective to minimize the cost of the exhibit.

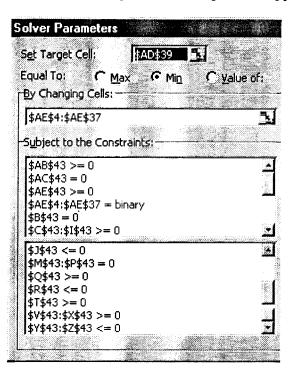
The new formulation of the problem in an Excel spreadsheet appears below.








In the optimal solution, exactly 20 pieces are displayed at a cost of \$5.5 million – \$1.5 million more than Ash decided to allocate in part (a). All pieces from part (a) are displayed in addition to the following five new pieces:


- "Burden" by Colin Zweibell
   "Domestication" by Rita Losky
- 3. "Void" by Robert Bayer
- 4. "Superior Powers" by Bear Canton
- 5. "Study of a Fruit Bowl" by Helen Row

c) This problem is also a cost minimization problem. The problem formulation is the same as that used in part (b). A new constraint is added, however. The patron wants all of Rita's pieces displayed. Rita has four pieces: "Chaos Reigns," "Who Has Control?," "Domestication," and "Innocence." All of these four pieces must be displayed.

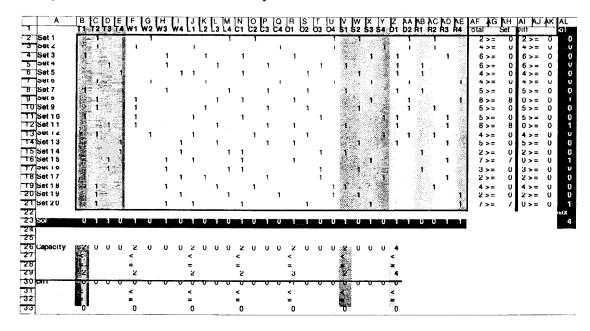
The problem formulation in Excel appears below.



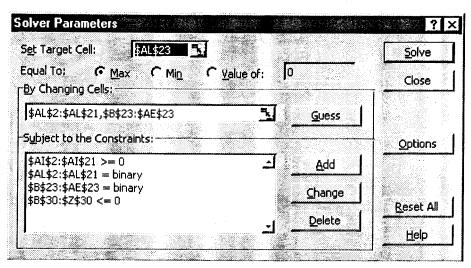
The Solver settings used in this problem appear below.



In the optimal solution, exactly 20 pieces are displayed at a total cost of \$5.8 million. The patron has to pay \$1.8 million. The following pieces are displayed:


- 1. "Burden" by Colin Zweibell
- 2. "The Great Equalizer" by Colin Zweibell3. "Chaos Reigns" by Rita Losky
- 4. "Who Has Control?" by Rita Losky
- 5. "Domestication" by Rita Losky6. "Innocence" by Rita Losky
- 7. "Wasted Resources" by Norm Marson
- 8. "Serenity" by Candy Tate
- 9. "Calm Before the Storm" by Candy Tate
- 10. "Void" by Robert Bayer
- 11. "Sun" by Robert Bayer
- 12. "Harley" by David Lyman 13. "Reflection" by Angie Oldman
- 14. "Rick III" by Rick Rawls
- 15. "Wisdom" by Bear Canton
- 16. "Study of a Fruit Bowl" by Helen Row 17. "All That Glitters" by Ash Briggs
- 18. "The Rock" by Ash Briggs
- 19. "Winding Road" by Ash Briggs
- 20. "Dreams Come True" by Ash Briggs

We want to maximize the total number of kitchen sets, so each of the 20 kitchen sets becomes a decision variable. But the kitchen sets are not our only decision variables. Because we assume that any particular item composing a kitchen set is replenished immediately, we only need to stock one of each item. A particular item may compose multiple kitchen sets. For example, tile T1 is part of kitchen sets 3, 7, 10, and 17. So a kitchen set exists when all of the items composing that kitchen set are in stock. Therefore, each of 30 items also becomes a decision variable. These decision variables are binary decision variables. If a kitchen set or item is in stock, the decision variable is 1. If a kitchen set or item is not in stock, the decision variable is 0.


A handful of constraints exist in this problem.

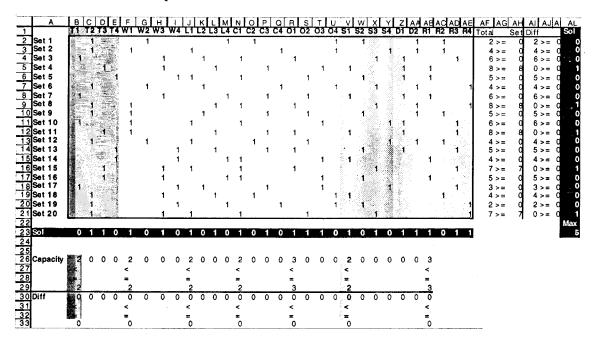
- 1. We cannot indicate that a kitchen set is in stock unless all the items composing that kitchen set are also in stock. Thus, a kitchen set decision variable is 1 only if all the decision variables for the items composing that kitchen set are also 1. For example, for set 1 this constraint equals  $8*(Set 1) \le T2+W2+L4+C2+O4+S2+D2+R2$
- 2. Each kitchen set requires 20 square feet of tile. Thus, if a particular tile is in stock, 20 square feet of that tile are in stock. The warehouse can only hold 50 square feet of tile, so only a maximum of two different styles of tile can be in stock.
- 3. Each kitchen set requires five rolls of wallpaper. Thus, if a particular style of wallpaper is in stock, five rolls of that wallpaper are in stock. The warehouse can only hold 12 rolls of wallpaper, so only a maximum of two different styles of wallpaper can be in stock.
- 4. A maximum of two different styles of light fixtures can be in stock.
- 5. A maximum of two different styles of cabinets can be in stock.
- 6. A maximum of three different styles of countertops can be in stock.
- 7. A maximum of two different sinks can be in stock.
- 8. A combination of four different styles of dishwashers and ranges can be held in stock.

The problem formulated in an Excel spreadsheet follows.

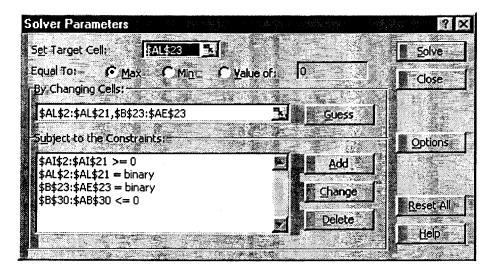


The solver settings are the following:




b) Four different kitchen sets are in stock. We should stock the following number of items:

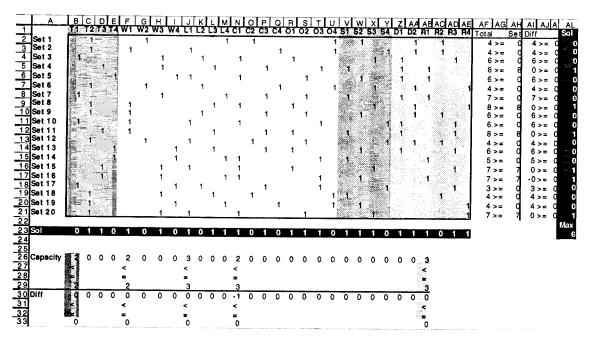
| ltam                             | I O                                    |
|----------------------------------|----------------------------------------|
| Item<br>  14 =                   | Quantity<br>0<br>1<br>1<br>1<br>0<br>1 |
| W3                               | 4                                      |
| W4                               | 1                                      |
| L1                               | 1<br>0                                 |
| L2                               | 0                                      |
| L3                               | 1 0                                    |
| L4                               | 0                                      |
| C1<br>C2                         | 1                                      |
| C3                               | 1<br>0<br>1<br>0                       |
| C4                               | Ö                                      |
| 01                               | 1<br>1<br>0                            |
| 02                               | 1                                      |
| O3<br>O4                         | 0                                      |
| \$1<br>\$2<br>\$3<br>\$4         | 0<br>1<br>0<br>1                       |
| D1<br>D2<br>R1<br>R2<br>R3<br>R4 | 1<br>1<br>0<br>0<br>1                  |


Note that the above optimal solution is not a unique solution. The value of the objective function is always four complete kitchen sets, but the <u>specific</u> items and kitchen sets stocked may be different. Throughout this solution, we will refer to the optimal solution shown above, but because other optimal solutions exist, student answers may differ from the solution somewhat.

c) We model this new problem by changing the capacity constraint for the dishwashers and ranges. Now, instead of being able to stock a combination of only four different styles of dishwashers and ranges, we can stock a maximum of two different styles of dishwashers and a maximum of three different styles of ranges. Because we only have two different styles of dishwashers available, we now effectively do not have a constraint on the number of dishwashers we can carry.

The formulation of the problem in Excel follows:




The Solver settings for this problem follow.



With the extra space, the number of kitchen sets we can stock increases from four to five. In part (a), the constraint on the number of different styles of dishwashers and ranges was binding, and we could only stock four different kitchen sets – sets 8, 11, 15, and 20. With the extra space, we can add set 4 to our stock. Set 4 requires two items that are not required by sets 8, 11, 15, and 20 – a different countertop O3 and a different range R1. In part (a), the constraint limiting the maximum number of different styles of countertops was non-binding, so we can add a new countertop style to our stock. The new space vacated by the nursery department provides us with the space to stock the new range.

d) With the additional space, our constraints change. We eliminate the constraints limiting the maximum number of different styles of sinks and countertops we can stock. Instead of stocking two of the four styles of light fixtures, we can now stock three of the four styles of light fixtures. Finally, instead of stocking only two of the four cabinet styles, we can now stock three of the four cabinet styles.

The problem formulated in Excel follows.



The Solver settings are the same settings used in part (c).

With the extra space, we are now able to stock six complete kitchen kits. In part (c), we stocked five sets – sets 4, 8, 11, 15, and 20. Now we add set 16 to the inventory. All of the extra space does not increase the number of complete sets we can stock significantly because the capacity constraints on the countertops, and cabinets were not binding in part (c). Only the capacity constraints on the sinks and light fixtures were binding. Set 16 requires both a sink and a light fixture that sets 4, 8, 11, 15, and 20 do not require. We therefore add an additional style of sink and light fixture to our stock. We still have space for one additional sink, so the constraint is not binding in this problem.

e) If the items composing a kitchen set could not be replenished immediately, we could not formulate this problem as a binary integer program. We would have to formulate the problem as an integer program since we may have to store more than one kitchen component or kitchen set to ensure that we meet demand.

The assumption of immediate replenishment is justified if the average time to replenish the component is less than the average time between demands for that component.

124a)

Let  $x_{ij} = 1$  if students from area i are assigned to school j; 0 if not

 $C_{ij}$  = bussing cost

 $S_i$  = student population of area i

 $K_i = \text{capacity of school } j$ 

 $P_{ik} = \%$  of students in area *i* in grade *k* 

(for i = 1, 2, 3, 4, 5, 6 j = 1, 2, 3 and k = 6, 7, 8).

Minimize Cost =  $\sum_{i=1}^{6} \sum_{j=1}^{3} (C_{ij})(S_i)(x_{ij})$ 

subject to  $\sum_{i} S_{i} x_{ij} \leq K_{j}$ 

$$\sum_{j} x_{ij} = 1$$

$$0.30 \sum_{k} S_{k} x_{ij} \leq \sum_{i} P_{ik} S_{i} x_{ij} \leq 0.36 \sum_{i} S_{i} x_{ij}, \qquad (k = 6, 7, 8)$$

and  $x_{ij}$  are binary variables (for i = 1, 2, 3, 4, 5, 6 and j = 1, 2, 3).

Note  $x_{21} = x_{43} = x_{52} = 0$  due to infeasibility.

b) The models really aren't too different.  $x_{ij}$  are binary here, which amounts to forcing their value in the LP of Case 4-3 to be either 0 or  $S_i$ . We can leave out the three variables known to be 0, and also 9 redundant constraints. The LP-relaxation of this model, with  $0 \le x_{ij} \le 1$  would allow us to interpret  $x_{ij}$  as the fraction of students from area i to be assigned to school j. This obviously would be a more general model, equivalent to that in Case 4-3.

c)

| Area |   | Number of<br>Students |   | aye  | in 7th<br>grade | ilaye | in 8th<br>grade |   |     | (\$/studen<br>School 2 |
|------|---|-----------------------|---|------|-----------------|-------|-----------------|---|-----|------------------------|
|      | 1 | 450                   | ( | ).32 |                 | 0.38  | 0.3             |   | 300 | 0                      |
|      | 2 | 600                   | ( | 0.37 |                 | 0.28  | 0.35            | 9 | 999 | 400                    |
|      | ব | 550                   |   | 0.3  |                 | 0.22  | Λ 20            |   | 200 | 200                    |

|          |   |     |      | Ca   | pacity: | 950  | 1150 | 1050 |
|----------|---|-----|------|------|---------|------|------|------|
| <u> </u> | 6 | 450 | 0.34 | 0.28 | 0.38    | 500  | 300  | 0    |
| j        | 5 | 500 | 0.39 | 0.34 | 0.27    | 0    | 9999 | 400  |
| 1        | 4 | 350 | 0.28 | 0.4  | 0.32    | 200  | 500  | 9999 |
| ł        | 3 | 550 | 0.3  | 0.32 | 0.38    | 600  | 300  | 200  |
| l        | 2 | 600 | 0.37 | 0.28 | 0.35    | 9999 | 400  | 500  |

Solution:

|      | Are | a Assignmen | ts        |             |     |   |               |
|------|-----|-------------|-----------|-------------|-----|---|---------------|
| Area | Sch | nool 1 Scho | ol 2 Scho | ool 3 Total |     |   | Totai         |
|      | 1   | 0           | 1         | 0           | 1 = | 1 | Bussing       |
|      | 2   | 0           | 1         | 0           | 1 = | 1 | Cost = 845000 |
|      | 3   | 0           | 0         | 1           | 1 = | 1 | <del></del>   |
|      | 4   | 1           | 0         | 0           | 1 = | 1 |               |
|      | 5   | 0           | 0         | 1           | 1 = | 1 |               |
|      | 6   | 1           | 0         | oi          | 1 = | 1 |               |

|          |   | Number of | Students |          |
|----------|---|-----------|----------|----------|
| Area     |   | School 1  | School 2 | School 3 |
|          | 1 | 0         | 450      | 0        |
|          | 3 | 0         | 600      | 0        |
|          | 3 | 0         | 0        | 550      |
|          | 4 | 350       | 0        | 0        |
|          | 5 | 0         | 0        | 500      |
|          | 6 | 450       | 0        | 0        |
| Total    |   | 800       | 1050     | 1050     |
|          |   | <=        | <=       | <=       |
| Capacity |   | 950       | 1150     | 1050     |

### **Grade Constraints:**

|              | School 1 | School 2 | School 3 |
|--------------|----------|----------|----------|
| 6th graders  | 251      | 366      | 360      |
| 7th graders  | 266      | 339      | 346      |
| 8th graders  | 283      | 345      | 344      |
| 30% of total | 240      | 315      | 315      |
| 36% of total | 288      | 378      | 378      |

School 3

Without prohibiting the splitting of residential areas, the total cost was \$55,\$55. Thus, adding this restriction increases the cost by \$845000 - \$555,\$55 = \$2.89,445

6)

| Percentage | Percentage | Percentage |
|------------|------------|------------|
|------------|------------|------------|

|      | Number of in 6th |          |          | in 7th |       | in 8th |       | Bussing Cos | t)       |          |          |
|------|------------------|----------|----------|--------|-------|--------|-------|-------------|----------|----------|----------|
| Area |                  | Students | grade    |        | grade |        | grade |             | School 1 | School 2 | School 3 |
|      | 1                | 450      |          | 0.32   |       | 0.38   |       | 0.3         | 300      | 0        | 700      |
| 1    | 2                | 600      | 1        | 0.37   |       | 0.28   |       | 0.35        | 9999     | 400      | 500      |
| i    | 3                | 550      | 1        | 0.3    |       | 0.32   |       | 0.38        | 600      | 300      | 0        |
| ı    | 4                | 350      | 1        | 0.28   |       | 0.4    |       | 0.32        | 0        | 500      | 9999     |
| Į.   | 5                | 500      | 1        | 0.39   |       | 0.34   |       | 0.27        | 0        | 9999     | 400      |
|      | 6                | 450      | <u> </u> | 0.34   |       | 0.28   |       | 0.38        | 500      | 300      | 0        |
|      |                  |          |          |        |       |        | Capac | city:       | 950      | 1150     | 1050     |

Solution:

| Area | Area Assi     | gnments<br>School 2 | School 3 | Total |     |   | Total         |
|------|---------------|---------------------|----------|-------|-----|---|---------------|
|      | 1             | ) 1                 | 0        | 7     | 1 = | 1 | Bussing       |
| :    | 2 6           | ) 1                 | i 0      |       | 1 = | 1 | Cost = 665000 |
| ;    | 3 0           | ) (                 | ) 1      |       | 1 = | 1 |               |
| 4    | \$ <b> </b> 1 | 1 (                 | ) 0      | ı.    | 1 = | 1 |               |
|      | 5 0           | ) (                 | ) 1      |       | 1 = | 1 |               |
| (    | 6 1           | ·                   | ) 0      |       | 1 = | 1 |               |

|          |   | Number of | Students |          |
|----------|---|-----------|----------|----------|
| Area     |   | School 1  | School 2 | School 3 |
|          | 1 | 0         | 450      | 0        |
|          | 2 | 0         | 600      | 0        |
|          | 3 | 0         | 0        | 550      |
|          | 4 | 350       | 0        | 0        |
|          | 5 | 0         | 0        | 500      |
|          | 6 | 450       | 0        | 0        |
| Total    |   | 800       | 1050     | 1050     |
|          |   | <=        | <=       | <=       |
| Capacity | , | 950       | 1150     | 1050     |

| Grade | Constraints: |
|-------|--------------|
|-------|--------------|

|              | School 1 | School 2 | School 3 |
|--------------|----------|----------|----------|
| 6th graders  | 251      | 366      | 360      |
| 7th graders  | 266      | 339      | 346      |
| 8th graders  | 283      | 345      | 344      |
| 30% of total | 240      | 315      | 315      |
| 36% of total | 288      | 378      | 378      |

As shown in the spreadsheet, the solution remains the same, but the busing costs are reduced to \$665000.

F)

|         |    | Number of             | in 6th   | •    | in 7th   | in 8th  | •    | <b>Bussing Cos</b> | t (\$/studen | t)       |          |        |
|---------|----|-----------------------|----------|------|----------|---------|------|--------------------|--------------|----------|----------|--------|
| Area    |    | Students              | grade    |      | grade    | grade   |      | School 1           | School 2     | School 3 | ·        |        |
|         | 1  | 450                   |          | 0.32 | 0.38     |         | 0.3  | 0                  |              |          |          |        |
| ĺ       | 2  | 600                   |          | 0.37 | 0.28     |         | ).35 |                    | 400          | 500      |          |        |
| 1       | 3  | 550                   |          | 0.3  | 0.32     |         | .38  | 600                |              | 0        |          |        |
| 1       | 4  | 350                   |          | 0.28 | 0.4      |         | ).32 | 0                  | 500          |          |          |        |
| 1       | 5  | 500                   |          | 0.39 | 0.34     |         | ).27 | 0                  | 9999         |          |          |        |
|         | 6  | 450                   | <u> </u> | 0.34 | 0.28     |         | ).38 |                    | 0            |          |          |        |
|         |    |                       |          |      |          | Capacit | y:   | 950                | 1150         | 1050     |          |        |
| Solutio | n: |                       |          |      |          |         |      |                    |              |          |          |        |
|         |    | Area Assig            |          |      |          |         |      |                    |              |          |          |        |
| Area    |    |                       | Schoo    | 12   | School 3 | Total   |      |                    |              |          | Total    |        |
|         | 1  | 0                     |          | 1    | 0        |         | 1    | =                  | 1            |          | Bussing  | *****  |
|         | 2  | 0                     |          | 1    | 0        |         | 1    | =                  | 1            |          | Cost =   | 665000 |
|         | 3  | 0                     |          | 0    | 1        |         | 1    | =                  | 1            |          |          |        |
|         | 4  | 1                     |          | 0    | 0        |         | 1    | =                  | 1            |          |          |        |
|         | 5  | 0                     |          | 0    | 1        |         | 1    | =                  | 1            |          |          |        |
|         | 6  | 1                     |          | 0    | 0        | j       | 1    | =                  | 1            |          |          |        |
|         |    | Missach an ad         | C4d      |      |          |         |      | Grade Cons         | trointo:     |          |          |        |
| Area    |    | Number of<br>School 1 | School   |      | School 3 |         |      | Grade Cons         | School 1     | School 2 | School 3 |        |
| Area    | 4  | 0                     | SCHOOL   | 450  | 0        | 1       |      | 6th graders        | 251          | 366      | 360      |        |
|         | 2  | 0                     |          | 600  | 0        |         |      | 7th graders        | 266          |          | 346      |        |
|         | 3  | ٥                     |          | 000  | 550      |         |      | 8th graders        | 283          |          | 344      |        |
|         | 4  | 350                   |          | 0    | 0        |         |      | 30% of total       | 240          |          | 315      |        |
|         | 5  | 330                   |          | 0    | 500      |         |      | 36% of total       | 288          | 378      | 378      |        |
|         | 6  | 450                   |          | 0    | 0        |         |      | SS /S SI LOLLI     |              |          | 3,0      |        |
| Total   | ٦  | 800                   |          | 1050 | 1050     |         |      |                    |              |          |          |        |
| ιοιαι   |    | <=                    | <=       | 1000 | <=       |         |      |                    |              |          |          |        |

As shown in the spreadsheet, the solution and the bussing cost remains the same as for Option 1.

Percentage Percentage

3)

Capacity

950

1150

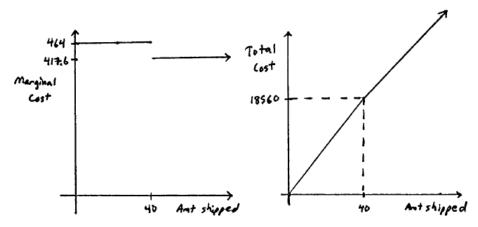
For all three options, the assignments are identical. For the current alternative, the bussing costs are \$845000. For option 1, the bussing costs are \$665000 (a reduction of \$180000). This savings results from the fact that students from area 3 would no longer be bussed to school 3 and the same happens for area 4 and school 1.

For option 2, the bussing costs are the same as those for option 1, the reason being that under the optimal assignment policy there are no students bused 1.5 to 2 miles.

h) Arguments can be made for the withert situation and option 1. Option 2 can be disconded since it provides No improvement over option 1.

## **CHAPTER 12: NONLINEAR PROGRAMMING**

### 12.1-1.


In 1995, a number of factors including increased competition, the lack of quantitative tools to support financial advices and the introduction of new regulations compelled Bank Hapoalim to review its investment advisory process. Consequently, the Opti-Money system was developed as a tool to offer systematic financial advice. The underlying mathematical model is a constrained nonlinear program with continuous or discontinuous derivatives depending on the selected risk measure. The variables  $x_i$  denote the fraction of asset i. The goal is to choose a portfolio that minimizes "risk" among all portfolios with a fixed expected return. Opti-Money allows the investor to choose among four risk measures, viz., symmetric return variability, asymmetric downside risk, asymmetric return variability around more than one benchmark, and classical Markowitz risk of a portfolio. Once the risk measure and the benchmark(s) are specified, the objective function is formulated as a weighted sum of this risk measure and a market-portfolio tracking term. Then the efficient frontier is constructed.

The Opti-Money system increased average monthly profit of Bank Hapoalim significantly. The average annual return for customers has also increased. The excess earnings using Opti-Money exceeds \$200 million per year. The subsidiaries of the bank like Continental Mutual Fund benefit from Opti-Money, too. The new system resulted in "an organizational revolution in the investment advisory process at Bank Hapoalim" [p. 46]. As a result of this study, additional consultation-support systems are developed to help the customer relations managers.

### 12.1-2.

maximize 
$$f(\boldsymbol{x}) = 100x_1^{2/3} + 10x_1 + 40x_2^{3/4} + 5x_2 + 50x_3^{1/2} + 5x_3$$
 subject to 
$$9x_1 + 3x_2 + 5x_3 \le 500$$
 
$$5x_1 + 4x_2 \le 350$$
 
$$3x_1 + 2x_3 \le 150$$
 
$$x_3 \le 20$$
 
$$x_1, x_2, x_3 > 0$$

### **12.1-3.**



Each term in the objective function changes (as above) from  $a_{ij}x_{ij}$  to

$$a_{ij}x_{ij} - 0.1a_{ij}(x_{ij} - 40)S(x_{ij} - 40)$$

where  $a_{ij}$  is the shipping cost from cannery i to warehouse j and

$$S(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 & \text{if } x \ge 0. \end{cases}$$

The rest of the formulation is the same.

### 12.1-4.

Let  $S_1$  and  $S_2$  be the number of blocks of stock 1 and 2 to purchase respectively.

minimize 
$$f(S_1,S_2)=4S_1^2+100S_2^2+5S_1S_2$$
 subject to 
$$20S_1+30S_2\leq 50$$
 
$$5S_1+10S_2\geq \text{minimum acceptable expected return}$$
 
$$S_1,S_2\geq 0$$

### 12.2-1.

$$\begin{split} f(\boldsymbol{x}) &= f_1(x_1) + f_2(x_2) + f_3(x_3) \\ \text{with } f_1(x_1) &= 100x_1^{2/3} + 10x_1, f_2(x_2) = 40x_2^{3/4} + 5x_2, f_3(x_3) = 50x_3^{1/2} + 5x_3. \\ \frac{d^2 f_1(x_1)}{dx_1^2} &= -\frac{200}{9}x_1^{-4/3} \leq 0 \text{ for } x_1 \geq 0 \\ \frac{d^2 f_2(x_2)}{dx_2^2} &= -\frac{120}{16}x_2^{-5/4} \leq 0 \text{ for } x_2 \geq 0 \\ \frac{d^2 f_3(x_3)}{dx_3^2} &= -\frac{50}{4}x_3^{-3/2} \leq 0 \text{ for } x_3 \geq 0 \end{split}$$

 $f_1$ ,  $f_2$  and  $f_3$  are concave on the nonnegative orthant so f is concave in the same region. The constraints are linear. Hence, the problem is a convex programming problem.

### 12.2-2.

$$\frac{d^2 f(S_1, S_2)}{dS_1^2} = 8 \ge 0, \frac{d^2 f(S_1, S_2)}{dS_2^2} = 200 \ge 0, \frac{d^2 f(S_1, S_2)}{dS_1 dS_2} = 5 \ge 0$$

$$\frac{d^2 f(S_1, S_2)}{dS_1^2} \frac{d^2 f(S_1, S_2)}{dS_2^2} - \left[ \frac{d^2 f(S_1, S_2)}{dS_1 dS_2} \right]^2 = 1575 \ge 0$$

Hence, f is convex everywhere.

### 12.2-3.

Objective function: 
$$Z = 3x_1 + 5x_2 \Rightarrow x_2 = -(3/5)x_1 + (1/5)Z \Rightarrow \text{slope: } -(3/5)$$
  
Constraint boundary:  $9x_1^2 + 5x_2^2 = 216 \Rightarrow x_2 = \sqrt{(1/5)(216 - 9x_1^2)}$   
 $\Rightarrow \frac{\partial x_2}{\partial x_1} = -\frac{1}{5} \frac{9x_1}{\sqrt{(1/5)(216 - 9x_1^2)}} = -\frac{3}{5} \text{ for } x_1 = 2$ 

Hence, the objective function is tangent to this constraint at  $(x_1, x_2) = (2, 6)$ .

## 12.2-4.

Constraint boundary:  $3x_1 + 2x_2 = 18 \Rightarrow g(x_1) = x_2 = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_1} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}{dx_2} = -\frac{3}{2}x_1 + 9 \Rightarrow \frac{dg(x_1)}$ 

Objective function at (8/3, 5):  $(9x_1^2 - 126x_1 + 857) - 182x_2 + 13x_2^2 = 0$ 

$$\Rightarrow f(x_1) = x_2 = \frac{182 - 2\sqrt{-2860 + 1638x_1 - 117x_1^2}}{26} \Rightarrow \frac{df(x_1)}{dx_1} = -\frac{3}{2}$$

$$f(8/3) = g(8/3) = 5$$

Hence, the objective function is tangent to this constraint at  $(x_1, x_2) = (8/3, 5)$ .

## 12.2-5.

(a) 
$$\begin{aligned} \frac{df(x)}{dx} &= 240 - 600x + 30x^2 = 0 \\ &\Rightarrow x^* = \frac{600 \pm \sqrt{600^2 - 4 \cdot 30 \cdot 240}}{60} = 0.408 \text{ or } 19.592 \\ &\frac{d^2 f(x)}{dx^2} = -600 + 60x \\ &\frac{d^2 f(0.408)}{dx^2} = -575.5 \Rightarrow f(0.408) = 48.66 \text{ is a local maximum.} \\ &\frac{d^2 f(19.592)}{dx^2} = 575.5 \Rightarrow f(19.592) = -35,248.7 \text{ is a local minimum.} \end{aligned}$$

(b) For x > 19.592,  $\frac{df(x)}{dx} > 0$  and  $\frac{d^2f(x)}{dx^2} = 60x - 600 > 0 \Rightarrow f$  is unbounded above. For x < 0.408,  $\frac{df(x)}{dx} < 0$  and  $\frac{d^2f(x)}{dx^2} = 60x - 600 < 0 \Rightarrow f$  is unbounded below.

### 12.2-6.

(a) 
$$\frac{d^2 f(x)}{dx^2} = -2 < 0$$
 for all  $x \Rightarrow f$  is concave.

(b) 
$$\frac{d^2f(x)}{dx^2} = 12x^2 + 12 > 0$$
 for all  $x \Rightarrow f$  is convex.

(c) 
$$\frac{d^2 f(x)}{dx^2} = 12x - 6$$
  $\begin{cases} > 0 & \text{for } x > 1/2 \\ < 0 & \text{for } x < 1/2 \end{cases} \Rightarrow f \text{ is neither convex nor concave.}$ 

(d) 
$$\frac{d^2 f(x)}{dx^2} = 12x^2 + 2 > 0$$
 for all  $x \Rightarrow f$  is convex.

(e) 
$$\frac{d^2f(x)}{dx^2}=6x+12x^2$$
  $\begin{cases} >0 & \text{for } x<-1/2 \text{ or } x>0 \\ <0 & \text{for } -1/2< x<0 \end{cases}$   $\Rightarrow f$  is neither convex nor concave.

### 12.2-7.

(a) 
$$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} = \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} = -2 < 0 \text{ for all } (x_1, x_2)$$
$$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} - \left[ \frac{\partial^2 f(x_1, x_2)}{\partial x_1 \partial x_2} \right]^2 = 4 - 1^2 = 3 > 0 \text{ for all } (x_1, x_2)$$
$$\Rightarrow f \text{ is concave.}$$

(b) 
$$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} = 4 > 0$$
,  $\frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} = 2 > 0$  for all  $(x_1, x_2)$  
$$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} - \left[\frac{\partial^2 f(x_1, x_2)}{\partial x_1 \partial x_2}\right]^2 = 8 - 2^2 = 4 > 0$$
 for all  $(x_1, x_2)$ 

 $\Rightarrow$  f is convex

(c) 
$$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} = 2 > 0$$
,  $\frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} = 4 > 0$  for all  $(x_1, x_2)$  
$$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} - \left[\frac{\partial^2 f(x_1, x_2)}{\partial x_1 \partial x_2}\right]^2 = 8 - 3^2 = -1 < 0 \text{ for all } (x_1, x_2)$$

 $\Rightarrow$  f is neither convex nor concave.

(d) 
$$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} = \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} = \frac{\partial^2 f(x_1, x_2)}{\partial x_1 \partial x_2} = 0$$

$$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} - \left[ \frac{\partial^2 f(x_1, x_2)}{\partial x_1 \partial x_2} \right]^2 = 0$$

 $\Rightarrow$  f is both convex and concave.

(e) 
$$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} = \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} = 0$$
 for all  $(x_1, x_2)$  
$$\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} \frac{\partial^2 f(x_1, x_2)}{\partial x_2^2} - \left[ \frac{\partial^2 f(x_1, x_2)}{\partial x_1 \partial x_2} \right]^2 = 0 - 1^2 = -1 < 0 \text{ for all } (x_1, x_2)$$

 $\Rightarrow$  f is neither convex nor concave.

### 12.2-8.

$$f(x) = f_1(x_1) + f_2(x_2) + f_{34}(x_3, x_4) + f_{56}(x_5, x_6) + f_{67}(x_6, x_7)$$
with  $f_1(x_1) = 5x_1$ ,  $f_2(x_2) = 2x_2^2$ ,  $f_{34}(x_3, x_4) = x_3^2 - 3x_3x_4 + 4x_4^2$ ,
$$f_{56}(x_5, x_6) = x_5^2 + 3x_5x_6 + 3x_6^2$$
,  $f_{67}(x_6, x_7) = 3x_6^2 + 3x_6x_7 + x_7^2$ .
$$\frac{d^2 f_1(x_1)}{dx_1^2} = 0 \text{ for all } x_1 \Rightarrow f_1 \text{ is convex (and concave)}.$$

$$\frac{d^2 f_2(x_2)}{dx_2^2} = 4 > 0 \text{ for all } x_2 \Rightarrow f_2 \text{ is convex}.$$

$$\frac{d^2 f_{34}(x_3, x_4)}{dx_3^2} = 2 > 0$$
, 
$$\frac{d^2 f_{34}(x_3, x_4)}{dx_4^2} = 8 > 0 \text{ for all } (x_3, x_4)$$

$$\frac{d^2 f_{34}(x_3, x_4)}{dx_3^2} \frac{d^2 f_{34}(x_3, x_4)}{dx_4^2} - \left[\frac{d^2 f_{34}(x_3, x_4)}{dx_3 dx_4}\right]^2 = 16 - 3^2 = 7 > 0 \text{ for all } (x_3, x_4)$$

 $\Rightarrow f_{34}$  is convex.

$$\frac{d^2 f_{56}(x_5, x_6)}{dx_5^2} = 2 > 0, \frac{d^2 f_{56}(x_5, x_6)}{dx_6^2} = 6 > 0 \text{ for all } (x_5, x_6)$$

$$\frac{d^2 f_{56}(x_5, x_6)}{dx_5^2} \frac{d^2 f_{56}(x_5, x_6)}{dx_6^2} - \left[ \frac{d^2 f_{56}(x_5, x_6)}{dx_5 dx_6} \right]^2 = 12 - 3^2 = 3 > 0 \text{ for all } (x_5, x_6)$$

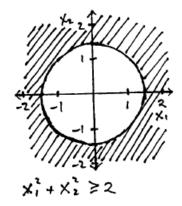
 $\Rightarrow f_{56}$  is convex.

$$f_{67}(x_6, x_7) = f_{56}(x_7, x_6) \Rightarrow f_{67}$$
 is convex.

Hence, f is convex.

## 12.2-9.

(a) maximize 
$$f(\boldsymbol{x}) = x_1 + x_2$$
 subject to  $g(\boldsymbol{x}) = x_1^2 + x_2^2 \le 1, \boldsymbol{x} \ge 0$  
$$\frac{\partial^2 f(\boldsymbol{x})}{\partial x_1^2} = \frac{\partial^2 f(\boldsymbol{x})}{\partial x_2^2} = \frac{\partial^2 f(\boldsymbol{x})}{\partial x_1 \partial x_2} = 0, \frac{\partial^2 f(\boldsymbol{x})}{\partial x_1^2} \frac{\partial^2 f(\boldsymbol{x})}{\partial x_2^2} - \left[\frac{\partial^2 f(\boldsymbol{x})}{\partial x_1 \partial x_2}\right]^2 = 0 \Rightarrow f \text{ is concave (convex)}.$$
 
$$\frac{\partial^2 g(\boldsymbol{x})}{\partial x_1^2} = \frac{\partial^2 g(\boldsymbol{x})}{\partial x_2^2} = 2 > 0, \frac{\partial^2 g(\boldsymbol{x})}{\partial x_1^2} \frac{\partial^2 g(\boldsymbol{x})}{\partial x_2^2} - \left[\frac{\partial^2 g(\boldsymbol{x})}{\partial x_1 \partial x_2}\right]^2 = 4 - 0^2 = 4 > 0 \Rightarrow g \text{ is convex}.$$


The problem is a convex programming problem.

(b)



12.2-10.

(a)



Clearly, this is not a convex feasible region. For example, take the points  $(0, \sqrt{2})$  and  $(0, -\sqrt{2}), (0, 0) = \frac{1}{2}(0, \sqrt{2}) + \frac{1}{2}(0, -\sqrt{2})$  is not feasible.

(b) Feasible region:  $-x_1^2 - x_2^2 \le -2$ 

Both  $g_1(x_1) = -x_1^2$  and  $g_2(x_2) = -x_2^2$  are concave functions, so the feasible region need not be convex.

$$\frac{d^2g_1(x_1)}{dx_1^2} = \frac{d^2g_2(x_2)}{dx_2^2} = -1 < 0$$

To prove that the feasible region is not convex, one needs to find two feasible points y and z, a scalar  $\alpha \in [0,1]$  such that  $\alpha y + (1-\alpha)z$  is not feasible. Such points are given in part (a).

### 12.3-1.

Since the objective is to minimize a concave function, as shown in Problem 12.1-3, this is a nonconvex programming problem.

### 12.3-2.

$$\frac{df(x)}{dx} = -120 + 30x - 30x^2 = 0 \Rightarrow x = \frac{-30 \pm \sqrt{30^2 - 4 \cdot 30 \cdot 120}}{-60} \text{ no real solution}$$

$$\frac{d^2 f(x)}{dx^2} = 30 - 60x \begin{cases} > 0 & \text{for } x < 1/2 \\ < 0 & \text{for } x > 1/2 \end{cases}$$

The slope of f increases from -120 at x = 0 to -112.5 at x = 1/2 and decreases for all x thereafter. It is always negative, so  $x^* = 0$  is optimal.

### 12.3-3.

## (a) Linearly Constrained Convex Programming:

$$\begin{split} g_1(x_1,x_2) &= 2x_1 + x_2 \text{ and } g_2(x_1,x_2) = x_1 + 2x_2 \text{ are linear.} \\ \frac{\partial^2 f(x_1,x_2)}{\partial x_1^2} &= -12x_1^2 - 4 < 0, \frac{\partial^2 f(x_1,x_2)}{\partial x_2^2} = -8 < 0 \text{ for all } (x_1,x_2) \\ \frac{\partial^2 f(x_1,x_2)}{\partial x_1^2} \frac{\partial^2 f(x_1,x_2)}{\partial x_2^2} - \left[ \frac{\partial^2 f(x_1,x_2)}{\partial x_1 \partial x_2} \right]^2 = 96x_1^2 + 32 - 2^2 > 0 \text{ for all } (x_1,x_2) \\ \Rightarrow f \text{ is concave.} \end{split}$$

## Geometric Programming:

(b) Let 
$$y_1 = x_1 - 1$$
 and  $y_2 = x_2 - 1$ .  
minimize  $y_1^4 + 4y_1^3 + 8y_1^2 + 10y_1 + 2y_1y_2 + 4y_2^2 + 10y_2$   
subject to  $2y_1 + y_2 \ge 7$   
 $y_1 + 2y_2 \ge 7$   
 $y_1, y_2 \ge 0$ 

## 12.3-4.

(a) Let 
$$x_1 = e^{y_1}$$
 and  $x_2 = e^{y_2}$ .

minimize  $f(\mathbf{y}) = 2e^{-2y_1 - y_2} + e^{-y_1 - 2y_2}$ 

subject to  $g(\mathbf{y}) = 4e^{y_1 + y_2} + e^{2y_1 + 2y_2} - 12 \le 0$ 
 $e^{y_1}, e^{y_2} \ge 0$  (true for any  $(y_1, y_2)$ )

(b)  $\frac{\partial^2 f(\mathbf{y})}{\partial y_1^2} = 8e^{-2y_1 - y_2} + e^{-y_1 - 2y_2} \ge 0$  for all  $(y_1, y_2)$ 
 $\frac{\partial^2 f(\mathbf{y})}{\partial y_2^2} = 2e^{-2y_1 - y_2} + 4e^{-y_1 - 2y_2} \ge 0$  for all  $(y_1, y_2)$ 
 $\frac{\partial^2 f(\mathbf{y})}{\partial y_1^2} \frac{\partial^2 f(\mathbf{y})}{\partial y_2^2} - \left[\frac{\partial^2 f(\mathbf{y})}{\partial y_1 \partial y_2}\right]^2 = 18e^{-3y_1 - 3y_2} \ge 0$  for all  $(y_1, y_2)$ 
 $\Rightarrow f$  is convex.

 $\frac{\partial^2 g(\mathbf{y})}{\partial y_1^2} = \frac{\partial^2 g(\mathbf{y})}{\partial y_2^2} = \frac{\partial^2 g(\mathbf{y})}{\partial y_1 \partial y_2} = 4e^{y_1 + y_2} + 4e^{2y_1 + 2y_2} \ge 0$  for all  $(y_1, y_2)$ 
 $\frac{\partial^2 g(\mathbf{y})}{\partial y_1^2} \frac{\partial^2 g(\mathbf{y})}{\partial y_2^2} - \left[\frac{\partial^2 g(\mathbf{y})}{\partial y_1 \partial y_2}\right]^2 = 0$  for all  $(y_1, y_2)$ 
 $\Rightarrow g$  is convex.

Hence, this is a convex programming problem.

## 12.3-5.

(a) maximize 
$$10y_1 + 20y_2 + 10t$$
  
subject to  $y_1 + 3y_2 - 50t \le 0$   
 $3y_1 + 4y_2 - 80t \le 0$   
 $3y_1 + 4y_2 + 20t = 1$   
 $y_1, y_2, t \ge 0$ 

(b)

| Bas   Eq       | Co | efficient | of      | Right |
|----------------|----|-----------|---------|-------|
| Var No Z X1    | X2 | X3 X4     | X5 X6   | side  |
| _ _ _          |    |           |         |       |
| 1 1 1          |    |           | 1M      |       |
| Z   0  1 3.269 | 0  | 0 1.385   | 0 3.962 | 3.962 |
| X2  1  0 0.654 | 1  | 0 0.077   | 0 0.192 | 0.192 |
| X5  2  0 3.231 | 0  | 0 -1.38   | 1 0.538 | 0.538 |
| X3  3  0 0.019 | 0  | 1 -0.02   | 0 0.012 | 0.012 |

The variables (X1, X2, X3) in this courseware solution correspond to the variables  $(y_1, y_2, t)$  in (a), so the optimal solution is  $(y_1, y_2, t) = (0, 0.192, 0.012)$  with the objective function value Z = 3.962. Then, the optimal solution of the original problem is  $(x_1, x_2) = (0, 16.67)$  with the optimal objective function value  $f(\boldsymbol{x}) = 3.962$ .

## 12.3-6.

KKT conditions: 
$$Qx + A^Tu - c = y \\ -Ax + b = v \\ x, u, y, v \ge 0 \\ x^T(Qx + A^Tu - c) + u^T(-Ax + b) = 0$$

This is the linear complementarity problem with:

$$Z = \begin{pmatrix} x \\ u \end{pmatrix}, M = \begin{pmatrix} Q & A^T \\ -A & 0 \end{pmatrix}, q = \begin{pmatrix} -c \\ b \end{pmatrix}, w = \begin{pmatrix} Qx + A^Tu - c \\ -Ax + b \end{pmatrix}.$$

### 12.4-1.

(a)

Interactive One-Dimensional Search Procedure:

$$\text{Max f(X)} = 1 \ \text{X^3} + 2 \ \text{X} - 2 \ \text{X^2} - 0.25 \ \text{X^4}$$

$$\text{df(X)} / \text{dX} = 3 \ \text{X^2} + 2 - 4 \ \text{X} - 1 \ \text{X^3}$$

Lower Bound: 0

Upper Bound: 2.4

| Iteration | df(X)/dX | X(L)  | X (U) | New X' | f(X')  |
|-----------|----------|-------|-------|--------|--------|
| 0         |          |       | 2.4   | 1,2    | 0.7296 |
| 1         | -0.208   | 0     | 1.2   | 0.6    | 0.6636 |
| 2         | +0.464   | 0.6   | 1.2   | 0.9    | 0.745  |
| 3         | +0.101   | 0.9   | 1.2   | 1.05   | 0.7487 |
| 4         | - 0.05   | 0.9   | 1.05  | 0.975  | 0.7497 |
| 5         | +0.025   | 0.975 | 1.05  | 1.0125 | 0.7499 |
| Stop      | İ        |       |       |        |        |

Solution: X = 1.0125

(b)

Newton's method  $\hat{f}(x) = x^3 + 2x - 2x^2 - 0.25x^4$   $f'(x) = 3x^2 + 2 - 4x - x^3$  $f''(x) = 6x - 4 - 3x^2$ 

error 0.001

| Iteration i | $\mathbf{x}_{i}$ | $f(x_i)$   | $f'(x_i)$ | $f''(x_i)$ | $X_{i+1}$ | $ x_i - x_{i+1} $ |
|-------------|------------------|------------|-----------|------------|-----------|-------------------|
| 1           | 1.2              | 0.7296     | -0.208    | -1.12      | 1.014286  | 0.185714          |
| 2           | 1.01428571       | 0.74989795 | -0.014289 | -1.000612  | 1.000006  | 0.01428           |
| 3           | 1.00000583       | 0.75       | -5.83E-06 | -1         | 1         | 5.83E-06          |

12.4-2.

(a)

| Iteration | df(X)/dX | X(L) | X(U)  | New X' | f(X')  |
|-----------|----------|------|-------|--------|--------|
| 0         |          | 0    | 4.8   | 2.4    | 8.64   |
| 1         | + 1.2    | 2.4  | 4.8   | 3.6    | 8.64   |
| 2         | - 1.2    | 2.4  | 3.6   | 3      | 9      |
| 3         | + 0      | 3 j  | 3.6   | 3.3    | 8.91   |
| 4         | - 0.6    | 3 j  | 3.3   | 3.15   | 8.9775 |
| 5         | - 0.3    | 3    | 3.15  | 3.075  | 8.9944 |
| 6         | - 0.15   | 3    | 3.075 | 3.0375 | 8.9986 |
| \$top     | i        | i    | i     | i      |        |

(b)

| Iteration | df(X)/dX | X(L)   | X(U)   | New X' | f(X')  |
|-----------|----------|--------|--------|--------|--------|
| 0         |          | -4     | 1      | -1.5   | -1.688 |
| 1         | - 1.5    | -1.5   | į 1    | -0.25  | -1.121 |
| 2         | +3.188   | -1.5   | -0.25  | -0.875 | -1.984 |
| 3         | +0.258   | -1.5   | -0.875 | -1.188 | -1.964 |
| 4         | -0.401   | -1.188 | -0.875 | -1.031 | -1.999 |
| 5         | -0.063   | -1.031 | -0.875 | -0.953 | -1.998 |
| 6         | +0.094   | -1.031 | -0.953 | -0.992 | -2     |
| Stop      | i        |        | İ      |        | i      |

## 12.4-3.

(a)

| Iteration | df(X)/dX | X(L)   | X(U)   | New X' | f(X')  |
|-----------|----------|--------|--------|--------|--------|
| 0         | <br>     | -1     | 4      | 1.5    | -16.69 |
| 1         | - 100    | -1     | 1.5    | 0.25   | 0.3047 |
| 2         | +0.156   | 0.25   | 1.5    | 0.875  | 0.2482 |
| 3         | -0.923   | 0.25   | 0.875  | 0.5625 | 0.3125 |
| 4         | -0.001   | 0.25   | 0.5625 | 0.4063 | 0.3124 |
| 5         | +0.004   | 0.4063 | 0.5625 | 0.4844 | 0.3125 |
| Stop      | i i      |        | ĺ      | i      | ĺ      |

(b)

Newton's method

Max  $f(x) = 48 x^5 + 42x^3 + 3.5x - 16 x^6 - 61 x^4 - 16.5x^2$  $f'(x) = 240x^4 + 126 x^2 + 3.5 - 96 x^5 - 264 x^3 - 33 x$ 

f"(x) = 960 x^3 + 252 x - 480 x^4 - 792 x^2 - 33 error 0.001

| Iteration i | $\mathbf{x}_{i}$ | $f(x_i)$   | $f'(x_i)$ | $f''(x_i)$ | $\mathbf{x}_{i+1}$ | x <sub>i</sub> - x <sub>i+1</sub> |
|-------------|------------------|------------|-----------|------------|--------------------|-----------------------------------|
| 1           | 1                | 0          | -23.5     | -93        | 0.747312           | 0.252688                          |
| 2           | 0.74731183       | 0.30509816 | -8.496421 | -36.0381   | 0.51155            | 0.235762                          |
| 3           | 0.51154965       | 0.31249998 | -2.677284 | -15.70259  | 0.34105            | 0.170499                          |
| 4           | 0.34105018       | 0.31160364 |           |            | 0.239899           |                                   |
| 5           | 0.23989924       | 0.302969   |           | -6.461815  |                    |                                   |
| 6           | 0.22574474       | 0.30003409 | 0.001383  | -6.675803  | 0.225952           | 0.000207                          |

## **12.4-4.**

(a) 
$$f(x) = 10x^3 + 60x - 2x^6 - 3x^4 - 12x^2$$
$$= -x[2x^2(x^3 - 5) + 3(x^3 + 4x - 20)]$$
$$= -x[2x^2(x^3 - 8) + 3(x^3 + 6x^2 + 4x - 20)]$$

The expression in brackets is positive for all  $x \ge 2$  and negative for all  $x \le 0$ , so f(x) is negative for  $x \ge 2$  and x < 0. Hence, choose  $\underline{x} = 0$  and  $\overline{x} = 2$ .

Interactive One-Dimensional Search Procedure:

$$\text{Max f}(X) = 10 X^3 + 60 X - 2 X^6 - 3 X^4 - 12 X^2$$

$$\text{df}(X)/\text{d}X = 30 X^2 + 60 - 12 X^5 - 12 X^3 - 24 X$$

Lower Bound: 0 Upper Bound: 2

| Iteration | I  | df(X)/dX | I  | X(L) |          | X(U)  |     | New X' | -   | f(X')  |
|-----------|----|----------|----|------|----------|-------|-----|--------|-----|--------|
|           | 1_ |          | ۱_ |      | <u> </u> |       | _١_ |        | _1_ |        |
| 0         |    |          |    | 0    |          | 2     |     | 1      |     | 53     |
| 1         | 1  | + 42     |    | 1    |          | 2     |     | 1.5    |     | 58.781 |
| 2         | I  | -40.12   |    | 1    |          | 1.5   |     | 1.25   |     | 60.828 |
| 3         | I  | +16.82   |    | 1.25 |          | 1.5   |     | 1.375  |     | 61.569 |
| 4         | I  | -6.455   |    | 1.25 |          | 1.375 |     | 1.3125 |     | 61.561 |
| Stop      | I  |          |    | - 1  |          |       |     |        |     |        |

Solution: X = 1.3125

(b) 
$$f(x) = 10x^3 + 60x - 2x^6 - 3x^4 - 12x^2$$
$$f'(x) = 30x^2 + 60 - 12x^5 - 12x^3 - 24x$$
$$f''(x) = 60x - 60x^4 - 36x^2 - 24$$

| Iteration i | $x_i$   | $f(x_i)$ | $f'(x_i)$ | $f''(x_i)$ | $x_{i+1}$ | $ x_i - x_{i+1} $ |
|-------------|---------|----------|-----------|------------|-----------|-------------------|
| 1           | 1       | 53       | 42        | -60        | 1.7       | 0.7               |
| 2           | 1.7     | 43.119   | -123.44   | -527.17    | 1.46584   | 0.23416           |
| 3           | 1.46584 | 59.971   | -29.73    | -290.41    | 1.36348   | 0.10236           |
| 4           | 1.36348 | 61.629   | -3.919    | -216.49    | 1.34538   | 0.0181            |
| 5           | 1.34538 | 61.665   | -0.105    | -205.02    | 1.34487   | 0.00051           |

## 12.4-5.

(a) 
$$f'(x) = 4x^3 + 2x - 4 \Rightarrow f'(0) = -4, f'(1) = 2, f'(2) = 32$$

Since f'(x) is continuous, there must be a point  $0 \le x^* \le 1$  such that  $f'(x^*) = 0$  and since f is a convex function (given that this is a convex programming problem),  $x^*$  must be the optimal solution. Hence, the optimal solution lies in the interval  $0 \le x \le 1$ .

(b)

| Iteration | df(X)/dX | X(L)   | X(U)   | New X' | f(X')  |
|-----------|----------|--------|--------|--------|--------|
|           |          |        |        |        | -2     |
| 0         | 1        | 0      | 2      | ,      |        |
| 1         | + 2      | 0      | 1      | 0.5    | -1.688 |
| 2         | - 2.5    | 0.5    | 1      | 0.75   | -2.121 |
| 3         | -0.813   | 0.75   | 1      | 0.875  | -2.148 |
| 4         | + 0.43   | 0.75   | 0.875  | 0.8125 | -2.154 |
| 5         | -0.229   | 0.8125 | 0.875  | 0.8438 | -2.156 |
| 6         | + 0.09   | 0.8125 | 0.8438 | 0.8281 | -2.156 |
| Stop      | İ        |        |        |        | ı      |

(c)

Newton's method Max  $f(x) = x^4 + x^2 - 4x$  s.t. x >= 0, x <= 2  $f'(x) = 4x^3 + 2x - 4$   $f''(x) = 12x^2 - 2$ 

error 0.0001

| Iteration i | $x_i$      | $f(x_i)$   | $f'(x_i)$ | f"(x <sub>i</sub> ) | $X_{i+1}$ | x <sub>i</sub> - x <sub>i+1</sub> |
|-------------|------------|------------|-----------|---------------------|-----------|-----------------------------------|
| 1           | 1          | -2         | 2         | 10                  | 0.8       | 0.2                               |
| 2           | 0.8        | -2.1504    | -0.352    | 5.68                | 0.861972  | 0.061972                          |
| 3           | 0.86197183 | -2.1528497 | 0.285708  | 6.915945            | 0.82066   | 0.001972                          |
| 4           | 0.82066031 | -2.1555781 | -0.147875 | 6.0818              | 0.844975  | 0.024314                          |
| 5           | 0.84497469 | -2.1561459 | 0.103137  | 6.567787            | 0.829271  | 0.024314                          |
| 6           | 0.82927123 | -2.1564755 | -0.060329 | 6.252289            | 0.83892   | 0.009649                          |
| 7           | 0.83892031 | -2.1565774 | 0.039526  | 6.445448            | 0.832788  | 0.006132                          |
| 8           | 0.83278785 | -2.1566242 | -0.024152 | 6.322427            | 0.836608  | 0.00382                           |
| 9           | 0.83660793 | -2.1566409 | 0.015426  | 6.398954            | 0.834197  | 0.002411                          |
| 10          | 0.83419717 | -2.1566479 | -0.009585 | 6.350619            | 0.835706  | 0.001509                          |
| 11          | 0.83570643 | -2.1566506 | 0.00606   | 6.380863            | 0.834757  | 0.00095                           |
| 12          | 0.83475674 | -2.1566517 | -0.00379  | 6.361826            | 0.835352  | 0.000596                          |
| 13          | 0.83535244 | -2.1566521 | 0.002386  | 6.373764            | 0.834978  | 0.000374                          |
| 14          | 0.83497803 | -2.1566523 | -0.001496 | 6.36626             | 0.835213  | 0.000235                          |
| 15          | 0.83521306 | -2.1566523 | 0.000941  | 6.37097             | 0.835065  | 0.000148                          |
| 16          | 0.83506541 | -2.1566524 | -0.00059  | 6.368011            | 0.835158  | 9.27E-05                          |

## 12.4-6.

(a) Consider the two cases:

Case 1:
$$\overline{x}_{n+1} = \overline{x}_n$$
 and  $\underline{x}_{n+1} = x'_n$   

$$\Rightarrow \overline{x}_{n+1} - \underline{x}_{n+1} = \overline{x}_n - x'_n = \overline{x}_n - \frac{1}{2}(\overline{x}_n + \underline{x}_n) = \frac{1}{2}(\overline{x}_n - \underline{x}_n)$$

Case 
$$2:\overline{x}_{n+1}=x'_n$$
 and  $\underline{x}_{n+1}=\underline{x}_n$ 

$$\Rightarrow \overline{x}_{n+1} - \underline{x}_{n+1} = x'_n - \underline{x}_n = \frac{1}{2}(\overline{x}_n + \underline{x}_n) - \underline{x}_n = \frac{1}{2}(\overline{x}_n - \underline{x}_n)$$

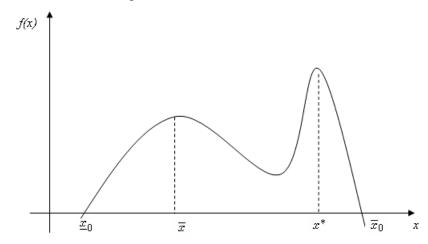
In both cases: 
$$\overline{x}_{n+1} - \underline{x}_{n+1} = \frac{1}{2}(\overline{x}_n - \underline{x}_n) = \dots = \frac{1}{2^{n+1}}(\overline{x}_0 - \underline{x}_0)$$

$$\Rightarrow \lim_{n \to \infty} (\overline{x}_{n+1} - \underline{x}_{n+1}) = \lim_{n \to \infty} \frac{1}{2^{n+1}} (\overline{x}_0 - \underline{x}_0) = 0$$

If the sequence of trial solutions selected by the midpoint rule did not converge to a limiting solution, then there must be an  $\epsilon>0$  such that regardless of what N is, there are  $n\geq N$  and  $m\geq N$  with  $|x_n'-x_m'|>\epsilon$ . In that case, choose N that satisfies  $|\overline{x}_N-\underline{x}_N|=2^{-N}(\overline{x}_0-\underline{x}_0)<\epsilon$ . Then for every  $n\geq N$ , since  $x_n'\in[\overline{x}_N,\underline{x}_N]$ :

$$|x'_n - x'_m| \le |\overline{x}_N - \underline{x}_N| = 2^{-N}(\overline{x}_0 - \underline{x}_0) < \epsilon,$$

which contradicts that  $|x_n' - x_m'| > \epsilon$ . Hence, the sequence must converge.


(b) Let  $\overline{x}$  be the limiting solution. Then,  $f'(x) \ge 0$  for  $x < \overline{x}$  and  $f'(x) \le 0$  for  $x > \overline{x}$ . Suppose now that there exists an  $\widehat{x}$  with  $f(\widehat{x}) > f(\overline{x})$  so that  $\overline{x}$  is not a global maximum.

Case 1:  $\widehat{x} > \overline{x}$ . By the Mean Value Theorem, there exists a z such that  $\widehat{x} > z > \overline{x}$  and  $f(\widehat{x}) - f(\overline{x}) = (\widehat{x} - \overline{x})f'(z) \le 0$ , so  $f(\widehat{x}) \le f(\overline{x})$ .

Case 2:  $\widehat{x} < \overline{x}$ . By the Mean Value Theorem, there exists a z such that  $\widehat{x} < z < \overline{x}$  and  $f(\overline{x}) - f(\widehat{x}) = (\overline{x} - \widehat{x})f'(z) \ge 0$ , so  $f(\widehat{x}) \le f(\overline{x})$ .

Both cases give rise to a contradiction, so  $\overline{x}$  must be a global maximum.

- (c) The argument is the same as the one in part (b). Observe that z that is chosen between  $\widehat{x}$  and  $\overline{x}$  remains in the region where f is concave and the values  $\overline{x}_0$  and  $\underline{x}_0$  are given as lower and upper bounds on the same global maximum.
- (d) In the example illustrated in the graph below, the bisection method converges to  $\overline{x}$  rather than to  $x^*$ , which is the global maximum.



(e) Suppose f'(x) < 0 for all x and  $\widehat{x}$  is a global maximum. Then, by the Mean Value Theorem, there exists a z such that  $\widehat{x} > z > x$  and  $f(\widehat{x}) - f(x) = (\widehat{x} - x)f'(z) < 0$ , so  $f(x) = f(\widehat{x}) - (\widehat{x} - x)f'(z) > f(\widehat{x})$ . The objective function value can be strictly increased by choosing smaller x values at any given point, so there exists no lower bound  $\underline{x}_0$  on the global maximum, there is no global maximum indeed.

Suppose f'(x) > 0 for all x and  $\widehat{x}$  is a global maximum. Then, by the Mean Value Theorem, there exists a z such that  $x > z > \widehat{x}$  and  $f(x) - f(\widehat{x}) = (x - \widehat{x})f'(z) > 0$ , so  $f(x) = f(\widehat{x}) + (x - \widehat{x})f'(z) > f(\widehat{x})$ . The objective function value can be strictly increased by choosing larger x values at any given point, so there exists no upper bound  $\overline{x}_0$  on the global maximum, there is no global maximum indeed.

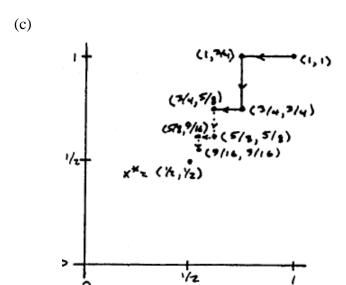
(f) Suppose f(x) is concave and there exists a lower bound  $\underline{x}_0$  on the global maximum. In this case,  $f'(\underline{x}_0) \geq 0$ , but f'(x) is monotone decreasing, so for  $x < \underline{x}_0$ ,  $f'(x) \geq 0$ . Hence,  $\lim_{x \to -\infty} f'(x) \geq 0$ , so if  $\lim_{x \to -\infty} f'(x) < 0$ , there cannot be an  $\underline{x}_0$ .

Suppose f(x) is concave and there exists an upper bound  $\overline{x}_0$  on the global maximum. In this case,  $f'(\overline{x}_0) \leq 0$ , but f'(x) is monotone decreasing, so for  $x > \overline{x}_0$ ,  $f'(x) \leq 0$ . Hence,  $\lim_{x \to \infty} f'(x) \leq 0$ , so if  $\lim_{x \to -\infty} f'(x) > 0$ , there cannot be an  $\overline{x}_0$ .

In either case, there is no global maximum, since one of the bounds does not exist.

### 12.4-7.

$$f(\boldsymbol{x}) = f_1(x_1) + f_2(x_2)$$
where  $f_1(x_1) = 32x_1 - x_1^4$  and  $f_2(x_2) = 50x_2 - 10x_2^2 + x_2^3 - x_2^4$ .
$$\frac{df_1(x_1)}{dx_1} = 32 - 4x_1^3 = 0 \Leftrightarrow x_1 = 2, f_1(2) = 48$$


Bisection method with  $\epsilon = 0.001$  and initial bounds 0 and 4 applied to  $f_2(x_2)$  gives  $x_2 = 1.8076$  and  $f_2(1.8076) = 52.936$ , so f(2, 1.8076) = 100.936.

$$3x_1 + x_2 = 7.8076 < 11$$
 and  $2x_1 + 5x_2 = 13.038 < 16$ 

Since the optimal solution for the unconstrained problem is in the interior of the feasible region for the constrained problem, it is also optimal for the constrained problem.

## 12.5-1.

(b) 
$$-2x_1 + 2x_2 = 0$$
 and  $-2x_1 + 4x_2 = 1 \Rightarrow x_1 = x_2 = 0.5$  is optimal.



(d) Solution:  $(x_1, x_2) = (0.508, 0.504)$ , grad  $f(x_1, x_2) = (-8e - 3, 6e - 8)$ 

### 12.5-2.

Automatic Gradient Search Procedure:

Initial trial solution: (X1, X2) = (1, 1).

$$Max f(X1,X2) = 60 X1X2 - 15 X1^2 - 80 X2^2$$

Error Tolerance:

$$abs(df/dXj) <= 0.01$$

Final solution: (X1, X2) = (0.0006, 0.0002)

Final gradient = (-0.004, -0.001)

Solution:  $(x_1, x_2) = (0.005, 0.003)$ , grad  $f(x_1, x_2) = (-7e - 3, 3e - 8)$ 

 $\nabla f = (-30x_1 + 60x_2, 60x_1 - 160x_2) = 0 \Leftrightarrow (x_1, x_2) = (0, 0)$  is optimal.

### 12.5-3.

Solution: 
$$(x_1, x_2) = (1.997, -2)$$
, grad  $f(x_1, x_2) = (0.002, 0.001)$ 

$$\nabla f = (-2x_1 + 2x_2 + 8, 2x_1 - 4x_2 - 12) = 0 \Leftrightarrow (x_1, x_2) = (2, -2)$$
 is optimal.

### 12.5-4.

Solution: 
$$(x_1, x_2) = (1.994, 0.989)$$
, grad  $f(x_1, x_2) = (0.003, 0.01)$ 

$$\nabla f = (-4x_1 + 2x_2 + 6, 2x_1 - 2x_2 - 2) = 0 \Leftrightarrow (x_1, x_2) = (2, 1)$$
 is optimal.

## 12.5-5.

| Iter.                                                                        | $\underline{x}_n$                                     | $\nabla f(\underline{x}_n)$ | $f(\underline{x}_n + \nabla f(\underline{x}_n))$ | Iter. | t'  | f(t) |  |  |  |
|------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|--------------------------------------------------|-------|-----|------|--|--|--|
| 1                                                                            | (0,0)                                                 | (4, 2)                      | $20t - 26t^2 - 256t^4$                           | 1     | 0.5 | -144 |  |  |  |
|                                                                              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                             |                                                  |       |     |      |  |  |  |
|                                                                              | $t^* = 0.125$                                         |                             |                                                  |       |     |      |  |  |  |
| $\Rightarrow x + t^* \nabla f(x) = (0.5, 0.25)$ is the approximate solution. |                                                       |                             |                                                  |       |     |      |  |  |  |

### 12.5-6.

(a) 
$$f(\mathbf{x}) = f_1(x_1, x_2) + f_2(x_2, x_3)$$

where 
$$f_1(x_1, x_2) = 3x_1x_2 - x_1^2 - 3x_2^2$$
 and  $f_2(x_2, x_3) = 3x_2x_3 - x_3^2 - 3x_2^2$ .

Note that  $f_1(x_3, x_2) = f_2(x_2, x_3)$ , so for any given  $x_2$ , the maximizers of  $f_1$  and  $f_2$  are the same, i.e.,  $x_1 = x_3$ . Hence, first maximize  $f_1$  (or  $f_2$ ) and obtain  $(x_1, x_2)$ . Then, set  $x_3 = x_1$  and  $f(\mathbf{x}) = 2f_1(x_1, x_2)$ .

(b)

| īt.l | Y 1            | grad f(X')     | X' + t[grad f(X')]       | t.*   | x'+t*[grad f]  |
|------|----------------|----------------|--------------------------|-------|----------------|
| 46.  | / 1 1)         | ( 1 -3)        | ( 1+ 1t, 1- 3t)          | 0.135 | (1.135,0.595)  |
| 1    | (1 125 0 505)  | (-0.49 -0.16)  | (1.14-0.49t, 0.59-0.16t) | 1.616 | (0.343, 0.336) |
| - 4  | (1.135,0.595)  | (-0.43,-0.10)  | (0.34+0.32t,0.34-0.99t)  | 0.135 | (0.387,0.202)  |
| 3    | (0.343, 0.336) | (0.323,-0.99)  | (0.39-0.17t, 0.2-0.05t)  | 1 427 | (0.144.0.131)  |
| 4    | (0.387, 0.202) | (-0.17, -0.05) | (0.14+ 0.1t, 0.13-0.35t) | 0 130 | (0.158,0.083)  |
| 5    | (0.144,0.131)  | (0.103,-0.35)  | (0.14+ 0.15,0.13-0.356)  | 1 261 | (0.130,0.005)  |
| 6    | (0.158,0.083)  | (-0.07,-0.02)  | (0.16-0.07t,0.08-0.02t)  | 1.361 | (0.063,0.036)  |
| 7    | (0.063,0.056)  | (0.042,-0.15)  | (0.06+0.04t,0.06-0.15t)  | 0.135 | (0.069,0.036)  |

Final Solution:  $(x_1, x_2) = (0.069, 0.036) \Rightarrow (x_1, x_2, x_3) = (0.069, 0.036, 0.069)$  is an approximate solution.

(c) Solution: 
$$(x_1, x_2) = (0.004, 0.002)$$
, grad  $f(x_1, x_2) = (-2e - 3, 6e - 4)$ 

### 12.5-7.

Solution:  $(x_1, x_2) = (0.996, 1.998)$ , grad  $f(x_1, x_2) = (0.006, -2e - 8)$ 

## 12.6-1.

KKT conditions: 
$$(1) -4x^3 - 2x + 4 - u \le 0$$

$$(2) x(-4x^3 - 2x + 4 - u) = 0$$

$$(3) x - 2 \le 0$$

$$(4) u(x - 2) = 0$$

$$(5) x \ge 0$$

$$(6) u \ge 0$$

If x = 2, from (2),  $-4x^3 - 2x + 4 - u = 0$ , so u = -32, which violates (6). Hence,  $x \neq 2$ , then from (4), u = 0. From (2), either x = 0 or  $-4x^3 - 2x + 4 = 0$ . In the former case, (1) is violated, so the latter equality must hold. This gives

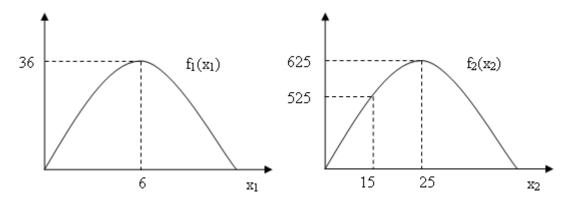
$$x = \sqrt[3]{\frac{1}{2} + \sqrt{\frac{55}{216}}} + \sqrt[3]{\frac{1}{2} - \sqrt{\frac{55}{216}}} = 0.83512.$$

## 12.6-2.

If  $x = (1/\sqrt{2}, 1/\sqrt{2})$ , from (2a),  $u = 1/\sqrt{2}$ . This solution satisfies all KKT conditions, so it is optimal.

### 12.6-3.

KKT conditions: 
$$(1a) -4x_1^3 - 4x_1 - 2x_2 + 2u_1 + u_2 \le 0$$
 
$$(2a) \ x_1(-4x_1^3 - 4x_1 - 2x_2 + 2u_1 + u_2) = 0$$
 
$$(1b) \ -2x_1 - 8x_2 + u_1 + 2u_2 \le 0$$
 
$$(2b) \ x_2(-2x_1 - 8x_2 + u_1 + 2u_2) = 0$$
 
$$(3a) \ 2x_1 + x_2 \ge 10$$
 
$$(4a) \ u_1(-2x_1 - x_2 + 10) = 0$$
 
$$(3b) \ x_1 + 2x_2 \ge 10$$
 
$$(4b) \ u_2(-x_1 - 2x_2 + 10) = 0$$
 
$$(5) \ x_1 \ge 0, x_2 \ge 0$$
 
$$(6) \ u_1 \ge 0, u_2 \ge 0$$


If x = (0, 10), from (2b),  $u_1 + 2u_2 = 80$  and from (4b),  $u_2 = 0$ , so  $u_1 = 80$ . This solution violates (1a), so it is not optimal.

### 12.6-4.

(a) KKT conditions: 
$$(1a) 12 - 2x_1 - u_1 \le 0$$
  $(2a) x_1(12 - 2x_1 - u_1) = 0$   $(2b) x_2(50 - 2x_2 - u_2) = 0$   $(3a) x_1 \le 10$   $(3b) x_2 \le 15$   $(4a) u_1(x_1 - 10) = 0$   $(5) x_1 \ge 0, x_2 \ge 0$   $(6) u_1 > 0, u_2 > 0$ 

Consider  $x_1 = 10$ . From (2a),  $u_1 = -8$ , which violates (6). Hence,  $u_1 = 0$ . The constraint (1a) together with (2a) implies  $x_1 = 6$ . Also, let  $x_2 = 15$ . From (2b),  $u_2 = 20$ . This solution satisfies all the conditions and since this is a convex programming problem,  $(x_1, x_2) = (6, 15)$  is optimal.

(b) Subproblem 1: maximize  $f_1(x_1) = 12x_1 - x_1^2$  subject to  $0 \le x_1 \le 10$ Subproblem 2: maximize  $f_2(x_2) = 50x_2 - x_2^2$  subject to  $0 \le x_1 \le 15$ 



$$\frac{\partial f_1(\boldsymbol{x}_1)}{\partial x_1}=12-2x_1=0$$
 at  $x_1=6$  and  $\frac{\partial^2 f_1(\boldsymbol{x}_1)}{\partial x_1^2}=-2<0 \Rightarrow x_1=6$  is a global maximizer

 $\frac{\partial f_2(x_2)}{\partial x_2} = 50 - 2x_2 > 0$  for all  $0 \le x_2 \le 15 \Rightarrow x_2 = 15$  is the maximizer over the feasible region.

#### 12.6-5.

(a) 
$$\frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} = -\frac{1}{(x_1+1)^2} \le 0$$
 for all  $(x_1, x_2)$  such that  $x_1 \ne -1$  
$$\frac{\partial^2 f(\mathbf{x})}{\partial x_2^2} = -2 \le 0$$
 for all  $(x_1, x_2)$  
$$\frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} \frac{\partial^2 f(\mathbf{x})}{\partial x_2^2} - \left[\frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2}\right]^2 = \frac{2}{(x_1+1)^2} \ge 0$$
 for all  $(x_1, x_2)$  such that  $x_1 \ne -1$   $\Rightarrow f$  is concave.

Since also  $g(\mathbf{x}) = x_1 + 2x_2 - 3$  is linear, this is a convex programming problem.

(b) KKT conditions: 
$$(1a) \, \frac{1}{(x_1+1)} - u \leq 0 \qquad \qquad (1b) \, -2x_2 - 2u \leq 0$$
 
$$(2a) \, x_1 \Big( \frac{1}{(x_1+1)} - u \Big) = 0 \qquad \qquad (2b) \, x_2 (-2x_2 - 2u) = 0$$
 
$$(3) \, x_1 + 2x_2 \leq 3 \qquad \qquad (4) \, u(x_1 + 2x_2 - 3) = 0$$
 
$$(5) \, x_1 \geq 0, x_2 \geq 0$$
 
$$(6) \, u \geq 0$$

Consider  $u \neq 0$ . From (4),  $x_1 + 2x_2 = 3$ . Let  $x_2 = 0$ . Then,  $x_1 = 3$  and from (2a), u = 0.25. This satisfies all the conditions, so  $(x_1, x_2) = (3, 0)$  is optimal.

(c) Since  $-x_2^2$  is monotonically strictly decreasing in  $x_2 \ge 0$  and  $\ln(x_1 + 1)$  is monotonically strictly increasing in  $x_1 \ge 0$ , it is intuitively clear that one would like to increase  $x_1$ 

and decrease  $x_2$  towards 0 as much as possible, in order to maximize the objective function. Let  $\mathcal{F}$  denote the set of feasible points. Then,

$$\max_{x_1} \left[ \min_{x_2} \mathcal{F} \right] = \min_{x_2} \left[ \max_{x_1} \mathcal{F} \right] = \{(3,0)\}.$$

Hence, the solution (3,0) makes intuitive sense.

#### **12.6-6.**

For  $(x_1, x_2) = (1, 2)$ , from (2b), u = 0 and this violates (2a), so (1, 2) is not optimal.

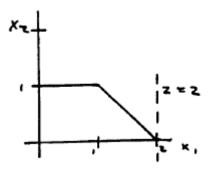
#### 12.6-7.

(a) KKT conditions: 
$$(1a) \frac{1}{(x_2+1)} - u \le 0$$
 
$$(2a) x_1 \left(\frac{1}{(x_2+1)} - u\right) = 0$$
 
$$(2b) x_2 \left(-\frac{x_1}{(x_2+1)^2} + u\right) = 0$$
 
$$(3) x_1 - x_2 \le 2$$
 
$$(4) u(x_1 - x_2 - 2) = 0$$
 
$$(5) x_1 \ge 0, x_2 \ge 0$$
 
$$(6) u > 0$$

For  $(x_1, x_2) = (4, 2)$ , from (2a), u = 1/3 and this violates (2b), so (4, 2) is not optimal.

(b) Try  $x_2 = 0$  and  $u \neq 0$ . From (4),  $x_1 = 2$  and from (2a), u = 1. This solution satisfies all the conditions, so  $(x_1, x_2) = (2, 0)$  is optimal.

(c) 
$$\frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} = 0$$
,  $\frac{\partial^2 f(\mathbf{x})}{\partial x_2^2} = \frac{2x_1}{(x_2+1)^2} \ge 0$ ,  $\frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} = -\frac{1}{(x_2+1)^2} \le 0$  for all  $x_1 \ge 0, x_2 \ge 0$ 


Thus, f is not concave and this is not a convex programming problem.

(d) The function  $f(\mathbf{x})$  is monotonically strictly increasing in  $x_1$  and monotonically strictly decreasing in  $x_2$  if  $x_2 > -1$ . Any optimal solution in a bounded feasible region with  $x_2 > -1$  will have  $x_1$  increased as much as possible and  $x_2$  decreased toward -1 as much as possible. The feasible region of the problem allows  $x_1$  to be increased without bound. However, then  $x_2$  can only be decreased to the line  $x_1 - x_2 = 2$ .

$$f(x_2+2,x_2) = \frac{x_2+2}{x_2+1} \to 1 \text{ as } x_2 \to \infty \text{ and } f(x_2+2,x_2) = 2 \text{ at } x_2 = 0$$

Conversely, if  $x_2$  is decreased to 0,  $x_1$  can be increased to  $x_1 = 2$ . Hence, the optimal solution is  $(x_1, x_2) = (2, 0)$ .

(e) maximize 
$$x_1$$
  $\Leftrightarrow$  maximize  $x_1$  subject to  $x_1-x_2-2t \leq 0$  subject to  $x_1+x_2 \leq 2$   $x_2+t=1$   $x_1,x_2,t \geq 0$   $x_1,x_2 \geq 0$ 



 $(x_1, x_2) = (2, 0)$  is optimal.

# 12.6-8.

(a) KKT conditions: 
$$(1a)\ 1-u \le 0 \qquad (1b)\ 2-3x_2^2-u \le 0 \\ (2a)\ x_1(1-u)=0 \qquad (2b)\ x_2(2-3x_2^2-u)=0 \\ (3)\ x_1+x_2 \le 1 \\ (4)\ u(x_1+x_2-1)=0 \\ (5)\ x_1 \ge 0, x_2 \ge 0 \\ (6)\ u \ge 0$$

The solution  $(x_1, x_2, u) = (1 - 1/\sqrt{3}, 1/\sqrt{3}, 1)$  satisfies all the conditions. Since this is a convex programming problem,  $(1 - 1/\sqrt{3}, 1/\sqrt{3})$  is optimal.

(a) KKT conditions: 
$$(1a)\ 20-2u_1x_1-u_2\leq 0 \qquad (1b)\ 10-2u_1x_1-2u_2\leq 0 \\ (2a)\ x_1\big(20-2u_1x_1-u_2\big)=0 \qquad (2b)\ x_2\big(10-2u_1x_1-2u_2\big)=0 \\ (3a)\ x_1^2+x_2^2\leq 1 \qquad \qquad (3b)\ x_1+2x_2\leq 2 \\ (4a)\ u_1\big(x_1^2+x_2^2-1\big)=0 \qquad (4b)\ u_2\big(x_1+2x_2-2\big)=0 \\ (5)\ x_1\geq 0, x_2\geq 0 \\ (6)\ u_1\geq 0, u_2\geq 0$$

The solution  $(x_1, x_2, u) = (2/\sqrt{5}, 1/\sqrt{5}, 5\sqrt{5}, 0)$  satisfies all the conditions. Since this is a convex programming problem,  $(2/\sqrt{5}, 1/\sqrt{5})$  is optimal.

#### 12.6-9.

minimize 
$$f(\boldsymbol{x})$$
 subject to  $g_i(\boldsymbol{x}) \geq b_i$  for  $i=1,2,\ldots,m$   $\boldsymbol{x} \geq \boldsymbol{0}$   $\Leftrightarrow$  maximize  $-f(\boldsymbol{x})$  subject to  $-g_i(\boldsymbol{x}) \leq -b_i$  for  $i=1,2,\ldots,m$   $\boldsymbol{x} \geq \boldsymbol{0}$  KKT conditions:  $(1) \sum_{i=1}^m u_i \frac{\partial g_i(\boldsymbol{x})}{\partial x_j} - \frac{\partial f(\boldsymbol{x})}{\partial x_j} \leq 0$  for  $j=1,2,\ldots,n$   $(2) x_j \left(\sum_{i=1}^m u_i \frac{\partial g_i(\boldsymbol{x})}{\partial x_j} - \frac{\partial f(\boldsymbol{x})}{\partial x_j}\right) = 0$  for  $j=1,2,\ldots,n$   $(3) g_i(\boldsymbol{x}) \geq b_i$  for  $i=1,2,\ldots,m$   $(4) u_i(b_i-g_i(\boldsymbol{x})) = 0$  for  $i=1,2,\ldots,m$   $(5) x_j \geq 0$  for  $j=1,2,\ldots,n$   $(6) u_i \geq 0$  for  $i=1,2,\ldots,m$ 

#### 12.6-10.

(a) An equivalent nonlinear programming problem is:

maximize 
$$Z = -2x_1^2 - x_2^2$$
  
subject to  $x_1 + x_2 \le 10$   
 $-x_1 - x_2 \le -10$   
 $x_1, x_2 > 0$ .

This problem can be fitted to the following problems.

- Linearly Constrained Optimization Problem: All constraints are linear.
- Quadratic Programming Problem: All constraints are linear and the objective function involves only the squares of the variables.
- Convex Programming Problem: The objective function is concave and all constraints are linear.

$$\frac{\partial^2 f(\boldsymbol{x})}{\partial x_1^2} \frac{\partial^2 f(\boldsymbol{x})}{\partial x_2^2} - \left[ \frac{\partial^2 f(\boldsymbol{x})}{\partial x_1 \partial x_2} \right]^2 = (-4)(-2) - 0 = 8 \ge 0 \Rightarrow f \text{ is concave.}$$

- Geometric Programming Problem:

$$\begin{split} f(x_1,x_2) &= c_1 P_1(x_1,x_2) + c_2 P_2(x_1,x_2) \\ \text{with } c_1 &= -2, \, c_2 = -1, \, P_1(x_1,x_2) = x_1^2 \text{ and } P_2(x_1,x_2) = x_2^2 \\ g_1(x_1,x_2) &= c_1 P_1(x_1,x_2) + c_2 P_2(x_1,x_2) \\ \text{with } c_1 &= c_2 = 1, \, P_1(x_1,x_2) = x_1 \text{ and } P_2(x_1,x_2) = x_2 \\ g_2(x_1,x_2) &= c_1 P_1(x_1,x_2) + c_2 P_2(x_1,x_2) \\ \text{with } c_1 &= c_2 = -1, \, P_1(x_1,x_2) = x_1 \text{ and } P_2(x_1,x_2) = x_2 \end{split}$$

- Fractional Programming Problem:

$$f(x_1,x_2)=rac{f_1(x_1,x_2)}{f_2(x_1,x_2)}$$
 with  $f_1(x_1,x_2)=-2x_1^2-x_2^2$  and  $f_2(x_1,x_2)=1$ 

(b) KKT conditions: 
$$(1a) -4x_1 - u_1 + u_2 \le 0$$
 
$$(2a) x_1(-4x_1 - u_1 + u_2) = 0$$
 
$$(1b) -2x_2 - u_1 + u_2 \le 0$$
 
$$(2b) x_2(-2x_2 - u_1 + u_2) = 0$$
 
$$(3a) x_1 + x_2 - 10 \le 0$$
 
$$(4a) u_1(x_1 + x_2 - 10) = 0$$
 
$$(3b) -x_1 - x_2 + 10 \le 0$$
 
$$(4b) u_2(-x_1 - x_2 + 10) = 0$$
 
$$(5) x_1 \ge 0, x_2 \ge 0$$
 
$$(6) u_1 \ge 0, u_2 \ge 0$$

(c) From (3a) and (3b),  $x_1 + x_2 = 10$ , so (4a) and (4b) are automatically satisfied. Try  $x_1, x_2 \neq 0$ . Then, (2a) and (2b) give  $-4x_1 - u_1 + u_2 = -2x_2 - u_1 + u_2 = 0$ , so  $x_2 = 2x_1$ . Since  $x_1 + x_2 = 10$ ,  $x_1 = 10/3$  and  $x_2 = 20/3$ . From (2a),  $-u_1 + u_2 = 40/3$ . Let  $u_1 = 0$  and  $u_2 = 40/3$ . Indeed, any  $(u_1, u_2) = (c, c + 40/3)$  with  $c \geq 0$  works. This solution satisfies all the conditions, so  $(x_1, x_2) = (10/3, 20/3)$  is optimal.

#### 12.6-11.

(a) An equivalent nonlinear programming problem is:

maximize 
$$f(\boldsymbol{y}) = -(y_1+1)^3 - 4(y_2+1)^2 - 16(y_3+1)$$
 subject to 
$$y_1+y_2+y_3 \leq 2$$
 
$$-y_1-y_2-y_3 \leq -2$$
 
$$y_1,y_2,y_3 \geq 0.$$

- (b) KKT conditions:  $(1a) -3(y_1+1)^2 u_1 + u_2 \leq 0$   $(2a) \ y_1(-3(y_1+1)^2 u_1 + u_2) = 0$   $(1b) -8(y_2+1) u_1 + u_2 \leq 0$   $(2b) \ y_2(-8(y_2+1) u_1 + u_2) = 0$   $(1c) -16 u_1 + u_2 \leq 0$   $(2c) \ y_3(-16 u_1 + u_2) = 0$   $(3a) \ y_1 + y_2 + y_3 \leq 2$   $(4a) \ u_1(y_1 + y_2 + y_3 2) = 0$   $(3b) -y_1 y_2 y_3 \leq -2$   $(4b) \ u_2(-y_1 y_2 y_3 + 2) = 0$   $(5) \ y_1 \geq 0, y_2 \geq 0, y_3 \geq 0$   $(6) \ u_1 \geq 0, u_2 \geq 0$
- (c) If  $\mathbf{x} = (2, 1, 2)$ ,  $\mathbf{y} = (1, 0, 1)$ . From (2a),  $-u_1 + u_2 = 12$ , which contradicts (2c), so  $\mathbf{x} = (2, 1, 2)$  is not optimal.

# 12.6-12.

(a) KKT conditions: 
$$(1a)\ 6-2x_1-u\le 0 \\ (2a)\ x_1(6-2x_1-u)=0 \\ (3)\ x_1+x_2\le 1 \\ (4)\ u(x_1+x_2-1)=0 \\ (5)\ x_1\ge 0, x_2\ge 0 \\ (6)\ u\ge 0$$
 (1b)  $3-3x_2^2-u\le 0 \\ (2b)\ x_2(3-3x_2^2-u)=0$ 

- (b) For  $\mathbf{x} = (1/2, 1/2)$ , (2a) gives u = 5, which violates (2b), so this point is not optimal.
- (c)  $(x_1, x_2, u) = (1, 0, 4)$  satisfies all the conditions and since this is a convex programming problem, (1, 0) is optimal.

#### 12.6-13.

(a) KKT conditions:

(1a) 
$$8-2x_1-u\leq 0$$
 (1b)  $2-3u\leq 0$  (1c)  $1-2u\leq 0$  (2a)  $x_1(8-2x_1-u)=0$  (2b)  $x_2(2-3u)=0$  (2c)  $x_3(1-2u)=0$  (3)  $x_1+3x_2+2x_3\leq 12$  (4)  $u(x_1+3x_2+2x_3-12)=0$  (5)  $x_1\geq 0, x_2\geq 0, x_3\geq 0$  (6)  $u\geq 0$ 

For  $\mathbf{x} = (2, 2, 2)$ , (2a) gives u = 4, which violates (2b) and (2c), so it is not optimal.

(b)  $(x_1, x_2, x_3, u) = (11/3, 25/9, 0, 2/3)$  satisfies all the conditions and since this is a convex programming problem, (11/3, 25/9, 0) is optimal.

# 12.6-14.

KKT conditions:

$$\begin{array}{lll} (1a) -2 + 2x_1 u \leq 0 & (1b) -3x_2^2 + 4x_2 u \leq 0 & (1c) -2x_3 + 2x_3 u \leq 0 \\ (2a) \ x_1(-2 + 2x_1 u) = 0 & (2b) \ x_2(-3x_2^2 + 4x_2 u) = 0 & (2c) \ x_3(-2x_3 + 2x_3 u) = 0 \\ (3) \ x_1^2 + 2x_2^2 + x_3^2 \geq 4 & \\ (4) \ u(4 - x_1^2 - 2x_2^2 - x_3^2) = 0 & \\ (5) \ x_1 \geq 0, x_2 \geq 0, x_3 \geq 0 \\ (6) \ u \geq 0 & \end{array}$$

For  $\boldsymbol{x} = (1, 1, 1)$ , (2a) gives u = 1, which violates (2b), so it is not optimal.

## 12.6-15.

KKT conditions: 
$$(1a) -4x_1^3 + 2x_1u \le 0 \qquad (1b) -4x_2 + 2x_2u \le 0$$
 
$$(2a) x_1(-4x_1^3 + 2x_1u) = 0 \qquad (2b) x_2(-4x_2 + 2x_2u) = 0$$
 
$$(3) -x_1^2 - x_2^2 + 2 \le 0$$
 
$$(4) u(-x_1^2 - x_2^2 + 2) = 0$$
 
$$(5) x_1 \ge 0, x_2 \ge 0$$
 
$$(6) u \ge 0$$

For  $\boldsymbol{x}=(1,1)$ , (2a) gives u=2, and this satisfies all the conditions, so (1,1) is optimal.

#### 12.6-16.

KKT conditions: 
$$(1a) \ 32 - 4x_1^3 - 3u_1 - 2u_2 \le 0$$
 
$$(2a) \ x_1(32 - 4x_1^3 - 3u_1 - 2u_2) = 0$$
 
$$(1b) \ 50 - 20x_2 + 3x_2^2 - 4x_2^3 - u_1 - 5u_2 \le 0$$
 
$$(2b) \ x_2(50 - 20x_2 + 3x_2^2 - 4x_2^3 - u_1 - 5u_2) = 0$$
 
$$(3a) \ 3x_1 + x_2 \le 11$$
 
$$(4a) \ u_1(3x_1 + x_2 - 11) = 0$$
 
$$(3b) \ 2x_1 + 5x_2 \le 16$$
 
$$(4b) \ u_2(2x_1 + 5x_2 - 16) = 0$$
 
$$(5) \ x_1 \ge 0, x_2 \ge 0$$
 
$$(6) \ u_1 \ge 0, u_2 \ge 0$$

For  $\mathbf{x} = (2, 2)$ , (4a) and (4b) give  $u_1 = u_2 = 0$ , and this violates (2b), so (2, 2) is not optimal.

# 12.7-1.

(a) 
$$\frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} = -4 < 0, \frac{\partial^2 f(\mathbf{x})}{\partial x_2^2} = -8 < 0, \frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} \frac{\partial^2 f(\mathbf{x})}{\partial x_2^2} - \left[\frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2}\right]^2 = 16 > 0$$

 $\Rightarrow$  f is strictly concave.

(b) 
$$x^T Q x = 4x_1^2 - 8x_1x_2 + 8x_2^2 = 4(x_1 - x_2)^2 + 4x_2^2 > 0$$
 for all  $(x_1, x_2) \neq (0, 0)$ 

 $\Rightarrow Q$  is positive definite.

(c) KKT conditions:

(1a) 
$$15 + 4x_2 - 4x_1 - u \le 0$$
 (1b)  $30 + 4x_1 - 8x_2 - 2u \le 0$  (2a)  $x_1(15 + 4x_2 - 4x_1 - u) = 0$  (2b)  $x_2(30 + 4x_1 - 8x_2 - 2u) = 0$  (3)  $x_1 + 2x_2 < 30$ 

$$(4) u(x_1 + 2x_2 - 30) = 0$$

(5) 
$$x_1 \ge 0, x_2 \ge 0$$

(6) 
$$u > 0$$

 $\boldsymbol{x} = (12, 9)$  with u = 3 satisfies all these conditions.

#### **12.7-2.**

(a) KKT conditions: 
$$(1a) 8 - 2x_1 - u \le 0$$
 
$$(2a) x_1(8 - 2x_1 - u) = 0$$
 
$$(2b) x_2(4 - 2x_2 - u) = 0$$
 
$$(3) x_1 + x_2 \le 2$$
 
$$(4) u(x_1 + x_2 - 2) = 0$$
 
$$(5) x_1 \ge 0, x_2 \ge 0$$
 
$$(6) u > 0$$

 $\mathbf{x} = (2,0)$  with u = 4 satisfies all these conditions. Since this is a convex programming problem, (2,0) is optimal.

(b) Objective function in vector notation:

maximize 
$$(8 ext{ } 4) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \frac{1}{2} (x_1 ext{ } x_2) \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Equivalent problem:

subject to

minimize 
$$z_1 + z_2$$
 subject to 
$$2x_1 + u - y_1 + z_1 = 8$$
 
$$2x_2 + u - y_2 + z_2 = 4$$
 
$$x_1 + x_2 + v = 2$$
 
$$x_1 \ge 0, x_2 \ge 0$$
 
$$y_1 \ge 0, y_2 \ge 0$$
 
$$u \ge 0, v \ge 0$$
 
$$z_1 > 0, z_2 > 0$$

Complementarity constraint:  $x_1y_1 + x_2y_2 + uv = 0$ 

(c)

Linear Programming Model:

Number of Decision Variables: 5

Number of Functional Constraints: 3

$$\text{Max Z} = 0 \text{ X1} + 0 \text{ X2} + 0 \text{ X3} - 1 \text{ X4} - 1 \text{ X5}$$

subject to

1) 
$$2 X1 + 0 X2 + 1 X3 + 1 X4 + 0 X5 >= 8$$

and

$$X1 >= 0$$
,  $X2 >= 0$ ,  $X3 >= 0$ ,  $X4 >= 0$ ,  $X5 >= 0$ .

| Bas Eq       |    |    | Co  | effic  | ient c  | f    |       |     | Right |
|--------------|----|----|-----|--------|---------|------|-------|-----|-------|
| Var No  Z    | X1 | X2 | XЗ  | X4     | X5      | X6   | X7    | X8  | side  |
| III          |    |    |     |        |         |      |       |     | _l    |
| 1 1 1        |    |    |     |        |         |      |       |     | 1     |
| Z   O  1     | -2 | -2 | -2  | 0      | 0       | 1    | 1     | 0   | -12   |
| X4  1  0     | 2  | 0  | 1   | 1      | 0       | -1   | 0     | 0   | 8     |
| X5  2  0     | 0  | 2  | 1   | 0      | 1       | 0    | -1    | 0   | 4     |
| X8  3  0     | 1* | 1  | 0   | 0      | 0       | 0    | 0     | 1   | 2     |
| Bas Eq       |    |    | Co  | peffic | ient o  | of   |       |     | Right |
| Var No  Z    | X1 | X2 | XЗ  | X4     | X5      | X6   | X7    | X8  | side  |
| III          |    |    |     |        |         |      |       |     | _1    |
|              |    |    |     |        |         |      |       |     | 1     |
| Z   O  1     | 0  | 0  | -2  | 0      | 0       | 1    | 1     | 2   | -8    |
| X4  1  0     | 0  | -2 | 1*  | 1      | 0       | -1   | 0     | -2  | 4     |
| X5  2  0     | 0  | 2  | 1   | 0      | 1       | 0    | -1    | 0   | 4     |
| X1  3  0     | 1  | 1  | 0   | 0      | 0       | 0    | 0     | 1   | ] 2   |
| Bas Eq       |    |    | Co  | oeffic | cient o | of   |       |     | Right |
| Var No  Z    | X1 | X2 | XЗ  | X4     | X5      | X6   | X7    | X8  | side  |
| iii          |    |    |     |        |         |      |       |     | i     |
|              |    |    |     |        |         |      |       |     | _ i   |
| Z   O  1     | 0  | -4 | 0   | 2      | 0       | -1   | 1     | -2  | 1 0   |
| X3  1  0     | 0  | -2 | 1   | 1      | 0       | -1   | 0     | -2  | 4     |
| X5  2  0     | 0  | 4* | 0   | -1     | 1       | 1    | -1    | 2   | 1 0   |
| X1  3  0     | 1  | 1  | 0   | 0      | 0       | 0    | 0     | 1   | 2     |
| Bas Eq       |    |    | Co  | effic  | eient o | of   |       |     | Right |
| Var No  Z    | X1 | X2 | хз  | X4     | X5      | X6   | Х7    | X8  | side  |
| 1 1 1        |    |    |     |        |         |      |       |     | i     |
|              |    |    |     |        |         |      |       |     | -i —— |
| Z   O  1     | 0  | 0  | 0   | 1      | 1       | 0    | 0     | 0   | i o   |
| X3  1  0     | 0  | 0  | 1   | 0.5    | 0.5     | -0.5 | -0.5  | -1  | 4     |
| X2  2  0     | 0  | 1  | 0 - | -0.25  | 0.25    |      | -0.25 | 0.5 | i o   |
| ****   0   0 |    | _  | _   | 0.00   | 0.00    | ~    | ~.~~  |     | _     |
| X1  3  0     | 1  | ō  | ō   |        | -0.25   |      | 0.25  | 0.5 | 2     |

Optimal Solution:  $(x_1, x_2) = (2, 0)$  with u = 4

(d) Excel Solver Solution:  $(x_1, x_2) = (2, 0)$ 

# 12.7-3.

(a) Objective function in vector notation:

maximize 
$$(250 ext{ } 100) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \frac{1}{2} (x_1 ext{ } x_2) \begin{pmatrix} 50 & -90 \\ -90 & 200 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Equivalent problem:

minimize 
$$z_1+z_2\\ \text{subject to} \qquad z_1+z_2\\ 50x_1-90x_2+20u_1+10u_2-y_1+z_1=250\\ -90x_1+200x_2+5u_1+10u_2-y_2+z_2=100\\ 20x_1+5x_2+v_1=90\\ 10x_1+10x_2+v_2=60\\ x_1\geq 0, x_2\geq 0\\ u_1\geq 0, u_2\geq 0\\ y_1\geq 0, y_2\geq 0\\ z_1\geq 0, z_2\geq 0 \end{cases}$$

Enforced complementarity constraint:  $x_1y_1 + x_2y_2 + u_1v_1 + u_2v_2 = 0$ 

# (b)

Linear Programming Model:

Number of Decision Variables: 6

Number of Functional Constraints: 4

subject to

| 1) | 50  | X1 | _ | 90  | Х2 | + | 20 | хз | + | 10 | Х4 | + | 1 | X5 | + | 0 | Х6 | >= | 250 |
|----|-----|----|---|-----|----|---|----|----|---|----|----|---|---|----|---|---|----|----|-----|
| 2) | -90 | X1 | + | 200 | Х2 | + | 5  | ХЗ | + | 10 | Х4 | + | 0 | X5 | + | 1 | X6 | >= | 100 |
| 3) | 20  | X1 | + | 5   | Х2 | + | 0  | ХЗ | + | 0  | Х4 | + | 0 | X5 | + | 0 | X6 | <= | 90  |
| 4) | 10  | X1 | + | 10  | Х2 | + | 0  | хз | + | 0  | X4 | + | 0 | X5 | + | 0 | X6 | <= | 60  |

and

X1 >= 0, X2 >= 0, X3 >= 0, X4 >= 0, X5 >= 0, X6 >= 0.

| Bas                                         | Eql                                                                                |                                       |                                  |                                  |                                                        | С                                                      | oeffic                                     | cient of                                               | Ē                       |                                                                         |                                          |                                                                                 | Right                                                                                                   |
|---------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------|--------------------------------------------------------|-------------------------|-------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Var                                         | Nol                                                                                | Ζļ                                    | X1                               | X2                               | XЗ                                                     | Х4                                                     | X5                                         | Х6                                                     | Х7                      | X8                                                                      | X9                                       | X10                                                                             | side                                                                                                    |
| —¦                                          | -¦                                                                                 | ¦                                     |                                  |                                  |                                                        |                                                        |                                            |                                                        |                         |                                                                         |                                          |                                                                                 | !                                                                                                       |
| Z                                           |                                                                                    | 1                                     | 40                               | -110                             | -25                                                    | -20                                                    | 0                                          | 0                                                      | 1                       | 1                                                                       | 0                                        | 0                                                                               | <br>  -350                                                                                              |
| X5                                          | 1                                                                                  | οį                                    | 50                               | -90                              | 20                                                     | 10                                                     | 1                                          | 0                                                      | -1                      | 0                                                                       | 0                                        | 0                                                                               | 250                                                                                                     |
| X6                                          | 2                                                                                  | 0                                     | -90                              | 2001                             | 5                                                      | 10                                                     | 0                                          | 1                                                      | 0                       | -1                                                                      | 0                                        | 0                                                                               | 100                                                                                                     |
| X9                                          |                                                                                    | 0                                     | 20                               | 5                                | 0                                                      | 0                                                      | 0                                          | 0                                                      | 0                       | 0                                                                       | 1                                        | 0                                                                               | 90                                                                                                      |
| X10                                         | 4                                                                                  | 01                                    | 10                               | 10                               | 0                                                      | 0                                                      | 0                                          | 0                                                      | 0                       | 0                                                                       | 0                                        | 1                                                                               | 60                                                                                                      |
| Bas                                         | Eql                                                                                |                                       |                                  |                                  |                                                        | С                                                      | oeffic                                     | cient of                                               | £                       |                                                                         |                                          |                                                                                 | Right                                                                                                   |
| Var                                         | No l                                                                               | ΖĮ                                    | X1                               | X2                               | XЗ                                                     | X4                                                     | X5                                         | X6                                                     | X7                      | X8                                                                      | Х9                                       | X10                                                                             | side                                                                                                    |
| I                                           | 1                                                                                  | I                                     |                                  |                                  |                                                        |                                                        |                                            |                                                        |                         |                                                                         |                                          |                                                                                 | l                                                                                                       |
|                                             |                                                                                    | - 1                                   |                                  |                                  |                                                        |                                                        |                                            |                                                        |                         |                                                                         |                                          |                                                                                 |                                                                                                         |
| Z                                           |                                                                                    |                                       | -9.5                             |                                  | -22.2                                                  |                                                        | 0                                          | 0.55                                                   | 1                       |                                                                         | 0                                        | 0                                                                               | -295                                                                                                    |
| X5                                          |                                                                                    | 01                                    |                                  |                                  | 22.25                                                  | 14.5                                                   | 1                                          |                                                        |                         | -0.45                                                                   | 0                                        | 0                                                                               | 295                                                                                                     |
| X2                                          |                                                                                    |                                       | -0.45                            |                                  | 0.025                                                  | 0.05                                                   |                                            | 0.005                                                  |                         | -5e-3                                                                   | 0                                        | 0                                                                               | 0.5                                                                                                     |
| X9                                          |                                                                                    |                                       | 22.25                            |                                  | -0.12                                                  |                                                        |                                            | -0.02                                                  |                         | 0.025                                                                   | 1                                        | 0                                                                               | 87.5                                                                                                    |
| X10                                         | 4                                                                                  | υĮ                                    | 14.5*                            | U                                | -0.25                                                  | -0.5                                                   | 0                                          | -0.05                                                  | 0                       | 0.05                                                                    | 0                                        | 1                                                                               | 55                                                                                                      |
|                                             |                                                                                    |                                       |                                  |                                  |                                                        |                                                        |                                            |                                                        |                         |                                                                         |                                          |                                                                                 |                                                                                                         |
| Bas                                         | Eql                                                                                |                                       |                                  |                                  |                                                        | С                                                      | oeffic                                     | cient of                                               | £                       |                                                                         |                                          |                                                                                 | Right                                                                                                   |
| Bas <br>Var                                 |                                                                                    | ΖĮ                                    | X1                               | X2                               | ХЗ                                                     | C<br>X4                                                | oeffic<br>X5                               | cient of<br>X6                                         | £<br>X7                 | X8                                                                      | Х9                                       | X10                                                                             |                                                                                                         |
|                                             | Noi<br>!                                                                           | _į                                    | X1                               | Х2                               | Х3                                                     |                                                        |                                            |                                                        |                         | Х8                                                                      | Х9                                       | X10                                                                             |                                                                                                         |
| Var <br>                                    | No I                                                                               | _¦                                    |                                  |                                  |                                                        | X4                                                     | Х5                                         | Х6                                                     | Х7                      |                                                                         |                                          |                                                                                 | side<br>                                                                                                |
| Var <br> <br>Z                              | No <br> <br>_                                                                      | _ <br> <br> <br> 1                    |                                  | 0                                | -22.4                                                  | -14.8                                                  | X5<br>0                                    | X6<br>0.517                                            | 1                       | 0.483                                                                   | 0                                        | 0.655                                                                           | side<br>                                                                                                |
| Var <br> <br>Z  <br>X5                      | No <br> <br> <br> <br> <br> <br>                                                   | <br> <br> <br> <br>                   |                                  | 0                                | -22.4<br>22.41                                         | X4<br>-14.8<br>14.83                                   | X5<br>0<br>1                               | X6<br>0.517<br>0.483                                   | 1<br>-1                 | 0.483<br>-0.48                                                          | 0                                        | 0.655<br>-0.66                                                                  | side<br>                                                                                                |
| Var <br> <br>Z  <br>X5 <br>X2               | No <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br>                          | <br> <br>  1 <br>  0 <br>  0          | <br>0<br>0                       | 0<br>0<br>1                      | -22.4<br>22.41<br>0.017                                | -14.8<br>14.83<br>0.034                                | 0<br>1<br>0                                | 0.517<br>0.483<br>0.003                                | 1<br>-1<br>0            | 0.483<br>-0.48<br>-3e-3                                                 | 0                                        | 0.655<br>-0.66<br>0.031                                                         | side<br>                                                                                                |
| Var <br> <br>Z  <br>X5 <br>X2 <br>X9        | No <br> <br>0 <br>1 <br>2 <br>3                                                    | <br> <br>  1 <br>  0 <br>  0          | 0<br>0<br>0<br>0                 | 0<br>0<br>1                      | -22.4<br>22.41<br>0.017<br>0.259                       | -14.8<br>14.83<br>0.034<br>0.517*                      | 0<br>1<br>0                                | X6<br>0.517<br>0.483<br>0.003<br>0.052                 | 1<br>-1<br>0            | 0.483<br>-0.48<br>-3e-3                                                 | 0<br>0<br>0                              | 0.655<br>-0.66<br>0.031<br>-1.53                                                | side<br>                                                                                                |
| Var <br> <br>Z  <br>X5 <br>X2 <br>X9        | No <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br>                          | <br> <br>  1 <br>  0 <br>  0          | 0<br>0<br>0<br>0                 | 0<br>0<br>1                      | -22.4<br>22.41<br>0.017                                | -14.8<br>14.83<br>0.034<br>0.517*                      | 0<br>1<br>0                                | 0.517<br>0.483<br>0.003                                | 1<br>-1<br>0            | 0.483<br>-0.48<br>-3e-3                                                 | 0<br>0<br>0                              | 0.655<br>-0.66<br>0.031                                                         | side<br>                                                                                                |
| Var <br> <br>Z  <br>X5 <br>X2 <br>X9        | No <br> <br>0 <br>1 <br>2 <br>3 <br>4                                              | <br> <br>  1 <br>  0 <br>  0          | 0<br>0<br>0<br>0                 | 0<br>0<br>1                      | -22.4<br>22.41<br>0.017<br>0.259                       | -14.8<br>14.83<br>0.034<br>0.517*                      | X5<br>0<br>1<br>0<br>0                     | X6<br>0.517<br>0.483<br>0.003<br>0.052                 | 1<br>-1<br>0<br>0       | 0.483<br>-0.48<br>-3e-3                                                 | 0<br>0<br>0                              | 0.655<br>-0.66<br>0.031<br>-1.53<br>0.069                                       | side<br>                                                                                                |
| Var <br> <br>Z  <br>X5 <br>X2 <br>X9 <br>X1 | No <br> <br>0 <br>1 <br>2 <br>3 <br>4                                              | <br> <br>  1 <br>  0 <br>  0          | 0<br>0<br>0<br>0                 | 0<br>0<br>1                      | -22.4<br>22.41<br>0.017<br>0.259                       | -14.8<br>14.83<br>0.034<br>0.517*                      | X5<br>0<br>1<br>0<br>0                     | 0.517<br>0.483<br>0.003<br>0.052<br>-3e-3              | 1<br>-1<br>0<br>0       | 0.483<br>-0.48<br>-3e-3                                                 | 0<br>0<br>0                              | 0.655<br>-0.66<br>0.031<br>-1.53<br>0.069                                       | side<br> <br>  -259<br>  259<br>  2.207<br>  3.103<br>  3.793<br>  Right                                |
| Var                                         | No <br> <br>0 <br>1 <br>2 <br>3 <br>4                                              | <br>1 <br>0 <br>0 <br>0               | 0<br>0<br>0<br>0                 | 0<br>0<br>1<br>0                 | -22.4<br>22.41<br>0.017<br>0.259<br>-0.02              | -14.8<br>14.83<br>0.034<br>0.517*<br>-0.03             | X5<br>0<br>1<br>0<br>0<br>0                | 0.517<br>0.483<br>0.003<br>0.052<br>-3e-3              | 1<br>-1<br>0<br>0       | 0.483<br>-0.48<br>-3e-3<br>-0.05<br>0.003                               | 0<br>0<br>0<br>1                         | 0.655<br>-0.66<br>0.031<br>-1.53<br>0.069                                       | side<br> <br>  -259<br>  259<br>  2.207<br>  3.103<br>  3.793<br>  Right                                |
| Var   Z   X5  X2  X9  X1  Bas  Var          | No                                                                                 | <br>1 <br>0 <br>0 <br>0 <br>2 <br>    | 0<br>0<br>0<br>0<br>1            | 0<br>0<br>1<br>0<br>0            | -22.4<br>22.41<br>0.017<br>0.259<br>-0.02              | -14.8<br>14.83<br>0.034<br>0.517*<br>-0.03             | X5<br>0<br>1<br>0<br>0<br>0<br>o<br>peffic | X6  0.517  0.483  0.003  0.052  -3e-3  eient of        | 1 -1 0 0 0 0 x7         | 0.483<br>-0.48<br>-3e-3<br>-0.05<br>0.003                               | 0<br>0<br>0<br>1<br>0                    | 0.655<br>-0.66<br>0.031<br>-1.53<br>0.069                                       | side<br>                                                                                                |
| Var                                         | No                                                                                 | 1   1   0   0   0   0   0   0   1   1 | 0<br>0<br>0<br>0<br>1<br>X1      | 0<br>0<br>1<br>0<br>0            | -22.4<br>22.41<br>0.017<br>0.259<br>-0.02              | -14.8<br>14.83<br>0.034<br>0.517*<br>-0.03             | X5  0 1 0 0 0 ceffic                       | X6  0.517 0.483 0.003 0.052 -3e-3 cient of X6          | 1 -1 0 0 0 0 x7         | 0.483<br>-0.48<br>-3e-3<br>-0.05<br>0.003                               | 0<br>0<br>0<br>1<br>0<br>X9              | 0.655<br>-0.66<br>0.031<br>-1.53<br>0.069<br>X10                                | side<br>  -259<br>  259<br>  2.207<br>  3.103<br>  3.793<br>  Right<br>  side                           |
| Var                                         | No <br> <br>0 <br>1 <br>2 <br>3 <br>4 <br>Eq <br>No <br> <br>0 <br>1               |                                       | 0<br>0<br>0<br>0<br>1<br>x1      | 0<br>0<br>1<br>0<br>0<br>0<br>X2 | -22.4<br>22.41<br>0.017<br>0.259<br>-0.02<br>X3<br>-15 | -14.8<br>14.83<br>0.034<br>0.517*<br>-0.03             | X5  0 1 0 0 0 ceffic                       | X6  0.517 0.483 0.003 0.052 -3e-3 cient of X6          | 1 -1 0 0 0 0 X7         | 0.483<br>-0.48<br>-3e-3<br>-0.05<br>0.003<br>X8                         | 0<br>0<br>1<br>0<br>X9<br>28.67<br>-28.7 | 0.655<br>-0.66<br>0.031<br>-1.53<br>0.069<br>X10                                | side<br>  -259<br>  259<br>  2.207<br>  3.103<br>  3.793<br>  Right<br>  side<br>  -170<br>  170        |
| Var                                         | No <br>- <br>0 <br>1 <br>2 <br>3 <br>4 <br>Eq <br>No <br>- <br>0 <br>1 <br>2       | 1   0   0   0   0   1   1   1   1     | 0<br>0<br>0<br>0<br>1<br>1<br>X1 | 0<br>0<br>1<br>0<br>0<br>0<br>X2 | -22.4<br>22.41<br>0.017<br>0.259<br>-0.02<br>X3<br>-15 | -14.8<br>14.83<br>0.034<br>0.517*<br>-0.03<br>C0<br>X4 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    | X6  0.517 0.483 0.003 0.052 -3e-3 cient of X6  2 -1 -0 | 1 -1 0 0 0 X7 X7 1 -1 0 | 0.483<br>-0.48<br>-3e-3<br>-0.05<br>0.003<br>X8                         | 0<br>0<br>1<br>0<br>X9<br>28.67<br>-28.7 | 0.655<br>-0.66<br>0.031<br>-1.53<br>0.069<br>X10  <br>-43.3<br>43.33  <br>0.133 | side<br>  -259<br>  259<br>  2.207<br>  3.103<br>  3.793<br>  Right<br>  side<br>  -170<br>  170<br>  2 |
| Var                                         | No <br>- <br>0 <br>1 <br>2 <br>3 <br>4 <br>Eq <br>No <br>- <br>0 <br>1 <br>2 <br>3 |                                       | 0<br>0<br>0<br>0<br>1<br>x1      | 0<br>0<br>1<br>0<br>0<br>0<br>X2 | -22.4<br>22.41<br>0.017<br>0.259<br>-0.02<br>X3<br>-15 | -14.8<br>14.83<br>0.034<br>0.517*<br>-0.03             | X5  0 1 0 0 0 ceffic                       | X6  0.517 0.483 0.003 0.052 -3e-3 cient of X6          | 1 -1 0 0 0 0 X7         | 0.483<br>-0.48<br>-3e-3<br>-0.05<br>0.003<br>X8<br>-1<br>1<br>0<br>-0.1 | 0<br>0<br>1<br>0<br>X9<br>28.67<br>-28.7 | 0.655<br>-0.66<br>0.031<br>-1.53<br>0.069<br>X10  <br>-43.3<br>43.33  <br>0.133 | side<br>  -259<br>  259<br>  2.207<br>  3.103<br>  3.793<br>  Right<br>  side<br>  -170<br>  170        |

| Bas Eq    |    |    |    |    | Coeffic | cient o | of    |       |       |       | Right |
|-----------|----|----|----|----|---------|---------|-------|-------|-------|-------|-------|
| Var No  Z | X1 | X2 | XЗ | X4 | X5      | X6      | X7    | X8    | X9    | X10   | side  |
| III       |    |    |    |    |         |         |       |       |       |       | l     |
| 1 1 1     |    |    |    |    |         |         |       |       |       |       | l     |
| Z   O  1  | 0  | 0  | 0  | 0  | 1       | 1       | 0     | -0    | 0     | 0     | 0     |
| X3  1  0  | 0  | 0  | 1  | 0  | 0.067   | -0.07   | -0.07 | 0.067 | -1.91 | 2.889 | 11.33 |
| X2  2  0  | 0  | 1  | 0  | 0  | 0       | -0      | 0     | 0     | -0.07 | 0.133 | 2     |
| X4  3  0  | 0  | 0  | 0  | 1  | -0.03   | 0.133   | 0.033 | -0.13 | 2.889 | -4.41 | 0.333 |
| X1  4  0  | 1  | 0  | 0  | 0  | 0       | 0       | 0     | -0    | 0.067 | -0.03 | 4     |

Optimal Solution:  $(x_1, x_2) = (4, 2)$  with  $(u_1, u_2) = (11.33, 0.33)$ 

# 12.7-4.

(a) KKT conditions: 
$$(1a) \ 2 - 2x_1 - u \le 0 \\ (2a) \ x_1(2 - 2x_1 - u) = 0 \\ (3) \ x_1 + x_2 \le 2 \\ (4) \ u(x_1 + x_2 - 2) = 0 \\ (5) \ x_1 \ge 0, x_2 \ge 0 \\ (6) \ u \ge 0$$
 
$$(1b) \ 3 - 2x_2 - u \le 0 \\ (2b) \ x_2(3 - 2x_2 - u) = 0 \\ (2b) \ x_2(3 - 2x_2 - u) = 0 \\ (2b) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2 - u) = 0 \\ (2c) \ x_2(3 - 2x_2$$

By plotting the points obtained, one observes that one optimal solution is on the boundary, so  $x_1 \neq 0$ ,  $x_2 \neq 0$  and  $u \neq 0$ . The point  $(x_1, x_2) = (0.75, 1.25)$  with u = 0.5 satisfies all the conditions, so it is optimal.

(b) minimize 
$$z_1 + z_2$$
 subject to 
$$2x_1 + u - y_1 + z_1 = 2$$
 
$$2x_2 + u - y_2 + z_2 = 3$$
 
$$x_1 + x_2 + v = 2$$
 
$$x_1 \ge 0, x_2 \ge 0$$
 
$$u \ge 0, v \ge 0$$
 
$$y_1 \ge 0, y_2 \ge 0$$
 
$$z_1 \ge 0, z_2 \ge 0$$

Enforced complementarity constraint:  $x_1y_1 + x_2y_2 + uv = 0$ 

(c) Substitute  $(x_1, x_2) = (0.75, 1.25)$  and u = 0.5 in the constraints.

$$-y_1 + z_1 = 0 
-y_2 + z_2 = 0 
v = 0$$

Enforced complementarity constraint:  $0.75y_1 + 1.25y_2 = 0$ 

Since  $y_1 \ge 0$  and  $y_2 \ge 0$ , the unique solution of the complementarity constraint is  $y_1 = y_2 = 0$ , so  $z_1 = z_2 = 0$ . Hence,  $(x_1, x_2) = (0.75, 1.25)$  is optimal.

(d)

Linear Programming Model:

Number of Decision Variables: 5

Number of Functional Constraints: 3

$$\text{Max Z} = 0 \text{ X1} + 0 \text{ X2} + 0 \text{ X3} - 1 \text{ X4} - 1 \text{ X5}$$

subject to

1) 2 
$$X1 + 0 X2 + 1 X3 + 1 X4 + 0 X5 >= 2$$

2) 
$$0 \times 1 + 2 \times 2 + 1 \times 3 + 0 \times 4 + 1 \times 5 = 3$$

and

$$X1 >= 0$$
,  $X2 >= 0$ ,  $X3 >= 0$ ,  $X4 >= 0$ ,  $X5 >= 0$ .

| Bas Eq           |    |    | (    | Coeffic | cient ( | of    |       |     | - 1 | Right |
|------------------|----|----|------|---------|---------|-------|-------|-----|-----|-------|
| Var No  Z        | X1 | X2 | Х3   | X4      | X5      | X6    | X7    | X8  | - 1 | side  |
| 111              |    |    |      |         |         |       |       |     | 1   |       |
| - $           -$ |    |    |      |         |         |       |       |     | _ I |       |
| Z   O  1         | 0  | -2 | -1   | 1       | 0       | 0     | 1     | 0   | - 1 | -3    |
| X1  1  0         | 1  | 0  | 0.5  | 0.5     | 0       | -0.5  | 0     | 0   | - 1 | 1     |
| X5  2  0         | 0  | 2  | 1    | 0       | 1       | 0     | -1    | 0   | - 1 | 3     |
| X81 31 01        | 0  | 1* | -0.5 | -0.5    | 0       | 0.5   | 0     | 1   | I   | 1     |
| Bas Eq           |    |    | (    | Coeffi  | cient ( | of    |       |     | ı   | Right |
| Var No  Z        | X1 | X2 | XЗ   | X4      | X5      | X6    | X7    | X8  | - 1 | side  |
| II               |    |    |      |         |         |       |       |     | I   |       |
| 1 1 1            |    |    |      |         |         |       |       |     | - 1 |       |
| Z   O  1         | 0  | 0  | -2   | 0       | 0       | 1     | 1     | 2   |     | -1    |
| X1  1  0         | 1  | 0  | 0.5  | 0.5     | 0       | -0.5  | 0     | 0   | - 1 | 1     |
| X5  2  0         | 0  | 0  | 2 '  | * 1     | 1       | -1    | -1    | -2  | - 1 | 1     |
| X2  3  0         | 0  | 1  | -0.5 | -0.5    | 0       | 0.5   | 0     | 1   | I   | 1     |
| Bas Eq           |    |    |      | Coeffic | cient o | of    |       |     | ı   | Right |
| Var No  Z        | X1 | X2 | Х3   | X4      | X5      | X6    | X7    | X8  | - 1 | side  |
|                  |    |    |      |         |         |       |       |     | I   |       |
|                  |    |    |      |         |         |       |       |     |     |       |
| Z   O  1         | 0  | 0  | 0    | 1       | 1       | 0     | 0     | 0   | - 1 | 0     |
| X1  1  0         | 1  | 0  | 0    | 0.25    | -0.25   | -0.25 | 0.25  | 0.5 | - 1 | 0.75  |
| X3  2  0         | 0  | 0  | 1    | 0.5     | 0.5     | -0.5  | -0.5  | -1  | - 1 | 0.5   |
| X2  3  0         | 0  | 1  | 0    | -0.25   | 0.25    | 0.25  | -0.25 | 0.5 | - 1 | 1.25  |

Optimal Solution:  $(x_1, x_2) = (0.75, 1.25)$  with u = 0.5

(e) Excel Solver Solution:  $(x_1, x_2) = (0.75, 1.25)$ 

#### 12.7-5.

(a) KKT conditions: 
$$(1a) \ 126 - 18x_1 - u_1 - 3u_3 \le 0$$
 
$$(2a) \ x_1 (126 - 18x_1 - u_1 - 3u_3) = 0$$
 
$$(1b) \ 182 - 26x_2 - 2u_2 - 2u_3 \le 0$$
 
$$(2b) \ x_2 (182 - 26x_2 - 2u_2 - 2u_3) = 0$$
 
$$(3a) \ x_1 \le 4$$
 
$$(4a) \ u_1 (x_1 - 4) = 0$$
 
$$(3b) \ 2x_2 \le 12$$
 
$$(4b) \ u_2 (2x_2 - 12) = 0$$
 
$$(3c) \ 3x_1 + 2x_2 \le 18$$
 
$$(4c) \ u_3 (3x_1 + 2x_2 - 18) = 0$$
 
$$(5) \ x_1 \ge 0, x_2 \ge 0$$
 
$$(6) \ u_1 \ge 0, u_2 \ge 0, u_3 \ge 0$$

 $(x_1, x_2) = (8/3, 5)$  with  $\mathbf{u} = (0, 0, 26)$  satisfies these conditions, so it is optimal.

(b) minimize 
$$z_1+z_2$$
 subject to 
$$18x_1-y_1+y_3+3y_5+z_1=126$$
 
$$26x_2-y_2+2y_4+2y_5+z_2=182$$
 
$$x_1+x_3=4$$
 
$$2x_2+x_4=12$$
 
$$3x_1+2x_2+x_5=18$$
 
$$x_1,x_2,x_3,x_4,x_5\geq 0$$
 
$$y_1,y_2,y_3,y_4,y_5\geq 0$$
 
$$z_1\geq 0,z_2\geq 0$$

Enforced complementarity constraint:  $x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4 + x_5y_5 = 0$ 

(c) Substitute  $(x_1, x_2) = (8/3, 5)$  and  $u_3 = y_5 = 26$  in the constraints.

$$-y_1 + y_3 + z_1 = 0$$

$$-y_2 + 2y_4 + z_2 = 0$$

$$x_3 = 4/3$$

$$x_4 = 2$$

$$x_5 = 0$$

Enforced complementarity constraint:  $(8/3)y_1 + 5y_2 + (4/3)y_3 + 2y_4 = 0$ 

Since  $y_i \ge 0$  for i = 1, 2, ..., 5, the complementarity constraint has the unique solutions  $y_1 = y_2 = y_3 = y_4 = 0$ , so  $z_1 = z_2 = 0$ . Hence,  $(x_1, x_2) = (8/3, 5)$  is optimal.

# **12.7-6.**

# (a) - (b)

# Minimum acceptable expected return = 13

|                 | Right-Hand |         |        |      |
|-----------------|------------|---------|--------|------|
| Factor          | Stock 1    | Stock 2 | Totals | Side |
| Budget          | 20         | 30      | 50     | 50   |
| Expected Return | 5          | 10      | 13.00  | 13   |
| Risk            | 4          | 100     | 25.56  |      |
| Solution        | 2.2        | 0.2     |        |      |

| Joint Risk | Stock 1 | Stock 2 |
|------------|---------|---------|
| Stock 1    |         | 5       |
| Stock 2    |         |         |

# Minimum acceptable expected return = 14

|                 | Right-Ha |         |        |      |
|-----------------|----------|---------|--------|------|
| Factor          | Stock 1  | Stock 2 | Totals | Side |
| Budget          | 20       | 30      | 50     | 50   |
| Expected Return | 5        | 10      | 14.00  | 14   |
| Risk            | 4        | 100     | 51.04  |      |
| Solution        | 1.6      | 0.6     |        |      |

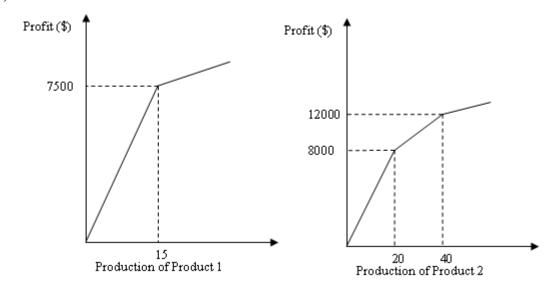
| Joint Risk | Stock 1 | Stock 2 |
|------------|---------|---------|
| Stock 1    |         | 5       |
| Stock 2    | l .     |         |

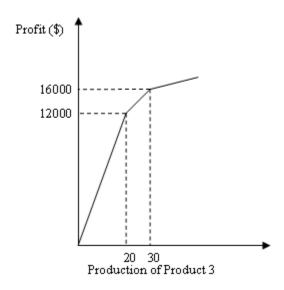
# Minimum acceptable expected return = 15

|                 | Right-Hand |         |        |      |
|-----------------|------------|---------|--------|------|
| Factor          | Stock 1    | Stock 2 | Totals | Side |
| Budget          | 20         | 30      | 50     | 50   |
| Expected Return | 5          | 10      | 15.00  | 15   |
| Risk            | 4          | 100     | 109.00 |      |
| Solution        | 1.0        | 1.0     |        |      |

| Joint Risk | Stock 1 | Stock 2 |
|------------|---------|---------|
| Stock 1    |         | 5       |
| Stock 2    | 1       |         |

# Minimum acceptable expected return = 16


|                 | Right-H |         |        |      |
|-----------------|---------|---------|--------|------|
| Factor          | Stock 1 | Stock 2 | Totals | Side |
| Budget          | 20      | 30      | 50     | 50   |
| Expected Return | 5       | 10      | 16.00  | 16   |
| Risk            | 4       | 100     | 199.44 |      |
| Solution        | 0.4     | 1.4     |        |      |


| Joint Risk | Stock 1 | Stock 2 |
|------------|---------|---------|
| Stock 1    |         | 5       |
| Stock 2    | 1       |         |

| (c) | $\mu$ | $\sigma$ | $\mu - \sigma$ | $\mu - 3\sigma$ |
|-----|-------|----------|----------------|-----------------|
| (-) | 13    | 5.06     | 7.94           | -2.18           |
|     | 14    | 7.14     | 6.86           | - 7.42          |
|     | 15    | 10.44    | 4.56           | -16.32          |
|     | 16    | 14.12    | 1.88           | -26.36          |

# 12.8-1.

(a)





(b) maximize 
$$500x_{11} + 60x_{12} + 400x_{21} + 200x_{22} + 100x_{23} + 600x_{31} + 400x_{32} + 200x_{33}$$

subject to 
$$\begin{array}{ll} 2x_{11}+2x_{12}+3x_{21}+3x_{22}+3x_{23}+4x_{31}+4x_{32}+4x_{33}\leq 180\\ 3x_{11}+3x_{12}+x_{21}+x_{22}+x_{23}\leq 150\\ x_{11}+x_{12}+3x_{31}+3x_{32}+3x_{33}\leq 100\\ 0\leq x_{11}\leq 15, 0\leq x_{12}\\ 0\leq x_{21}\leq 20, 0\leq x_{22}\leq 20, 0\leq x_{23}\\ 0\leq x_{31}\leq 20, 0\leq x_{32}\leq 10, 0\leq x_{33} \end{array}$$

where  $x_1 = x_{11} + x_{12}$ ,  $x_2 = x_{21} + x_{22} + x_{23}$ ,  $x_3 = x_{31} + x_{32} + x_{33}$ .

(c) Optimal solution with the simplex method:

|             |     |     |      | Coeffic | ient Of: |     |     |     |       |   |     |
|-------------|-----|-----|------|---------|----------|-----|-----|-----|-------|---|-----|
|             | X11 | X12 | X 21 | X22     | X23      | X31 | X32 | X33 | Total |   | RHS |
|             | 2   | 2   | 3    | 3       | 3        | 4   | 4   | 4   | 180   | ≤ | 180 |
|             | 3   | 3   | 1    | 1       | 1        | 0   | 0   | 0   | 65    | ≤ | 150 |
|             | 1   | 1   | 0    | 0       | 0        | 3   | 3   | 3   | 82.5  | ≤ | 100 |
|             | 1   | 0   | 0    | 0       | 0        | 0   | 0   | 0   | 15    | ≤ | 15  |
|             | 0   | 0   | 1    | 0       | 0        | 0   | 0   | 0   | 20    | ≤ | 20  |
|             | 0   | 0   | 0    | 1       | 0        | 0   | 0   | 0   | 0     | ≤ | 20  |
|             | 0   | 0   | 0    | 0       | 0        | 1   | 0   | 0   | 20    | ≤ | 20  |
|             | 0   | 0   | 0    | 0       | 0        | 0   | 1   | 0   | 2.5   | М | 10  |
| Unit Profit | 500 | 60  | 400  | 200     | 100      | 600 | 400 | 200 | 28500 |   |     |
| Solution    | 15  | 0   | 20   | 0       | 0        | 20  | 2.5 | 0   |       |   |     |

Original variables:  $x_1 = 15, x_2 = 20, x_3 = 22.5$ 

(d) The restriction on profit from products 1 and 2 can be modeled by introducing the constraint:  $500x_{11} + 60x_{12} + 400x_{21} + 200x_{22} + 100x_{23} \ge 20,000$ .

(e) Optimal solution with the simplex method:

|             |     |     |     | Coeffic | ient Of |      |     |     |       |   |     |
|-------------|-----|-----|-----|---------|---------|------|-----|-----|-------|---|-----|
|             | X11 | X12 | X21 | X22     | X23     | X31  | X32 | X33 | Total |   | RHS |
|             | 2   | 2   | 3   | 3       | 3       | 4    | 4   | 4   | 180   | M | 180 |
|             | 3   | 3   | 1   | 1       | 1       | 0    | 0   | 0   | 90    | ≤ | 150 |
|             | 1   | 1   | 0   | 0       | 0       | 3    | 3   | 3   | 26.25 | ≤ | 100 |
|             | 1   | 0   | 0   | 0       | 0       | 0    | 0   | 0   | 15    | ≤ | 15  |
|             | 0   | 0   | 1   | 0       | 0       | 0    | 0   | 0   | 20    | ≤ | 20  |
|             | 0   | 0   | 0   | 1       | 0       | 0    | 0   | 0   | 20    | ≤ | 20  |
|             | 0   | 0   | 0   | 0       | 0       | 1    | 0   | 0   | 3.75  | ≤ | 20  |
|             | 0   | 0   | 0   | 0       | 0       | 0    | 1   | 0   | 0     | ≤ | 10  |
| Unit Profit | 500 | 60  | 400 | 200     | 100     | 600  | 400 | 200 | 22250 |   |     |
| Solution    | 15  | 0   | 20  | 20      | 5       | 3.75 | 0   | 0   |       | 1 |     |

Profit from Products 1 &2 = 20000 ≥ 20000

Original variables:  $x_1 = 15, x_2 = 40, x_3 = 8.75$ 

# 12.8-2.

(a) KKT conditions: 
$$(1a)\ 4 - 3x_1^2 - u_1 - 5u_2 \le 0$$
 
$$(2a)\ x_1(4 - 3x_1^2 - u_1 - 5u_2) = 0$$
 
$$(1b)\ 6 - 4x_2 - 3u_1 - 2u_2 \le 0$$
 
$$(2b)\ x_2(6 - 4x_2 - 3u_1 - 2u_2) = 0$$
 
$$(3a)\ x_1 + 3x_2 \le 8$$
 
$$(4a)\ u_1(x_1 + 3x_2 - 8) = 0$$
 
$$(3b)\ 5x_1 + 2x_2 \le 14$$
 
$$(4b)\ u_2(5x_1 + 2x_2 - 14) = 0$$
 
$$(5)\ x_1 \ge 0, x_2 \ge 0$$
 
$$(6)\ u_1 \ge 0, u_2 \ge 0$$

 $(x_1,x_2)=(2/\sqrt{5},3/2)$  with  $\boldsymbol{u}=(0,0)$  satisfies these conditions, so it is optimal with Z=7.58.

(b)

| Profit data for doors when marketing costs are considered: |              |                |             |                        |  |  |  |  |  |  |
|------------------------------------------------------------|--------------|----------------|-------------|------------------------|--|--|--|--|--|--|
| Production Rate                                            | Gross Profit | Marketing Cost | Net Profit  | Incremental Net Profit |  |  |  |  |  |  |
| 0                                                          | \$0          | \$0            | \$0         | _                      |  |  |  |  |  |  |
| 1                                                          | \$400        | \$100          | \$300       | \$300                  |  |  |  |  |  |  |
| 2                                                          | \$800        | \$800          | \$0         | -\$300                 |  |  |  |  |  |  |
| 3                                                          | \$1200       | \$2700         | -\$1900     | -\$1900                |  |  |  |  |  |  |
| $\overline{D}$                                             | \$4D         | $D^{3}$        | $$4D - D^3$ |                        |  |  |  |  |  |  |

| Profit data for windows when marketing costs are considered: |                                                                 |           |              |        |  |  |  |  |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------|-----------|--------------|--------|--|--|--|--|--|--|
| Production Rate                                              | Gross Profit   Marketing Cost   Net Profit   Incremental Net Pr |           |              |        |  |  |  |  |  |  |
| 0                                                            | \$0                                                             | \$0       | \$0          | _      |  |  |  |  |  |  |
| 1                                                            | \$600                                                           | \$200     | \$400        | \$400  |  |  |  |  |  |  |
| 2                                                            | \$1200                                                          | \$800     | \$400        | \$0    |  |  |  |  |  |  |
| 3                                                            | \$1800                                                          | \$1800    | \$0          | -\$400 |  |  |  |  |  |  |
| W                                                            | \$6W                                                            | $$2W^{2}$ | $$6W - 2W^2$ |        |  |  |  |  |  |  |

Weekly Profit (\$) 400

Production rate for doors

Weekly Profit (\$) 400

Production rate for windows

(d) Let 
$$x_1 = x_{11} + x_{12} + x_{13}, x_2 = x_{21} + x_{22} + x_{23}, f_1(x_1) = 4x_1 - x_1^3$$
 and  $f_2(x_2) = 6x_2 - 2x_2^2$ .  

$$f_1(0) = 0, f_1(1) = 3, f_1(2) = 0, f_1(3) = -15$$

$$f_2(0) = 0, f_2(1) = 4, f_2(2) = 4, f_2(3) = 0$$

$$s_{11} = \frac{3-0}{1-0} = 3, s_{12} = \frac{0-3}{2-1} = -3, s_{13} = \frac{-15-0}{3-2} = -15$$

$$s_{21} = \frac{4-0}{1-0} = 4, s_{12} = \frac{4-4}{2-1} = 0, s_{13} = \frac{0-4}{3-2} = -4$$

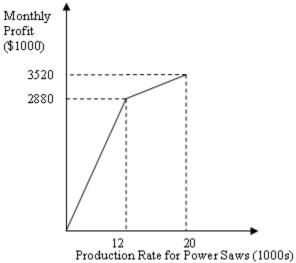
Approximate linear programming model:

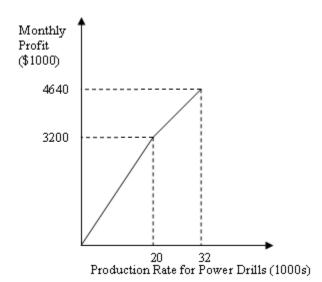
maximize 
$$3x_{11} - 3x_{12} - 15x_{13} + 4x_{21} - 4x_{23}$$
 subject to 
$$x_{11} + x_{12} + x_{13} + 3x_{21} + 3x_{22} + 3x_{23} \le 8$$
 
$$5x_{11} + 5x_{12} + 5x_{13} + 2x_{21} + 2x_{22} + 2x_{23} \le 14$$
 
$$0 \le x_{ij} \le 1 \text{ for } i = 1, 2 \text{ and } j = 1, 2, 3$$

(e) Optimal solution with the simplex method:

Value of the Objective Function: Z = 7

| <u>Varia</u>   | ble   | Value |  |  |  |  |
|----------------|-------|-------|--|--|--|--|
| $x_1$          | (x")  | 1     |  |  |  |  |
| $\mathbf{x_2}$ | (X12) | 0     |  |  |  |  |
| хз             | (X13) | 0     |  |  |  |  |
| $x_4$          | (X21) | 1     |  |  |  |  |
| X5             | (x22) | 0     |  |  |  |  |
| $x_6$          | (X23) | 0     |  |  |  |  |


Original variables:  $x_1 = 1, x_2 = 1$  (or  $x_2 = 2$ )


$$x_{11} = 0 \Rightarrow x_{12} = 0 \Rightarrow x_{13} = 0 \text{ and } x_{21} = 0 \Rightarrow x_{22} = 0 \Rightarrow x_{23} = 0$$

Hence, the special restriction for the model is satisfied. The approximate solutios (1,1) and (1,2) are pretty close to the optimal solution (1.155,1.5).

# 12.8-3.

(a)





(b) maximize  $240x_{11} + 80x_{12} + 160x_{21} + 120x_{22}$ 

subject to 
$$x_{11} + x_{12} + x_{21} + x_{22} \le 40,000$$
 
$$2x_{11} + 2x_{12} + x_{21} + x_{22} \le 60,000$$
 
$$0 \le x_{11} \le 12000, 0 \le x_{12} \le 8000$$
 
$$0 \le x_{21} \le 20000, 0 \le x_{22} \le 12000$$

(c) 12,000 power saws and 28,000 power drills should be produced in November.

Resource Usage Per Unit of Each Activity

| Power          | r Saws                                     | Powe                                               |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                               | Resource                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|----------------|--------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Regular        | Overtime                                   | Regular                                            | Overtime                                                                                                                                                                                                                | Total                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                            | Available                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| 1              | 1                                          | 1                                                  | 1                                                                                                                                                                                                                       | 40000                                                                                                                                                                                                                                                                                         | ≤                                                                                                                                                                                                                                                                                                                                                          | 40000                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Assemblies 2 2 |                                            |                                                    | 1                                                                                                                                                                                                                       | 52000                                                                                                                                                                                                                                                                                         | ≤                                                                                                                                                                                                                                                                                                                                                          | 60000                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| 240            | 80                                         | 160                                                | 120                                                                                                                                                                                                                     | 7040000                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| 12000          | 0                                          | 20000                                              | 8000                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| 12000          | 8000                                       | 20000                                              | 12000                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                | Power<br>Regular<br>1<br>2<br>240<br>12000 | Power Saws Regular Overtime 1 1 2 2 240 80 12000 0 | Power Saws         Powe           Regular         Overtime         Regular           1         1         1           2         2         1           240         80         160           12000         0         20000 | Power Saws         Power Drills           Regular         Overtime         Regular         Overtime           1         1         1         1           2         2         1         1           240         80         160         120           12000         0         20000         8000 | Power Saws         Power Drills           Regular         Overtime         Regular         Overtime         Total           1         1         1         40000           2         2         1         1         52000           240         80         160         120         7040000           12000         0         20000         8000         8000 | Regular         Overtime         Regular         Overtime         Total           1         1         1         40000         ≤           2         2         1         1         52000         ≤           240         80         160         120         7040000            12000         0         20000         8000 |  |  |  |  |  |  |

#### 12.8-4.

(a) Let 
$$x_1 = x_{11} + x_{12} + x_{13}$$
,  $x_2 = x_{21} + x_{22} + x_{23}$ ,  $f_1(x_1) = 32x_1 - x_1^4$  and  $f_2(x_2) = 50x_2 - 10x_2^2 + x_2^3 - x_2^4$ .  

$$f_1(0) = 0, f_1(1) = 31, f_1(2) = 48, f_1(3) = 15$$

$$f_2(0) = 0, f_2(1) = 40, f_2(2) = 52, f_2(3) = 6$$

$$s_{11} = 31, s_{12} = 17, s_{13} = -33$$

$$s_{21} = 40, s_{12} = 12, s_{13} = -46$$

Approximate linear programming model:

$$\begin{array}{ll} \text{maximize} & 31x_{11}+17x_{12}-33x_{13}+40x_{21}+12x_{22}-46x_{23} \\ \text{subject to} & 3x_{11}+3x_{12}+3x_{13}+\ x_{21}+\ x_{22}+\ x_{23}\leq 11 \\ 2x_{11}+2x_{12}+2x_{13}+5x_{21}+5x_{22}+5x_{23}\leq 16 \\ 0\leq x_{ij}\leq 1 \text{ for } i=1,2 \text{ and } j=1,2,3 \end{array}$$

(b) Optimal solution with the simplex method:

Value of the Objective Function: Z = 100

| <u>Varia</u>   | ble    | Value |
|----------------|--------|-------|
| $x_1$          | (X")   | 1     |
| $x_2$          | ( X,2) | 1     |
| $\mathbf{x}_3$ | (X13)  | 0     |
| $x_4$          | ( Yai) | 1     |
| X5             | (X22)  | 1     |
| x <sub>6</sub> | (X23)  | 0     |

Original variables:  $x_1 = 2, x_2 = 2$ 

#### 12.8-5.

$$\text{Let } f_1(x_1) = \begin{cases} 5x_1 & \text{if } 0 \leq x_1 \leq 2 \\ 2+4x_1 & \text{if } 2 \leq x_1 \leq 5 \text{ and } f_2(x_2) = \begin{cases} 4x_2 & \text{if } 0 \leq x_2 \leq 3 \\ 9+x_2 & \text{if } 3 \leq x_2 \leq 4 \end{cases} \\ \text{maximize} \qquad f_1(x_1) + f_2(x_2) \\ \text{subject to} \qquad 3x_1 + 2x_2 \leq 25 \\ 2x_1 - x_2 \leq 10 \\ x_2 \leq 4 \\ x_1, x_2 \geq 0 \end{cases}$$

Possibly, the  $f_i(x_i)$ 's are piecewise-linear approximations of the original objective function.

#### 12.8-6.

(a) Assume that in the optimal solution of the linear program, there exists and  $x_{ij}$  such that  $x_{ij} < u_{ij}$  and  $x_{i(j+1)} > 0$ . Create a new solution with  $x'_{ij} = \min\{u_{ij}, x_{ij} + x_{i(j+1)}\}$  and  $x'_{i(j+1)} = \max\{0, x_{ij} + x_{i(j+1)} - u_{ij}\}$ . This solution is feasible, since all the  $g_i$ 's are linear and  $x_{ij} + x_{i(j+1)} = x'_{ij} + x'_{i(j+1)}$ , but

$$s_{ij}x'_{ij} + s_{i(j+1)}x'_{i(j+1)} = \begin{cases} s_{ij}(x_{ij} + x_{i(j+1)}) & \text{if } x_{ij} + x_{i(j+1)} \leq u_{ij} \\ s_{ij}u_{ij} + s_{i(j+1)}(x_{ij} + x_{i(j+1)} - u_{ij}) & \text{else.} \end{cases}$$
Clearly,  $s_{ij}(x_{ij} + x_{i(j+1)}) > s_{ij}x_{ij} + s_{i(j+1)}x_{i(j+1)}$ , since  $s_{ij} > s_{i(j+1)}$ .
Furthermore,  $(s_{ij} - s_{i(j+1)})u_{ij} > (s_{ij} - s_{i(j+1)})x_{ij}$ , since  $x_{ij} < u_{ij}$ .
$$\Rightarrow s_{ij}u_{ij} + s_{i(j+1)}(x_{ij} - u_{ij}) > s_{ij}x_{ij}$$

$$\Rightarrow s_{ij}u_{ij} + s_{i(j+1)}(x_{ij} + x_{i(j+1)} - u_{ij}) > s_{ij}x_{ij} + s_{i(j+1)}x_{i(j+1)}$$

$$\Rightarrow s_{ij}x'_{ij} + s_{i(j+1)}x'_{i(j+1)} > s_{ij}x_{ij} + s_{i(j+1)}x_{i(j+1)}$$

Thus, the original solution was not optimal.

(b) Make the same assumptions as in (a) and construct x' from x in the same way. The linear approximation of  $g_i$  is of the form  $\cdots + a_{ij}x_{ij} + a_{i(j+1)}x_{i(j+1)} + \cdots \le b_i$  with  $a_{ij} \le a_{i(j+1)}$ , since  $g_i$  is convex. By the same analysis as the one in (a), it can be shown that if the inequalities are reversed at appropriate places:

$$a_{ij}x'_{ij} + a_{i(j+1)}x'_{i(j+1)} < a_{ij}x_{ij} + a_{i(j+1)}x_{i(j+1)},$$

so x' is feasible. Furthermore,  $s_{ij}x'_{ij} + s_{i(j+1)}x'_{i(j+1)} > s_{ij}x_{ij} + s_{i(j+1)}x_{i(j+1)}$ , so x was not optimal.

#### **12.8-7.**

$$\begin{split} f_1(x_1) &= \begin{cases} 23x_1 & \text{if } 0 \leq x_1 \leq 6000 \\ 38x_1 - 90,000 & \text{if } 6000 \leq x_1 \end{cases} \\ f_2(x_2) &= \begin{cases} 24x_2 & \text{if } 0 \leq x_2 \leq 3000 \\ 36x_2 - 36,000 & \text{if } 3000 \leq x_2 \end{cases} \\ &\text{maximize} & z = x_1 + x_2 \\ &\text{subject to} & f_1(x_1) + f_2(x_2) \leq 270,000 \\ &0 \leq x_1 \leq 9000 \\ &0 \leq x_2 \leq 4500 \end{split}$$

(a) Let  $x_i^R$  and  $x_i^O$  denote the regular and overtime production at plant i.

$$\begin{array}{ll} \text{maximize} & z = x_1^R + x_1^O + x_2^R + x_2^O \\ \text{subject to} & 23x_1^R + 38x_1^O + 24x_2^R + 36x_2^O \leq 270,000 \\ & 0 \leq x_1^R \leq 6000, 0 \leq x_1^O \leq 3000 \\ & 0 \leq x_2^R \leq 3000, 0 \leq x_2^O \leq 1500 \\ \end{array}$$

(b) Since overtime production is more expensive than regular time production, the objective of maximizing the total production time will force the regular time to be used first.

#### 12.8-8.

(a) The objective function is linear, so concave.

$$\frac{\partial^2 g_1(\mathbf{x})}{\partial x_1^2} \frac{\partial^2 g_1(\mathbf{x})}{\partial x_2^2} - \left[ \frac{\partial^2 g_1(\mathbf{x})}{\partial x_1 \partial x_2} \right]^2 = 4 \cdot 0 - 0^2 = 0$$

$$\frac{\partial^2 g_2(\mathbf{x})}{\partial x_1^2} \frac{\partial^2 g_2(\mathbf{x})}{\partial x_2^2} - \left[ \frac{\partial^2 g_2(\mathbf{x})}{\partial x_1 \partial x_2} \right]^2 = 2 \cdot 0 - 0^2 = 0$$

 $\Rightarrow g_1$  and  $g_2$  are convex.

(b) Let 
$$x_1=x_{11}+x_{12}+x_{13}$$
. From the first constraint and  $x_2\geq 0$ ,  $x_1\leq \sqrt{13/2}\approx 2.55$ ,

so using an integer breakpoint requires 3 linear pieces.

$$g_{11}(x_1) = 2x_1^2, g_{12}(x_2) = x_2, g_{21}(x_1) = x_1^2, g_{22}(x_2) = x_2$$

$$g_{11}(0) = 0, g_{11}(1) = 2, g_{11}(2) = 8, g_{11}(3) = 18$$

$$g_{21}(0) = 0, g_{21}(1) = 1, g_{21}(2) = 4, g_{21}(3) = 9$$

$$s_{11,1} = 2, s_{11,2} = 6, s_{11,3} = 10$$

$$s_{21,1} = 1, s_{21,2} = 3, s_{21,3} = 5$$

Approximate linear programming model:

maximize 
$$5x_{11} + 5x_{12} + 5x_{13} + x_2$$
 subject to 
$$2x_{11} + 6x_{12} + 10x_{13} + x_2 \le 13$$
 
$$x_{11} + 3x_{12} + 5x_{13} + x_2 \le 9$$
 
$$0 \le x_{11} \le 1, 0 \le x_{12} \le 1, 0 \le x_{13}, 0 \le x_2$$

We could have  $0 \le x_{13} \le 1$ , but the constraints will enforce the upper bound.

(c)

| Bas   Eq   Coefficient of |    |    |           |    |     |      |      |    | Right |
|---------------------------|----|----|-----------|----|-----|------|------|----|-------|
| Var No 2                  | X1 | X2 | <b>X3</b> | X4 | X5  | Х6   | х7   | X8 | side  |
| _                         |    |    |           |    |     |      |      |    | i     |
|                           |    |    |           |    |     |      |      |    |       |
| Z   0  1                  | 0  | 0  | 0         | 0  | 0   | 1    | 4    | 2  | 1 15  |
| x3  1  0                  | 0  | 0  | 1         | 0  | 0.2 | -0.2 | -0.2 | _  | 10    |
| X4  2  0                  | 0  | 0  | 0         | 1  | -1  | 2    | 0    | 0  | 5     |
| X1  3  0                  | 1  | 0  | 0         | 0  | 0   | 0    | 1    | 0  | 1 1   |
| X2  4  0                  | 0  | 1  | 0         | 0  | 0   | 0    | 0    | 1  | i i   |

Original variables:  $x_1 = 1 + 1 + 0 = 2, x_2 = 5$ 

#### 12.8-9.

(a) Let 
$$x_1 = x_{11} + x_{12} + x_{13}$$
 and  $x_2 = x_{21} + x_{22} + x_{23}$ . 
$$f_1(x_1) = 32x_1 - x_1^4, \frac{d^2 f_1(x_1)}{dx_1^2} = -12x_1^2 \le 0 \Rightarrow f_1 \text{ concave}$$
 
$$f_2(x_2) = 4x_2 - x_2^2, \frac{d^2 f_2(x_2)}{dx_2^2} = -2 < 0 \Rightarrow f_2 \text{ concave}$$
 
$$f_1(0) = 0, f_1(1) = 31, f_1(2) = 48, f_1(3) = 15$$
 
$$f_2(0) = 0, f_2(1) = 3, f_2(2) = 4, f_2(3) = 3$$
 
$$s_{11} = 31, s_{12} = 15, s_{13} = -33$$
 
$$s_{21} = 3, s_{22} = 1, s_{23} = -1$$
 
$$g_{11}(x_1) = x_1^2, \frac{d^2 g_{11}(x_1)}{dx_1^2} = 2 > 0 \Rightarrow g_{11} \text{ convex}$$
 
$$g_{12}(x_2) = x_2^2, \frac{d^2 g_{12}(x_2)}{dx_2^2} = 2 > 0 \Rightarrow g_{12} \text{ convex}$$
 
$$g_{11}(0) = 0, g_{11}(1) = 1, g_{11}(2) = 4, g_{11}(3) = 9$$
 
$$g_{21}(0) = 0, g_{21}(1) = 1, g_{21}(2) = 4, g_{21}(3) = 9$$
 
$$t_{11,1} = 1, t_{11,2} = 3, t_{11,3} = 5$$
 
$$t_{21,1} = 1, t_{21,2} = 3, t_{21,3} = 5$$

Approximate linear programming model:

maximize 
$$31x_{11} + 17x_{12} - 33x_{13} + 3x_{21} + x_{22} - x_{23}$$
 subject to 
$$x_{11} + 3x_{12} + 5x_{13} + x_{21} + 3x_{22} + 5x_{23} \le 9$$
$$0 \le x_{11} \le 1, 0 \le x_{12} \le 1, 0 \le x_{13} (\le 1)$$
$$0 \le x_{21} \le 1, 0 \le x_{22} \le 1, 0 \le x_{23} (\le 1)$$

(b) Solution with the simplex method:

Value of the Objective Function: Z = 52

| <u>Varia</u> | ble         | Value |
|--------------|-------------|-------|
| $x_1$        | $(X^{\mu})$ | 1     |
| $x_2$        | (X12)       | 1     |
| $x_3$        | (X13)       | 0     |
| X4           | ( X21)      | 1     |
| $x_5$        | (X22)       | 1     |
| х6           | (X23)       | 0     |

Original variables:  $x_1 = x_2 = 2$ 

Original variables: 
$$x_1=x_2=2$$
 (c) KKT conditions: (1a)  $32-4x_1^3-2x_1u\leq 0$  (1b)  $4-2x_2-2x_2u\leq 0$  (2a)  $x_1(32-4x_1^3-2x_1u)=0$  (2b)  $x_2(4-2x_2-2x_2u)=0$  (3)  $x_1^2+x_2^2-9\leq 0$  (4)  $u(x_1^2+x_2^2-9)=0$  (5)  $x_1\geq 0, x_2\geq 0$  (6)  $u\geq 0$ 

For  $(x_1, x_2) = (2, 2)$ , from (4), u = 0. This satisfies all the conditions, so is optimal to the original problem.

#### 12.8-10.

(a) 
$$f(x) = f_1(x_1) + f_2(x_2), f_1(x_1) = 3x_1^2 - x_1^3, f_2(x_2) = 5x_2^2 - x_2^3$$
  

$$\frac{d^2 f_1(x_1)}{dx_1^2} = 6 - 6x_1 > 0 \text{ if } 0 \le x_1 < 1$$

$$\frac{d^2 f_2(x_2)}{dx_2^2} = 10 - 6x_2 > 0 \text{ if } 0 \le x_2 < 5/3$$

Neither  $f_1$  nor  $f_2$  is concave, so f is not concave. It is indeed enough to show one is not concave.

(b) Let 
$$x_1 = x_{11} + x_{12} + x_{13} + x_{14}, x_2 = x_{21} + x_{22}.$$

$$f_1(0) = 0, f_1(1) = 2, f_1(2) = 4, f_1(3) = 0, f_1(4) = -16$$

$$f_2(0) = 0, f_2(1) = 4, f_2(2) = 12$$

$$s_{11} = 2, s_{12} = 2, s_{13} = -4, s_{14} = -16$$

$$s_{21} = 4, s_{22} = 8$$

Special restrictions are needed:

(i) 
$$x_{12} = 0 \text{ if } x_{11} < 1$$

(ii) 
$$x_{13} = 0$$
 if  $x_{12} < 1$ 

(iii) 
$$x_{14} = 0 \text{ if } x_{13} < 1$$

(iv) 
$$x_{22} = 0$$
 if  $x_{21} < 1$ .

Since  $s_{12} > s_{13} > s_{14}$ , (ii) and (iii) are automatically satisfied upon optimization.

Approximate binary integer programming model:

$$\begin{array}{ll} \text{maximize} & 2x_{11}+2x_{12}-4x_{13}-16x_{14}+4x_{21}+8x_{22}\\ \text{subject to} & x_{11}+x_{12}+x_{13}+x_{14}+2x_{21}+2x_{22}\leq 4\\ & -x_{11}+x_{12}\leq 0\\ & -x_{21}+x_{22}\leq 0\\ & x_{ij}\in\{0,1\} \text{ for all } i,j \end{array}$$

(c) Solution with BIP automatic routine:

$$x_{11} = x_{12} = x_{13} = x_{14} = 0, x_{21} = x_{22} = 1, z = 12$$

Original variables:  $x_1 = 0, x_2 = 2, z = 12$ 

Alternate solution:  $x_1 = 2, x_2 = 1, z = 12$ 

#### 12.9-1.

$$\nabla f(x_1, x_2) = \left(\frac{1}{x_1 + 1}, -2x_2\right)$$

Iteration 1:  $\nabla f(0,0) = (1,0)$ 

maximize  $x_1$ 

subject to 
$$x_1 + 2x_2 \le 3$$
  
 $x_1, x_2 > 0$ 

$$\Rightarrow x_1 = 3, x_2 = 0 \Rightarrow x^{(1)} = (0,0) + t(3,0)$$

 $t^*=1$   $(f({m x})$  increases with  $t)\Rightarrow x^{(1)}=(3,0)$  [solution found in Problem 12.6-5]

Iteration 2: 
$$\nabla f(3,0) = (1/4,0)$$

maximize 
$$0.25x_1$$

subject to 
$$x_1 + 2x_2 \le 3$$

$$x_1, x_2 \ge 0$$

$$\Rightarrow x_1 = 3, x_2 = 0 \Rightarrow x^{(1)} = (3, 0) + t(0, 0)$$

Hence x = (3,0) is optimal.

#### 12.9-2.

| k | x(k-1) c <sub>1</sub> |    | c <sub>2</sub> | <b>x</b> <sub>LP</sub> (k) |          | :)  | t* | <b>X</b> (k) | X(k)      |   |          |    |
|---|-----------------------|----|----------------|----------------------------|----------|-----|----|--------------|-----------|---|----------|----|
| 1 | (                     | 0, | 0)             | -6<br>-4                   | -3<br>-3 | ( ( | 1, | 0)           | 1<br>1e-8 | ( | 1,<br>1, | 0) |

Final solution: ( 1, 0).

$$\nabla f(x_1, x_2) = (2x_1 - 6, 3x_2^2 - 3)$$

$$x_1 + x_2 \le 1, x_1, x_2 \ge 0 \Rightarrow x_1, x_2 \le 1 \Rightarrow 2x_1 - 6 \le -4 < -3 \le 3x_2^2 - 3$$

Resulting LP: maximize  $c_1x_1 + c_2x_2$ 

subject to 
$$c_1x_1 + c_2x_2$$
  
 $x_1 + x_2 \le 1$ 

$$x_1, x_2 \ge 0$$

where  $c_1 < c_2$ , so (1,0) is always optimal.

$$\Rightarrow x^{(1)} = (x_1^{(0)}, x_2^{(0)}) + t(1 - x_1^{(0)}, -x_2^{(0)})$$

At  $t^* = 1$ ,  $x^{(1)} = (1, 0)$  is optimal.

# 12.9-3.

| k   |   | x        | (k-1) |    | c <sub>1</sub> | c2  | с3 |   | $\mathbf{x}_{\mathrm{L}}$ | P(k)     |          | t*   |   |          | <b>x</b> (k) |    |
|-----|---|----------|-------|----|----------------|-----|----|---|---------------------------|----------|----------|------|---|----------|--------------|----|
| 1 2 | ( | 0,<br>4, | 0,    | 0) | 8              | 2 2 | 1  | ( | 12,                       | 0,<br>4, | 0)<br>0) | 0.33 | ( | 4,<br>3, | 0,<br>1,     | 0) |

Final solution: ( 3, 1, 0)

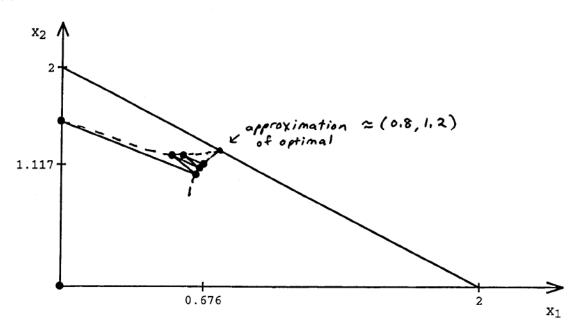
# 12.9-4.

maximize 
$$15x_1 + 30x_2 + 4x_1x_2 - 2x_1^2 - 4x_2^2$$

subject to 
$$x_1 + 2x_2 \le 30$$
  
 $x_1, x_2 > 0$ 

| k | I  | X^ (k-1)      |     | c1    |    | c2    |     |   | X[LP] | ^k  | t*    | -   | X^k           |
|---|----|---------------|-----|-------|----|-------|-----|---|-------|-----|-------|-----|---------------|
|   | 1_ |               | _1. |       | ١. |       | _1_ |   |       |     | l     | _1. |               |
| 1 |    | ( 5, 5)       |     | 15    |    | 10    | -   | ( | 30,   | 0)  | 0.088 | - 1 | (7.196,4.561) |
| 2 |    | (7.196,4.561) |     | 6.216 |    | 22.3  | -   | ( | Ο,    | 15) | 0.119 | - 1 | (6.336,5.808) |
| 3 | I  | (6.336,5.808) |     | 7.898 |    | 8.884 | 1   | ( | 30,   | 0)  | 0.07  | - 1 | (7.998, 5.4)  |
| 4 | I  | (7.998, 5.4)  |     | 6.24  |    | 18.79 | 1   | ( | Ο,    | 15) | 0.089 | - 1 | (7.284,6.257) |
| 5 |    | (7.284,6.257) |     | 7.466 |    | 9.076 | -   | ( | 30,   | 0)  | 0.054 | - 1 | (8.516,5.918) |
| 6 | I  | (8.516,5.918) |     | 5.967 |    | 16.72 | 1   | ( | Ο,    | 15) | 0.072 | - 1 | (7.904, 6.57) |
| 7 | I  | (7.904, 6.57) |     | 7.054 | 1  | 9.058 | 1   | ( | 30,   | 0)  | 0.045 | - 1 | (8.888,6.277) |
| 8 | I  | (8.888,6.277) | -   | 5.727 | 1  | 15.33 |     | ( | ο,    | 15) | 0.06  |     | (8.351,6.804) |

Final solution: (8.3515, 6.804).


12.9-5.

(a)

| k           | <b>x</b> (k-1)                                                                           | c <sub>1</sub>                            | c <sub>2</sub>                            |                                         | X <sub>LP</sub> (k         | :)                         | t*                                               | <b>x</b> (k)                                                                                       |
|-------------|------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|----------------------------|----------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 1 2 3 4 5 6 | ( 0, 0)<br>( 0, 1.5)<br>( 0.64, 1.02)<br>(0.528,1.192)<br>(0.663,1.082)<br>(0.579,1.198) | 2<br>2<br>0.72<br>0.944<br>0.674<br>0.842 | 3<br>0<br>0.96<br>0.617<br>0.835<br>0.603 | ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 0,<br>2,<br>0,<br>2,<br>0, | 2)<br>0)<br>2)<br>0)<br>2) | 0.75<br>0.32<br>0.175<br>0.092<br>0.126<br>0.068 | ( 0, 1.5)<br>( 0.64, 1.02)<br>( 0.528,1.192)<br>( 0.663,1.082)<br>( 0.579,1.198)<br>( 0.676,1.117) |

Final solution: ( 0.676,1.1166).

(b)



12.9-6.

| k | x(k-1)        | c <sub>1</sub> | c <sub>2</sub> | x <sub>LP</sub> (k) | t*    | <b>x</b> (k)  |
|---|---------------|----------------|----------------|---------------------|-------|---------------|
| 1 | ( 0, 0)       | 32             | 50             | ( 3, 2)             | 0.729 | (2.188,1.458) |
| 2 | (2.188,1.458) | -9.87          | 14.81          | ( 0, 3.2)           | 0.131 | (1.902,1.686) |
| 3 | (1.902,1.686) | 4.499          | 5.634          | ( 3, 2)             | 0.111 | (2.024,1.721) |
| 4 | (2.024,1.721) | -1.15          | 4.078          | ( 0, 3.2)           | 0.028 | (1.966,1.763) |

Final solution: (1.9662,1.7629).

12.9-7.

| k į | X^(k-1) | !    | c1 | c2   | ļ   | X[LP]^k | t*        | X^k                         |
|-----|---------|------|----|------|-----|---------|-----------|-----------------------------|
| 11/ | n.      | 0) [ | 40 | 1 30 | 1 ( | 3, 0    | )   0.010 | (1.847, 0)<br>(1.097,0.812) |

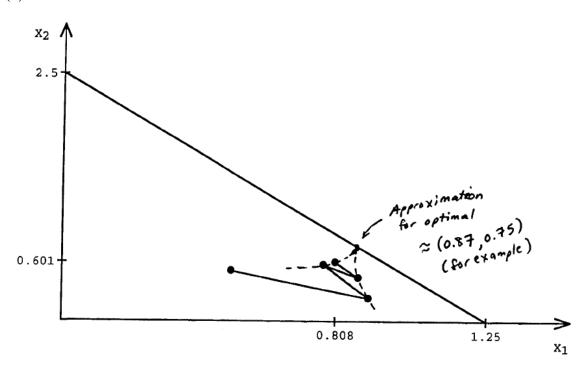
12.9-8.

(a)

| k   X^(k-1)                                      | [ c1         | c2      | X[LP]^k  | t*         | 1 X^k     |
|--------------------------------------------------|--------------|---------|----------|------------|-----------|
| 1 ( 0.25, 0.25)<br>2 ( 0, 1)<br>3 ( 0.333,0.667) | 2.813<br>  3 | 3.5   ( | 0,<br>1, | 0)   0.333 | 1 ( 0, 1) |

(b) KKT conditions: 
$$(1a)\ 3-3x_1^2-u\le 0 \\ (2a)\ x_1(3-3x_1^2-u)=0 \\ (3)\ x_1+x_2\le 1 \\ (4)\ u(x_1+x_2-1)=0 \\ (5)\ x_1\ge 0, x_2\ge 0 \\ (6)\ u\ge 0$$
 
$$(1b)\ 4-2x_2-u\le 0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x_2(4-2x_2-u)=0 \\ (2b)\ x$$

 $(x_1, x_2) = (1/3, 2/3)$  with u = 8/3 satisfies these conditions, so the estimated solution in part (a) is optimal.


12.9-9.

(a)

| k | x(k-1)                                                         | c <sub>1</sub>                 | c <sub>2</sub> | x <sub>LP</sub> (k) | t*             | <b>x</b> (k) |
|---|----------------------------------------------------------------|--------------------------------|----------------|---------------------|----------------|--------------|
| 3 | ( 0.5, 0.5)<br>(0.906,0.229)<br>(0.771,0.566)<br>(0.875,0.444) | 3.5<br>1.027<br>2.164<br>1.323 | 0.867          | ( 0, 2.5)           | 0.148<br>0.216 |              |

Final solution: (0.8079,0.6011).

(b)



(c) KKT conditions: 
$$(1a) 4 - 4x_1^3 - 4u \le 0$$
  $(2a) x_1(4 - 4x_1^3 - 4u) = 0$   $(2b) x_2(2 - 2x_2 - 2u) = 0$   $(3) 4x_1 + 2x_2 \le 5$   $(4) u(4x_1 + 2x_2 - 5) = 0$   $(5) x_1 \ge 0, x_2 \ge 0$   $(6) u \ge 0$ 

 $(x_1, x_2) = (0.8934, 0.7131)$  with u = 0.5737 satisfies these conditions, so is optimal.

#### 12.9-10.

(a) 
$$P(\boldsymbol{x};r) = 3x_1 + 4x_2 - x_1^3 - x_2^2 - r \left[ \frac{1}{1 - x_1 - x_2} + \frac{1}{x_1} + \frac{1}{x_2} \right]$$

(b)

$$\nabla P(\boldsymbol{x};r) = \begin{pmatrix} 3 - 3x_1^2 + r \left[ \frac{-1}{(1 - x_1 - x_2)^2} + \frac{1}{x_1^2} \right] \\ 4 - 2x_2 + r \left[ \frac{-1}{(1 - x_1 - x_2)^2} + \frac{1}{x_2^2} \right] \end{pmatrix}$$

$$\Rightarrow \nabla P(\left(\frac{1}{4} \quad \frac{1}{4}\right); 1) = \begin{pmatrix} 14\frac{13}{16} \\ 15\frac{1}{2} \end{pmatrix}$$

$$\left(\frac{1}{4} \quad \frac{1}{4}\right) + t\nabla P(\left(\frac{1}{4} \quad \frac{1}{4}\right); 1) = \left(\frac{1}{4} + 14\frac{13}{16}t \quad \frac{1}{4} + 15\frac{1}{2}t\right)$$

$$t^* = 0.006606 \Rightarrow x' = (0.3479 \quad 0.3524)$$

(c)

| k | r      | x <sub>1</sub> | x <sub>2</sub> | f(X)  |
|---|--------|----------------|----------------|-------|
| 0 |        | 0.25           | 0.25           | 1.672 |
| 1 | 1      | 0.343          | 0.357          | 2.29  |
| 2 | 0.01   | 0.322          | 0.619          | 3.023 |
| 3 | 0.0001 | 0.331          | 0.663          | 3.169 |

(d) True Solution: (1/3, 2/3)

Percentage error in  $x_1$ :  $\frac{|1/3 - 0.331|}{1/3} = 0.70\%$ 

Percentage error in  $x_2$ :  $\frac{|2/3 - 0.663|}{2/3} = 0.55\%$ 

Percentage error in f(x):  $\frac{|86/27 - 3.169|}{86/27} = 0.51\%$ 

#### 12.9-11.

(a) 
$$P(\boldsymbol{x};r) = 4x_1 - x_1^4 + 2x_2 - x_2^2 - r \left[ \frac{1}{5 - 4x_1 - 2x_2} + \frac{1}{x_1} + \frac{1}{x_2} \right]$$

(b) 
$$\nabla P(\boldsymbol{x};r) = \begin{pmatrix} 4 - 4x_1^3 + r \left[ \frac{-4}{(5 - 4x_1 - 2x_2)^2} + \frac{1}{x_1^2} \right] \\ 2 - 2x_2 + r \left[ \frac{-2}{(5 - 4x_1 - 2x_2)^2} + \frac{1}{x_2^2} \right] \end{pmatrix}$$

$$\Rightarrow \nabla P(\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix}; 1) = \begin{pmatrix} 6\frac{1}{2} \\ 4\frac{1}{2} \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix} + t \nabla P(\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix}; 1) = \begin{pmatrix} \frac{1}{2} + 6\frac{1}{2}t & \frac{1}{4} + 4\frac{1}{2}t \end{pmatrix}$$

$$t^* = 0.03167 \Rightarrow x' = (0.7058 \quad 0.6425)$$

(c)

| k | r        | x <sub>1</sub> | x <sub>2</sub> | f ( <b>x</b> ) |
|---|----------|----------------|----------------|----------------|
| 0 |          | 0.5            | 0.5            | 2.688          |
| 1 | 1        | 0.669          | 0.716          | 3.395          |
| 2 | 0.01     | 0.871          | 0.671          | 3.801          |
| 3 | 0.0001   | 0.891          | 0.708          | 3.849          |
| 4 | 0.000001 | 0.894          | 0.712          | 3.854          |

#### 12.9-12.

(a) 
$$P(\boldsymbol{x};r) = -x_1^4 - 2x_1^2 - 2x_1x_2 - 4x_2^2 - r\left[\frac{1}{2x_1 + x_2 - 10} + \frac{1}{x_1 + 2x_2 - 10} + \frac{1}{x_1} + \frac{1}{x_2}\right]$$

(b) 
$$\nabla P(\boldsymbol{x};r) = \begin{pmatrix} -4x_1^3 - 4x_1 - 2x_2 + r\left[\frac{2}{(2x_1 + x_2 - 10)^2} + \frac{1}{(x_1 + 2x_2 - 10)^2} + \frac{1}{x_1^2}\right] \\ -2x_1 - 8x_2 + r\left[\frac{1}{(2x_1 + x_2 - 10)^2} + \frac{2}{(x_1 + 2x_2 - 10)^2} + \frac{1}{x_2^2}\right] \end{pmatrix}$$

$$\Rightarrow \nabla P((5 \ 5); 100) = \begin{pmatrix} -514 \\ -34 \end{pmatrix}$$

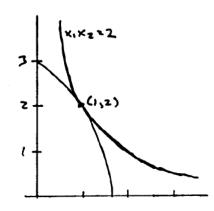
$$(5 5) + t\nabla P((5 5); 1) = (5 - 514t 5 - 34t)$$

$$t^* = 0.003529 \Rightarrow x' = (3.1862 \quad 4.8802)$$

(c)

| k                     | r                          | x <sub>1</sub>                        | x <sub>2</sub>                        | f( <b>x</b> )                |
|-----------------------|----------------------------|---------------------------------------|---------------------------------------|------------------------------|
| 0<br>1<br>2<br>3<br>4 | 100<br>1<br>0.01<br>0.0001 | 5<br>2.725<br>2.587<br>2.562<br>2.557 | 5<br>6.072<br>4.976<br>4.891<br>4.888 | -825<br>-251<br>-183<br>-177 |

minimize  $f(x) \rightarrow \text{maximize} - f(x)$ 


$$g(x) \ge b \longrightarrow -g(x) \le -b$$

# 12.9-13.

(a) KKT conditions: 
$$(1a) \ x_2 - 4ux_1 \leq 0 \\ (2a) \ x_1(x_2 - 4ux_1) = 0 \\ (3) \ x_1^2 + x_2 \leq 3 \\ (4) \ u(x_1^2 + x_2 - 3) = 0 \\ (5) \ x_1 \geq 0, x_2 \geq 0 \\ (6) \ u \geq 0$$
 
$$(1b) \ x_1 - u \leq 0 \\ (2b) \ x_2(x_1 - u) = 0$$

 $(x_1, x_2) = (1, 2)$  with u = 1 satisfies these conditions.

(b)



# 12.9-14.

(a) 
$$P(\mathbf{x}; r) = -2x_1 - (x_2 - 3)^2 - r\left[\frac{1}{x_1 - 3} + \frac{1}{x_2 - 3}\right]$$

(b) 
$$\nabla P(\boldsymbol{x};r) = \begin{pmatrix} -2 + r\left[\frac{1}{(x_1-3)^2}\right] \\ -2x_2 + 6 + r\left[\frac{1}{(x_2-3)^2}\right] \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow x_1 = \sqrt{r/2} + 3, x_2 = \sqrt[3]{r/2} + 3$$

| r         | $x_1$  | $x_2$  |
|-----------|--------|--------|
| 1         | 3.7071 | 3.7937 |
| $10^{-2}$ | 3.0707 | 3.1710 |
| $10^{-4}$ | 3.0071 | 3.0368 |
| $10^{-6}$ | 3.0007 | 3.0079 |

Note that  $(x_1, x_2) \to (3, 3)$  as  $r \to 0$ , so (3, 3) is optimal.

(c)

| k | 1    | r        |   |       | • | X2    | •      |
|---|------|----------|---|-------|---|-------|--------|
| 0 | - i- |          |   |       |   | 4     | -9     |
| 1 | 1    | 1        | Ì | 3.707 | Ì | 3.794 | -8.044 |
| 2 | 1    | 0.01     | ł | 3.07  | ı | 3.179 | -6.172 |
| 3 | 1    | 0.0001   | ١ | 3.007 | ĺ | 3.056 | -6.017 |
| 4 | 1    | 0.000001 | ı | 3.001 | 1 | 3.011 | -6.002 |

# 12.9-15.

$$P(\mathbf{x};r) = -x_1^2 - x_2^2 - x_1 - x_2 + x_1 x_2 - r/x_2$$

| k | r      | x <sub>1</sub> | x <sub>2</sub> | f (X) |
|---|--------|----------------|----------------|-------|
| 0 |        | 1              | 1              | -3    |
| 1 | 1      | -0.18          | 0.638          | -1.01 |
| 2 | 0.01   | -0.46          | 0.079          | 0.127 |
| 3 | 0.0001 | -0.5           | 0.008          | 0.238 |

# 12.9-16.

$$P(\boldsymbol{x};r) = 2x_1 + 3x_2 - x_1^2 - x_2^2 - r\left[\frac{1}{2-x_1-x_2} + \frac{1}{x_1} + \frac{1}{x_2}\right]$$

| k           | r                  | x <sub>1</sub>        | x <sub>2</sub>        | f (X)              |
|-------------|--------------------|-----------------------|-----------------------|--------------------|
| 0<br>1<br>2 | 0.01               | 0.5<br>0.649<br>0.691 | 0.5<br>0.781<br>1.184 | 2<br>2.61<br>3.055 |
| 3           | 0.0001<br>0.000001 | 0.743                 | 1.243                 | 3.118<br>3.124     |

# 12.9-17.

$$P(\boldsymbol{x};r) = 126x_1 - 9x_1^2 + 182x_2 - 13x_2^2 - r\left[\frac{1}{4-x_1} + \frac{1}{12-2x_2} + \frac{1}{18-3x_1-2x_2} + \frac{1}{x_1} + \frac{1}{x_2}\right]$$

| k | r      | X <sub>1</sub> | x <sub>2</sub> | f (X) |
|---|--------|----------------|----------------|-------|
| 0 |        | 2              | 3              | 645   |
| 1 | 100    | 2.292          | 4.523          | 798.8 |
| 2 | 1      | 2.62           | 4.972          | 851.9 |
| 3 | 0.01   | 2.661          | 4.999          | 856.5 |
| 4 | 0.0001 | 2.665          | 5.002          | 856.9 |

# 12.9-18.

(a) 
$$P(\mathbf{x}; r) = x_1^3 + 4x_2^2 + 16x_3 - r\left[\frac{1}{x_1 - 1} + \frac{1}{x_2 - 1} + \frac{1}{x_3 - 1}\right] - \frac{(5 - x_1 - x_2 - x_3)^2}{\sqrt{r}}$$

(b)

| k<br> | -1      |             | X2        |       |        |
|-------|---------|-------------|-----------|-------|--------|
| 0     | 1       |             | 1.5       |       |        |
| 1     | 1 0     | ).01   1.95 | 1.434     | 1.047 | -32.38 |
|       | 1 0.0   | 001   2.17  | 9   1.743 | 1.007 | -38.62 |
| 3     | 0.000   | 001   2.20  | 8   1.784 | 1.001 | -39.51 |
| 4     | 0.00000 | 001   2.21  | 1.786     | 1.002 | -39.6  |

# (c) Standard Excel Solver

| Min  | f(x)       | 39.608 | }  |   |
|------|------------|--------|----|---|
| s.t. | g1(x)      | 5.000  | =  | 5 |
|      | <b>x</b> 1 | 2.194  | >= | 1 |
|      | x2         | 1.806  | >= | 1 |
|      | х3         | 1.000  | >= | 1 |

# (d) Evolutionary Solver

| Min  | f(x)       | 38.796 | I  |   |
|------|------------|--------|----|---|
| s.t. | g1(x)      | 4.941  | =  | 5 |
|      | x1         | 2.146  | >= | 1 |
|      | x2         | 1.783  | >= | 1 |
|      | <b>x</b> 3 | 1.012  | >= | 1 |

#### (e) LINGO

Local optimal solution found at iteration: Objective value:

 Variable
 Value
 Reduced Cost

 X1
 2.194335
 0.000000

 X2
 1.805665
 0.000000

 X3
 1.000000
 0.000000

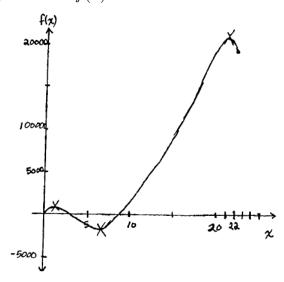
 Row
 Slack or Surplus
 Dual Price

|   |           | - aar     |
|---|-----------|-----------|
| 1 | 39.60766  | -1.000000 |
| 2 | 0.00000   | -14.44532 |
| 3 | 1.194335  | 0.000000  |
| 4 | 0.8056651 | 0.000000  |
| 5 | 0.00000   | -1.554676 |

# 12.10-1.

(a) Solving for the roots of  $x^2 + x - 500 = 0$ , one observes that x is feasible in the range  $\left[0, \frac{-1+\sqrt{2001}}{2}\right] = [0, 21.866]$ .

34


39.60766

$$f'(x) = 1000 - 800x + 120x^{2} - 4x^{3}$$
  

$$f''(x) = -800 + 240x - 12x^{2}$$
  

$$f'''(x) = 240 - 24x$$

A rough sketch of f(x):



The points that are marked as X correspond to a local minimum or maximum.

(b)

| Iteration | df(X)/dX | X(L)   | X(U)   | New X' | f(X')  |
|-----------|----------|--------|--------|--------|--------|
| 0         |          | 0      | 5      | 2.5    | 585.94 |
| 1         | -312.5   | j o    | 2.5    | 1.25   | 700.68 |
| 2         | +179.7   | 1.25   | 2.5    | 1.875  | 720.06 |
| 3         | -104.5   | 1.25   | 1.875  | 1.5625 | 732.56 |
| 4         | +27.71   | 1.5625 | 1.875  | 1.7188 | 731.48 |
| 5         | -40.82   | 1.5625 | 1.7188 | 1.6406 | 733.36 |
| 6         | -7.166   | 1.5625 | 1.6406 | 1.6016 | 733.3  |
| Stop      | İ        | İ      | ĺ      | 1      | İ      |
| Iteration | df(X)/dX | X(L)   | X(U)   | New X' | f(X')  |
| 0         |          | 18     | 21.866 | 19.933 | 19931  |
| 1         | + 1053   | 19.933 | 21.866 | 20.899 | 20546  |
| 2         | +180.4   | 20.899 | 21.866 | 21.383 | 20509  |
| 3         | -346.2   | 20.899 | 21.383 | 21.141 | 20559  |
| 4         | - 75.1   | 20.899 | 21.141 | 21.02  | 20560  |
| 5         | +54.58   | 21.02  | 21.141 | 21.081 | 20562  |
| 6         | -9.778   | 21.02  | 21.081 | 21.051 | 20561  |
| Stop      | 1        | i      | i      | i      |        |

There is a local maximum near 1.6016 and a global maximum near 21.051.

(c)

Newton's method

Max 
$$f(x) = 1000 x - 400 x^2 + 40 x^3 - x^4$$
 s.t.  $x^2 + x <= 500$ ,  $x>= 0$   $f'(x) = 1000 - 800 x + 120 x^2 - 4 x^3$   $f''(x) = -800 + 240 x - 12 x^2$ 

(x) = -800 + 240 x - 12 x^2 error 0.001

# Starting with x = 3

| Iteration i | $\mathbf{x}_{i}$ | $f(x_i)$   | $f'(x_i)$ | $f''(x_i)$ | $x_{i+1}$ | x <sub>i</sub> - x <sub>i+1</sub> |
|-------------|------------------|------------|-----------|------------|-----------|-----------------------------------|
| 1           | 3                | 399        | -428      | -188       | 0.723404  | 2.276596                          |
| 2           | 0.72340426       | 528.947606 | 482.56    | -632.6627  | 1.486149  | 0.762744                          |
| 3           | 1.48614867       | 729.11001  | 62.98815  | -469.828   | 1.620215  | 0.134066                          |
| 4           | 1.62021508       | 733.414048 | 1.826677  | -442.6495  | 1.624342  | 0.004127                          |
| 5           | 1.62434177       | 733.417819 | 0.001712  | -441.8198  | 1.624346  | 3.88E-06                          |

Local maximum: x = 1.6243

# Starting with x = 15

| Iteration i | $x_i$      | $f(x_i)$   | $f'(x_i)$ | $f''(x_i)$ | $\mathbf{X}_{i+1}$ | x <sub>i</sub> - x <sub>i+1</sub> |
|-------------|------------|------------|-----------|------------|--------------------|-----------------------------------|
| 1           | 20         | 20000      | 1000      | -800       | 21.25              | 1.25                              |
| 2           | 21.25      | 20544.4336 | -195.3125 | -1118.75   | 21.07542           | 0.174581                          |
| 3           | 21.075419  | 20561.721  | -4.093317 | -1071.979  | 21.0716            | 0.003818                          |
| 4           | 21.0716005 | 20561.7289 | -0.001938 | -1070.964  | 21.0716            | 1.81E-06                          |
| 5           | 21.0715987 | 20561.7289 | -4.51E-10 | -1070.964  | 21.0716            | 4.23E-13                          |
| 6           | 21.0715987 | 20561.7289 | 0         | -1070.964  | 21.0716            | 0                                 |
| 7           | 21.0715987 | 20561.7289 | 0         | -1070.964  | 21.0716            | 0                                 |
| 8           | 21.0715987 | 20561.7289 | 0         | -1070.964  | 21.0716            | 0                                 |
| 9           | 21.0715987 | 20561.7289 | 0         | -1070.964  | 21.0716            | 0                                 |
| 10          | 21.0715987 | 20561.7289 | 0         | -1070.964  | 21.0716            | 0                                 |
| 11          | 21.0715987 | 20561.7289 | 0         | -1070.964  | 21.0716            | 0                                 |
| 12          | 21.0715987 | 20561.7289 | 0         | -1070.964  | 21.0716            | 0                                 |
| 13          | 21.0715987 | 20561.7289 | 0         | -1070.964  | 21.0716            | 0                                 |

Local maximum: x = 21.0716

(d)

| k        | r    | $x_1$ | f(X)  |
|----------|------|-------|-------|
| 0        |      | 3     | 399   |
| 1        | 1000 | 2.171 | 672.8 |
| 2        | 100  | 1.704 | 732   |
| 3        | 10   | 1.633 | 733.4 |
|          | 1    | 1.625 | 733.4 |
| <u>4</u> |      | 15    | 9375  |
| 1        | 1000 | 21.04 | 20561 |
| 2        | 100  | 21.07 | 20562 |
| 3        | 10   | 21.07 | 20562 |
| 4        | 1    | 21.07 | 20562 |

The first four iterations with initial trial solution x=3, return x=1.625 with f(x)=733.4 as maximum. The next four iterations with initial trial solution x=15, return x=21.07 with f(x)=20562 as maximum. The global maximum is x=21.07.

(e)

# Solver Table

Max  $f(x) = 1000 x - 400 x^2 + 40 x^3 - x^4$  s.t.  $x^2 + x \le 500$ , x > 0

| Max  | f(x) | 733.4178 |    |     |
|------|------|----------|----|-----|
| s.t. | x    | 1.624346 | >= | 0   |
|      | g(x) | 4.262844 | <= | 500 |

| Starting poir | optimal x* | profit f(x*) |  |
|---------------|------------|--------------|--|
|               | 1.624      | 733.418      |  |
| 0             | 1.624      | 733.418      |  |
| 5             | 1.624      | 733.418      |  |
| 10            | 21.072     | 20561.729    |  |
| 15            | 21.072     | 20561.729    |  |
| 20            | 21.072     | 20561.729    |  |
| 25            | 21.072     | 20561.729    |  |

(f) x = 21.0716

# **Evolutionary Solver**

Max  $f(x) = 1000 x - 400 x^2 + 40 x^3 - x^4$  s.t.  $x^2 + x \le 500$ , x > 0

Max 
$$f(x)$$
 20561.73  
s.t.  $x$  21.0716 >= 0  
 $g(x)$  465.0839 <= 500

(g)

Lingo with Global Solver

Global optimal solution found at iteration: 33
Objective value: 20561.73

| Varia     | able       | Value                                  | Reduced Cost                                   |
|-----------|------------|----------------------------------------|------------------------------------------------|
|           | X          | 21.07159                               | 0.000000                                       |
| Row 1 2 3 | 205<br>21. | or Surplus<br>661.73<br>07159<br>91636 | Dual Price<br>1.000000<br>0.000000<br>0.000000 |

```
(h)
     TITLE
        "12.10-1";
     OPTIONS
         ModelType=Nonlinear
     VARIABLES
         x;
     MODEL
         MAX f = 1000x-400x^2+40x^3-x^4;
     SUBJECT TO
         x^2+x <= 500;
     END
     SOLUTION RESULT
       Global solution found (1,1)
         MAX f = 733.4178
     DECISION VARIABLES
     PLAIN UARIABLES
```

| Variable Name | Activity | Reduced Cost |
|---------------|----------|--------------|
| ×             | 1.6243   | 0.0000       |

# 12.10-2.

(a) 
$$P(\boldsymbol{x};r) = 3x_1x_2 - 2x_1^2 - x_2^2 - r\left[\frac{1}{4 - x_1^2 - 2x_2^2} + \frac{1}{x_2 - 2x_1} + \frac{1}{x_1} + \frac{1}{x_2}\right] - \frac{(2 - x_1x_2^2 - x_1^2x_2)^2}{\sqrt{r}}$$

(b)

| k | 1   | r    | l  | X1    | ļ  | X2    | f(X)   |
|---|-----|------|----|-------|----|-------|--------|
| _ | _ _ |      | ١. |       | ĺ. |       |        |
| 0 | ŀ   |      | ļ  | 1     | Ï  | 1     | 0      |
| 1 | 1   | 1    |    | 0.915 | İ  | 1.007 | 0.0758 |
| 2 | 1   | 0.01 | ı  | 0.848 | İ  | 1.169 | 0.1692 |
| 3 | 1   |      |    |       |    |       | 0.1697 |

# (c) Evolutionary Solver

Max 
$$f(x)$$
 0.171564  
s.t.  $g1(x)$  3.519555  $\leftarrow=$  4  
 $g2(x)$  0.504927  $\leftarrow=$  3  
 $g3(x)$  2.030303  $=$  2  
 $x1$  0.844707  $\rightarrow=$  0  
 $x2$  1.184488  $\rightarrow=$  0

# (d) Use global optimizer feature of LINGO.

```
! Nonlinear constraint;

MAX = 3*x1*x2-2*x1^2-x2^2;

x1^2+2*x2^2<=4;

2*x1-x2<=3;

x1*x2^2+x1^2*x2=2;

x1>=0;

x2>=0;
```

Global optimal solution found at iteration: 879
Objective value: 0.1698892

| ariable | Value            | Reduced Cost   |
|---------|------------------|----------------|
| X1      | 0.8382396        | -0.8808309E-07 |
| X2      | 1.181385         | 0.000000       |
| _       |                  |                |
| Row     | Slack or Surplus | Dual Price     |
| 1       | 0.1698892        | 1.000000       |
| 2       | 0.5060155        | 0.000000       |
| 3       | 2.504905         | 0.000000       |
| 4       | 0.000000         | 0.5662949E-01  |
| 5       | 0.8382396        | 0.00000        |
| 6       | 1.181385         | 0.000000       |

Infeasible solution (4,1)

MAX f = 0.0000

**DECISION VARIABLES** 

## PLAIN VARIABLES

| Variable Name | Activity | Reduced Cost |
|---------------|----------|--------------|
| x1            | 0.0000   | 0.0000       |
| x2            | 0.0000   | 0.0000       |
|               |          |              |

## 12.10-3.

(a) 
$$P(\boldsymbol{x};r) = \sin 3x_1 + \cos 3x_2 + \sin (x_1 + x_2) + r \left[ \frac{1}{1 + x_1^2 - 10x_2} + \frac{1}{100 - 10x_1 - x_2^2} + \frac{1}{x_1} + \frac{1}{x_2} \right]$$

(b) SUMT can be used to obtain the global minimum if it is run with "enough" different starting points. If a lattice of points over the feasible region is chosen so that the adjacent points do not differ by more than  $2\pi/3$ , then this set of points works for f(x). Since sin and cos have period  $2\pi$ , choosing lattice points with grid size not exceeding  $2\pi/3$  ensures that the arguments of the sin and cos terms in f do not differ by more than  $2\pi$  between adjacent lattice points. Since the second constraint ensures  $x_1 \le 10$  and  $x_2 \le 10$ , at most  $[10/(2\pi/3)]^2 \approx 23$  starting points are required if chosen correctly.

(c)

```
Use LINGO Global Solver;

MIN = @SIN(3*X1) + @COS(3*X2) + @SIN(X1+X2);

X1^2 - 10 * X2 >= -1;

10*X1 + X2^2 <= 100;

X1 >= 0;

X2 >= 0;
```

Global optimal solution found at iteration:
Objective value:

6 2.999999

| Varia | ıble  | Value      | Reduced Cost |
|-------|-------|------------|--------------|
|       | X1    | 3.665418   | 0.000000     |
|       | X2    | 1.046684   | 0.000000     |
| Row   | Slack | or Surplus | Dual Price   |
| 1     | -2    | .999999    | -1.000000    |
| 2     | 3     | .968452    | 0.00000      |
| 3     | 6     | 2.25027    | 0.00000      |
| 4     | 3     | .665418    | 0.00000      |
| 5     | 1     | .046684    | 0.000000     |
|       |       |            |              |

(d)

```
TITLE
   "12.10-3";
OPTIONS
    ModelType=Nonlinear
VARIABLES
    x1 x2 x3 x4 x5;
MODEL
    MIN f = SIN(x3) + COS(x4) + SIN(x5);
SUBJECT TO
    x3 = 3x1;
    x4 = 3x2;
    x5 = x1+x2;
    x1^2-10x2 >= -1;
    10x1+x2^2 <= 100;
END
SOLUTION RESULT
  Global solution found (1,1)
```

**DECISION VARIABLES** 

MIN f =

## **PLAIN UARIABLES**

| Variable Name | Activity | Reduced Cost |  |  |
|---------------|----------|--------------|--|--|
| x1            | -0.5236  | 0.0000       |  |  |
| x2            | -1.0472  | 0.0000       |  |  |
| x3            | -1.5708  | 0.0000       |  |  |
| ×4            | -3.1416  | 0.0000       |  |  |
| x5            | -1.5708  | 0.0000       |  |  |
|               |          |              |  |  |

-3.0000

# 12.10-4.

(a)

| Γ | Α        | В                                    | С | D        | E     | F       |
|---|----------|--------------------------------------|---|----------|-------|---------|
| 1 |          | 0                                    |   | Starting |       |         |
| 2 |          | <=                                   |   | Point    | x*    | Profit* |
| 3 | X =      | 3.537                                |   |          | 3.537 | 6.801   |
| 4 |          | <=                                   |   | 0        | 0.405 | 10.735  |
| 5 |          | 5                                    |   | 1        | 0.405 | 10.735  |
| 6 |          |                                      |   | 2        | 3.537 | 6.801   |
| 7 | Profit = | $x^5 - 13x^4 + 59x^3 - 107x^2 + 61x$ |   | 3        | 3.537 | 6.801   |
| 8 |          | 6.801                                |   | 4        | 3.537 | 6.801   |
| 9 |          |                                      |   | 5        | 5     | 5       |

(b)

|   | Α        | В                                        |
|---|----------|------------------------------------------|
| 1 |          | 0                                        |
| 2 |          | <=                                       |
| 3 | X =      | 0.405                                    |
| 4 |          | <=                                       |
| 5 |          | 5                                        |
| 6 |          |                                          |
| 7 | Profit = | $=$ $x^5 - 13x^4 + 59x^3 - 107x^2 + 61x$ |
| 8 |          | 10.735                                   |

# 12.10-5.

(a)

| T  | A        | В                                                               | С | D        | E     | F       |
|----|----------|-----------------------------------------------------------------|---|----------|-------|---------|
| _  |          | O                                                               |   | Starting |       | L       |
| _  |          | <=                                                              |   | Point    | x*    | Profit* |
| 1- | Y =      | 1,187                                                           |   |          | 1.187 | 753.451 |
| +- |          | <=                                                              |   | 0        | 0     | 0       |
| +  |          | 5                                                               |   | 1        | 1.187 | 753.451 |
| -  |          |                                                                 |   | 2        | 1.187 | 753.451 |
| 1  | Profit = | $100x^6 - 1,359x^5 + 6,836x^4 - 15,670x^3 + 15,870x^2 - 5,095x$ |   | 3        | 3.184 | 906.902 |
| +- |          | 753,451                                                         |   | 4        | 3.184 | 906.902 |
| +  |          |                                                                 |   | 5        | 5     | 650     |

(b)

|   | Α        | В                                                               |
|---|----------|-----------------------------------------------------------------|
| 1 |          | O                                                               |
| 2 |          | <=                                                              |
| 3 | x =      | 3.184                                                           |
| 4 |          | <=                                                              |
| 5 |          | S S                                                             |
| 6 |          |                                                                 |
| 7 | Profit = | $100x^6 - 1,359x^5 + 6,836x^4 - 15,670x^3 + 15,870x^2 - 5,095x$ |
| 8 | =        | 906.902                                                         |

# 12.10-6.

|                | A     | В        | С          | D     | Е | F | G  | Н                                       | I            | ĵ  | K | L        | М            | N             | 0            | Р          |
|----------------|-------|----------|------------|-------|---|---|----|-----------------------------------------|--------------|----|---|----------|--------------|---------------|--------------|------------|
| 1              | City  | Democrat | Republican | Total |   |   |    | District                                |              |    |   |          |              |               |              |            |
| 2              | 1     | 152      | 62         | 214   |   | 1 | <= | 3                                       | <=           | 10 |   |          | Min District | Population    | 150          |            |
| 3              | 2     | 81       | 59         | 140   |   | 1 | <= | 4                                       | <=           | 10 |   |          | Max District | Population    | 350          |            |
|                | 3     | 75       | 83         | 158   |   | 1 | <= |                                         | <=           | 10 |   |          | Number       | of Districts  | 10           |            |
| 5              | 4     | 34       | 52         | 86    |   | 1 | <= | 6                                       | <=           | 10 |   |          |              |               |              |            |
| 6              | 5     | 62       | 87         | 149   |   | 1 | <= | 6<br>5<br>5                             | <=           | 10 |   |          |              |               |              |            |
| 7              | 6     | 36       | 87         | 125   |   | 1 | <= | 5                                       | <=           | 10 |   |          |              |               |              |            |
| 8              | 7     | 48       | 69         | 117   |   | 1 | <= | 7                                       | <=           | 10 |   | District | Democrat     | Republican    | Total        | Winner     |
| 9              | - 8   | 74       | 49         | 123   |   | 1 | <= | 1 1                                     | <=           | 10 |   | 1        | 119          | 131           | 250          | Republican |
| 10             | 9     | 98       | 62         | 160   |   | 1 | <= | 7                                       | <=           | 10 |   | 2        | 140          | 151           | 291          | Republican |
| 11             | 10    | 66       | 72         | 138   |   | 1 | <= |                                         | <=           | 10 |   | 3        | 152          | 62            | 214          | Democrat   |
| 12             | 17    | 83       | 75         | 158   | _ | 1 | <= | 9<br>6<br>9                             | <=           | 10 | _ | 4        | 174          | 127           | 301          | Democrat   |
| 11<br>12<br>13 | 12    | 86       | 82         | 168   | _ | 1 | <= | 9                                       | <=           | 10 |   | 5        | 100          | 174           | 274          | Republican |
| 14             | 13    | 72       | 83         | 155   |   | 1 | <= | 10                                      | <=           | 10 |   | 6        | 117          | 127           | 244          | Republican |
| 15             | 14    | 28       | 53         | 81    |   | 1 | <= | **************************************  | <=           | 10 |   | 7        | 146          | 131           | 277          | Democrat   |
| 16             | 15    | 112      | 98         | 210   | - | 1 | -  | - 8000000000000000000000000000000000000 | <b>&lt;=</b> | 10 |   | 8        | 75           | 83            | 158          | Republican |
| 17             | 16    | 45       | 82         | 127   |   | 1 |    |                                         | <=           | 10 |   | 9        | 152          | 154           | 306          | Republican |
| 18             | 17    | 93       | 68         | 161   |   | 1 | <= | 100000000000000000000000000000000000000 | <=           | 10 |   | 10       | 144          | 181           | 325          | Republican |
| 19             | 18    | 72       | 98         | 170   |   | 1 | <= |                                         | <=           | 10 |   |          | T            | otal Republic | an Districts | 7          |
| 20             | Total | 1,319    | 1,321      |       |   |   |    |                                         |              |    |   |          |              | <u> </u>      |              |            |

# 12.10-7.

(a)

|    | В              | С             | D               | E     | F | G            |
|----|----------------|---------------|-----------------|-------|---|--------------|
| 3  |                | Doors         | Windows         |       |   |              |
| 4  | Unit Profit    | \$300         | \$500           |       |   |              |
| 5  |                |               |                 | Hours |   | Hours        |
| 6  |                | Hours Used Pe | r Unit Produced | Used  |   | Available    |
| 7  | Plant 1        | 1             | 0               | 2     | Š | 4            |
| 8  | Plant 2        | 0             | 2               | 12    | Š | 12           |
| 9  | Plant 3        | 3             | 2               | 18    | Š | 18           |
| 10 |                |               |                 |       |   |              |
| 11 |                | Doors         | Windows         |       |   | Total Profit |
| 12 | Units Produced | 2             | 6               |       |   | \$3,600      |

(b)

|    | В              | С             | D               | Е     | F | G            |
|----|----------------|---------------|-----------------|-------|---|--------------|
| 3  |                | Doors         | Windows         |       |   |              |
| 4  | Unit Profit    | \$300         | \$500           |       |   |              |
| 5  |                |               |                 | Hours |   | Hours        |
| 6  |                | Hours Used Pe | r Unit Produced | Used  |   | Available    |
| 7  | Plant 1        | 1             | 0               | 1.96  | Š | 4            |
| 8  | Plant 2        | 0             | 2               | 11.80 | Š | 12           |
| 9  | Plant 3        | 3             | 2               | 17.68 | Š | 18           |
| 10 |                | p             |                 |       |   |              |
| 11 |                | Doors         | Windows         |       |   | Total Profit |
| 12 | Units Produced | 1.959         | 5.902           |       |   | \$3,538      |
| 13 |                | <=            | <=              |       |   |              |
| 14 |                | 10            | 10              |       |   |              |

(c) The Standard Solver gives a better solution and finds it much more quickly. It is much better suited to linear programs than the Evolutionary Solver.

#### 12.11-1.

(a) Yes, this is a convex programming problem.

$$\begin{split} f(\boldsymbol{x}) &= f_1(x_1) + f_2(x_2), f_1(x_1) = 4x_1 - x_1^2, f_2(x_2) = 10x_2 - x_2^2 \\ \frac{d^2 f_1(x_1)}{dx_1^2} &= \frac{d^2 f_2(x_2)}{dx_2^2} = -2 < 0 \Rightarrow f \text{ is concave.} \\ g(\boldsymbol{x}) &= g_1(x_1) + g_2(x_2), g_1(x_1) = x_1^2, g_2(x_2) = 4x_2^2 \\ \frac{d^2 g_1(x_1)}{dx_1^2} &= 2 > 0, \frac{d^2 g_2(x_2)}{dx_2^2} = 8 > 0 \Rightarrow g \text{ is convex.} \end{split}$$

- (b) No, this is not a quadratic programming problem because the constraints are nonlinear.
- (c) No, the Frank-Wolfe algorithm in Section 12.9 requires linear constraints, so it cannot be applied to this problem.
- (d) KKT conditions:

$$\begin{array}{ll} \text{(1a)}\ 4-2x_1-2x_1u\leq 0\\ \text{(2a)}\ x_1(4-2x_1-2x_1u)=0\\ \text{(3)}\ x_1^2+4x_2^2-16\leq 0\\ \text{(4)}\ u(x_1^2+4x_2^2-16)=0\\ \text{(5)}\ x_1\geq 0, x_2\geq 0\\ \text{(6)}\ u\geq 0 \end{array}$$

Let  $x_1 = x_2 = 1$ . Then from (2a), u = 1 and this violates (4), so it cannot be optimal.

(e) Let 
$$x_1 = x_{11} + x_{12} + x_{13} + x_{14}$$
 and  $x_2 = x_{21} + x_{22}$ . 
$$f_1(x_1) = 4x_1 - x_1^2, f_2(x_2) = 10x_2 - x_2^2$$
 
$$f_1(0) = 0, f_1(1) = 3, f_1(2) = 4, f_1(3) = 3, f_1(4) = 0$$
 
$$f_2(0) = 0, f_2(1) = 9, f_2(2) = 16$$
 
$$s_{11} = 3, s_{12} = 1, s_{13} = -1, s_{14} = -3$$
 
$$s_{21} = 9, s_{22} = 7$$
 
$$g_1(x_1) = x_1^2, g_2(x_2) = 4x_2^2$$
 
$$g_1(0) = 0, g_1(1) = 1, g_1(2) = 4, g_1(3) = 9, g_1(4) = 16$$
 
$$g_2(0) = 0, g_2(1) = 4, g_2(2) = 16$$
 
$$t_{11} = 1, t_{12} = 3, t_{13} = 5, t_{14} = 7$$
 
$$t_{21} = 4, t_{22} = 12$$

Approximate linear programming model:

maximize 
$$3x_{11}+x_{12}-x_{13}+3x_{14}+9x_{21}+7x_{22}$$
 subject to 
$$x_{11}+3x_{12}+5x_{13}+7x_{14}+4x_{21}+12x_{22}\leq 16$$
 
$$5x_{11}+5x_{12}+5x_{13}+2x_{21}+2x_{22}+2x_{23}\leq 14$$
 
$$0\leq x_{ij}\leq 1 \text{ for all } i,j$$

## (f) Solution with the simplex method:

Value of the

Objective Function: Z = 18.4166667

| Variab         | ole    | Value   |  |  |
|----------------|--------|---------|--|--|
| x <sub>1</sub> | (X")   | 1       |  |  |
| $x_2$          | (X12)  | 0       |  |  |
| Х3             | (x13)  | 0       |  |  |
| X4             | ( Y14) | 0       |  |  |
| X5             | (Yu)   | 1       |  |  |
| <b>x</b> 6     | ( 122) | 0.91667 |  |  |

Original variables:  $x_1 = 1, x_2 = 1.91667$ 

(g) 
$$P(\mathbf{x}; r) = 4x_1 - x_1^2 + 10x_2 - x_2^2 - r \left[ \frac{1}{16 - x_1^2 - 4x_2^2} + \frac{1}{x_1} + \frac{1}{x_2} \right]$$

(h)

| k      | r      | x <sub>1</sub> | x <sub>2</sub> | f ( <b>x</b> ) |
|--------|--------|----------------|----------------|----------------|
| 0      |        | 2              | 1              | 13             |
| 2      | 0.01   | 1.504          | 1.754          | 18.22<br>18.8  |
| 3<br>4 | 0.0001 | 1.41           | 1.871<br>1.871 | 18.86          |

## (i) Standard Solver

Max 
$$f(x) = 4x1-x1^2+10x2-x2^2$$
  
= 18.865  
s.t.  $g1(x) = x1^2+4^*x2^2$   
= 16.000 <= 16  
 $x1 = 1.411 >= 0$   
 $x2 = 1.871 >= 0$ 

# (j) Evolutionary Solver

Max 
$$f(x) = 4x1-x1^2+10x2-x2^2$$
  
= 18.865  
s.t.  $g1(x) = x1^2+4^*x2^2$   
= 16.000 <= 16  
 $x1 = 1.407 >= 0$   
 $x2 = 1.872 >= 0$ 

# (k) LINGO Solver

MAX = 
$$4*X1 - X1^2 + 10*X2 - X2^2;$$
  
 $X1^2 + 4 * X2^2 <= 16;$   
 $X1 >= 0;$   
 $X2 >= 0;$ 

Local optimal solution found at iteration: 63
Objective value: 18.86516

| Varia | ble   | Value      | Reduced Cost  |
|-------|-------|------------|---------------|
|       | X1    | 1.410531   | 0.00000       |
|       | X2    | 1.871524   | 0.1287136E-07 |
| Row   | Slack | or Surplus | Dual Price    |
| 1     | 18    | .86516     | 1.000000      |
| 2     | 0.    | 000000     | 0.4179049     |
| 3     | 1.    | 410531     | 0.00000       |
| 4     | 1.    | 871524     | 0.00000       |

## **CASES**

## **Case 12.1 Savvy Stock Selection**

- (a) If Lydia wants to ignore the risk of her investment she should invest all her money into the stock that promises the highest expected return. According to the predictions of the investment advisors, the expected returns equal 20% for BB, 42% for LOP, 100% for ILI, 50% for HEAL, 46% for QUI, and 30% for AUA. Therefore, she should invest 100% of her money into ILI. The risk (variance) of this portfolio equals 0.333.
- (b) Lydia should invest 40% of her money into the stock with the highest expected return, 40% into the stock with the second highest expected return, and 20% into the stock with the third highest expected return. This intuitive solution can be found also by solving the linear programming problem to

maximize MaxExpectedReturn = SUMPRODUCT(Portfolio, StockExpectedReturn) subject to Total = OneHundredPercent

Portfolio < MaxInSingleStock.

|    | A                      | В         | С     | D     | Е      | F      | G      | Н     | 1 | J    |
|----|------------------------|-----------|-------|-------|--------|--------|--------|-------|---|------|
| 1  |                        | BB        | LOP   | ILI   | HEAL   | QUI    | AUA    |       |   |      |
| 2  | Expected Return        | 20%       | 42%   | 100%  | 50%    | 46%    | 30%    |       |   |      |
| 3  |                        |           |       |       |        |        |        |       |   |      |
| 4  | Covariance Matrix      |           |       |       |        |        |        |       |   |      |
| 5  | (Variance on Diagonal) | BB        | LOP   | ILI   | HEAL   | QUI    | AUA    |       |   |      |
| 6  | BB                     | 0.032     | 0.005 | 0.030 | -0.031 | -0.027 | 0.010  |       |   |      |
| 7  | LOP                    | 0.005     | 0.1   | 0.085 | -0.07  | -0.05  | 0.020  |       |   |      |
| 8  | ILI                    | 0.030     | 0.085 | 0.333 | -0.11  | -0.02  | 0.042  |       |   |      |
| 9  | HEAL                   | -0.031    | -0.07 | -0.11 | 0.125  | 0.05   | -0.060 |       |   |      |
| 10 | QUI                    | -0.027    | -0.05 | -0.02 | 0.05   | 0.065  | -0.020 |       |   |      |
| 11 | AUA                    | 0.010     | 0.020 | 0.042 | -0.060 | -0.020 | 0.08   |       |   |      |
| 12 |                        |           |       |       |        |        |        |       |   |      |
| 13 |                        | BB        | LOP   | ILI   | HEAL   | QUI    | AUA    | Total |   |      |
| 14 | Portfolio              | 0%        | 0%    | 40%   | 40%    | 20%    | 0% *   | 100%  | = | 100% |
| 15 |                        | 2         | 2     | 2     | 2      | 2      | 2      |       |   |      |
| 16 | Max in Single Stock    | 40%       | 40%   | 40%   | 40%    | 40%    | 40%    |       |   |      |
| 17 |                        |           |       |       |        |        |        |       |   |      |
| 18 |                        | Portfolio |       |       |        |        |        |       |   |      |
| 19 | Expected Return =      | 69.2%     |       |       |        |        |        |       |   |      |
| 20 |                        |           |       |       |        |        |        |       |   |      |
| 21 | Risk (Variance) =      | 0.04548   |       |       |        |        |        |       |   |      |

| Range Name              | Cells   |
|-------------------------|---------|
| CovarianceMatrix        | B6:G11  |
| MaxInSingleStock        | B16:G16 |
| OneHundredPercent       | J14     |
| Portfolio               | B14:G14 |
| PortfolioExpectedReturn | B19     |
| StockExpectedReturn     | B2:G2   |
| Total                   | H14     |
| Variance                | B21     |

|    | Н               |
|----|-----------------|
| 13 | Total           |
| 14 | =SUM(Portfolio) |

|    | A                 | В                                          |
|----|-------------------|--------------------------------------------|
| 18 |                   | Portfolio                                  |
| 19 | Expected Return = | =SUMPRODUCT(StockExpectedReturn,Portfolio) |

|    | Α                 | В                                                       |
|----|-------------------|---------------------------------------------------------|
| 21 | Risk (Variance) = | =SUMPRODUCT(MMULT(Portfolio,CovarianceMatrix),Portfolio |

The total expected return of her new portfolio is 69.2% with a total variance of 0.04548.

- (c) The risk of Lydia's portfolio is a quadratic function of her decision variables. We apply quadratic programming to her decision problem.
- (d) The expected return of Lydia's portfolio is no longer the objective function. It now becomes part of a constraint:

PortfolioExpectedReturn(C21)  $\geq$  35%(MinimumExpectedReturn).

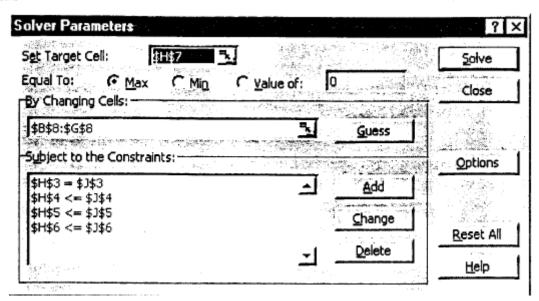
The objective is now to minimize the risk.

|    | Α                      | В                   | С                                       | D                                       | Ε                       | F                     | G                                                        | Н     | T       | J                                       |
|----|------------------------|---------------------|-----------------------------------------|-----------------------------------------|-------------------------|-----------------------|----------------------------------------------------------|-------|---------|-----------------------------------------|
| 1  |                        | BB                  | LOP                                     | ILI                                     | HEAL                    | QUI                   | AUA                                                      |       |         |                                         |
| 2  | Expected Return        | 20%                 | 42%                                     | 100%                                    | 50%                     | 46%                   | 30%                                                      |       | 1       |                                         |
| 3  |                        |                     | pocardenani principali.                 | #21 P0212727330001 B0818000             | 00000091888123388330    | -00333016030306FM-009 | 000000000000000000000000000000000000000                  |       |         | †                                       |
| 4  | Covariance Matrix      |                     |                                         |                                         |                         |                       |                                                          |       | T       |                                         |
| 5  | (Variance on Diagonal) | BB                  | LOP                                     | ILI                                     | HEAL                    | QUI                   | AUA                                                      |       |         |                                         |
| 6  | BB                     | 0.032               | 0.005                                   | 0.030                                   | -0.031                  | -0.027                | 0.010                                                    |       |         |                                         |
| 7  | LOP                    | 0.005               | 0.1                                     | 0.085                                   | -0.07                   | -0.05                 | 0.020                                                    |       |         |                                         |
| 8  | ILI                    | 0.030               | 0.085                                   | 0.333                                   | -0.11                   | -0.02                 | 0.042                                                    |       |         |                                         |
| 9  | HEAL                   | -0.031              | -0.07                                   | -0.11                                   | 0.125                   | 0.05                  | -0.060                                                   |       |         |                                         |
| 10 | QUI                    | -0.027              | -0.05                                   | -0.02                                   | 0.05                    | 0.065                 | -0.020                                                   |       |         |                                         |
| 11 | AUA                    | 0.010               | 0.020                                   | 0.042                                   | -0.060                  | -0.020                | 0.08                                                     |       | 1       |                                         |
| 12 |                        | -9486-8933060930300 | 000000000000000000000000000000000000000 | 320000000000000000000000000000000000000 | T) - N-Y-STEEL SERVICES |                       | 2010/01/01/01/01/05/05/05/05/05/05/05/05/05/05/05/05/05/ |       |         |                                         |
| 13 |                        | BB                  | LOP                                     | ILI                                     | HEAL                    | QUI                   | AUA                                                      | Total |         |                                         |
| 14 | Portfolio              | 31.8%               | 19.9%                                   | 0.0%                                    | 16.8%                   | 20.9%                 | 10.6%                                                    | 100%  | =       | 100%                                    |
| 15 |                        | 2                   | 2                                       | 2                                       | 2                       | 2                     | 2                                                        |       | <b></b> | 000000000000000000000000000000000000000 |
| 16 | Max in Single Stock    | 40%                 | 40%                                     | 40%                                     | 40%                     | 40%                   | 40%                                                      |       |         |                                         |
| 17 |                        |                     | 0-90-0000000000000000000000000000000000 |                                         | PARTONIA                |                       | ##1100###PP000000C                                       |       |         |                                         |
| 18 |                        |                     |                                         | Minimum                                 |                         |                       |                                                          |       |         |                                         |
| 19 |                        |                     |                                         | Expected                                |                         |                       |                                                          |       | 1       |                                         |
| 20 |                        | Portfolio           |                                         | Return                                  |                         |                       |                                                          |       |         |                                         |
| 21 | Expected Return =      | 35.9%               | 3                                       | 35%                                     |                         |                       |                                                          |       |         |                                         |
| 22 |                        |                     |                                         |                                         |                         |                       |                                                          |       |         |                                         |
| 23 | Risk (Variance) =      | 0.00136             |                                         |                                         |                         |                       |                                                          |       |         |                                         |

Lydia's optimal portfolio consists of 31.8% BB, 19.9% LOP, 16.8% HEAL, 20.9% QUI, and 10.6% AUA. Her expected return equals 35.9% with a risk of 0.00136.

(e) Since the return constraint is not binding in the solution of part (d), decreasing the right-hand-side will not affect the optimal solution. The minimum risk for a minimum expected return of 25% is the same as the minimum risk for a minimum expected return of 35%, which is 0.00136. However, for a minimum expected return of 40%, a new portfolio is obtained.

|    | Α                      | В                      | С     | D        | E                  | F                   | G                         | Н     | TT       | J    |
|----|------------------------|------------------------|-------|----------|--------------------|---------------------|---------------------------|-------|----------|------|
| 1  |                        | BB                     | LOP   | ILI      | HEAL               | QUI                 | AUA                       |       |          |      |
| 2  | Expected Return        | 20%                    | 42%   | 100%     | 50%                | 46%                 | 30%                       |       |          |      |
| 3  |                        | ,persoccionis 30000000 | ,     |          | nutre confirmation | SAMABERIUM BOUGGOOM | 000 900 00 <b>0000000</b> |       | $\vdash$ |      |
| 4  | Covariance Matrix      |                        |       |          |                    |                     |                           |       |          |      |
| 5  | (Variance on Diagonal) | BB                     | LOP   | ILI      | HEAL               | QUI                 | AUA                       |       |          |      |
| 6  | BB                     | 0.032                  | 0.005 | 0.030    | -0.031             | -0.027              | 0.010                     |       |          |      |
| 7  | LOP                    | 0.005                  | 0.1   | 0.085    | -0.07              | -0.05               | 0.020                     |       | Г        |      |
| 8  | ILI                    | 0.030                  | 0.085 | 0.333    | -0.11              | -0.02               | 0.042                     |       |          |      |
| 9  | HEAL                   | -0.031                 | -0.07 | -0,11    | 0.125              | 0.05                | -0.060                    |       |          |      |
| 10 | QUI                    | -0.027                 | -0.05 | -0.02    | 0.05               | 0.065               | -0.020                    |       |          |      |
| 11 | AUA                    | 0.010                  | 0.020 | 0.042    | -0.060             | -0.020              | 0.08                      |       |          |      |
| 12 |                        |                        |       |          |                    |                     | a sacar constant          |       |          |      |
| 13 |                        | BB                     | LOP   | ILI      | HEAL               | QUI                 | AUA                       | Total |          |      |
| 14 | Portfolio              | 22.9%                  | 21.0% | 3.4%     | 22.0%              | 18.8%               | 11.9%                     | 100%  | =        | 100% |
| 15 |                        | 2                      | 2     | 2        | 2                  | 2                   | 2                         |       |          |      |
| 16 | Max in Single Stock    | 40%                    | 40%   | 40%      | 40%                | 40%                 | 40%                       |       |          |      |
| 17 |                        |                        |       |          |                    |                     |                           |       |          |      |
| 18 |                        |                        |       | Minimum  |                    |                     |                           |       |          |      |
| 19 |                        |                        |       | Expected |                    |                     |                           |       |          |      |
| 20 |                        | Portfolio              |       | Return   |                    |                     |                           |       |          |      |
| 21 | Expected Return =      | 40.0%                  | 3     | 40%      |                    |                     |                           |       |          |      |
| 22 |                        |                        |       |          |                    |                     |                           |       |          |      |
| 23 | Risk (Variance) =      | 0.00233                |       |          |                    |                     |                           |       |          |      |


Lydia's new optimal portfolio consists of 22.9% BB, 21% LOP, 3.4% ILI, 22% HEAL, 18.8% QUI, and 11.9% AUA. Her expected return equals 40% with a risk of 0.00233.

(f) Lydia's approach is very risky. She puts a lot of confidence in the advice of the two investment experts. She cannot expect to find an optimal investment strategy with her model if the estimates she uses for the input parameters are not accurate.

#### **Case 12.2 International Investments**

(a) When Charles sells a portion of his B-Bonds in a given year, the first DM 6100 of interest are tax-free, but the interest earnings exceeding DM 6100 are levied a 30% tax. Therefore, Charles encounters decreasing marginal returns and we can use separable programming to solve this problem. Let NoTax5 and Tax5 be the base amount of B-Bonds Charles sells in the fifth year that yield untaxed interest and taxed interest respectively. The variables NoTax6, Tax6, NoTax7, and Tax7 are defined in the same way. The sum of the six variables must equal the total of DM 30,000 that Charles invested at the beginning of the first year. When Charles sells B-Bonds with the base amount NoTax5, he earns 50.01% of this amount as interest. In order for him not to pay any taxes on this amount, the interest must not exceed DM 6100. This is included in the model as a constraint. Any additional base amount of B-Bonds sold in year 5 yields Charles only  $0.7 \times 0.5001 = 0.35007$ . A similar reasoning applies to other years. The objective is to maximize Charles' interest income.

| 2                                    | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В       | С          | ⇒ D             | E                        | F                           | G           | . Н -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | J     |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|-----------------|--------------------------|-----------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|
| 1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       |            |                 |                          |                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |
| 1<br>2<br>3<br>4<br>5<br>6           | Server                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NoTax5  | Tax5       | NoTax6          | Tax6                     | NoTax7                      | Tax7        | Totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |       |
| 3                                    | Selling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1       | 1          | 1               | 1                        | 1                           | 1           | 30000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =  | 30000 |
| 4                                    | Untaxed5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5001  | 0          | 0               | 0                        | 0                           | 0           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <= | 6100  |
| 5                                    | Untaxed6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0       | 0          | 0.6351          | 0                        | 0                           | 0           | 6100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <= | 6100  |
| 6                                    | Untaxed7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0       | 0          | 0               | 0                        | 0.7823                      | 0           | 6100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <= | 6100  |
| 7                                    | Interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5001  | 0.35007    | 0.6351          | 0.44457                  | 0.7823                      | 0.54761     | 19098.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ž  |       |
| 8                                    | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ô,      | 0          | <b>9604.7</b> 9 | 0                        | 7797.52                     | 12597.69    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |       |
| 9                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |            |                 |                          |                             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :  |       |
| 10                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Formula | in cell H3 | :               | "=SUMP                   | RODUCT                      | (B3:G3,B8   | G8)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |
| 11                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Formula | in cell H4 |                 | "=SUMP                   | RODUCT                      | (B4:G4,B8   | G8)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |
| 12                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Formula | in cell H5 | :               | "=SUMP                   | RODUCT                      | (B5: G5, B8 | G8)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |       |
| 8<br>9<br>10<br>11<br>12<br>13<br>14 | To the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th | Formula | in cell H6 |                 | tambée made an annual an | the second of the second of | (B6:G6,B8   | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |    |       |
| 14                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Formula | in cell H7 |                 | "=SUMP                   | RODUCT                      | (B7:G7,B8   | :G8)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |       |



Assume Linear Model
Assume Non-Negative

- (b) The optimal investment strategy for Charles is to sell a base amount of DM 9604.79 at the end of year 6 and the remaining DM 20395.21 at the end of year 7. His total after-tax interest income equals DM 19098.62.
- (c) When Charles sells all B-Bonds in year 7, he must pay 30% of tax on the amount of interest income exceeding DM 6100. This amount is earned interest not only from the last year, but it also includes interest from all the previous years. Hence, Charles does not pay 30% tax on the 9% interest he earned last year, but he effectively pays tax on the total interest of all the years. This tax payment decreases his after-tax interest so much that it pays for him to sell some of his bonds in year 6 in order to take advantage of the yearly tax-free income of DM 6100. Comparing the total amount of interest Charles earns if he sells tax-free after year 6 and taxed after year 7, we see that in the former case his total interest equals 63.51% while in the latter case it is only 54.761%. Therefore, it is better to sell some bonds at the end of year 6 rather than to keep them until the end of the last year.
- (d) The following observation greatly simplifies the analysis of this problem: The interest rate on the CD is much lower than the yearly interest rates on the B-Bonds. Therefore, it can never be optimal for Charles to sell B-Bonds in year 5 in order to buy a CD for year 6 if he does not take advantage of the maximal tax-free amount of selling B-Bonds in year 6. In other words, Charles will only buy a CD for year 6 if he already plans to sell B-Bonds in year 6 to obtain at least the maximal tax-free amount of interest. The same argument applies to year 7. Consequently, Charles will never earn untaxed interest on a CD. Therefore, his yearly interest on the CD will always be  $0.7 \times 0.04 = 0.028 = 2.8\%$ .

To formulate the problem in Excel, let CD6 and CD7 be the amount invested in a CD in year 6 and 7 respectively. The amount of money Charles can invest in a CD in year 6 equals the base amount of B-Bonds sold in year 5 plus the total after-tax interest earned on the base amount. This gives the constraint CD6 = 1.5001\*NoTax5 + 1.35007\*Tax5. Similarly, for year 7, CD7 = 1.6351\*NoTax6 + 1.44457\*Tax6 + 1.028\*CD6.

|    | A         | В                   | C        | D        | E        | F         | G           | Н       | ı       | J        | К  | L     |
|----|-----------|---------------------|----------|----------|----------|-----------|-------------|---------|---------|----------|----|-------|
| 1  |           | 1                   |          |          |          |           |             |         |         |          |    |       |
| 2  | Server    | NoTax5              | Tax5     | CD6      | NoTax6   | Tax6      | CD7         | NoTax7  | Tax7    | Totals   |    |       |
| 3  | Selling   | 1                   | 1        | 0        | . 1      | 1         | . 0         | 1       | 11      | 30000    | =  | 30000 |
| 4  | Untaxed5  | 0.5001              | 0        | 0        | 0        | 0         | 0           | 0       | 0       | 6100     | <= | 6100  |
| 5  | Untaxed6  | . 0                 | . 0      | 0        | 0.6351   | 0         | 0           | 0       | 0       | 6100     | <= | 6100  |
| 6  | Untaxed7  | 0                   | 0        | 0        | 0        | 0         | 0           | 0.7823  | . 0     | 6100     | <= | 6100  |
| 7  | CDInvest5 | 1.5001              | 1.35007  | -1       | 0        | 0         | 0           | 0       | 00      | 0        | =  | 0     |
| 8  | CDInvest6 | 0                   | 0        | 1.028    | 1.6351   | 1.44457   | -1          | 0       | 0       | 0        | =  | 0     |
| 9  | Interest  | 0.5001              | 0.35007  |          |          | 0.44457   | 0.028       | 0.7823  | 0.5476  | 19997.8  | 6  |       |
| 10 | Solution  | 12197.56            | 0        | 18297.50 | 69604.79 | 0         | 34514.68    | 37797.5 | 2400.13 | <b>.</b> |    |       |
| 11 |           |                     |          |          |          |           |             |         |         |          | _  |       |
| 12 |           | Formula in          | cell J3: |          | *=SUMPF  | ODUCT(8   | 33:13,B10:1 | 10)*    |         |          |    |       |
| 13 |           | Formula in          | cell J4: |          | "=SUMPF  | ODUCT(E   | 34:14,B10:1 | 10)"    |         |          |    |       |
| 14 |           | Formula in          | cell J5: |          | "=SUMPF  | ODUCT (E  | 35:15.B10:1 | 10)*    |         |          |    |       |
| 15 |           | Formula in          | cell J6: |          | "=SUMPF  | ODUCT (E  | 36:16.B10:1 | 10)"    |         |          |    |       |
| 16 |           | Formula in cell J7: |          |          | "=SUMPF  | PODUCT (E | 37:17.B10:  | 10)*    |         |          |    |       |
| 17 |           | Formula in          | cell J8: |          | "=SUMPF  | ADDUCT (B | 38:18,B10:1 | 10)*    |         |          |    |       |
| 18 |           | Formula in          | cell J9: |          | "=SUMPF  | PODUCT (B | 39:19.B10:1 | 10)"    |         |          |    |       |

| lver Parameters                         |         | - Y / 12             |                  | Mark and a second    |
|-----------------------------------------|---------|----------------------|------------------|----------------------|
| et Target Cell:                         | \$1\$9  | ᆚ                    |                  | <u>S</u> olve        |
| qual To: 6 Ma                           | х СМід  | C <u>V</u> alue o    | f: 0             | Close                |
| By Changing Cells: —                    |         | - 1400 TeV           |                  | - COS                |
| \$B\$10:\$I\$10                         |         |                      | - Gue            | SS                   |
| Subject to the Const                    | raints: | e b washingthis have | TOTAL TO SERVICE | Section 12 Section 1 |
| - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |         | 14.420 - M           |                  | Options              |
| \$J\$3 = \$L\$3<br>\$J\$4 <= \$L\$4     |         |                      |                  | d d                  |
| \$J\$5 <= \$L\$5                        |         |                      | Char             | nge                  |
| \$J\$6 <= \$L\$6                        |         |                      | Char             | Reset All            |
| \$J\$7 = \$L\$7<br>\$J\$8 = \$L\$8      |         |                      | -1 Dele          |                      |
| #2#0 — PE#0                             | · ·     | · ,                  |                  | <u>H</u> elp         |
| ten de la                               |         |                      | (1.1.)           |                      |

Assume Linear <u>M</u>odel

Assume Non-Negative

Charles should sell the maximal base amount of B-Bonds in year 5 that yields tax-free interest and then invest this money (base amount & interest) into a one-year CD for year 6. In year 6, he should sell again the maximal base amount of B-Bonds that yields tax-free interest and then invest this money (base amount & interest) and the money from his CD into a one-year CD for year 7. In year 7, he should sell the remainder of the base amount of B-Bonds. He again takes advantage of the maximum tax-free amount, but he also sells a base amount of DM 400.13 for which he must pay taxes on the interest earnings.

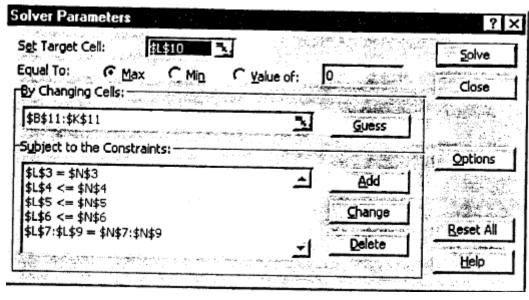
(e) The right-hand-side of the selling constraint should be changed.

|     | Α          | В          | С        | D        | E       | F        | G            | Н       |         | J        | ΙK | L     |
|-----|------------|------------|----------|----------|---------|----------|--------------|---------|---------|----------|----|-------|
| 1.  |            |            |          |          |         |          |              |         |         |          |    |       |
| 2   | Server     | NoTax5     | Tax5     | CD6      | NoTax6  | Tax6     | 007          | NoTax7  | Tax7    | Totals   |    |       |
| 3   | Selling    | 1          | 1        | 0        | 1       | 1        | 0            | 1       | 1       | 50000    | =  | 50000 |
| 4   | Un taxed5  | 0.5001     | 0        | 0        | 0       | 0        | 0            | 0       | 0       | 6100     | <= | 6100  |
| _5_ | Un taxed6  | 0          | 0        | 0        | 0.6351  | 0        | 0            | 0       | 0       | 6100     | <= | 6100  |
| 6   | Un taxed7  | 0          | 0        | 0        | 0       | 0        | 0            | 0.7823  | 0       | 6100     | <= | 6100  |
| 7   | CDInves 15 | 1.5001     | 1.35007  | -1       | 0       | 0        | 0            | 0       | 0       | 0        | =  | 0     |
| 8   | CDInves t6 | 0          | 0        | 1.028    | 1.6351  | 1.44457  | -1           | 0       | 0       | 0        | =  | 0     |
| 9   | Interest   | 0.5001     | 0.35007  | 0.028    | 0.6351  | 0.44457  | 0.028        | 0.7823  | 0.54761 | 30950.00 | 5  |       |
| 10  | Solution   | 12197.56   | 0        | 18297.56 | 9604.7  | 0        | 345 14.68    | 7797.52 | 20400.1 |          |    |       |
| .11 |            |            |          |          |         |          |              |         |         |          |    |       |
| 12  |            | Formula in | cell J3: |          | "=SUMPF | HODUCT(E | 33:13.B1 0:1 | 10)"    |         |          |    |       |
| 13  |            | Formula in | cell J4: |          | "=SUMPF | ADDUCT(E | 34:14,B1 0:1 | 10)"    |         |          |    |       |
| 14  |            | Formula in | cell J5: |          | "=SUMPF | PODUCT(E | 35:15,B1 0:1 | 10)"    |         |          |    |       |
| 15  |            | Formula in | cell J6: |          | "=SUMP  | ODUCT(E  | 36:16.B1 0:1 | 10)"    |         |          |    |       |
| 16  |            | Formula in | cell J7: |          | "=SUMP  | HODUCT(E | 37:17.B1 0:1 | 10)"    |         |          |    |       |
| 17  |            | Formula in | cell J8: |          | "=SUMP  | PODUCT(E | 38:18,B1 0:1 | 10)"    |         |          |    |       |
| 18  |            | Formula in | cell J9: |          | "=SUMPS | PODUCT(E | 39:19,B1 0:1 | 10)"    |         |          |    |       |

The optimal investment strategy is similar to the previous one except that Charles must now pay taxes on the interest earned from selling a base amount of DM 20400.13 in year 7.

(f) The right-hand-sides of the Untaxed5, Untaxed6, and Untaxed7 constraints should be changed.

|                | Α          | В          | С        | D     | Ε         | F       | G          | Н       | 1       | J        | к  |       |
|----------------|------------|------------|----------|-------|-----------|---------|------------|---------|---------|----------|----|-------|
| 1              |            |            |          |       |           |         |            |         |         |          | 1  |       |
| 2              | Server     | NoTax5     | Tax5     | CD6   | NoTax6    | Tax6    | CD7        | NoTax7  | Tax7    | To tals  |    |       |
| 3              | Selling    | 1          | 1.       | . 0   | 1         | 1       | 0          | 1       | 1       | 30000    | =  | 30000 |
| 4              | Untaxed5   | 0.5001     | 0        | 0     | 0         | 0       | 0          | 0       | 0       | 0        | <= |       |
| 5              | Untaxed6   | 0          | 0        | 0     | 0.6351    | 0       | 0          | 0       | 0       | 9148.59  | <= |       |
| 6              | Untaxed7   | 0          | 0        | 0     | 0         | 0       | 0          | 0.7823  | 0       | 12200    | <= |       |
| 7              | CDInvest 5 | 1.5001     | 1.35007  | -1    | 0         | 0       | 0          | 0       | 0       | 0        | =  | 0     |
| 8              | CDInvest 6 | 0          | 0        | 1.028 | 1.6351    | 1.44457 | -1         | 0       | 0       | 0        | =  | 0     |
| 9              | Interest   | 0.5001     | 0.35007  | 0.028 | 0.6351    | 0.44457 | 0.028      | 0.7823  | 0.54761 | 22008.09 | 9  |       |
| 10             | Solution   | 0          | 0        | .0    | 14404.96  | 0 .     | 23553.55   | 15595.0 | 4 0     |          |    |       |
| 11             |            |            |          |       |           |         |            |         |         |          |    |       |
| 11<br>12<br>13 |            | Formula in | cell J3: |       | "=SUMPRO  | DUCT(B3 | :13.810:11 | 0)"     |         |          |    |       |
| 13             |            | Formula in | cell J4: |       | "=\$UMPRC |         |            |         |         |          |    |       |
| 14             |            | Formula in | cell J5: |       | "=SUMPRO  | DUCT(B5 | :I5.B10:I1 | 0)"     |         |          | П  |       |
| 15             |            | Formula in |          |       | "=SUMPRO  |         |            |         |         |          | П  |       |
| 16             |            | Formula in | cell J7: |       | "=SUMPRO  |         |            |         |         |          |    |       |
| 17             |            | Formula in |          |       | "=SUMPRO  |         |            |         |         |          |    |       |
| 18             |            | Formula in | cell J9: |       | "=SUMPRO  | DUCT(B9 | :19,B10:11 | 0)"     |         |          |    |       |

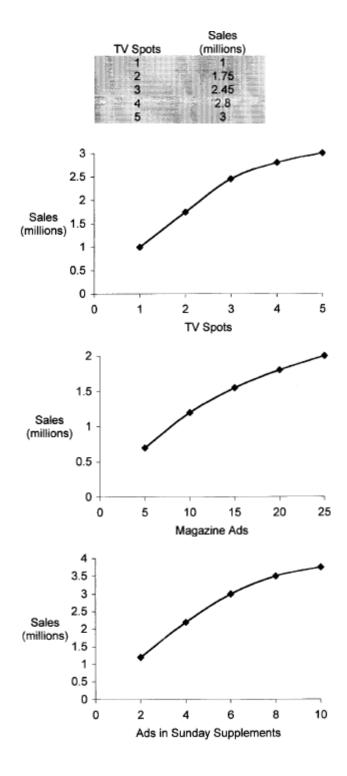

By getting married in year 5, Charles can increase his interest income by

$$22008.09 - 19997.86 = DM 2010.23.$$

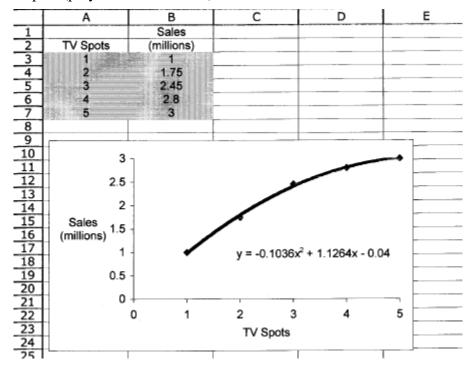
He should sell the maximal base amount of B-Bonds earning tax-free interest in year 7 (DM 15595.04). The remainder of DM 14404.96 should be sold at the end of year 6. His entire interest income on this base amount will be tax-free. He then should invest the total amount (base amount & interest) in a CD for year 7.

(g) Instead of maximizing his interest income, Charles now wants to maximize the expected dollar amount he will have at the end of year 7. He considers exchanging marks for dollars either at the end of year 5 or 7. Let CD-US be the amount of money in dollars that Charles invests in a two-year CD at the end of year 5 and US be the amount of money in dollars that Charles converts at the end of year 7. The total amount of money in dollars Charles has at the end of year 7 equals  $(1.036)^2*CD-US + US$ ; this is the new objective function. At the end of year 5, \$1 is assumed to be equal to DM 1.50, so Charles can exchange marks for dollars at this rate in year 5. This is included as a constraint. Similarly, we include a constraint for the currency conversion at the end of the last year.

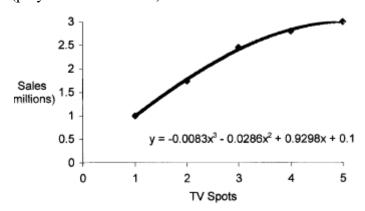
|                | _ A        |           | T          |           |          |               |          |          |          |        |             |          |               |       |
|----------------|------------|-----------|------------|-----------|----------|---------------|----------|----------|----------|--------|-------------|----------|---------------|-------|
| 1              |            | В         | С          | D         | E        | F             | G        | Н        | 1        | J      | K           |          | M             | Ñ     |
| 2              | Coorne     | No. T. O. |            |           |          |               |          |          |          |        | <del></del> |          | 1             |       |
| _              | Server     | NoTax5    | Tax5       | CD6       | CD-US    | NoTax6        | Tax6     | CD7      | NoTax7   | Tax7   | US          | Totals   | -             |       |
| 3              | Selling    | 11        | 1          | 0         | 0        | 1             | 1        | 0        | 1        | 1      | 0           | 30000    | -             | 30000 |
| 4              | Untaxed5   | 0.5001    | 0          | 0         | 0        | 0             | 0        | 0        | 0        | 0      | 0           | 6100     | -             |       |
| 5              | Untaxed6   | 0         | 0          | 0         | 0        | 0.6351        | 0        | 0        | 0        | ŏ      | 0           | 0100     | <=            | 6100  |
| .6             | Untaxed7   | 0         | 0          | 0         | 0        | 0             | 0        | 0        | 0.7823   |        |             |          | <=            | 6100  |
| 17             | CDInvest 5 | 1.5001    | 1.35007    | -1        | -1.5     | 0             | ő        | ŏ        | 0.7623   | ö      | 0           |          | < =           | 6100  |
| 8              | CDInvest 6 | 0         | 0          | 1.028     | 0        | 1.6351        |          |          | 0        | 0      | 0           | 0        | l≖.l          | 0     |
| 9              | Conversion | 0         | 0          | 0         | 0        | 0             | 0        | 1.028    | 1.7823   |        | 0           | 0        | =!            | _0_   |
| 10             | Dollars    | 0         | 0          | 0         | 1.07329  |               |          |          |          | 1.5461 | -1.8        | 0        | =             | 0     |
| 11             | Solution   | 12197 5   | 10004.92   |           | 21203.27 |               | 0 1      | . 0      | 0        | 0      | 1           | 30478.23 | 3             |       |
| 12             |            |           | 10004.52   |           | 21203.2  | 0             | ., .,0   | 0        | 7797.52  | 0      | 7720.8      |          | i             |       |
| 12             |            |           |            |           |          |               |          |          |          |        |             |          |               |       |
| 14             |            |           | Formula in |           |          |               |          |          |          |        |             |          |               |       |
| 15             | -          |           | Formula in | cen L3:   |          | =SUMPF        | COUCT(B  | 3:K3.B1  | 1:K11)"  |        |             |          |               |       |
| 16             |            |           | Formula in | cell L4:  |          | <u>±SUMPF</u> | COUCT(B  | 4:K4,B1  | 1:K11)*  |        |             |          |               |       |
| 16<br>17<br>18 | -          |           | Formula in |           |          | =SUMPF        | COUCT(B  | 5:K5,B1  | 1:K11)"  |        |             |          | $\neg$        |       |
| - 16           |            |           | Formula in |           |          | '≖SUMPF       | COUCT/B  | 6:K6.B1  | 1:K11)"  |        |             |          | -             |       |
| -10            |            |           | Formula in |           |          | '=SUMPF       | KODUCT(B | 7:K7.B1  | 1:K11)"  |        |             |          | $\rightarrow$ |       |
| 19<br>20       |            |           | Formula in |           |          | =SUMPF        | COUCT(B  | 8:K8.B1  | 1:K11)*  |        |             |          | -+            |       |
| 20             |            |           | Formula in | cell L9;  |          | =SUMPF        | COUCT(B  | 9:K9.B1  | K11)     |        |             |          | +             |       |
| 21             |            |           | Formula in | cell L 10 |          | ≃SUMPE        | ODUCT(B  | 10-K10 F | 311-K111 |        |             |          | $\rightarrow$ |       |
|                |            |           |            |           |          | - WIVE        | COUCIE   | 10.K10.  | 2LL:K11) |        |             |          | _ !           |       |



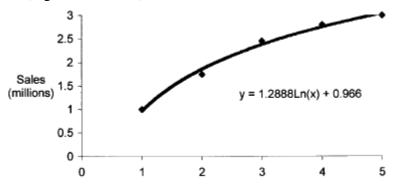

Assume Linear <u>M</u>odel
Assume Non-Negative


Charles converts DM (1.5001\*12197.56 + 1.35007\*10004.92) to dollars at the end of year 5. With the exchange rate of DM 1.50 for \$1, he is able to invest \$21203.27 in the American CD. At the end year 7, he converts the remaining DM 1.7823\*7797.52 to dollars. The total amount of his investments at the end of year 7 is then \$30478.23.

Case 12.3 Promoting a Breakfast Cereal, Revisited


(a)

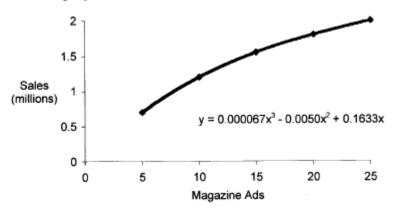



# (b) TV Spots (polynomial of order 2)

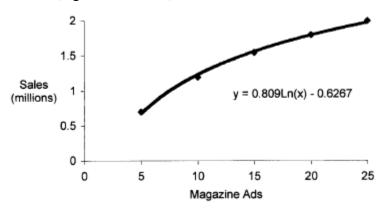


TV Spots (polynomial of order 3)




TV Spots (logarithmic form)

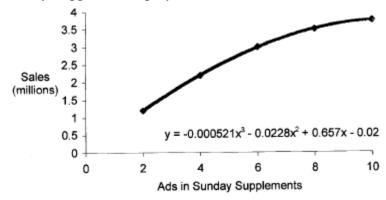



Magazine Ads (polynomial of order 2)

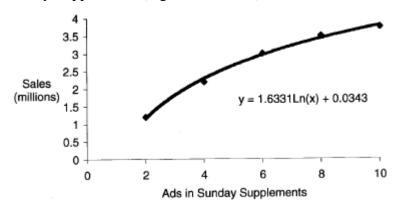
|          | A            | В          | С      |            | D          | E     |
|----------|--------------|------------|--------|------------|------------|-------|
| 1        |              | Sales      |        |            |            |       |
| 2        | Magazine Ads | (millions) |        |            |            |       |
| 3        | 5            | 0.7        |        |            |            |       |
| 4        | 10           | 1.2        |        |            |            |       |
| 5        | 15           | 1.55       |        |            |            |       |
| 6        | 20           | 1.8        |        |            |            |       |
| 7        | 25           | 2          |        |            |            |       |
| 8        |              |            |        |            |            |       |
| 9        |              |            |        |            |            |       |
| 10       | 2 -          |            |        |            | _          |       |
| 11<br>12 | H            |            |        |            |            | -     |
| 12       | H            |            |        |            |            |       |
| 13       | 1.5 -        |            | _      |            |            |       |
| 14       | ₩            |            | _      |            |            |       |
| 15       | Sales 1      |            |        |            |            | -     |
| 16       | (millions)   |            | v =    | -0.002x2 + | 0.124x + 0 | 0.140 |
| 17       | 1            | •          | ,      |            |            |       |
| 18<br>19 | 0.5 -        |            |        |            |            |       |
| 20       | <b>{</b> ∤   |            |        |            |            |       |
| 20       | H o-         |            |        |            |            |       |
| 21<br>22 | 11           | 5          | 10     | 15         | 20         | 25    |
| 23       | ₩ `          |            |        |            | 20         |       |
| 24       | <del> </del> |            | Magazi | ne Ads     |            |       |
| 25       | t            |            |        |            |            |       |
| 23       |              |            |        |            |            |       |

Magazine Ads (polynomial of order 3)




Magazine Ads (logarithmic form)




Ads in Sunday Supplements (polynomial of order 2)

|                                  | Α             | В          | C              |               | D                       | E        |
|----------------------------------|---------------|------------|----------------|---------------|-------------------------|----------|
| 1                                | Ads in Sunday | Sales      |                |               |                         |          |
| 3                                | Supplements   | (millions) |                |               |                         |          |
| _3_                              | 2             | 1.2        |                |               |                         |          |
| _4_                              | 4             | 2.2        | S              |               |                         |          |
| 5<br>6                           | - 6           | 3          | <u> </u>       |               |                         |          |
| 6                                | 8             | 3,5        | B              |               |                         |          |
| 7 8                              | 10            | 3.75       |                |               |                         |          |
| 9                                |               |            |                |               |                         |          |
| 10                               | f .           |            |                |               |                         |          |
| 11                               | H 47          |            |                |               |                         |          |
| 11<br>12                         | 3.5           |            |                | _             | _                       |          |
| 13                               | 3 -           |            |                |               |                         |          |
| 14                               | 2.5           |            |                |               |                         |          |
| 15<br>16                         | Sales         |            |                |               |                         |          |
| 16                               | (millions)    |            |                | y = -0.0321   | 1v <sup>2</sup> ± 0.706 | v - 0.09 |
| 17                               | 1.5           |            |                | y = -0.002    | 1 . 0.700               | X - 0.03 |
| 18                               | ∐ 1∃          |            |                |               |                         | -        |
| 19                               | 0.5 -         |            |                |               |                         | _        |
| 21                               | H 0-          |            |                |               |                         |          |
| 19<br>20<br>21<br>22<br>23<br>24 | H             | ) 2        | 4              | 6             | 8                       | 10       |
| 23                               |               |            | Ade in Sund    | ay Suppleme   | nts                     |          |
| 24                               |               | ,          | ida ili Odildi | ay Cappierrie | 110                     |          |
| 25                               |               |            |                |               |                         |          |

Ads in Sunday Supplements (polynomial of order 3)



Ads in Sunday Supplements (logarithmic form)



In all three cases, the quadratic form is a close fit. The polynomial of order 3 is also a good fit. The logarithmic form is not a bad fit, but not as closes as the polynomial forms. We will use the quadratic form in the sequel.

(c) Let TV, M, and SS be the number of TV spots, magazine ads, and ads in Sunday supplements respectively. Based on the results of part (b), using the quadratic form gives:

$$Sales = -0.1036TV^2 + 1.1264TV - 0.04 - 0.002M^2 + 0.124M + 0.14 - 0.0321SS^2 + 0.706SS - 0.09$$

Cost of Ads = 0.3TV + 0.15M + 0.1SS

Planning Cost = 0.09TV + 0.03M + 0.04SS

- $\Rightarrow$  Profit = \$0.75 × (Sales) Cost of Ads Planning Cost.
- (d) The total sales generated are calculated in row 7 using the nonlinear equations from part (b). Then, the gross profit from sales are calculated in H20. The TotalProfit (H23) is the gross profit minus the cost of ads and of planning. The objective is to maximize this.

|                      | В                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D                     | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F              | G        | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                    | Sales per Ad = ax^2 + bx + k, where | TV Spots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Magazine Ads          | SS Ads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                    | a= 8                                | -0.1036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.002                | -0.0321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                    | b=                                  | 1.1264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.124                 | 0.706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                    | k = 33                              | -0.0400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.14                  | -0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total          |          | Gross Profit per Sale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7                    | Sales Generated (millions)          | 2.8296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5600                | 3.7903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.1799         | -        | \$0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8                    |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A com A of Other come | nda)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Budget Spent   | +-       | Budget Available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9                    |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | st per Ad (\$thousar  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,884          | <=       | 4,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10                   | Ad Budget                           | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 150                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 923            | <=       | 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11                   | Planning Budget                     | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 923            | \.       | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |
| 12                   |                                     | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reached per Ad (      | millions)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total Reached  | 1-       | Minimum Acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13                   | Young Children                      | CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF | 0.1                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.25           | >=       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14                   |                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00           | >=       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15                   | Parents of Young Children           | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                     | CONTRECED AND DESCRIPTION OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF T | 5,00           | 1-       | CONTRACTOR METROPY CLASSICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 16                   |                                     | TV Spots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Magazine Ads          | SS Ads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Redeemed | $\vdash$ | Required Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17                   |                                     | HA ODOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40                    | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.490          | =        | 1,490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 18                   | Coupon Redemption per Ad            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SERVICE CONTRACTOR    | ON SERVICE THE PROPERTY THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,700          | -        | AGM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19<br>20<br>21<br>22 | (\$thousands)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gross I        | Profit   | 5.385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | 00.04-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cost of        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21                   |                                     | TV Spots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Magazine Ads          | SS Ads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22                   | Number of Ads                       | 4.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.596                 | 11.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Planning       |          | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
| 23                   |                                     | <=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total F        | rofit    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24                   | Maximum TV Spots                    | 5 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1        | (\$million)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| В                                                | С                                  | D                                  |
|--------------------------------------------------|------------------------------------|------------------------------------|
| <ul> <li>7 Sales Generated (millions)</li> </ul> | =a*(NumberOfAds)^2+b*NumberOfAds+k | =a*(NumberOfAds)^2+b*NumberOfAds+k |

| Range Name            | Cells   |
|-----------------------|---------|
| a                     | C4:E4   |
| b                     | C5:E5   |
| BudgetAvailable       | H9:H10  |
| BudgetSpent           | F9:F10  |
| CostPerAd             | C9:E10  |
| CouponRedemptionPerAd | C17:E17 |
| GrossProfitPerSale    | H7      |
| k                     | C6:E6   |
| MaxTVSpots            | C23     |
| MinimumAcceptable     | H13:H14 |
| NumberOfAds           | C21:E21 |
| NumberReachedPerAd    | C13:E14 |
| RequiredAmount        | H17     |
| SalesGenerated        | C7:E7   |
| Total Profit          | H21     |
| TotalReached          | F13:F14 |
| TotalRedeemed         | F17     |
| TotalSales            | F7      |
| TVSpots               | C21     |

| ſ |    | G             | Н                              |
|---|----|---------------|--------------------------------|
| Ì | 20 | Gross Profit  | =GrossProfitPerSale*TotalSales |
| ı | 21 | Cost of Ads   |                                |
| ı | 22 | Planning Cost | =F11/1000                      |
| Ì | 23 |               | =H20-H21-H22                   |
| ı | 24 |               | (\$million)                    |

## (e) Separable programming formulation

|    | В                         | C                                       | D                    | E      | F              | G             | Н               | I      |
|----|---------------------------|-----------------------------------------|----------------------|--------|----------------|---------------|-----------------|--------|
| 3  | Sales per Ad              | TV Spots                                | Magazine Ads         | SS Ads |                |               |                 |        |
| 4  | Group 1                   | H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.14                 | 0.6    |                |               |                 |        |
| 5  | Group 2                   | 0.75                                    | 0.1                  | 0.5    |                |               |                 |        |
| 6  | Group 3                   | 0.7                                     | 0.07                 | 0.4    |                |               |                 |        |
| 7  | Group 4                   | 0.35                                    | 0.05                 | 0.25   |                |               |                 |        |
| 8  | Group 5                   | 0.2                                     | 0.04                 | 0.125  |                |               |                 |        |
| 9  |                           |                                         |                      |        |                |               |                 |        |
| 10 |                           |                                         |                      |        |                |               | Budget          |        |
| 11 |                           |                                         | st per Ad (\$thousan |        | Budget Spent   |               | Available       | L      |
| 12 | Ad Budget                 | 300                                     | 150                  | 100    | 3,156          | <=            | 4.000           |        |
| 13 | Planning Budget           | 90                                      | 30                   | 40     | 938            | <=            | 1,000           |        |
| 14 |                           |                                         |                      |        |                |               |                 |        |
| 15 |                           |                                         | r Reached per Ad (i  |        | Total Reached  |               | Min. Acceptable |        |
| 16 | Young Children            | 1.2                                     | 0.1                  | 0      | 5.00           | >=            | 5               |        |
| 17 | Parents of Young Children | 0.5                                     | 0.2                  | 0.2    | 5.23           | >=            | 5               |        |
| 18 |                           |                                         |                      |        |                |               |                 |        |
| 19 |                           | TV Spots                                | Magazine Ads         | SS Ads | Total Redeemed | L             | Req. Amount     |        |
| 20 | Coupon Redemption per Ad  | 0                                       | 40                   | 120    | 1,490          | =             | 1,490           |        |
| 21 | (\$thousands)             |                                         |                      |        |                |               |                 |        |
| 22 |                           |                                         |                      |        |                |               | Maximum         |        |
|    | Number of Ads             | TV Spots                                | Magazine Ads         | SS Ads |                | TV Spots      | Magazine Ads    | SS Ads |
| 24 | Group 1                   | 1.000                                   | 5.000                | 2.000  | <=             |               | 5               | 2      |
| 25 | Group 2                   | 1.000                                   | 2.250                | 2.000  | <=             | 600 A 600     | 5               | 2      |
| 26 | Group 3                   | 1.000                                   | 0.000                | 2.000  | <=             | 1             |                 | 2      |
| 27 | Group 4                   | 0.563                                   | 0.000                | 2.000  | <=             | 1             | 5               | 2 2    |
| 28 | Group 5                   | 0.000                                   | 0.000                | 2.000  | · <=           |               | 5               | 2 0 3  |
| 29 | Total                     | 3.563                                   | 7.250                | 10.000 |                |               |                 |        |
| 30 |                           | <=                                      |                      |        |                | Total Sales   | 7.3219          |        |
| 31 | Maximum TV Spots          | . 6                                     |                      |        | Gross Pre      | ofit per Sale | \$0.75          |        |
| 32 |                           |                                         |                      |        |                |               |                 |        |
| 33 |                           |                                         |                      |        |                | Gross Profit  | 5.491           |        |
| 34 |                           |                                         |                      |        |                | Cost of Ads   | 3.156           |        |
| 35 |                           |                                         |                      |        | Pla            | anning Cost   | 0.938           |        |
| 36 |                           |                                         |                      |        |                | Total Profit  | 1.397           |        |
| 37 |                           |                                         |                      |        |                |               | (\$million)     |        |

| Range Name            | Cells   |
|-----------------------|---------|
| BudgetAvallable       | H12:H13 |
| BudgetSpent           | F12:F13 |
| CostPerAd             | C12:E13 |
| CouponRedemptionPerAd | C20:E20 |
| GrossProfitPerSale    | H31     |
| Maximum               | G24:128 |
| MaxTVSpots            | C31     |
| MinimumAcceptable     | H16 H17 |
| NumberOfAds           | C24:E28 |
| RequiredAmount        | H20     |
| SalesPerAd            | C4:E8   |
| TotalAds              | C29:E29 |
| TotalProfit           | H36     |
| TotalReached          | F16:F17 |
| TotalRedeemed         | F20     |
| TotalSales            | H30     |
| TVSpots               | C29     |

|    | G                     | Н                                    |
|----|-----------------------|--------------------------------------|
| 30 | Total Sales           | =SUMPRODUCT(SalesPerAd, NumberOfAds) |
| 31 | Gross Profit per Sale | 0.75                                 |
| 32 |                       |                                      |
| 33 | Gross Profit          | =GrossProfitPerSale*TotalSales       |
| 34 | Cost of Ads           |                                      |
| 35 | Planning Cost         | =F13/1000                            |
| 36 | Total Profit          | =H33-H34-H35                         |
| 37 |                       | (\$million)                          |

(f) In part (d), 4.075 TV ads, 3.596 magazine ads, and 11.218 ads in Sunday supplements are placed. In part (e), 3.563 TV ads, 7.25 magazine ads, and 10 ads in Sunday supplements are placed. In Case 3.4, 3 TV ads, 14 magazine ads, and 7.75 ads in Sunday supplements are placed. Unlike linear programming, nonlinear and separable programming take into account the diminishing returns from repeated advertisements. Since the solution is fairly different, it certainly appears that it was worthwhile to refine the linear programming model used in Case 3.4.

## **CHAPTER 13: METAHEURISTICS**

#### 13.1-1.

(a)

| Tours       | Distance | Tours       | Distance |
|-------------|----------|-------------|----------|
| 1-2-3-4-5-1 | 34       | 1-3-2-4-5-1 | 32       |
| 1-2-3-5-4-1 | 34       | 1-3-2-5-4-1 | 26       |
| 1-2-4-3-5-1 | 36       | 1-3-4-2-5-1 | 28       |
| 1-2-4-5-3-1 | 31       | 1-3-5-2-4-1 | 28       |
| 1-2-5-3-4-1 | 30       | 1-4-2-3-5-1 | 37       |
| 1-2-5-4-3-1 | 25       | 1-4-3-2-5-1 | 31       |

Optimal Solution: 1-2-5-4-3-1 (or the reverse 1-3-4-5-2-1)

(b) Start with the initial trial solution 1-2-3-4-5-1. There are three possible sub-tour reversals that improve upon this solution.

|               | 1-2-3-4-5-1 | Distance = 34 |
|---------------|-------------|---------------|
| Reverse 2-3   | 1-3-2-4-5-1 | Distance = 32 |
| Reverse 2-3-4 | 1-4-3-2-5-1 | Distance = 31 |
| Reverse 3-4-5 | 1-2-5-4-3-1 | Distance = 25 |

Choose 1-2-5-4-3-1 as the next trial solution. There is no sub-tour reversal that improves upon this solution. The tour 1-2-5-4-3-1 is optimal.

(c) Start with the initial trial solution 1-2-4-3-5-1. There are four possible sub-tour reversals that improve upon this solution.

|               | 1-2-4-3-5-1 | Distance = 36 |
|---------------|-------------|---------------|
| Reverse 4-3   | 1-2-3-4-5-1 | Distance = 34 |
| Reverse 3-5   | 1-2-4-5-3-1 | Distance = 31 |
| Reverse 2-4-3 | 1-3-4-2-5-1 | Distance = 28 |
| Reverse 4-3-5 | 1-2-5-3-4-1 | Distance = 30 |

Choose 1-3-4-2-5-1 as the next trial solution. There is only one possible sub-tour reversal that improves upon this solution.

|             | 1-3-4-2-5-1 | Distance = 28 |
|-------------|-------------|---------------|
| Reverse 2-5 | 1-3-4-5-2-1 | Distance = 25 |

Choose 1-3-4-5-2-1 as the next trial solution. There is no sub-tour reversal that improves upon this. The solution 1-3-4-5-2-1 is optimal.

(d) Start with the initial trial solution 1-4-2-3-5-1. There are five possible sub-tour reversals that improve upon this solution.

|               | 1-4-2-3-5-1 | Distance = 37 |
|---------------|-------------|---------------|
| Reverse 2-4   | 1-2-4-3-5-1 | Distance = 36 |
| Reverse 2-3   | 1-4-3-2-5-1 | Distance = 31 |
| Reverse 3-5   | 1-4-2-5-3-1 | Distance = 28 |
| Reverse 4-2-3 | 1-3-2-4-5-1 | Distance = 32 |
| reverse 2-3-5 | 1-4-5-3-2-1 | Distance = 34 |

Choose 1-4-2-5-3-1 as the next trial solution. There is only one possible sub-tour reversal that improves upon this solution.

|             | 1-4-2-5-3-1 | Distance = 28 |
|-------------|-------------|---------------|
| Reverse 2-5 | 1-4-5-2-3-1 | Distance = 26 |

Choose 1-4-5-2-3-1 as the next trial solution. There is one possible sub-tour reversal that improves upon this.

|               | 1-4-5-2-3-1 | Distance = 26 |
|---------------|-------------|---------------|
| Reverse 4-5-2 | 1-2-5-4-3-1 | Distance = 25 |

Choose 1-2-5-4-3-1 as the next trial solution. There is no sub-tour reversal that improves upon this. The solution 1-2-5-4-3-1 is optimal.

#### 13.1-2.

- (a) If the second reversal were chosen, the next trial solution would be 1-2-3-5-4-6-7-1 and there is no sub-tour reversal that gives an improvement.
- (b) Start with the initial trial solution 1-2-4-5-6-7-3-1. There are two possible sub-tour reversals that improve upon this solution.

|                   | 1-2-4-5-6-7-3-1 | Distance = 69 |
|-------------------|-----------------|---------------|
| Reverse 5-6       | 1-2-4-6-5-7-3-1 | Distance = 66 |
| Reverse 2-4-5-6-7 | 1-7-6-5-4-2-3-1 | Distance = 68 |

Choose 1-2-4-6-5-7-3-1 as the next trial solution. There is only one possible sub-tour reversal that improves upon this.

|             | 1-2-4-6-5-7-3-1 | Distance = 66 |
|-------------|-----------------|---------------|
| Reverse 5-7 | 1-2-4-6-7-5-3-1 | Distance = 63 |

Choose 1-2-4-6-7-5-3-1 as the next trial solution. This is an optimal solution.

#### 13.1-3.

(a)

| Tours         | Distance | Tours         | Distance |
|---------------|----------|---------------|----------|
| 1-2-3-4-5-6-1 | 48       | 1-2-6-3-4-5-1 | 52       |
| 1-2-3-4-6-5-1 | 44       | 1-5-2-3-4-6-1 | 42       |
| 1-2-3-6-4-5-1 | 50       | 1-5-2-4-3-6-1 | 46       |
| 1-2-4-3-6-5-1 | 48       | 1-6-2-3-4-5-1 | 48       |
| 1-2-5-4-3-6-1 | 50       | 1-6-3-2-4-5-1 | 50       |

Optimal Solution: 1-5-2-3-4-6-1 (or the reverse 1-6-4-3-5-2-1)

(b) Start with the initial trial solution 1-2-3-4-5-6-1. There are two possible sub-tour reversals that improve upon this solution.

|                 | 1-2-3-4-5-6-1 | Distance = 48 |
|-----------------|---------------|---------------|
| Reverse 5-6     | 1-2-3-4-6-5-1 | Distance = 44 |
| Reverse 2-3-4-5 | 1-5-4-3-2-6-1 | Distance = 48 |

Choose 1-2-3-4-6-5-1 as the next trial solution. There is no sub-tour reversal that improves upon this solution.

(c) Start with the initial trial solution 1-2-5-4-3-6-1. There are two possible sub-tour reversals that improve upon this solution.

|               | 1-2-5-4-3-6-1 | Distance = 50 |
|---------------|---------------|---------------|
| Reverse 2-5   | 1-5-2-4-3-6-1 | Distance = 46 |
| Reverse 5-4-3 | 1-2-3-4-5-6-1 | Distance = 48 |

Choose 1-5-2-4-3-6-1 as the next trial solution. There is no sub-tour reversal that improves upon this solution.

#### 13.2-1.

Sears logistics services (SLS) provides delivery with its fleet of over 1,000 vehicles. Sears product services (SPS) offers home service with its fleet of 12,500 vehicles and technicians. A customer who asks for delivery or home service is given a day and a time window based on customer preferences and working schedule in the region where the customer is located. In either case, the goal is to generate efficient routes for the vehicles and to provide customers with accurate and convenient time windows while minimizing the operational costs. Both problems are instances of vehicle routing problem with time windows (VRPTW). A basic VRPTW determines routes for M vehicles, each starting at the depot and returning to the depot after visiting a subset of customers in some order. Every customer is visited by exactly one vehicle. The capacity constraints of the vehicles and the time windows imposed by customers should be met. The objective is to minimize the total cost. The problems faced by SLS and SPS differ from the basic VRPTW in that they include additional constraints. For instance, in the case of SPS, technicians' skills need to be considered in assigning service orders to them. In both cases, there may be restrictions on total route times and travel times between any two locations. Hence, the

problem is a complex one and necessitates the use of a solution procedure that can provide good solutions in acceptable time.

To solve the problem, first an initial route is found for each vehicle, then unassigned stops are inserted into a route. This solution is improved using various local heuristic techniques. In order not to be stuck at local optima, the procedure is enhanced with tabu search technique. Once a stop in a route is relocated, the move is included in a tabu list and remains prohibited for a number of iterations unless the objective function value it offers exceeds the best value obtained up to that iteration.

Financial benefits of this study include \$9 million in one-time savings and over \$42 million in annual savings. The savings result from the reduction in travel times, mileage and routing times. Sears now offers more timely delivery of merchandise and home service, so more reliable customer service. The utilization of the fleets is improved. The routing process became faster and the facility, equipment and personnel costs related to routing decreased. Since the problem can be solved quickly, Sears can respond to disruptions and adjust its schedules more efficiently.

**13.2-2.** Start with the initial trial solution with links AB, AC, AE, CD, which costs 232. Iteration 1:

| Add | Delete | Cost |
|-----|--------|------|
| BC  | AB     | 138  |
|     | AC     | 246  |
| BD  | AB     | 56   |
|     | AC     | 164  |
|     | CD     | 268  |
| DE  | AC     | 152  |
|     | AE     | 240  |
|     | CD     | 256  |

Adding BD and deleting AB results in the lowest cost, so choose inserting links AC, AE, BD. CD. In fact, this is the optimal solution.

## 13.2-3.

Start with the initial trial solution with links AB, AD, BE, CD, which costs 390.

Iteration 1: Minimum local search

| Add | Delete | Cost |
|-----|--------|------|
| AC  | AD     | 185  |
|     | CD     | 275  |
| CE  | AB     | 275  |
|     | AD     | 180  |
|     | CD     | 270  |
|     | BE     | 365  |

Current solution: AB, BE, CD, CE.

Tabu list: CE

Iteration 2: Minimum local search

| Add | Delete | Cost |
|-----|--------|------|
| DE  | CD     | 95   |

Current solution: AB, BE, CE, DE

Tabu list: CE, DE

Iteration 3: Minimum local search

| Add | Delete | Cost |
|-----|--------|------|
| AC  | BE     | 75   |

The solution AB, AC, CE, DE is optimal.

## 13.2-4.

Start with the initial trial solution with links OA, AB, BC, BE, ED, DT, which costs 314.

Iteration 1: Minimum local search

| Add | Delete | Cost |
|-----|--------|------|
| ET  | DE     | 122  |

Current solution: OA, AB, BC, BE, ET, DT

Tabu list: ET

Iteration 2: Minimum local search

| Add | Delete | Cost |
|-----|--------|------|
| CE  | BC     | 23   |

The solution OA, AB, CE, BE, ET, DT is optimal.

### 13.2-5.

Initial trial solution: 1-5-3-2-4-1 Distance = 37

Iteration 1: Choose to reverse 3-5.

Deleted links: 1-5 and 3-2 Added links: 1-3 and 5-2 Tabu list: Links 1-3 and 5-2

New trial solution: 1-3-5-2-4-1 Distance = 28

Iteration 2: Choose to reverse 5-2.

Deleted links: 3-5 and 2-4 Added links: 3-2 and 5-4

Tabu list: Links 1-3, 5-2, 3-2 and 5-4

New trial solution: 1-3-2-5-4-1 Distance = 26

Iteration 3: Choose to reverse 2-5-4.

Deleted links: 3-2 and 4-1 Added links: 3-4 and 2-1

Tabu list: Links 3-2, 5-4, 3-4 and 2-1

New trial solution: 1-3-4-5-2-1 Distance = 25

Iteration 4: Choose to reverse 3-4.

Deleted links: 1-3 and 4-5 Added links: 1-4 and 3-5

Tabu list: Links 3-4, 2-1, 1-4 and 3-5

New trial solution: 1-4-3-5-2-1 Distance = 30

Iteration 5: Choose to reverse 5-3.

Deleted links: 4-3 and 5-2 Added links: 4-5 and 3-2

Tabu list: Links 1-4, 3-5, 4-5 and 3-2

New trial solution: 1-4-5-3-2-1 Distance = 34

Iteration 6: Choose to reverse 3-2.

Deleted links: 5-3 and 2-1 Added links: 5-2 and 3-1

Tabu list: Links 4-5, 3-2, 5-2 and 3-1

New trial solution: 1-4-5-2-3-1 Distance = 26

The solution 1-3-4-5-2-1 is optimal.

## 13.2-6.

Traveling Salesman Problems: Number of Cities: 8

| City                            | 1                           | 2                             | 3                                    | 4                                    | 5                               | 6                        | 7                      | 8                                  |  |
|---------------------------------|-----------------------------|-------------------------------|--------------------------------------|--------------------------------------|---------------------------------|--------------------------|------------------------|------------------------------------|--|
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 0<br>14<br>15<br><br><br>17 | 14<br>0<br>13<br>14<br>20<br> | 15<br>13<br>0<br>11<br>21<br>17<br>9 | 14<br>11<br>0<br>11<br>10<br>8<br>20 | 20<br>21<br>11<br>0<br>15<br>18 | 17<br>10<br>15<br>0<br>9 | 9<br>8<br>18<br>9<br>0 | 17<br>21<br>9<br>20<br><br>13<br>0 |  |

(a) Initial trial solution: 1-2-3-4-5-6-7-8-1

| Iteration | Trial Solution<br>  1-2-3-4-5-6-7-8-1 | Distance | Tabu List       |
|-----------|---------------------------------------|----------|-----------------|
| 1         | 1-3-2-4-5-6-7-8-1                     | 107.0    | 1-3,2-4         |
| 2         | 1-3-8-7-6-5-4-2-1                     | 100.0    | 1-3,2-4,3-8,2-1 |
| 3         | 1-8-3-7-6-5-4-2-1                     | 98.0     | 3-8,2-1,1-8,3-7 |
| 4         | 1-8-3-7-6-4-5-2-1                     | 99.0     | 1-8,3-7,6-4,5-2 |
| 5         | 1-8-3-7-4-6-5-2-1                     | 102.0    | 6-4.5-2.7-4.6-5 |
| 6         | 1-8-3-4-7-6-5-2-1                     | 103.0    | 7-4,6-5,3-4,7-6 |

Best Distance = 98.0 Best Solution = 1-8-3-7-6-5-4-2-1

(b) Initial trial solution: 1-2-5-6-7-4-8-3-1

| Iteration<br>0 | Trial Solution<br>  1-2-5-6-7-4-8-3-1 | Distance | Tabu List       |   |
|----------------|---------------------------------------|----------|-----------------|---|
| ĭ              | 1-2-5-6-7-4-3-8-1                     | 103.0    | 4-3.8-1         | i |
| 2              | 1-2-5-6-4-7-3-8-1                     | 102.0    | 4-3,8-1,6-4,7-3 | i |
| 3              | 1-2-5-4-6-7-3-8-1                     | 99.0     | 6-4,7-3,5-4,6-7 | i |
| 4              | 1-2-4-5-6-7-3-8-1                     | 1 98.0   | 5-4,6-7,2-4,5-6 | i |
| 5              | 1 1-2-4-5-6-7-8-3-1                   | 100.0    | 2-4,5-6,7-8,3-1 | i |
| 6              | 1 1-8-7-6-5-4-2-3-1                   | 107.0    | 7-8,3-1,1-8,2-3 | ĺ |
| 7              | 1-8-7-6-5-4-3-2-1                     | 103.0    | 1-8.2-3.4-3.2-1 | i |

Best Distance = 98.0 Best Solution = 1-2-4-5-6-7-3-8-1

(c) Initial trial solution: 1-3-2-5-6-4-7-8-1

| Iteration | Trial Solution    | Distance | Tabu List       |
|-----------|-------------------|----------|-----------------|
| 0         | 1-3-2-5-6-4-7-8-1 | 111.0    |                 |
| 1         | 1-3-8-7-4-6-5-2-1 | 104.0    | 3-8,2-1         |
| 2         | 1-3-8-7-6-4-5-2-1 | 101.0    | 3-8,2-1,7-6,4-5 |
| 3         | 1-8-3-7-6-4-5-2-1 | 99.0     | 7-6,4-5,1-8,3-7 |
| 4         | 1-8-3-7-6-5-4-2-1 | 98.0     | 1-8,3-7,6-5,4-2 |
| 5         | 1-8-3-7-5-6-4-2-1 | 106.0    | 6-5,4-2,7-5,6-4 |
| 6         | 1-3-8-7-5-6-4-2-1 | 108.0    | 7-5,6-4,1-3,8-7 |
| Ž         | 1-3-8-7-4-6-5-2-1 | 104.0    | 1-3,8-7,7-4,5-2 |

Best Distance = 98.0 Best Solution = 1-8-3-7-6-5-4-2-1

13.2-7.

| 1 <br>2 <br>3 | 0<br>13<br>25       | 13<br>0<br>26         | 25<br>26                        | 15<br>21                                                   | 21<br>29                                                           | 9                                                                                  | 19<br>31                                                                                                                           | 18                                                                                                   | 8                                                                                                                                                                                                                                                        | <br>15                                                                                                                                                                                                                                                                              |
|---------------|---------------------|-----------------------|---------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2             | 13                  | 0                     | 26                              |                                                            |                                                                    |                                                                                    |                                                                                                                                    |                                                                                                      |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |
| •             |                     |                       |                                 | 21                                                         | 29                                                                 | 21                                                                                 | 31                                                                                                                                 | 23                                                                                                   | 16                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                  |
| 3             | 25                  | 26                    | _                               |                                                            |                                                                    |                                                                                    |                                                                                                                                    | 23                                                                                                   | 16                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                  |
|               |                     | 20                    | 0                               | 11                                                         | 18                                                                 | 23                                                                                 | 28                                                                                                                                 | 44                                                                                                   | 34                                                                                                                                                                                                                                                       | 35                                                                                                                                                                                                                                                                                  |
| 4             | 15                  | 21                    | 11                              | 0                                                          | 10                                                                 | 13                                                                                 | 19                                                                                                                                 | 34                                                                                                   | 24                                                                                                                                                                                                                                                       | 29                                                                                                                                                                                                                                                                                  |
| 5             | 21                  | 29                    | 18                              | 10                                                         | 0                                                                  | 12                                                                                 | 11                                                                                                                                 | 37                                                                                                   | 27                                                                                                                                                                                                                                                       | 36                                                                                                                                                                                                                                                                                  |
| 6             | 9                   | 21                    | 23                              | 13                                                         | 12                                                                 | 0                                                                                  | 10                                                                                                                                 | 25                                                                                                   | 14                                                                                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                                  |
| 7             | 19                  | 31                    | 28                              | 19                                                         | 11                                                                 | 10                                                                                 | 0                                                                                                                                  | 32                                                                                                   | 23                                                                                                                                                                                                                                                       | 35                                                                                                                                                                                                                                                                                  |
| 8             | 18                  | 23                    | 44                              | 34                                                         | 37                                                                 | 25                                                                                 | 32                                                                                                                                 | 0                                                                                                    | 10                                                                                                                                                                                                                                                       | 16                                                                                                                                                                                                                                                                                  |
| 9             | 8                   | 16                    | 34                              | 24                                                         | 27                                                                 | 14                                                                                 | 23                                                                                                                                 | 10                                                                                                   | 0                                                                                                                                                                                                                                                        | 14                                                                                                                                                                                                                                                                                  |
| 101           | 15                  | 10                    | 35                              | 29                                                         | 36                                                                 | 25                                                                                 | 35                                                                                                                                 | 16                                                                                                   | 14                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                   |
|               | 6 <br>7 <br>8 <br>9 | 6  9 7  19 8  18 9  8 | 6  9 21<br>7  19 31<br>8  18 23 | 6   9 21 23<br>7   19 31 28<br>8   18 23 44<br>9   8 16 34 | 6  9 21 23 13<br>7  19 31 28 19<br>8  18 23 44 34<br>9  8 16 34 24 | 6   9 21 23 13 12<br>7   19 31 28 19 11<br>8   18 23 44 34 37<br>9   8 16 34 24 27 | 6   9   21   23   13   12   0   7   19   31   28   19   11   10   8   18   23   44   34   37   25   9   8   16   34   24   27   14 | 6  9 21 23 13 12 0 10<br>7  19 31 28 19 11 10 0<br>8  18 23 44 34 37 25 32<br>9  8 16 34 24 27 14 23 | 6      9     21     23     13     12     0     10     25       7      19     31     28     19     11     10     0     32       8      18     23     44     34     37     25     32     0       9      8     16     34     24     27     14     23     10 | 6      9     21     23     13     12     0     10     25     14       7      19     31     28     19     11     10     0     32     23       8      18     23     44     34     37     25     32     0     10       9      8     16     34     24     27     14     23     10     0 |

(a)

| Iteration | Trial Solution   Distance                                      | Tabu List                             |
|-----------|----------------------------------------------------------------|---------------------------------------|
| 0         | 1-2-3-4-5-6-7-8-9-10-1 153.0<br>1-9-8-7-6-5-4-3-2-10-1 144.0   | 1-9,2-10                              |
| 2         | 1-9-8-10-2-3-4-5-6-7-1 132.0                                   | 1-9,2-10,8-10,7-1<br>8-10,7-1,5-7,6-1 |
| 3<br>4    | 1-9-8-10-2-3-4-5-7-6-1 121.0<br>1-9-8-10-2-4-3-5-7-6-1 124.0   | 5-7,6-1,2-4,3-5                       |
| 5         | 1-8-9-10-2-4-3-5-7-6-1 132.0<br>  1-8-9-6-7-5-3-4-2-10-1 138.0 | 2-4,3-5,1-8,9-10<br>1-8,9-10,9-6,10-1 |

Best Distance = 121.0 Best Solution = 1-9-8-10-2-3-4-5-7-6-1

(b)

| Iteration | Trial Solution   Distance                                      | Tabu List                              |
|-----------|----------------------------------------------------------------|----------------------------------------|
| Ō         | 1-3-4-5-7-6-9-8-10-2-1 130.0                                   | 1 4 3 5                                |
| 1         | 1-4-3-5-7-6-9-8-10-2-1 128.0                                   | 1-4,3-5                                |
| 2         | 1-4-3-5-7-6-2-10-8-9-1 130.0<br>  1-6-7-5-3-4-2-10-8-9-1 124.0 | 1-4,3-5,6-2,9-1  <br>  6-2,9-1,1-6,4-2 |
| 3         | 1 1-6-7-5-4-3-2-10-8-9-1 121.0                                 | 1-6,4-2,5-4,3-2                        |
| 5         | 1-6-7-5-4-3-2-10-9-8-1 129.0                                   | 5-4,3-2,10-9,8-1                       |
| 6         | 1-10-2-3-4-5-7-6-9-8-1 135.0                                   | 10-9,8-1,1-10,6-9                      |
| 7         | 1-9-6-7-5-4-3-2-10-8-1 134.0                                   | 1-10.6-9.1-9.10-8                      |

Best Distance = 121.0 Best Solution = 1-6-7-5-4-3-2-10-8-9-1

(c)

| Iteration | Trial Solution   Distance    | Tabu List         |
|-----------|------------------------------|-------------------|
| 0         | 1-9-8-10-2-4-3-6-7-5-1 141.0 |                   |
| 1         | 1-9-8-10-2-4-3-5-7-6-1 124.0 | 3-5,6-1           |
| 2         | 1-9-8-10-2-3-4-5-7-6-1 121.0 | 3-5,6-1,2-3,4-5   |
| 3         | 1-8-9-10-2-3-4-5-7-6-1 129.0 | 2-3,4-5,1-8,9-10  |
| 4         | 1-8-9-6-7-5-4-3-2-10-1 135.0 | 1-8,9-10,9-6,10-1 |
| 5         | 1-8-10-2-3-4-5-7-6-9-1 134.0 | 9-6,10-1,8-10,9-1 |

Best Distance = 121.0 Best Solution = 1-9-8-10-2-3-4-5-7-6-1

## 13.3-1.

$$Z_c = 30, T = 2$$

(a) Maximization problem:

$$\begin{split} Z_n &= 29, \, x = (Z_n - Z_c)/T = -0.5, \, \text{P}\{\text{acceptance}\} = e^x = 0.607 \\ Z_n &= 34, \, Z_n > Z_c, \qquad \qquad \text{P}\{\text{acceptance}\} = 1 \\ Z_n &= 31, \, Z_n > Z_c, \qquad \qquad \text{P}\{\text{acceptance}\} = 1 \\ Z_n &= 24, \, x = (Z_n - Z_c)/T = -3, \quad \text{P}\{\text{acceptance}\} = e^x = 0.05 \end{split}$$

(b) Minimization problem:

$$Z_n = 29, Z_n < Z_c,$$
  $P\{acceptance\} = 1$   
 $Z_n = 34, x = (Z_c - Z_n)/T = -2,$   $P\{acceptance\} = e^x = 0.135$   
 $Z_n = 31, x = (Z_c - Z_n)/T = -0.5,$   $P\{acceptance\} = e^x = 0.607$   
 $Z_n = 24, Z_n < Z_c,$   $P\{acceptance\} = 1$ 

#### 13.3-2.

Because of the randomness in the algorithm, the output will vary.

## 13.3-3.

(a) Initial trial solution: 1-4-2-3-5-1,  $Z_c = 37$ ,  $T_1 = 0.2Z_c = 7.4$ 

| 0.0000 - 0.3332 | Sub-tour begins in slot 2. |
|-----------------|----------------------------|
| 0.3333 - 0.6666 | Sub-tour begins in slot 3. |
| 0.6667 - 0.9999 | Sub-tour begins in slot 4. |

The random number is 0.09656: choose a sub-tour that begins in slot 2. The sub-tour needs to end either in slot 3 or slot 5.

| 0.0000 - 0.4999 | Sub-tour ends in slot 3. |
|-----------------|--------------------------|
| 0.5000 - 0.9999 | Sub-tour ends in slot 5. |

The random number is 0.96657: choose a sub-tour that ends in slot 5.

Reverse 2-3-5 to obtain the new solution 1-4-5-3-2-1,  $Z_n = 34$ . Since  $Z_n < Z_c$ , accept this solution as the next trial solution.

(b) Because of the randomness in the algorithm, the output will vary.

## 13.3-4.

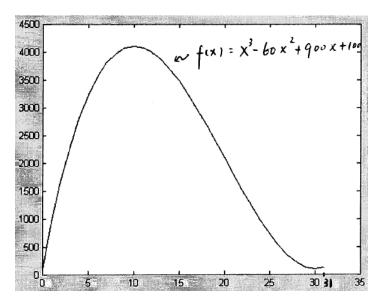
Because of the randomness in the algorithm, the output will vary.

## 13.3-5.

Because of the randomness in the algorithm, the output will vary.

#### 13.3-6.

Because of the randomness in the algorithm, the output will vary.


13.3-7.

(a) 
$$f(x) = x^3 - 60x^2 + 900x + 100$$
  
 $f'(x) = 3x^2 - 120x + 900$  and  $f''(x) = 6x - 120$ 

Stationary Points:  $f'(x^*) = 0 \Rightarrow x^*$  is either 10 or 30 (stationary points of f).  $f''(10) = -60 < 0 \Rightarrow x^* = 10$  is a local maximum.  $f''(30) = 60 > 0 \Rightarrow x^* = 30$  is a local minimum.

End Points:  $f'(0) = 900 > 0 \Rightarrow x = 0$  is a local minimum.  $f'(31) = 63 > 0 \Rightarrow x = 31$  is a local minimum.

(b)



(c) 
$$x = 15.5$$
,  $f(x) = Z_c = 3558.9$ ,  $T = 0.2Z_c = 671.775$   
 $L = 0$ ,  $U = 31$ ,  $\sigma = (U - L)/6 = 5.167$ 

The random number obtained from Table 20.3 is 0.09656. From Appendix 5,

$$P\{Y \le -1.315\} \simeq 0.09656,$$

with Y a standard Normal random variable,  $N(0, 5.167) = -1.315 \cdot 5.167 = -6.79$ .

$$x = 15.5 + N(0, 5.167) = 8.71, Z_n = f(x) = 4047.6$$

Since  $Z_n > Z_c$ , accept x = 8.71 as the next trial solution.

(d) Because of the randomness in the algorithm, the output will vary.

## 13.3-8.

The nonconvex problem is to:

maximize 
$$0.5x^5 - 6x^4 + 24.5x^3 - 39x^2 + 20x$$
  
subject to  $0 \le x \le 5$ .

(a) 
$$x = 2.5$$
,  $f(x) = Z_c = 3.5156$ ,  $T = 0.2Z_c = 0.7031$   
 $L = 0$ ,  $U = 5$ ,  $\sigma = (U - L)/6 = 0.8333$ 

The random number obtained from Table 20.3 is 0.09656. From Appendix 5,

$$P{Y \le -1.315} \simeq 0.09656,$$

with Y a standard Normal random variable,  $N(0,0.8333) = -1.315 \cdot 0.8333 = -1.0958$ .

$$x = 2.5 + N(0, 0.8333) = 1.4042, Z_n = f(x) = -1.5782$$

Since  $(Z_n - Z_c)/T = -7.2488$ , the probability of accepting x = 1.4042 as the next trial solution is P{acceptance} =  $e^{-7.2488} = 0.00071$ . From Table 20.3, the next random number is 0.96657 > 0.00071, so we reject x = 1.4042 as the next trial solution.

(b) Because of the randomness in the algorithm, the output will vary.

## 13.3-9.

(a) 
$$x = 25$$
,  $f(x) = Z_c = -13,671,875$ ,  $T = 0.2Z_c = -2,734,375$   
 $L = 0$ ,  $U = 50$ ,  $\sigma = (U - L)/6 = 8.333$ 

The random number obtained from Table 20.3 is 0.09656. From Appendix 5,

$$P\{Y \le -1.315\} \simeq 0.09656,$$

with Y a standard Normal random variable,  $N(0, 8.333) = -1.315 \cdot 8.333 = -10.958$ .

$$x = 25 + N(0, 8.333) = 14.042, Z_n = f(x) = 5,659,191.646$$

Since  $Z_n > Z_c$ , accept the new solution.

(b) Because of the randomness in the algorithm, the output will vary.

## 13.3-10.

(a) 
$$(x_1, x_2) = (18, 25)$$
,  $f(x_1, x_2) = Z_c = 133, 509.5$ ,  $T = 0.2Z_c = 26, 701.9$   
 $L = (0, 0)$ ,  $U = (36, 50)$   
 $\sigma_1 = (36 - 0)/6 = 6$   
 $\sigma_2 = (50 - 0)/6 = 8.333$ 

The random number obtained from Table 20.3 is 0.09656. From Appendix 5,

$$P\{Y \le -1.315\} \simeq 0.09656,$$

with Y a standard Normal random variable,

$$N(0,6) = -1.315 \cdot 6 = -7.89$$

$$x_1 = 18 + N(0, 6) = 10.11$$
  
 $N(0, 8.333) = -1.315 \cdot 8.333 = -10.958$   
 $x_2 = 25 + N(0, 8.333) = 14.042$ 

This solution is feasible.

$$Z_n = f(x) = -107,467$$

Since  $(Z_n - Z_c)/T = -9.0247$ , the probability of accepting this solution as the next trial solution is P{acceptance} =  $e^{-9.0247} = 0.00012$ . From Table 20.3, the next random number is 0.96657 > 0.00012, so we reject (10.11, 14.042) as the next trial solution.

(b) Because of the randomness in the algorithm, the output will vary.

#### 13.4-1.

(a) P1: 010011 and P2: 100101

Only the last digits agree, the children then become:

C1: xxxxx1 and C2: xxxxx1.

where x represents the unknown digits. Random numbers are used to identify these unknown digits and let random numbers:

0.00000 - 0.49999 correspond to x = 0, 0.50000 - 0.99999 correspond to x = 1.

Starting from the front of the top row of Table 20.3, the first 10 random numbers are: 0.09656, 0.96657, 0.64842, 0.49222, 0.49506, 0.10145, 0.48455, 0.23505, 0.90430, 0.04180. The corresponding digits are: 0,1,1,0,0,0,0,1,0. The children then become:

C1: 011001 and C2: 000101.

Next, we consider the possibility of mutations. The probability of a mutation in any generation is set at 0.1, and let random numbers

0.00000 - 0.09999 correspond to a mutation, 0.10000 - 0.99999 correspond to no mutation.

Starting from the second row of Table 20.3, we obtain the next 12 random numbers. Accordingly, the 8<sup>th</sup> and 11<sup>th</sup> ones correspond to a mutation, so the final conclusion is that the two children are

C1: 011001 and C2: 010111.

(b) P1: 000010 and P2: 001101

The first and second digits agree, the children then become:

C1: 00xxxx and

## C2: 00xxxx.

where x represents the unknown digits. Random numbers are used to identify these unknown digits and let random numbers:

```
0.00000 - 0.49999 correspond to x = 0, 0.50000 - 0.99999 correspond to x = 1.
```

Starting from the front of the top row of Table 20.3, the first 8 random numbers correspond to digits: 0,1,1,0,0,0,0,0. The children then become:

C1: 000110 and C2: 000000.

Next, we consider the possibility of mutations. The probability of a mutation in any generation is set at 0.1, and let random numbers

```
0.00000 - 0.09999 correspond to a mutation, 0.10000 - 0.99999 correspond to no mutation.
```

Use Table 20.3 to obtain the next 12 random numbers. Accordingly, the  $2^{nd}$  and  $10^{th}$  ones correspond to a mutation, so the final conclusion is that the two children are

C1: 010110 and C2: 000100.

(c) P1: 100000 and P2: 101000

All but the third digits agree, the children then become:

C1: 10x000 and C2: 10x000,

where x represents the unknown digits. Random numbers are used to identify these unknown digits and let random numbers:

```
0.00000 - 0.49999 correspond to x = 0, 0.50000 - 0.99999 correspond to x = 1.
```

Starting from the front of the top row of Table 20.3, the first 2 random numbers correspond to digits: 0,1. The children then become:

C1: 100000 and C2: 101000.

Next, we consider the possibility of mutations. The probability of a mutation in any generation is set at 0.1, and let random numbers

0.00000 - 0.09999 correspond to a mutation, 0.10000 - 0.99999 correspond to no mutation.

Use Table 20.3 to obtain the next 12 random numbers. Accordingly, only the  $8^{th}$  one corresponds to a mutation, so the final conclusion is that the two children are

C1: 100000 and C2: 111000.

### 13.4-2.

(a) P1: 1-2-3-4-7-6-5-8-1 and

P2: 1-5-3-6-7-8-2-4-1

Start from city 1.

Possible links: 1-2, 1-8, 1-5, 1-4

Random numbers: 0.09656 choose 1-2

0.96657 no mutation

Start from city 2. Current tour: 1-2

Possible links: 2-3, 2-8, 2-4

Random numbers: 0.64842 choose 2-8

0.49222 no mutation

Start from city 8. Current tour: 1-2-8

Possible links: 8-5, 8-7

Random numbers: 0.49506 choose 8-5

0.10145 no mutation

Start from city 5. Current tour: 1-2-8-5

Possible links: 5-6, 5-3

Random numbers: 0.48455 choose 5-6

0.23505 no mutation

Start from city 6. Current tour: 1-2-8-5-6

Possible links: 6-7, 6-7, 6-3

Random numbers: 0.90430 choose 6-3

0.04180 mutation

Reject 6-3 and consider all other possible links: 6-4, 6-7

Random numbers: 0.24712 choose 6-4

Start from city 4. Current tour: 1-2-8-5-6-4

Possible links: 4-3, 4-7

Random numbers: 0.55799 choose 4-7

0.60857 no mutation

The only remaining city is 3. Hence, C1 = 1-2-8-5-6-4-7-3-1.

(b) P1: 1-6-4-7-3-8-2-5-1 and

P2: 1-2-5-3-6-8-4-7-1

Start from city 1.

Possible links: 1-6, 1-5, 1-2, 1-7

Random numbers: 0.09656 choose 1-6

0.96657 no mutation

Start from city 6. Current tour: 1-6

Possible links: 6-4, 6-3, 6-8

Random numbers: 0.64842 choose 6-3

0.49222 no mutation

Start from city 3. Current tour: 1-6-3

Possible links: 3-7, 3-8, 3-5

Random numbers: 0.49506 choose 3-8

0.10145 no mutation

Start from city 8. Current tour: 1-6-3-8

Possible links: 8-2, 8-4

Random numbers: 0.48455 choose 8-2

0.23505 no mutation

Start from city 2. Current tour: 1-6-3-8-2

Possible links: 2-5

Random numbers: 0.04180 mutation

Reject 2-5 and consider all other possible links: 2-4, 2-7

Random numbers: 0.24712 choose 2-4

Start from city 4. Current tour: 1-6-3-8-2-4

Possible links: 4-7

Random numbers: 0.60857 no mutation

The only remaining city is 5. Hence, C1 = 1-6-3-8-2-4-7-5-1.

(c) P1: 1-5-7-4-6-2-3-8-1 and

P2: 1-3-7-2-5-6-8-4-1

Start from city 1.

Possible links: 1-5, 1-8, 1-3, 1-4

Random numbers: 0.09656 choose 1-5

0.96657 no mutation

Start from city 5. Current tour: 1-5

Possible links: 5-7, 5-2, 5-6

Random numbers: 0.64842 choose 5-2

0.49222 no mutation

Start from city 2. Current tour: 1-5-2

Possible links: 2-6, 2-3, 2-7

Random numbers: 0.49506 choose 2-3

0.10145 no mutation

Start from city 3. Current tour: 1-5-2-3

Possible links: 3-8, 3-7

Random numbers: 0.48455 choose 3-8

0.23505 no mutation

Start from city 8. Current tour: 1-5-2-3-8

Possible links: 8-6, 8-4

Random numbers: 0.90430 choose 8-4

0.04189 mutation

Reject 8-4 and consider all other possible links: 8-6, 8-7

Random numbers: 0.24712 choose 8-6

Start from city 6. Current tour: 1-5-2-3-8-6

Possible links: 6-4

Random numbers: 0.55799 choose 6-4

0.60857 no mutation

The only remaining city is 7. Hence, C1 = 1-5-2-3-8-6-4-7-1.

# 13.4-3.

- (a) Because of the randomness in the algorithm, the output will vary.
- (b) Because of the randomness in the algorithm, the output will vary.

# 13.4-4.

Integer nonlinear programming: maximize  $f(x) = x^3 - 60x^2 + 900$ subject to  $0 \le x \le 31$ 

| (a)                                                 |                                                                                 |                                                                                                        |                            |                                                                                                                             |
|-----------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Iter.<br>1                                          | Best S<br>(0)                                                                   | olution  <br>                                                                                          | Fitness<br>900.0           |                                                                                                                             |
| Iteration 1 Population: Member 1 2 3 4 5 6 7 8 9 10 |                                                                                 | lation   (0)   (1)   (4)   (6)   (10)   (14)   (23)   (26)   (28)   (29)                               | Solution                   | Fitness<br> 900.0<br> 841.0<br> 4.0<br> -1044.0<br> -4100.0<br> -8116.0<br> -18673.0<br> -22084.0<br> -24188.0<br> -25171.0 |
| Children:<br>Member<br>5<br>3<br>4<br>6<br>2<br>8   | Parents<br> (01010)<br> (00100)<br> (00110)<br> (01110)<br> (00001)<br> (11010) | Children<br> ( [1][1]010 )<br> ( 01100 )<br> ( 0011[1] )<br> ( 00110 )<br> ( [1]00[0]0 )<br> ( 11000 ) | (26)<br>(12)<br>(7)<br>(6) | Fitness<br> -22084.0<br> -6012.0<br> -1697.0<br> -1044.0<br> -10364.0<br> -19836.0                                          |

(b) Because of the randomness in the algorithm, the output will vary.

# 13.4-5.

Because of the randomness in the algorithm, the output will vary.

### 13.4-6.

Because of the randomness in the algorithm, the output will vary.

# 13.4-7.

- (a) Because of the randomness in the algorithm, the output will vary.
- (b) Because of the randomness in the algorithm, the output will vary.

#### 13.4-8.

# (a) Genetic Algorithm

| Iteration | Best Solution | - | Fitness |  |
|-----------|---------------|---|---------|--|
| 1         | 1-2-5-4-3-1   |   | 24.0    |  |

## Iteration 1:

| Member | Population  | Fitness | Member | Children    | Fitness |
|--------|-------------|---------|--------|-------------|---------|
| 1      | 1-4-5-3-2-1 | 33.0    | 10     | 1-3-4-5-2-1 | 24.0    |
| 2      | 1-2-5-4-3-1 | 24.0    | 3      | 1-3-2-4-5-1 | 31.0    |
| 3      | 1-3-2-4-5-1 | 31.0    | 5      | 1-2-3-4-5-1 | 33.0    |
| 4      | 1-4-5-3-2-1 | 33.0    | 1      | 1-2-3-5-4-1 | 33.0    |
| 5      | 1-2-3-4-5-1 | 33.0    | 2      | 1-5-2-4-3-1 | 28.0    |
| 6      | 1-3-4-2-5-1 | 28.0    | 8      | 1-4-3-2-5-1 | 31.0    |
| 7      | 1-5-2-3-4-1 | 31.0    |        | •           |         |
| 8      | 1-4-2-3-5-1 | 37.0    |        |             |         |
| 9      | 1-5-2-3-4-1 | 31.0    |        |             |         |
| 10     | 1-5-2-4-3-1 | 28.0    |        |             |         |

(b) Because of the randomness in the algorithm, the output will vary.

### 13.4-9.

Because of the randomness in the algorithm, the output will vary.

### 13.4-10.

Because of the randomness in the algorithm, the output will vary.

### 13.5-1.

See the solution for Problem 13.2-6(a) for the output from the basic tabu search algorithm. Because of the randomness in the basic simulated annealing and genetic algorithms, their outputs will vary.

# 13.5-2.

See the solution for Problem 13.2-7(a) for the output from the basic tabu search algorithm. Because of the randomness in the basic simulated annealing and genetic algorithms, their outputs will vary.

#### **CHAPTER 14: GAME THEORY**

#### 14.1-1.

Let player 1 be the labor union with strategy i being to decrease the wage demand by  $10(i-1)\phi$  and player 2 be the management with strategy i being to increase the offer by  $10(i-1)\phi$ . The payoff matrix is:

|   | 1    | 2    | 3    | 4    | 5    | 6    |
|---|------|------|------|------|------|------|
| 1 | 1.35 | 1.2  | 1.3  | 1.4  | 1.5  | 1.6  |
| 2 | 1.5  | 1.35 | 1.3  | 1.4  | 1.5  | 1.6  |
| 3 | 1.4  | 1.4  | 1.35 | 1.4  | 1.5  | 1.6  |
| 4 | 1.3  | 1.3  | 1.3  | 1.35 | 1.5  | 1.6  |
| 5 | 1.2  | 1.2  | 1.2  | 1.2  | 1.35 | 1.6  |
| 6 | 1.1  | 1.1  | 1.1  | 1.1  | 1.1  | 1.35 |

where the rows represent the strategy of player 1 and the columns the strategy of player 2.

#### 14.1-2.

Label the products as A and B respectively. The strategies for each manufacturer are:

- 1- Normal development of both products
- 2- Crash development of product A
- 3- Crash development of product B.

Let  $p_{ij} = \frac{1}{2}$  [(% increase to manufacturer 1 from A) + (% increase to manufacturer 1 from B)] when manufacturer 1 uses strategy i and manufacturer 2 uses strategy j. The payoff matrix is:

|      |    | 1 | 2  | 3  | row min |
|------|----|---|----|----|---------|
|      | 1  | 8 | 10 | 10 | 8       |
|      | 2  | 4 | -4 | 13 | -4      |
|      | 3  | 4 | 13 | -4 | -4      |
|      |    |   |    |    |         |
| ol m | ax | 8 | 13 | 13 | 8       |

The rows correspond to the strategy of manufacturer 1 and the columns to the strategy of manufacturer 2. The minimum of the column maxima and the maximum of the row minima is 8, so both manufacturers should use strategy 1, namely choose normal development of both products. Consequently, manufacturer 1 will increase its share by 8%.

#### 14.1-3.

Each player has the same strategy set. A strategy must specify the first chip chosen, the second and third chips chosen for every choice first chip by the opponent. Denote the white, red and blue chips by W, R and B respectively. Then a strategy is of the form: Choose  $i \in \{W, R, B\}$  as first chip, if the opponent chooses  $j \in \{W, R, B\}$ , then choose  $k_j \in \{W, R, B\} \setminus \{i\}$ , and let  $l_j \in \{W, R, B\} \setminus \{i, k\}$ . There are three choices of i and for each i, eight choices of second and third chips, so 24 strategies in total. Player 1 can either win all three games, or win one and get a draw in another one, or lose all three.

Hence, the payoff to player 1 can be either 210, 0, or -210. The payoff to player 1 in each possible scenario is given in the table below, where the rows and the columns represent the order of chips played by player 1 and 2 respectively.

|     | WRB  | WBR  | RWB  | RBW  | BWR  | BRW  |
|-----|------|------|------|------|------|------|
| WRB | 0    | 0    | 0    | -210 | 210  | 0    |
| WBR | 0    | 0    | -210 | 0    | 0    | 210  |
| RWB | 0    | 210  | 0    | 0    | 0    | -210 |
| RBW | 210  | 0    | 0    | 0    | -210 | 0    |
| BWR | -210 | 0    | 0    | 210  | 0    | 0    |
| BRW | 0    | -210 | 210  | 0    | 0    | 0    |

#### 14.2-1.

(a) Strategies 4, 5, and 6 of each player are dominated by their strategy 3. Then strategy 1 can be eliminated, since it is dominated by strategy 3 for each player. Once these are eliminated, strategy 2 of each is dominated by strategy 3. Thus, the best strategy of the labor union is to decrease its demand by 20¢ and the best for the management if to increase its offer by 20¢. The resulting wage is \$1.35.

(b)

|       |    | 1    | 2    | 3    | 4    | 5    | 6    | row min |
|-------|----|------|------|------|------|------|------|---------|
|       | 1  | 1.35 | 1.2  | 1.3  | 1.4  | 1.5  | 1.6  | 1.2     |
|       | 2  | 1.5  | 1.35 | 1.3  | 1.4  | 1.5  | 1.6  | 1.3     |
|       | 3  | 1.4  | 1.4  | 1.35 | 1.4  | 1.5  | 1.6  | 1.35    |
|       | 4  | 1.3  | 1.3  | 1.3  | 1.35 | 1.5  | 1.6  | 1.3     |
|       | 5  | 1.2  | 1.2  | 1.2  | 1.2  | 1.35 | 1.6  | 1.2     |
|       | 6  | 1.1  | 1.1  | 1.1  | 1.1  | 1.1  | 1.35 | 1.1     |
|       |    |      |      |      |      |      |      |         |
| col m | ax | 1.5  | 1.4  | 1.35 | 1.4  | 1.5  | 1.6  | 1.35    |

# 14.2-2.

Strategy 3 of player 1 is dominated by strategy 2.

Strategy 3 of player 2 is dominated by strategy 1.

Strategy 1 of player 1 is dominated by strategy 2.

Strategy 2 of player 2 is dominated by strategy 1.

Therefore, the optimal strategy is strategy 2 for player 1 and strategy 1 for player 2 and the resulting payoff is 1 to player 1.

#### 14.2-3.

Strategies 1 and 4 of player 2 is dominated by strategy 3.

Strategies 1 and 2 of player 1 are dominated by strategy 3.

Strategy 2 of player 2 is dominated by strategy 3.

Therefore, the optimal strategy is strategy 3 for each player and the resulting payoff is 2 to player 2.

#### 14.2-4.

|       |    | 1  | 2  | 3 | row min |
|-------|----|----|----|---|---------|
|       | 1  | 3  | -1 | 3 | -1      |
|       | 2  | -3 | 1  | 7 | -3      |
|       | 3  | 7  | 3  | 5 | 3       |
| col m | ax | 7  | 3  | 7 | 3       |

The best strategy is strategy 3 for player 1 and strategy 2 for player 2, the resulting payoff is 3 to player 1. The game is stable with a saddle point (3, 2), since the minimax value equals the maximin value.

### 14.2-5.

|       |    | 1  | 2  | 3  | 4  | row min |
|-------|----|----|----|----|----|---------|
|       | 1  | 3  | -3 | -2 | -4 | -4      |
|       | 2  | -4 | -2 | -1 | 1  | -4      |
|       | 3  | 1  | -1 | 2  | 0  | -1      |
| col m | ax | 1  | -1 | 2  | 1  | -1      |

The best strategy 3 for player 1 and strategy 2 for player 2, the resulting payoff is 1 to player 2. The game is stable with a saddle point (3, 2).

# 14.2-6.

| (a) |         | 1 | 2  | 3  | row min |
|-----|---------|---|----|----|---------|
|     | 1       | 2 | 3  | 1  | 1       |
|     | 2       | 1 | 4  | 0  | 0       |
|     | 3       | 3 | -2 | -1 | -2      |
|     | col max | 3 | 4  | 1  | 1       |

The best strategy is strategy 1 for player 1 and strategy 3 for player 2, the resulting payoff is 1 to player 1. The game is stable with a saddle point (1,3).

(b) Strategy 1 of player 2 is dominated by strategy 3.

Strategy 3 of player 1 is dominated by strategies 1 and 2.

Strategy 2 of player 2 is dominated by strategy 3.

Strategy 2 of player 1 is dominated by strategy 1.

The optimal strategy is strategy 1 for player 1 and strategy 3 for player 2, with a payoff of 1 to player 1.

### 14.2-7.

1 2 3 row min (a) 7 3  $\overline{-1}$  $\overline{-1}$ 1 0 0 3 -5-3-51 0 0 col max

The best strategy is to use issue 2 for each politician, with zero payoff to each.

(b) Let  $p_{ij}$  be the probability that politician 1 wins the election or the election results in a tie when politician 1 chooses issue i and politician 2 issue j. Then the new payoff matrix is:

|   | 1   | 2 | 3   |
|---|-----|---|-----|
| 1 | 1   | 0 | 3/5 |
| 2 | 1/5 | 0 | 2/5 |
| 3 | 0   | 0 | 1/5 |

Strategies 2 and 3 of politician 1 are dominated by strategy 2. Strategies 1 and 3 of politician 2 are dominated by strategy 2.

Hence, by eliminating dominated strategies, one gets issue 1 as the best strategy for politician 1 and issue 2 for politician 2, the payoff is zero. Thus, politician 2 can prevent politician 1 from winning or getting a tie.

(c) Let 
$$p_{ij} = \begin{cases} 1 & \text{if politician 1 will win or tie} \\ 0 & \text{if politician 2 will win} \end{cases}$$

Then the payoff matrix becomes:

|   | 1 | 2 | 3 |
|---|---|---|---|
| 1 | 1 | 0 | 0 |
| 2 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 |

where the minimax of the columns and the maximin of the rows both equal zero, i.e., politician 1 cannot win. Politician 1 can use any use, politician 2 can choose issue 2 or 3; however, since issue 1 offers politician 1 his only chance of winning, he should use that one and hope that politician 2 chooses issue 1 by mistake.

### 14.2-8.

Advantages: It provides the best possible guarantee on what the worst outcome can be, regardless of how skillfully the opponent plays the game and hence, reduces the possibility of undesirable outcomes to a minimum.

<u>Disadvantages:</u> Since it aims at eliminating worst cases, it is conservative and may yield payoffs that are far from the best ones.

#### 14.3-1.

| (a) |       |    | 1  | 2  | row min |
|-----|-------|----|----|----|---------|
|     |       | 1  | 1  | -1 | -1      |
|     |       | 2  | -1 | 1  | -1      |
|     | col m | ax | 1  | 1  |         |

The minimax payoff is not the same as the maximin payoff, so the game does not have a saddle point.

Expected payoff for player 1:  $(x_1y_1 + x_2y_2) - (x_1y_2 + x_2y_1)$ (b)

$$x_1 + x_2 = y_1 + y_2 = 1$$

(i) 
$$y_1 = 1, y_2 = 0$$
:  $x_1 - x_2 = x_1 - (1 - x_1) = 2x_1 - 1$ 

$$\begin{array}{lll} x_1 + x_2 - y_1 + y_2 - 1 \\ \text{(i)} & y_1 = 1, y_2 = 0; \\ \text{(ii)} & y_1 = 0, y_2 = 1; \\ \text{(ii)} & y_1 = \frac{1}{2}, y_2 = \frac{1}{2}; \end{array} \qquad \begin{array}{ll} x_1 - x_2 = x_1 - (1 - x_1) = 2x_1 - 1 \\ x_2 - x_1 = (1 - x_1) - x_1 = 1 - 2x_1 \\ 0 \end{array}$$

(ii) 
$$y_1 = \frac{1}{2}, y_2 = \frac{1}{2}$$
: 0

Expected payoff for player 1:  $(x_1y_2 + x_2y_1) - (x_1y_1 + x_2y_2)$ (c)

$$x_1 + x_2 = y_1 + y_2 = 1$$

(i) 
$$y_1 = 1, y_2 = 0$$
:  $x_2 - x_1 = (1 - x_1) - x_1 = 1 - 2x$ 

$$\begin{array}{llll} x_1+x_2=y_1+y_2=1\\ \text{(i)} & y_1=1,y_2=0:\\ \text{(ii)} & y_1=0,y_2=1:\\ \text{(ii)} & y_1=\frac{1}{2},y_2=\frac{1}{2}: \end{array} \qquad \begin{array}{lll} x_2-x_1=(1-x_1)-x_1=1-2x_1\\ x_1-x_2=x_1-(1-x_1)=2x_1-1\\ 0 \end{array}$$

(ii) 
$$y_1 = \frac{1}{2}, y_2 = \frac{1}{2}$$
:

# 14.3-2.

Strategies for player1: 1- Pass on heads or tails (a)

2- Bet on heads or tails

3- Pass on heads, bet on tails

4- Bet on heads, pass on tails

Strategies for player 2:1- If player 1 bets, call.

2- If player 1 bets, pass.

(b)

|   | 1    | 2  |
|---|------|----|
| 1 | -5   | -5 |
| 2 | 0    | 5  |
| 3 | -7.5 | 0  |
| 4 | 2.5  | 0  |

Strategies 1 and 3 of player 1 are dominated by strategy 2. Upon eliminating them, the table is reduced to:

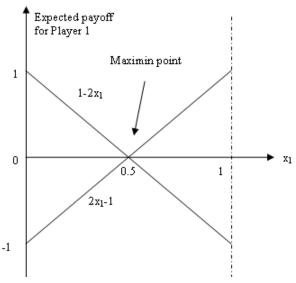
|   | 1   | 2 |
|---|-----|---|
| 2 | 0   | 5 |
| 4 | 2.5 | 0 |

(c)

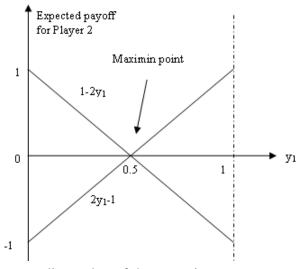
|       |    | 1    | 2  | row min |
|-------|----|------|----|---------|
|       | 1  | -5   | -5 | -5      |
|       | 2  | 0    | 5  | 0       |
|       | 3  | -7.5 | 0  | -7.5    |
|       | 4  | 2.5  | 0  | 0       |
| col m | ax | 2.5  | 5  |         |

The minimum of the column maxima is not equal to the maximum of the row minima, there is no saddle point. If either player chooses a pure strategy, the other one can choose a strategy to cause the first player to change his strategy. One needs mixed strategies to find an equilibrium.

(d) The dominated strategies will not be chosen. Let  $x_2$  and  $x_4$  be the probabilities that player 1 uses strategy 2 and 4 respectively,  $y_1$  and  $y_2$  be the probabilities that player 2 uses strategy 1 and 2 respectively. Hence,  $x_2 + x_4 = 1$  and  $y_1 + y_2 = 1$  and the expected payoff can be expressed as  $p_{21}x_2y_1 + p_{22}x_2y_2 + p_{41}x_4y_1 + p_{42}x_4y_2$ .


Case (i): 
$$y_1 = 1, y_2 = 0 \implies 2.5x_4 = 2.5(1 - x_2)$$

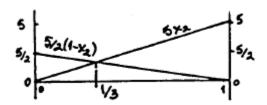
Case (ii): 
$$y_1 = 0, y_2 = 1 \implies 5x_2 = 5(1 - x_4)$$


Case (iii): 
$$y_1 = y_2 = 0.5 \implies 5x_2\left(\frac{1}{2}\right) + 2.5x_4\left(\frac{1}{2}\right) = 0.25x_2 + 1.25$$

# 14.4-1.

Expected payoff for player 1: (i) 
$$y_1 = 1, y_2 = 0$$
:  $2x_1 - 1$  (ii)  $y_1 = 0, y_2 = 1$ :  $1 - 2x_1$ 

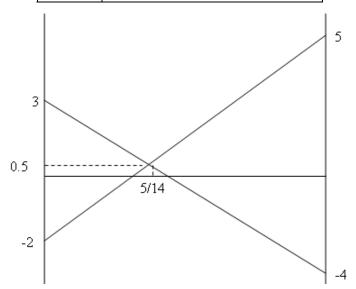



Expected payoff for player 2: (i)  $x_1 = 1, x_2 = 0$ :  $1 - 2y_1$  (ii)  $x_1 = 0, x_2 = 1$ :  $2y_1 - 1$ 



The corresponding value of the game is zero.

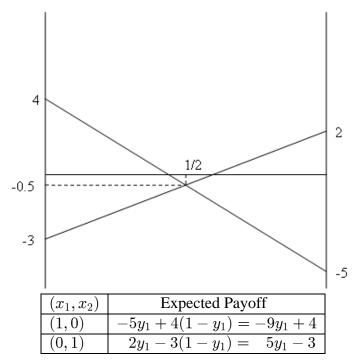
# 14.4-2.


| $(y_1,y_2)$ | Expected Payoff |
|-------------|-----------------|
| (1,0)       | $2.5(1-x_2)$    |
| (0,1)       | $5x_2$          |



$$2.5(1-x_2)=5x_2 \Rightarrow (x_1^*,x_2^*,x_3^*,x_4^*)=(0,1/3,0,2/3) \text{ and } v=5/3.$$
  $2.5y_1^*(1-x_2)+5y_2^*x_2=5/3 \text{ for } 0 \leq x_2 \leq 1 \Rightarrow 2.5y_1^*=5/3 \text{ and } 5y_2^*=5/3 \Rightarrow (y_1^*,y_2^*)=(2/3,1/3).$ 

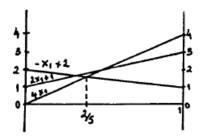
# 14.4-3.


| $(y_1,y_2)$ | Expected Payoff                  |  |
|-------------|----------------------------------|--|
| (1,0)       | $5x_1 - 2(1 - x_1) = 7x_1 - 2$   |  |
| (0,1)       | $-4x_1 + 3(1 - x_1) = -7x_1 + 3$ |  |



 $\begin{array}{l} 7x_1-2=-7x_1+3 \ \Rightarrow \ (x_1^*,x_2^*)=(5/14,9/14) \ \text{and} \ v=7(5/14)-2=0.5. \\ 5y_1^*-4y_2^*=0.5 \ \text{and} \ -2y_1^*+3y_2^*=0.5 \ \Rightarrow \ (y_1^*,y_2^*)=(0.5,0.5). \end{array}$ 

The payoff matrix for player 2 is:


|   | 1  | 2  |
|---|----|----|
| 1 | -5 | 4  |
| 2 | 2  | -3 |



$$-9y_1 + 4 = 5y_1 - 3 \implies y_1^* = y_2^* = 0.5$$

# 14.4-4.

| $(y_1, y_2, y_3)$ | Expected Payoff               |
|-------------------|-------------------------------|
| (1,0,0)           | $4x_1$                        |
| (0, 1, 0)         | $3x_1 + (1 - x_1) = 2x_1 + 1$ |
| (0,0,1)           | $x_1 + 2(1 - x_1) = -x_1 + 2$ |



 $\begin{array}{l} 4x_1 = -x_1 + 2 \ \Rightarrow \ (x_1^*, x_2^*) = (2/5, 3/5) \ \text{and} \ v = 8/5. \\ y_1^*(4x_1) + y_3^*(-x_1 + 2) = 8/5 \ \text{for} \ 0 \le x_1 \le 1 \ \Rightarrow \ 2y_3^* = 8/5 \ \text{and} \ 4y_1^* + y_3^* = 3/5 \\ \Rightarrow (y_1^*, y_2^*, y_3^*) = (1/5, 0, 4/5). \end{array}$ 

# 14.4-5.

(a) Strategies for A.J. Team:

1- John does not swim butterfly.

2- John does not swim backstroke.

3- John does not swim breaststroke.

Strategies for G.N. Team:

1- Mark does not swim butterfly.

2- Mark does not swim backstroke.

3- Mark does not swim breaststroke.

Let the payoff entries be the total points earned in all three events by A.J. Team when a given pair of strategies are chosen by the teams. Then the payoff matrix becomes:

|   | 1  | 2  | 3  |
|---|----|----|----|
| 1 | 14 | 13 | 12 |
| 2 | 13 | 12 | 12 |
| 3 | 12 | 12 | 13 |

Strategy 2 of A.J. Team is dominated by strategy 1 and strategy 1 of G.N. Team is dominated by strategy 2. When we eliminate these strategies we obtain the table:

|   | 2  | 3  | $(y_1,y_2)$ | Expected Payoff                   |
|---|----|----|-------------|-----------------------------------|
| 1 | 13 | 12 | (1,0)       | $13x_1 + 12(1 - x_1) = x_1 + 12$  |
| 3 | 12 | 13 | (0,1)       | $12x_1 + 13(1 - x_1) = -x_1 + 13$ |

$$x_1+12=-x_1+13 \Rightarrow (x_1^*,x_2^*,x_3^*)=(0.5,0,0.5) \text{ and } v=12.5.$$
  $y_2^*(x_1+12)+y_3^*(-x_1+13)=12.5 \text{ for } 0 \leq x_1 \leq 1 \Rightarrow 12y_2^*+13y_3^*=12.5 \text{ and } 13y_2^*+12y_3^*=12.5 \Rightarrow (y_1^*,y_2^*,y_3^*)=(0,0.5,0.5).$ 

Hence, John should always swim backstroke and should swim butterfly and breaststroke each with probability 1/2. Also, Mark should always swim butterfly and should swim backstroke and breaststroke each with probability 1/2. Consequently, A.J. Team can expect to get 12.5 points on average in three events.

(b) The strategies for the two teams are the same as in (a). If  $p_{ij}$  denotes the total points earned by A.J. Team, let  $p'_{ij}$  be the new payoff that is defined as:

$$p'_{ij} = \left\{ egin{array}{ll} 1/2 & ext{if } p_{ij} \geq 13, ext{i.e., if A.J. Team wins} \ -1/2 & ext{if } p_{ij} < 13, ext{i.e., if A.J. Team loses} \end{array} 
ight.$$

Then, the new payoff matrix becomes:

|   | 1    | 2    | 3    |
|---|------|------|------|
| 1 | 1/2  | 1/2  | -1/2 |
| 2 | 1/2  | -1/2 | -1/2 |
| 3 | -1/2 | -1/2 | 1/2  |

where strategy 2 of A.J. Team is dominated by strategy 1 and strategy 1 of G.N. Team is dominated by strategy 2. After eliminating these, the reduced payoff matrix is:

|   | 2    | 3    |
|---|------|------|
| 1 | 1/2  | -1/2 |
| 3 | -1/2 | 1/2  |

Adding the constant 12.5 to every entry does not change the optimal strategies. Furthermore, the payoff matrix in (a) is obtained by doing so. Hence, the best strategies found in (a) are still optimal, the new payoff is v' = 12.5 - 12.5 = 0.

(c) Since John and Mark are the best swimmers of their teams, they will always swim in two events. Their teams cannot do better if they do not swim or if they swim in only one

event. Hence, if either one of them does not swim in the first event, namely butterfly, he will surely swim the last two events. Accordingly, the strategies for A.J. Team are:

- 1- John swims butterfly and then backstroke regardless of whether Mark swims butterfly.
- 2- John swims butterfly and then backstroke if Mark swims butterfly, breaststroke else.
- 3- John swims butterfly and then breaststroke if Mark swims butterfly, backstroke else.
- 4- John swims butterfly and then breaststroke regardless of whether Mark swims butterfly.
- 5- John does not swim butterfly, swims both backstroke and breaststroke.

The strategies for G.N. Team are the same but with the roles of John and Mark are reversed. The associated payoff matrix is:

|   | 1    | 2    | 3    | 4    | 5    |   |
|---|------|------|------|------|------|---|
| 1 | 1/2  | 1/2  | -1/2 | -1/2 | -1/2 | 1 |
| 2 | 1/2  | 1/2  | -1/2 | -1/2 | 1/2  | 2 |
| 3 | -1/2 | -1/2 | -1/2 | -1/2 | -1/2 | 3 |
| 4 | -1/2 | -1/2 | -1/2 | -1/2 | 1/2  | 4 |
| 5 | -1/2 | 1/2  | -1/2 | 1/2  | 1/2  | 5 |

Strategy 3 of G.N. Team dominates all others, by eliminating them, we obtain the payoff matrix on the right. It shows that if G.N. Team uses strategy 3, it will win regardless of what strategy is employed by A.J. Team.

(d) Strategy 2 of A.J. Team dominates strategies 1, 3, and 4. Thus, if the coach of G.N. Team may choose any of their strategies at random, the coach of A.J. Team should choose either strategy 2 or 5. After eliminating the dominated strategies, the payoff matrix becomes:

|   | 1    | 2   | 3    | 4    | 5   |
|---|------|-----|------|------|-----|
| 2 | 1/2  | 1/2 | -1/2 | -1/2 | 1/2 |
| 5 | -1/2 | 1/2 | -1/2 | 1/2  | 1/2 |

The two rows are identical except for columns 1 and 4. Thus, if the coach of A.J. team knows that the other coach has a tendency to enter Mark in butterfly and backstroke more often than breaststroke, that means column 1 is more likely to be chosen than column 4, so the coach of A.J. team should choose strategy 2.

#### 14.5-1.

(b) Optimal Solution:  $x_1 = x_2 = y_1 = y_2 = 0.5, x_3 = y_3 = 0$ 

### 14.5-2.

After adding 3 to the entries of Table 14.6, the payoff table becomes:

|   |   | 1 | 2 | 3 |
|---|---|---|---|---|
| ĺ | 1 | 3 | 1 | 5 |
| ĺ | 2 | 8 | 7 | 0 |

The new linear programming problem for player 1 is:

maximize 
$$x_3$$
  
subject to  $3x_1 + 8x_2 - x_3 \ge 0$   
 $x_1 + 7x_2 - x_3 \ge 0$   
 $5x_1 - x_3 \ge 0$   
 $x_1 + x_2 = 1$   
 $x_1, x_2, x_3 \ge 0$ 

The new linear programming problem for player 2 is:

maximize 
$$y_4$$
 subject to 
$$3y_1+y_2+5y_3-y_4 \leq 0 \\ 8y_1+7y_2-y_4 \leq 0 \\ y_1+y_2+y_3=1 \\ y_1,y_2,y_3,y_4 \geq 0$$

Based on the information given in Section 14.5, the optimal solutions for these new models are:

$$(x_1^*, x_2^*, x_3^*) = (7/11, 4/11, 35/11)$$
  
 $(y_1^*, y_2^*, y_3^*, y_4^*) = (0, 5/11, 6/11, 35/11).$ 

Note that  $x_3^* = y_4^* = v + 3$  where v is the value for the original version of the game.

# 14.5-3.

(a) maximize 
$$x_4$$
 subject to 
$$5x_1 + 2x_2 + 3x_3 - x_4 \ge 0$$
 
$$4x_2 + 2x_3 - x_4 \ge 0$$
 
$$3x_1 + 3x_2 - x_4 \ge 0$$
 
$$x_1 + 2x_2 + 4x_3 - x_4 \ge 0$$
 
$$x_1 + x_2 + x_3 = 1$$
 
$$x_1, x_2, x_3, x_4 \ge 0$$

(b)

| Optimal Solu              | ttion |  |  |  |  |  |  |
|---------------------------|-------|--|--|--|--|--|--|
| Objective Function: 2.368 |       |  |  |  |  |  |  |
| Variable                  | Value |  |  |  |  |  |  |
|                           | l     |  |  |  |  |  |  |
| X1                        | 0.053 |  |  |  |  |  |  |
| X2                        | 0.737 |  |  |  |  |  |  |
| X3                        | 0.211 |  |  |  |  |  |  |
| X4                        | 2.368 |  |  |  |  |  |  |

# 14.5-4.

(a) To insure  $x_4 \ge 0$ , add 5 to each entry of the payoff table.

maximize 
$$x_4$$
 subject to 
$$\begin{aligned} 12x_1 + 4x_2 + & 8x_3 - x_4 \geq 0 \\ & 8x_1 + 5x_2 + 10x_3 - x_4 \geq 0 \\ & 10x_2 + & 2x_3 - x_4 \geq 0 \\ & x_1 + x_2 + x_3 = 1 \\ & x_1, x_2, x_3, x_4 \geq 0 \end{aligned}$$

(b)

Optimal Solution

Objective Function: 6.462

| Variable | Value |
|----------|-------|
|          | I     |
| X1       | 0.231 |
| X2       | 0.615 |
| X3       | 0.154 |
| X4       | 6.462 |

# 14.5-5.

(a) To insure  $x_5 \ge 0$ , add 4 to each entry of the payoff table.

maximize  $x_5$ 

subject to 
$$5x_1 + 6x_2 + 4x_3 - x_5 \ge 0$$

$$x_1 + 7x_2 + 8x_3 + 4x_4 - x_5 \ge 0$$

$$6x_1 + 4x_2 + 3x_3 + 2x_4 - x_5 \ge 0$$

$$2x_1 + 7x_2 + x_3 + 6x_4 - x_5 \ge 0$$

$$5x_1 + 2x_2 + 6x_3 + 3x_4 - x_5 \ge 0$$

$$x_1 + x_2 + x_3 + x_4 = 1$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

(b)

Optimal Solution

Objective Function: 3.981

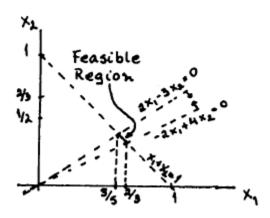
| Variable | Value |
|----------|-------|
|          | _1    |
| X1       | 0.31  |
| X2       | 0.266 |
| X3       | 0.209 |
| X4       | 0.215 |
| X5       | 3.981 |

### 14.5-6.

Following Table 6.14, the dual of player 1's problem is:

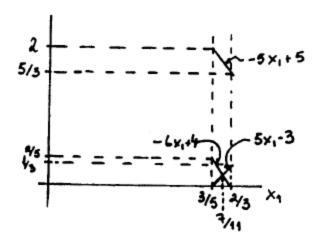
minimize 
$$y_{n+1}$$
 subject to 
$$p_{11}y_1' + p_{12}y_2' + \cdots + p_{1n}y_n' + y_{n+1} \geq 0$$
 
$$p_{21}y_1' + p_{22}y_2' + \cdots + p_{2n}y_n' + y_{n+1} \geq 0$$
 
$$\vdots$$
 
$$p_{m1}y_1' + p_{m2}y_2' + \cdots + p_{mn}y_n' + y_{n+1} \geq 0$$
 
$$-y_1' - y_2' - \cdots - y_n' = 1$$
 
$$y_i' \leq 0, i = 1, 2, \ldots, n; (y_{n+1} \text{ free}).$$

Now, let  $y_i = -y_i'$  for i = 1, 2, ..., n to get the linear program for player 2.


## 14.5-7.

Taking the dual of player 1's problem gives:

minimize 
$$\begin{aligned} y_4 \\ \text{subject to} & -2y_2' + 2y_3' + y_4 \, \geq \, 0 \\ & 5y_1' + 4y_2' - 3y_3' + y_4 \, \geq \, 0 \\ & -y_1' - \, y_2' - \, y_3' \, &= \, 1 \\ & y_1', y_2', y_3 \leq \, 0; \, (y_4 \text{ free}). \end{aligned}$$


Now, let  $y_i = -y_i'$  for i = 1, 2, 3 to get the linear program for player 2.

# 14.5-8.



The feasible region may be algebraically described by:  $x_2 = 1 - x_1$  and  $3/5 \le x_1 \le 2/3$ . The restrictions may be rewritten as:

$$x_3 \le -5x_1 + 5$$
  $3/5 \le x_1 \le 2/3$   
 $x_3 \le -6x_1 + 4$   $3/5 \le x_1 \le 2/3$   
 $x_3 \le 5x_1 - 3$   $3/5 \le x_1 \le 2/3$ 



$$-6x_1 + 4 = 5x_1 - 3 \implies x_1 = 7/11.$$

Therefore, the algebraic expression for the maximizing value of  $x_3$  for any point in the feasible region is:

$$x_3 = \begin{cases} 5x_1 - 3 & \text{for } 3/5 \le x_1 \le 7/11 \\ -6x_1 + 4 & \text{for } 7/11 \le x_1 \le 2/3 \end{cases}$$

Hence, the optimal solution is:

$$(x_1^*, x_2^*, x_3^*) = (7/11, 1 - 7/11, 5(7/11) - 3) = (7/11, 4/11, 2/11).$$

14.5-9.

AUTOMATIC SIMPLEX METHOD: FINAL TABLEAU

| Bas   Eq  |    |    |    | C  | oeffic | cient of |    |       |       |       | Right |
|-----------|----|----|----|----|--------|----------|----|-------|-------|-------|-------|
| Var No  2 | X1 | X2 | х3 | X4 | X5     | х6       | х7 | 8X    | Х9    | X10   | side  |
| _ _ _     |    |    |    |    |        |          |    |       |       |       | .     |
|           |    |    |    |    |        |          | 1M | 1M    | 1 M   | 1M    |       |
| 2   0   1 | 0  | 0  | 0  | 0  | 0.455  | 0.545    | 0  | -0.45 | -0.55 | 0.182 | 0.182 |
| X2 1 0    | 0  | 1  | 0  | 0  | -0.09  | 0.091    | 0  | 0.091 | -0.09 | 0.364 | 0.364 |
| X4 2 0    | 0  | 0  | 0  | 1  | -0.91  | -0.09    | -1 | 0.909 | 0.091 | 1.636 | 1.636 |
| X1 3 0    | 1  | 0  | 0  | 0  | 0.091  | -0.09    | 0  | -0.09 | 0.091 | 0.636 | 0.636 |
| X3 4 0    | 0  | 0  | 1  | 0  | 0.455  | 0.545    | 0  | -0.45 | -0.55 | 0.182 | 0.182 |

Optimal primal solution:  $(x_1, x_2) = (0.636, 0.364)$  with a payoff of 0.182

Optimal dual solution:  $(y_1, y_2, y_3) = (0, 0.455, 0, 545)$ 

### 14.5-10.

- (a) Since the saddle points can be found by linear programming, (a) follows from (b).
- (b) Consider the linear programming formulation of the problem for player 2. The ith and kth constraints are:

$$p_{i1}y_1 + p_{i2}y_2 + \cdots + p_{in}y_n \le y_{n+1}$$
  
 $p_{k1}y_1 + p_{k2}y_2 + \cdots + p_{kn}y_n \le y_{n+1}$ 

If row k weakly dominates row i, then

$$p_{i1}y_1 + p_{i2}y_2 + \cdots + p_{in}y_n \le p_{k1}y_1 + p_{k2}y_2 + \cdots + p_{kn}y_n$$

for every  $y_1, \ldots, y_n$ . In that case, the *i*th constraint is redundant, as it is implied by the kth constraint. Hence, eliminating dominated pure strategies for player 1 corresponds to eliminating redundant constraints from the linear program for player 2. Similarly, eliminating dominated strategies of player 2 is equivalent to eliminating redundant constraints of player 1's linear program. Since this process cannot eliminate any feasible solutions or create new ones, all optimal strategies are preserved and no new ones are added.

## **CHAPTER 15: DECISION ANALYSIS**

### 15.2-1.

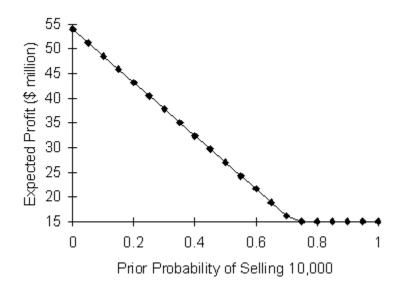
Phillips Petroleum Company developed a decision analysis tool named DISCOVERY to evaluate available investment opportunities and decide on the participation levels. The need for a systematic decision analysis tool arose from the uncertainty associated with various alternatives, the lack of a consistent risk measure across the organization and the scarcity of capital resources. The notion of risk is incorporated in the model with the use of risk-averse exponential utility function. The objective is to maximize expected utility rather than expected return. DISCOVERY provides a decision-tree display of available alternatives at various participation levels. A simple version of the problem is one where Phillips needs to decide first on the participation level and second on whether to drill or not. The exploration of petroleum when drilled is uncertain. The analysis is performed for different levels of risk-aversion and the sensitivity of the decisions to the risk-aversion level is observed. When additional seismic information is available at a cost, the value of information is computed.

This study "has increased management's awareness of risk and risk tolerance, provided insight into the financial risks associated with its set of investment opportunities, and provided the company a formalized decision model for allocating scarce capital" [p. 55]. The software package developed has been a valuable aid in decision making. It provided a systematic treatment of risk and uncertainty. Other petroleum exploration firms started to use DISCOVERY in analyzing decisions, too.

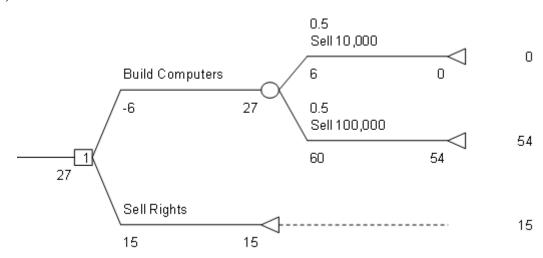
15.2-2.

| (a) |                 | State of Nature |               |  |  |  |
|-----|-----------------|-----------------|---------------|--|--|--|
|     | Alternative     | Sell 10,000     | Sell 100, 000 |  |  |  |
|     | Build Computers | 0               | 54            |  |  |  |
|     | Sell Rights     | 15              | 15            |  |  |  |

(b) 60 **Build computers** 50 Expected Profit (\$ million) 40 Crossover Point 30 20 Sell Rights 10 0 0 0.2 0.4 0.6 0.8 Prior Probability of Selling 10,000


(c) Let p be the prior probability of selling 10,000 computers.

Build: EP = 
$$p(0) + (1 - p)(54) = -54p + 54$$


Sell: 
$$EP = p(15) + (1 - p)(15) = 15$$

The expected profit for Build and Sell is the same when  $-54p + 54 = 15 \Rightarrow p = 0.722$ . They should build when  $p \le 0.722$  and sell if  $p \ge 0.722$ .

(d)



(e)



Building computers should be chosen, since it has an expected payoff of \$27 million.

15.2-3.

(a)

|                   | State of Nature |               |               |               |  |  |  |
|-------------------|-----------------|---------------|---------------|---------------|--|--|--|
| Alternative       | Sell 12 Cases   | Sell 13 Cases | Sell 14 Cases | Sell 15 Cases |  |  |  |
| Buy 12 Cases      | 132             | 132           | 132           | 132           |  |  |  |
| Buy 13 Cases      | 125             | 143           | 143           | 143           |  |  |  |
| Buy 14 Cases      | 118             | 136           | 154           | 154           |  |  |  |
| Buy 15 Cases      | 111             | 129           | 147           | 165           |  |  |  |
| Prior Probability | 0.1             | 0.3           | 0.4           | 0.2           |  |  |  |

(b) According to the maximin payoff criterion, Jean should purchase 12 cases.

|                   | State of Nature |               |               |               |     |  |  |  |
|-------------------|-----------------|---------------|---------------|---------------|-----|--|--|--|
| Alternative       | Sell 12 Cases   | Sell 13 Cases | Sell 14 Cases | Sell 15 Cases | Min |  |  |  |
| Buy 12 Cases      | 132             | 132           | 132           | 132           | 132 |  |  |  |
| Buy 13 Cases      | 125             | 143           | 143           | 143           | 125 |  |  |  |
| Buy 14 Cases      | 118             | 136           | 154           | 154           | 118 |  |  |  |
| Buy 15 Cases      | 111             | 129           | 147           | 165           | 111 |  |  |  |
| Prior Probability | 0.1             | 0.3           | 0.4           | 0.2           |     |  |  |  |

(c) She will be able to sell 14 cases with highest probability and the maximum possible profit from selling 14 cases is earned when she buys 14 cases. Hence, according to the maximum likelihood criterion, Jean should purchase 14 cases.

(d) According to Bayes' decision rule, Jean should purchase 14 cases.

|                   | State of Nature |               |               |               |        |  |  |  |
|-------------------|-----------------|---------------|---------------|---------------|--------|--|--|--|
| Alternative       | Sell 12 Cases   | Sell 13 Cases | Sell 14 Cases | Sell 15 Cases | Profit |  |  |  |
| Buy 12 Cases      | 132             | 132           | 132           | 132           | 132    |  |  |  |
| Buy 13 Cases      | 125             | 143           | 143           | 143           | 141.2  |  |  |  |
| Buy 14 Cases      | 118             | 136           | 154           | 154           | 145    |  |  |  |
| Buy 15 Cases      | 111             | 129           | 147           | 165           | 141.6  |  |  |  |
| Prior Probability | 0.1             | 0.3           | 0.4           | 0.2           |        |  |  |  |

(e) 0.2 and 0.5: Jean should purchase 14 cases.

|                   | State of Nature |               |               |               |        |  |  |  |
|-------------------|-----------------|---------------|---------------|---------------|--------|--|--|--|
| Alternative       | Sell 12 Cases   | Sell 13 Cases | Sell 14 Cases | Sell 15 Cases | Profit |  |  |  |
| Buy 12 Cases      | 132             | 132           | 132           | 132           | 132    |  |  |  |
| Buy 13 Cases      | 125             | 143           | 143           | 143           | 141.2  |  |  |  |
| Buy 14 Cases      | 118             | 136           | 154           | 154           | 146.8  |  |  |  |
| Buy 15 Cases      | 111             | 129           | 147           | 165           | 143.4  |  |  |  |
| Prior Probability | 0.1             | 0.2           | 0.5           | 0.2           |        |  |  |  |

0.4 and 0.3: Jean should purchase 14 cases.

|                   | State of Nature |               |               |               |        |
|-------------------|-----------------|---------------|---------------|---------------|--------|
| Alternative       | Sell 12 Cases   | Sell 13 Cases | Sell 14 Cases | Sell 15 Cases | Profit |
| Buy 12 Cases      | 132             | 132           | 132           | 132           | 132    |
| Buy 13 Cases      | 125             | 143           | 143           | 143           | 141.2  |
| Buy 14 Cases      | 118             | 136           | 154           | 154           | 143.2  |
| Buy 15 Cases      | 111             | 129           | 147           | 165           | 139.8  |
| Prior Probability | 0.1             | 0.4           | 0.3           | 0.2           |        |

<u>0.5 and 0.2:</u> Jean should purchase 14 cases.

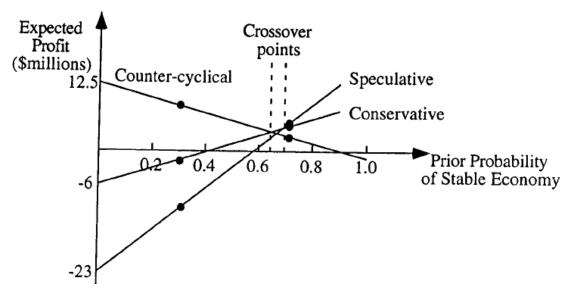
|                   | State of Nature |               |               |               |        |
|-------------------|-----------------|---------------|---------------|---------------|--------|
| Alternative       | Sell 12 Cases   | Sell 13 Cases | Sell 14 Cases | Sell 15 Cases | Profit |
| Buy 12 Cases      | 132             | 132           | 132           | 132           | 132    |
| Buy 13 Cases      | 125             | 143           | 143           | 143           | 141.2  |
| Buy 14 Cases      | 118             | 136           | 154           | 154           | 141.4  |
| Buy 15 Cases      | 111             | 129           | 147           | 165           | 138    |
| Prior Probability | 0.1             | 0.5           | 0.2           | 0.2           |        |

### 15.2-4.

- (a) The optimal (maximin) actions are conservative and countercyclical investments, both incur a loss of \$10 million in the worst case.
- (b) The economy is most likely to be stable and the alternative with the highest profit in this state of nature is to make a speculative investment. According to the maximum likelihood criterion, Warren should choose speculative investment.
- (c) To maximize his expected payoff, Warren should make a countercyclical investment.

|                   | Sta       | Exp.   |           |        |
|-------------------|-----------|--------|-----------|--------|
| Alternative       | Improving | Stable | Worsening | Profit |
| Conservative      | 30        | 5      | -10       | 1.5    |
| Speculative       | 40        | 10     | -30       | -3     |
| Countercyclical   | -10       | 0      | 15        | 5      |
| Prior Probability | 0.1       | 0.5    | 0.4       |        |

# 15.2-5.


(a) Warren should make a countercyclical investment.

|                   | Sta       | Exp.   |           |        |
|-------------------|-----------|--------|-----------|--------|
| Alternative       | Improving | Stable | Worsening | Profit |
| Conservative      | 30        | 5      | -10       | -1.5   |
| Speculative       | 40        | 10     | -30       | -11    |
| Countercyclical   | -10       | 0      | 15        | 8      |
| Prior Probability | 0.1       | 0.3    | 0.6       |        |

(b) Warren should make a speculative investment.

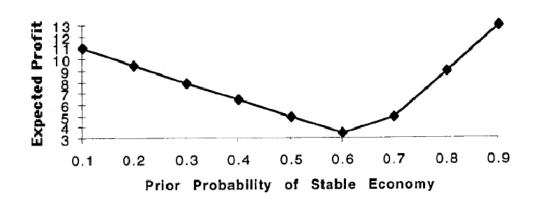
|                   | Sta       | Exp.   |           |        |
|-------------------|-----------|--------|-----------|--------|
| Alternative       | Improving | Stable | Worsening | Profit |
| Conservative      | 30        | 5      | -10       | 4.5    |
| Speculative       | 40        | 10     | -30       | 5      |
| Countercyclical   | -10       | 0      | 15        | 2      |
| Prior Probability | 0.1       | 0.7    | 0.2       |        |

(c) The expected profit from countercyclical and conservative investments is the same when  $p\approx 0.62$ . The expected profit lines for conservative and speculative investments cross at  $p\approx 0.68$ . Those for countercyclical and speculative investments cross at  $p\approx 0.65$ ; however, this crossover point does not result in a decision shift.



(d) Let p be the prior probability of stable economy.

Conservative: EP = (0.1)(30) + p(5) + (1 - 0.1 - p)(-10) = 15p - 6


Speculative: EP = (0.1)(40) + p(10) + (1 - 0.1 - p)(-30) = 40p - 23

Countercyclical: EP = (0.1)(-10) + p(0) + (1 - 0.1 - p)(15) = -15p + 12.5

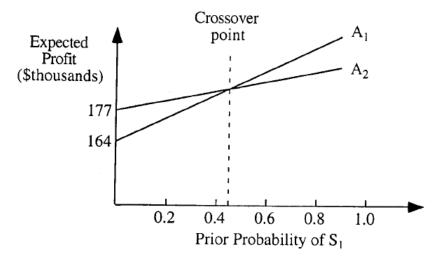
Countercyclical and conservative cross when  $-15p + 12.5 = 15p - 6 \Rightarrow p = 0.617$ . Conservative and speculative cross when  $15p - 6 = 40p - 23 \Rightarrow p = 0.68$ .

Accordingly, Warren should choose countercyclical investment when p < 0.617, conservative investment when  $0.617 \le p < 0.68$  and speculative investment when  $p \ge 0.68$ .

(e)



# 15.2-6.

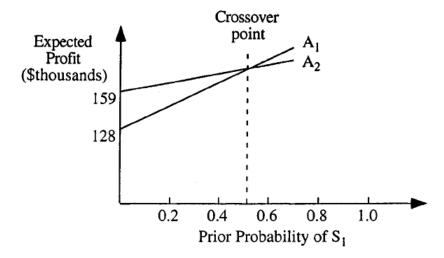

(a) A<sub>2</sub> should be chosen.

|                   | State of Nature |       |       |     |
|-------------------|-----------------|-------|-------|-----|
| Alternative       | $S_1$           | $S_2$ | $S_3$ | Min |
| $A_1$             | 220             | 170   | 110   | 110 |
| $A_2$             | 200             | 180   | 150   | 150 |
| Prior Probability | 0.6             | 0.3   | 0.1   |     |

- (b) The most likely state of nature is  $S_1$  and the alternative with highest profit in this state is  $A_1$ .
- (c) A<sub>1</sub> should be chosen.

|                   | State of Nature |       |       | Exp.   |
|-------------------|-----------------|-------|-------|--------|
| Alternative       | $S_1$           | $S_2$ | $S_3$ | Payoff |
| $A_1$             | 220             | 170   | 110   | 194    |
| $A_2$             | 200             | 180   | 150   | 189    |
| Prior Probability | 0.6             | 0.3   | 0.1   |        |

(d)

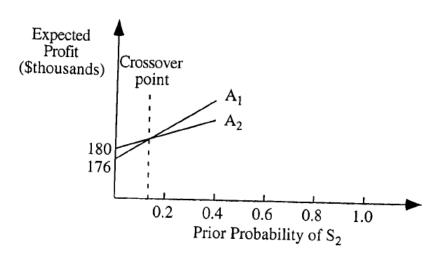



Let p be the prior probability of  $S_1$ .

A<sub>1</sub>: EP = 
$$p(220) + (1 - 0.1 - p)(170) + (0.1)(110) = 50p + 164$$
  
A<sub>2</sub>: EP =  $p(200) + (1 - 0.1 - p)(180) + (0.1)(150) = 20p + 177$ 

 $A_1$  and  $A_2$  cross when  $50p+164=20p+177 \Rightarrow p=0.433$ . They should choose  $A_2$  when  $p\leq 0.433$  and  $A_1$  if p>0.433.

(e)




Let p be the prior probability of  $S_1$ .

A<sub>1</sub>: EP = 
$$p(220) + (0.3)(170) + (1 - 0.3 - p)(110) = 110p + 128$$
  
A<sub>2</sub>: EP =  $p(200) + (0.3)(180) + (1 - 0.3 - p)(150) = 50p + 159$ 

 $A_1$  and  $A_2$  cross when  $110p + 128 = 50p + 159 \Rightarrow p = 0.517$ . They should choose  $A_2$  when  $p \le 0.517$  and  $A_1$  if p > 0.517.

(f)



Let p be the prior probability of  $S_2$ .

A<sub>1</sub>: EP = 
$$(0.6)(220) + p(170) + (1 - 0.6 - p)(110) = 60p + 176$$
  
A<sub>2</sub>: EP =  $(0.6)(200) + p(180) + (1 - 0.6 - p)(150) = 30p + 180$ 

 $A_1$  and  $A_2$  cross when  $60p+176=30p+180 \Rightarrow p=0.133$ . They should choose  $A_2$  when  $p\leq 0.133$  and  $A_1$  if p>0.133.

(g) A<sub>1</sub> should be chosen.

# 15.2-7.

(a)

|                   | State of Nature |          |      |  |  |
|-------------------|-----------------|----------|------|--|--|
| Alternative       | Dry             | Moderate | Damp |  |  |
| Crop 1            | 90              | 150      | 180  |  |  |
| Crop 2            | 112.5           | 135      | 180  |  |  |
| Crop 3            | 120             | 105      | 105  |  |  |
| Crop 4            | 90              | 90       | 90   |  |  |
| Prior Probability | 0.2             | 0.5      | 0.3  |  |  |

(b) Grow Crop 1.

|                   | St    | Exp.     |      |        |
|-------------------|-------|----------|------|--------|
| Alternative       | Dry   | Moderate | Damp | Payoff |
| Crop 1            | 90    | 150      | 180  | 147    |
| Crop 2            | 112.5 | 135      | 180  | 144    |
| Crop 3            | 120   | 105      | 105  | 108    |
| Crop 4            | 90    | 90       | 90   | 90     |
| Prior Probability | 0.2   | 0.5      | 0.3  |        |

(c) Prior probability of moderate weather = 0.2: Grow Crop 2.

|                   | St    | Exp.     |      |        |
|-------------------|-------|----------|------|--------|
| Alternative       | Dry   | Moderate | Damp | Payoff |
| Crop 1            | 90    | 150      | 180  | 156    |
| Crop 2            | 112.5 | 135      | 180  | 157.5  |
| Crop 3            | 120   | 105      | 105  | 108    |
| Crop 4            | 90    | 90       | 90   | 90     |
| Prior Probability | 0.2   | 0.2      | 0.6  |        |

<u>Prior probability of moderate weather</u> = 0.3: Grow Crop 1 or 2.

|                   | St    | Exp.     |      |        |
|-------------------|-------|----------|------|--------|
| Alternative       | Dry   | Moderate | Damp | Payoff |
| Crop 1            | 90    | 150      | 180  | 153    |
| Crop 2            | 112.5 | 135      | 180  | 153    |
| Crop 3            | 120   | 105      | 105  | 108    |
| Crop 4            | 90    | 90       | 90   | 90     |
| Prior Probability | 0.2   | 0.3      | 0.5  |        |

<u>Prior probability of moderate weather = 0.4:</u> Grow Crop 1.

|                   | St    | Exp.     |      |        |
|-------------------|-------|----------|------|--------|
| Alternative       | Dry   | Moderate | Damp | Payoff |
| Crop 1            | 90    | 150      | 180  | 150    |
| Crop 2            | 112.5 | 135      | 180  | 148.5  |
| Crop 3            | 120   | 105      | 105  | 108    |
| Crop 4            | 90    | 90       | 90   | 90     |
| Prior Probability | 0.2   | 0.4      | 0.4  |        |

<u>Prior probability of moderate weather</u> = 0.6: Grow Crop 1.

|                   | State of Nature |          |      | Exp.   |
|-------------------|-----------------|----------|------|--------|
| Alternative       | Dry             | Moderate | Damp | Payoff |
| Crop 1            | 90              | 150      | 180  | 144    |
| Crop 2            | 112.5           | 135      | 180  | 139.5  |
| Crop 3            | 120             | 105      | 105  | 108    |
| Crop 4            | 90              | 90       | 90   | 90     |
| Prior Probability | 0.2             | 0.6      | 0.2  |        |

### 15.2-8.

The prior distribution is  $P\{\theta = \theta_1\} = 2/3$ ,  $P\{\theta = \theta_2\} = 1/3$ .

Order 15: 
$$-\text{EP} = 2/3(1.155 \cdot 10^7) + 1/3(1.414 \cdot 10^7) = 1.241 \cdot 10^7$$
  
Order 20:  $-\text{EP} = 2/3(1.012 \cdot 10^7) + 1/3(1.207 \cdot 10^7) = 1.077 \cdot 10^7$   
Order 25:  $-\text{EP} = 2/3(1.047 \cdot 10^7) + 1/3(1.135 \cdot 10^7) = 1.076 \cdot 10^7$ 

The maximum expected profit, or equivalently the minimum expected cost is that of ordering 25, so the optimal decision under Bayes' decision rule is to order 25.

#### 15.3-1.

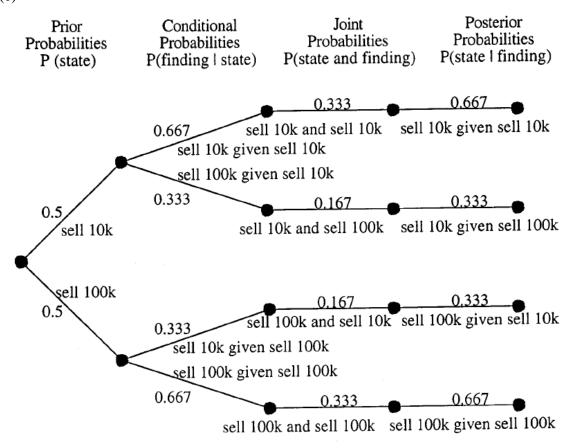
This article describes the use of decision analysis at the Workers' Compensation Board of British Columbia (WCB), which is "responsible for the occupational health and safety, rehabilitation, and compensation interests of British Columbia's workers and employers" [p. 15]. The focus of the study is on the short-term disability claims that can later turn into long-term disability claims and can be very costly for the WCB. First, logistic regression is employed to estimate the probability of conversion for each claim. Then using decision analysis, a threshold is determined to classify the claims as high- and low-risk claims. For any fixed conversion probability, the problem consists of a simple decision tree. First the WCB chooses between classifying the claim as high risk or low risk and then whether the claim converts or not determines the actual cost. If the claim is identified as a high-risk claim, the WCB intervenes. The early intervention lowers the costs and ensures faster rehabilitation. The expected total cost is computed for various cutoff points and the point with minimum expected cost is identified as the optimal threshold.

The new policy offers accurate predictions of high-risk claims. As a result, future costs are reduced and injured workers start working sooner. This study is expected to save the WCB \$4.7 per year. The scorecard system developed to implement the new policy improved the efficiency of claim management and the productivity of staff. Overall, the benefits accrued from this study paved the way for the WCB's adoption of operations research in other aspects of the organization.

# 15.3-2.

(a)

|                   | State of Nature |               |  |
|-------------------|-----------------|---------------|--|
| Alternative       | Sell 10,000     | Sell 100, 000 |  |
| Build Computers   | 0               | 54            |  |
| Sell Rights       | 15              | 15            |  |
| Prior Probability | 0.5             | 0.5           |  |
| Maximum Payoff    | 15              | 54            |  |


Expected Payoff with Perfect Information: 0.5(15) + 0.5(54) = 34.5

Expected Payoff without Information: 0.5(0) + 0.5(54) = 27

EVPI = 34.5 - 27 = \$7.5 million

(b) Since the market research will cost \$1\$ million, it might be worthwhile to perform it.

(c)



(d)

|   | . ;          |             |             |              |              |   |
|---|--------------|-------------|-------------|--------------|--------------|---|
|   | Data:        |             |             | P(Find       | ding   State | ) |
|   | State of     | Prior       |             | F            | inding       |   |
|   | Nature       | Probability | Sell 10,000 | Sell 100,000 |              |   |
| 1 | Sell 10,000  | 0.5         | 0.6666667   | 0.3333333    |              |   |
| • | Sell 100,000 | 0.5         | 0.3333333   | 0.6666667    |              |   |
| 1 |              | T           | T           |              |              | , |

| Posterior    |            | P(State   Finding) |              |   |  |
|--------------|------------|--------------------|--------------|---|--|
| Probabilitie | s:         | State of Nature    |              |   |  |
| Finding      | P(Finding) | Sell 10,000        | Sell 100,000 |   |  |
| Sell 10,000  | 0.5        | 0.6666667          | 0.3333333    |   |  |
| Sell 100,000 | 0.5        | 0.3333333          | 0.6666667    |   |  |
|              |            |                    | *            | · |  |

(e) EVE = [0.5(1800) + 0.5(3600)] - 2700 = 0, so performing the market research is not worthwhile.

# 15.3-3.

(a) Choose  $A_1$  with expected payoff \$2, 500.

|                   | State of Nature |       |       | Exp.   |
|-------------------|-----------------|-------|-------|--------|
| Alternative       | $S_1$           | $S_2$ | $S_3$ | Payoff |
| $A_1$             | 6               | 1     | 1     | 2.5    |
| $A_2$             | 1               | 3     | 0     | 1.5    |
| $A_3$             | 4               | 1     | 2     | 2.2    |
| Prior Probability | 0.3             | 0.4   | 0.3   |        |

(b)

|                   | State of Nature |       |       |
|-------------------|-----------------|-------|-------|
| Alternative       | $S_1$           | $S_2$ | $S_3$ |
| $A_1$             | 6               | 1     | 1     |
| $A_2$             | 1               | 3     | 0     |
| $A_3$             | 4               | 1     | 2     |
| Prior Probability | 0.3             | 0.4   | 0.3   |
| Maximum Payoff    | 6               | 3     | 2     |

Expected Payoff with Perfect Information: 0.3(6) + 0.4(3) + 0.3(2) = 3.6

Expected Payoff without Information: 2.5

$$EVPI = 3.6 - 2.5 = $1.1 \text{ thousand}$$

(c) Since the information will cost \$1,00\$ and the value is \$1,100\$, it might be worthwhile to spend the money.

# 15.3-4.

(a) Choose  $A_1$  with expected payoff \$35.

|                   | State of Nature |                   |      | Exp.   |
|-------------------|-----------------|-------------------|------|--------|
| Alternative       | $S_1$           | $S_1$ $S_2$ $S_3$ |      | Payoff |
| $A_1$             | 50              | 100               | -100 | 35     |
| $A_2$             | 0               | 10                | -10  | 1      |
| $A_3$             | 20              | 40                | -40  | 14     |
| Prior Probability | 0.5             | 0.3               | 0.2  |        |

State of Nature (b) Alternative  $S_1$  $S_2$  $S_3$  $A_1$ 50 100 -1000 10 -10 $A_2$ 20 40 -40 $A_3$  $0.\overline{2}$ **Prior Probability** 0.5 0.3 Maximum Payoff 50 100 -10

Expected Payoff with Perfect Information: 0.5(50) + 0.3(100) + 0.2(-10) = 53

Expected Payoff without Information: 35

$$EVPI = 53 - 35 = $18$$

(c) Betsy should consider spending up to \$18 to obtain more information.

### 15.3-5.

(a) Choose  $A_3$  with expected payoff \$7,800.

|                   | State of Nature |       |       | Exp.   |
|-------------------|-----------------|-------|-------|--------|
| Alternative       | $S_1$           | $S_2$ | $S_3$ | Payoff |
| $A_1$             | -20             | 3     | 25    | 4.9    |
| $A_2$             | -3              | 5     | 10    | 4.6    |
| $A_3$             | 4               | 2     | 15    | 7.8    |
| Prior Probability | 0.3             | 0.3   | 0.4   |        |

(b) If  $S_1$  occurs for certain, then choose  $A_3$  with expected payoff \$4,000. If  $S_1$  does not occur for certain, then the probability that  $S_2$  will occur is 3/7 and the probability that  $S_3$  will occur is 4/7.

$$A_1$$
:  $(3/7)(3) + (4/7)(25) = 15.57$ 

$$A_2$$
:  $(3/7)(5) + (4/7)(10) = 7.86$ 

$$A_3$$
:  $(3/7)(2) + (4/7)(15) = 9.43$ 

Hence, choose  $A_1$  which offers an expected payoff of \$15, 570.

Expected Payoff with Information: 0.3(4) + 0.7(15.57) = 12.01

Expected Payoff without Information: 7.8

$$EVI = 12.01 - 7.8 = $4.21$$
 thousand

The maximum amount that should be paid for the information is 4,210. The decision with this information will be to choose  $A_3$  if the state of nature is  $S_1$  and  $A_1$  otherwise.

(c) If  $S_2$  occurs for certain, then choose  $A_2$  with expected payoff \$5,000. If  $S_2$  does not occur for certain, then the probability that  $S_1$  will occur is 3/7 and the probability that  $S_3$  will occur is 4/7.

A<sub>1</sub>: 
$$(3/7)(-20) + (4/7)(25) = 5.71$$
  
A<sub>2</sub>:  $(3/7)(-3) + (4/7)(10) = 4.43$   
A<sub>3</sub>:  $(3/7)(4) + (4/7)(15) = 10.29$ 

Hence, choose  $A_3$  which offers an expected payoff of \$10, 290.

Expected Payoff with Information: 0.3(5) + 0.7(10.29) = 9.91

Expected Payoff without Information: 7.8

$$EVI = 9.91 - 7.8 = $2.11 \text{ thousand}$$

The maximum amount that should be paid for the information is \$2,110. The decision with this information will be to choose  $A_2$  if the state of nature is  $S_2$  and  $A_3$  otherwise.

(d) If  $S_3$  occurs for certain, then choose  $A_1$  with expected payoff \$25,000. If  $S_3$  does not occur for certain, then  $S_1$  and  $S_2$  occur with equal probability.

A<sub>1</sub>: 
$$(1/2)(-20) + (1/2)(3) = -8.5$$
  
A<sub>2</sub>:  $(1/2)(-3) + (1/2)(5) = 1$   
A<sub>3</sub>:  $(1/2)(4) + (1/2)(2) = 3$ 

Hence, choose  $A_3$  which offers an expected payoff of \$3,000.

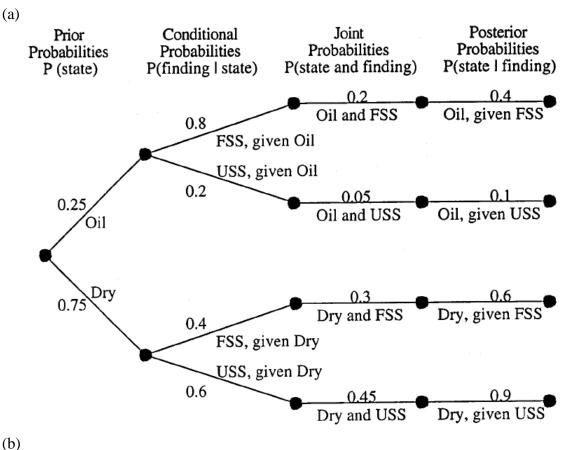
Expected Payoff with Information: 0.6(3) + 0.4(25) = 11.8

Expected Payoff without Information: 7.8

$$EVI = 11.8 - 7.8 = $4 \text{ thousand}$$

The maximum amount that should be paid for the information is \$4,000. The decision with this information will be to choose  $A_1$  if the state of nature is  $S_3$  and  $A_3$  otherwise.

(e) Expected Payoff with Perfect Information: 0.3(4) + 0.3(5) + 0.4(25) = 12.7


Expected Payoff without Information: 7.8

$$EVPI = 12.7 - 7.8 = $4.9 \text{ thousand}$$

The maximum amount that should be paid for the information is \$4,900. The decision with this information will be to choose  $A_3$  if the state of nature is  $S_1$ ,  $A_2$  if the state of nature is  $S_2$  and  $A_1$  otherwise.

(f) The maximum amount that should be paid for testing is \$4,900, since any additional information cannot add more value than perfect information.

15.3-6.



| (U) |             |             |     |     |                 |   |
|-----|-------------|-------------|-----|-----|-----------------|---|
|     | Data:       |             |     | P(F | inding   State) | • |
|     | State of    | Prior       |     |     | Finding         | • |
|     | Nature      | Probability | FSS | USS |                 |   |
|     | Oil         | 0.25        | 0.8 | 0.2 |                 |   |
|     | Dry         | 0.75        | 0.4 | 0.6 |                 |   |
|     | !<br>:      |             |     |     |                 |   |
|     | Posterior   |             |     | P(S | tate   Finding) |   |
|     | Probabiliti | es:         |     | St  | ate of Nature   |   |
|     | Finding     | P(Finding)  | Oil | Dry |                 |   |
|     | FSS         | 0.5         | 0.4 | 0.6 |                 |   |
|     | USS         | 0.5         | 0.1 | 0.9 |                 |   |

(c) The optimal policy is to do a seismic survey, to drill if favorable seismic surroundings are obtained, and to sell if unfavorable surroundings are obtained.

15.3-7.

(a) Choose  $A_1$  with expected payoff \$100.

|                   | State o | Exp.  |        |
|-------------------|---------|-------|--------|
| Alternative       | $S_1$   | $S_2$ | Payoff |
| $A_1$             | 400     | -100  | 100    |
| $A_2$             | 0       | 100   | 60     |
| Prior Probability | 0.4     | 0.6   |        |

(b)

|                   | State of Nature |       |
|-------------------|-----------------|-------|
| Alternative       | $S_1$           | $S_2$ |
| $A_1$             | 400             | -100  |
| $A_2$             | 0               | 100   |
| Prior Probability | 0.4             | 0.6   |
| Maximum Payoff    | 400             | 100   |

Expected Payoff with Perfect Information: 0.4(400) + 0.6(100) = 220

Expected Payoff without Information: 100

EVPI = 220 - 100 = \$120, so it might be worthwhile to do the research.

(c) Let X denote the state of nature and Y denote the prediction. From Bayes' Rule,

$$P(X = x \text{ and } Y = y) = P(X = x)P(Y = y|X = x).$$

(i) 
$$P(X = S_1 \text{ and } Y = S_1) = (0.4)(0.6) = 0.24$$

(ii) 
$$P(X = S_1 \text{ and } Y = S_2) = (0.4)(0.4) = 0.16$$

(iii) 
$$P(X = S_2 \text{ and } Y = S_1) = (0.6)(0.2) = 0.12$$

(iv) 
$$P(X = S_2 \text{ and } Y = S_2) = (0.6)(0.8) = 0.48$$

(d) 
$$P(S_1) = 0.24 + 0.12 = 0.36$$
,  $P(S_2) = 0.16 + 0.48 = 0.64$ 

(e) Bayes' Rule: 
$$P(X = x | Y = y) = \frac{P(X = x \text{ and } Y = y)}{P(X = x)}$$

$$P(S_1|S_1) = 0.24/0.36 = 0.667$$

$$P(S_1|S_2) = 0.16/0.64 = 0.25$$

$$P(S_2|S_1) = 0.12/0.36 = 0.333$$

$$P(S_2|S_2) = 0.48/0.64 = 0.75$$

(f)

| <br>Data: |             |     | P(F | inding   State)                       |
|-----------|-------------|-----|-----|---------------------------------------|
| State of  | Prior       |     |     | Finding                               |
| Nature    | Probability | S1  | S2  |                                       |
| S1        | 0.4         | 0.6 | 0.4 |                                       |
| <br>S2    | 0.6         | 0.2 | 0.8 |                                       |
|           |             |     |     | · · · · · · · · · · · · · · · · · · · |

| Posterior   |            |         | P(S     | tate   Find | ing)  |
|-------------|------------|---------|---------|-------------|-------|
| Probabiliti | es:        |         | St      | ate of Natu | ıre 💮 |
| Finding     | P(Finding) | S1      | S2      |             |       |
| S1          | 0.36       | 0.66667 | 0.33333 |             |       |
| S2          | 0.64       | 0.25    | 0.75    |             |       |
|             |            | T       | •       |             |       |

(g) If  $S_1$  is predicted, then choose  $A_1$  with expected payoff \$233.33.

|                   | State of Nature |       | Exp.   |
|-------------------|-----------------|-------|--------|
| Alternative       | $S_1$           | $S_2$ | Payoff |
| $A_1$             | 400             | -100  | 233.5  |
| $A_2$             | 0               | 100   | 33.3   |
| Prior Probability | 0.667           | 0.333 |        |

(h) If  $S_2$  is predicted, then choose  $A_2$  with expected payoff \$75.

|                   | State of Nature |       | Exp.   |
|-------------------|-----------------|-------|--------|
| Alternative       | $S_1$           | $S_2$ | Payoff |
| $A_1$             | 400             | -100  | 25     |
| $A_2$             | 0               | 100   | 75     |
| Prior Probability | 0.25            | 0.75  |        |

(i) Given that the research is done, the expected payoff is

$$(0.36)(233.33) + (0.64)(75) - 100 = $32.$$

(j) The optimal policy is to not do research and to choose  $A_1$ .

### 15.3-8.

(a) EVPI = 
$$[(2/3)(-1.012 \cdot 10^7) + (1/3)(-1.135 \cdot 10^7)] - (-1.076 \cdot 10^7)$$
  
= \$230,000.

(b)

$$\begin{split} \text{P}(\theta = 21 | \ 30 \ \text{spares required}) &= \frac{\text{P}(30 \ \text{spares required} \ | \theta = 21) \text{P}(\theta = 21)}{\text{P}(30 \ \text{spares required} \ | \theta = 21) \text{P}(\theta = 21) + \text{P}(30 \ \text{spares required} \ | \theta = 24) \text{P}(\theta = 24)} \\ &= \frac{(0.013)(2/3)}{(0.013)(2/3) + (0.036)(1/3)} = 0.419 \end{split}$$

 $P(\theta = 24 | 30 \text{ spares required}) = 1 - 0.419 = 0.581$ 

Order 15: EP = 
$$0.419(-1.155 \cdot 10^7) + 0.581(-1.414 \cdot 10^7) = -1.305 \cdot 10^7$$
  
Order 20: EP =  $0.419(-1.012 \cdot 10^7) + 0.581(-1.207 \cdot 10^7) = -1.125 \cdot 10^7$   
Order 25: EP =  $0.419(-1.047 \cdot 10^7) + 0.581(-1.135 \cdot 10^7) = -1.098 \cdot 10^7$ 

The optimal alternative is to order 25.

# 15.3-9.

(a)

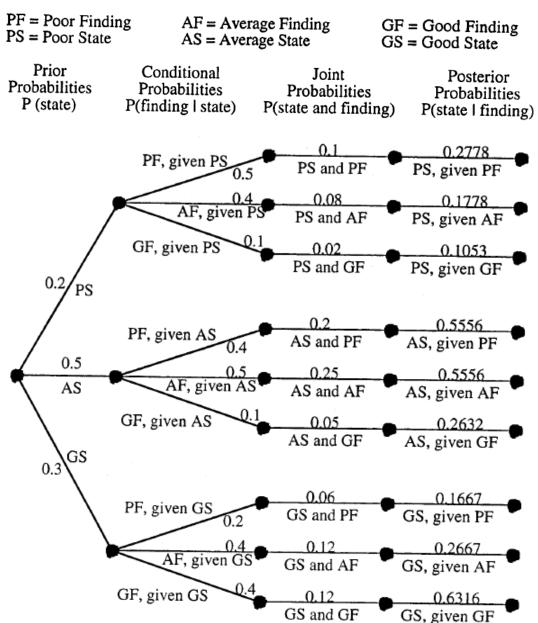
|                   | State of Nature |              |           |  |
|-------------------|-----------------|--------------|-----------|--|
| Alternative       | Poor Risk       | Average Risk | Good Risk |  |
| Extend Credit     | -15,000         | 10,000       | 20,000    |  |
| Not Extend Credit | 0               | 0            | 0         |  |
| Prior Probability | 0.2             | 0.5          | 0.3       |  |

(b) Choose to extend credit with expected payoff \$8,000.

|                   |           | Exp.         |           |        |
|-------------------|-----------|--------------|-----------|--------|
| Alternative       | Poor Risk | Average Risk | Good Risk | Payoff |
| Extend Credit     | -15,000   | 10,000       | 20,000    | 8,000  |
| Not Extend Credit | 0         | 0            | 0         | 0      |
| Prior Probability | 0.2       | 0.5          | 0.3       |        |

| (c) |                   | State of Nature |              |           |  |
|-----|-------------------|-----------------|--------------|-----------|--|
|     | Alternative       | Poor Risk       | Average Risk | Good Risk |  |
|     | Extend Credit     | -15,000         | 10,000       | 20,000    |  |
|     | Not Extend Credit | 0               | 0            | 0         |  |
|     | Prior Probability | 0.2             | 0.5          | 0.3       |  |
|     | Maximum Payoff    | 0               | 10,000       | 20,000    |  |

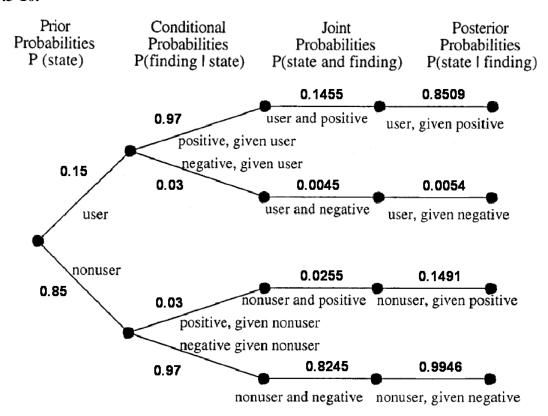
Expected Payoff with Perfect Information:


$$0.2(0) + 0.3(10,000) + 0.4(20,000) = 11,000$$

Expected Payoff without Information: 8,000

$$EVPI = 11,000 - 8,000 = \$3,000$$

Hence, the credit-rating organization should not be used.


(d)



(e) Data: P(Finding | State) State of Prior Finding Poor Good Nature Probability Av erage 0.5 0.1 Poor 0.2 0.4 0.5 0.4 0.5 0.1 Average Good 0.3 0.2 0.40.4 Posterior P(State | Finding) Probabilities: State of Nature Finding P(Finding) Good Poor Av erage 0.55556 0.16667 0.36 0.27778 Poor 0.45 0.17778 0.55556 0.26667 Average Good 0.19 0.10526 0.26316 | 0.63158

(f) Vincent should not get the credit rating and extend credit.

#### 15.3-10.



- (a) Given that the test is positive, the athlete is a drug user with probability 0.8509.
- (b) Given that the test is positive, the athlete is not a drug user with probability 0.1491.
- (c) Given that the test is negative, the athlete is a drug user with probability 0.0054.
- (d) Given that the test is negative, the athlete is not a drug user with probability 0.9946.

(e) The answers in Excel agree with those found in parts (a), (b), (c), and (d).

|   | Data:    |             |           | P(F      | inding   St | ate) |
|---|----------|-------------|-----------|----------|-------------|------|
|   | State of | Prior       |           |          | Finding     |      |
|   | Nature   | Probability | Positiv e | Negative |             |      |
|   | Positive | 0.15        | 0.97      | 0.03     |             |      |
|   | Negative | 0.85        | 0.03      | 0.97     |             |      |
| ï |          |             |           |          |             |      |

|    |                |            | i       |          |             |     |
|----|----------------|------------|---------|----------|-------------|-----|
|    | Posterior      |            |         |          | tate   Find |     |
|    | Probabilities: |            |         | Sta      | ate of Nati | ıre |
|    | Finding        | P(Finding) |         | Negative |             |     |
|    | Positive       | 0.171      | 0.85088 | 0.14912  |             |     |
|    | Negative       | 0.829      | 0.00543 | 0.99457  |             |     |
|    |                |            |         |          |             |     |
|    |                |            |         |          |             |     |
|    |                |            |         |          |             |     |
| •• |                |            |         |          |             |     |

### 15-3.11.

(a)

|                         | State of Nature |              |  |
|-------------------------|-----------------|--------------|--|
| Alternative             | Successful      | Unsuccessful |  |
| Develop New Product     | 1,500,000       | -1,800,000   |  |
| Not Develop New Product | 0               | 0            |  |
| Prior Probability       | 0.667           | 0.333        |  |

(b) Choose to develop new product with expected payoff \$400,000.

|                         | State of Nature |              | Exp.    |
|-------------------------|-----------------|--------------|---------|
| Alternative             | Successful      | Unsuccessful | Payoff  |
| Develop New Product     | 1,500,000       | -1,800,000   | 400,000 |
| Not Develop New Product | 0               | 0            | 0       |
| Prior Probability       | 0.667           | 0.333        |         |

(c)

|                         | State of Nature |              |  |
|-------------------------|-----------------|--------------|--|
| Alternative             | Successful      | Unsuccessful |  |
| Develop New Product     | 1,500,000       | -1,800,000   |  |
| Not Develop New Product | 0               | 0            |  |
| Prior Probability       | 0.667           | 0.333        |  |
| Maximum Payoff          | 1,500,000       | 0            |  |

Expected Payoff with Perfect Information: 0.667(1,500,000) + 0.333(0) = 1,000,000

Expected Payoff without Information: 400,000

EVPI = 1,000,000 - 400,000 = \$600,000

This indicates that consideration should be given to conducting the market survey.

(d)

| 1 | Data:        |             |            | P(Find       | ing   State) |
|---|--------------|-------------|------------|--------------|--------------|
| 1 | State of     | Prior       |            | Fi           | inding       |
|   | Nature       | Probability | Successful | Unsuccessful |              |
| 1 | Successful   | 0.66666667  | 0.8        | 0.2          |              |
|   | Unsuccessful | 0.33333333  | 0.3        | 0.7          |              |

| Posterior P(State   Findin |             |                                       | e   Finding) |  |
|----------------------------|-------------|---------------------------------------|--------------|--|
| Probabilities:             |             | State of Nature                       |              |  |
| Finding                    |             | Successful Unsuccessful               |              |  |
| Successful                 | 0.633333333 | 0.8421053 0.15789474                  |              |  |
| Unsuccessful               | 0.36666667  | 0.3636364 0.63636364                  |              |  |
| T                          | :           | T T T T T T T T T T T T T T T T T T T | :            |  |

(e)

| Action              | Prediction   | Expected Payoff                                        |
|---------------------|--------------|--------------------------------------------------------|
| Develop product     | Successful   | $[0.8421(1.5) + 0.1579(-1.8)] \cdot 10^6 = \$979,000$  |
| Not develop product | Successful   | 0                                                      |
| Develop product     | Unsuccessful | $[0.3636(1.5) + 0.6364(-1.8)] \cdot 10^6 = -\$600,000$ |
| Not develop product | Unsuccessful | 0                                                      |

It is optimal to develop the product if it is predicted to be successful and to not develop otherwise. Let S be the event that the product is predicted to be successful. Then,

$$P(S) = P(S|\theta_1)P(\theta_1) + P(S|\theta_2)P(\theta_2) = 0.8(2/3) + 0.2(1/3) = 0.6.$$

The expected payoff given the information is 0.6(979,000) + 0.4(0) = \$587,000, so

$${\rm EVE} = 587,000 - 400,000 = \$187,000 < \$300,000 = {\rm Cost~of~survey}.$$

Hence, the optimal strategy is to not conduct the market survey, and to market the product.

### 15.3-12.

(a)

|                   | State of Nature |          |  |
|-------------------|-----------------|----------|--|
| Alternative       | p = 0.05        | p = 0.25 |  |
| Screen            | -1,500          | -1,500   |  |
| Not Screen        | -750            | -3,750   |  |
| Prior Probability | 0.8             | 0.2      |  |

(b) Choose to not screen with expected loss \$1,350.

|                   | State of Nature |          | Exp.   |
|-------------------|-----------------|----------|--------|
| Alternative       | p = 0.05        | p = 0.25 | Payoff |
| Screen            | -1,500          | -1,500   | -1,500 |
| Not Screen        | -750            | -3,750   | -1,350 |
| Prior Probability | 0.8             | 0.2      |        |

(c)

|                   | State of Nature |          |  |
|-------------------|-----------------|----------|--|
| Alternative       | p = 0.05        | p = 0.25 |  |
| Screen            | -1,500          | -1,500   |  |
| Not Screen        | -750            | -3,750   |  |
| Prior Probability | 0.8             | 0.2      |  |
| Maximum Payoff    | -750            | -1,500   |  |

Expected Payoff with Perfect Information: 0.8(-750) + 0.2(-1,500) = -900

Expected Payoff without Information: -1,350

$$EVPI = -900 - (-1, 350) = $450$$

This indicates that consideration should be given to inspecting the single item.

(d)

|          |             |           | i            |              |
|----------|-------------|-----------|--------------|--------------|
| Data:    |             |           | P(Find       | ing   State) |
| State of | Prior       |           | F            | inding       |
| Nature   | Probability | Defective | Nondefective |              |
| p=0.05   | 0.8         | 0.05      | 0.95         |              |
| p=0.25   | 0.2         | 0.25      | 0.75         |              |
| 1        |             |           |              |              |

| - |                |            |           |            |             |   |
|---|----------------|------------|-----------|------------|-------------|---|
| • | Posterior      |            |           | P(State    | e   Finding | ) |
|   | Probabilities: |            |           | State      | of Nature   |   |
| ï | Finding        | P(Finding) | p=0.05    | p=0.25     |             |   |
| Ī | Defective      | 0.09       | 0.4444444 | 0.5555556  |             |   |
| • | Nondefective   | 0.91       | 0.8351648 | 0.16483516 |             |   |
| • |                |            |           | :          |             |   |

(e) P(defective) = 
$$(0.05)(0.8) + (0.25)(0; 2) = 0.09$$
 and P(nondefective) = 0.91  
EVE =  $[(0.09)(-1500) + (0.91)(-1245)] - (-1350) = 82.05$ 

Since the cost of the inspection is \$125 > \$82.05, inspecting the single item is not worthwhile.

### (f) If defective:

EP(screen, 
$$\theta$$
|defective) =  $0.444(-1500) + 0.556(-1500) = -1500$   
EP(no screen,  $\theta$ |defective) =  $0.444(-750) + 0.556(-3750) = -2418$ 

#### If nondefective:

EP(screen, 
$$\theta$$
|defective) = -1500  
EP(no screen,  $\theta$ |defective) =  $0.835(-750) + 0.165(-3750) = -1245$ 

Hence, the optimal policy with experimentation is to screen if defective is found and not screen if nondefective is found. On the other hand, from part (e), inspecting a single item, in other words experimenting is not worthwhile. Using part (b), the overall optimal policy is to not inspect the single items, to not screen each item in the lot, instead, rework each item that is ultimately found to be defective.

#### 15.3-13.

(a) Say coin 1 tossed: 
$$EP = 0.6(0) + 0.4(-1) = -0.4$$
  
Say coin 2 tossed:  $EP = 0.6(-1) + 0.4(0) = -0.6$ 

The optimal alternative is to say coin 1 is tossed.

(b) If the outcome is heads (H):

$$\begin{split} & \text{P(coin 1|H)} = \frac{\text{P(H|coin 1)P(coin 1)}}{\text{P(H|coin 1)P(coin 1)} + \text{P(H|coin 2)P(coin 2)}} = \frac{0.3(0.6)}{0.3(0.6) + 0.6(0.4)} = \frac{3}{7} \\ & \text{P(coin 2|H)} = \frac{4}{7} \\ & \text{Say coin 1:} \quad \text{EP} = \frac{3}{7}(0) + \frac{4}{7}(-1) = -\frac{4}{7} \\ & \text{Say coin 2:} \quad \text{EP} = \frac{3}{7}(-1) + \frac{4}{7}(0) = -\frac{3}{7} \end{split}$$

The optimal alternative is to say coin 2.

If the outcome is tails (T):

$$\begin{split} & P(\text{coin 1}|T) = \frac{P(T|\text{coin 1})P(\text{coin 1})}{P(T|\text{coin 1})P(\text{coin 1}) + P(T|\text{coin 2})P(\text{coin 2})} = \frac{0.7(0.6)}{0.7(0.6) + 0.4(0.4)} = 0.7241 \\ & P(\text{coin 2}|T) = 0.2759 \\ & \text{Say coin 1:} \quad EP = 0.7241(0) + 0.2759(-1) = -0.2759 \\ & \text{Say coin 2:} \quad EP = 0.7241(-1) + 0.2759(0) = -0.7241 \end{split}$$

The optimal alternative is to say coin 1.

#### **15.3-14.**

| (a) |                     | State of | Nature |
|-----|---------------------|----------|--------|
|     | Alternative         | Coin 1   | Coin 2 |
|     | Predict 0 H         | 22.5     | 122.5  |
|     | Predict 1 H         | 105      | 105    |
|     | Predict 2 H         | 122.5    | 22.5   |
|     | Prior probabilities | 0.5      | 0.5    |

Predict 0 H: EP = 0.5(22.5) + 0.5(122.5) = 72.5Predict 1 H: EP = 0.5(105) + 0.5(105) = 105Predict 2 H: EP = 0.5(122.5) + 0.5(22.5) = 72.5

The optimal alternative is to predict one heads with expected payoff \$105.

(b)

| Data:         |              |                 | P(Find | ing   State)  |
|---------------|--------------|-----------------|--------|---------------|
| State of      | Prior        | Finding         |        |               |
| Nature        | Probability  | Heads           | Tails  |               |
| Coin 1        | 0.5          | 0.7             | 0.3    |               |
| Coin 2        | 0.5          | 0.3             | 0.7    |               |
| Posterior     | 1            |                 |        | . I Finalinas |
|               |              |                 |        | e   Finding)  |
| Probabilities | •            | State of Nature |        | of Nature     |
| Finding       | P(Finding)   | Coin 1          | Coin 2 |               |
| Heads         | 0.5          | 0.7             | 0.3    |               |
| Tails         | ٠٥٠٠٠٠٠٠٠٠٠٠ | •               | Q      |               |

(c) If the outcome is heads (H):

```
Predict 0 H: EP = 0.7(22.5) + 0.3(122.5) = 52.5

Predict 1 H: EP = 0.7(105) + 0.3(105) = 105

Predict 2 H: EP = 0.7(122.5) + 0.3(22.5) = 92.5
```

The optimal alternative is to predict one heads.

If the outcome is tails (T):

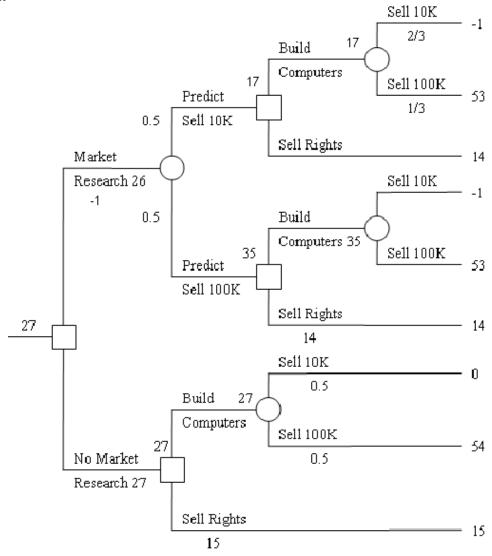
```
Predict 0 H: EP = 0.3(22.5) + 0.7(122.5) = 92.5

Predict 1 H: EP = 0.3(105) + 0.7(105) = 105

Predict 2 H: EP = 0.3(122.5) + 0.7(22.5) = 52.5
```

The optimal alternative is to predict one heads.

Since EP(H) = EP(T) = 105, the expected payoff is \$105.


(d) EVE = 105 - 105 = \$0 < \$30, so it is better to not pay for the experiment and choose to predict either one or two heads.

#### 15.4-1.

Driven by "the pressure to reduce costs and deliver high-impact technology quickly while justifying investments" [p. 57], Westinghouse initiated this study to evaluate R and D efforts effectively. At any point in time, the firm chooses between launching, delaying and abandoning an innovation. When the launch is delayed, there is a chance of losing the opportunity. R and D is hence treated as a call option with flexibility. The value of the innovation and the optimal decision rule in subsequent stages are found by using dynamic programming. This value is then used in the analysis of the decision tree constructed to find the present value of the project. In this tree, decisions consist of whether to fund or not at different stages and each decision node is followed by a chance node that represents either a technical milestone or strategic fit. Sensitivity analysis is performed to ensure robustness of the model.

As a result of this study, explicit decision rules for funding R and D projects are obtained. Including flexibility in the model yields a more realistic model. The new system helps identifying cost-effective research portfolios with simplified data acquisition and easy implementation.

## 15.4-2.



The optimal policy is to build the computers without doing market research.

15.4-3.

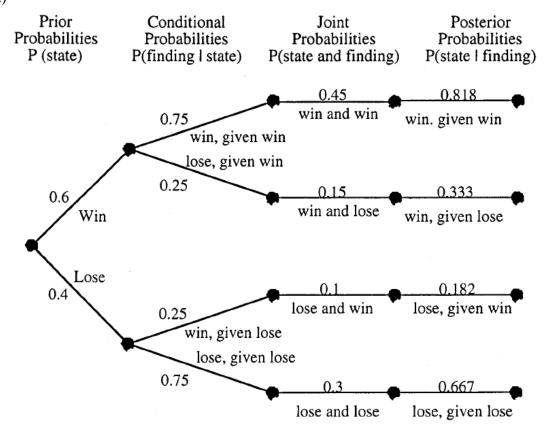


### 15.4-4.

| (a) |                   | State of | f Nature |
|-----|-------------------|----------|----------|
|     | Alternative       | W        | L        |
|     | Hold Campaign     | 3        | -2       |
|     | Not Hold Campaign | 0        | 0        |
|     | Prior Probability | 0.6      | 0.4      |

(b) Choose to hold the campaign with expected payoff \$1 million.

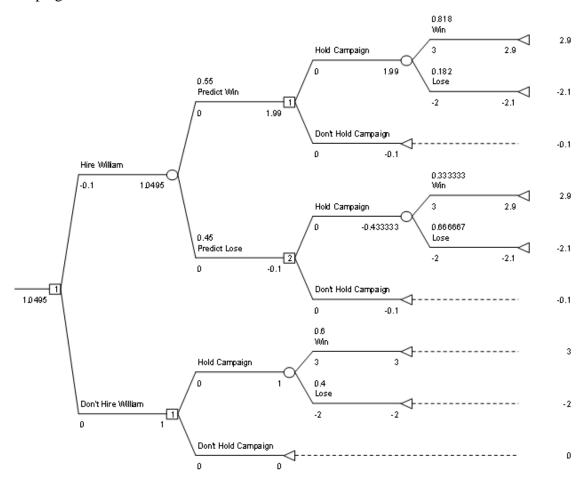
|                   | State of Nature |     | Exp.   |
|-------------------|-----------------|-----|--------|
| Alternative       | W               | L   | Payoff |
| Hold Campaign     | 3               | -2  | 1      |
| Not Hold Campaign | 0               | 0   | 0      |
| Prior Probability | 0.6             | 0.4 |        |


| (c) |                   | State of | f Nature |
|-----|-------------------|----------|----------|
|     | Alternative       | W        | L        |
|     | Hold Campaign     | 3        | -2       |
|     | Not Hold Campaign | 0        | 0        |
|     | Prior Probability | 0.6      | 0.4      |
|     | Maximum Payoff    | 3        | 0        |

Expected Payoff with Perfect Information: 0.6(3) + 0.4(0) = 1.8

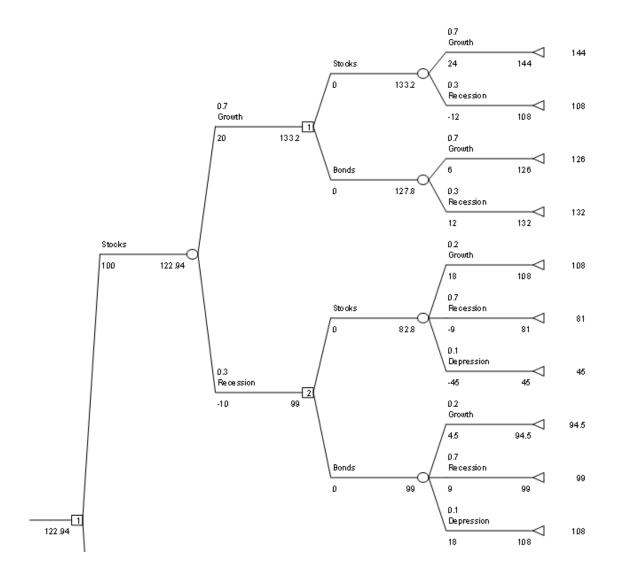
Expected Payoff without Information: 1

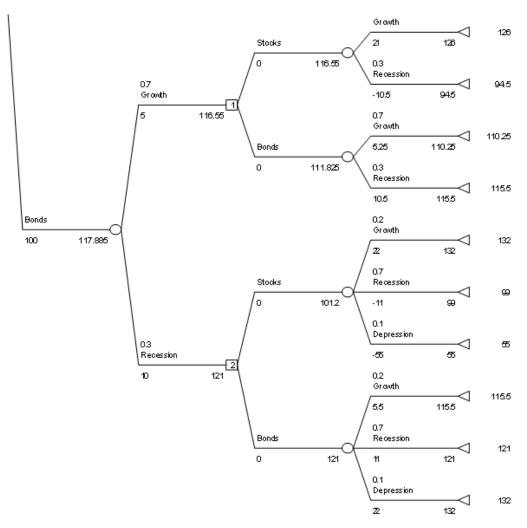
EVPI = 1.8 - 1 = \$0.8 million


(d)



(e)

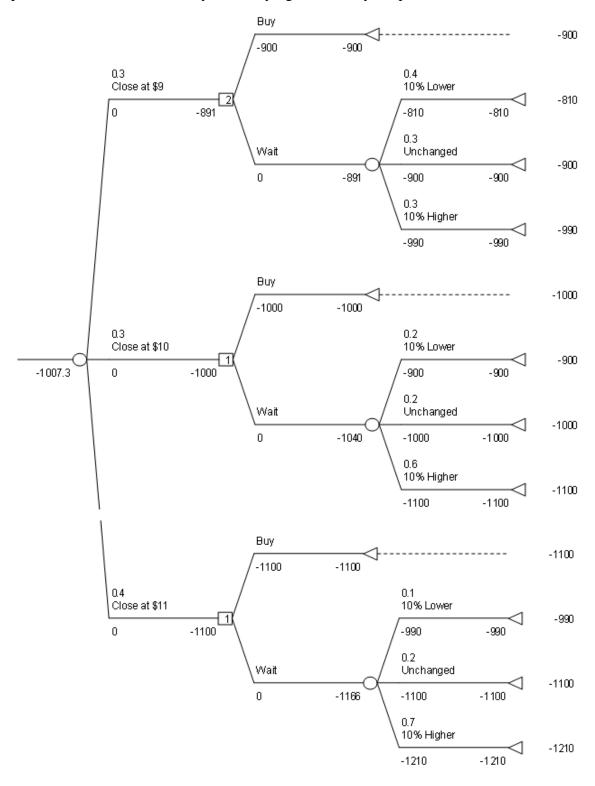

|             |             | :               |        |             |       |
|-------------|-------------|-----------------|--------|-------------|-------|
| Data:       |             |                 | P(I    | Finding   S | tate) |
| State of    | Prior       |                 |        | Finding     |       |
| Nature      | Probability | Win             | Lose   |             |       |
| Win         | 0.6         | 0.75            | 0.25   |             |       |
| Lose        | 0.4         | 0.25            | 0.75   |             |       |
|             |             |                 |        |             |       |
| Posterior   |             |                 | P(:    | State   Fin | ding) |
| Probabiliti | es:         | State of Nature |        | ture        |       |
| Finding     | P(Finding)  | Win             | Lose   |             |       |
| Win         | 0.55        | 0.81818         | 0.1818 |             |       |
| Lose        | 0.45        | 0.33333         | 0.6667 |             |       |
|             |             |                 |        |             |       |

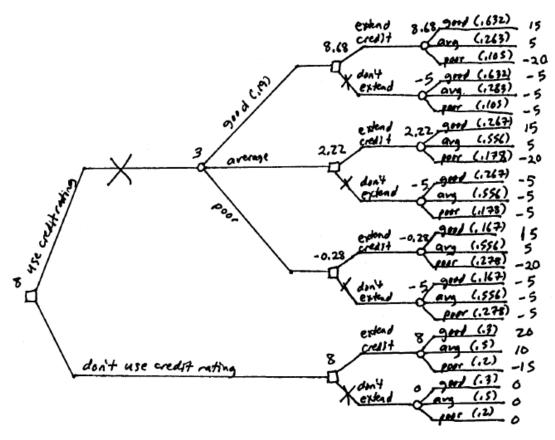

(f) Leland University should hire William. If he predicts a winning season, then they should hold the campaign and if he predicts a losing season, then they should not hold the campaign.



# 15.4-5.

(a)




(b) The comptroller should invest in stocks the first year. If growth occurs in the first year, then she should invest in stocks again the second year. If recession occurs in the first year, then she should invest in bonds the second year.

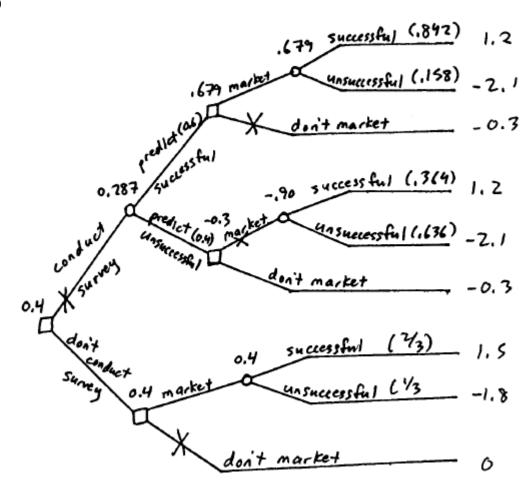
15.4-6.

The optimal policy is to wait until Wednesday to buy if the price is \$9 on Tuesday. If the price is \$10 or \$11 on Tuesday, then buying on Tuesday is optimal.





# (b) Prior Distribution:


|                 | $\theta_1$ | $\theta_2$ | $\theta_3$ |
|-----------------|------------|------------|------------|
| $P_{\theta}(k)$ | 0.2        | 0.5        | 0.3        |

|                  | $Q_{X \theta=k}(x)$ |            |            |
|------------------|---------------------|------------|------------|
| $\boldsymbol{x}$ | $\theta_1$          | $\theta_2$ | $\theta_3$ |
| $X_1$            | 0.5                 | 0.4        | 0.2        |
| $X_2$            | 0.4                 | 0.5        | 0.4        |
| $X_3$            | 0.1                 | 0.1        | 0.4        |

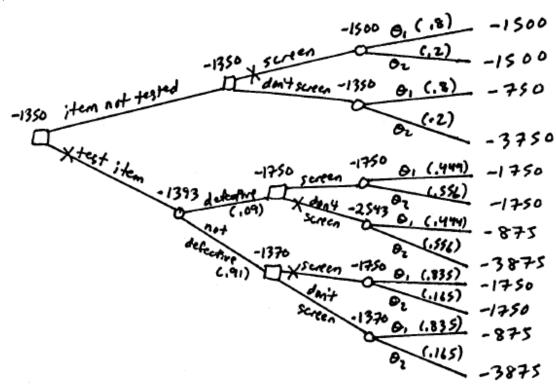
# Posterior Distribution:

|                  | $h_{\theta X=x}(k)$ |            |            |
|------------------|---------------------|------------|------------|
| $\boldsymbol{x}$ | $\theta_1$          | $\theta_2$ | $\theta_3$ |
| $X_1$            | 0.278               | 0.556      | 0.167      |
| $X_2$            | 0.178               | 0.556      | 0.267      |
| $X_3$            | 0.105               | 0.263      | 0.632      |

(c) It is optimal to not use credit rating, but to extend credit, see part (a).



(b) Prior Distribution:


|                 | $	heta_1$ | $	heta_2$ |
|-----------------|-----------|-----------|
| $P_{\theta}(k)$ | 0.667     | 0.333     |

|       | $Q_{X \theta}$ | =k(x)      |
|-------|----------------|------------|
| x     | $\theta_1$     | $\theta_2$ |
| $X_1$ | 0.8            | 0.3        |
| $X_2$ | 0.2            | 0.7        |

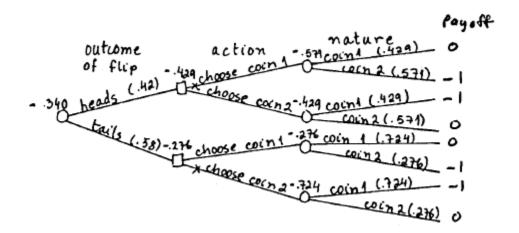
Posterior Distribution:

|       | $h_{\theta X=x}(k)$ |           |  |
|-------|---------------------|-----------|--|
| x     | $\theta_1$          | $	heta_2$ |  |
| $X_1$ | 0.842               | 0.158     |  |
| $X_2$ | 0.364               | 0.636     |  |

(c) It is optimal to not conduct a survey, but to market the new product, see part (a).



# (b) Prior Distribution:


|                 | $\theta_1$ | $\theta_2$ |
|-----------------|------------|------------|
| $P_{\theta}(k)$ | 0.8        | 0.2        |

|       | $Q_{X \theta=k}(x)$ |            |  |
|-------|---------------------|------------|--|
| x     | $	heta_1$           | $\theta_2$ |  |
| $X_1$ | 0.95                | 0.75       |  |
| $X_2$ | 0.05                | 0.25       |  |

# Posterior Distribution:

|       | $h_{\theta X=x}(k)$ |           |  |
|-------|---------------------|-----------|--|
| x     | $\theta_1$          | $	heta_2$ |  |
| $X_1$ | 0.835               | 0.165     |  |
| $X_2$ | 0.444               | 0.556     |  |

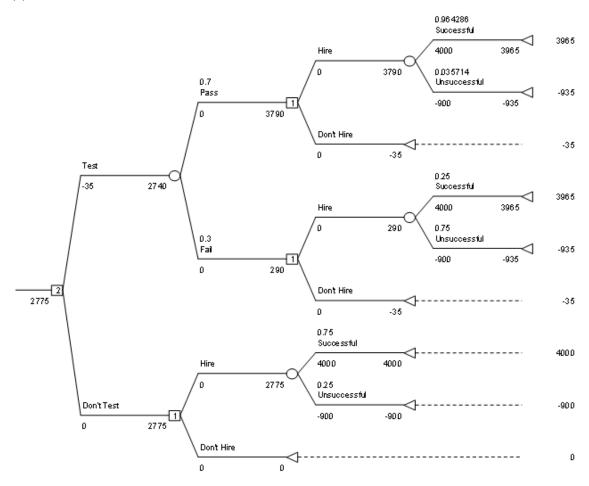
(c) It is optimal to not test and to not screen, see part (a).



# (b) Prior Distribution:

|                 | $\theta_1$ | $\theta_2$ |
|-----------------|------------|------------|
| $P_{\theta}(k)$ | 0.6        | 0.4        |

|                  | $Q_{X \theta}$ | =k(x)      |
|------------------|----------------|------------|
| $\boldsymbol{x}$ | $\theta_1$     | $\theta_2$ |
| $X_1$            | 0.3            | 0.6        |
| $X_2$            | 0.7            | 0.4        |


## Posterior Distribution:

|       | $h_{\theta X=x}(k)$ |            |  |
|-------|---------------------|------------|--|
| x     | $\theta_1$          | $\theta_2$ |  |
| $X_1$ | 0.429               | 0.571      |  |
| $X_2$ | 0.724               | 0.276      |  |

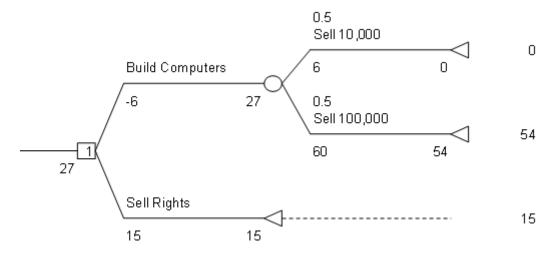
(c) It is optimal to choose coin 1 if the outcome is tails and coin 2 if the outcome is heads, see part (a).

# 15.4-11.

(a)

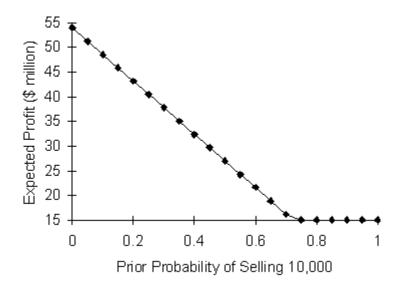


(b)


|     | Data:        |             |      | P(Find | ing   State) |
|-----|--------------|-------------|------|--------|--------------|
| -   | State of     | Prior       |      | Fi     | nding        |
|     | Nature       | Probability | Pass | Fail   |              |
|     | Successful   | 0.75        | 0.9  | 0.1    |              |
|     | Unsuccessful | 0.25        | 0.1  | 0.9    |              |
| - 1 |              |             |      |        | i i          |

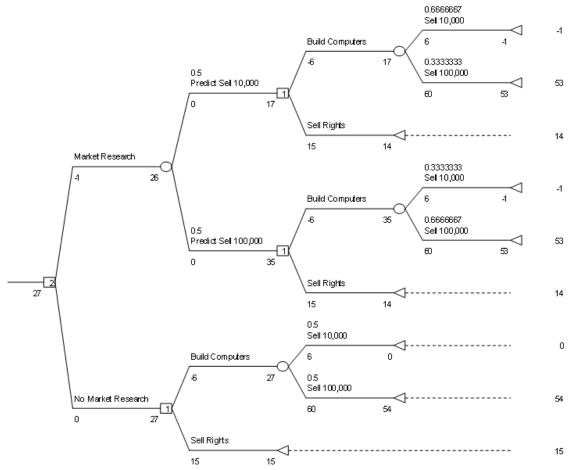
|                                       | P(State   Finding) |  |  |
|---------------------------------------|--------------------|--|--|
| Probabilities:                        | State of Nature    |  |  |
| Finding P(Finding) Successful Unsucce | essful             |  |  |
| Pass 0.7 0.9642857 0.03571            | 1429               |  |  |
| Fail 0.3 0.25 0.75                    | 5                  |  |  |

- (c) The optimal policy is to not pay for testing and to hire Matthew.
- (d) Even if the fee is zero, hiring Matthew without any further investigation is optimal, so Western Bank should not pay anything for the detailed report.


15.5-1.

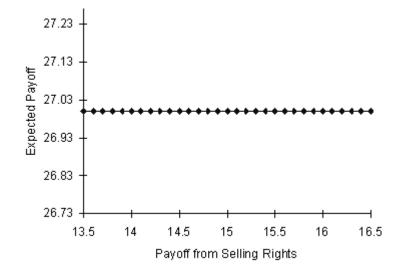
|                 | State of Nature |               |  |
|-----------------|-----------------|---------------|--|
| Alternative     | Sell 10,000     | Sell 100, 000 |  |
| Build Computers | 0               | 54            |  |
| Sell Rights     | 15              | 15            |  |

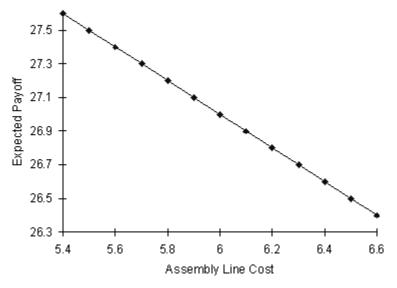


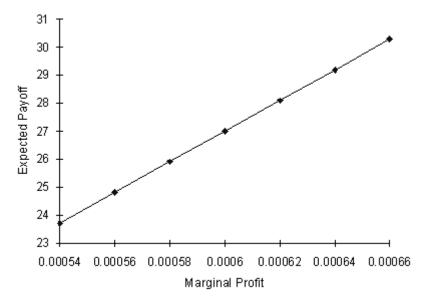

They should build computers with an expected payoff of \$27 million.

(b)

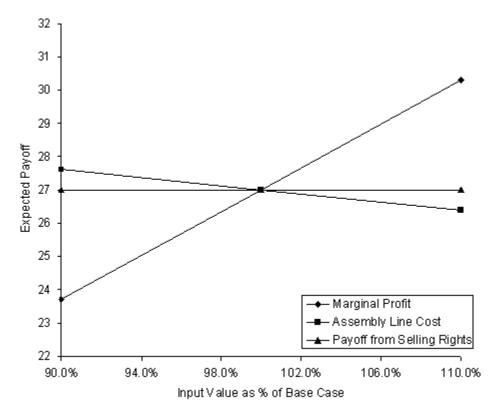


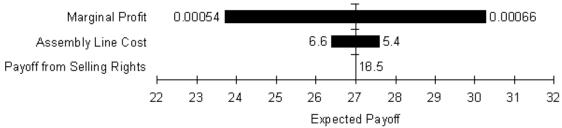

### 15.5-2.


(a) The optimal policy is to not do market research and build the computers. The expected payoff is \$27 million.

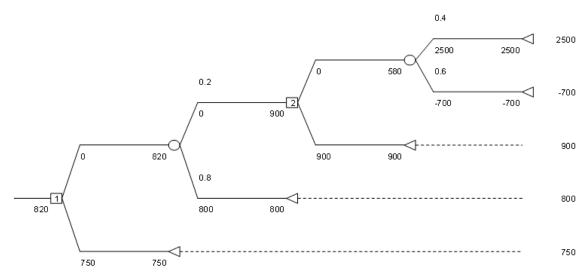



(b) If the rights can be sold for \$16.5 or \$13.5 million, the optimal policy is still to build the computers with an expected payoff of \$27 million. If the cost of setting up the assembly line is \$5.4 million or \$6.6 million, the optimal policy is still to build the computers with an expected payoff of \$27.6 or \$26.4 million respectively. If the difference between the selling price and the variable cost of each computer is \$540 or \$660, the optimal policy is still to build the computers with an expected payoff of \$23.7 or \$33.3 million respectively. For each combination of financial data, the expected payoff is as shown in the following table. In all cases, the optimal policy is to build the computers without doing market research.

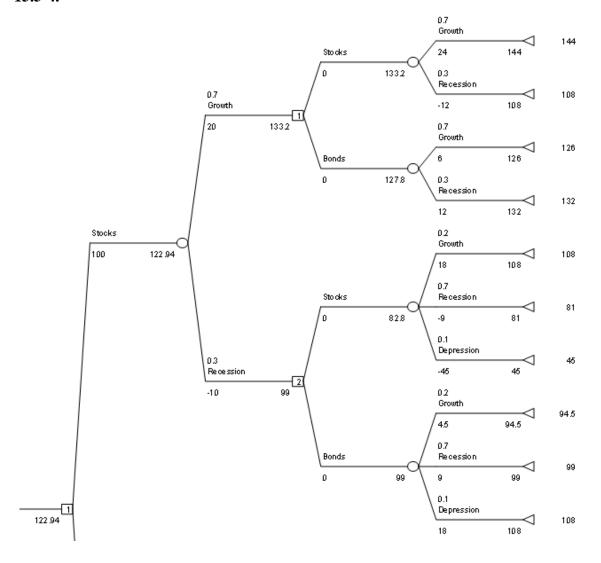

| Sell Rights    | Cost of Assembly Line | Selling Price — Variable Cost | Expected Payoff |
|----------------|-----------------------|-------------------------------|-----------------|
| \$13.5 million | \$5.4 million         | \$540                         | \$23.4 million  |
| \$13.5 million | \$5.4 million         | \$660                         | \$30.9 million  |
| \$13.5 million | \$6.6 million         | \$540                         | \$23.1 million  |
| \$13.5 million | \$6.6 million         | \$660                         | \$29.7 million  |
| \$16.5 million | \$5.4 million         | \$540                         | \$24.3 million  |
| \$16.5 million | \$5.4 million         | \$660                         | \$30.9 million  |
| \$16.5 million | \$6.6 million         | \$540                         | \$23.1 million  |
| \$16.5 million | \$6.6 million         | \$660                         | \$29.7 million  |

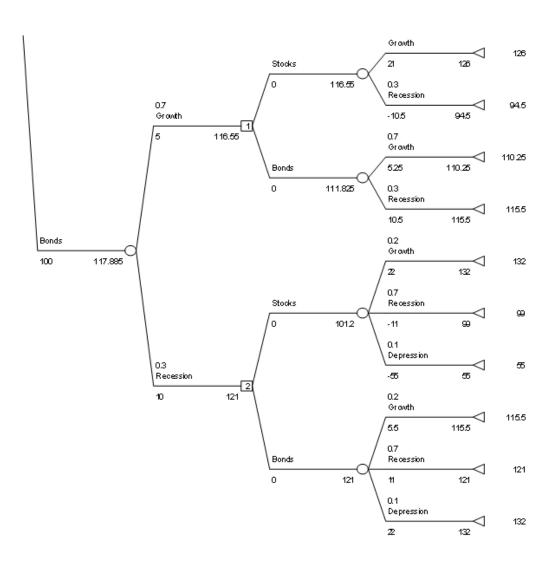


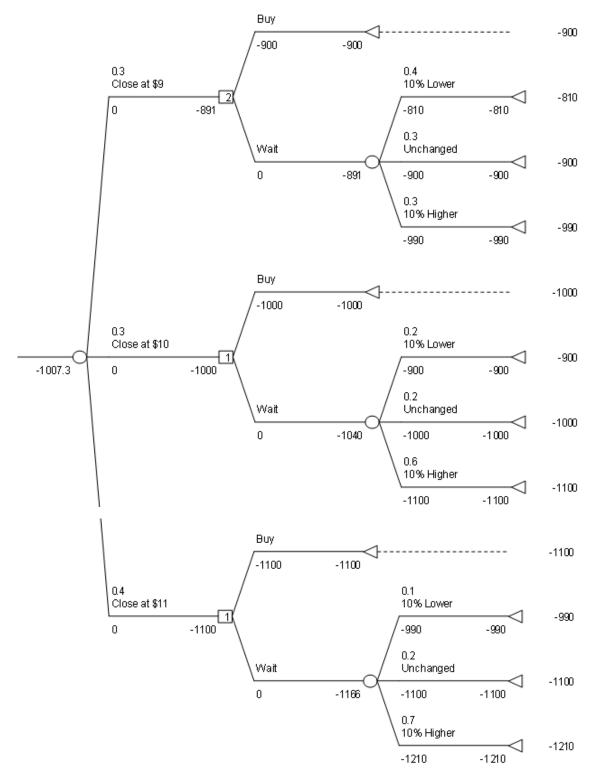




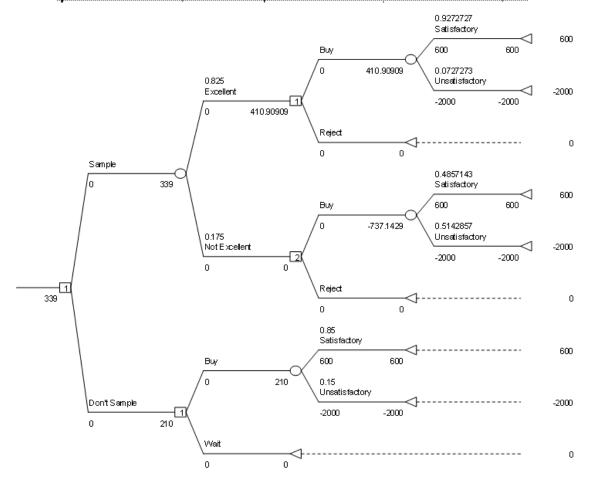


15.5-3.



# 15.5-4.








The optimal policy is to wait until Wednesday to buy if the price is \$9 on Tuesday. If the price is \$10 or \$11 on Tuesday, then buy on Tuesday.

15.5-6.

|             | P(Finding   State)  |                                   |                                                                |  |
|-------------|---------------------|-----------------------------------|----------------------------------------------------------------|--|
| Prior       | Finding             |                                   |                                                                |  |
| Probability | Excellent           | Not Excellent                     |                                                                |  |
| 0.85        | 0.9                 | 0.1                               |                                                                |  |
| 0.15        | 0.4                 | 0.6                               |                                                                |  |
|             | Probability<br>0.85 | Probability Excellent<br>0.85 0.9 | Prior Finding Probability Excellent Not Excellent 0.85 0.9 0.1 |  |

| <br>Posterior  |            | P(State   Finding |                    |  |
|----------------|------------|-------------------|--------------------|--|
| Probabilities: |            | State of Nature   |                    |  |
| Finding        | P(Finding) | Satisfactory Box  | Unsatisfactory Box |  |
| Excellent      | 0.825      | 0.927272727       | 0.072727273        |  |
| Not Excellent  | 0.175      | 0.485714286       | 0.514285714        |  |



The optimal policy is to sample the fruit and buy if it is excellent and reject if it is unsatisfactory.

#### 15.5-7.

(a) Choose to introduce the new product with expected payoff of \$12.5 million.

|                             | State of Nature |               | Exp.           |
|-----------------------------|-----------------|---------------|----------------|
| Alternative                 | Successful      | Unsuccessful  | Payoff         |
| Introduce New Product       | \$40 million    | -\$15 million | \$12.5 million |
| Don't Introduce New Product | 0               | 0             | 0              |
| Prior Probabilities         | 0.5             | 0.5           |                |

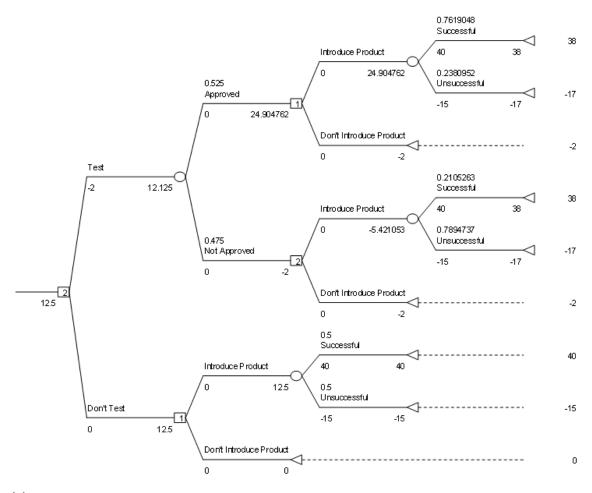
(b) With perfect information, Morton Ward should introduce the product if it will be successful and not introduce it if it will not be successful.

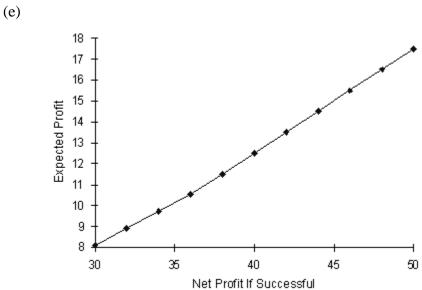
Expected Payoff with Perfect Information: 0.5(40) + 0.5(0) = 20

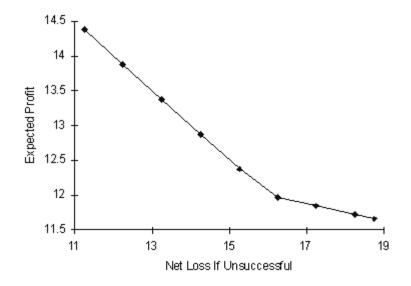
Expected Payoff without Information: 12.5

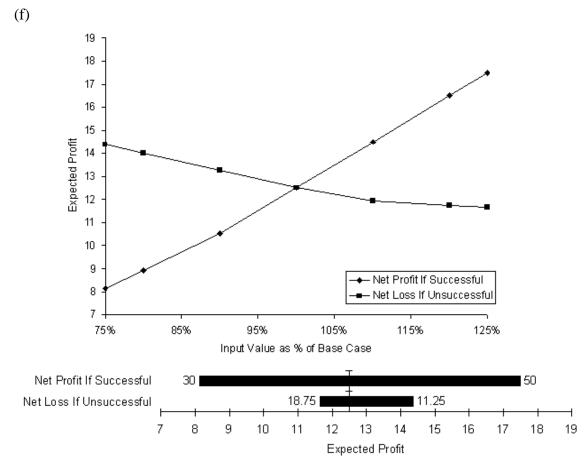
EVPI = 20 - 12.5 = \$7.5 million

(c) The optimal policy is to not test but to introduce the new product, with expected payoff \$12.5 million.


|   | Data:        |             |          | P(Finding   State) |
|---|--------------|-------------|----------|--------------------|
|   | State of     | Prior       |          | Finding            |
| Ì | Nature       | Probability | Approved | Not Approved       |
| Ì | Successful   | 0.5         | 0.8      | 0.2                |
|   | Unsuccessful | 0.5         | 0.25     | 0.75               |
| 1 |              |             |          |                    |


| Ī | Posterior      |            |             | P(State      | Finding) |
|---|----------------|------------|-------------|--------------|----------|
| 1 | Probabilities: |            |             | State of     | Nature   |
| I | Finding        | P(Finding) | Successful  | Unsuccessful |          |
| I | Approved       | 0.525      | 0.761904762 | 0.238095238  |          |
| 1 | Not Approved   | 0.475      | 0.210526316 | 0.789473684  |          |
| ļ | Not Approved   | 0.475      | 0.210526316 | 0.789473684  |          |

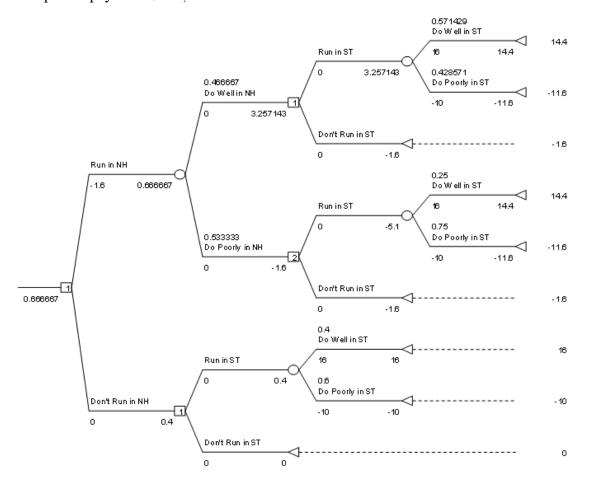

The associated decision tree is on the next page.


(d) If the net profit if successful is only \$30 million, then the optimal policy is to test and to introduce the product only if the test market approves. The expected payoff is \$8.125 million. If the net profit if successful is \$50 million, then the optimal policy is to skip the test and to introduce the product, with an expected payoff of \$17.5 million. If the net loss if unsuccessful is only \$11.25 million, then the optimal policy is to skip the test and to introduce the product, with an expected payoff of \$14.375 million. If the net loss if unsuccessful is \$18.75 million, then the optimal policy is to conduct the test and to introduce the product only if the test market approves. The expected payoff is \$11.656 million. For each combination of financial data, the expected payoff and the optimal policy are as shown below.

| Successful                    | Unsuccessful                                                        | Optimal Policy               | Expected Profit  |  |
|-------------------------------|---------------------------------------------------------------------|------------------------------|------------------|--|
| \$30 million                  | -\$11.25 million                                                    | Skip Test, Introduce Product | \$9.375 million  |  |
| \$30 million                  | 30 million   -\$18.75 million   Test, Introduce Product if Approved |                              | \$7.656 million  |  |
| \$50 million                  | -\$11.25 million                                                    | Skip Test, Introduce Product | \$19.375 million |  |
| \$50 million -\$18.75 million |                                                                     | Test, Introduce if Approved  | \$15.656 million |  |



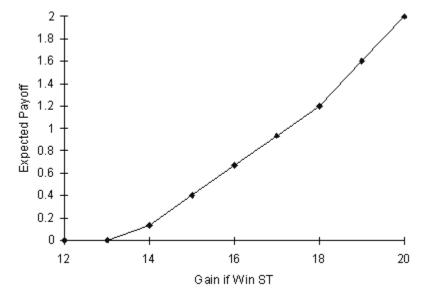


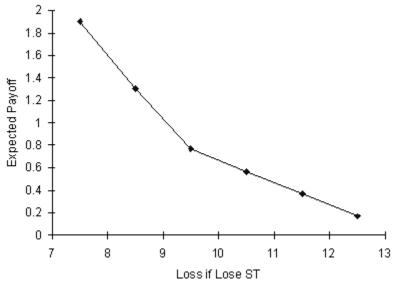




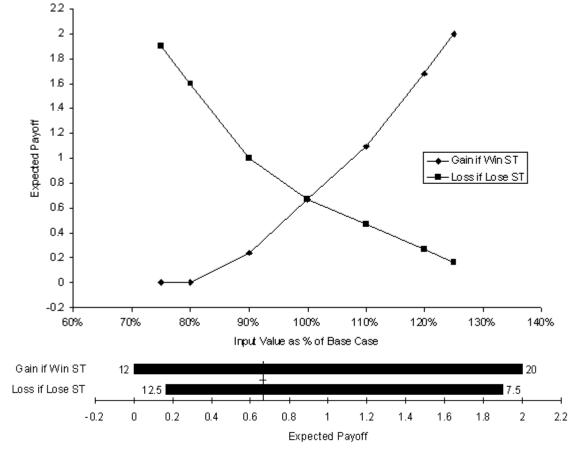

Both charts indicate that the expected profit is sensitive to both parameters, but is somewhat more sensitive to changes in the profit if successful than to changes in the loss if unsuccessful.

### 15.5-8.


Chelsea should run in the NH primary. If she does well, then she should run in the ST primaries. If she does poorly in the NH primary, then should not run the ST primaries. The expected payoff is \$666,667.



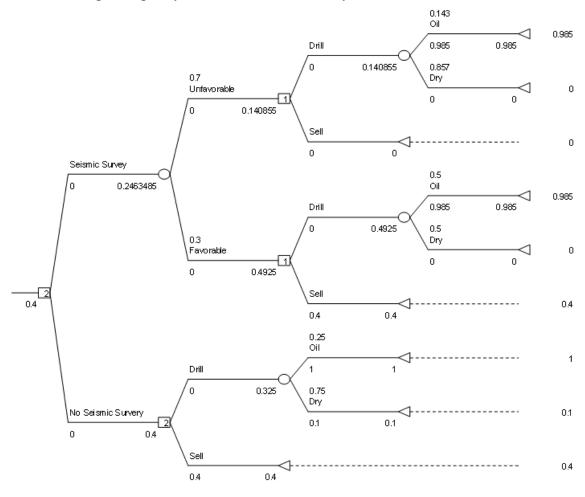

(b) If the payoff for doing well in ST is only \$12 million, Chelsea should not run in either NH or ST, with expected payoff of \$0. If the payoff for doing well in ST is \$20 million, Chelsea should not run in NH, but run in ST, with expected payoff of \$2 million. If the loss for doing poorly in ST is \$7.5 million, Chelsea should not run in NH, but run in ST, with expected payoff of \$1.9 million. If the loss for doing poorly in ST is only \$12.5 million, Chelsea should run in NH and run in ST if she does well in NH, with expected payoff of \$166,667. For each combination of financial data, the expected payoff and the optimal policy is as shown below.


| Well in ST   | Poorly in ST    | Optimal Policy               | Expected Funds  |
|--------------|-----------------|------------------------------|-----------------|
| \$12 million | -\$7.5 million  | Run in ST Only               | \$300,000       |
| \$12 million | -\$12.5 million | Don't Run in Either          | \$0             |
| \$20 million | -\$7.5 million  | Run in ST Only               | \$3.5 million   |
| \$20 million | -\$12.5 million | Run in NH, Run in ST if Well | \$1.233 million |












Both charts indicate that the expected payoff is sensitive to both parameters, although it is slightly more sensitive to changes in the profit if she does well than to changes in the loss if she does poorly.

### 15.6-1.

(a) - (b) The optimal policy is to not conduct a survey and to sell the land.



15.6-2.

(a) Choose to not buy insurance with expected payoff \$249,840.

|                   | State of Nature |               | Exp.    |
|-------------------|-----------------|---------------|---------|
| Alternative       | Earthquake      | No Earthquake | Payoff  |
| Buy Insurance     | 249,820         | 249,820       | 249,820 |
| Not Buy Insurance | 90,000          | 250,000       | 249,840 |
| Prior Probability | 0.001           | 0.999         |         |

(b) 
$$U(\text{insurance}) = U(250,000 - 180) = \sqrt{249,820} = 499.82$$
  $U(\text{no insurance}) = 0.999U(250,000) + 0.001U(90,000) = 499.8$ 

The optimal policy is to buy insurance.

### 15.6-3.

Expected utility of \$19,000:  $U(19) = \sqrt{25} = 5$ Expected utility of investment:  $0.3U(10) + 0.7U(30) = 0.3\sqrt{16} + 0.7\sqrt{36} = 5.4$ Choose the investment to maximize expected utility.

### 15.6-4.

Expected utility of  $A_1$  = Expected utility of  $A_2$ 

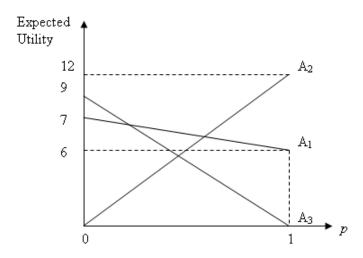
$$pU(10) + (1-p)U(30) = U(19)$$
  
 $0.3U(10) + 0.7(20) = 16.7 \Rightarrow U(10) = 9$ 

### 15.6-5.

(a) Expected utility of  $A_1$  = Expected utility of  $A_2$ pU(10) + (1-p)U(0) = U(1)

$$pc(10) + (1 - p)C(0) = C(1)$$
$$0.125U(10) + 0.875(0) = 1 \Rightarrow U(10) = 8$$

(b) Expected utility of  $A_1$  = Expected utility of  $A_2$ 

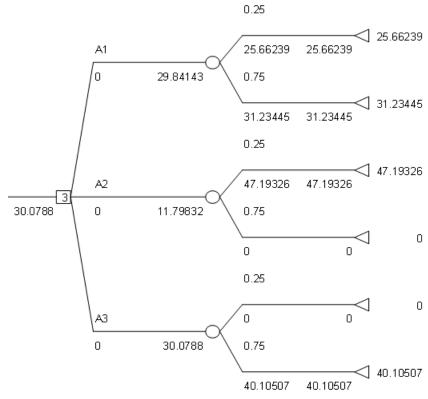

$$pU(10) + (1-p)U(0) = U(5)$$

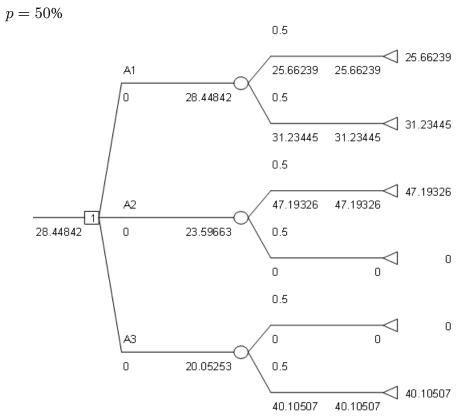
$$0.5625(8) + 0.4375(0) = U(5) \Rightarrow U(5) = 4.5$$

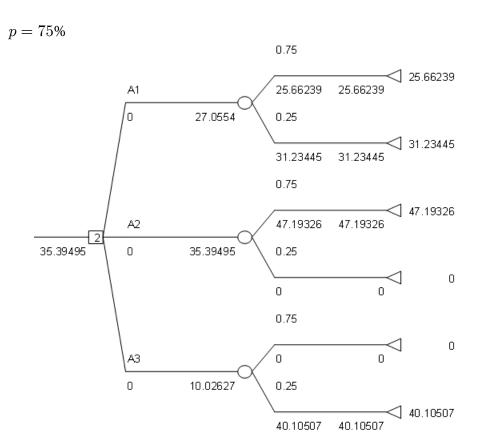
(c) Answers will vary.

### 15.6-6.

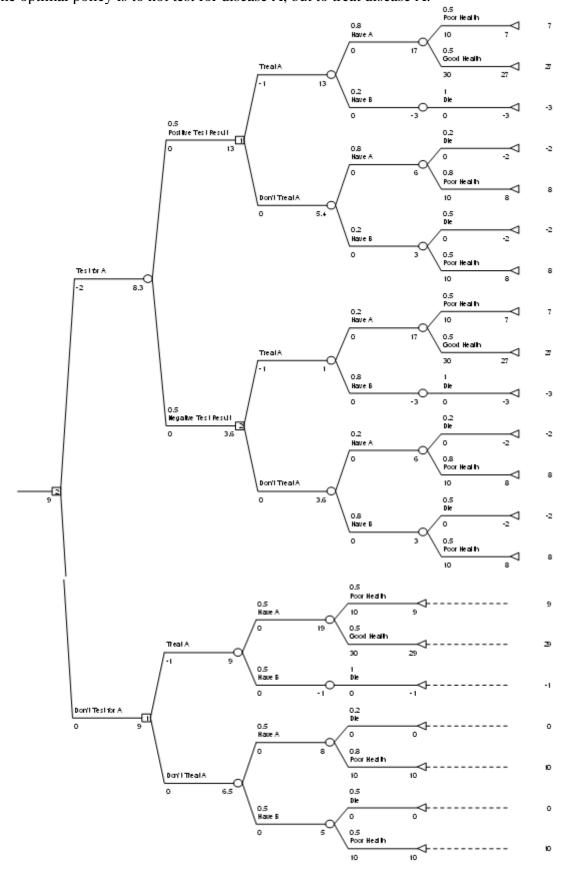
(a) Expected utility of  $A_1 = pU(36) + (1-p)U(49) = 6p + 7(1-p) = 7-p$ Expected utility of  $A_2 = pU(144) + (1-p)U(0) = 12p + 0 = 12p$ Expected utility of  $A_3 = pU(0) + (1-p)U(81) = 0 + 9(1-p) = 9-9p$ 

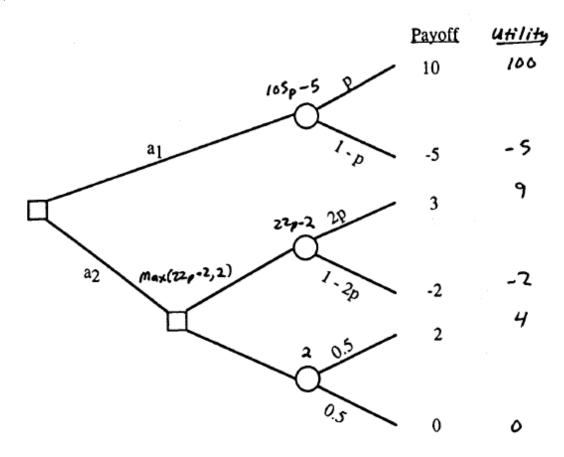




 $A_1$  and  $A_2$  cross when  $7 - p = 12p \Rightarrow p = 7/13$ .

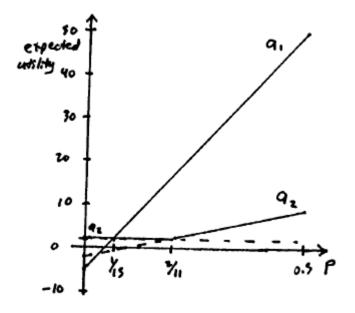

 $A_1$  and  $A_3$  cross when  $7 - p = 9 - 9p \Rightarrow p = 1/4$ .

Thus,  $A_3$  is best when  $p \le 1/4$ ,  $A_1$  is best when  $1/4 \le p \le 7/13$ , and  $A_2$  is best when  $p \ge 7/13$ .


(b) 
$$U(M) = 50(1 - e^{-M/50})$$
 
$$p = 25\%$$






**15.6-7.** The optimal policy is to not test for disease A, but to treat disease A.





At p = 0.25, 105p - 5 = 21.25 and max  $(22p - 2, 2) = \max(3.5, 2) = 3.5$ , so  $A_1$  is optimal. (b)



As can be seen on the graph,  $A_1$  stays optimal for  $1/15 \le p \le 0.5$ .

## **CASES**

## **CASE 15.1 Brainy Business**

(a) The relevant data are summarized in the following spreadsheet.

Data:

#### Probability tables:

Price:

#### Prior probabilities:

| High  | Medium | Low   |
|-------|--------|-------|
| 50.00 | 40.00  | 30.00 |

| Competition:   | Severe | Moderate | Weak |
|----------------|--------|----------|------|
| p(competition) | 0.20   | 0.70     | 0.10 |

Sales:

#### Conditional Probabilities:

| High   | Medium | Low    |
|--------|--------|--------|
| 50,000 | 30,000 | 20,000 |

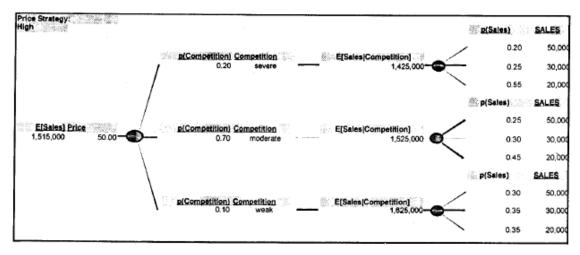
| Price:       | 50.00  |          |      |  |
|--------------|--------|----------|------|--|
| Competition: | Severe | Moderate | Weak |  |
| 50k Units    | 0.20   | 0.25     | 0.30 |  |
| 30k Units    | 0.25   | 0.30     | 0.35 |  |
| 20k Units    | 0.55   | 0.45     | 0.35 |  |

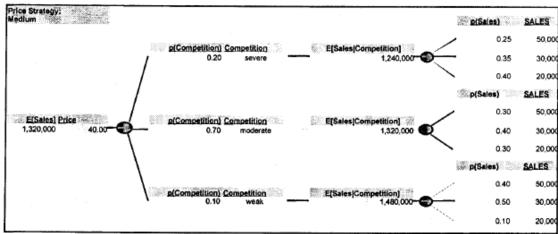
| Price:       | 40.00  |          |      |
|--------------|--------|----------|------|
| Competition: | Severe | Moderate | Weak |
| 50k Units    | 0.25   | 0.30     | 0.40 |
| 30k Units    | 0.35   | 0.40     | 0.50 |
| 20k Units    | 0.40   | 0.30     | 0.10 |

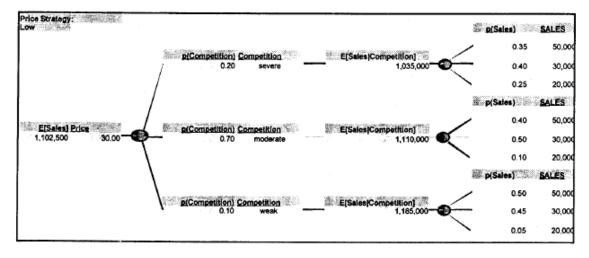
| Price:       | 30.00  |          |      |  |
|--------------|--------|----------|------|--|
| Competition: | Severe | Moderate | Weak |  |
| 50k Units    | 0.35   | 0.40     | 0.50 |  |
| 30k Units    | 0.40   | 0.50     | 0.45 |  |
| 20k Units    | 0.25   | 0.10     | 0.05 |  |

(b) The scenario "moderate competition, sales of 30,000 units at a unit price of \$30" has the largest total probability. Therefore, under the maximum likelihood criterion, Charlotte should price the product at \$30.

To find out best maximin alternative, note that for a price of


\$30: 20,000 units at a unit price \$30 is the worst case,

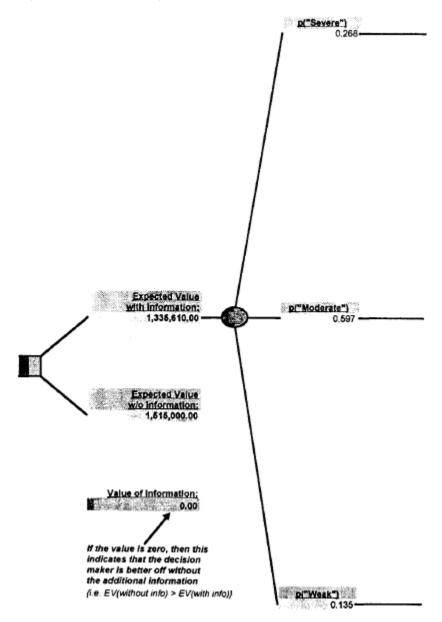

\$40: 20,000 units at a unit price \$40 is the worst case,

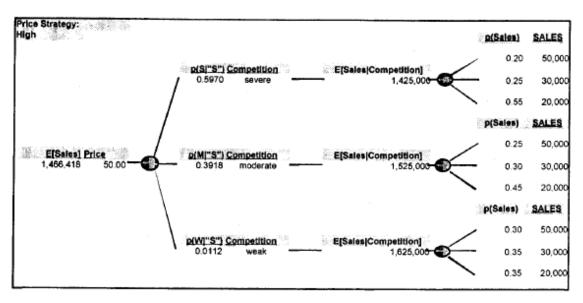

\$50: 20,000 units at a unit price \$50 is the worst case.

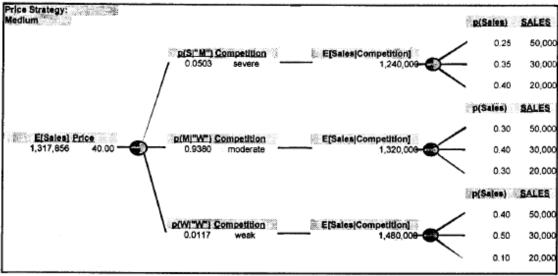
The maximum of these three is for the price of \$50, so it is optimal under the maximin criterion.

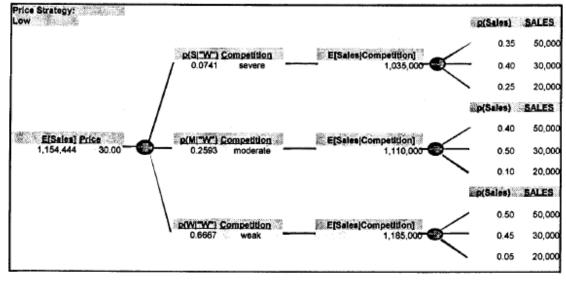
(c) The three branches of the decision tree for the decision problem without additional information follow.





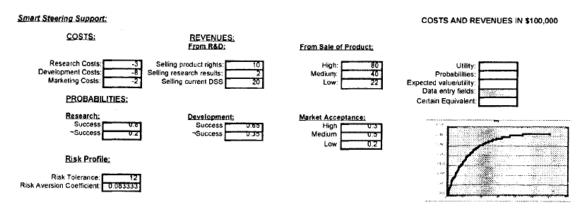


To find the expected revenue for a high price strategy, multiply each final outcome ("Sales") by its probability. For example, the expected sales given severe competition equals: 0.2(50,000) + 0.25(30,000) + 0.55(20,000) = 1,425,000. The remaining expected values are computed similarly. The decision tree indicates that the alternative with the maximum expected value is the high price strategy. Hence, Charlotte should price the product at \$50.


(d) The decision tree for the decision problem with additional information follows in two sections. The branches of the decisions follow the first half of the tree. Note that the decision alternative "Expected Value w/o Information" represents the entire decision tree of part (c). The computations in the tree are performed in the same manner as in part (c).

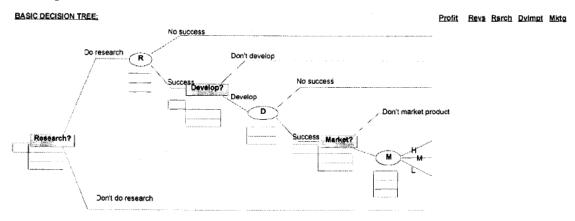
Decision tree (with additional info)



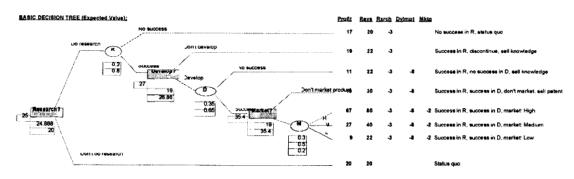




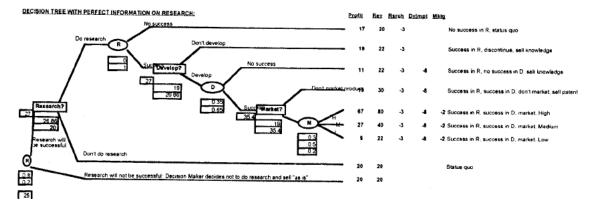




Since the expected value for the decision tree with additional (imperfect) information is less than that without information, Charlotte should not purchase the services of the market research company.

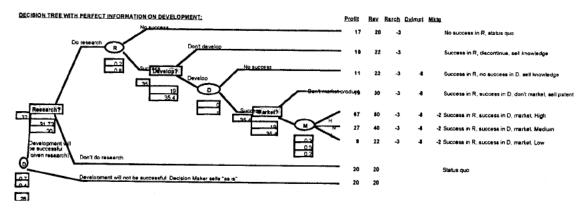
## **CASE 15.2 Smart Steering Support**


(a) The available data are summarized in the table.

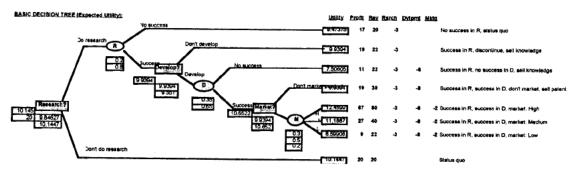



(b) The basic decision tree is shown. Rectangular nodes represent decision forks and oval nodes represent chance forks.

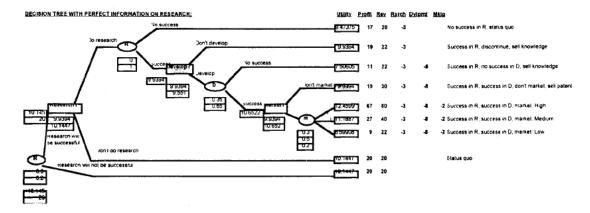



(c) The decision tree displays all the expected payoffs.

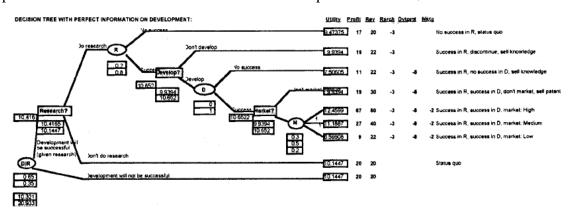



- (d) The best course of action is to do the research project. The expected payoff is \$2.4888 million.
- (e) The decision tree with perfect information on research is displayed. The expected value in this case equals \$2.5488 million. The difference between the expected values with and without information is \$60,000, which is the value of perfect information on research.



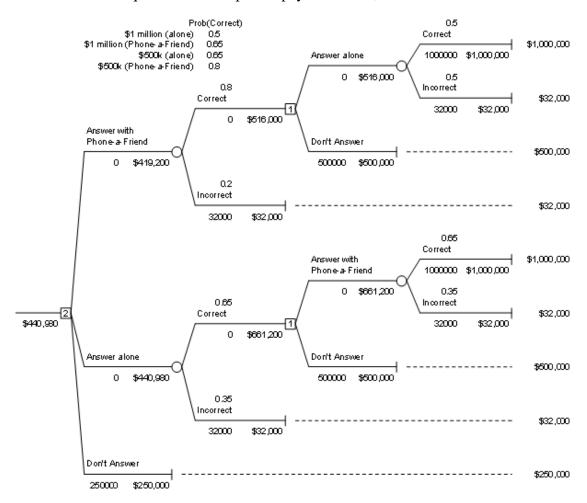

(f) The decision tree with perfect information on development is displayed. The expected value in this case equals \$2.7618 million. The difference between the expected values with and without information is \$273,000, which is the value of perfect information on development




(g) - (h) - (i) The decision tree with expected utilities is displayed. The expected utilities are calculated in the following way: for each of the outcome branches of the decision tree (e.g., profit of \$6,700,000), the corresponding utility is computed (e.g., 12.45992). Once this is done, the expected utilities are calculated. The best course of action is to not do research (expected utility of 10.14469 vs. 9.846267 in the case of doing research).



(j) The expected utility for perfect information on research equals 9.939397, which is still less than the expected utility of not doing research (10.14469). Therefore, the best course of action is to not do research, implying a value of zero for perfect information on the outcome of the research effort.



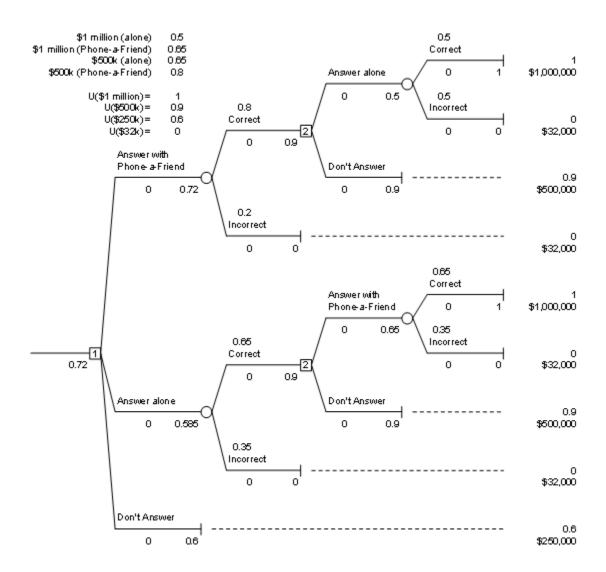

(k) The expected utility for perfect information on development equals 10.321347, which is more than the expected utility without information (10.14469). The value of perfect information on development is the difference between the inverses of these two utility values,  $U^{-1}(10.321347) - U^{-1}(10.14469) = 20.93274 - 20 = 0.93274$ . The value of perfect information on the outcome of the development effort is \$93.274.



#### CASE 15.3 Who Wants to be a Millionaire

(a) The course of action that maximizes the expected payoff is to answer \$500,000 question alone. If you get the question correct, then use the phone-a-friend lifeline to help answer \$1 million question. The expected payoff is \$440,980.



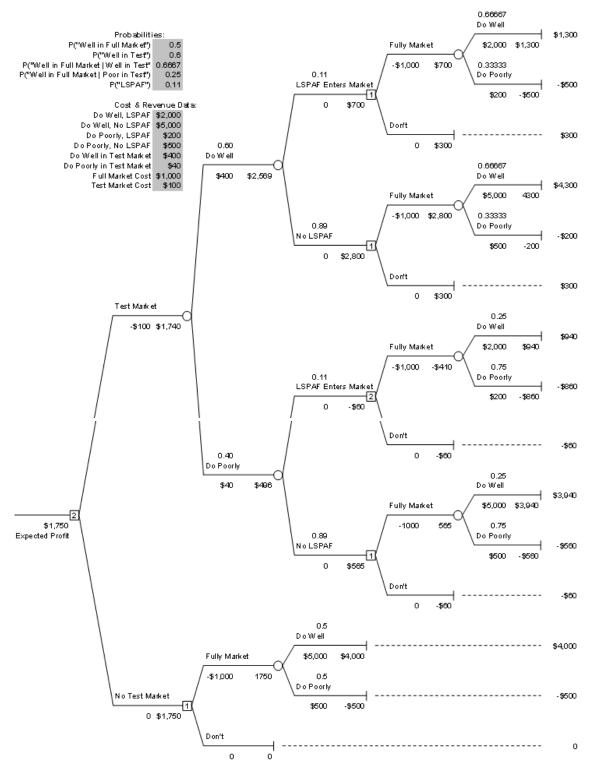

(b) Answers will vary depending on your level of risk aversion. One possible solution is obtained by setting

$$U(\textit{Maximum}) = U(\$1 \text{ million}) = 1 \text{ and } U(\textit{Minimum}) = U(\$32,000) = 0.$$

If getting \$250,000 for sure is equivalent to a 60% chance of getting \$1 million vs. a 40% chance of getting \$32,000, then U(\$250,000) = p = 0.6.

If getting \$500,000 for sure is equivalent to a 90% chance of getting \$1 million vs. a 10% chance of getting \$32,000, then U(\$500,000) = p = 0.9.

(c) With the utilities derived in part (b), the decision changes to using the phone-a-friend lifeline to help answer the \$500,000 question, and then walk away.




# **CASE 15.4 University Toys and the Business Professor Action Figures**

(a)

| Data:               |             | D/Fi                | : :<br>adina I Stata) | - |
|---------------------|-------------|---------------------|-----------------------|---|
|                     |             |                     | nding   State)        |   |
| State of            | Prior       |                     | Finding               |   |
| Nature              | Probability | Well in Test        | Poor in Test          |   |
| Well in Full Market | 0.5         | 0.8                 | 0.2                   |   |
| Poor in Full Market | 0.5         | 0.4                 | 0.6                   | Ì |
|                     |             |                     |                       |   |
|                     |             |                     |                       |   |
|                     |             |                     |                       |   |
|                     |             |                     |                       |   |
| Posterior           |             | P(St                | ate   Finding)        |   |
| Probabilities:      |             | Sta                 | te of Nature          |   |
| Finding             | P(Finding)  | Well in Full Market | Poor in Full Market   |   |
| Well in Test        | 0.6         | 0.666666667         | 0.333333333           |   |
| Poor in Test        | 0.4         | 0.25                | 0.75                  |   |
|                     |             |                     |                       |   |

(b) The best course of action is to skip the test market, and immediately market the product fully. The expected payoff is \$1750.



(c) If the probability that the LSPAFs enter the market before the test marketing would be completed increases this would make the test market even less desirable, so it would still not be worthwhile to do. However, if the probability decreases, this would make the test market more desirable. It might reach the point where the test market is worthwhile.

(d) Let p denote the probability that the LSPAFs will enter and EP the expected payoff.

| p   | EP      | Test Market? |
|-----|---------|--------------|
|     | \$1,750 | No           |
| 0.0 | \$1,906 | Yes          |
| 0.1 | \$1,755 | Yes          |
| 0.2 | \$1,750 | No           |
| 0.3 | \$1,750 | No           |
| 0.4 | \$1,750 | No           |
| 0.5 | \$1,750 | No           |
| 0.6 | \$1,750 | No           |
| 0.7 | \$1,750 | No           |
| 0.8 | \$1,750 | No           |
| 0.9 | \$1,750 | No           |
| 1.0 | \$1,750 | No           |

<sup>(</sup>e) It is better to perform the test market if the probability that the LSPAFs will enter the market is 10% or less. It is better to skip the test market if this probability is greater than 10%.

#### **CHAPTER 16: MARKOV CHAINS**

#### 16.2-1.

In this study, Markov chains are used to model the changes in credit ratings of corporations that work with Merrill Lynch Bank USA. The bank manages a portfolio of revolving credit-line commitments worth billions of dollars. A corporation that has a credit line can withdraw a significant amount of money from the bank on short notice. The risk associated with the bank's ability to meet these cash requests is referred to as the liquidity risk. Merrill Lynch developed a model to assess this risk and to evaluate various scenarios like financial stress. The model consists of a mix of multiple OR techniques. The core of the model is a Monte Carlo simulation of revolving credit lines. In doing this, the monthly changes in credit ratings for each company are modeled as a discrete-time Markov chain. A company's rating in a month is assumed to depend only on its rating in the previous month and the transition probabilities used in forming the credit-migration matrix are assumed to be stationary.

The model provided Merrill Lynch Bank a systematic way to measure and to manage the liquidity risk. After the implementation of the model, required liquidity reserves have been decreased by 30% and \$4 billion that is freed up consequently can now be used in more profitable investments. During the first 21 months, the bank's portfolio has increased from \$8 billion to \$13 billion and from 80 companies to 100. The evaluation of different scenarios enabled the bank to ensure liquidity even during financial crises. The basic model is now run once every month and is also used in long-term planning.

#### 16.2-2.

- (a) Since the probability of rain tomorrow is only dependent on the weather today, Markovian property holds for the evolution of the weather.
- (b) Let the two states be 0 = Rain and 1 = No Rain. Then the transition matrix is

$$P = P^{(1)} = \begin{pmatrix} 0.5 & 0.5 \\ 0.1 & 0.9 \end{pmatrix}.$$

#### 16.2-3.

(a) Let 1 =increased today and yesterday,

2 =increased today and decreased yesterday,

3 = decreased today and increased yesterday,

4 = decreased today and yesterday.

$$\mathbf{P} = \mathbf{P}^{(1)} = egin{pmatrix} lpha_1 & 0 & 1 - lpha_1 & 0 \ lpha_2 & 0 & 1 - lpha_2 & 0 \ 0 & lpha_3 & 0 & 1 - lpha_3 \ 0 & lpha_4 & 0 & 1 - lpha_4 \end{pmatrix}$$

(b) The state space is properly defined to include information about changes yesterday and today. This is the only information needed to determine the next state, namely changes today and tomorrow.

16.2-4.

Yes, it can be formulated as a Markov chain with the following  $8 (= 2^3)$  states.

| State | Today | 1 Day Ago | 2 Days Ago |
|-------|-------|-----------|------------|
| 1     | inc   | inc       | inc        |
| 2     | inc   | inc       | dec        |
| 3     | inc   | dec       | inc        |
| 4     | inc   | dec       | dec        |
| 5     | dec   | inc       | inc        |
| 6     | dec   | inc       | dec        |
| 7     | dec   | dec       | inc        |
| 8     | dec   | dec       | dec        |

These states include all the information needed to predict the change in the stock tomorrow whereas the states in Prob. 16.2-2 do not consider the day before yesterday, so they do not contain all necessary information to predict the change tomorrow.

#### 16.3-1.

(a)

$$\begin{split} \mathbf{P}^{(2)} &= \begin{pmatrix} 0.3 & 0.7 \\ 0.14 & 0.86 \end{pmatrix} \qquad \mathbf{P}^{(5)} &= \begin{pmatrix} 0.175 & 0.825 \\ 0.165 & 0.835 \end{pmatrix} \\ \mathbf{P}^{(10)} &= \begin{pmatrix} 0.167 & 0.833 \\ 0.167 & 0.833 \end{pmatrix} \qquad \mathbf{P}^{(20)} &= \begin{pmatrix} 0.167 & 0.833 \\ 0.167 & 0.833 \end{pmatrix} \end{split}$$

(b)

 $P(Rain \ n \ days \ from \ now \ | \ Rain \ today) = P_{11}^{(n)}$ 

 $P(\text{Rain } n \text{ days from now} \mid \text{No rain today}) = P_{21}^{(n)}$ 

If the probability it will rain today is 0.5,

$$P(\text{Rain } n \text{ days from now}) = p_n = 0.5P_{11}^{(n)} + 0.5P_{21}^{(n)}$$

Hence, 
$$p_2 = 0.22$$
,  $p_5 = 0.17$ ,  $p_{10} = 0.167$ ,  $p_{20} = 0.167$ .

(c) We find  $\pi_1=0.167$  and  $\pi_2=0.833$ . As n grows large,  $\mathbf{P}^{(n)}$  approaches

$$\begin{pmatrix} \pi_1 & \pi_2 \\ \pi_1 & \pi_2 \end{pmatrix}$$
,

the stationary probabilities. Indeed,

$$\mathbf{P}^{(10)} = \mathbf{P}^{(20)} = \begin{pmatrix} \pi_1 & \pi_2 \\ \pi_1 & \pi_2 \end{pmatrix}.$$

#### 16.3-2.

(a) Let states 0 and 1 denote that a 0 and a 1 have been recorded respectively. Then the transition matrix is

$$\mathbf{P} = \begin{pmatrix} 1 - q & q \\ q & 1 - q \end{pmatrix},$$

where q = 0.005.

(b)

$$\mathbf{P}^{(10)} = \begin{pmatrix} 0.952 & 0.048 \\ 0.048 & 0.952 \end{pmatrix}$$

The probability that a digit will be recorded accurately after the last transmission is 0.952.

(c)

$$\mathbf{P}^{(10)} = \begin{pmatrix} 0.98 & 0.02 \\ 0.02 & 0.98 \end{pmatrix}$$

The probability that a digit will be recorded accurately after the last transmission is 0.98.

### 16.3-3.

(a)

$$P = \begin{pmatrix} 0 & 0.5 & 0 & 0 & 0.5 \\ 0.5 & 0 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0 & 0.5 \\ 0.5 & 0 & 0 & 0.5 & 0 \end{pmatrix}.$$

(b)

$$\mathbf{p}^{5} = \begin{bmatrix} 0.062 & 0.312 & 0.156 & 0.156 & 0.312 \\ 0.312 & 0.062 & 0.312 & 0.156 & 0.156 \\ 0.156 & 0.312 & 0.062 & 0.312 & 0.156 \\ 0.156 & 0.156 & 0.312 & 0.062 & 0.312 \\ 0.312 & 0.156 & 0.156 & 0.312 & 0.062 \end{bmatrix}$$

$$\mathbf{p^{10}} = \begin{bmatrix} 0.248 & 0.161 & 0.215 & 0.215 & 0.161 \\ 0.161 & 0.248 & 0.161 & 0.215 & 0.215 \\ 0.215 & 0.161 & 0.248 & 0.161 & 0.215 \\ 0.215 & 0.215 & 0.161 & 0.248 & 0.161 \\ 0.161 & 0.215 & 0.215 & 0.161 & 0.248 \end{bmatrix}$$

$$\mathbf{P}^{20} = \left[ \begin{array}{c} 0.206 \ 0.195 \ 0.202 \ 0.202 \ 0.195 \\ 0.195 \ 0.206 \ 0.195 \ 0.202 \ 0.202 \\ 0.202 \ 0.195 \ 0.206 \ 0.195 \ 0.206 \\ 0.202 \ 0.202 \ 0.195 \ 0.206 \ 0.195 \\ 0.195 \ 0.202 \ 0.202 \ 0.195 \ 0.206 \end{array} \right]$$

$$\mathbf{P}^{40} = \begin{bmatrix} 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \end{bmatrix}$$

$$\mathbf{p}^{80} = \begin{bmatrix} 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \end{bmatrix}$$

(c) 
$$\pi_1 = \pi_2 = \pi_3 = \pi_4 = \pi_5 = 0.2$$
.

#### 16.4-1.

- (a) P has one recurrent communicating class:  $\{0, 1, 2, 3\}$ .
- (b) P has 3 communicating classes:  $\{0\}$  absorbing, so recurrent;  $\{1,2\}$  recurrent and  $\{3\}$  transient.

#### 16.4-2.

- (a) P has one recurrent communicating class:  $\{0, 1, 2, 3\}$ .
- (b) P has one recurrent communicating class:  $\{0, 1, 2\}$ .

## 16.4-3.

P has 3 communicating classes:  $\{0,1\}$  recurrent,  $\{2\}$  transient and  $\{3,4\}$  recurrent.

#### 16.4-4.

P has one communicating class, so each state has the same period 4.

#### 16.4-5.

- (a) P has two classes:  $\{0,1,2,4\}$  transient and  $\{3\}$  recurrent.
- (b) The period of  $\{0, 1, 2, 4\}$  is 2 and the period of  $\{3\}$  is 1.

## 16.5-1.

$$P = \begin{pmatrix} \alpha & 1 - \alpha \\ 1 - \beta & \beta \end{pmatrix}$$

$$\pi P = \pi \Rightarrow \alpha \pi_1 + (1 - \beta)\pi_2 = \pi_1 \text{ and } \pi_1 + \pi_2 = 1$$

$$\Rightarrow \pi = \left(\frac{1 - \beta}{2 - \alpha - \beta}, \frac{1 - \alpha}{2 - \alpha - \beta}\right).$$

#### 16.5-2.

We need to show that  $\pi_j = \frac{1}{M+1}$  for  $j=0,1,\ldots,M$  satisfies the steady-state equations:  $\pi_j = \sum_{i=0}^M \pi_i P_{ij}$  and  $\sum_{i=0}^M \pi_i = 1$ . These are easily verified, using  $\sum_{i=0}^M P_{ij} = 1$  for every j. The chain is irreducible, aperiodic and positive recurrent, so this is the unique solution.

#### 16.5-3.

$$M = 5 \Rightarrow \pi_1 = \pi_2 = \pi_3 = \pi_4 = \pi_5 = 1/5 = 0.2$$

The steady-state probabilities do not change if the probabilities for moving steps change.

## 16.5-4.

$$\pi = (0.511, 0.289, 0.2)$$

The steady-state market share for A and B are 0.511 and 0.289 respectively.

## 16.5-5.

(a) Assuming demand occurs after delivery of orders:

$$P = \begin{pmatrix} 0.6 & 0.4 & 0 & 0 & 0 & 0 & 0 \\ 0.3 & 0.3 & 0.4 & 0 & 0 & 0 & 0 \\ 0.1 & 0.2 & 0.3 & 0.4 & 0 & 0 & 0 \\ 0 & 0.1 & 0.2 & 0.3 & 0.4 & 0 & 0 \\ 0 & 0 & 0.1 & 0.2 & 0.3 & 0.4 & 0 \\ 0 & 0 & 0 & 0.1 & 0.2 & 0.3 & 0.4 \\ 0 & 0 & 0 & 0 & 0.1 & 0.2 & 0.7 \end{pmatrix}$$

- (b)  $\pi P = \pi$  and  $\sum_{j} \pi_{j} = 1 \implies \pi = (0.139 \ 0.139 \ 0.139 \ 0.138 \ 0.141 \ 0.130 \ 0.174)$ .
- (c) The steady-state probability that a pint of blood is to be discarded is

$$P(D = 0) \cdot P(\text{state} = 7) = 0.4 \times 0.174 = 0.0696.$$

(d) P(need for emergency delivery) 
$$= \sum_{i=1}^2 \text{P(state} = i) \cdot \text{P}(D > i)$$
 
$$= 0.139 \text{ x } (0.2 + 0.1) + 0.139 \text{ x } 0.1$$
 
$$= 0.0556$$

## 16.5-6.

For an (s, S) policy with s = 2 and S = 3:

$$c(x_{t-1}, D_t) = \begin{cases} 10 + 25(3 - x_{t-1}) + 50\max(D_t - 3, 0) & \text{for } x_{t-1} < 2\\ 50\max(D_t - x_{t-1}, 0) & \text{for } x_{t-1} \ge 2. \end{cases}$$

$$K(0) = E[c(0, D_t)] = 85 + 50[\sum_{j=4}^{\infty} (j-3) \cdot P(D_t = j)] \simeq 86.2,$$

$$K(1) = E[c(1, D_t)] = 60 + 50[\sum_{j=4}^{\infty} (j-3) \cdot P(D_t = j)] \simeq 61.2,$$

$$K(2) = E[c(2, D_t)] = 0 + 50[\sum_{j=4}^{\infty} (j-2) \cdot P(D_t = j)] \simeq 5.2,$$

$$K(3) = E[c(3, D_t)] = 0 + 50[\sum_{j=4}^{\infty} (j-2) \cdot P(D_t = j)] \simeq 1.2.$$

$$x_{t+1} = \begin{cases} \max(3 - D_{t+1}, 0) & \text{for } x_t < 2\\ \max(x_t - D_{t+1}, 0) & \text{for } x_t \ge 2 \end{cases}$$

$$P = \begin{pmatrix} 0.080 & 0.184 & 0.368 & 0.368 \\ 0.080 & 0.184 & 0.368 & 0.368 \\ 0.264 & 0.368 & 0.368 & 0 \\ 0.080 & 0.184 & 0.368 & 0.368 \end{pmatrix}$$

Solving the steady-state equations gives  $(\pi_0, \pi_1, \pi_2, \pi_3) = (0.148, 0.252, 0.368, 0.232)$ . Then the long-run average cost per week is  $\sum_{j=0}^{3} K(j) \cdot \pi_j = 30.37$ .

#### 16.5-7.

(a)

$$x_{t+1} = \begin{cases} \max(x_t + 2 - D_{t+1}, 0) & \text{for } x_t \le 1\\ \max(x_t - D_{t+1}, 0) & \text{for } x_t \ge 2 \end{cases}$$

$$\begin{cases} 0.264 & 0.368 & 0.368 & 0\\ 0.264 & 0.368 & 0.368 & 0 \end{cases}$$

$$P = \begin{pmatrix} 0.264 & 0.368 & 0.368 & 0\\ 0.080 & 0.184 & 0.368 & 0.368\\ 0.264 & 0.368 & 0.368 & 0\\ 0.080 & 0.184 & 0.368 & 0.368 \end{pmatrix}$$

Solving the steady-state equations gives  $(\pi_0, \pi_1, \pi_2, \pi_3) = (0.182, 0.285, 0.368, 0.165)$ .

(b) 
$$\lim_{n\to\infty} E\left(\frac{1}{n}\sum_{t=1}^n c(x_t)\right) = 0 \cdot \pi_0 + 2 \cdot \pi_1 + 8 \cdot \pi_2 + 18 \cdot \pi_3 = 6.48.$$

## 16.5-8.

(a) 
$$P_{11} = P(D_{n+1} = 0) + P(D_{n+1} = 2) + P(D_{n+1} = 4) = 3/5$$

$$P_{12} = P(D_{n+1} = 1) + P(D_{n+1} = 3) = 2/5$$

$$P_{21} = P(D_{n+1} = 1) + P(D_{n+1} = 3) = 2/5$$

$$P_{22} = P(D_{n+1} = 0) + P(D_{n+1} = 2) + P(D_{n+1} = 4) = 3/5$$

$$P = \begin{pmatrix} 3/5 & 2/5 \\ 2/5 & 3/5 \end{pmatrix}$$

(b) 
$$\pi = \pi P$$
 and  $\pi_1 + \pi_2 = 1 \implies \pi_1 = \pi_2 = 1/2$ .

(c) P is doubly stochastic and there are two states, so  $\pi_1 = \pi_2 = 1/2$ .

(d) 
$$K(1) = E[c(1, D_n)]$$
  
=  $(2/5)[3 + 2(1)] + (2/5)[3 + 2(2)] + (1/5)(1) + (4/5)[1 + 2 + 3]$   
= 9.8,

$$K(2) = E[c(2, D_n)]$$

$$= (2/5)[3 + 2(1)] + (1/5)[3 + 2(2)] + (1/5)(2 + 1) + (4/5)[1 + 2]$$

$$= 6.4.$$

So the long-run average cost per unit time is 9.8(1/2) + 6.4(1/2) = 8.1.

## 16.5-9.

(a) P(the unit will be inoperable after n periods) =  $P_{02}^{(n)}$ 

$$\mathbf{P}^2 = \begin{bmatrix} 0.64 & 0.16 & 0.04 & 0.16 \\ 0.64 & 0.36 & 0 & 0 \\ 0 & 0 & 0.2 & 0.8 \\ 0.64 & 0.16 & 0.04 & 0.16 \end{bmatrix} \qquad \mathbf{P}^5 = \begin{bmatrix} 0.62 & 0.195 & 0.037 & 0.148 \\ 0.594 & 0.174 & 0.046 & 0.186 \\ 0.64 & 0.232 & 0.026 & 0.102 \\ 0.62 & 0.195 & 0.037 & 0.148 \end{bmatrix}$$

$$n = 2$$
:  $P_{02}^{(n)} = 0.04$ ;  $n = 5$ :  $P_{02}^{(n)} = 0.037$ ;  $n = 10$ :  $P_{02}^{(n)} = 0.039$ ;  $n = 20$ :  $P_{02}^{(n)} = 0.038$ .

- (b)  $\pi_0 = 0.615$ ,  $\pi_1 = 0.192$ ,  $\pi_2 = 0.038$ , and  $\pi_3 = 0.154$ .
- (c) Long-run average cost per period is  $30,000\pi_3 = 4,620$ .

## 16.6-1.

(a)

$$P = \begin{pmatrix} 0.95 & 0.05 \\ 0.50 & 0.50 \end{pmatrix}$$

(b) 
$$\mu_{00} = 1 + 0.05\mu_{10}$$

$$\mu_{01} = 1 + 0.95\mu_{01}$$

$$\mu_{10} = 1 + 0.50\mu_{10}$$

$$\mu_{11} = 1 + 0.50\mu_{01}$$

$$\Rightarrow \mu_{00} = 1.1, \mu_{01} = 20, \mu_{10} = 2, \mu_{11} = 11$$

## 16.6-2.

(a) States: 0 = Operational, 1 = Down, 2 = Repaired.

$$P = \begin{pmatrix} 0.9 & 0.1 & 0 \\ 0 & 0 & 1 \\ 0.9 & 0.1 & 0 \end{pmatrix}$$

(b) We need to solve 
$$\mu_{ij} = 1 + \sum_{k \neq j} P_{ik} \mu_{kj}$$
 for every  $i$  and  $j$ .
$$\mu_{00} = 1 + 0.1 \mu_{10}$$

$$\mu_{10} = 1 + \mu_{20}$$

$$\mu_{20} = 1 + 0.1 \mu_{10}$$

$$\Rightarrow \mu_{00} = 11/9, \mu_{10} = 20/9, \mu_{20} = 11/9$$

$$\mu_{01} = 1 + 0.9 \mu_{01}$$

$$\mu_{11} = 1 + \mu_{21}$$

$$\mu_{21} = 1 + 0.9 \mu_{01}$$

$$\Rightarrow \mu_{01} = 10, \mu_{11} = 11, \mu_{21} = 10$$

$$\mu_{02} = 1 + 0.9 \mu_{02} + 0.1 \mu_{12}$$

$$\mu_{12} = 1 + 0$$

$$\mu_{22} = 1 + 0.9 \mu_{02} + 0.1 \mu_{12}$$

$$\Rightarrow \mu_{02} = 11, \mu_{12} = 1, \mu_{22} = 11$$

The expected number of full days that the machine will remain operational before the next breakdown after a repair is completed is  $\mu_{01} = 10$ .

(c) It remains the same because of the Markovian property. The expected number of days the machine will remain operational starting operational does not depend on how long the machine remained operational in the past.

#### 16.6-3.

(a) We order the states as (1, 1), (0, 1) and (1, 0) and write the transition matrix:

$$\mathbf{P} = \begin{pmatrix} 0.9 & 0.1 & 0 \\ 0.9 & 0 & 0.1 \\ 0.9 & 0.1 & 0 \end{pmatrix}.$$

(b)  $\mu_{33}=1/\pi_3$ . From  $\pi=\pi P$  and  $\pi\cdot 1=1$ , we get  $\pi_3=1/110$ , so the expected recurrence time for the state (1,0) is  $\mu_{33}=110$ .

## 16.6-4.

(a)

$$P = \begin{pmatrix} 0.25 & 0.5 & 0.25 \\ 0.75 & 0.25 & 0 \\ 0.25 & 0.5 & 0.25 \end{pmatrix}$$

(b)

$$\mathbf{P}^{(2)} = \begin{pmatrix} 0.5 & 0.375 & 0.125 \\ 0.375 & 0.438 & 0.188 \\ 0.5 & 0.375 & 0.125 \end{pmatrix}$$

$$\mathbf{P}^{(5)} = \begin{pmatrix} 0.449 & 0.4 & 0.15 \\ 0.451 & 0.399 & 0.149 \\ 0.449 & 0.4 & 0.15 \end{pmatrix}$$

$$\mathbf{P}^{(10)} = \begin{pmatrix} 0.45 & 0.4 & 0.15 \\ 0.45 & 0.4 & 0.15 \\ 0.45 & 0.4 & 0.15 \end{pmatrix}$$

(c) 
$$\mu_{00} = 1 + 0.5\mu_{10} + 0.25\mu_{20}$$
  
 $\mu_{10} = 1 + 0.25\mu_{10}$   
 $\mu_{20} = 1 + 0.5\mu_{10} + 0.25\mu_{20}$ 

$$\Rightarrow \mu_{00} = 20/9, \mu_{10} = 4/3, \mu_{20} = 20/9$$

$$\mu_{01} = 1 + 0.25\mu_{01} + 0.25\mu_{21}$$

$$\mu_{11} = 1 + 0.75\mu_{01}$$

$$\mu_{21} = 1 + 0.25\mu_{01} + 0.25\mu_{21}$$

$$\Rightarrow \mu_{01} = 2, \mu_{11} = 2\frac{1}{2}, \mu_{21} = 2$$

$$\mu_{02} = 1 + 0.25\mu_{02} + 0.5\mu_{12}$$

$$\mu_{12} = 1 + 0.75\mu_{02} + 0.25\mu_{12}$$

$$\mu_{22} = 1 + 0.25\mu_{02} + 0.5\mu_{12}$$

$$\Rightarrow \mu_{02} = 20/3, \mu_{12} = 8, \mu_{22} = 20/3$$

(d) The steady-state probability vector is  $(0.45 \ 0.4 \ 0.15)$ .

(e) 
$$\pi \cdot C = 0(0.45) + 2(0.4) + 8(0.15) = 2 / \text{week}$$

## 16.6-5.

(a)

$$\mathbf{P} = \begin{pmatrix} 0 & 0.875 & 0.062 & 0.062 \\ 0 & 0.75 & 0.125 & 0.125 \\ 0 & 0 & 0.5 & 0.5 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$\pi_0 = 0.154$$
,  $\pi_1 = 0.538$ ,  $\pi_2 = 0.154$ , and  $\pi_3 = 0.154$ 

(b) 
$$\pi \cdot C = 1(0.538) + 3(0.154) + 6(0.154) = $1923.08$$

(c) 
$$\mu_{00} = 1 + 0.875\mu_{10} + 0.0625\mu_{20} + 0.0625\mu_{30}$$

$$\mu_{10} = 1 + 0.75\mu_{10} + 0.125\mu_{20} + 0.125\mu_{30}$$

$$\mu_{20} = 1 + 0.5\mu_{20} + 0.5\mu_{30}$$

$$\mu_{30} = 1 + 0$$

So the expected recurrence time for state 0 is  $\mu_{00} = 6.5$ .

#### 16.7-1.

(a)  $P_{00} = P_{TT} = 1$ ;  $P_{i,i-1} = q$ ;  $P_{i,i+1} = p$ ;  $P_{i,k} = 0$  else.

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & & & \\ q & 0 & p & 0 & \cdots & & & \\ \vdots & & \ddots & & & & \\ & & & q & 0 & p & 0 \\ & & & 0 & q & 0 & p \\ & & & 0 & 0 & 0 & 1 \end{pmatrix}$$

(b) Class 1: {0} absorbing

Class 2:  $\{T\}$  absorbing

Class 3:  $\{1, 2, \dots, T-1\}$  transient

(c) Let  $f_{iK} = P(absorption at K starting at i)$ . Then  $f_{00} = f_{33} = 1$ ,  $f_{30} = f_{03} = 0$ . Since  $P_{ij} = 0$  for  $|i - j| \neq 1$  and  $P_{i,i+1} = p$ ,  $P_{i,i-1} = q$ , we get:

$$f_{10} = q + pf_{20}$$

$$f_{13} = 1 - f_{10}$$

$$f_{20} = qf_{10}$$

$$f_{23} = 1 - f_{20}$$

Solving this system gives

$$f_{10} = \frac{q}{1-pq} = 0.886, f_{13} = 0.114, f_{20} = 0.62, f_{23} = 0.38.$$

(d) Plugging in p = 0.7 in the formulas in part (c), we obtain

$$f_{10} = 0.38, f_{13} = 0.62, f_{20} = 0.114, f_{23} = 0.886.$$

Observe that when p > 1/2, the drift is towards T and when p < 1/2, it is towards 0.

## 16.7-2.

(a) 0 =Have to honor warranty

1 =Reorder in 1st year

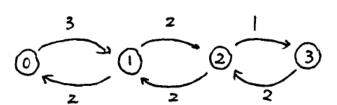
2 =Reorder in 2nd year

3 =Reorder in 3rd year

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.01 & 0 & 0.99 & 0 \\ 0.05 & 0 & 0 & 0.95 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(b) The probability that the manufacturer has to honor the warranty is  $f_{10}$ .

$$f_{10} = 0.01 f_{00} + 0 f_{10} + 0.99 f_{20} + 0 f_{30}$$
  
 $f_{20} = 0.05 f_{00} + 0 f_{10} + 0 f_{20} + 0.95 f_{30}$   
 $f_{00} = 1$  and  $f_{30} = 0$   
 $\Rightarrow f_{10} = 0.01 + 0.99 f_{20}$  and  $f_{20} = 0.05$   
 $\Rightarrow f_{10} = 0.0595 = 5.95\%$ .


#### 16.8-1.

In 1998, the new management of PSA Peugeot Citroën set new goals regarding the amount of production, the introduction of new models and the profit in the following years. To achieve these goals, the car-body shops, which were the bottlenecks of production, needed to be redesigned. A new architecture was needed to process diverse models on the same platform and to introduce new models quickly. To evaluate the performance of various designs, PSA adopted a combination of simulation and analytic models. The states of a machine or of a worker in a production line are modeled as a continuous time Markov chain. A machine can be either up or down. When it is up, it can go down with the average failure rate  $\lambda$ . When it is down, it can be repaired with the average repair rate  $\mu$ . If the machine can fail only when it is processing a car part, an additional state is included to represent an idle machine. The operators are also treated as machines. An operator's state is "up" when he is working regular time and "down" when he is working overtime.

As a result of this study, a software called DispO is developed. A conservative estimate of the additional profit generated using this software is \$130 million, which is around 6.5% of the total profit. PSA acquired a 4% increase in productivity in 2001. Additionally, the new model enabled PSA to understand its assembly lines better and to correct "some incorrect but deeply ingrained beliefs and practices" [p. 46]. The ability to compare the estimates obtained from analysis with the actual values convinced the personnel about the reliability of the methods. As a consequence, OR gained importance throughout the company. The efficiency in improving production-line designs enhanced throughput without overloading workers. The social climate and the quality of production are both improved. The software developed is used also by the suppliers of PSA. This, in turn, reduces the time to negotiate schedules.

#### 16.8-2.

(a)



(b) Steady-state equations:

$$3\pi_0 = 2\pi_1$$

$$4\pi_1 = 3\pi_0 + 2\pi_2$$

$$3\pi_2 = 2\pi_1 + 2\pi_3$$

$$2\pi_3 = \pi_2$$

$$\pi_0 + \pi_1 + \pi_2 + \pi_3 = 1$$

(c) Solving the steady-state equations gives  $\pi = \left(\frac{4}{19}, \frac{6}{19}, \frac{6}{19}, \frac{3}{19}\right)$ .

# 16.8-3.

(a) Let the state be the number of jobs at the work center.

$$0 \xrightarrow{1/2} 1 \xrightarrow{1/2} 2$$

(b) Steady-state equations:

$$\frac{1}{2}\pi_0 = \pi_1 
\frac{3}{2}\pi_1 = \frac{1}{2}\pi_0 + \pi_2 
\pi_2 = \frac{1}{2}\pi_1 
\pi_0 + \pi_1 + \pi_2 = 1$$

(c) Solving the steady-state equations gives  $\pi = \left(\frac{4}{7}, \frac{2}{7}, \frac{1}{7}\right)$ .

# **CHAPTER 17: QUEUEING THEORY**

#### 17.2-1.

A typical barber shop is a queueing system with input source being the population having hair, customers being the people who want haircut and servers being the barbers. The queue forms as customers wait for a barber to serve them. The customers are served usually with the first-come-first-served discipline. The service mechanism involves the barbers and equipment.

#### 17.2-2.

(a) Average number of customers in the shop, including those getting their haircut:

$$L = 0\left(\frac{1}{16}\right) + 1\left(\frac{4}{16}\right) + 2\left(\frac{6}{16}\right) + 3\left(\frac{4}{16}\right) + 4\left(\frac{1}{16}\right) = 2$$

| (b) | n | # in queue | probability | product |
|-----|---|------------|-------------|---------|
|     | 0 | 0          |             |         |
| •   | 1 | 0          |             |         |
| •   | 2 | 0          |             |         |
| •   | 3 | 1          | 0.25        | 0.25    |
| •   | 4 | 2          | 0.0625      | 0.125   |

Average number of customers waiting in the shop:  $L_q = 0.375$ 

(c) Expected number of customers being served: 
$$\frac{4}{16} + 2\left(\frac{6}{16} + \frac{4}{16} + \frac{1}{16}\right) = \frac{13}{8}$$

(d) 
$$W=\frac{L}{\lambda}=\frac{2}{4}=0.5 \text{ hours}=30 \text{ minutes}$$
 
$$W_q=\frac{L_q}{\lambda}=\frac{0.375}{4}=0.094 \text{ hours}=5.625 \text{ minutes}$$

Hence, each customer will be in the shop for half an hour on the average. This includes the time to get a haircut. The average waiting time for a customer before getting a haircut is 5.625 minutes.

(e) 
$$W - W_q = 0.406 \text{ hours} = 24.36 \text{ minutes}$$

#### 17.2-3.

(a) A parking lot is a queueing system for providing parking. The customers are the cars and the servers are the parking spaces. The service time is the amount of time a car stays parked in a space and the queue capacity is zero.

(b) 
$$L = 0(0.1) + 1(0.2) + 2(0.4) + 3(0.3) = 1.9 \text{ cars}$$
  $L_q = 0 \text{ cars}$   $W = \frac{L}{\lambda} = \frac{1.9}{2} = 0.95 \text{ hours}$   $W_q = \frac{L_q}{\lambda} = \frac{0}{2} = 0 \text{ hours}$ 

(c) A car spends an average of 57 minutes in a parking space.

#### 17.2-4.

- (a) FALSE. The queue is where customers wait before being served.
- (b) FALSE. Queueing models conventionally assume infinite capacity.
- (c) TRUE. The most common is first-come-first-served.

## 17.2-5.

- (a) A bank is a queueing system with people as the customers and tellers as the servers.
- (b)  $W_q=1 \text{ minute}$   $W=W_q+\frac{1}{\mu}=1+2=3 \text{ minutes}$   $L_q=\lambda W_q=\frac{40}{60}(1)=0.667 \text{ customers}$   $L=\lambda W=\frac{40}{60}(3)=2 \text{ customers}$

## 17.2-6.

The utilization factor  $\rho$  represents the fraction of time that the server is busy. The server is busy except when there is nobody in the system.  $P_0$  is the probability of having zero customers in the system, so  $\rho = 1 - P_0$ .

#### 17.2-7.

$$\lambda_2 = 2\lambda_1, \mu_2 = 2\mu_1, L_2 = 2L_1 \Rightarrow \frac{W_1}{W_2} = \frac{L_1/\lambda_1}{L_2/\lambda_2} = 1$$

## 17.2-8.

(a)

$$L = \begin{cases} L_q & \text{when nobody is in the system} \\ L_q + 1 & \text{otherwise} \end{cases}$$

$$\Rightarrow L = P_0 L_q + (1 - P_0)(L_q + 1) = L_q + (1 - P_0)$$

(b) 
$$L = \lambda W = \lambda (W_q + 1/\mu) = \lambda W_q + \lambda/\mu = L_q + \rho$$

(c) 
$$L = L_q + \rho = L_q + (1 - P_0) \Rightarrow \rho = (1 - P_0)$$

#### 17.2-9.

$$L = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{s-1} n P_n + \sum_{n=s}^{\infty} n P_n = \sum_{n=0}^{s-1} n P_n + \sum_{n=s}^{\infty} (n-s) P_n + \sum_{n=s}^{\infty} s P_n$$
$$= \sum_{n=0}^{s-1} n P_n + L_q + s \sum_{n=s}^{\infty} P_n = \sum_{n=0}^{s-1} n P_n + L_q + s \left(1 - \sum_{n=0}^{s-1} P_n\right)$$

## 17.3-1.

| Part | Customers                      | Servers                  |
|------|--------------------------------|--------------------------|
| (a)  | Customers waiting for checkout | Checkers                 |
| (b)  | Fires                          | Firefighting units       |
| (c)  | Cars                           | Toll collectors          |
| (d)  | Broken bicycles                | Bicycle repairpersons    |
| (e)  | Ships to be loaded or unloaded | Longshoremen & equipment |
| (f)  | Machines needing operator      | Operator                 |
| (g)  | Materials to be handled        | Handling equipment       |
| (h)  | Calls for plumbers             | Plumbers                 |
| (i)  | Custom orders                  | Customized process       |
| (j)  | Typing requests                | Typists                  |

## 17.4-1.

$$\lambda_n = 1/2 \text{ for } n \ge 0 \text{ and } \mu_n = \left\{ egin{array}{ll} 1/2 & \text{for } n = 1 \\ 1 & \text{for } n \ge 2 \end{array} \right.$$

- (a)  $P\{\text{next arrival before 1:00}\} = 1 e^{-1/2} = 0.393$   $P\{\text{next arrival between 1:00 and 2:00}\} = (1 e^{-(1/2) \cdot 2})(1 e^{-1/2}) = 0.239$   $P\{\text{next arrival after 2:00}\} = e^{-(1/2) \cdot 2} = 0.368$
- (b) Probability that the next arrival will occur between 1:00 and 2:00 given no arrivals between 12:00 and 1:00 is  $(1 e^{-1/2}) = 0.393$ .
- (c)  $P\{\text{no arrivals between 1:00 and 2:00}\} = \frac{(\lambda t)^0 e^{-\lambda t}}{0!} = e^{-1/2} = 0.607$   $P\{\text{one arrival between 1:00 and 2:00}\} = \frac{(\lambda t)^1 e^{-\lambda t}}{1!} = \frac{1}{2}e^{-1/2} = 0.303$   $P\{\text{two or more arrivals between 1:00 and 2:00}\} = 1 e^{-1/2} \frac{1}{2}e^{-1/2} = 0.09$
- (d)  $P\{\text{none served by 2:00}\} = e^{-1} = 0.368$   $P\{\text{none served by 1:10}\} = e^{-1(1/10)} = 0.846$   $P\{\text{none served by 1:01}\} = e^{-1(1/60)} = 0.983$

## 17.4-2.

$$\lambda_n = 2 \text{ for } n \ge 0 \Rightarrow P\{n \text{ arrivals in an hour}\} = \frac{2^n e^{-2}}{n!}$$

- (a)  $P\{0 \text{ arrivals in an hour}\} = \frac{2^0 e^{-2}}{0!} = 0.135$
- (b)  $P\{2 \text{ arrivals in an hour}\} = \frac{2^2 e^{-2}}{2!} = 0.270$
- (c)  $P\{5 \text{ or more arrivals in an hour}\} = 1 \sum_{n=0}^{4} P\{n \text{ arrivals in an hour}\}$ =  $1 - e^{-2} - 2e^{-2} - (4/3)e^{-2} - (2/3)e^{-2} = 0.527$

#### 17.4-3.

Expected pay: 
$$100 \cdot P\{T < 2\} + 80 \cdot P\{T > 2\} = 100 - 20 \cdot P\{T > 2\}$$

$$P\{T_{\text{old}} > 2\} = e^{-\frac{1}{4} \cdot 2} = 0.607$$

$$P\{T_{\text{special}} > 2\} = e^{-\frac{1}{2} \cdot 2} = 0.368$$

Expected increase in pay:  $20[P\{T_{\text{old}} > 2\} - P\{T_{\text{special}} > 2\}] = 4.78$ 

#### 17.4-4.

Given the memoryless property, the system becomes a two-server after the first completion occurs. Let T be the amount of time after t=1 until the next service completion occurs.

$$P\{T < t\} = P\{\min(T_2, T_3) < t\}$$

By Property 3, T has an exponential distribution with mean 0.5/2 = 0.25.

#### 17.4-5.

By memoryless property,  $U = \min(T_1, T_2, T_3)$ , where  $T_1 \sim \operatorname{Exp}(1/30)$ ,  $T_2 \sim \operatorname{Exp}(1/20)$ , and  $T_3 \sim \operatorname{Exp}(1/15)$ . By Property 3

$$U \sim \text{Exp}\left(\frac{1}{30} + \frac{1}{20} + \frac{1}{15}\right) = \text{Exp}(0.15).$$

Then, the expected waiting time is  $1/0.15 \approx 6.67$  minutes.

#### 17.4-6.

- (a) From aggregation property of Poisson process, the arrival process does still have a Poisson distribution with mean rate 10 per hour, so the distribution of the time between consecutive arrivals is exponential with a mean of 0.1 hours = 6 minutes.
- (b) The waiting time of this type 2 customer is the minimum of two exponential random variables, so by Property 3, it is exponentially distributed with a mean of 5 minutes.

#### 17.4-7.

- (a) This customer's waiting time is exponentially distributed with a mean of 5 minutes.
- (b) The total waiting time of the customer in the system is  $W = W_q + T_s$ , where  $W_q$  and  $T_s$  are independent from each other.

$$E(W) = E(W_q) + E(T_s) = 5 + 10 = 15 \text{ minutes} = 1/4 \text{ hour}$$

$$\operatorname{var}(\mathcal{W}) = \operatorname{var}(\mathcal{W}_q) + \operatorname{var}(T_s) = \left(\frac{1}{12}\right)^2 + \left(\frac{1}{6}\right)^2 = 0.0347$$

(c) 
$$\overline{\mathcal{W}} = 5 + \mathcal{W} \Rightarrow E(\overline{\mathcal{W}}) = 20 \text{ minutes, } var(\overline{\mathcal{W}}) = 0.0347$$

#### 17.4-8.

- (a) FALSE.  $E(T) = 1/\alpha$  and  $var(T) = 1/\alpha^2$ , p.775.
- (b) FALSE. "The exponential distribution clearly does not provide a close approximation to the service-time distribution for this type of situation," second paragraph, p.776.
- (c) FALSE. A new arrival would have an expected waiting time, before entering service of  $1/n\mu$ , second last paragraph, p.777.

#### 17.4-9.

Let 
$$U = \min\{T_1, \dots, T_n\}$$
.  

$$P\{U = T_j\} = \int_0^\infty P\{T_j < T_i \text{ for all } i \neq j | T_j = t\} \alpha_j e^{-\alpha_j t} dt$$

$$= \int_0^\infty e^{-t\sum_{i=1}^n \alpha_i} e^{\alpha_j t} \alpha_j e^{-\alpha_j t} dt = \alpha_j \int_0^\infty e^{-t\sum_{i=1}^n \alpha_i} dt = \frac{\alpha_j}{\sum_{i=1}^n \alpha_i}$$

## 17.5-1.

(a)

(b)
$$P_{1} = \frac{\lambda_{0}}{\mu_{1}} P_{0} = \frac{3}{2} P_{0}$$

$$P_{2} = \frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}} P_{0} = \frac{3}{2} P_{0}$$

$$P_{3} = \frac{\lambda_{0} \lambda_{1} \lambda_{2}}{\mu_{1} \mu_{2} \mu_{3}} P_{0} = \frac{3}{4} P_{0}$$

$$P_{4} = P_{5} = \dots = 0$$

$$P_{0} + P_{1} + P_{2} + P_{3} = \left(1 + \frac{3}{2} + \frac{3}{2} + \frac{3}{4}\right) P_{0} = 1$$

$$\Rightarrow P_{0} = \frac{4}{19}, P_{1} = P_{2} = \frac{12}{38}, P_{3} = \frac{6}{38}$$

(c) 
$$L = \sum_{n=0}^{\infty} n P_n = 0 \cdot P_0 + 1 \cdot P_1 + 2 \cdot P_2 + 3 \cdot P_3 = \frac{27}{19} = 1.421$$

$$L_q = \sum_{n=1}^{\infty} (n-1) P_n = 0 \cdot P_1 + 1 \cdot P_2 + 2 \cdot P_3 = \frac{12}{19} = 0.632$$

$$\overline{\lambda} = \sum_{n=0}^{\infty} \lambda_n P_n = 3 \cdot P_0 + 2 \cdot P_1 + 1 \cdot P_2 + 0 \cdot P_3 = \frac{30}{19} = 1.579$$

$$W = \frac{L}{\overline{\lambda}} = \frac{27/19}{30/19} = 0.9$$

$$W_q = \frac{L_q}{\overline{\lambda}} = \frac{12/19}{30/19} = 0.4$$

## 17.5-2.

(a)

$$0 \xrightarrow{4} 1 \xrightarrow{2} 2$$

(b) 
$$4P_0 = 4P_1, 6P_1 = 4P_0 + 6P_2, 6P_2 = 2P_1, P_0 + P_1 + P_2 = 1$$

(c) 
$$P_0 = P_1 = \frac{3}{7}, P_2 = \frac{1}{7}$$

(d)

$$P_{1} = \frac{\lambda_{0}}{\mu_{1}} P_{0} = P_{0}, P_{2} = \frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}} P_{0} = \frac{1}{3} P_{0}$$

$$P_{0} + P_{1} + P_{2} = \left(1 + 1 + \frac{1}{3}\right) P_{0} = 1 \Rightarrow P_{0} = P_{1} = \frac{3}{7}, P_{2} = \frac{1}{7}$$

$$L = \sum_{n=0}^{\infty} n P_{n} = 0 \cdot P_{0} + 1 \cdot P_{1} + 2 \cdot P_{2} = \frac{5}{7}$$

$$L_{q} = \sum_{n=1}^{\infty} (n - 1) P_{n} = 0 \cdot P_{1} + 1 \cdot P_{2} = \frac{1}{7}$$

$$\overline{\lambda} = \sum_{n=0}^{\infty} \lambda_{n} P_{n} = 4 \cdot P_{0} + 2 \cdot P_{1} = \frac{18}{7}$$

$$W = \frac{L}{\overline{\lambda}} = \frac{5}{18}$$

$$W_{q} = \frac{L_{q}}{\overline{\lambda}} = \frac{1}{18}$$

17.5-3.

(a)

(b) 
$$(1) 2P_0 = 3P_1$$

(2) 
$$2P_0 + 4P_2 = 6P_1$$

(3) 
$$3P_1 + P_3 = 6P_2$$

$$(4) 2P_2 + 2P_4 = 2P_3$$

(5) 
$$P_3 = 2P_4$$

(6) 
$$P_0 + P_1 + P_2 + P_3 + P_4 = 1$$

(c)

$$(1) \Rightarrow P_1 = \frac{2}{3}P_0$$

$$(2) \Rightarrow P_2 = \left(6 \cdot \frac{2}{3}P_0 - 2P_0\right)/4 = \frac{1}{2}P_0$$

$$(3) \Rightarrow P_3 = \left(6 \cdot \frac{1}{2}P_0 - 3 \cdot \frac{2}{3}P_0\right) = P_0$$

$$(4) \Rightarrow P_4 = \left(2P_0 - 2 \cdot \frac{1}{2}P_0\right)/2 = \frac{1}{2}P_0$$

$$(5) \Rightarrow P_0 + \frac{2}{3}P_0 + \frac{1}{2}P_0 + P_0 + \frac{1}{2}P_0 = 1$$

$$\Rightarrow P_0 = P_3 = \frac{3}{11}, P_1 = \frac{2}{11}, P_2 = P_4 = \frac{3}{22}$$

(d)

$$P_1 = \frac{\lambda_0}{\mu_1} P_0 = \frac{2}{3} P_0$$

$$P_2 = \frac{\lambda_0 \lambda_1}{\mu_1 \mu_2} P_0 = \frac{1}{2} P_0$$

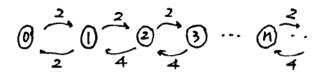
$$P_3 = \frac{\lambda_0 \lambda_1 \lambda_2}{\mu_1 \mu_2 \mu_3} P_0 = P_0$$

$$P_4 = \frac{\lambda_0 \lambda_1 \lambda_2 \lambda_3}{\mu_1 \mu_2 \mu_3 \mu_4} P_0 = \frac{1}{2} P_0$$

$$P_0 + P_1 + P_2 + P_3 = 1 \Rightarrow P_0 = P_3 = \frac{3}{11}, P_1 = \frac{2}{11}, P_2 = P_4 = \frac{3}{22}$$

$$L = \sum_{n=0}^{\infty} n P_n = 0 \cdot P_0 + 1 \cdot P_1 + 2 \cdot P_2 + 3 \cdot P_3 + 4 \cdot P_4 = \frac{20}{11}$$

$$L_q = \sum_{n=1}^{\infty} (n-1)P_n = 0 \cdot P_1 + 1 \cdot P_2 + 2 \cdot P_3 + 3 \cdot P_4 = \frac{12}{11}$$


$$\overline{\lambda} = \sum_{n=0}^{\infty} \lambda_n P_n = 2 \cdot P_0 + 3 \cdot P_1 + 2 \cdot P_2 + 1 \cdot P_3 = \frac{18}{11}$$

$$W = \frac{L}{\lambda} = \frac{10}{9}$$

$$W_q = \frac{L_q}{\overline{\lambda}} = \frac{2}{3}$$

## 17.5-4.

(a)



(b) 
$$P_{1} = \frac{\lambda_{0}}{\mu_{1}} P_{0} = P_{0}$$

$$P_{2} = \frac{\lambda_{0} \lambda_{1}}{\mu_{1} \mu_{2}} P_{0} = \frac{1}{2} P_{0}$$

$$\vdots$$

$$P_{n} = \frac{\lambda_{0} \lambda_{1} \cdots \lambda_{n-1}}{\mu_{1} \mu_{2} \cdots \mu_{n}} P_{0} = \left(\frac{1}{2}\right)^{n-1} P_{0}$$

$$\sum_{n=0}^{\infty} P_{n} = P_{0} + \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n-1} P_{0} = 3P_{0} = 1 \Rightarrow P_{0} = \frac{1}{3}, P_{n} = \frac{1}{3} \cdot \left(\frac{1}{2}\right)^{n-1}$$

(c) The mean arrival rate to the system and the mean service rate for each server when it is busy serving customers are both 2.

## 17.5-5.

(a)

(b) 
$$(1) 15P_0 = 15P_1$$

$$(2)\ 15P_0 + 15P_2 = 25P_1$$

$$(3)\ 10P_1 + 15P_3 = 20P_2$$

$$(4) 5P_2 = 15P_3$$

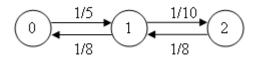
$$(5) P_0 + P_1 + P_2 + P_3 = 1$$

(c) 
$$(1) \Rightarrow P_1 = P_0$$

$$(2) \Rightarrow P_2 = (2/3)P_0$$

$$(3) \Rightarrow P_3 = (2/9)P_0$$

$$(5) \Rightarrow P_0 = P_1 = \frac{9}{26}, P_2 = \frac{3}{13}, P_3 = \frac{1}{13}$$


The same equations can be obtained as follows:

$$P_1 = \frac{\lambda_0}{\mu_1} P_0 = P_0, \ P_2 = \frac{\lambda_0 \lambda_1}{\mu_1 \mu_2} P_0 = \frac{2}{3} P_0, \ P_3 = \frac{\lambda_0 \lambda_1 \lambda_2}{\mu_1 \mu_2 \mu_3} P_0 = \frac{2}{9} P_0.$$

(d) 
$$L = 0 \cdot P_0 + 1 \cdot P_1 + 2 \cdot P_2 + 3 \cdot P_3 = \frac{27}{26} = 1.04$$
 
$$\overline{\lambda} = 15 \cdot P_0 + 10 \cdot P_1 + 5 \cdot P_2 = \frac{255}{26} = 9.81$$
 
$$W = \frac{L}{\overline{\lambda}} = \frac{9}{85} = 0.106 \text{ hours}$$

## 17.5-6.

(a) Let the state represent the number of machines that are broken down.



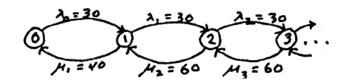
(b) 
$$P_1 = \frac{8}{5}P_0, P_2 = \frac{32}{25}P_0, P_0 + P_1 + P_2 = 1$$
 
$$\Rightarrow P_0 = \frac{25}{97}, P_1 = \frac{40}{97}, P_2 = \frac{32}{97}$$

(c) 
$$\overline{\lambda} = \frac{1}{5} \cdot P_0 + \frac{1}{10} \cdot P_1 = \frac{9}{97} = 0.093$$
 
$$L = 0 \cdot P_0 + 1 \cdot P_1 + 2 \cdot P_2 = \frac{104}{97} = 1.072$$
 
$$L_q = 0 \cdot P_1 + 1 \cdot P_2 = \frac{32}{97} = 0.330$$
 
$$W = \frac{L}{\overline{\lambda}} = \frac{104}{9} \approx 11.556 \text{ hours}$$
 
$$W_q = \frac{L_q}{\overline{\lambda}} = \frac{32}{9} \approx 3.556 \text{ hours}$$

(d) 
$$P_1 + P_2 = \frac{72}{97} = 0.742$$

(e) 
$$P_0 + \frac{1}{2}P_1 = \frac{45}{97} = 0.464$$

(f) The birth-and-death process is a special case of continuous time Markov chains. **17.5-7.** 


(a)



(b) 
$$\mu P_1 = \lambda P_0$$
  
 $\lambda P_0 + (\mu + \theta) P_2 = (\mu + \lambda) P_1$   
 $\vdots$   
 $\lambda P_{n-1} + (\mu + n\theta) P_{n+1} = (\mu + \lambda + (n-1)\theta) P_n$ 

17.5-8.

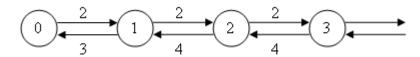
(a)



(b)
$$P_{0} = \left[1 + \sum_{n=1}^{\infty} \frac{\lambda^{n}}{\mu_{1} \mu_{2}^{n-1}}\right]^{-1} = \left[1 + \frac{\lambda}{\mu_{1}} \sum_{n=1}^{\infty} \left(\frac{\lambda}{\mu_{2}}\right)^{n-1}\right]^{-1}$$

$$= \left[1 + \frac{\lambda}{\mu_{1}} \left(\frac{1}{1 - \frac{\lambda}{\mu_{2}}}\right)\right]^{-1} = \left[1 + \frac{3}{4} \left(\frac{1}{1 - \frac{1}{2}}\right)\right]^{-1} = 0.4$$

$$P_{n} = \frac{\lambda^{n}}{\mu_{1} \mu_{2}^{n-1}} P_{0} = \frac{3}{5} \left(\frac{1}{2}\right)^{n} \text{ for } n \ge 1$$


(c) 
$$L = \sum_{n=0}^{\infty} n P_n = \frac{3}{5} \sum_{n=1}^{\infty} n \left(\frac{1}{2}\right)^n = \frac{3}{5} \cdot \frac{1}{2} \cdot \frac{1}{\left(1 - \frac{1}{2}\right)^2} = \frac{6}{5}$$

$$L_q = L - (1 - P_0) = \frac{3}{5}$$

$$W = \frac{L}{\lambda} = \frac{1}{25}, W_q = \frac{L_q}{\lambda} = \frac{1}{50}$$

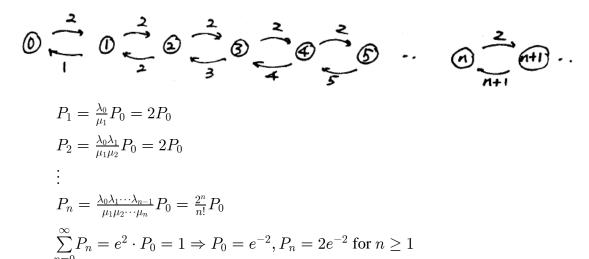
17.5-9.

(a) Let the state represent the number of documents received, but not completed.



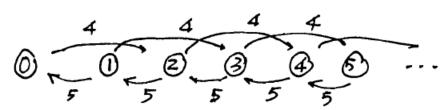
(b)  $P_n$  below corresponds to the steady-state probability that n documents are received but not completed.

$$P_{1} = \frac{2}{3}P_{0}, P_{2} = \frac{2}{3}\left(\frac{1}{2}\right)P_{0}, \dots, P_{n} = \frac{2}{3}\left(\frac{1}{2}\right)^{n-1}P_{0}$$


$$\sum_{n=0}^{\infty} P_{n} = \left(1 + \sum_{n=1}^{\infty} \frac{2}{3}\left(\frac{1}{2}\right)^{n-1}\right)P_{0} = \frac{7}{3}P_{0} = 1 \Rightarrow P_{0} = \frac{3}{7}, P_{n} = \frac{4}{7}\left(\frac{1}{2}\right)^{n}$$

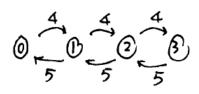
(c) 
$$L = \sum_{n=0}^{\infty} n P_n = \frac{4}{7} \sum_{n=1}^{\infty} n \left(\frac{1}{2}\right)^n = \frac{4}{7} \cdot \frac{1}{2} \cdot \frac{1}{\left(1 - \frac{1}{2}\right)^2} = \frac{8}{7}$$

$$L_q = \sum_{n=1}^{\infty} (n-1) P_n = L - (1 - P_0) = \frac{4}{7}$$


$$W = \frac{L}{\lambda} = \frac{4}{7}, \quad W_q = \frac{L_q}{\lambda} = \frac{2}{7}$$

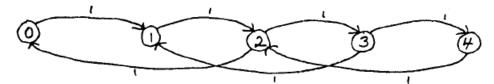
## 17.5-10.




## 17.5-11.

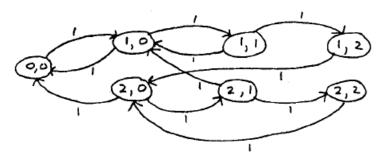
(a)




(b) 
$$5P_1 = 4P_0$$
  
 $5P_2 = 9P_1$   
 $5P_3 + 4P_0 = 9P_2$   
 $\vdots$   
 $5P_{n+1} + 4P_{n-2} = 9P_n$ 

(c)




## 17.5-12.

(a) Let n be the number of customers in the system.



Balance equations:  $P_0 = P_2$ ,  $P_1 = P_0 + P_3$ ,  $2P_2 = P_1 + P_4$ ,  $2P_3 = P_2$ ,  $P_4 = P_3$ 

(b) Let the state (s, q) be the number of customers in service and in queue respectively.



Balance equations:

$$P_{00} = P_{10} + P_{20}$$

$$2P_{10} = P_{00} + P_{11} + P_{21}$$


$$2P_{11} = P_{10}$$

$$2P_{20} = P_{12} + P_{22}$$

$$2P_{21} = P_{20}, P_{21} = P_{22}$$

# **17.5-13.**

(a) Let the state  $(n_1, n_2)$  be the number of type 1 and type 2 customers in the systems.



(b) Balance equations:

(b) Balance equations: 
$$12P_{01} = 5P_{00}$$
 
$$15P_{00} = 12(P_{01} + P_{10})$$
 
$$22P_{10} = 10P_{00} + 24P_{20}$$
 
$$24P_{20} = 10P_{10}$$
 
$$P_{00} + P_{10} + P_{01} + P_{20} = 1$$
 (c) 
$$P_{00} = \frac{72}{187}, P_{10} = \frac{60}{187}, P_{01} = \frac{30}{187}, P_{20} = \frac{25}{187}$$

(d) Type 1 customers are blocked when the system is in state (2,0) or (0,1), so the fraction of type 1 customers who cannot enter the system is  $P_{20} + P_{01} = 55/187$ . Type 2 customers are blocked when the system is in state (2,0), (0,1) or (1,0), so the fraction of type 2 arrivals that are blocked is  $P_{20} + P_{10} + P_{01} = 115/187$ .

#### 17.6-1.

KeyCorp deploys queueing theory as part of its Service Excellence Management System (SEMS) to improve productivity and service in its branches. The main objective of this study is to enhance customer satisfaction by reducing wait times without increasing the staffing costs. To do this, first a system that collects data about various phases of customer transactions is developed. Then, a preliminary analysis is conducted to determine the number of tellers required for at most 10% of customers to wait more than five minutes. The underlying model is an M/M/k queue with an average service time of 246 seconds. The arrival and service rates,  $\lambda$  and  $\mu$  are estimated from the data. By using steady state equations, measures such as average queue length, average waiting time, and probability of having zero customers waiting are computed. The analysis revealed that with the current service time, the bank needed over 500 new employees. Hiring so many new tellers was too costly and physically impossible. Alternatively, the bank could achieve its goal by reducing the average service time. The investigation of the collected data helped to identify potential improvements in service. Accordingly, customer processing is reengineered, proficiency of tellers is improved and efficient schedules are obtained. Heuristic algorithms are incorporated in the model to make it more realistic.

The model allowed KeyCorp to reduce the processing time by 53%. As a result of this, the customer wait time has decreased and the percentage of customers who wait more than five minutes is reduced to 4%. In addition to increased customer satisfaction, the new system resulted in the reduction of operating costs. Savings from personnel expenses is estimated to be \$98 million over five years whereas the cost of the new system was only half a million dollars. The reports generated from the data are used in obtaining better schedules and identifying service components that are open to improvement. Efficient scheduling and reduced personnel released 15% of the capacity, which can now be used for more profitable investments. KeyCorp also gained more credibility by using a systematic approach in making decisions. KeyCorp management, customers, employees and shareholders all benefit from this study.

#### 17.6-2.

(a) M/M/1 queue with 
$$\lambda = 2, \mu = 4 \Rightarrow \rho = 1/2$$
  
  $\Rightarrow P_0 = 1 - \rho = 1/2 \text{ and } P_n = (1 - \rho)\rho^n = (1/2)^{n+1}$ 

Proportion of the time the storage space will be adequate:  $\sum_{n=0}^{4} P_n = 31/32 = 0.97$ 

(b)  $P_0 = 0.5$   $P_1 = 0.25$   $P_2 = 0.125$   $P_3 = 0.0625$   $P_4 = 0.03125$ 

Total = 0.97

#### 17.6-3.

 $\lambda=30, \mu=50 \Rightarrow \rho=0.6, P_0=1-\rho=0.4$  (proportion of time no one is waiting) **17.6-4.** 

(a) 
$$\mathcal{W} \sim \operatorname{Exp}(\mu - \lambda), W = \frac{1}{\mu - \lambda}, P\{\mathcal{W} > W\} = (\mu - \lambda)e^{-\frac{\mu - \lambda}{\mu - \lambda}} = (\mu - \lambda)/e$$

$$(b) \qquad W_q = \frac{\lambda}{\mu(\mu - \lambda)}$$
 
$$\mathcal{W}_q(t) = \begin{cases} 1 - \rho & \text{if } t \le 0 \\ 1 - \rho e^{-\mu(1 - \rho)t} & \text{if } t > 0 \end{cases}$$
 
$$P\{\mathcal{W}_q > W_q\} = 1 - \mathcal{W}_q(W_q) = \rho e^{-\frac{\mu(1 - \rho)\lambda}{\mu(\mu - \lambda)}} = \frac{\lambda}{\mu} e^{-\lambda/\mu}$$

#### 17.6-5.

Use the equalities  $P_0 = 1 - \frac{\lambda}{\mu}$  and  $W_q = \frac{\lambda}{\mu(\mu - \lambda)}$ .

$$\frac{(1-P_0)^2}{W_q P_0} = \frac{\left(\frac{\lambda}{\mu}\right)^2}{\frac{\lambda}{\mu(\mu-\lambda)}(1-\frac{\lambda}{\mu})} = \frac{\left(\frac{\lambda}{\mu}\right)^2}{\frac{\lambda}{\mu^2}} = \lambda$$

$$\frac{1-P_0}{W_q P_0} = \frac{\frac{\lambda}{\mu}}{\frac{\lambda}{\mu(\mu-\lambda)}(1-\frac{\lambda}{\mu})} = \frac{\frac{\lambda}{\mu}}{\frac{\lambda}{\mu^2}} = \mu$$

# 17.6-6.

The system without the storage restriction is an M/M/1 queue with  $\lambda=4$  and  $\mu=5$ . The proportion of the time that n square feet floor space is adequate for waiting jobs is  $\sum_{i=0}^{n+1} P_i$ . Hence, the goal is to find  $n_j$  such that  $\sum_{i=0}^{n_j+1} P_i \ge q_j$  for j=1,2,3 and  $q_1=0.5, q_2=0.9, q_3=0.99$ .

$$\sum_{i=0}^{n_j+1} P_i \ge q_j \Leftrightarrow \sum_{i=0}^{n_j+1} (1-\rho)\rho^i \ge q_j \Leftrightarrow (1-\rho)\left(\frac{1-\rho^{n_j+2}}{1-\rho}\right) \ge q_j \Leftrightarrow \rho^{n_j+2} \le 1-q_j$$

$$\Leftrightarrow (n_j + 2) \ln \rho \le \ln (1 - q_j) \Leftrightarrow n_j \ge \frac{\ln (1 - q_j)}{\ln \rho} - 2, \ \rho = 0.8$$

| Part | $q_{j}$ | $rac{\ln{(1-q_j)}}{\ln{ ho}}-2$ | Floor space required |
|------|---------|----------------------------------|----------------------|
| (a)  | 0.5     | 1.106                            | 2                    |
| (b)  | 0.9     | 8.319                            | 9                    |
| (c)  | 0.99    | 18.638                           | 19                   |

#### 17.6-7.

- (a) TRUE. A customer does not wait before the service begins if and only if there is no one in the system, so the long-run probability that the customer does not wait is  $1 P_0 = \rho$ .
- (b) FALSE. The expected number of customers in the system is  $L = \rho/(1-\rho)$ , so it is not proportional to  $\rho$ .
- (c) FALSE. When  $\rho$  is increased from 0.9 to 0.99, L increases from 9 to 99. When it is increased from 0.99 to 0.999, L increases from 99 to 999.

#### **17.6-8.**

- (a) FALSE. A temporary return to the state where no customers are present is possible.
- (b) TRUE. Since  $\lambda > \mu$ , the queue grows without bound.
- (c) TRUE. Since  $\lambda < 2\mu$ , the system can reach steady-state conditions.

# 17.6-9.

- (a) TRUE. "W has an exponential distribution with parameter  $\mu(1-\rho)$ ," p.787.
- (b) FALSE. " $W_q$  does not quite have an exponential distribution, because  $P\{W_q = 0\} > 0$ ," p.787.
- (c) TRUE. " $S_{n+1}$  represents the conditional waiting time given n customers already in the system. As discussed in Sec. 17.7,  $S_{n+1}$  is known to have an Erlang distribution," p.787.

#### 17.6-10.

(a) 
$$L = \frac{\lambda}{\mu - \lambda} = \frac{20}{30 - 20} = 2$$
 customers,  $W = \frac{1}{\mu - \lambda} = \frac{1}{30 - 20} = 0.1$  hours  $W_q = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{20}{30(30 - 20)} = \frac{1}{15}$  hours,  $L_q = \lambda W_q = 20 \cdot \frac{1}{15} = \frac{4}{3}$  customers  $P_0 = 1 - \rho = 1 - \frac{2}{3} = \frac{1}{3}$ ,  $P_1 = (1 - \rho)\rho = \frac{2}{9}$ ,  $P_2 = (1 - \rho)\rho^2 = \frac{4}{27}$ 

There is a 29.6% chance of having more than 2 customers at the checkout stand.

(b) Time in minutes:

|                            | Data     |                     |
|----------------------------|----------|---------------------|
| λ =                        | 0.333333 | (mean arrival rate) |
| μ=                         | 0.5      | (mean service rate) |
| s=                         | 1        | (# servers)         |
|                            |          |                     |
| Pr(W > t) =                | 0.311403 |                     |
| when t =                   | 7        |                     |
|                            |          |                     |
| Prob(W <sub>q</sub> > t) = | 0.289732 |                     |
| when t =                   | 5        |                     |

|                  | Results     |
|------------------|-------------|
| L=               | 2           |
| _q=              | 1.333333333 |
| W =              | 6           |
| W <sub>q</sub> = | 4           |
| ρ=               | 0.666666667 |

| n | Ρ,          |
|---|-------------|
| 0 | 0.333333333 |
| 1 | 0.22222222  |
| 2 | 0.148148148 |
| 3 | 0.098765432 |
| 4 | 0.065843621 |
| 5 | 0.043895748 |

#### Time in hours:

|                   | Data     |                                         |
|-------------------|----------|-----------------------------------------|
| λ =               | 20       | (mean arrival rate)                     |
| μ=                | 30       | (mean service rate)                     |
| s=                | 1        | (# servers)                             |
|                   |          |                                         |
| Pr(W > t) =       |          |                                         |
| when t =          | 0.116667 |                                         |
|                   |          |                                         |
| $Prob(W_q > t) =$ | 0.289732 |                                         |
| when t =          | 0.083333 |                                         |
|                   |          | *************************************** |

|                         | Results                                |
|-------------------------|----------------------------------------|
| L=<br>L <sub>9</sub> =  | 1.333333333333333333333333333333333333 |
| W =<br>W <sub>q</sub> = | 0.1<br>0.066666667                     |
| ρ=                      | 0.666666667                            |

| n | P <b>,</b>  |   |
|---|-------------|---|
| 0 | 0.333333333 | ĺ |
| 1 | 0.22222222  | ľ |
| 2 | 0.148148148 | I |
| 3 | 0.098765432 | ľ |
| 4 | 0.065843621 | ľ |
| 5 | 0.043895748 | ľ |

(c) 
$$L = \frac{\lambda}{\mu - \lambda} = \frac{20}{40 - 20} = 1 \text{ customer}, W = \frac{1}{\mu - \lambda} = \frac{1}{40 - 20} = 0.05 \text{ hrs}$$
 
$$W_q = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{20}{40(40 - 20)} = 0.025 \text{ hrs}, L_q = \lambda W_q = 20 \cdot 0.025 = 0.5 \text{ customers}$$
 
$$P_0 = 1 - \rho = 1 - 0.5 = 0.5, P_1 = (1 - \rho)\rho = 0.25, P_2 = (1 - \rho)\rho^2 = 0.125$$

There is a 12.5% chance of having more than 2 customers at the checkout stand.

# (d) Time in hours:

|                   | Data     |                     |                  |         |          |          |
|-------------------|----------|---------------------|------------------|---------|----------|----------|
| λ =               | 20       | (mean arrival rate) |                  |         |          |          |
| μ=                | 40       | (mean service rate) |                  | Results |          |          |
| s=                | 1        | (# servers)         | L=               | 1       |          | P        |
|                   |          |                     | L <sub>q</sub> = | 0.5     | [1]      |          |
| Pr(W > t) =       | 0.096972 |                     |                  |         | U        | 0.5      |
| when t =          | 0.116667 |                     | W =              | 0.05    |          | 0.25     |
|                   |          |                     | $W_q =$          | 0.025   | <u>4</u> | 0.125    |
| $Prob(W_q > t) =$ | 0.094438 |                     |                  |         | <u>-</u> | 0.0025   |
| when t =          | 0.083333 |                     | ρ=               | 0.5     | 5        | 0.015625 |

(e) The manager should hire another person to help the cashier by bagging the groceries.

#### **17.6-11.**

(a) All the criteria are currently satisfied.

|                            | Data     |                     |                       |   |                     |
|----------------------------|----------|---------------------|-----------------------|---|---------------------|
| λ =                        | 10       | (mean arrival rate) |                       |   |                     |
| μ=                         | 20       | (mean service rate) | Results               |   |                     |
| s=                         | 1        | (# servers)         | L= 1                  |   | Б :                 |
|                            |          |                     | L, = 0.5              | n | ۲,                  |
| Pr(W > t) =                | 0.006738 |                     |                       | 0 | 0.5                 |
| when t =                   |          |                     | W = 0.1               | 1 | 0.25                |
|                            |          |                     | W <sub>a</sub> = 0.05 | 2 | 0.125               |
| Prob(W <sub>q</sub> > t) = | 0.003369 |                     |                       | 3 | 0.0625              |
| when t =                   | 0.5      |                     | ρ= 0.5                | 5 | 0.03125<br>0.015625 |

$$P_0 + P_1 + P_2 + P_3 + P_4 + P_5 = 0.984$$

(b) None of the criteria are satisfied.

|                   | Data     |                     |        |                 |   |             |
|-------------------|----------|---------------------|--------|-----------------|---|-------------|
| λ =               | 15       | (mean arrival rate) |        |                 |   |             |
| μ=                | 20       | (mean service rate) |        | Results         |   |             |
| S=                | 1        | (# servers)         | I =    | 3]              |   |             |
|                   |          |                     | I =    | 2.25            | n | Ρ,          |
| Pr(W > t) =       | 0.082085 |                     | -9     | 20              | 0 | 0.25        |
| when t =          | 0.5      |                     | \\\\ = | n 2 <sup></sup> | 1 | 0.1875      |
|                   |          |                     | VA( =  | 0.15            | 2 | 0.140625    |
| $Prob(W_q > t) =$ | 0.061564 |                     | YYq-   | 0.13            | 3 | 0.10546875  |
| when t =          | 0.5      |                     | ·      | 0.75            | 4 | 0.079101563 |
| Wileli i –        |          | ,                   | ρ=     | 0.75            | 5 | 0.059326172 |

$$P_0 + P_1 + P_2 + P_3 + P_4 + P_5 = 0.822$$

(c) The first and third criteria are satisfied, but the second is not.

|                   | Data     |                     |                  |             |
|-------------------|----------|---------------------|------------------|-------------|
| λ =               | 25       | (mean arrival rate) |                  |             |
| μ=                | 20       | (mean service rate) |                  | Results     |
| s=                | 2        | (# servers)         | L=               | 2.051282051 |
|                   |          |                     | եզ=              | 0.801282051 |
| Pr(W > t) =       | 0.001022 |                     |                  |             |
| when t =          | 0.5      |                     | W =              | 0.082051282 |
|                   |          |                     | W <sub>q</sub> = | 0.032051282 |
| $Prob(W_q > t) =$ | 0.000266 |                     |                  |             |
| when t =          | 0.5      |                     | ρ=               | 0.625       |

$$P_0 + P_1 + P_2 + P_3 + P_4 + P_5 = 0.927$$

# 17.6-12.

(a) All the guidelines are currently met.

|                   | Data     |                     |
|-------------------|----------|---------------------|
| λ =               | 2        | (mean arrival rate) |
| μ=                | 1        | (mean service rate) |
| S=                | 4        | (# servers)         |
|                   |          |                     |
| Pr(W > t) =       | 0.007902 |                     |
| when t =          | 5        |                     |
|                   |          |                     |
| $Prob(W_q > t) =$ | 7.9E-06  |                     |
| when t =          | 5        |                     |

|                  | Results     |
|------------------|-------------|
| L=               | 2.173913043 |
| _q=              | 0.173913043 |
| W =              | 1.086956522 |
| W <sub>q</sub> = | 0.086956522 |
| ρ=               | 0.5         |

| n | Ρ,          |  |
|---|-------------|--|
| 0 | 0.130434783 |  |
| 1 | 0.260869565 |  |
| 2 | 0.260869565 |  |
| 3 | 0.173913043 |  |
| 4 | 0.086956522 |  |
| 5 | 0.043478261 |  |
| 6 | 0.02173913  |  |
| 7 | 0.010869565 |  |
| 8 | 0.005434783 |  |
| 9 | 0.002717391 |  |

$$\sum_{i=0}^{9} P_i = 0.997$$

(b) The first two guidelines will not be satisfied in a year, but the third will be.

|                   | Data     |                     |
|-------------------|----------|---------------------|
| λ =               | 3        | (mean arrival rate) |
| μ=                | 1        | (mean service rate) |
| s=                | 4        | (# servers)         |
|                   |          |                     |
| Pr(W > t) =       | 0.023901 |                     |
| when t =          | 5        |                     |
|                   |          |                     |
| $Prob(W_q > t) =$ | 0.003433 |                     |
| when t =          | 5        |                     |
|                   |          | ·····               |

|                  | Results     |    |
|------------------|-------------|----|
| L=               | 4.528301887 | ĺ. |
|                  | 1.528301887 |    |
| W =              | 1.509433962 |    |
| W <sub>q</sub> = | 0.509433962 |    |
| ρ=               | 0.75        |    |

| П | ' 1         |          |
|---|-------------|----------|
| 0 | 0.037735849 | Ï        |
| 1 | 0.113207547 | <u>.</u> |
| 2 | 0.169811321 |          |
| 3 | 0.169811321 | ľ        |
| 4 | 0.127358491 | ľ        |
| 5 | 0.095518868 | <u> </u> |
| 6 | 0.071639151 | ľ        |
| 7 | 0.053729363 | ľ        |
| 8 | 0.040297022 | ľ        |
| 9 | 0.030222767 | [        |
|   |             |          |

$$\sum_{i=0}^{9} P_i = 0.909$$

(c) Five tellers are needed in a year.

# 17.6-13.

| (a) | λ    | L  | $L_q$ | W   | $W_q$ | $P\{\mathcal{W} > 5\}$ |
|-----|------|----|-------|-----|-------|------------------------|
|     | 0.5  | 1  | 0.50  | 2   | 1     | 0.082                  |
|     | 0.9  | 9  | 8.10  | 10  | 9     | 0.607                  |
|     | 0.99 | 99 | 98.01 | 100 | 99    | 0.951                  |

(b)

| λ    | $\lambda/\mu$ | ρ    | $P_0$  | L      | $L_q$  | W       | $W_q$  | $P\{\mathcal{W} > 5\}$ |
|------|---------------|------|--------|--------|--------|---------|--------|------------------------|
| 0.5  | 1             | 0.5  | 0.3333 | 1.333  | 0.333  | 2.667   | 0.667  | 0.150                  |
| 0.9  | 1.8           | 0.9  | 0.0526 | 9.474  | 7.674  | 10.526  | 8.526  | 0.641                  |
| 0.99 | 1.98          | 0.99 | 0.0050 | 99.497 | 97.517 | 100.509 | 98.503 | 0.956                  |

# 17.6-14.

|                            | Data     |                     |                  |             |   |             |
|----------------------------|----------|---------------------|------------------|-------------|---|-------------|
| λ =                        | 10       | (mean arrival rate) |                  |             |   |             |
| μ=                         |          | (mean service rate) |                  | Results     |   |             |
| s=                         | 1        | (# servers)         | L=               | 5           |   |             |
|                            |          |                     | Lq =             | 4.166666667 |   |             |
| Pr(W > t) =                | 2.06E-09 |                     |                  |             | n | Р,          |
| when t =                   | 10       |                     | W =              | 0.5         |   | 0.166666667 |
|                            |          |                     | W <sub>q</sub> = | 0.416666667 | 1 | 0.138888889 |
| Prob(W <sub>q</sub> > t) = | 0.833333 |                     |                  |             | 2 | 0.115740741 |
| when t =                   | 0        |                     | ρ=               | 0.833333333 | 3 | 0.096450617 |

 $P_0 + P_1 = 0.306$ 

|                            | Data     |                     |
|----------------------------|----------|---------------------|
| λ =                        | 10       | (mean arrival rate) |
| μ=                         | 12       | (mean service rate) |
| s=                         | 2        | (# servers)         |
|                            |          |                     |
| Pr(W > t) =                | 1.89E-52 |                     |
| when t =                   | 10       |                     |
|                            |          |                     |
| Prob(W <sub>q</sub> > t) = | 0.245098 |                     |
| when t =                   | 0        |                     |

|                  | Results     |
|------------------|-------------|
| L=               | 1.008403361 |
| =                | 0.175070028 |
| W =              | 0.100840336 |
| W <sub>q</sub> = | 0.017507003 |
| ρ=               | 0.416666667 |

| n | ₽,          | - |
|---|-------------|---|
| 0 | 0.411764706 | Ϊ |
| 1 | 0.343137255 | ľ |
| 2 | 0.142973856 | [ |
| 3 | 0.05957244  |   |

# $P_0 + P_1 + P_2 = 0.898$

|                            | Data     |                     |
|----------------------------|----------|---------------------|
| λ =                        | 10       | (mean arrival rate) |
| μ=                         | 12       | (mean service rate) |
| s=                         | 3        | (# servers)         |
|                            |          |                     |
| Pr(W > t) =                | 8.05E-53 |                     |
| when t =                   | 10       |                     |
|                            |          |                     |
| Prob(W <sub>q</sub> > t) = | 0.05771  |                     |
| when t =                   | 0        |                     |
| •                          |          |                     |

|                  | Results     |
|------------------|-------------|
| L=               | 0.855529512 |
|                  | 0.022196179 |
| W =              | 0.085552951 |
| W <sub>q</sub> = | 0.002219618 |
| ρ=               | 0.277777778 |

| n | Ρ,          | ľ |
|---|-------------|---|
| 0 | 0.432132964 | Ì |
| 1 | 0.360110803 | ı |
| 2 | 0.150046168 | ľ |
| 3 | 0.041679491 | ı |

 $P_0 + P_1 + P_2 + P_3 = 0.984$ 

|                   | Data     |                     |                  |             |            |                           |
|-------------------|----------|---------------------|------------------|-------------|------------|---------------------------|
| λ =               | 10       | (mean arrival rate) |                  |             |            |                           |
| μ=                | 12       | (mean service rate) |                  | Results     |            |                           |
| s=                | 4        | (# servers)         | L=               | 0.836234411 |            |                           |
|                   |          |                     | L <sub>a</sub> = | 0.002901077 |            | Р                         |
| Pr(W > t) =       | 7.71E-53 |                     |                  |             |            | 11                        |
| when t =          | 10       |                     | W =              | 0.083623441 |            | 0.434331679<br>0.36194306 |
|                   |          |                     | W <sub>q</sub> = | 0.000290108 | !          | 0.36194306<br>0.45080960  |
| $Prob(W_q > t) =$ | 0.011024 |                     |                  |             | <u>4</u> . | 0.15080900                |
| when t =          | 0        |                     | ρ=               | 0.208333333 | 4          | 0.00872740                |

$$P_0 + P_1 + P_2 + P_3 + P_4 = 0.998$$

|                   | Data     |                     |                              |                               |
|-------------------|----------|---------------------|------------------------------|-------------------------------|
| λ =               | 10       | (mean arrival rate) |                              |                               |
| μ=                | 12       | (mean service rate) | Results                      |                               |
| S=                | 5        | (# servers)         | L = 0.833682622              |                               |
|                   |          |                     | L <sub>a</sub> = 0.000349289 | n Pı                          |
| Pr(W > t) =       | 7.67E-53 |                     |                              | 0.434571213                   |
| when t =          | 10       |                     | W = 0.083368262              | 1 0.362142678                 |
|                   |          |                     | W <sub>n</sub> = 3.49289E-05 | 2 0.150892782                 |
| $Prob(W_q > t) =$ | 0.001746 |                     | 0.43203E-03                  | 3 0.041914662                 |
| when t =          | 0        |                     | ρ= 0.166666667               | 4 0.008/32221<br>5 0.00145537 |
|                   |          | ,                   | •                            | 0.00140001                    |

$$P_0 + P_1 + P_2 + P_3 + P_4 + P_5 = 0.9997$$

| Part              | (a) | (b) | (c) | (d) | (e) | (f) | (g) |
|-------------------|-----|-----|-----|-----|-----|-----|-----|
| Number of servers | 2   | 3   | 2   | 1   | 5   | 1   | 3   |

# 17.6-15.

M/M/1 queue with  $\lambda=20, \mu=30$ 

 $P\{\text{An arriving customer does not have to wait before service}\}=P_0=1-\frac{\lambda}{\mu}=\frac{1}{3}$ 

Expected price of gasoline per gallon:  $4 \times \frac{1}{3} + 3.5 \times \frac{2}{3} = \$3.667$ 

# 17.6-16.

Expected cost per customer: 
$$\sum\limits_{n=0}^{\infty}n\cdot P_n=\sum\limits_{n=1}^{\infty}n\cdot (1-\rho)\rho^n=rac{
ho}{1-
ho}=rac{\lambda}{\mu-\lambda}$$

#### 17.6-17.

$$\begin{split} \text{Let } G(t) &= P\{\mathcal{W} \leq t\} \text{ and } g(t) = \frac{dG(t)}{dt}. \\ 1 - G(t) &= P\{\mathcal{W} > t\} = \sum_{n=0}^{\infty} P_n \cdot P\{S_{n+1} > t\} \\ &= \sum_{n=0}^{\infty} (1-\rho) \rho^n \left[ \int_t^{\infty} \frac{\mu^{n+1} x^n e^{-\mu x}}{n!} dx \right] \\ &= \sum_{n=0}^{\infty} (1-\rho) \rho^n \left[ 1 - \int_0^t \frac{\mu^{n+1} x^n e^{-\mu x}}{n!} dx \right] \end{split}$$

Differentiate both sides of the equation.

$$g(t) = \sum_{n=0}^{\infty} (1 - \rho) \rho^n \frac{\mu^{n+1} t^n e^{-\mu t}}{n!} = (1 - \rho) \mu e^{-\mu t} \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!}$$
$$= (1 - \rho) \mu e^{-\mu t} e^{\lambda t} = (1 - \rho) \mu e^{-\mu (1 - \rho) t}$$

Integrate to get  $P\{W > t\}$ .

$$P\{W > t\} = 1 - \int_0^t g(x)dx = e^{-\mu(1-\rho)t}$$

#### 17.6-18.

(a) Let 
$$G(t) = P\{W < t\}$$
 and  $g(t) = dG(t)/dt$ .

$$1 - G(t) = P\{W > t\} = \sum_{n=1}^{\infty} P_n \cdot P\{S_n > t\} = \sum_{n=1}^{\infty} (1 - \rho) \rho^n \left[ 1 - \int_0^t \frac{\mu^n x^{n-1} e^{-\mu x}}{(n-1)!} dx \right]$$

Differentiate both sides of the equation.

$$\begin{split} g(t) & = \sum_{n=1}^{\infty} (1 - \rho) \rho^n \frac{\mu^n t^{n-1} e^{-\mu t}}{(n-1)!} = (1 - \rho) \lambda e^{-\mu t} \sum_{n=1}^{\infty} \frac{(\lambda t)^{n-1}}{(n-1)!} \\ & = (1 - \rho) \lambda e^{-\mu t} e^{\lambda t} = \left(\frac{\lambda}{\mu}\right) (\mu - \lambda) e^{-(\mu - \lambda)t} \\ W_q & = \left(\frac{\lambda}{\mu}\right) \int_0^{\infty} t(\mu - \lambda) e^{-(\mu - \lambda)t} dt = \frac{\lambda}{\mu(\mu - \lambda)} \end{split}$$

(b) Let 
$$G(t) = P\{W \le t\}$$
 and  $g(t) = dG(t)/dt$ .

$$1 - G(t) = P\{\mathcal{W} > t\} = \sum_{n=s}^{\infty} P_n \cdot P\{S_{n-s+1} > t\} = \sum_{n=s}^{\infty} P_n \left[ 1 - \int_0^t \frac{(s\mu)^{n-s+1} x^{n-s} e^{-(s\mu)x}}{(n-s)!} dx \right]$$

$$P_n = \frac{(\lambda/\mu)^n}{s! e^{n-s}} P_0 \text{ for } n \ge s$$

Differentiate both sides of the equation.

$$\begin{split} g(t) & = \sum_{n=s}^{\infty} \left[ \frac{(\lambda/\mu)^n P_0}{s! s^{n-s}} \right] \left[ \frac{(s\mu)^{n-s+1} t^{n-s} e^{-(s\mu)t}}{(n-s)!} \right] \\ & = \frac{P_0(s\mu)(\lambda/\mu)^s}{s!} e^{-s\mu t} \sum_{n=s}^{\infty} \frac{(\lambda t)^{n-s}}{(n-s)!} = \frac{P_0(s\mu)(\lambda/\mu)^s}{s!} e^{-s\mu t} e^{\lambda t} \\ & = \frac{P_0(s\mu)(\lambda/\mu)^s}{s!} e^{-(s\mu)(1-\rho)t} \\ W_q & = \frac{P_0(s\mu)(\lambda/\mu)^s}{s!} \int_0^{\infty} t(s\mu) e^{-(s\mu)(1-\rho)t} dt \\ & = \frac{P_0(s\mu)(\lambda/\mu)^s}{s!(1-\rho)} \int_0^{\infty} t(s\mu) (1-\rho) e^{-(s\mu)(1-\rho)t} dt = \frac{P_0(\lambda/\mu)^s}{s!(1-\rho)^2(s\mu)} = \frac{P_0(\lambda/\mu)^s \rho}{s!(1-\rho)^2\lambda} = \frac{L_q}{\lambda} \end{split}$$

#### 17.6-19.

$$\lambda = 3, \mu = 2, s = 2 \Rightarrow P_0 = \frac{1}{7}, P_1 = \frac{3}{14}, P_2 = \frac{9}{56}$$

Mean rate at which service completion occurs during the periods when no customers are waiting in the queue:

$$\frac{\mu_0 P_0 + \mu_1 P_1 + \mu_2 P_2}{P_0 + P_1 + P_2} = \frac{0 P_0 + 2 P_1 + 4 P_2}{P_0 + P_1 + P_2} = \frac{60}{29} = 2.07$$

#### 17.6-20.

|                   | Data     |                     |
|-------------------|----------|---------------------|
| λ =               | 4        | (mean arrival rate) |
| μ=                | 6        | (mean service rate) |
| s=                | 2        | (# servers)         |
|                   |          |                     |
| Pr(W > t) =       | 1        |                     |
| when t =          | 0        |                     |
|                   |          |                     |
| $Prob(W_q > t) =$ | 0.003053 |                     |
| when t =          | 0.5      |                     |

|       |             | - '' | •            |       |
|-------|-------------|------|--------------|-------|
|       |             | 0    | 0.5          |       |
|       |             | 1    | 0.333333333  |       |
|       | Results     | . 2  | 0.1111111111 |       |
| L=    | 0.75        | ï 3  | 0.037037037  |       |
| L,=   | 0.083333333 | 4    | 0.012345679  |       |
| 9     |             | . 5  | 0.004115226  |       |
| W =   | 0.1875      | . 6  | 0.001371742  | _     |
| VAC = | 0.020833333 | . 7  | 0.000457247  | _     |
| YYq-  | 0.020033333 | . 8  | 0.000152416  | <br>L |
|       | 0.00000000  | 9    | 5.08053E-05  | L.    |
| ρ=    | 0.333333333 | . 10 | 1.69351E-05  |       |
|       |             |      |              |       |

Р,

n

$$P\{\mathcal{W}_q > 0.5 \mid \text{number of customers} \geq 2\} = \frac{P\{\mathcal{W}_q > 0.5, \text{number of customers} \geq 2\}}{P\{\text{number of customers} \geq 2\}}$$

$$= \frac{1}{\sqrt{7}} \frac{1}{\text{number of customers} \ge 2}$$

$$= \frac{P\{W_q > 0.5\}}{1 - P_0 - P_1} = \frac{0.003}{1 - 0.5 - 0.3333} = 0.018$$

#### 17.6-21.

(a) 
$$W = (\mu - \lambda)^{-1}$$

$$W_{\mathrm{Clara}} = \frac{1}{20-16} = 1/4 \text{ hours} = 15 \text{ minutes}$$

$$W_{\text{Clarence}} = \frac{1}{20-14} = 1/6 \text{ hours} = 10 \text{ minutes}$$

$$W_{\text{total}} = P\{\text{Clara}\}W_{\text{Clara}} + P\{\text{Clarence}\}W_{\text{Clarence}} = \frac{16}{30} \cdot 15 + \frac{14}{30} \cdot 10$$
  
= 12.67 minutes = 0.211 hours

(b) It is an M/M/2 queue,  $\lambda=16+14=30,\,\mu=20,$  and s=2. OR Courseware gives W=0.114 hours.

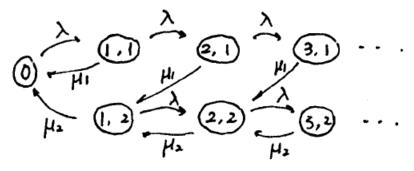
| (c) | $\mu$     | W     |
|-----|-----------|-------|
|     | 60/3.5    | 0.249 |
|     | 60/3.4    | 0.204 |
|     | 60/3.45   | 0.225 |
|     | 60/3.425  | 0.214 |
|     | 60/3.419  | 0.212 |
|     | 60/3.4185 | 0.211 |

An expected processing time of 3.485 minutes results in the same expected waiting time.

# 17.6-22.

(a) Current system: 
$$\lambda = 10, \mu = 7.5, s = 2$$
  
 $\Rightarrow L = 2.4, L_q = 1.067, W = 0.24, W_q = 0.107$   
Next year's system:  $\lambda = 5, \mu = 7.5, s = 1$   
 $\Rightarrow L = 2, L_q = 1.333, W = 0.4, W_q = 0.267$ 

The next year's system yields smaller L, but larger  $L_q$ , W and  $W_q$ .


(b) 
$$W = (\mu - \lambda)^{-1} \Rightarrow \mu = W^{-1} + \lambda = 0.24^{-1} + 5 = 9.17$$

(c) 
$$W_q = \frac{\lambda}{\mu(\mu - \lambda)} \Rightarrow \mu = \frac{\lambda W_q \pm \sqrt{(\lambda W_q)^2 + 4\lambda W_q}}{2W_q} \Rightarrow \mu = 9.78$$

#### 17.6-23.

(a) The future evolution of the queueing system is affected by whether the parameter of the service time distribution for the customer currently in service is  $\mu_1$  or  $\mu_2$ . Therefore, the current state of the system needs to include this information from the history of the process. Let the state (n,s) be the number of customers in the system and the index of the current service rate. Note that the state n=0 does not need an index of service rate.

$$s = \begin{cases} 1 & \text{if the current parameter is } \mu_1, \\ 2 & \text{if the current parameter is } \mu_2. \end{cases}$$



(b) 
$$\lambda P_0 = \mu_1 P_{1,1} + \mu_2 P_{1,2}$$

$$(\lambda + \mu_1) P_{1,1} = \lambda P_0$$

$$(\lambda + \mu_1) P_{n,1} = \lambda P_{n-1,1} \text{ for } n \ge 2$$

$$(\lambda + \mu_2) P_{1,2} = \mu_1 P_{2,1} + \mu_2 P_{2,2}$$

$$(\lambda + \mu_2) P_{n,2} = \lambda P_{n-1,2} + \mu_1 P_{n+1,2} + \mu_2 P_{n+1,2} \text{ for } n \ge 2$$

(c) Truncate the balance equations at a very large n and then solve the resulting finite system of equations numerically. The resulting approximation of the stationary distribution should be good if the steady-state probability that the number of customers in the original system exceeds n is negligible.

(d) 
$$L = \sum_{n=1}^{\infty} n(P_{n,1} + P_{n,2}), W = \frac{L}{\lambda}, L_q = \sum_{n=1}^{\infty} (n-1)(P_{n,1} + P_{n,2}), W_q = \frac{L_q}{\lambda}$$

(e) Because the input is Poisson, the distribution of the state of the system is the same just before an arrival and at an arbitrary point in time.

$$\begin{split} P\{\mathcal{W} \leq t\} & = P\{\mathcal{W} \leq t | \text{A new arrival finds the system in state } 0\} P_0 \\ & + \sum_{n=1}^{\infty} P\{\mathcal{W} \leq t | \text{A new arrival finds the system in state } (n,1)\} P_{n,1} \\ & + \sum_{n=1}^{\infty} P\{\mathcal{W} \leq t | \text{A new arrival finds the system in state } (n,2)\} P_{n,2} \end{split}$$

The three conditional distributions of W are (1)  $\text{Exp}(\mu_1)$ , (2) a convolution of  $\text{Exp}(\mu_1)$  and  $\text{Erlang}(n/\mu_2, n)$ , (3)  $\text{Erlang}((n+1)\mu_2, n+1)$  respectively.

$$P\{\mathcal{W} \le t\} = (1 - e^{-\mu_1 t})P_0 + \sum_{n=1}^{\infty} \left[ \int_0^t \left( 1 - e^{-\mu_1 (t - t_1)} \right) \frac{\mu_2^n t_1^{n-1} e^{-\mu_2 t}}{(n-1)!} dt_1 \right] P_{n,1} + \sum_{n=1}^{\infty} \left[ \int_0^t \frac{\mu_2^{n+1} x^n e^{-\mu_2 x}}{n!} dx \right] P_{n,2}$$

#### 17.6-24.

(a) (0) 
$$\lambda P_0 = \mu P_1$$
  
(1)  $\lambda P_0 + \mu P_2 = (\lambda + \mu) P_1$   
 $\vdots$   
(n)  $\lambda P_{n-1} + \mu P_{n+1} = (\lambda + \mu) P_n$ 

The solution given in Sec. 17.6 is:  $P_n = (1 - \rho)\rho^n$  for  $n = 0, 1, 2, \dots$  Substitute this in the balance equations.

(0) 
$$\lambda(1-\rho) = \mu(1-\rho)\rho \Leftrightarrow \lambda = \mu \cdot \rho = \mu \cdot \frac{\lambda}{\mu} = \lambda$$
  
(n)  $\lambda(1-\rho)\rho^{n-1} + \mu(1-\rho)\rho^{n+1} = (\lambda+\mu)(1-\rho)\rho^n \Leftrightarrow \lambda + \mu\rho^2 = (\lambda+\mu)\rho$   
 $\Leftrightarrow \lambda + \mu\left(\frac{\lambda}{\mu}\right)^2 = (\lambda+\mu)\frac{\lambda}{\mu}$ 

Hence, the solution satisfies the balance equations.

(b) 
$$\lambda P_0 = \mu P_1$$
$$\lambda P_0 + \mu P_2 = (\lambda + \mu) P_1$$
$$\lambda P_1 = \mu P_2$$

The solution given in Sec. 17.6 is:  $P_n = \left(\frac{1-\rho}{1-\rho^3}\right)\rho^n$  for n=0,1,2. Substitute this in the balance equations.

$$\lambda \left(\frac{1-\rho}{1-\rho^3}\right) = \mu \left(\frac{1-\rho}{1-\rho^3}\right) \rho \Leftrightarrow \lambda = \mu \cdot \rho = \mu \cdot \frac{\lambda}{\mu} = \lambda$$

$$\lambda \left(\frac{1-\rho}{1-\rho^3}\right) + \mu \left(\frac{1-\rho}{1-\rho^3}\right) \rho^2 = (\lambda + \mu) \left(\frac{1-\rho}{1-\rho^3}\right) \rho \Leftrightarrow \lambda + \mu \rho^2 = (\lambda + \mu) \rho$$

$$\Leftrightarrow \lambda + \mu \left(\frac{\lambda}{\mu}\right)^2 = (\lambda + \mu) \frac{\lambda}{\mu}$$

$$\lambda \left(\frac{1-\rho}{1-\rho^3}\right) \rho = \mu \left(\frac{1-\rho}{1-\rho^3}\right) \rho^2 \Leftrightarrow \lambda \rho = \mu \rho^2 \Leftrightarrow \lambda \cdot \frac{\lambda}{\mu} = \mu \left(\frac{\lambda}{\mu}\right)^2$$

Hence, the solution satisfies the balance equations.

(c) 
$$2\lambda P_0 = \mu P_1$$
$$2\lambda P_0 + \mu P_2 = (\lambda + \mu)P_1$$
$$\lambda P_1 = \mu P_2$$

The solution given in Sec. 17.6 is:

$$P_{0} = \left[ \sum_{n=0}^{2} \frac{2!}{(2-n)!} \left( \frac{\lambda}{\mu} \right)^{n} \right]^{-1} = \left[ 1 + 2 \left( \frac{\lambda}{\mu} \right) + 2 \left( \frac{\lambda}{\mu} \right)^{2} \right]^{-1}$$

$$P_{n} = \frac{2!}{(2-n)!} \left( \frac{\lambda}{\mu} \right)^{n} P_{0} \text{ for } n = 1, 2.$$

Substitute this in the balance equations.

$$\begin{split} &\frac{2\lambda}{1+2\left(\frac{\lambda}{\mu}\right)+2\left(\frac{\lambda}{\mu}\right)^2} = \frac{\mu \cdot 2\left(\frac{\lambda}{\mu}\right)}{1+2\left(\frac{\lambda}{\mu}\right)+2\left(\frac{\lambda}{\mu}\right)^2} \Leftrightarrow 2\lambda = \mu \cdot 2\left(\frac{\lambda}{\mu}\right) \\ &\frac{2\lambda}{1+2\left(\frac{\lambda}{\mu}\right)+2\left(\frac{\lambda}{\mu}\right)^2} + \frac{\mu \cdot 2\left(\frac{\lambda}{\mu}\right)^2}{1+2\left(\frac{\lambda}{\mu}\right)+2\left(\frac{\lambda}{\mu}\right)^2} = \frac{(\lambda+\mu)2\left(\frac{\lambda}{\mu}\right)}{1+2\left(\frac{\lambda}{\mu}\right)+2\left(\frac{\lambda}{\mu}\right)^2} \Leftrightarrow 2\lambda + 2\mu\left(\frac{\lambda}{\mu}\right)^2 = 2(\lambda+\mu)\left(\frac{\lambda}{\mu}\right) \\ &\frac{\lambda \cdot 2\left(\frac{\lambda}{\mu}\right)}{1+2\left(\frac{\lambda}{\mu}\right)+2\left(\frac{\lambda}{\mu}\right)^2} = \frac{\mu \cdot 2\left(\frac{\lambda}{\mu}\right)^2}{1+2\left(\frac{\lambda}{\mu}\right)+2\left(\frac{\lambda}{\mu}\right)^2} \Leftrightarrow 2\frac{\lambda^2}{\mu} = 2\frac{\lambda^2}{\mu} \end{split}$$

Hence, the solution satisfies the balance equations.

#### 17.6-25.

(a)

|                             |          |                     |       |             | rı   | ' 1         |
|-----------------------------|----------|---------------------|-------|-------------|------|-------------|
|                             |          |                     |       |             | 0    | 0.210526316 |
|                             | Data     |                     |       |             | 1    | 0.315789474 |
| λ =                         | 6        | (mean arrival rate) |       |             | 2    | 0.236842105 |
| μ=                          | 4        | (mean service rate) |       | Results     | 3    | 0.118421053 |
| s=                          | 3        | (# servers)         | L=    | 1.736842105 | 4    | 0.059210526 |
|                             |          |                     | L,=   | 0.236842105 | 5    | 0.029605263 |
| Pr(W > t) =                 | 0.025817 |                     | 9     |             | 6    | 0.014802632 |
| when t =                    | 1        |                     | W =   | 0.289473684 | . 7  | 0.007401316 |
|                             | ·        |                     | W. =  |             | . 8  | 0.003700658 |
| Drob AA/ 5 t) =             | 0.000040 |                     | vvq - | 0.039473684 | . 9  | 0.001850329 |
| -100(44 <sup>d</sup> > 1) - | 0.236842 |                     |       |             | . 10 | 0.000925164 |
| when t =                    | 0        |                     | ρ=    | 0.5         | . 11 | 0.000462582 |

- (b)  $P\{A \text{ phone is answered immediately}\} = 1 P\{W_q > 0\} = 0.763$
- Or  $P\{A \text{ phone is answered immediately}\} = P\{A \text{ least one server is free}\}$ =  $P_0 + P_1 + P_2 = 0.21053 + 0.31579 + 0.23684 = 0.763$

(c) 
$$P\{n \text{ calls on hold}\} = \begin{cases} P_{n+3} & \text{if } n \ge 1\\ P_0 + P_1 + P_2 + P_3 & \text{if } n = 0 \end{cases}$$

(d) Finite Queue Variation

|     |      |                     |                  | suits   |           |
|-----|------|---------------------|------------------|---------|-----------|
|     |      |                     | L=               | 1.29851 | : 5       |
|     |      |                     | L <sub>q</sub> = | 0       | n Pı      |
|     | Data |                     | \$               |         | 0 0.23881 |
| λ = | 6    | (mean arrival rate) | W =              | 0.2500  | 1 0.35821 |
| μ=  | 4    | (mean service rate) | W <sub>a</sub> = | 0       | 2 0.26866 |
| s = | 3    | (# servers)         |                  |         | 3 0.13433 |
| K=  | 3    | (max customers)     | ρ=               | 0.5     | 4         |
| i   |      | :                   | *                |         | °         |

 $P\{\text{An arriving call is lost}\} = P\{\text{All three servers are busy}\} = P_3 = 0.13433$ 

#### 17.6-26.

These form M/M/1/K queues with K=1,3 and 5 respectively,  $\lambda=1/4$  and  $\mu=1/3$ , so  $\rho=3/4$  and the fraction of customers lost is

$$P_K = \frac{(1-\rho)}{(1-\rho^{K+1})} \cdot \rho^K.$$

(a) Zero spaces:

$$P_1 = \frac{(1-3/4)}{(1-(3/4)^2)} \cdot (3/4) = 3/7 = 0.429$$

(b) Two spaces:

$$P_3 = \frac{(1-3/4)}{(1-(3/4)^4)} \cdot (3/4)^3 = 27/175 = 0.154$$

(c) Four spaces:

$$P_5 = \frac{(1-3/4)}{(1-(3/4)^6)} \cdot (3/4)^5 = 243/3367 = 0.072$$

# 17.6-27.

M/M/s/K model

$$L_{q} = \sum_{n=s}^{\infty} (n-s) P_{n} = \sum_{n=s}^{K} (n-s) \frac{(\lambda/\mu)^{n}}{s!s^{n-s}} P_{0} = \frac{P_{0}(\lambda/\mu)^{s+1}}{s!s} \sum_{n=s}^{K} (n-s) \left(\frac{\lambda}{s\mu}\right)^{n-s-1}$$

$$= \frac{P_{0}(\lambda/\mu)^{s}\rho}{s!} \sum_{j=0}^{K-s} j\rho^{j-1} = \frac{P_{0}(\lambda/\mu)^{s}\rho}{s!} \sum_{j=0}^{K-s} \frac{d(\rho^{j})}{d\rho} = \frac{P_{0}(\lambda/\mu)^{s}\rho}{s!} \frac{d}{d\rho} \left(\sum_{j=0}^{K-s} \rho^{j}\right)$$

$$= \frac{P_{0}(\lambda/\mu)^{s}\rho}{s!} \frac{d}{d\rho} \left(\frac{1-\rho^{K-s+1}}{1-\rho}\right) = \frac{P_{0}(\lambda/\mu)^{s}\rho}{s!} \left[\frac{1-\rho^{K-s}-(K-s)\rho^{K-s}(1-\rho)}{(1-\rho)^{2}}\right]$$

#### 17.6-28.

W and  $W_q$  represent the waiting times of arriving customers who enter the system. The probability that such a customer finds n customers in the system already is:

 $P\{n \text{ customers in system} | \text{system not full}\} = \begin{cases} \frac{P_n}{1 - P_K} & \text{for } 0 \le n \le K - 1 \\ 0 & \text{for } n = K. \end{cases}$ 

(a)

$$P\{W > t\} = \frac{1}{1 - P_K} \sum_{n=0}^{K-1} P_n P\{S_{n+1} > t\}$$

$$P\{W_q > t\} = \frac{1}{1 - P_K} \sum_{n=0}^{K-1} P_n P\{S_n > t\}$$

# 17.6-29.

(a) - (b)

|     | Data |                     |
|-----|------|---------------------|
| λ = | 20   | (mean arrival rate) |
| μ=  | 30   | (mean service rate) |
| s=  | 1    | (# servers)         |
| K=  | 2    | (max customers)     |

| Results          |         |  |  |  |
|------------------|---------|--|--|--|
| L =              | 0.73684 |  |  |  |
| =                | 0.21053 |  |  |  |
| W =              | 0.0467  |  |  |  |
| W <sub>q</sub> = | 0.01333 |  |  |  |
| ρ=               | 0.66667 |  |  |  |

| i   | Data |                     |
|-----|------|---------------------|
| λ = | 20   | (mean arrival rate) |
| μ=  | 30   | (mean service rate) |
| s=  | 1    | (# servers)         |
| K=  | 3    | (max customers)     |
|     |      | :                   |

| Re               | Results |  |  |
|------------------|---------|--|--|
| L =              | 1.01538 |  |  |
| Lq =             | 0.43077 |  |  |
| W =              | 0.0579  |  |  |
| W <sub>q</sub> = | 0.02456 |  |  |
| ρ=               | 0.66667 |  |  |

|     | Data |                     |
|-----|------|---------------------|
| λ = | 20   | (mean arrival rate) |
| μ=  | 30   | (mean service rate) |
| s=  | 1    | (# servers)         |
| K=  | 4    | (max customers)     |

| Results          |         |  |
|------------------|---------|--|
| L =              | 1.24171 |  |
| L <sub>q</sub> = | 0.62559 |  |
| W =              | 0.0672  |  |
| W <sub>q</sub> = | 0.03385 |  |
| ρ=               | 0.66667 |  |

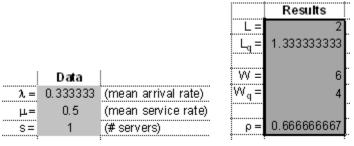
|     | Data |                     |
|-----|------|---------------------|
| λ = | 20   | (mean arrival rate) |
| μ=  | 30   | (mean service rate) |
| s=  | 1    | (# servers)         |
| K=  | 5    | (max customers)     |

| Re               | sults   |
|------------------|---------|
| L=               | 1.42256 |
|                  | 0.78797 |
| W =              | 0.0747  |
| W <sub>q</sub> = | 0.04139 |
| ρ=               | 0.66667 |

(c)

| Spaces | Rate $P_K$ at which | Change in | Profit / hour      | Change in     |
|--------|---------------------|-----------|--------------------|---------------|
|        | customers are lost  | $P_K$     | $$4\lambda(1-P_K)$ | Profit / hour |
| 2      | 0.21                |           | \$63.20            |               |
| 3      | 0.12                | 0.09      | \$70.40            | \$7.20        |
| 4      | 0.08                | 0.04      | \$73.60            | \$3.20        |
| 5      | 0.05                | 0.03      | \$76.00            | \$2.40        |

(d) Since it costs \$200 per month per car length rented, each additional space must bring at least \$200 per month (or \$1 per hour) in additional profit. Five spaces still bring more than that, so five should be provided.


#### 17.6-30.

- (a) The M/M/s model with finite calling population fits this queueing system.
- (b) The probabilities that there are 0, 1, 2, or 3 machines not running are  $P_0$ ,  $P_1$ ,  $P_2$ , and  $P_3$  respectively. The mean of this distribution is L=0.718.

| Results                                       |              |
|-----------------------------------------------|--------------|
| L= 0.7180527                                  |              |
| L <sub>q</sub> = 0.2109533                    |              |
| Data W = 2.832 n                              | P,           |
| 1 = 0.111111 (ovnoportial parameter)          | 1923<br>1986 |
| μ= 0.5 (mean service rate)                    | 460          |
|                                               | 324          |
| N= 3 (size of population) λ-bar = 0.2535497 4 |              |

9006 6004 0446

- (c)  $W = L/\lambda = 0.718/0.253 = 2.832$  hours
- (d) The expected fraction of time that the repair technician will be busy is the system utilization, which is  $\rho = 0.667$ .
- (e) M/M/s model



Results

M/M/s/K model

|     |          |                     | L=               | 1.01538 |
|-----|----------|---------------------|------------------|---------|
|     |          |                     | L <sub>q</sub> = | 0.43077 |
|     | Data     |                     |                  |         |
| λ = | 0.333333 | (mean arrival rate) | W =              | 3.4737  |
| μ=  | 0.5      | (mean service rate) | $W_q =$          | 1.47368 |
| s=  | 1        | (# servers)         |                  |         |
| K=  | 3        | (max customers)     | ρ=               | 0.66667 |

(f) Results 0.552809 0.0089888 Data W = 2.0330579  $W_q =$  $\lambda =$ 0.111111 (exponential parameter) 0.0330579 0.3640449 0.5 (mean servicle rate) μ= 0.0808989 2 (# servers) 0.3333333 s= ρ= 0.0089888 3 N= (size of population) λ-bar= 0.2719101

The probabilities that there are 0, 1, 2, or 3 machines not running are  $P_0$ ,  $P_1$ ,  $P_2$ , and  $P_3$  respectively. The mean of this distribution is L=0.553. The expected fraction of time that the repair technician will be busy is the system utilization,  $\rho=0.333$ .

#### 17.6-31.

(a) This is an M/M/s model with a finite calling population, with  $\lambda=1, \, \mu=2, \, s=1,$  and N=3.

(b)

|     | Data |                         |
|-----|------|-------------------------|
| λ = | 1    | (exponential parameter) |
| μ=  | 2    | (mean service rate)     |
| s=  | 1    | (# servers)             |
| N=  | 3    | (size of population)    |

|                  | Results   |
|------------------|-----------|
| L=               | 1.4210526 |
| եզ =             | 0.6315789 |
|                  |           |
| W =              | 0.9       |
| W <sub>q</sub> = | 0.4       |
|                  |           |
| ρ=               | 1.5       |
| λ-bar=           | 1.5789474 |

| n | P <b>,</b> |
|---|------------|
| 0 | 0.2105263  |
| 1 | 0.3157895  |
| 2 | 0.3157895  |
| 3 | 0.1578947  |
| 4 | 0          |

### 17.6-32.

# (a) Alternative 1:

|    |      |                         |                  | Results   |
|----|------|-------------------------|------------------|-----------|
|    | Data |                         | L=               | 0.3206442 |
| λ= | 0.4  | (exponential parameter) |                  | 0.0527086 |
| μ= | 4    | (mean service rate)     |                  |           |
| s= | 1    | (# servers)             | W =              | 0.2991803 |
| N= | 3    | (size of population)    | W <sub>q</sub> = | 0.0491803 |
|    |      |                         |                  |           |

Three machines are the maximum that can be assigned to an operator while still achieving the required production rate. The average number of machines not running is L=0.32, so 1-(0.32/3)=89.7% of the machines are running on the average. The utilization of servers is  $(\overline{\lambda}/s\mu)=1.072/(1\cdot 4)=0.268$ .

# (b) Alternative 2:

|    |      |                                       | Results   |
|----|------|---------------------------------------|-----------|
|    | Data | L:                                    | 1.1246521 |
| λ= | 0.4  | (exponential parameter) կ-            | 0.0371173 |
| μ= | 4    | (mean service rate)                   |           |
| s= | 3    | (# servers) W :                       | 0.2585324 |
| N= | 12   | (size of population) W <sub>q</sub> : | 0.0085324 |

Three operators are needed to achieve the required production rate. The average number of machines not running is L=1.125, so 1-(1.125/12)=90.6% of the machines are running on the average. The utilization of servers is  $(\overline{\lambda}/s\mu)=4.350/(3\cdot 4)=0.363$ .

#### (c) Alternative 3:

|     | Data |                         |
|-----|------|-------------------------|
| λ = | 0.4  | (exponential parameter) |
| μ=  | 8    | (mean service rate)     |
| s=  | 1    | (# servers)             |
| N=  | 12   | (size of population)    |

|                         | Results                |
|-------------------------|------------------------|
| L=                      | 1.0357708              |
|                         | 0.4875593              |
| W =<br>W <sub>q</sub> = | 0.2361705<br>0.1111705 |

Two operators are needed to achieve the required production rate. The average number of machines not running is L=1.035, so 1-(1.035/12)=91.4% of the machines are running on the average. The utilization of servers is  $(\overline{\lambda}/s\mu)=4.386/(1\cdot8)=0.548$ .

#### 17.6-33.

(a) Let the state (n, i) be the number of failed machines (n = 0, 1, 2, 3) and the stage of service for the machine under repair (i = 0) if all machines are running properly, 1 or 2 otherwise).

(b)  $\frac{1}{\sqrt{2}} \frac{2\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}$ 

| (c) | State  | Balance Equation                                                                                                   |
|-----|--------|--------------------------------------------------------------------------------------------------------------------|
|     | (0,0)  | $\frac{4}{3}P_{1,1} + 2P_{1,2} = P_{0,0}$                                                                          |
|     | (1,1)  | $P_{0,0} + \frac{4}{3}P_{2,1} + 2P_{2,2} = \left(\frac{4}{3} + \frac{2}{3} + \frac{1}{3}\right)P_{1,1}$            |
|     | (2,1)  | $\frac{2}{3}P_{1,1} + \frac{4}{3}P_{3,1} + 2P_{3,2} = \left(\frac{4}{3} + \frac{2}{3} + \frac{1}{3}\right)P_{2,1}$ |
|     | (3,1)  | $\frac{1}{3}P_{2,1} = \left(\frac{4}{3} + \frac{2}{3}\right)P_{3,1}$                                               |
|     | (1,2)  | $\frac{2}{3}P_{1,1} = \left(2 + \frac{2}{3}\right)P_{1,2}$                                                         |
|     |        | $\frac{2}{3}(P_{1,2} + P_{2,1}) = \left(2 + \frac{1}{3}\right)P_{2,2}$                                             |
|     | (3, 2) | $\frac{1}{3}P_{2,2} + \frac{2}{3}P_{3,1} = 2P_{3,2}$                                                               |

# 17.7-1.

(a)

(i) Exponential: 
$$W_q^{\text{Exp}} = \frac{\lambda}{\mu(\mu - \lambda)}$$

(ii) Constant: 
$$W_q^{\mathbf{C}} = \frac{1}{2} \cdot \frac{\lambda}{\mu(\mu - \lambda)}$$

(iii) Erlang: 
$$\sigma = \frac{1}{2} \left( 0 + \frac{1}{\mu} \right) = \frac{1}{2\mu} \Rightarrow \sigma^2 = \frac{1}{4\mu^2} \Rightarrow K = 4$$
 
$$W_q^{\text{Erlang}} = \frac{1+4}{8} \cdot \frac{\lambda}{\mu(\mu-\lambda)} = \frac{5}{8} \cdot \frac{\lambda}{\mu(\mu-\lambda)}$$

$$\Rightarrow W_q^{\rm Exp} = 2W_q^{\rm C} = (8/5)W_q^{\rm Erlang}$$

(b) Let B=1,(1/2),(5/8) when the distribution is exponential, constant and Erlang respectively. Now,  $\lambda^{(2)}=2\lambda^{(1)}$  and  $\mu^{(2)}=2\mu^{(1)}$ .

$$\begin{split} W_q^{(2)} &= B \Big[ \frac{2\lambda^{(1)}}{2\mu^{(1)}(2\mu^{(1)} - 2\lambda^{(1)})} \Big] = \frac{W_q^{(1)}}{2} \\ L_q^{(2)} &= \lambda^{(2)} W_q^{(2)} = 2\lambda^{(1)} W_q^{(1)} / 2 = \lambda^{(1)} W_q^{(1)} = L_q^{(1)} \end{split}$$

Hence, the expected waiting time is reduced by 50% and the expected queue length remained the same.

# 17.7-2.

(a)

|       | Data |                         |   |                  | Results |
|-------|------|-------------------------|---|------------------|---------|
| λ =   | 0.2  | (mean arrival rate)     |   | L =              | 4.000   |
| 1/μ = | 4    | (expected service time) |   | L <sub>q</sub> = | 3.200   |
| σ=    | 4    | (standard deviation)    |   |                  |         |
| s=    | 1    | (# serv ers)            |   | ₩=               | 20.000  |
|       |      |                         |   | $W_q =$          | 16.000  |
| ·     |      |                         | , |                  |         |

|           | D ata |                         |                  | Results |
|-----------|-------|-------------------------|------------------|---------|
| λ =       | 0.2   | (mean arrival rate)     | L=               | 3.300   |
| $1/\mu =$ | 4     | (expected service time) | L <sub>q</sub> = | 2.500   |
| σ=        | 3     | (standard deviation)    |                  |         |
| s=        | 1     | (#servers)              | W =              | 16.500  |
|           |       |                         | W <sub>q</sub> = | 12.500  |

|       | Data |                         |         | Results |
|-------|------|-------------------------|---------|---------|
| λ =   | 0.2  | (mean arrival rate)     | L =     | 2.800   |
| 1/μ = | 4    | (expected service time) | $L_q =$ | 2.000   |
| σ=    | 2    | (standard deviation)    |         |         |
| s=    | 1    | (# serv ers)            | W =     | 14.000  |
|       |      |                         | $W_q =$ | 10.000  |

|           | Data |                         |   |                   | Results |
|-----------|------|-------------------------|---|-------------------|---------|
| λ =       | 0.2  | (mean arrival rate)     |   | L =               | 2.500   |
| $1/\mu =$ | 4    | (expected service time) |   | $L_q =$           | 1.700   |
| σ=        | 1    | (standard deviation)    |   |                   |         |
| s=        | 1    | (# serv ers)            |   | W =               | 12.500  |
|           |      |                         | ١ | // <sub>q</sub> = | 8.500   |

|       | D ata |                         |                  | Results |
|-------|-------|-------------------------|------------------|---------|
| λ =   | 0.2   | (mean arrival rate)     | L=               | 2.400   |
| 1/μ = | 4     | (expected service time) | L <sub>q</sub> = | 1.600   |
| σ=    | 0     | (standard deviation)    |                  |         |
| s=    | 1     | (# serv ers)            | W =              | 12.000  |
|       |       |                         | $W_q =$          | 8.000   |

(b) If  $\sigma = 0$ ,  $L_q$  is half of the value with  $\sigma = 4$ , so it is quite important to reduce the variability of the service times.

| (c) | $\sigma$ | $L_q$ | Change                 |
|-----|----------|-------|------------------------|
|     | 4        | 3.2   |                        |
|     | 3        | 2.5   | 0.7 largest reduction  |
|     | 2        | 2     | 0.5                    |
|     | 1        | 1.7   | 0.3                    |
|     | 0        | 1.6   | 0.1 smallest reduction |

(d)  $\mu$  needs to be increased by 0.05 to achieve the same  $L_q$ .

#### 17.7-3.

M/G/1 with 
$$\rho<1$$
:  $L=\rho+\frac{\lambda^2\sigma^2+\rho^2}{2(1-\rho)}, L_q=\frac{\lambda^2\sigma^2+\rho^2}{2(1-\rho)}, W=\frac{L}{\lambda}, W_q=\frac{L_q}{\lambda}$ 

- (a) FALSE. When L and  $L_q$  increase, both W and  $W_q$  increase too provided that  $\lambda$  is fixed.
- (b) FALSE. Smaller  $\mu$  and  $\sigma^2$  do not necessarily imply a smaller  $L_q$ . For example, let  $\lambda=1, \mu_1=2, \sigma_1^2=1, \mu_2=5, \sigma_2^2=1.6$ . Even though  $\mu_1<\mu_2$  and  $\sigma_1^2<\sigma_2^2, L_{q,1}=1.25>1.025=L_{q,2}$ .
- (c) TRUE. If the service time is exponential,  $\sigma^2=1/\mu^2$  so that  $L_q=\frac{2\rho^2}{2(1-\rho)}$ . If it is constant,  $\sigma^2=0$  and  $L_q=\frac{\rho^2}{2(1-\rho)}$ .
- (d) FALSE. It is possible to find a distribution with  $\sigma^2 > 1/\mu^2$ .

# 17.7-4.

(a) 
$$\lambda = 25, \mu = 40 \Rightarrow \rho = 0.625 < 1$$

$$\sigma = \frac{1}{\mu} = 0.025$$

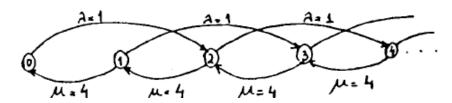
$$L_q = \frac{\lambda^2 \sigma^2 + \rho^2}{2(1-\rho)} = 1.042$$

$$L = \rho + L_q = 1.667$$

$$W_q = \frac{L_q}{\lambda} = 0.042 \text{ hours}$$

$$W = W_q + \frac{1}{\mu} = 0.067 \text{ hours}$$

(b) 
$$\lambda = 25, \mu = 40 \Rightarrow \rho = 0.625 < 1$$
 $\sigma = 0$ 
 $L_q = \frac{\lambda^2 \sigma^2 + \rho^2}{2(1-\rho)} = 0.521$ 
 $L = \rho + L_q = 1.146$ 
 $W_q = \frac{L_q}{\lambda} = 0.021 \text{ hours}$ 
 $W = W_q + \frac{1}{\mu} = 0.046 \text{ hours}$ 


(c)  $L_q$  in (b) is half of  $L_q$  in (a).

(d) 
$$\mu = 40 \Rightarrow L_q = 1.042$$
  
 $\mu = 80 \Rightarrow L_q = 0.142$   
 $\mu = 60 \Rightarrow L_q = 0.298$   
 $\mu = 50 \Rightarrow L_q = 0.5$   
 $\mu = 49 \Rightarrow L_q = 0.531$ 

Marsha needs to serve about 50 customers per hour, assuming the distribution of the service time will still be exponential. This means that she should reduce her expected service time to 72 seconds.

17.7-5.

(a)



$$\mu P_1 = \lambda P_0$$

$$\mu P_2 = (\lambda + \mu) P_1$$

$$\lambda P_0 + \mu P_3 = (\lambda + \mu) P_2$$

$$\vdots$$

$$\lambda P_{n-2} + \mu P_{n+1} = (\lambda + \mu) P_n$$

(b) Poisson input with  $\lambda=1$  and Erlang service times with  $\mu=4/2=2,\,k=2.$ 

(c) 
$$L = \rho + L_q = \rho + \frac{\lambda^2 \sigma^2 + \rho^2}{2(1-\rho)} = 0.5 + \frac{1^2 0.354^2 + 0.5^2}{2(1-0.5)} = 0.875$$

(d) 
$$W = \frac{1}{\mu} + W_q = \frac{1}{\mu} + \frac{L_q}{\lambda} = \frac{1}{2} + \frac{0.875 - 0.5}{1} = 0.875$$

(e)

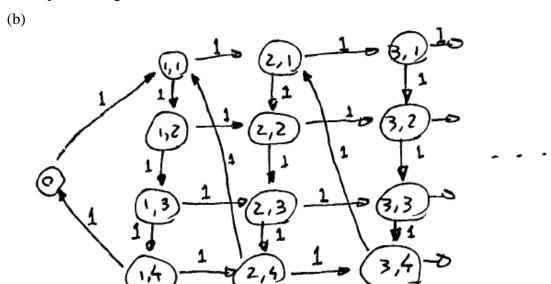
|     | Data |                     |                  | Results |
|-----|------|---------------------|------------------|---------|
| λ = | 1    | (mean arrival rate) | L=               | 0.875   |
| μ=  | 2    | (mean service rate) | L <sub>q</sub> = | 0.375   |
| k = | 2    | (shape parameter)   |                  |         |
| s=  | 1    | (# serv ers)        | W =              | 0.875   |
|     |      |                     | $W_q =$          | 0.375   |

17.7-6.

(a) Current Policy:

|     |      |                     |                  | Results |
|-----|------|---------------------|------------------|---------|
|     |      |                     | L=               | 1       |
|     | Data |                     | L <sub>q</sub> = | 0.5     |
| λ = | 1    | (mean arrival rate) |                  |         |
| μ=  | 2    | (mean service rate) | W =              | 1       |
| s=  | 1    | (# servers)         | $W_q =$          | 0.5     |

Proposal:


|     | D ata |                     |                  | Results |
|-----|-------|---------------------|------------------|---------|
| λ = | 0.25  | (mean arrival rate) | L=               | 0.8125  |
| μ=  | 0.5   | (mean service rate) | L <sub>q</sub> = | 0.3125  |
| k = | 4     | (shape parameter)   |                  |         |
| s=  | 1     | (# serv ers)        | W=               | 3.25    |
|     |       |                     | W <sub>q</sub> = | 1.25    |

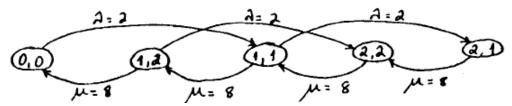
Under the current policy, an airplane loses one day of flying time as opposed to 3.25 days under the proposed policy.

- (b) Under the current policy, one airplane is losing flying time each day as opposed to 0.8125 airplanes under the proposed policy.
- (c) The comparison in (b) is the appropriate one for making the decision, since it takes into account that airplanes will not have to come in for service as often.

#### **17.7-7.**

(a) Let the state (n, s) be the number of airplanes at the base and the stage of service of the airplane being overhauled.




17.7-8.

For the current arrangement,  $\lambda=18$  and  $\mu=20$ , so  $\rho=0.9$ . For the proposal,  $\lambda=36$ ,  $\mu=20$  and s=2, so  $\rho=0.9$ .

|            | Current        |           |                 | Pr   | oposal          |
|------------|----------------|-----------|-----------------|------|-----------------|
| Model      | L at each crib | Total $L$ | $W = L/\lambda$ | L    | $W = L/\lambda$ |
| Fig. 17.6  | 9.0            | 18.0      | 0.500           | 9.47 | 0.263           |
| Fig. 17.8  | 4.95           | 9.9       | 0.275           | 8    | 0.222           |
| Fig. 17.10 | 6.975          | 13.95     | 0.388           | 7    | 0.194           |
| Fig. 17.11 | 5.5            | 11        | 0.061           | 6    | 0.167           |

# 17.7-9.

(a) Let the state (i, j) denote i calling units in the system with the calling unit being served at the jth stage of its service. Then, the state space is  $\{(0,0),(1,2),(1,1),(2,2),(2,1)\}.$ 



Note that this analysis is possible because an Erlang distribution with parameters  $1/\mu=1/4$  and k=2 is equivalent to the distribution of the sum of two independent exponential random variables each with parameter  $1/\mu=1/8$ . The steady-state equations are:

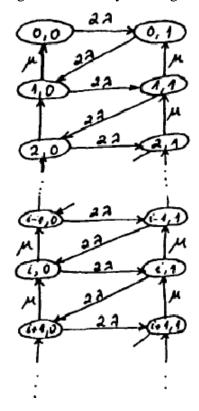
$$\begin{split} 8P_{1,2} &= 2P_{0,0} \\ 2P_{0,0} + 8P_{2,2} &= 10P_{1,1} \\ \end{split} \qquad \begin{aligned} 8P_{1,1} &= 10P_{1,2} \\ 2P_{1,2} + 8P_{2,1} &= 8P_{2,2} \, 2P_{1,1} = 8P_{2,1}. \end{aligned}$$

(b) The solution of the steady-state equations:

$$(P_{0,0}, P_{1,2}, P_{1,1}, P_{2,2}, P_{2,1}) = \left(\frac{64}{114}, \frac{16}{114}, \frac{20}{114}, \frac{9}{114}, \frac{5}{114}\right)$$

$$\Rightarrow P_0 = \frac{64}{114} = 0.561, P_1 = \frac{16+20}{114} = 0.316, P_2 = \frac{9+5}{114} = 0.123$$

$$\Rightarrow L = \frac{18+14}{52} = 0.561$$


(c) If the service time is exponential, then the system is an M/M/1 queue with capacity  $K=2,\,\lambda=2$  and  $\mu=4.$ 

$$P_0 = \frac{1-\rho}{1-\rho^{K+1}} = \frac{1/2}{1-1/8} = 0.571, P_1 = \frac{1}{2}P_0 = 0.286, P_2 = \left(\frac{1}{2}\right)^2 P_0 = 0.143$$

$$L = \frac{2+2}{7} = 0.571$$

# 17.7-10.

Let the state (n, i) represent the number of customers in the system  $(n \ge 0)$  and the number of completed arrival stages for currently arriving customer (i = 0, 1).



# 17.7-11.

(a) Let T be the repair time.

$$E(T) = E(T|\text{minor repair needed}) \cdot 0.9 + E(T|\text{major repair needed}) \cdot 0.1$$
$$= \frac{1}{2} \cdot 0.9 + 5 \cdot 0.1 = 0.95 \text{ hours}$$

Now let X be a Bernoulli random variable with

$$P{X = 1} = p = 0.9 \text{ and } P{X = 0} = q = 0.1,$$

 $Y_i$  be an exponential random variable with mean  $1/\lambda_i$  for i=1,2, where  $\lambda_1=2$  and  $\lambda_2=1/5$ .

$$T = Y_1 \cdot X + Y_2 \cdot (1 - X),$$

where  $X, Y_1, Y_2$  are independent.

$$\begin{aligned} & \text{var}(T|X) = \text{var}(Y_1) \cdot X + \text{var}(Y_2) \cdot (1 - X) = \frac{1}{\lambda_1^2} \cdot X + \frac{1}{\lambda_2^2} \cdot (1 - X) \\ & E(\text{var}(T|X)) = \frac{p}{\lambda_1^2} + \frac{q}{\lambda_2^2} \\ & E(T|X) = E(Y_1) \cdot X + E(Y_2) \cdot (1 - X) = \frac{1}{\lambda_1} \cdot X + \frac{1}{\lambda_2} \cdot (1 - X) \\ & = \frac{1}{\lambda_2} + \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right) X \\ & \text{var}(E(T|X)) = \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)^2 \text{var}(X) = \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)^2 pq \\ & \text{var}(T) = \frac{p}{\lambda_1^2} + \frac{q}{\lambda_2^2} + \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)^2 pq = 4.5475 \end{aligned}$$

Observe that T has a much larger variance than  $(0.95)^2 = 0.9025$ , the variance of an exponential random variable with the same mean.

(b) M/G/1 queue with 
$$\mu=1/0.95, \lambda=1 \Rightarrow \rho=0.95$$

$$P_0 = 1 - \rho = 0.05$$

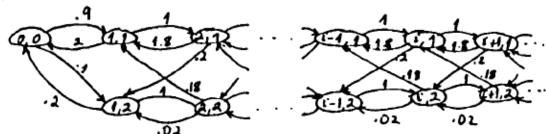
$$L_q = \frac{\lambda^2 \sigma^2 + \rho^2}{2(1-\rho)} = \frac{1^2 4.5475^2 + 0.95^2}{2(1-0.95)} = 215.82$$

$$L = \rho + L_q = 216.77$$

$$W_q = \frac{L_q}{\lambda} = 215.82$$

$$W = \frac{1}{\mu} + W_q = 216.77$$

(c) 
$$W|\text{major repair needed} = W_q + 5 = 220.82$$


$$W|\mathrm{minor\ repair\ needed}=W_q+0.5=216.32$$

$$L_{\rm major \; repair \; machines} = (\lambda)(0.1)(220.82) = 22.082$$

$$L_{\text{minor repair machines}} = (\lambda)(0.9)(216.32) = 194.688$$

(d) Let the state (n, i) denote the number of failed machines and the type of repair being done on the machine under repair (i = 1 represents minor repair and i = 2 represents major repair).

(e)



17.7-12.

(a)

$$X_{n+1} = \left\{ egin{array}{ll} X_n - 1 + A_{n+1} & ext{if } X_n \geq 1 \ A_{n+1} & ext{if } X_n = 0 \end{array} 
ight.$$
 and  $X_{n+1} \leq 3$ ,

where  $A_{n+1}$  is the number of arrivals in 10 minutes.

$$P\{A=n\} = \frac{e^{-\lambda t}(\lambda t)^n}{n!} = a_n \text{ and } \lambda t = \frac{60}{50} \cdot \frac{10}{60} = 0.2$$

$$\Rightarrow P = \begin{pmatrix} a_0 & a_1 & a_2 & 1 - a_0 - a_1 - a_2 \\ a_0 & a_1 & a_2 & 1 - a_0 - a_1 - a_2 \\ 0 & a_0 & a_1 & 1 - a_0 - a_1 \\ 0 & 0 & a_0 & 1 - a_0 \end{pmatrix} = \begin{pmatrix} 0.819 & 0.164 & 0.016 & 0.001 \\ 0.819 & 0.164 & 0.016 & 0.001 \\ 0 & 0.819 & 0.164 & 0.017 \\ 0 & 0 & 0.819 & 0.181 \end{pmatrix}$$

(b) Using the OR Courseware:  $P_0 = 0.801, P_1 = 0.177, P_2 = 0.02, P_3 = 0.002$ 

(c) 
$$L = P_1 + 2 \cdot P_2 + 3 \cdot P_3 = 0.223$$

M/D/1 model: 
$$L^{\infty}=\rho+\frac{\rho^2}{2(1-\rho)}=0.2+\frac{0.2^2}{2(1-0.2)}=0.225>0.223=L$$

#### **17.8-1.**

(a) This system is an example of a nonpreemptive priority queueing system.

(b) 
$$n = 2, \mu = 20, s = 1$$

|                  |               |           | Res       |           |           |
|------------------|---------------|-----------|-----------|-----------|-----------|
|                  | $\lambda_{i}$ | L         | Lq        | W         | Wq        |
| Priority Class 1 | 2             | 0.1666667 | 0.0666667 | 0.0833333 | 0.0333333 |
| Priority Class 2 | 10            | 1.3333333 | 0.8333333 | 0.1333333 | 0.0833333 |
|                  |               |           |           |           |           |

$$\begin{array}{ccc}
\lambda = & 12 \\
\rho = & 0.6
\end{array}$$

(c) 
$$\frac{W_{q,1}}{W_{q,2}} = \frac{0.033}{0.083} = 0.4$$

(d) 
$$\rho=0.6~(12~\mathrm{hours})=7.2~\mathrm{hours}$$

17.8-2.

|   | s | $\mu$ | $W_{q,1}$ | $L_{q,1}$ | $W_1$ | $L_1$ | $W_{q,2}$ | $L_{q,2}$ | $W_2$ | $L_2$ |
|---|---|-------|-----------|-----------|-------|-------|-----------|-----------|-------|-------|
|   | 1 | 6     | 0.208     | 0.417     | 0.375 | 0.75  | 1.25      | 3.75      | 1.417 | 4.25  |
| ſ | 2 | 3     | 0.189     | 0.379     | 0.523 | 1.045 | 1.136     | 3.409     | 1.47  | 4.409 |

If  $W_1$  is the primary concern, one should choose the alternative with one fast server. If  $W_{q,1}$  is the primary concern, one should choose the alternative with two slow servers.

#### 17.8-3.

(a)

|   | u    | а    | b   | W    |
|---|------|------|-----|------|
| 0 |      |      | 1   |      |
| 1 | 2.5  | 0.16 | 0.6 | 067  |
| 2 | 3.33 | 0.25 | 0.3 | 1.69 |
| 3 | 5    | 0.29 | 0.1 | 9.87 |

(b)

|   |      |   | В   | W    |
|---|------|---|-----|------|
| u | 3.33 | 0 | 1   | İ    |
| r | 0.30 | 1 | 0.7 | 0.62 |
| A | 4.44 | 2 | 0.4 | 1,10 |
|   |      | 3 | 0.1 | 5.93 |

The approximation is not good for  $W_2$  and  $W_3$ .

# 17.8-4.

$$\lambda_1 = 2, \lambda_2 = 4, \lambda_3 = 2, \lambda = \sum_{i=1}^{3} \lambda_i = 8, \mu = 10$$

- (a) First-come-first-served:  $W=(\mu-\lambda)^{-1}=0.5~{\rm days}$
- (b) Nonpreemptive priority:

$$A = \frac{\mu^2}{\lambda} = \frac{25}{2}$$

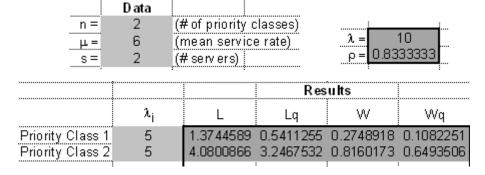
$$B_1 = 1 - \frac{\lambda_1}{\mu} = \frac{4}{5}, B_2 = 1 - \frac{\lambda_1 + \lambda_2}{\mu} = \frac{2}{5}, B_3 = 1 - \frac{\lambda}{\mu} = \frac{1}{5}$$

$$W_1 = \frac{1}{AB_1} + \frac{1}{\mu} = \frac{1}{5} = 0.2 \text{ days}$$

$$W_2 = \frac{1}{AB_1B_2} + \frac{1}{\mu} = \frac{7}{20} = 0.35 \text{ days}$$

$$W_3 = \frac{1}{AB_2B_3} + \frac{1}{\mu} = \frac{11}{10} = 1.1 \text{ days}$$

(c) Preemptive priority: 
$$W_1=\frac{1/\mu}{B_1}=\frac{1}{8}=0.125~{\rm days}$$
 
$$W_2=\frac{1/\mu}{B_1B_2}=\frac{5}{16}=0.3125~{\rm days}$$
 
$$W_3=\frac{1/\mu}{B_2B_3}=\frac{5}{4}=1.25~{\rm days}$$


17.8-5.

$$\lambda_1 = 0.1, \lambda_2 = 0.4, \lambda_3 = 1.5, \lambda = \sum_{i=1}^{3} \lambda_i = 2, \mu = 3$$

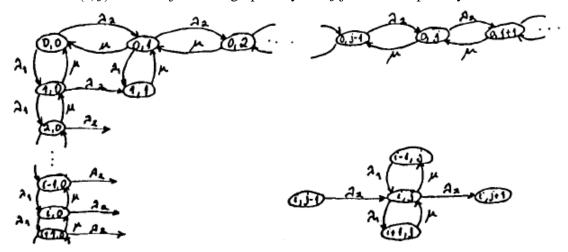
|                       | Preemptive |         | Nonpreemptive |       |
|-----------------------|------------|---------|---------------|-------|
|                       | s = 1      | s=2     | s = 1         | s=2   |
| A                     | • • •      | •••     | 4.5           | 36    |
| $B_1$                 | 0.967      | •••     | 0.967         | 0.983 |
| $B_2$                 | 0.833      | • • •   | 0.833         | 0.917 |
| $B_3$                 | 0.333      | •••     | 0.333         | 0.667 |
| $W_1 - \frac{1}{\mu}$ | 0.011      | 0.00009 | 0.230         | 0.028 |
| $W_2 - \frac{1}{\mu}$ | 0.080      | 0.00289 | 0.276         | 0.031 |
| $W_3 - \frac{1}{\mu}$ | 0.867      | 0.05493 | 0.800         | 0.045 |

# 17.8-6.

- (a) The expected number of customers would not change since customers of both types have exactly the same arrival pattern and service times. The change of the priority would not affect the total service rate from the server's view and thus, the total queue size stays the same.
- (b) Using the template for M/M/s nonpreemptive priorities queueing model:



$$L_p = L_1 + L_2 = 5.45455$$


Using the template for M/M/s queueing model:

|     |      |                     |         | Results     |   |
|-----|------|---------------------|---------|-------------|---|
|     |      |                     | L=      | 5.454545455 | Ĺ |
|     |      |                     |         | 3.787878788 |   |
|     | Data |                     | W =     | 0.545454545 |   |
| λ = | 10   | (mean arrival rate) | $W_q =$ | 0.378787879 |   |
| μ=  | 6    | (mean service rate) | ••••••  |             |   |
| s=  | 2    | (# servers)         | ρ=      | 0.833333333 |   |
|     |      |                     |         |             |   |

Hence,  $L_p = L$ .

17.8-7.

Let the state (i, j) denote i jobs of high priority and j jobs of low priority.

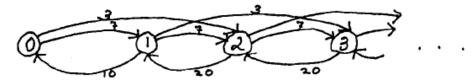


| State                   | Balance Equation                                                                                    |
|-------------------------|-----------------------------------------------------------------------------------------------------|
| (0,0)                   | $\mu(P_{0,1} + P_{1,0}) = (\lambda_1 + \lambda_2)P_{0,0}$                                           |
| $(i,0)$ for $i \geq 1$  | $\mu P_{i+1,0} + \lambda_1 P_{i-1,0} = (\mu + \lambda_1 + \lambda_2) P_{i,0}$                       |
| $(0,j)$ for $j \ge 1$   | $\mu(P_{i,j} + P_{0,j+1}) + \lambda_2 P_{0,j-1} = (\mu + \lambda_1 + \lambda_2) P_{0,j}$            |
| $(i,j)$ for $i,j \ge 1$ | $\mu P_{i+1,j} + \lambda_1 P_{i-1,j} + \lambda_2 P_{i,j-1} = (\mu + \lambda_1 + \lambda_2) P_{i,j}$ |

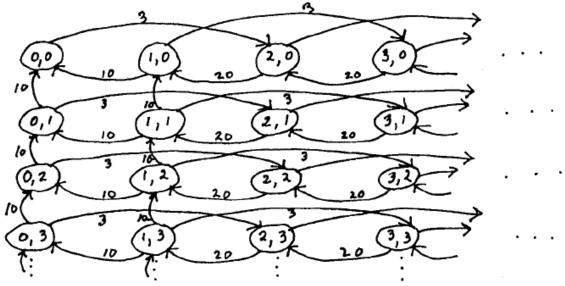
#### 17.9-1.

GM launched this project to improve the throughput of its production lines. A sequence of stations through which parts move sequentially until completion is called a production line. These stations are separated by finite-capacity buffers. Since machines may have unequal speeds and fail randomly, analyzing even simple production lines is not easy. To overcome the difficulties in measuring throughput and identifying bottlenecks, GM developed a throughput-analysis tool named C-MORE. The analysis assumes unreliable stations with deterministic speeds, exponential failure and repair times. Analytic decomposition and simulation methods are deployed. Analytic decomposition is based on first solving the two-station problem and then extending the results to multiple stations. Each station is modeled as a single-server queueing system with constant interarrival and service times. The server at each station can fail randomly. The first station is blocked and shuts down if its buffer is full and the second station is starved and shuts down if there are no jobs completed by the first station. The state of the system includes information about blocked and starved stations, downtimes, and buffer contents. Closedform expressions for the steady-state distribution of buffer contents when both stations are up are obtained. The output includes throughput, system-time and work-in-process averages, average state of the system, bottleneck and sensitivity analysis.

The results of this study include enhanced throughput, lowered overtime and increased sales of high-demand products. These improvements translated into savings of more than \$2.1 billion. The use of a systematic approach enabled GM to make reliable decisions about equipment purchases, product launch times and maintenance schedules while


meeting its production targets. Consequently, unprofitable investments and unfruitful improvement efforts are avoided. Alternatives are evaluated efficiently and questions are answered accurately. Continuous improvement of productivity is made possible. Overall, this study provided GM a competitive advantage in the industry. Following this study, OR has been widely adopted throughout the organization.

# 17.9-2.


(a) Let the state  $n_1$  be the number of type 1 customers in the system.



(b) Let the state n be the number of customers in the system.



(c) Let the state  $(n_1, n_2)$  be the number of type 1 and type 2 customers in the system respectively



17.9-3.

(a) 
$$P_{n_1} = \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)^{n_1}, P_{n_2} = \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^{n_2}$$
$$P\{(N_1, N_2) = (n_1, n_2)\} = P_{n_1} \cdot P_{n_2} = \left(\frac{1}{6}\right) \left(\frac{1}{2}\right)^{n_1} \left(\frac{2}{3}\right)^{n_2}$$

(b) 
$$P\{(N_1, N_2) = (0, 0)\} = \frac{1}{6}$$

(c) 
$$L = L_1 + L_2 = 1 + 2 = 3$$
  
 $W = W_1 + W_2 = \frac{1}{10} + \frac{2}{10} = 0.3$  hour = 18 minutes

#### 17.9-4.

In a system of infinite queues in series, customers are served at m service facilities in a fixed order. Each facility has an infinite queue capacity. The arrivals from outside the system to the first facility form a Poisson process with rate  $a_1 = \lambda$ . There are no arrivals from outside the system to other facilities, so  $a_i = 0$  for i > 1, this is a Poisson process with parameter 0. From the equivalence property, under steady-state conditions, the arrivals to each facility i have a Poisson distribution with rate  $\lambda$ . Facility i has  $s_i$  servers whose service time is exponentially distributed with rate  $\mu_i$ . A customer leaving facility i is routed to facility i+1 with probability 1 if i < m and leaves the system if i = m, so for i < m,

$$p_{ij} = \begin{cases} 1 & \text{if } j = i+1 \\ 0 & \text{else,} \end{cases}$$

and  $q_m=1$ . It is assumed that  $s_i\mu_i>\lambda$  so that the queue does not grow without bound.

#### 17.9-5.

(a) 
$$\lambda_1 = a_1 + 0 \cdot a_1 + 0.5 \cdot a_2 + 0.4 \cdot a_3 = 11.6$$
$$\lambda_2 = a_2 + 0.2 \cdot a_1 + 0 \cdot a_2 + 0.3 \cdot a_3 = 10.4$$
$$\lambda_3 = a_3 + 0.4 \cdot a_1 + 0.3 \cdot a_2 + 0 \cdot a_3 = 8.8$$

$$\rho_i = \frac{\lambda_i}{s_i \mu_i} = \begin{cases} 0.464 & \text{for } i = 1\\ 0.347 & \text{for } i = 2\\ 0.440 & \text{for } i = 3 \end{cases}$$

$$P_{n_1} = (0.536)(0.464)^{n_1}$$
 for facility 1

$$P_{n_2} = (0.653)(0.347)^{n_2}$$
 for facility 2

$$P_{n_3} = (0.560)(0.440)^{n_3}$$
 for facility 3

$$P\{(N_1, N_2, N_3) = (n_1, n_2, n_3)\} = P_{n_1} P_{n_2} P_{n_3} = 0.196(0.464)^{n_1} (0.347)^{n_2} (0.440)^{n_3}$$

(c) 
$$P\{(N_1, N_2, N_3) = (0, 0, 0)\} = 0.196$$

(d) 
$$L_1 = 0.866, L_2 = 0.531, L_3 = 0.786 \Rightarrow L = L_1 + L_2 + L_3 = 2.182$$

$$W = \frac{L}{a_1 + a_2 + a_3} = \frac{2.182}{6 + 8 + 4} = 0.121$$

# 17.10-1.

(a) The optimal number of servers is one.

|                   | Data     |                            |   |
|-------------------|----------|----------------------------|---|
| λ =               | 8        | (mean arrival rate)        |   |
| μ=                | 10       | (mean service rate)        |   |
| s=                | 1        | (# servers)                |   |
|                   |          |                            |   |
| Pr(W > t) =       | 0.904837 |                            |   |
| when t =          | 0.05     |                            |   |
|                   |          |                            |   |
| $Prob(W_q > t) =$ | 0.72387  |                            |   |
| when t =          | 0.05     |                            |   |
|                   |          |                            |   |
| Economic Ana      | lysis:   |                            |   |
| Cs=               | \$100.00 | (cost / server / unit time | 9 |
| Cw=               | \$10.00  | (waiting cost / unit time) | ) |
|                   |          |                            |   |
| Cost of Service   | \$100.00 |                            |   |
| Cost of Waiting   | \$40.00  |                            |   |
| Total Cost        | \$140.00 |                            |   |

(b) The optimal number of servers is two.

| Data     |                                                                                                    |                                                                                                                                                         |
|----------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8        | (mean arrival rate)                                                                                |                                                                                                                                                         |
| 10       | (mean service rate)                                                                                |                                                                                                                                                         |
| 2        | (# servers)                                                                                        |                                                                                                                                                         |
|          |                                                                                                    |                                                                                                                                                         |
| 0.672495 |                                                                                                    |                                                                                                                                                         |
| 0.05     |                                                                                                    |                                                                                                                                                         |
|          |                                                                                                    |                                                                                                                                                         |
| 0.125443 |                                                                                                    |                                                                                                                                                         |
| 0.05     |                                                                                                    |                                                                                                                                                         |
|          |                                                                                                    |                                                                                                                                                         |
| ılysis:  |                                                                                                    |                                                                                                                                                         |
| \$100.00 | (cost / server / unit tir                                                                          | ne)                                                                                                                                                     |
| \$100.00 | (waiting cost / unit tin                                                                           | ne)                                                                                                                                                     |
|          |                                                                                                    |                                                                                                                                                         |
| \$200.00 |                                                                                                    |                                                                                                                                                         |
|          |                                                                                                    |                                                                                                                                                         |
| \$295.24 |                                                                                                    |                                                                                                                                                         |
|          | 8<br>10<br>2<br>0.672495<br>0.05<br>0.125443<br>0.05<br>s100.00<br>\$100.00<br>\$200.00<br>\$95.24 | 8 (mean arrival rate) 10 (mean service rate) 2 (# servers)  0.672495 0.05  0.125443 0.05  sylvais: \$100.00 (cost / server / unit tin) \$200.00 \$95.24 |

(c) The optimal number of servers is three.

|                            | Data     |                             |
|----------------------------|----------|-----------------------------|
| λ =                        | 8        | (mean arrival rate)         |
| μ=                         | 10       | (mean service rate)         |
| s=                         | 3        | (# servers)                 |
|                            |          |                             |
| Pr(W > t) =                | 0.618397 |                             |
| when t =                   | 0.05     |                             |
|                            |          |                             |
| Prob(W <sub>q</sub> > t) = | 0.01732  |                             |
| when t =                   | 0.05     |                             |
|                            |          |                             |
| Economic Ana               | lysis:   |                             |
| Cs=                        | \$10.00  | (cost / server / unit time) |
| Cw=                        | \$100.00 | (waiting cost / unit time)  |
|                            |          |                             |
| Cost of Service            |          |                             |
| Cost of Waiting            | \$81.89  |                             |
| Total Cost                 | \$111.89 |                             |

**17.10-2.** Jim should operate four cash registers during the lunch hour.

|                            | Data     |                             |
|----------------------------|----------|-----------------------------|
| λ =                        | 66       | (mean arrival rate)         |
| μ=                         | 30       | (mean service rate)         |
| s=                         | 4        | (# servers)                 |
|                            |          |                             |
| Pr(W > t) =                | 0.267335 |                             |
| when t =                   | 0.05     |                             |
|                            |          |                             |
| Prob(W <sub>q</sub> > t) = | 0.015242 |                             |
| when t =                   | 0.05     |                             |
|                            |          |                             |
| Economic Ana               | lysis:   |                             |
| Cs=                        | \$9.00   | (cost / server / unit time) |
| Cw=                        | \$18.00  | (waiting cost / unit time)  |
|                            |          |                             |
| Cost of Service            | \$36.00  |                             |
| Cost of Waiting            | \$44.59  |                             |
| Total Cost                 | \$80.59  |                             |
| :                          |          |                             |

17.10-3. Note that if there are less than three copiers,  $\rho > 1$ , so the queue for the copier explodes.

| Number of Copiers | 3        | 4        | 5        | 6        | 7        | 8        |
|-------------------|----------|----------|----------|----------|----------|----------|
| Total Cost        | \$367.87 | \$144.94 | \$124.06 | \$120.65 | \$121.19 | \$122.80 |

The company needs a total of six machines to minimize its expected total cost per hour.

|                            | Data     |                             |
|----------------------------|----------|-----------------------------|
| λ =                        | 40       | (mean arrival rate)         |
| μ=                         | 15       | (mean service rate)         |
| s=                         | 6        | (# servers)                 |
|                            |          |                             |
| Pr(W > t) =                | 0.482728 |                             |
| when t =                   | 0.05     |                             |
|                            |          |                             |
| Prob(W <sub>q</sub> > t) = | 0.005085 |                             |
| when t =                   | 0.05     |                             |
|                            |          |                             |
| Economic Ana               | lysis:   |                             |
| Cs=                        | \$2.00   | (cost / server / unit time) |
| Cw=                        | \$40.00  | (waiting cost / unit time)  |
| ļ                          |          |                             |
| Cost of Service            | \$12.00  |                             |
| Cost of Waiting            | \$108.65 |                             |
| Total Cost                 | \$120.65 |                             |
| :                          |          | :                           |

# 17.11-1.

Answers will vary.

# 17.11-2.

Answers will vary.

17.1 a) Status quo at the presses -7.52 sheets of in-process inventory.

|   | Α                                     | В           | С    | D                   | Е | G       | Н           |
|---|---------------------------------------|-------------|------|---------------------|---|---------|-------------|
| 1 | Template for the M/M/s Queueing Model |             |      |                     |   |         |             |
| 2 |                                       |             |      |                     |   |         |             |
| 3 |                                       |             | Data |                     |   |         | Results     |
| 4 |                                       | $\lambda =$ | 7    | (mean arrival rate) |   | L =     | 7.517372837 |
| 5 |                                       | $\mu =$     | 1    | (mean service rate) |   | $L_q =$ | 0.517372837 |
| 6 |                                       | s =         | 10   | (# servers)         |   |         |             |

Status quo at the inspection station -3.94 wing sections of in-process inventory.

|   | Α                                   | В           | С    | D                   | E | F                | G       |
|---|-------------------------------------|-------------|------|---------------------|---|------------------|---------|
| 1 | 1 Template for M/D/1 Queueing Model |             |      |                     |   |                  |         |
| 2 |                                     |             |      |                     |   |                  |         |
| 3 |                                     |             | Data |                     |   |                  | Results |
| 4 |                                     | $\lambda =$ | 7    | (mean arrival rate) |   | L =              | 3.9375  |
| 5 |                                     | $\mu =$     | 8    | (mean service rate) |   | L <sub>q</sub> = | 3.0625  |
| 6 |                                     | s =         | 1    | (# servers)         |   |                  |         |

Inventory cost = (7.52 + 3.94)(\$8/hour) = \$91.68 / hour

Machine cost = (10)(\$7/hour) = \$70 / hour

Inspector cost = \$17 / hour

Total cost = \$178.68 / hour

b) Proposal 1 will increase the in-process inventory at the presses to 11.05 sheets since the mean service rate has decreased.

|   | Α                                       | В           | С          | D                   | E | G       | Н           |
|---|-----------------------------------------|-------------|------------|---------------------|---|---------|-------------|
| 1 | 1 Template for the M/M/s Queueing Model |             |            |                     |   |         |             |
| 2 |                                         |             |            |                     |   |         |             |
| 3 |                                         |             | Data       |                     |   |         | Results     |
| 4 |                                         | $\lambda =$ | 7          | (mean arrival rate) |   | L =     | 11.04740664 |
| 5 |                                         | $\mu =$     | 0.83333333 | (mean service rate) |   | $L_q =$ | 2.647406638 |
| 6 |                                         | s =         | 10         | (# servers)         |   |         |             |

The in-process inventory at the inspection station will not change.

Inventory 
$$cost = (11.05 + 3.94)(\$8/hour) = \$119.92 / hour$$

Machine cost = (10)(\$6.50) = \$65 / hour

Inspector cost = \$17 / hour

Total cost = \$201.92 / hour

This total cost is higher than for the status quo so should not be adopted. The main reason for the higher cost is that slowing down the machines won't change in-process inventory for the inspection station.

c) Proposal 2 will increase the in-process inventory at the inspection station to 4.15 wing sections since the variability of the service rate has increased.

|   | В      | С          | D                   | Е | F                  | G       |
|---|--------|------------|---------------------|---|--------------------|---------|
| 3 |        | Data       |                     |   |                    | Results |
| 4 | λ=     | 7          | (mean arrival rate) |   | L =                | 4.1475  |
| 5 | μ=     | 8.33333333 | (mean service rate) |   | $L_q =$            | 3.3075  |
| 6 | k =    | 2          | (shape parameter)   |   |                    |         |
| 7 | s<br>s | 1          | (# servers)         |   | W =                | 0.5925  |
| 8 |        |            |                     |   | $\overline{W}_q =$ | 0.4725  |

The in-process inventory at the presses will not change.

Inventory cost = 
$$(7.52 + 4.15)(\$8/\text{hour}) = \$93.36 / \text{hour}$$

Machine cost = 
$$(10)(\$7/\text{hour}) = \$70 / \text{hour}$$

Inspector 
$$cost = $17 / hour$$

Total cost = 
$$$180.36 / hour$$

This total cost is higher than for the status quo so should not be adopted. The main reason for the higher cost is the increase in the service rate variability (Erlang rather than constant) and the resulting increase in the in-process inventory.

d) They should consider *increasing* power to the presses (increasing there cost to \$7.50 per hour but reducing their average time to form a wing section to 0.8 hours). This would decrease the in-process inventory at the presses to 5.69.

|   | Α                                       | В           | С    | D                   | E | G                | Н           |
|---|-----------------------------------------|-------------|------|---------------------|---|------------------|-------------|
| 1 | 1 Template for the M/M/s Queueing Model |             |      |                     |   |                  |             |
| 2 |                                         |             |      |                     |   |                  |             |
| 3 |                                         |             | Data |                     |   |                  | Results     |
| 4 |                                         | $\lambda =$ | 7    | (mean arrival rate) |   | L =              | 5.688419945 |
| 5 |                                         | $\mu =$     | 1.25 | (mean service rate) |   | L <sub>q</sub> = | 0.088419945 |
| 6 |                                         | s =         | 10   | (# servers)         |   |                  |             |

Inventory cost = 
$$(5.69 + 3.94)(\$8/hour) = \$77.04 / hour$$

Machine cost = 
$$(10)(\$7.50/\text{hour}) = \$75 / \text{hour}$$

Inspector 
$$cost = $17 / hour$$

Total cost = 
$$$169.04 / hour$$

This total cost is lower than the status quo and both proposals.

# Case

- 17.2 The operations of the records and benefits call center can be modeled as an M/M/s queueing system. We, therefore, use the template for the M/M/s queueing model throughout this case. The mean arrival rate equals 70 per hour, and the mean service rate of every representative equals 6 per hour. Mark needs at least s = 12 representatives answering phone calls to ensure that the queue does not grow indefinitely.
  - a) In order to solve this problem we have to determine the number of servers by "trial and error" until we find a number s such that the probability of waiting more than 4 minutes in the queue is above 35%.

For 13 servers we obtain the following results:

Template for M/M/s Queueing Model

| Data                                            |                                                           |                                     | Results                  |
|-------------------------------------------------|-----------------------------------------------------------|-------------------------------------|--------------------------|
| 1 = 70<br>m = 6<br>s = 13                       | (mean arrival rate)<br>(mean service rate)<br>(# servers) | L =<br>L <sub>q</sub> =             | 17.07963527<br>5.4129686 |
|                                                 | , , , , , , , ,                                           | W =                                 | 0.24399479               |
| Pr(w>t) = 0.825608<br>when t = 0.066667         |                                                           | W <sub>e</sub> =                    | 0.077328123              |
|                                                 |                                                           | r =                                 | 0.897435897              |
| $Prob(w_o > t) = 0.362914$<br>when t = 0.066667 |                                                           | P <sub>0</sub> =                    | 5.32592E-06              |
|                                                 |                                                           | P, =                                | 6.21358E-05              |
|                                                 |                                                           | P <sub>2</sub> =                    | 0.000362459              |
|                                                 |                                                           | P <sub>3</sub> =                    | 0.001409561              |
|                                                 |                                                           | P <sub>4</sub> =                    | 0.004111221              |
|                                                 |                                                           | P <sub>5</sub> =                    | 0.009592849              |
|                                                 |                                                           | P <sub>6</sub> =                    | 0.018652761              |
|                                                 |                                                           | P <sub>7</sub> =                    | 0.031087935              |
|                                                 |                                                           | P <sub>8</sub> =                    | 0.045336573              |
|                                                 |                                                           | P <sub>9</sub> =                    | 0.058769631              |
|                                                 |                                                           | P <sub>10</sub> =                   | 0.06856457               |
|                                                 |                                                           | P <sub>11</sub> =                   | 0.072719998              |
|                                                 |                                                           | P <sub>12</sub> =                   | 0.070699998              |
|                                                 |                                                           | P <sub>13</sub> =                   | 0.063448716 #            |
|                                                 |                                                           | P <sub>1+</sub> =                   | 0.051101037              |
|                                                 |                                                           | P <sub>15</sub> =                   | 0.045859905              |
|                                                 |                                                           | P <sub>16</sub> =                   | 0.041156325              |
|                                                 |                                                           | P <sub>17</sub> = P <sub>18</sub> = | 0.036935163              |
|                                                 |                                                           | $P_{19} = \frac{1}{2}$              | 0.033146942              |
|                                                 |                                                           |                                     | ±0.029747255             |
|                                                 |                                                           | P <sub>20</sub> = P <sub>21</sub> = | 0.026696255              |
|                                                 |                                                           | P <sub>22</sub> =                   | 0.023958177              |
|                                                 |                                                           | P <sub>23</sub> =                   | 0.021500928              |
|                                                 |                                                           | P <sub>24</sub> =                   | 0.019295705              |
|                                                 | 17-47                                                     | P <sub>25</sub> =                   | -0.017316658             |

For 13 servers, the probability that a customer has to wait more than 4 minutes equals 36.3%.

If there are 12 servers, this probability would be 78%:

Template for M/M/s Queueing Model

|                             | Data                 |                                            |
|-----------------------------|----------------------|--------------------------------------------|
| l =<br>m =                  | 70<br>6              | (mean arrival rate)<br>(mean service rate) |
| s =                         | 12                   | (# servers)                                |
| Pr(w>t) =  when t =         | 0.944173<br>0.066667 |                                            |
| $Prob(w_{q}>t) = $ when t = | 0.779968<br>0.066667 |                                            |

If there are 14 servers, this probability would be less than 16.4%:

Template for M/M/s Queueing Model

|                                  | Data                 |                                                           |
|----------------------------------|----------------------|-----------------------------------------------------------|
| l =<br>m =<br>s =                | 70<br>6<br>14        | (mean arrival rate)<br>(mean service rate)<br>(# servers) |
| Pr(w>t) = when t =               | 0.75683              |                                                           |
| $ Prob(w_q > t) = $ $ when t = $ | 0.163704<br>0.066667 |                                                           |

It appears that Mark currently employs 13 servers.

b) Using the same procedure as in part (a) we find that for s = 18 servers the probability of waiting more than 1 minute drops below 5%:

Template for M/M/s Queueing Model

| Data                                                                                                                        |                            | Results                    |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|
| 1 =       70       (mean arrival rate)         m =       6       (mean service rate)         s =       18       (# servers) | L =<br>L <sub>q</sub> =    | 11.77798802<br>0.111321353 |
|                                                                                                                             | W =                        | 0.168256972                |
| Pr(w>t) = 0.909075<br>when t = 0.016667                                                                                     | $W_q =$                    | 0.001590305                |
|                                                                                                                             | r =                        | 0.648148148                |
| $Prob(w_a > t) = 0.032078$<br>when $t = 0.016667$                                                                           | P <sub>0</sub> =           | 8.49029E-06                |
|                                                                                                                             | $P_1 =$                    | 9.90534E-05                |
|                                                                                                                             | $P_2 =$                    | 0.000577812                |
|                                                                                                                             | $P_3 =$                    | 0.002247045                |
|                                                                                                                             | $P_4 =$                    | 0.006553882                |
|                                                                                                                             | $P_5 =$                    | 0.015292391                |
|                                                                                                                             | $P_6 =$                    | 0.029735204                |
|                                                                                                                             | P <sub>7</sub> =           | 0.049558673                |
|                                                                                                                             | $P_8 = P_9 = P_9$          | 0,072273065                |
|                                                                                                                             |                            | 0.109301858                |
|                                                                                                                             | $P_{10} = P_{11} = P_{11}$ | 0.115926213                |
|                                                                                                                             | $P_{12} =$                 | 0.11270604                 |
|                                                                                                                             | $P_{13} =$                 | 0.101146446                |
|                                                                                                                             | $P_{14}^{13} =$            | 0.084288705                |
|                                                                                                                             | $P_{15}^{14} =$            | 0.065557882                |
|                                                                                                                             | $P_{16}^{13} =$            | 0.047802622                |
|                                                                                                                             | $P_{17}^{16} =$            | 0.032805721                |
|                                                                                                                             | $P_{18}^{''} =$            | 0.021262967                |
|                                                                                                                             | $P_{19}^{10} =$            | 0.013781553                |
|                                                                                                                             | $P_{20} =$                 | 0.008932488                |
|                                                                                                                             | $P_{21}^{20} =$            | 0.005789576                |
|                                                                                                                             | $P_{22} =$                 | 0.003752503                |
|                                                                                                                             | $P_{23} = 1$               | 0.002432178                |
|                                                                                                                             | P <sub>24</sub> =          | 0.001576411                |
|                                                                                                                             | $P_{25} =$                 | 0.001021748                |

c) Using the same "trial and error" method as before, we find the minimal number of servers necessary to ensure that 80% of customers wait one minute or less to be s=15

Template for M/M/s Queueing Model

|     | Data        |                     |
|-----|-------------|---------------------|
| l = | <b>2.70</b> | (mean arrival rate) |
| m = | 6           | (mean service rate) |
| s = | 15          | (# servers)         |

| Pr(w>t) = | į  | 0.926712 |
|-----------|----|----------|
| when t =  | Ž. | 0.016667 |

| $Prob(w_o > t) =$ | 0.  | 194213 |
|-------------------|-----|--------|
| when t =          | 0.0 | 16667  |

The minimal number of servers to ensure that 95% of customers wait 90 seconds or less is s = 17.

Template for M/M/s Queueing Model

|     | Data |                     |
|-----|------|---------------------|
| 1 = |      | (mean arrival rate) |
| m = | 6    | (mean service rate) |
| s = | 17   | (# servers)         |

| Pr(w>t) = | 0.870524 |
|-----------|----------|
| when t =  | 0.025    |

$$Prob(w_o > t) = 0.046459$$
  
when t = 0.025

When an employee of Cutting Edge calls the benefits center from work and has to wait on the phone, the company loses valuable work time for this customer. Mark should try to estimate the amount of work time employees lose when they have to wait on the phone. Then he could determine the cost of this waiting time and try to choose the number of representatives in such a fashion that he reaches a reasonable trade-off between the cost of employees waiting on the phone and the cost of adding new representatives.

Clearly, Mark's criteria would be different if he were dealing with external customers. While the internal customers might become disgruntled when they have to wait on the phone, they cannot call somewhere else. Effectively, the benefits center holds monopolistic power. On the contrary, if Mark were running a call center dealing with external customers, these customers could decide to do business with a competitor if they become angry from waiting on the phone.

d) If the representatives can only handle 6 calls per hour, then Mark needs to employ 18 representatives (see part b). If a representative can handle 8 calls per hour, then the minimal number of representatives equals 14:

Template for M/M/s Queueing Model

| Data                          |                                          |                                            |  |  |
|-------------------------------|------------------------------------------|--------------------------------------------|--|--|
| l =<br>m =                    | 70 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (mean arrival rate)<br>(mean service rate) |  |  |
| s =                           | 14                                       | (# servers)                                |  |  |
|                               |                                          |                                            |  |  |
| Pr(w>t) =<br>when t =         | 0.881748<br>0.016667                     |                                            |  |  |
| non t =                       | **************************************   |                                            |  |  |
| $Prob(w_q > t) = $ $when t =$ | 0.036649                                 |                                            |  |  |
| when t =                      | 0.016667                                 |                                            |  |  |

The cost of training 14 employees equals 14\*\$2500 = \$35000 and saves Mark 4\*\$30000 = \$120000 in annual salary. In the first year alone Mark would save \$85000 if he chose to train all his employees so that they can handle 8 instead of 6 phone calls per hour.

e) Mark needs to carefully check the number of calls arriving at the call center per hour. In this case we have made the simplifying assumption that the arrival rate is constant. That assumption is unrealistic; clearly we would expect more calls during certain times of the day, during certain days of the week, and during certain weeks of the year. We might want to collect data on the number of calls received depending on the time. This data could then be used to forecast the number of calls the center will receive in the near future, which in turn would help to forecast the number of representatives needed.

Also, Mark should carefully check the number of phone calls a representative can answer per hour. Clearly, the length of a call will depend on the issue the caller wants to discuss. We might want to consider training representatives for special issues. These representatives could then always answer those particular calls. Using specialized representatives might increase the number of phone calls the entire center can handle.

Finally, using an M/M/s model is clearly a great simplification. We need to evaluate whether the assumptions for an M/M/s model are at least approximately satisfied. If this is not the case, we should consider more general models such as M/G/s or G/G/s.

## **CHAPTER 18: INVENTORY THEORY**

## 18.3-1.

(a)

$$K=15,\,h=0.30,\,d=30\Rightarrow Q^*=\sqrt{\tfrac{(2)(30)(15)}{0.30}}=54.77$$
 
$$t^*=Q^*/d=1.83 \text{ months}$$

(b)

$$p=3\Rightarrow Q^*=\sqrt{\frac{2(30)(15)}{0.30}}\sqrt{\frac{3+0.30}{3}}=57.45$$
 
$$S^*=\sqrt{\frac{2(30)(15)}{0.30}}\sqrt{\frac{3}{3+0.30}}=52.22$$
 
$$t^*=Q^*/d=1.91 \text{ months}$$

## 18.3-2.

(a)

$$K=40,\,h=0.10,\,d=1,000\Rightarrow Q^*=\sqrt{\tfrac{2(1,000)(40)}{0.10}}=894.43$$
 
$$t^*=Q^*/d=0.89443~\mathrm{weeks}$$

(b)

$$p=3\Rightarrow Q^*=\sqrt{\frac{2(1,000)(40)}{0.10}}\sqrt{\frac{3+0.10}{3}}=909.21$$
 
$$S^*=\sqrt{\frac{2(1,000)(40)}{0.10}}\sqrt{\frac{3}{3+0.10}}=879.88$$
 
$$t^*=Q^*/d=0.90921 \text{ weeks}$$

## 18.3-3.

(a)

|     | Data         |                     |                     | Results     |
|-----|--------------|---------------------|---------------------|-------------|
| d = | 676          | (demand/year)       | Reorder Point       | 6.48219178  |
| K=  | <b>\$</b> 75 | (setup cost)        |                     |             |
| h = | \$600.00     | (unit holding cost) | Annual Setup Cost   | \$10,140.00 |
| L=  | 3.5          | (lead time in days) | Annual Holding Cost | \$1,500.00  |
| WD= | 365          | (working days/year) | Total Variable Cost | \$11,640.00 |
|     |              |                     |                     |             |
|     | Decision     |                     |                     |             |
| Q = | 5            |                     |                     |             |

(b)

| Q  | Annual<br>Setup | Annual<br>Holding | Total<br>Variable |
|----|-----------------|-------------------|-------------------|
|    | Cost            | Cost              | Cost              |
| 5  | \$10,140        | \$1,500           | \$11,640          |
| 7  | \$7,243         | \$2,100           | \$9,343           |
| 9  | \$5,633         | \$2,700           | \$8,333           |
| 11 | \$4,609         | \$3,300           | \$7,909           |
| 13 | \$3,900         | \$3,900           | \$7,800           |
| 15 | \$3,380         | \$4,500           | \$7,880           |
| 17 | \$2,982         | \$5,100           | \$8,082           |
| 19 | \$2,668         | \$5,700           | \$8,368           |
| 21 | \$2,414         | \$6,300           | \$8,714           |
| 23 | \$2,204         | \$6,900           | \$9,104           |
| 25 | \$2,028         | \$7,500           | \$9,528           |

(c)

|     | Data         |                     |                     | Results    |
|-----|--------------|---------------------|---------------------|------------|
| d = | 676          | (demand/year)       | Reorder Point       | 6.48219178 |
| K=  | <b>\$</b> 75 | (setup cost)        |                     |            |
| h = | \$600.00     | (unit holding cost) | Annual Setup Cost   | \$3,900.00 |
| L=  | 3.5          | (lead time in days) | Annual Holding Cost | \$3,900.00 |
| WD= | 365          | (working days/year) | Total Variable Cost | \$7,800.00 |
|     |              |                     |                     |            |
|     | Decision     |                     |                     |            |
| Q = | 13           |                     |                     |            |

(d)

|   |      | D ata        |                         |              |                     | Results    |
|---|------|--------------|-------------------------|--------------|---------------------|------------|
|   | d =  | 676          | (demand/year)           |              | Reorder Point       | 6.48219178 |
|   | K=   | <b>\$</b> 75 | (setup cost)            |              |                     |            |
|   | h =  | \$600.00     | (unit holding cost)     |              | Annual Setup Cost   | \$3,900.00 |
|   | L=   | 3.5          | (lead time in days)     |              | Annual Holding Cost | \$3,900.00 |
| V | VD = | 365          | (working days/year)     |              | Total Variable Cost | \$7,800.00 |
|   |      |              |                         |              |                     |            |
|   |      | Decision     |                         |              |                     |            |
|   | Q =  | 13           | (optimal order quanti   | ty)          |                     |            |
|   |      | 13           | Tobrilliai older daarii | <u> 1 y)</u> |                     |            |

The results are the same as those obtained in (c).

(e)

$$Q^*=\sqrt{rac{2KD}{h}}=\sqrt{rac{2(75)(676)}{0.2(3000)}}=13$$
 computers purchased with each order

(f)

Number of order per year: 
$$\frac{D}{Q} = \frac{676}{13} = 52$$

$$ROP = D(LT) = (13) \left(\frac{1}{2}\right) = 6.5$$
 inventory level when each order is placed

(g) The optimal policy reduces the total variable inventory cost by \$3,840 per year, which is a 33% reduction.

# 18.3-4.

(a)

|     | Data     |                     |                     | Results     |
|-----|----------|---------------------|---------------------|-------------|
| d = | 120000   | (demand/year)       | Reorder Point       | 0           |
| K=  | \$2,000  | (setup cost)        |                     |             |
| h = | \$0.48   | (unit holding cost) | Annual Setup Cost   | \$24,000.00 |
| L=  | 0        | (lead time in days) | Annual Holding Cost | \$2,400.00  |
| WD≓ | 365      | (working days/year) | Total Variable Cost | \$26,400.00 |
|     |          |                     |                     |             |
|     | Decision |                     |                     |             |
| Q=  | 10000    |                     |                     |             |

(b)

|       |         | Annual   | Annual   | Total    |
|-------|---------|----------|----------|----------|
| Month | Q       | Setup    | Holding  | Variable |
|       |         | Cost     | Cost     | Cost     |
| 1     | 10,000  | \$24,000 | \$2,400  | \$26,400 |
| 2     | 20,000  | \$12,000 | \$4,800  | \$16,800 |
| 3     | 30,000  | \$8,000  | \$7,200  | \$15,200 |
| 4     | 40,000  | \$6,000  | \$9,600  | \$15,600 |
| 5     | 50,000  | \$4,800  | \$12,000 | \$16,800 |
| 6     | 60,000  | \$4,000  | \$14,400 | \$18,400 |
| 7     | 70,000  | \$3,429  | \$16,800 | \$20,229 |
| 8     | 000,08  | \$3,000  | \$19,200 | \$22,200 |
| 9     | 90,000  | \$2,667  | \$21,600 | \$24,267 |
| 10    | 100,000 | \$2,400  | \$26,400 | \$28,800 |

(c)

|     | Data     |                     |                     | Results     |
|-----|----------|---------------------|---------------------|-------------|
| d = | 120000   | (demand/year)       | Reorder Point       | 0           |
| K=  | \$2,000  | (setup cost)        |                     |             |
| h = | \$0.48   | (unit holding cost) | Annual Setup Cost   | \$7,589.47  |
| L=  | 0        | (lead time in days) | Annual Holding Cost | \$7,589.47  |
| WD= | 365      | (working days/year) | Total Variable Cost | \$15,178.93 |
|     |          |                     |                     |             |
|     | Decision |                     |                     |             |
| Q = | 31622.78 |                     |                     |             |

# If Q is required to be integer:

|      | Data     |                     |                     | Results     |
|------|----------|---------------------|---------------------|-------------|
| d =  | 120000   | (demand/year)       | Reorder Point       | Ö           |
| K=   | \$2,000  | (setup cost)        |                     |             |
| h =  | \$0.48   | (unit holding cost) | Annual Setup Cost   | \$7,589.41  |
| L=   | 0        | (lead time in days) | Annual Holding Cost | \$7,589.52  |
| WD = | 365      | (working days/year) | Total Variable Cost | \$15,178.93 |
|      |          |                     |                     |             |
|      | Decision |                     |                     |             |
| Q =  | 31623    |                     |                     |             |

(d)

|      | Data     |                      |      |                     | Results    |
|------|----------|----------------------|------|---------------------|------------|
| d =  | 120000   | (demand/year)        |      | Reorder Point       | 0          |
| K=   | \$2,000  | (setup cost)         |      |                     |            |
| h =  | \$0.48   | (unit holding cost)  |      | Annual Setup Cost   | \$7,589.47 |
| L=   | 0        | (lead time in days)  |      | Annual Holding Cost | \$7,589.47 |
| WD = | 365      | (working days/year)  |      | Total Variable Cost |            |
|      | <u></u>  |                      |      |                     |            |
|      | Decision |                      |      |                     |            |
| Q =  | 31622.8  | (optimal order quant | ity) |                     |            |

The results are the same as those in (c).

(e) 
$$Q^* = \sqrt{\frac{2KD}{h}} = \sqrt{\frac{2(2,000)(10,000)}{0.04}} = 31,622.78 \ {\rm gallons~purchased~with~each~order}$$

## 18.3-5.

- (a)  $Q^*$  will decrease by half.
- (b)  $Q^*$  will double.
- (c)  $Q^*$  remains the same.
- (d)  $Q^*$  will double.
- (e)  $Q^*$  remains the same.

## 18.3-6.

(a)

$$Q^* = \sqrt{\frac{2KD}{h}} \Rightarrow 50 = \sqrt{\frac{2(75)(50)}{h}} \Rightarrow h = \$3$$
 per month,

which is 15% of the acquisition cost.

| Basic | Basic EOQ Model (Solver Version) |                     |                     |            |  |  |  |
|-------|----------------------------------|---------------------|---------------------|------------|--|--|--|
|       | Data                             |                     |                     | Results    |  |  |  |
| d =   | 600                              | (demand/year)       | Reorder Point       | 0          |  |  |  |
| K=    | <b>\$</b> 75                     | (setup cost)        |                     |            |  |  |  |
| h=    | \$36.00                          | (unit holding cost) | Annual Setup Cost   | \$900.00   |  |  |  |
| L=    | 0                                | (lead time in days) | Annual Holding Cost | \$900.00   |  |  |  |
| WD =  | 365                              | (working days/year) | Total Variable Cost | \$1,800.00 |  |  |  |
|       |                                  |                     |                     |            |  |  |  |
|       | D ecisio n                       |                     |                     |            |  |  |  |
| Q=    | 50                               |                     |                     |            |  |  |  |

## (b) Optimal Order Quantity

| Bas | Basic EOQ Model (Solver Version) |             |                     |                     |            |  |  |
|-----|----------------------------------|-------------|---------------------|---------------------|------------|--|--|
|     |                                  | Data        |                     |                     | Results    |  |  |
|     | d =                              | 600         | (demand/year)       | Reorder Point       | 0          |  |  |
|     | <=                               | \$75        | (setup cost)        |                     |            |  |  |
| 1   | h =                              | \$48.00     | (unit holding cost) | Annual Setup Cost   | \$1,039.23 |  |  |
| l   | L = Î                            | 0           | (lead time in days) | Annual Holding Cost | \$1,039.23 |  |  |
| W   | /D =                             | 365         | (working days/year) | Total Variable Cost | \$2,078.46 |  |  |
|     |                                  |             |                     |                     |            |  |  |
| l   |                                  | D ecis io n |                     |                     |            |  |  |
| (   | ) = [                            | 43.30127    |                     |                     |            |  |  |

## **Current Order Quantity**

| Basic EOQ Model (Solver Version) |              |                     |                     |            |  |  |
|----------------------------------|--------------|---------------------|---------------------|------------|--|--|
| ì                                |              | <b>\</b>            | 7                   |            |  |  |
|                                  | Data         |                     |                     | Results    |  |  |
| d =                              | 600          | (demand/year)       | Reorder Point       | 0          |  |  |
| K=                               | <b>\$</b> 75 | (setup cost)        |                     |            |  |  |
| h =                              | \$48.00      | (unit holding cost) | Annual Setup Cost   | \$900.00   |  |  |
| L=                               |              | (lead time in days) | Annual Holding Cost | \$1,200.00 |  |  |
| WD =                             | 365          | (working days/year) | Total Variable Cost | \$2,100.00 |  |  |
|                                  |              |                     |                     |            |  |  |
|                                  | D ecis io n  |                     |                     |            |  |  |
| Q =                              | 50           |                     |                     |            |  |  |
|                                  |              | ·                   |                     |            |  |  |

(c)

| Basic |              |                     |                     |            |
|-------|--------------|---------------------|---------------------|------------|
|       | Data         |                     |                     | Results    |
| d =   | 600          | (demand/year)       | Reorder Point       | 10         |
| K=    | <b>\$</b> 75 | (setup cost)        |                     |            |
| h =   | \$48.00      | (unit holding cost) | Annual Setup Cost   | \$1,039.23 |
| L=    |              | (lead time in days) | Annual Holding Cost |            |
| WD =  | 300          | (working days/year) | Total Variable Cost | \$2,078.46 |
|       |              |                     |                     |            |
|       | Decision     |                     |                     |            |
| Q =   | 43.30127     |                     |                     |            |

(d) ROP = 5 + (50)(5/25) = 15 hammers, which adds  $5 \times \$4 = \$20$  to TVC every month, \$240 per year.

## 18.3-7.

$$\begin{split} K &= 12,000,\, h = 0.30,\, d = 8,000,\, p = 5 \\ Q^* &= \sqrt{\frac{2(8000)(12000)}{0.30}} \sqrt{\frac{5+0.30}{5}} = 26,046 \\ S^* &= \sqrt{\frac{2(8000)(12000)}{0.30}} \sqrt{\frac{5}{5+0.30}} = 24,572 \\ t^* &= Q^*/d = 3.26 \text{ months} \end{split}$$

# 18.3-8.

(a)

|      | Data     |                      |      |                     | Results     |
|------|----------|----------------------|------|---------------------|-------------|
| d =  | 6000     | (demand/year)        |      | Reorder Point       | 0           |
| K=   | \$1,000  | (setup cost)         |      |                     |             |
| h =  | \$100.00 | (unit holding cost)  |      | Annual Setup Cost   | \$17,320.51 |
| L=   | 0        | (lead time in days)  |      | Annual Holding Cost | \$17,320.51 |
| WD = | 365      | (working days/year)  |      | Total Variable Cost | \$34,641.02 |
|      |          |                      |      |                     |             |
|      | Decision |                      |      |                     |             |
| Q =  | 346.41   | (optimal order quant | ity) |                     |             |

(b)

|     | Data     |                            |                      | Results     |
|-----|----------|----------------------------|----------------------|-------------|
| d = | 6000     | (demand/year)              | Max Inventory Level  | 268.33      |
| K=  | \$1,000  | (setup cost)               |                      |             |
| h = | \$100.00 | (unit holding cost)        | Annual Setup Cost    | \$13,416.41 |
| p = | \$150.00 | (unit shortage cost)       | Annual Holding Cost  | \$8,049.84  |
|     |          |                            | Annual Shortage Cost | \$5,366.56  |
|     | Decision |                            | Total Variable Cost  | \$26,832.82 |
| Q = |          | (optimal order quantity)   |                      |             |
| S = | 178.8854 | (optimal maximum shortage) |                      |             |

# 18.3-9.

(a)

| .1 | :        |                      | I | I                    |            |
|----|----------|----------------------|---|----------------------|------------|
|    | Data     |                      |   |                      | Results    |
| d= | 676      | (demand/year)        |   | Max Inventory Level  | 6.00       |
| K= | \$75     | (setup cost)         |   |                      |            |
| h= | \$600.00 | (unit holding cost)  |   | Annual Setup Cost    |            |
| p= | \$200.00 | (unit shortage cost) |   | Annual Holding Cost  | \$415.38   |
|    |          |                      |   | Annual Shortage Cost | \$1,538.46 |
|    | Decision |                      |   | Total Variable Cost  | \$3,903.85 |
| Q= | 26       | (order quantity)     |   |                      |            |
| S= | 20       | (maximum shortage)   |   |                      |            |
|    |          |                      |   |                      |            |

This TVC is almost half of the optimal value found for Problem 18.3-3.

(b)

|   |          | Annual  | Annual  | Annual   | Total    |
|---|----------|---------|---------|----------|----------|
|   |          | Setup   | Holding | Shortage | Variable |
| , | <u> </u> | Cost    | Cost    | Cost     | Cost     |
|   |          | \$1,950 | \$415   | \$1,538  | \$3,904  |
|   | 15       | \$3,380 | \$500   | \$2,667  | \$6,547  |
|   | 17       | \$2,982 | \$159   | \$2,353  | \$5,494  |
|   | 19       | \$2,668 | \$16    | \$2,105  | \$4,789  |
|   | 21       | \$2,414 | \$14    | \$1,905  | \$4,333  |
|   | 23       | \$2,204 | \$117   | \$1,739  | \$4,061  |
|   | 25       | \$2,028 | \$300   | \$1,600  | \$3,928  |
|   | 27       | \$1,878 | \$544   | \$1,481  | \$3,904  |
|   | 29       | \$1,748 | \$838   | \$1,379  | \$3,966  |
|   | 31       | \$1,635 | \$1,171 | \$1,290  | \$4,097  |
|   | 33       | \$1,536 | \$1,536 | \$1,212  | \$4,285  |
|   | 35       | \$1,449 | \$1,929 | \$1,143  | \$4,520  |

(c)

|    | Annual<br>Setup | Annual<br>Holding | Annual<br>Shortage | Total<br>Variable |
|----|-----------------|-------------------|--------------------|-------------------|
| S  | Cost            | Cost              | Cost               | Cost              |
|    | \$1,950         | \$415             | \$1,538            | \$3,904           |
| 10 | \$1,950         | \$2,954           | \$385              | \$5,288           |
| 12 | \$1,950         | \$2,262           | \$554              | \$4,765           |
| 14 | \$1,950         | \$1,662           | \$754              | \$4,365           |
| 16 | \$1,950         | \$1,154           | \$985              | \$4,088           |
| 18 | \$1,950         | \$738             | \$1,246            | \$3,935           |
| 20 | \$1,950         | \$415             | \$1,538            | \$3,904           |
| 22 | \$1,950         | \$185             | \$1,862            | \$3,996           |
| 24 | \$1,950         | \$46              | \$2,215            | \$4,212           |
| 26 | \$1,950         | \$0               | \$2,600            | \$4,550           |
| 28 | \$1,950         | \$46              | \$3,015            | \$5,012           |
| 30 | \$1,950         | \$185             | \$3,462            | \$5,596           |

18.3-10.

| $\frac{p}{h}$ | $Q^* = \sqrt{\frac{h+p}{p}} \sqrt{\frac{2KD}{h}}$ | Maximum Inventory Level | Maximum Shortage |
|---------------|---------------------------------------------------|-------------------------|------------------|
| 1/3           | 2,000                                             | 500                     | 1,500            |
| 1             | 1,414                                             | 707                     | 707              |
| 2             | 1,225                                             | 816                     | 408              |
| 3             | 1,155                                             | 866                     | 289              |
| 5             | 1,095                                             | 913                     | 183              |
| 10            | 1,049                                             | 953                     | 95               |

## 18.3-11.

(a)

Maximum inventory:  $\frac{(b-a)Q}{b}$ Length of interval I:  $\frac{Q}{b}$ 

Average inventory in interval I:  $\frac{(b-a)Q}{2b}$ 

Length of interval II:  $\frac{Q}{a} - \frac{Q}{b}$ 

Average inventory in interval II:  $\frac{(b-a)Q}{2b}$ 

Average inventory per cycle:  $\frac{(b-a)Q}{2b}$ 

Holding cost per cycle:  $\frac{(b-a)Q}{2ah}$ 

$$\Rightarrow T = -\frac{aK}{Q} + \frac{(b-a)hQ}{2b} + ac$$

(b)

$$\frac{dT}{dQ} = -\frac{aK}{Q^2} + \frac{(b-a)h}{2b} = 0 \Rightarrow Q^* = \sqrt{\frac{2abk}{(b-a)h}}$$

## 18.3-12.

(a) 
$$D = 5200, K = $50, I = 0.2, N = 3$$

|          |          |               |             |     |     | Annual    | Annual  | Annual  | Total     |
|----------|----------|---------------|-------------|-----|-----|-----------|---------|---------|-----------|
|          |          | Range of ord  |             |     |     | Purchase  | Setup   | Holding | Variable  |
| Category | Price    | Lower Limit   | Upper Limit |     | Q*  | Cost      | Cost    | Cost    | Cost      |
| 1        | \$100.00 | 0             | 99          | 161 | 99  | \$520,000 | \$2,626 | \$990   | \$523,616 |
| 2        | \$95.00  | 100           | 499         | 165 | 165 | \$494,000 | \$1,572 | \$1,572 | \$497,143 |
| 3        | \$90.00  | 500           | 10000000    | 170 | 500 | \$468,000 | \$520   | \$4,500 | \$473,020 |
|          |          |               |             |     |     |           |         |         |           |
|          |          |               |             |     |     |           |         |         |           |
|          |          |               |             |     |     |           |         |         |           |
|          |          |               | Results     |     |     |           |         |         |           |
|          |          | Optimal Q     | 500         |     |     |           |         |         |           |
|          |          |               |             |     |     |           |         |         |           |
|          |          | /ariable Cost | \$473,020   |     |     |           |         |         |           |

(b)

Orders placed per year:  $\frac{D}{Q} = \frac{5200}{500} = 10.4$ 

Time interval between orders:  $\frac{Q}{D} = \frac{500}{5200} = 0.096 \text{ years} \approx 5 \text{ weeks}$ 

## 18.3-13.

(a) 
$$D = 365, K = \$10, I = 0.1, N = 3$$

| 1        |        |              |               |     |     |          |        |              |          |
|----------|--------|--------------|---------------|-----|-----|----------|--------|--------------|----------|
|          |        |              |               |     |     | Annual   | Annual | Annual       | Total    |
|          |        | Range of ord | er quantities |     |     | Purchase | Setup  | Holding      | Variable |
| Category | Price  | Lower Limit  | Upper Limit   | EOQ | Q*  | Cost     | Cost   | Cost         | Cost     |
| 1        | \$5.00 | 1            | 49            | 121 | 49  | \$1,825  | \$74   | <b>\$</b> 12 | \$1,912  |
| 2        | \$4.85 | 50           | 99            | 123 | 99  | \$1,770  | \$37   | \$24         | \$1,831  |
| 3        | \$4.70 | 100          | 10000000      | 125 | 125 | \$1,716  | \$29   | <b>\$</b> 29 | \$1,774  |

|         |           | Results  |
|---------|-----------|----------|
|         | Optimal Q | 124.6271 |
|         |           |          |
| Total \ | \$1,774   |          |

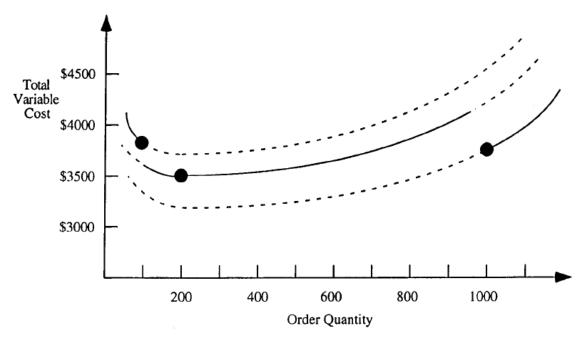
(b)

Orders placed per year:  $\frac{D}{Q}=\frac{365}{124.63}=2.93$ Time interval between orders:  $\frac{Q}{D}=\frac{124.63}{365}=0.341$  years  $\approx 17.76$  weeks

# 18.3-14.

(a)

| Discount Category | $TVC = cD + K\frac{D}{Q} + h\frac{Q}{2}$                                                   |
|-------------------|--------------------------------------------------------------------------------------------|
| 1                 | $TVC = (8.50)(400) + (80)\left(\frac{400}{Q}\right) + (0.2)(8.50)\left(\frac{Q}{2}\right)$ |
| 2                 | $TVC = (8.00)(400) + (80)\left(\frac{400}{Q}\right) + (0.2)(8.00)\left(\frac{Q}{2}\right)$ |
| 3                 | $TVC = (7.50)(400) + (80)\left(\frac{400}{Q}\right) + (0.2)(7.50)\left(\frac{Q}{2}\right)$ |


(b)

| Discount Category | $Q^* = \sqrt{\frac{2KD}{h}}$                      |
|-------------------|---------------------------------------------------|
| 1                 | $Q^* = \sqrt{\frac{2(80)(400)}{0.2(8.50)}} = 194$ |
| 2                 | $Q^* = \sqrt{\frac{2(80)(400)}{0.2(8.00)}} = 200$ |
| 3                 | $Q^* = \sqrt{\frac{2(80)(400)}{0.2(7.50)}} = 207$ |

(c)

| Discount Category | Feasible $Q$ | $TVC = cD + K\frac{D}{Q} + h\frac{Q}{2}$ |
|-------------------|--------------|------------------------------------------|
| 1                 | 99           | \$3,807.38                               |
| 2                 | 200          | \$3,520.00                               |
| 3                 | 1000         | \$3,782.00                               |

(d)



- (e)  $Q^* = 200$  with a TVC of \$3,520
- (f) D = 400, K = \$80, I = 0.2, N = 3

|          |        |               |               |     |      | Annual   | Annual | Annual  | Total    |
|----------|--------|---------------|---------------|-----|------|----------|--------|---------|----------|
|          |        | Range of ord  | er quantities |     |      | Purchase | Setup  | Holding | Variable |
| Category | Price  | Lower Limit   | Upper Limit   | EOQ | Q*   | Cost     | Cost   | Cost    | Cost     |
| 1        | \$8.50 | 0             | 99            | 194 | 99   | \$3,400  | \$323  | \$84    | \$3,807  |
| 2        | \$8.00 | 100           | 999           | 200 | 200  | \$3,200  | \$160  | \$160   | \$3,520  |
| 3        | \$7.50 | 1000          | 10000000      | 207 | 1000 | \$3,000  | \$32   | \$750   | \$3,782  |
|          |        |               |               |     |      |          |        |         |          |
|          |        |               |               |     |      |          |        |         |          |
|          |        |               |               |     |      |          |        |         |          |
|          |        |               | Results       |     |      |          |        |         |          |
|          |        | Optimal Q     | 200           |     |      |          |        |         |          |
|          |        |               |               |     |      |          |        |         |          |
|          |        | /ariable Cost | \$3,520       |     |      |          |        |         |          |

(g) Since the value of Q that minimizes TVC for discount category 2 is feasible, this order quantity minimizes the annual setup and holding costs. Then, category 1 cannot have lower annual setup and holding costs. Furthermore, since the purchase price per case is higher for category 1, it cannot have lower purchasing costs. Hence, category 1 can be eliminated as a candidate for providing the optimal order quantity.

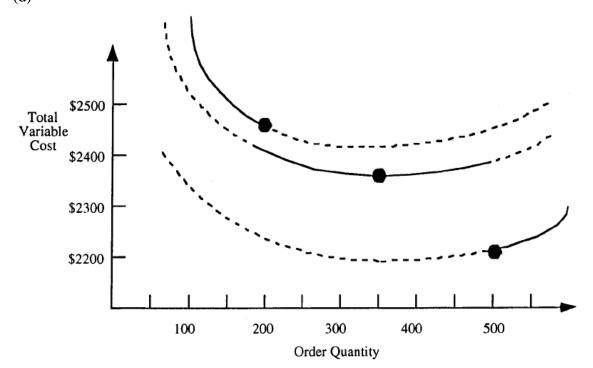
(h)

Orders placed per year:  $\frac{D}{Q}=\frac{400}{200}=2$ Time interval between orders:  $\frac{Q}{D}=\frac{200}{400}=0.5$  years = 6 months

# 18.3-15.

(a)

| Discount Category | $TVC = cD + K\frac{D}{Q} + h\frac{Q}{2}$                                                     |
|-------------------|----------------------------------------------------------------------------------------------|
| 1                 | $TVC = (1.00)(2400) + (4)\left(\frac{2400}{Q}\right) + (0.17)(1.00)\left(\frac{Q}{2}\right)$ |
| 2                 | $TVC = (0.95)(2400) + (4)\left(\frac{2400}{Q}\right) + (0.17)(0.95)\left(\frac{Q}{2}\right)$ |
| 3                 | $TVC = (0.90)(2400) + (4)\left(\frac{2400}{Q}\right) + (0.17)(0.90)\left(\frac{Q}{2}\right)$ |


(b)

| Discount Category | $Q^* = \sqrt{\frac{2KD}{h}}$                       |
|-------------------|----------------------------------------------------|
| 1                 | $Q^* = \sqrt{\frac{2(4)(2400)}{0.17(1.00)}} = 336$ |
| 2                 | $Q^* = \sqrt{\frac{2(4)(2400)}{0.17(0.95)}} = 345$ |
| 3                 | $Q^* = \sqrt{\frac{2(4)(2400)}{0.17(0.90)}} = 354$ |

(c)

| Discount Category | Feasible $Q$ | $TVC = cD + K\frac{D}{Q} + h\frac{Q}{2}$ |
|-------------------|--------------|------------------------------------------|
| 1                 | 199          | \$2,465.16                               |
| 2                 | 345          | \$2,335.68                               |
| 3                 | 500          | \$2,217.45                               |

(d)



(e)  $Q^* = 500$  with a TVC of \$2, 217.45

|          |        |               |             |     |     | Annual   | Annual       | Annual  | Total    |
|----------|--------|---------------|-------------|-----|-----|----------|--------------|---------|----------|
|          |        | Range of ord  |             |     |     | Purchase | Setup        | Holding | Variable |
| Category | Price  | Lower Limit   | Upper Limit | EOQ | Q*  | Cost     | Cost         | Cost    | Cost     |
| 1        | \$1.00 | 0             | 199         | 336 | 199 | \$2,400  | \$48         | \$17    | \$2,465  |
| 2        | \$0.95 | 200           | 499         | 345 | 345 | \$2,280  | \$28         | \$28    | \$2,336  |
| 3        | \$0.90 | 500           | 10000000    | 354 | 500 | \$2,160  | <b>\$1</b> 9 | \$38    | \$2,217  |
|          |        |               |             |     |     |          |              |         |          |
|          |        |               |             |     |     |          |              |         |          |
|          |        |               |             |     |     |          |              |         |          |
|          |        |               | Results     |     |     |          |              |         |          |
|          |        | Optimal Q     | 500         |     |     |          |              |         |          |
| •        |        |               |             |     |     |          |              |         |          |
| •        |        | /ariable Cost | \$2,217     |     |     |          |              |         |          |

(g) Since the value of Q that minimizes TVC for discount category 2 is feasible, this order quantity minimizes the annual setup and holding costs. Then, category 1 cannot have lower annual setup and holding costs. Furthermore, since the purchase price per bag is higher for category 1, it cannot have lower purchasing costs. Hence, category 1 can be eliminated as a candidate for providing the optimal order quantity.

(h)

Orders placed per year: 
$$\frac{D}{Q} = \frac{2400}{500} = 4.8$$

Time interval between orders:  $\frac{Q}{D} = \frac{500}{2400} = 0.21 \text{ years} \approx 2.5 \text{ months}$ 

18.4-1.

$$\begin{split} C_5 &= C_6 + 9 = 0 + 9 = 9 \\ C_4^{(4)} &= C_5 + 9 = 9 + 9 = 18 \\ C_4^{(5)} &= C_6 + 9 + 0.8(r_5) = 0 + 9 + 0.8(20) = 25 \\ C_4 &= \min{\{18, 25\}} = 18 \\ C_3^{(3)} &= C_4 + 9 = 18 + 9 = 27 \\ C_3^{(4)} &= C_5 + 9 + 0.8(r_4) = 9 + 9 + 0.8(10) = 26 \\ C_3^{(5)} &= C_6 + 9 + 0.8(r_4 + 2r_5) = 0 + 9 + 0.8(10 + 40) = 49 \\ C_3 &= \min{\{27, 26, 49\}} = 26 \\ C_2^{(2)} &= C_3 + 9 = 26 + 9 = 35 \\ C_2^{(3)} &= C_4 + 9 + 0.8(r_3) = 18 + 9 + 0.8(15) = 39 \\ C_2^{(4)} &= C_5 + 9 + 0.8(r_3 + 2r_4) = 9 + 9 + 0.8(15 + 20) = 46 \\ C_2^{(5)} &= C_6 + 9 + 0.8(r_3 + 2r_4 + 3r_5) = 0 + 9 + 0.8(15 + 20 + 60) = 85 \\ C_2 &= \min{\{35, 39, 46, 85\}} = 35 \\ C_1^{(1)} &= C_2 + 9 = 35 + 9 = 44 \\ C_1^{(2)} &= C_3 + 9 + 0.8(r_2) = 26 + 9 + 0.8(25) = 55 \\ \end{split}$$

$$C_1^{(3)} = C_4 + 9 + 0.8(r_2 + 2r_3) = 18 + 9 + 0.8(25 + 30) = 71$$

$$C_1^{(4)} = C_5 + 9 + 0.8(r_2 + 2r_3 + 3r_4) = 9 + 9 + 0.8(25 + 30 + 30) = 86$$

$$C_1^{(5)} = C_6 + 9 + 0.8(r_2 + 2r_3 + 3r_4 + 4r_5) = 0 + 9 + 0.8(25 + 30 + 30 + 80) = 141$$

$$C_1 = \min\{44, 55, 71, 86, 141\} = 44$$

The optimal production schedule is to produce 10 in the first month, 25 in the second, 25 in the third and 20 in the last month. The total variable cost associated with this schedule is \$44,000. The total cost including the production cost is \$284,000.

#### 18.4-2.

$$\begin{split} C_4 &= C_5 + 2 = 2 \\ C_3^{(3)} &= C_4 + 2 = 2 + 2 = 4 \\ C_3^{(4)} &= C_5 + 2 + 0.2(r_4) = 0 + 2 + 0.2(3) = 2.6 \\ C_3 &= \min\left\{4, 2.6\right\} = 2.6 \\ C_2^{(2)} &= C_3 + 2 = 2.6 + 2 = 4.6 \\ C_2^{(3)} &= C_4 + 2 + 0.2(r_3) = 2 + 2 + 0.2(4) = 4.8 \\ C_2^{(4)} &= C_5 + 2 + 0.2(r_3 + 2r_4) = 0 + 2 + 0.2(4 + 6) = 4 \\ C_2 &= \min\left\{4.6, 4.8, 4\right\} = 4 \\ C_1^{(1)} &= C_2 + 2 = 4 + 2 = 6 \\ C_1^{(2)} &= C_3 + 2 + 0.2(r_2) = 2.6 + 2 + 0.2(3) = 5.2 \\ C_1^{(3)} &= C_4 + 2 + 0.2(r_2 + 2r_3) = 2 + 2 + 0.2(3 + 8) = 6.2 \\ C_1^{(4)} &= C_5 + 2 + 0.2(r_2 + 2r_3 + 3r_4) = 0 + 2 + 0.2(3 + 8 + 9) = 6 \\ C_1 &= \min\left\{6, 5.2, 6.2, 6\right\} = 5.2 \end{split}$$

The optimal production schedule is to produce 7 units in the first and third periods at a total variable cost of \$5.2 million.

18.4-3.

| $x_4$ | $z_4$ | $C_4^*(x_4)$ | $z_4^*$ |
|-------|-------|--------------|---------|
| 0     | 2     | 4            | 2       |
| 1     | 1     | 3            | 1       |
| 2     | 0     | 0            | 0       |

| $x_3$ | 0   | 1   | 2   | 3    | 4    | 5   | $C_3^*(x_3)$ | $z_{3}^{*}$ |
|-------|-----|-----|-----|------|------|-----|--------------|-------------|
| 0     | _   | _   | _   | 10.2 | 10.8 | 9.4 | 9.4          | 5           |
| 1     | _   | _   | 8.8 | 9.4  | 8.0  | _   | 8.0          | 4           |
| 2     | _   | 7.4 | 8.0 | 6.6  | _    | _   | 6.6          | 3           |
| 3     | 4.0 | 6.6 | 5.2 | _    | _    | _   | 4.0          | 0           |
| 4     | 3.2 | 3.8 | _   | _    | _    | _   | 3.2          | 0           |
| 5     | 0.4 | _   | _   | _    | _    | _   | 0.4          | 0           |

|       |     |      | $C_2(x_2,$ | $z_2)$ |      |      |      |      |              |         |
|-------|-----|------|------------|--------|------|------|------|------|--------------|---------|
| $x_2$ | 0   | 1    | 2          | 3      | 4    | 5    | 6    | 7    | $C_2^*(x_2)$ | $z_2^*$ |
| 0     | _   |      | 13.4       | 13.2   | 14.0 | 11.6 | 13.0 | 10.4 | 10.4         | 7       |
| 1     | _   | 12.4 | 12.2       | 13.0   | 10.6 | 12.0 | 9.4  | _    | 9.4          | 6       |
| 2     | 9.4 | 11.2 | 12.0       | 9.6    | 11.0 | 8.4  | _    | _    | 8.4          | 5       |
| 3     | 8.2 | 11.0 | 8.6        | 10.0   | 7.4  | _    | _    | _    | 7.4          | 4       |
| 4     | 7.0 | 7.6  | 9.0        | 6.4    | _    |      | _    | _    | 6.4          | 3       |
| 5     | 4.6 | 8.0  | 5.4        | _      | _    |      | _    | _    | 4.6          | 0       |
| 6     | 4.0 | 4.4  | _          | _      | _    | _    | _    | _    | 4.0          | 0       |
| 7     | 1.4 | _    | _          | _      | _    | _    | _    | _    | 1.4          | 0       |

|       |      | $C_1(x_1,z_1)$   |      |      |      |      |      |      |      |         |  |
|-------|------|------------------|------|------|------|------|------|------|------|---------|--|
| $x_1$ | 3    | 3 4 5 6 7 8 9 10 |      |      |      |      |      |      |      | $z_1^*$ |  |
| 0     | 16.8 | 17.2             | 17.8 | 18.4 | 19.0 | 18.8 | 19.8 | 18.8 | 16.8 | 3       |  |

The optimal production schedule is to produce 3 units in period 1 and 7 units in period 2, with a cost of \$16.8 million.

18.4-4.

$$h = 2$$

$$B(x_n, z_n) = \begin{cases} k_n + c_n z_n + 2\max\{0, z_n - 3\} + h(x_n + z_n - r_n) & \text{for } 0 < z_n \le 4\\ h(x_n - z_n) & \text{for } z_n = 0 \end{cases}$$

| $x_3$ | $z_3$ | $C_3^*(x_3)$ | $z_3^*$ |
|-------|-------|--------------|---------|
| 0     | 4     | 47           | 4       |
| 1     | 3     | 36           | 3       |
| 2     | 2     | 27           | 2       |
| 3     | 1     | 18           | 1       |
| 4     | 0     | 4            | 0       |

| h =   | h = 2                                                                                                                                                               |              |         |  |                       |   |    |         |              |    |              |         |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|--|-----------------------|---|----|---------|--------------|----|--------------|---------|--|
| B(x)  | $B(x_n, z_n) = \begin{cases} k_n + c_n z_n + 2\max\{0, z_n - 3\} + h(x_n + z_n - r_n) & \text{for } 0 < z_n \le 4\\ h(x_n - z_n) & \text{for } z_n = 0 \end{cases}$ |              |         |  |                       |   |    |         |              |    |              |         |  |
| $x_3$ | $z_3$                                                                                                                                                               | $C_3^*(x_3)$ | $z_3^*$ |  |                       |   |    | $C_2(x$ | $(z_1, z_2)$ |    |              |         |  |
| 0     | 4                                                                                                                                                                   | 47           | 4       |  | $x_2$                 | 0 | 1  | 2       | 3            | 4  | $C_2^*(x_2)$ | $z_2^*$ |  |
| 1     | 3                                                                                                                                                                   | 36           | 3       |  | 0                     | - |    | -       | 87           | 90 | 87           | 3       |  |
| 2     | 2                                                                                                                                                                   | 27           | 2       |  | 1                     | 1 |    | 77      | 78           | 83 | 77           | 2       |  |
| 3     | 1                                                                                                                                                                   | 18           | 1       |  | 2                     | - | 67 | 68      | 71           | 76 | 67           | 1       |  |
| 4     | 0                                                                                                                                                                   | 4            | 0       |  | 3 47 58 61 64 64 47 0 |   |    |         |              |    |              |         |  |
|       | 4 38 51 54 52 - 38 0                                                                                                                                                |              |         |  |                       |   |    |         |              |    |              |         |  |

|       |    |    | $C_{\overline{i}}$ | $z_1)$ |    |              |         |
|-------|----|----|--------------------|--------|----|--------------|---------|
| $x_1$ | 0  | 1  | 2                  | 3      | 4  | $C_1^*(x_1)$ | $z_1^*$ |
| 0     | 87 | 92 | 92                 | 82     | 85 | 82           | 3       |

The optimal production schedule is to produce 3 units in period 1 and 4 units in period 3, with a cost of \$82 thousand.

#### 18.5-1.

Deere & Company uses inventory theory to determine optimal inventory levels ensuring product availability, on-time delivery, and customer satisfaction. In doing this, the multistage inventory planning and optimization (MIPO) tool developed by SmartOps is deployed. The underlying model is a stochastic, capacitated, multiechelon, multiproduct production and inventory model. In MIPO, the material flow in the supply chain is represented as an acyclic-directed graph. The recommended stock levels are found by minimizing the inventory costs among periodic-review replenishment policies with a certain service level. The demand is stochastic and its probability distribution is nonstationary over time. The latter allows to model seasonality of demand. The capacities and supply paths can be nonstationary. Lower bounds on service levels and other constraints can be encapsulated in the model. The main decision variables are safety stocks. Once the optimal stock levels are found, what-if analyses are performed to evaluate the impact of changes.

After the implementation of the results, on-time deliveries have increased from 63% to 92% with a 90% customer service level. The reduction in inventory provided a savings of \$890 million between 2001 and 2003 and a \$107 million increase in annual shareholder value added. Estimated savings by the end of 2004 exceed \$1 billion. The new system also allows Deere to reduce the amount of aged inventory and to offer customers newer models. This, in turn, avoids discounts and saves Deere over \$10 million per year. Other benefits from this study include enhanced manufacturing flexibility, improved service levels, accurate predictions, ability to respond to changes quickly and trust in the supply chain.

#### 18.5-2.

$$K_1 = \$25,000, K_2 = \$1,500, h_1 = \$30, h_2 = \$35, d = 4,000$$

Optimizing separately:

$$\begin{split} Q_2^* &= \sqrt{\frac{2dK_2}{h_2}} = 586 \\ C_2^* &= \sqrt{2dK_2h_2} = \$20,493.9 \\ n^* &= \sqrt{\frac{K_1h_2}{K_2h_1}} = 4.41, \frac{n^*}{[n^*]} \leq \frac{[n^*]+1}{n^*} \Rightarrow n = 4 \\ Q_1^* &= nQ_2^* = 2344 \\ C_1^* &= \frac{dK_1}{nQ_2} + \frac{h_1(n-1)Q_2}{2} = \$69,032.12 \\ C^* &= C_1^* + C_2^* = \$89,526.02 \end{split}$$

Optimizing simultaneously:

$$e_1 = h_1 = 30, e_2 = h_2 - h_1 = 5$$

$$n^* = \sqrt{\frac{K_1 e_2}{K_2 e_1}} = 1.67, \frac{n^*}{[n^*]} > \frac{[n^*] + 1}{n^*} \Rightarrow n = 2$$

$$Q_2^* = \sqrt{\frac{2d\left(\frac{K_1}{n} + K_2\right)}{ne_1 + e_2}} = 1313$$

$$Q_1^* = nQ_2^* = 2626$$

$$C^* = \sqrt{2d\left(\frac{K_1}{n} + K_2\right)(ne_1 + e_2)} = $85,322.92$$

| Quantity | Separate Optimization | Simultaneous Optimization |
|----------|-----------------------|---------------------------|
| $Q_2^*$  | 586                   | 1313                      |
| $n^*$    | 4.41                  | 1.67                      |
| n        | 4                     | 2                         |
| $Q_1^*$  | 2344                  | 2626                      |
| $C^*$    | \$89,526              | \$85,323                  |

The increase in the total variable cost per unit time if the results from separate optimization were to be used instead of the ones from simultaneous optimization is almost 5%.

18.5-3.

(a) 
$$h_1 = \$25, h_2 = \$250, d = 2,500$$

| Quantity | (\$25000, \$1000) | (\$10000, \$2500) | (\$5000, \$5000) |
|----------|-------------------|-------------------|------------------|
| $Q_2^*$  | 149               | 236               | 333              |
| $n^*$    | 15                | 6                 | 3                |
| n        | 15                | 6                 | 3                |
| $Q_1^*$  | 2236              | 1414              | 1000             |

(b) 
$$K_1 = \$10,000, K_2 = \$2500, d = 2,500$$

| Quantity | (\$10, \$500) | (\$25, \$250) | (\$50, \$100) |
|----------|---------------|---------------|---------------|
| $Q_2^*$  | 160           | 236           | 500           |
| $n^*$    | 14            | 6             | 2             |
| n        | 14            | 6             | 2             |
| $Q_1^*$  | 2236          | 1414          | 1000          |

(c) 
$$K_1 = \$10,000, K_2 = \$2500, h_1 = \$25, h_2 = \$250$$

| Quantity | 1000 | 2500 | 5000 |
|----------|------|------|------|
| $Q_2^*$  | 149  | 236  | 333  |
| $n^*$    | 6    | 6    | 6    |
| n        | 6    | 6    | 6    |
| $Q_1^*$  | 894  | 1414 | 2000 |

18.5-4.

$$K_1 = \$5,000, K_2 = \$200, h_1 = \$10, h_2 = \$11, d = 100$$

| Quantity       | Separate Optimization (a) | Simultaneous Optimization (b) |
|----------------|---------------------------|-------------------------------|
| $Q_2^*$        | 60                        | 160                           |
| $n^*$          | 5.24                      | 1.58                          |
| $\overline{n}$ | 5                         | 2                             |
| $Q_1^*$        | 302                       | 321                           |
| $C^*$          | 3528                      | 3367                          |

(c) The decrease in the total variable cost per unit time  $C^*$  by using the approach in (b) rather than the one in (a) is 5%.

18.5-5.

$$K_1 = \$50,000, K_2 = \$500, h_1 = \$50, h_2 = \$60, d = 500$$

| Quantity | Separate Optimization (a) | Simultaneous Optimization (b) |
|----------|---------------------------|-------------------------------|
| $Q_2^*$  | 91                        | 249                           |
| $C_2^*$  | 5477                      | 8469                          |
| $n^*$    | 10.95                     | 4.47                          |
| n        | 11                        | 4                             |
| $Q_1^*$  | 1004                      | 995                           |
| $C_1^*$  | 47718                     | 43780                         |
| $C^*$    | 53195                     | 52249                         |

(c) The assembly plant will lose money (-\$2,992) by using the joint inventory policy obtained in (b) whereas the supplier will make money (\$3,938) by doing so. One possible financial agreement between the supplier and the assembly plant is that the supplier will compensate for the loss of the plant so that the plant agrees to a supply contract inducing the inventory policy in (b). By using this policy instead of separately optimal ones, the total saving is -\$2,992 + \$3,938 = \$946.

18.5-6.

$$K_1 = \$50,000, K_2 = \$2,000, K_3 = \$360, h_1 = \$1, h_2 = \$2, h_3 = \$10, d = 5,000$$

| T - 4 - 11 - 4 ' ' |              | ion of        |         | olution of<br>I Problem |         | olution of<br>Problem |
|--------------------|--------------|---------------|---------|-------------------------|---------|-----------------------|
| Installation i     | $Q_i$        | Problem $C_i$ | $Q_i^*$ | $C_i$                   | $Q_i^*$ | $C_i$                 |
| 1                  | 10000        | 10000         | 9600    | 10008                   | 9628    | 10007                 |
| 2                  | 2000         | 2000          | 2400    | 2033                    | 2407    | 2034                  |
| 3                  | 300          | 2400          | 300     | 2400                    | 301     | 2400                  |
|                    | <u>C</u> = ' | 14400         | C =     | 14442                   |         | 14442                 |

The cost  $\overline{C}$  is about 0.29% above the optimal cost  $\underline{C}$  of the relaxed problem. Since the latter is a lower bound on the optimal cost  $C^*$  of the original problem, the optimal cost  $\overline{C}$  of the revised problem can exceed  $C^*$  at most by 0.29%.

#### 18.5-7.

$$K_1 = \$125,000, K_2 = \$20,000, K_3 = \$6,000, K_4 = \$10,000, K_5 = \$250$$
  
 $h_1 = \$2, h_2 = \$10, h_3 = \$15, h_4 = \$20, h_5 = \$30, d = 1,000$   
 $e_1 = \$2, e_2 = \$8, e_3 = \$5, e_4 = \$5, e_5 = \$10$ 

Since  $(K_3/e_3) = 1200 < 2000 = (K_4/e_4)$ , we need to merge the installation 3 and 4 as a new installation 3' with  $K_{3'} = \$16,000$  and  $e_{3'} = \$10$ .

| Installation i | Solution of<br>Relaxed Problem |       | Initial Solution of<br>Revised Problem |       | Final Solution of<br>Revised Problem |       |
|----------------|--------------------------------|-------|----------------------------------------|-------|--------------------------------------|-------|
|                | $Q_i$                          | $C_i$ | $Q_i^{\star}$                          | $C_i$ | $Q_i^*$                              | $C_i$ |
| 1              | 11180                          | 22361 | 14311                                  | 23045 | 13954                                | 22912 |
| 2              | 2236                           | 17889 | 1789                                   | 18336 | 1744                                 | 18443 |
| 3' (3+4)       | 1789                           | 17889 | 1789                                   | 17889 | 1744                                 | 17894 |
| 5              | 224                            | 2236  | 224                                    | 2236  | 218                                  | 2237  |
|                |                                | 60374 | C=                                     | 61506 | c̄=                                  | 61486 |

The cost  $\overline{C}$  is about 1.84% above the optimal cost  $\underline{C}$  of the relaxed problem. Since the latter is a lower bound on the optimal cost  $C^*$  of the original problem, the optimal cost  $\overline{C}$  of the revised problem can exceed  $C^*$  at most by 1.84%.

#### 18.5-8.

$$K_1 = \$1,000, K_2 = \$5, K_3 = \$75, K_4 = \$80$$
  
 $h_1 = \$0.5, h_2 = \$0.55, h_3 = \$3.55, h_4 = \$7.55, d = 4,000$ 

| Installation i | Solution of<br>Relaxed Problem |       | Initial Solution of<br>Revised Problem |       | Final Solution of<br>Revised Problem |       |
|----------------|--------------------------------|-------|----------------------------------------|-------|--------------------------------------|-------|
|                | $Q_i$                          | $C_i$ | $Q_i^*$                                | $C_i$ | $Q_i^{\star}$                        | $C_i$ |
| 1              | 4000                           | 2000  | 3200                                   | 2050  | 3200                                 | 2050  |
| 2              | 894                            | 45    | 800                                    | 45    | 800                                  | 45    |
| 3              | 447                            | 1342  | 400                                    | 1350  | 400                                  | 1350  |
| 4              | 400                            | 1600  | 400                                    | 1600  | 400                                  | 1600  |
|                | C =                            | 4986  | C=                                     | 5045  | ć=                                   | 5045  |

The cost  $\overline{C}$  is about 1.18% above the optimal cost  $\underline{C}$  of the relaxed problem. Since the latter is a lower bound on the optimal cost  $C^*$  of the original problem, the optimal cost  $\overline{C}$  of the revised problem can exceed  $C^*$  at most by 1.18%.

#### 18.5-9.

$$K_1 = \$60,000, K_2 = \$6,000, K_3 = \$400, h_1 = \$3, h_2 = \$7, h_3 = \$9, d = 10,000$$

| Tueste 11 etiem i |           | tion of<br>Problem | 1                | olution of<br>Problem | i                | olution of<br>Problem |
|-------------------|-----------|--------------------|------------------|-----------------------|------------------|-----------------------|
| Installation i    | $Q_i$     | $C_i$              | $Q_i^{\star}$    | $C_i$                 | $Q_i^*$          | $C_i$                 |
| 1                 | 20000     | 60000              | 16000            | 61500                 | 20257            | 60005                 |
| 2                 | 5477      | 21909              | 4000             | 23000                 | 5064             | 21976                 |
| 3                 | 2000      | 4000               | 2000             | 4000                  | 2532             | 4112                  |
|                   | C = 85909 |                    | <b>C</b> = 88500 |                       | <b>c</b> = 86093 |                       |

The cost  $\overline{C}$  is about 0.21% above the optimal cost  $\underline{C}$  of the relaxed problem. Since the latter is a lower bound on the optimal cost  $C^*$  of the original problem, the optimal cost  $\overline{C}$  of the revised problem can exceed  $C^*$  at most by 0.21%.

## 18.6-1.

(a)

$$Q = \sqrt{\frac{h+p}{p}} \sqrt{\frac{2KD}{h}} = \sqrt{\frac{3000+1000}{1000}} \sqrt{\frac{2(1500)(900)}{3000}} = 60$$

(b) 
$$R = \mu + K_L \sigma = 50 + 0.675(15) = 60$$

(c)

|              | Data           |                            |     | Results |
|--------------|----------------|----------------------------|-----|---------|
| d =          | 900            | (average demand/unit time) | Q = | 60      |
| K=           | \$1,500        | (setup cost)               | R=  | 60      |
| h =          | \$3,000.00     | (unit holding cost)        |     |         |
| p =          | \$1,000        | (unit shortage cost)       |     |         |
| L=           | 0.75           | (service level)            |     |         |
|              |                |                            |     |         |
|              |                |                            |     |         |
| Dema         | nd During Lead | l Time                     |     |         |
| Distribution | Normal         |                            |     |         |
| mean =       | 50             |                            |     |         |
| stand.dev.=  | 15             |                            |     |         |

(d) Safety Stock: R - mean = 60 - 50 = 10

(e) If demand during the delivery time exceeds the order quantity 60, then the reorder point will be hit again before the order arrives, triggering another order.

## 18.6-2.

(a)

$$Q = \sqrt{\frac{2DK}{h}} \sqrt{\frac{h+p}{p}} = \sqrt{\frac{2(80)(100)}{15}} \sqrt{\frac{15+3}{3}} = 80$$

$$R = a + L(b - a) = 10 + 0.8(30 - 10) = 26$$

(b)

|              |                |                            | <br> |         |
|--------------|----------------|----------------------------|------|---------|
|              | D ata          |                            |      | Results |
| d =          | 80             | (average demand/unit time) | Q =  | 80      |
| K=           | \$100          | (setup cost)               | R=   | 26      |
| h =          | \$15.00        | (unit holding cost)        |      |         |
| p =          | <b>\$</b> 3    | (unit shortage cost)       |      |         |
| L=           | 0.8            | (service level)            |      |         |
|              |                |                            |      |         |
|              |                |                            |      |         |
|              | nd During Lead |                            |      |         |
| Distribution | Uniform        |                            |      |         |
| a =          | 10             | (lower endpoint)           |      |         |
| b =          | 30             | (upper endpoint)           |      |         |
|              |                |                            |      |         |

(c) Average number of orders per year: (80)(12)/80 = 12Probability of a stock-out before the order is received: 1 - 0.8 = 0.2Average number of stock-outs per year: 12(0.2) = 2.4

## 18.6-3.

(a)

|       | Case 1                | Case 2                  | Case 3                  | Case 4                    |
|-------|-----------------------|-------------------------|-------------------------|---------------------------|
| L     | $h = \$1, \sigma = 1$ | $h = \$100, \sigma = 1$ | $h = \$1, \sigma = 100$ | $h = \$100, \sigma = 100$ |
| 0.5   | 0                     | 0                       | 0                       | 0                         |
| 0.75  | 0.675                 | 67.5                    | 67.5                    | 6750                      |
| 0.9   | 1.282                 | 128.2                   | 128.2                   | 12,820                    |
| 0.95  | 1.645                 | 164.5                   | 164.5                   | 16,450                    |
| 0.99  | 2.327                 | 232.7                   | 232.7                   | 23,270                    |
| 0.999 | 3.098                 | 309.8                   | 309.8                   | 30,980                    |

(b)

|            | Case 1                | Case 2                  | Case 3                  | Case 4                    |
|------------|-----------------------|-------------------------|-------------------------|---------------------------|
| $\Delta L$ | $h = \$1, \sigma = 1$ | $h = \$100, \sigma = 1$ | $h = \$1, \sigma = 100$ | $h = \$100, \sigma = 100$ |
| 0.5        | 0.675                 | 67.5                    | 67.5                    | 6750                      |
| 0.15       | 0.607                 | 60.7                    | 60.7                    | 6070                      |
| 0.05       | 0.363                 | 36.3                    | 36.3                    | 3630                      |
| 0.04       | 0.682                 | 68.2                    | 68.2                    | 6820                      |
| 0.009      | 0.771                 | 77.1                    | 77.1                    | 7710                      |

(c) As the service level gets higher, increasing the service level further costs more for smaller increases. Thus, there will be diminishing returns when raising the service level further and further. A manager should balance the cost of the safety stock with the cost of stock-outs to determine the best service level.

#### 18.6-4.

(a) 
$$C = hK_L\sigma = (100)(1.282)(100) = $12,820$$

(b) 
$$\sigma = \sqrt{d}\sigma_1 \Rightarrow 100 = \sqrt{4}\sigma_1 \Rightarrow \sigma_1 = 50$$

If the lead time were one day:  $C = hK_L\sigma_1 = (100)(1.282)(50) = \$6,410$ . This is a 50% reduction in the cost of the safety stock.

(c) 
$$\sigma = \sqrt{d}\sigma_1 = \sqrt{8}(50) = 141.4$$
,  $C = hK_L\sigma_1 = (100)(1.282)(141.4) = $18,127$ 

This is a 41% increase in the cost of the safety stock.

(d) The lead time would need to quadruple to 16 days.

## 18.6-5.

- (a) The safety stock drops to zero.
- (b) The safety stock decreases.
- (c) The safety stock remains the same for a given service level. However, with higher shortage costs, there will be an incentive to increase the service level, which induces a higher level of safety stock.
- (d) The safety stock increases.
- (e) The safety stock doubles.
- (f) The safety stock doubles.

## 18.6-6.

## (a) Ground Chuck

|              | Data          |                            |     | Results |
|--------------|---------------|----------------------------|-----|---------|
| d =          | 26000         | (average demand/unit time) | Q = | 2,183   |
| K=           | \$25          | (setup cost)               | R = | 145     |
| h =          | \$0.30        | (unit holding cost)        |     |         |
| p =          | \$3           | (unit shortage cost)       |     |         |
| L=           | 0.95          | (service level)            |     |         |
|              |               |                            |     |         |
|              |               |                            |     |         |
| Deman        | d During Lead | l Time                     |     |         |
| Distribution | Uniform       |                            |     |         |
| a =          | 50            | (lower endpoint)           |     |         |
| b =          | 150           | (upper endpoint)           |     |         |

## Chuck Wagon

|               | Data           |                            |     | Results |
|---------------|----------------|----------------------------|-----|---------|
| d =           | 26000          | (average demand/unit time) | Q = | 6,175   |
| K=            | \$200          | (setup cost)               | R=  | 829     |
| h =           | \$0.30         | (unit holding cost)        |     |         |
| p=            | \$3            | (unit shortage cost)       |     |         |
| L=            | 0.95           | (service level)            |     |         |
|               |                |                            |     |         |
|               |                |                            |     |         |
| Dema          | nd During Lead | l Time                     |     |         |
| Distribution  | Normal         |                            |     |         |
| mean=         | 500            |                            |     |         |
| stand. dev. = | 200            |                            |     |         |

- (b) Ground Chuck: R = a + L(b a) = 50 + 0.95(150 50) = 145Chuck Wagon:  $R = \mu + K_L \sigma = 500 + 1.645(200) = 829$
- (c) Ground Chuck: safety stock R mean = 145 100 = 45Chuck Wagon: safety stock R - mean = 829 - 500 = 329
- (d) Ground Chuck:

Annual average holding cost: 
$$(0.30) \left( \frac{45 + (2183 + 45)}{2} \right) = \$340.95$$

Chuck Wagon:

Annual average holding cost: 
$$(0.30) \left( \frac{329 + (6175 + 329)}{2} \right) = \$3,416.50$$

(e) Ground Chuck:

Annual shipping cost: 
$$K\left(\frac{D}{Q}\right)=25\left(\frac{26,000}{2183}\right)=\$297.76$$

Annual purchasing cost: 
$$(26,000)(1.49) = $38,740$$

Average annual acquisition cost: \$297.76 + \$38,740 = \$39,037.76

Chuck Wagon:

Annual shipping cost: 
$$K\left(\frac{D}{Q}\right) + 0.10D = 200\left(\frac{26,000}{6175}\right) + 0.10(26,000)$$
  
= \$3442.11

Annual purchasing cost: (26,000)(1.35) = \$35,100

Average annual acquisition cost: \$3442.11 + \$35,100 = \$38,542.11

(f) Ground Chuck: 
$$$340.95 + $39,037.76 = $39,378.71$$

Chuck Wagon: \$3,416.50 + \$38,542.11 = \$41,958.61

Jed should choose Ground Chuck as their supplier.

(g) If Jed would like to use the beef within a month of receiving it, then Ground Chuck is the best choice. The order quantity with Ground Chuck is roughly one month's supply whereas with Chuck Wagon, it is roughly three months' supply.

#### 18.7-1.

In this study, inventory theory is applied to the three-echelon distribution problem faced by Time Inc., the largest magazine publisher in the US. For each issue of each magazine, Time Inc. needs to solve three subproblems. The first is to determine the total number D of copies to be printed and shipped. The second is to find an allocation  $D_1, \ldots, D_N$  of these D copies among N wholesalers. The third subproblem is to decide on the distribution  $d_{ij}$  of  $D_j$  copies among  $n_j$  retailers of wholesaler j for every j. Complicated cost and revenue structures, timing and constraints on available information complicate these problems. The overall objective is to maximize the expected total profit. The problem is solved backwards by using readily available results from the literature of newsvendor problem under ideal conditions. The solution found is then adjusted to incorporate deviations from the ideal.

To solve the store-level allocation problem, first the distribution of demand is estimated using statistical analysis. If  $F(k|\mu_{ij})$  is the probability that the demand in store i of wholesaler j is at least k, then the optimal allocation to this retailer is determined as  $d_{ij} = F^{-1}(\lambda|\mu_{ij})$  or the best approximation to this. With this allocation, the probability of selling out is  $1 - \lambda$  for each store and the solution satisfies  $\sum_i d_{ij} = D_i$ . Similarly, the wholesaler-level allocation is found from the equation  $m_j(D_j) = m$ , where  $m_j(\cdot)$  is the probability that wholesaler j will sell the last copy shipped and m is chosen such that  $\sum_j D_j = D$ . Finally, a lower bound on the national print order is determined from  $M(D_0) = c/r$ , where  $M(\cdot)$  is the probability of selling the last copy printed and shipped, c and r are the marginal cost and revenue respectively. Because of the complications in identifying c and r, Time Inc. aims at producing more than  $D_0$ .

The new system increased Time Inc.'s annual profits by over \$3.5 million. The benefits include improvement of wholesaler and retailer allocations, and increase of sales stimulation effect by over 1%.

#### 18.7-2.

$$F(S^*) = \frac{S^* - 50}{25} = \frac{p - c}{p + h} = \frac{0.75 - 0.55}{0.75 + 0.01} \Rightarrow S^* = 50 + \frac{5}{0.76} \approx 57$$

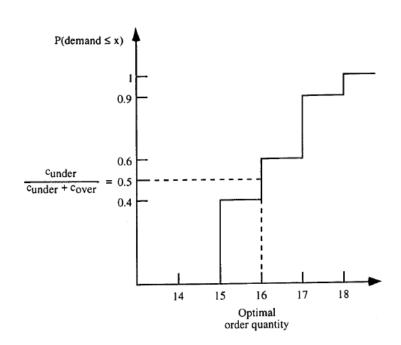
18.7-3.

(a) Freddie's most profitable alternative is to order 16 copies.

|                   | State of Nature |     |     |     | Expected        |
|-------------------|-----------------|-----|-----|-----|-----------------|
| Alternative       | 15              | 16  | 17  | 18  | Payoff          |
| Order 15 copies   | 15              | 15  | 15  | 15  | \$15.00         |
| Order 16 copies   | 14              | 16  | 16  | 16  | \$15.20 Maximum |
| Order 17 copies   | 13              | 15  | 17  | 17  | \$15.00         |
| Order 18 copies   | 12              | 14  | 16  | 18  | \$14.20         |
| Prior Probability | 0.4             | 0.2 | 0.3 | 0.1 |                 |

(b) Freddie's most profitable alternative is to order 16 copies.

|                   | State of Nature |     |     |     | Expected       |
|-------------------|-----------------|-----|-----|-----|----------------|
| Alternative       | 15              | 16  | 17  | 18  | Cost           |
| Order 15 copies   | 0               | 1   | 2   | 3   | \$1.10         |
| Order 16 copies   | 1               | 0   | 1   | 2   | \$0.90 Minimum |
| Order 17 copies   | 2               | 1   | 0   | 1   | \$1.10         |
| Order 18 copies   | 3               | 2   | 1   | 0   | \$1.90         |
| Prior Probability | 0.4             | 0.2 | 0.3 | 0.1 |                |


(c)

| Alternative     | Service Level |
|-----------------|---------------|
| Order 15 copies | 0.4           |
| Order 16 copies | 0.6           |
| Order 17 copies | 0.9           |
| Order 18 copies | 1             |

Optimal service level:  $\frac{C_{\text{under}}}{C_{\text{under}} + C_{\text{over}}} = \frac{1}{1+1} = 0.5$ 

Freddie should order 16 copies.

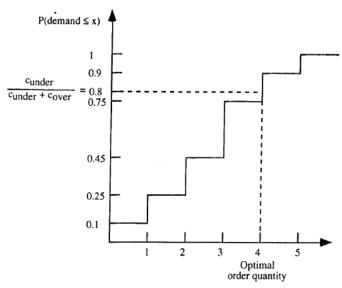
(d)



## 18.7-4.

(a) 
$$C_{\text{under}} = \$3 - \$1 = \$2, C_{\text{over}} = \$1 - \$0.50 = \$0.50$$

(b) Prepare 4 doughnuts everyday to minimize the costs.


|                   | Stat | e of Na | ture (P | urchas | se Requ | iests) | Expected     |
|-------------------|------|---------|---------|--------|---------|--------|--------------|
| Alternative       | 0    | 1_      | 2       | 3      | 4       | 5      | Cost         |
| Make 0            | 0.0  | 2.0     | 4.0     | 6.0    | 8.0     | 10.0   | 5.10         |
| Make 1            | 0.5  | 0.0     | 2.0     | 4.0    | 6.0     | 8.0    | 3,35         |
| Make 2            | 1.0  | 0.5     | 0.0     | 2.0    | 4.0     | 6.0    | 1,98         |
| Make 3            | 1.5  | 1.0     | 0.5     | 0.0    | 2.0     | 4.0    | 1.10         |
| Make 4            | 2.0  | 1.5     | 1.0     | 0.5    | 0.0     | 2.0    | 0.98 Minimum |
| Make 5            | 2.5  | 2.0     | 1.5     | 1.0    | 0.5     | 0.0    | 1.23         |
| Prior Probability | 0.1  | 0.15    | 0.2     | 0.3    | 0.15    | 0.1    | AMERICA 2015 |

(c)

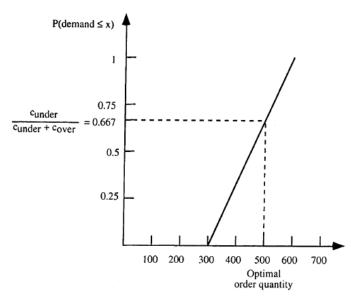
| Alternative | Service Level |
|-------------|---------------|
| Make 0      | 0.1           |
| Make 1      | 0.25          |
| Make 2      | 0.45          |
| Make 3      | 0.75          |
| Make 4      | 0.9           |
| Make 5      | 1             |

Optimal service level:  $\frac{C_{\text{under}}}{C_{\text{under}} + C_{\text{over}}} = \frac{2}{2+0.5} = 0.8$ 

Prepare 4 doughnuts everyday.



- (d) The probability of running short is 1 0.9 = 10%.
- (e) Before 5 doughnuts are prepared, the optimal service level needs to exceed 0.9. Let g be the cost of lost customer goodwill. Then  $C_{\rm under}=2+g$ .


$$\frac{C_{\mathrm{under}}}{C_{\mathrm{under}} + C_{\mathrm{over}}} > 0.9 \Leftrightarrow \frac{2+g}{2+g+0.5} > 0.9 \Leftrightarrow g > 2.50$$

The goodwill cost should be at least \$2.50 before 5 doughnuts are prepared.

#### 18.7-5.

$$\frac{C_{\mathrm{under}}}{C_{\mathrm{under}} + C_{\mathrm{over}}} = \frac{1}{1 + 0.5} = 0.667$$

(b)



- (c)  $Q^* = 300 + 0.667(600 300) = 500$
- (d) The probability of running short is 1 0.667 = 33.3%.
- (e) Optimal service level:

$$\frac{C_{
m under}}{C_{
m under} + C_{
m over}} = \frac{1+1.5}{1+1.5+0.5} = 0.833$$

$$Q^* = 300 + 0.833(600 - 300) = 550$$

The probability of running short is 1 - 0.833 = 16.7%.

### 18.7-6.

- (a) Revenue (with shortages): 500(3) = \$1,500
- (b) Average number of loaves sold (without shortages):  $300 + \frac{500-300}{2} = 400$ Average daily revenue (without shortages): 400(3.00) = \$1,200
- (c) With shortages:  $1,500 \times 0.333 = \$500$ Without shortages:  $1,200 \times 0.667 = \$800$ Average daily revenue over all days: \$500 + \$800 = \$1,300
- (d) Average number of loves not sold:  $\frac{200-0}{2}=100$ Average number of day-old loaves obtained over all days:  $100\times0.667=66.7$ Average daily revenue from day-old loaves: 66.7(1.50)=\$100
- (e) Average total daily revenue: \$1,300 + \$100 = \$1,400Average daily profit: \$1,400 - \$2(500) = \$400
- (f) Average daily profit with 600 loaves: 3(450) 2(600) + 1.50(150) = \$375

- (g) Average daily profit with 550 loaves:  $375 + \frac{400-375}{2} = $387.50$
- (h) Average size of shortage with 550 loaves:  $\frac{600-550}{2} = 25$  loaves

Average daily shortage over all days:  $25 \times 0.167 = 4.167$ 

Average daily cost of lost goodwill:  $4.167 \times 1.50 = \$6.25$ 

Average daily profit with 550 loaves and lost goodwill: \$387.50 - \$6.25 = \$381.25

(i) Average size of shortage with 500 loaves:  $\frac{100-0}{2} = 50$  loaves

Average daily shortage over all days:  $50 \times 0.333 = 16.67$ 

Average daily cost of lost goodwill:  $16.67 \times 1.50 = $25$ 

Average daily profit with 500 loaves and lost goodwill: \$400 - \$25 = \$375

## 18.7-7.

(a) 
$$Q^* = a + (\text{service level})(b - a) = a + (0.667)(75) = a + 50$$

- (b) Probability of incurring shortage: 1 0.667 = 33.3% (same as in 18.7-4)
- (c) Maximum shortage: b (a + 50) = 25

Maximum number of loaves that will not be sold: 50

The corresponding numbers for 18.7-5 are 100 and 200 respectively, which are four times the amounts in this problem.

- (d) The average daily costs of underordering and overordering for the new plan are 25% of the original costs, so it is quite valuable to obtain as much information as possible about the demand before placing the final order for a perishable product.
- (e)  $Q^* = a + (\text{service level})(b a) = a + (0.833)(75) = a + 62.5$

Probability of incurring shortage: 1 - 0.833 = 16.67%

Maximum shortage: b - (a + 62.5) = 12.5

Maximum number of loaves that will not be sold: 62.5

#### 18.7-8.

(a)

$$S^* = -\lambda \mathrm{ln} \Big(\frac{c+h}{p+h}\Big) = -50 \mathrm{ln} \Big(\frac{1000+300}{10000+300}\Big) \approx 103$$

(b) 
$$C(y) = c(y - I) + L(y) = cy - cI + L(y)$$

Taking the derivative with respect to y, the term involving the initial inventory I vanishes, so the optimal policy is the same as in (a), i.e., to order up to 103 or equivalently to order 103 - 23 = 80 parts.

(c) 
$$P\{D \le S\} = F(S) = 1 - e^{-\frac{S}{50}} = 0.9 \Rightarrow S = -50\ln(0.1) \approx 115$$

(d)

$$\frac{p-c}{p+h} = 0.9 \Rightarrow \frac{p-1000}{p+300} = 0.9 \Rightarrow p = $12,700$$

#### 18.7-9.

(a) Optimal service level:

$$\frac{C_{\text{under}}}{C_{\text{under}} + C_{\text{over}}} = \frac{3000}{3000 + 1000} = 0.75$$

(b) 
$$Q = \mu + K_L \sigma = 50 + (0.675)(15) = 60$$

#### 18.7-10.

$$L(y) = \frac{1}{20} \left[ \int_0^y (y - x) dx + 3 \int_y^{20} (x - y) dx \right] = \frac{y^2}{10} - 3y + 30$$
$$cy + L(y) = 2y + \frac{y^2}{10} - 3y + 30 = \frac{y^2}{10} - y + 30$$

Taking the derivative with respect to y:  $\frac{y}{5} - 1 = 0 \Rightarrow S = 5$ . We could have used the result  $P\{D \le S\} = (p-c)/(p+h)$  directly:

$$\begin{split} & \text{P}\{D \leq S\} = S/20 = (p-c)/(p+h) = (3-2)/(3+1) = 0.25 \Rightarrow S = 5. \\ & C(s) = K + cS + L(S) \Rightarrow cs + L(s) = K + cS + L(S) \\ & \Rightarrow \frac{s^2}{10} - s + 30 = 1.50 + \frac{5^2}{10} - 5 + 30 \Rightarrow \frac{s^2}{10} - s + 1 = 0 \\ & \Rightarrow s = 5 - \sqrt{15} \approx 1.13 \end{split}$$

The (s, S) = (1.13, 5) policy is optimal.

#### 18.7-11.

Single-period model with a setup cost:

Demand density is exponential with  $\lambda=25$ . Per unit production/purchasing cost is c=1. Per unit inventory holding cost is h=0.4 and per unit shortage cost is p=1.5. The setup cost is K=10. The optimal policy is an (s,S) policy with s=-11.e3 and S=7.63454.

#### 18.8-1.

In each case, L = 200,  $p_1 = $1000$  and D has a normal distribution with mean 60 and standard deviation 20.

$$p_2 = \$300 \Rightarrow F(x^*) = 1 - \frac{p_2}{p_1} = 0.7 \Rightarrow x^* = 60 + K_{0.3}(20) = 60 + 0.52(20) = 70.4$$

When the discount fare is \$300, 70 seats should be reserved for class 1 customers and the request to make a sale to the class 2 customer should be accepted if there are 71 or more seats remaining.

$$p_{2} = \$400 \Rightarrow F(x^{*}) = 1 - \frac{p_{2}}{p_{1}} = 0.6 \Rightarrow x^{*} = 60 + K_{0.4}(20) = 60 + 0.25(20) = 65$$

$$p_{2} = \$500 \Rightarrow F(x^{*}) = 1 - \frac{p_{2}}{p_{1}} = 0.5 \Rightarrow x^{*} = 60 + K_{0.5}(20) = 60 + 0(20) = 60$$

$$p_{2} = \$600 \Rightarrow F(x^{*}) = 1 - \frac{p_{2}}{p_{1}} = 0.4 \Rightarrow x^{*} = 60 + K_{0.6}(20)$$

$$= 60 - K_{0.4}(20) = 60 - 0.25(20) = 55$$

As the discount fare increases, the optimal number  $x^*$  of reservation slots for class 1 customers decreases.

#### 18.8-2.

The capacity L is 1000, the price  $p_1$  paid by luxury-seeking customers is \$20,000 and the discount fare is  $p_2 = $12,000$ . The demand D by luxury-seeking customers has a normal distribution with mean 400 and standard deviation 100.

$$F(x^*) = 1 - \frac{p_2}{p_1} = 0.4$$

$$\Rightarrow x^* = 400 + K_{0.6}(100) = 400 - K_{0.4}(100) = 400 - 0.25(100) = 150$$

$$\Rightarrow L - x^* = 1000 - 150 = 850$$

Hence, the maximum number of cabins that should be sold at the discount fare is 850.

#### 18.8-3.

$$L = 100, p_1 = 300, p_2 = 100$$

The demand D for full-fare tickets has a uniform distribution on integers between 31 and 50.

$$p_2 \le p_1 P(D \ge x^*) \Leftrightarrow \frac{p_2}{p_1} = \frac{1}{3} \le \frac{50 - x^* + 1}{20} \Leftrightarrow x^* \le 51 - \frac{20}{3} = 44.33$$
  
 $p_2 > p_1 P(D \ge x^* + 1) \Leftrightarrow \frac{p_2}{p_1} = \frac{1}{3} > \frac{50 - x^*}{20} \Leftrightarrow x^* > 50 - \frac{20}{3} = 43.33$ 

Thus  $x^* = 44$  slots should be reserved to full-fare customers.

#### 18.8-4.

$$L = 150, p = 0.8, r = $300, s = $1500$$
  
 $P\{D(n^*) \ge 150\} = \frac{r}{sp} = 0.25$ 

D(n) is normally distributed with mean 0.8n and standard deviation  $0.4\sqrt{n}$ .

$$K_{0.25} = \frac{150 - 0.8n}{0.4\sqrt{n}} \Rightarrow 0.67 = \frac{150 - 0.8n}{0.4\sqrt{n}} \Rightarrow 0.8n + 0.268\sqrt{n} - 150 = 0$$
$$\Rightarrow \sqrt{n} = \frac{-0.268 + \sqrt{(0.268)^2 - 4(0.8)(-150)}}{1.6} = 13.527 \Rightarrow n^* = (13.527)^2 = 183$$

We chose the smallest integer that is greater than  $(13.527)^2$  to determine  $n^*$ . Hence, the number of reservations to accept for this flight is 183.

## 18.8-5.

$$L = 125, r = $250, s = 300 + 300 = $600$$

Finding the optimal overbooking requires finding the smallest integer n with  $\Delta E(P(n))$  nonpositive.

$$\Delta E(P(n)) = 250 - 600 \left[ \sum_{d=126}^{n} (d-125) [P\{D(n+1) = d\} - P\{D(n) = d\}] \right]$$

Let X denote the random variable associated with no-shows.

$$\Delta E(P(n)) = 250 - 600 \left[ \sum_{k=0}^{n-126} (n-k-125) [P\{X=k+1\} - P\{X=k\}] \right]$$
$$= 250 - 600 \left[ \sum_{k=0}^{n-126} P\{X=k+1\} \right] = 250 - 600 P\{X \le n-125\}$$

Then the problem is to find the smallest n such that

$$P\{X \le n - 125\} \ge \frac{250}{600} = 0.417.$$

| x              | 0 | 1    | 2    | 3    | 4   | 5   | 6    | 7    | 8    | 9 |
|----------------|---|------|------|------|-----|-----|------|------|------|---|
| $P\{X \le x\}$ | 0 | 0.05 | 0.15 | 0.25 | 0.4 | 0.6 | 0.75 | 0.85 | 0.95 | 1 |

From the cumulative distribution of X,  $n^*$  is found to be 125 + 5 = 130, so 5 reservations can be accepted in addition to the capacity.

#### 18.8-6.

$$L = 3, p = 0.5, r = $1000, s = $5000$$

To determine the optimal number of reservations to accept, we need to find the smallest integer n such that

$$spP\{D(n) \ge 3\} \ge r \Leftrightarrow P\{D(n) \ge 3\} \ge 0.4 \Leftrightarrow P\{D(n) \le 2\} \le 0.6$$
  
 
$$\Leftrightarrow \left[ \binom{n}{0} + \binom{n}{1} + \binom{n}{2} \right] 0.5^n \le 0.6$$
  
 
$$\Leftrightarrow (n^2 + n + 2)0.5^{n+1} \le 0.6$$

A first guess can be n=6, since then the average number of customers with reservation and who actually show up is L=3. It satisfies

$$(6^2 + 6 + 2)0.5^7 < 0.6,$$

so  $spP\{D(6) \ge 3\} \ge r$ . This suggests  $n^* \le 6$ . Now consider n = 5.

$$(5^2 + 5 + 2)0.5^6 < 0.6,$$

so 
$$spP\{D(5) \geq 3\} \geq r$$
. Then  $n^* \leq 5$ . For  $n = 4$ ,

$$(4^2 + 4 + 2)0.5^5 > 0.6,$$

so  $spP\{D(4) \ge 3\} < r$ . Hence the optimal number of reservations to accept is 5.

#### 18.8-7.

$$L = 100, p = 0.9, r = \$3000, s = \$20000$$

$$P\{D(n^*) \ge 100\} = \frac{r}{sp} = \frac{1}{6} \approx 0.167$$

 $D(n^*)$  is normally distributed with mean 0.9n and standard deviation  $0.3\sqrt{n}$ .

$$K_{0.167} = \frac{100 - 0.9n}{0.3\sqrt{n}} \Rightarrow 0.97 = \frac{100 - 0.9n}{0.3\sqrt{n}}$$

$$\Rightarrow \sqrt{n} = \frac{-0.291 + \sqrt{(0.291)^2 - 4(0.9)(-100)}}{1.8} \approx 10.38 \Rightarrow n^* = (10.38)^2 = 108$$

The number of reservations to accept is 108, so 8 reservations should be overbooked.

#### 18.9-1.

Answers will vary.

#### 18.9-2.

Answers will vary.

## **CASES**

## **CASE 18.1 Brushing Up on Inventory Control**

(a) Robert's problem can be solved using the basic EOQ model, with the data:

$$D = 12(250) = 3,000, K = 18.75/3 = 6.25,$$
  
 $h = 0.12(1.25) = 0.15, L = 0, WD = 12(30) = 360$ 

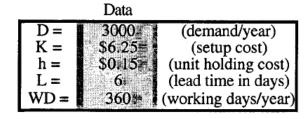
Data

D = 3000 (demand/year)

K = \$6.25 (setup cost)

h = \$0.15 (unit holding cost)

L = 0 (lead time in days)


WD = 360 (working days/year)

| Results                                      |                    |
|----------------------------------------------|--------------------|
| Reorder Point =                              | 0.                 |
| Annual Setup Cost =<br>Annual Holding Cost = | \$37.50<br>\$37.50 |
| Total Variable Cost =                        | \$75.00            |

|    | Decision |                  |
|----|----------|------------------|
| Q= | =500.00» | (order quantity) |

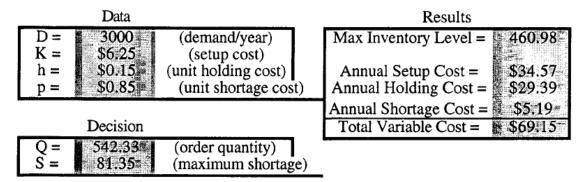
Robert should order 500 toothbrushes 6 times per year.

(b) EOQ model with L=6 days



| Results                                   |                    |
|-------------------------------------------|--------------------|
| Reorder Point =                           | 50                 |
| Annual Setup Cost = Annual Holding Cost = | \$37.50<br>\$37.50 |
| Total Variable Cost =                     | \$75:00            |

|    | Decision |                  |
|----|----------|------------------|
| Q= | 500.00   | (order quantity) |

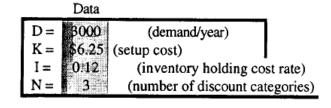

Whenever the inventory drops down to 50, Robert should place an order for 500 tooth-brushes. He needs to place 6 orders per year.

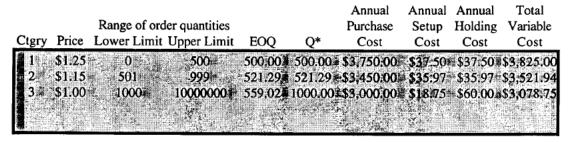
(c) Planned shortages with p = 1.50/unit

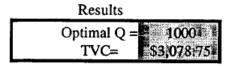
| Data                                                       | Results                                    |
|------------------------------------------------------------|--------------------------------------------|
| D = 3000 (demand/year)                                     | Max Inventory Level = \$476.73             |
| K =  \$6.25 (setup cost)                                   |                                            |
| h = \$0.15 (unit holding cost)                             | Annual Setup Cost = \$35.75                |
| p = \$1.50 (unit shortage cost                             | Annual Holding Cost = \$\frac{1}{2}\$32.50 |
|                                                            | Annual Shortage Cost = \$3.25              |
| Decision                                                   | Total Variable Cost = \$71.51              |
| Q = 524.40 (order quantity)<br>S = 47.67 (maximum shortage |                                            |

Robert should order about 524 toothbrushes. Since the lead time is 6 days, the reorder point is -47.67 + 6(3000/360) = 2.33. The maximum shortage size is approximately 48.

(d) Two extreme cases: p = \$0.85/unit and p = \$25/unit





The reorder point when p = \$0.85/unit is -81.35 + 6(3000/360) = -31.35.


| Data           |                      | Results                                   |
|----------------|----------------------|-------------------------------------------|
| D = \$ 3000    | (demand/year)        | Max Inventory Level = # 498.51            |
| K = \$6.25     | (setup cost)         | 2 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) |
| h = \$0.15     | (unit holding cost)  | Annual Setup Cost = \$37.39               |
| p = \$25,00-   | (unit shortage cost) | Annual Holding Cost = \$37.17             |
|                |                      | Annual Shortage Cost = \$0.22             |
| Decision       |                      | Total Variable Cost = \$74.78             |
| Q = \$ 501.50  | (order quantity)     | 20000                                     |
| S = 8 2.99 - 1 | (maximum shortage)   |                                           |

The reorder point when p = \$25/unit is -2.99 + 6(3000/360) = 47.01. This suggests that as the shortage cost increases, the reorder point increases.

(e) EOQ model with quantity discounts, with three prices \$1.25, \$1.15 and \$1.00 and holding cost rate I=0.12.







The optimal order quantity is Q = 1,000 and Robert should order 3 times a year.

## CASE 18.2 TNT: Tackling Newsboy's Teaching

For the analysis of this case, we use the template for perishable products.

(a) First we need to determine the optimal service level for Howie. The unit sale price is \$5, the unit purchase cost is \$3, and the unit salvage value is  $0.5 \times $3 = $1$ .

|                      | Data    |
|----------------------|---------|
| Unit sale-price = ∗  | 15F . T |
| Unit purchase cost = | 35      |
| Unit salvage value = | 12      |

| Results                      |  |  |
|------------------------------|--|--|
| Cost of overordering = 2     |  |  |
|                              |  |  |
| Cost of underordering = 2=   |  |  |
| Optimal Service Level = 015  |  |  |
| Optimal Service Level = 0.61 |  |  |

Since Talia assumes that the demand is uniformly distributed between 120 and 420 sets, Howie should order  $120 + 0.5 \times 300 = 270$  sets.

(b) If Leisure Limited refunds 75% of the purchase cost, then the unit salvage value for a returned set becomes  $0.75 \times \$3 - \$0.5 = \$1.75$ . We determine the new optimal service level.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Unit sale price =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 5                                 |
| Unit purchase cost =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 3                                 |
| Unit salvage value =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.75                                |
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | TANK THE STREET, SHOWING THE STREET |

| Results  |  |  |
|----------|--|--|
| 1.25     |  |  |
|          |  |  |
| - 4      |  |  |
| 0.615385 |  |  |
|          |  |  |

The order quantity is now  $120 + 0.615385 \times 300 = 304.62$ . Note that Howie can now order more sets at one time than he could under the scenario of part (a) because he is not punished as severely as before when he fails to sell all sets.

When the refund is 25%, the unit salvage cost is \$0.25.

|                      | Data |
|----------------------|------|
| Unit sale price = 1  | -5*  |
| Unit purchase cost = | 3    |
| Unit salvage value = | 0.25 |

| Results                 |          |  |
|-------------------------|----------|--|
| Cost of overordering =  | 2,75     |  |
| Cost of underordering = | 2 .      |  |
|                         |          |  |
| Optimal Service Level = | 0.421053 |  |

Consequently, the order quantity is reduced to  $120 + 0.421053 \times 300 = 246.32$ . In this case, Howie should purchase fewer sets at one time (compared to previous scenarios), since he is punished more severely for failing to sell all the sets.

(c) The unit sale price is now \$6 and there is a 50% refund on returned firecracker sets.

|                       | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit sale price = 4   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Unit purchase cost == | 3 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Unit salvage value == | .18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro |

|            | Results             |      |
|------------|---------------------|------|
| Cost       | of overordering=    | 2    |
|            | 者上等的學術主義和工具的        |      |
| Cost       | of underordering =- | 3⋕   |
| 1          |                     | 7.0  |
| Opti       | mal Service Level = | 0:6- |
| A 15 MILES |                     | 201  |

However, if Howie raises the price of a firecracker set, one would expect a decrease in the demand for his sets, so Talia should not use the same uniform demand distribution that she used for her previous calculations of the optimal order quantity.

(d) Talia's strategy for estimating the demand is overly simplistic. She makes the very simplifying assumption that the demand is uniformly distributed between 120 and 420 sets. However, she does not take into account that the demand depends on the price of a firecracker set. She should expect that stands charging less than the average price of \$5 per set typically sell more sets than stands charging more. Talia should call Buddy again to try to obtain more detailed information such as the range of sales and the average sale of stands charging \$5 or \$6 per set.

Talia should also reevaluate her assumption that the demand is uniformly distributed. She should check how her forecasts change if she uses other demand distribution like normal distribution.

# **CASE 18.3 Jettisoning Surplus Stock**

(a) We can use Excel to compute the sample mean and variance.

|    | Observations |    |    |    |    |    |    | Mean | Std. Dev. |    |    |    |    |         |
|----|--------------|----|----|----|----|----|----|------|-----------|----|----|----|----|---------|
| 25 | 31           | 18 | 22 | 40 | 19 | 38 | 21 | 25   | 36        | 34 | 28 | 27 | 28 | 7.29154 |

Hence, the sample mean is 28 and the sample variance is  $7.29154^2 \approx 53.1667$ .

- (b) Based on the findings of Scarlett Windermere, American Aerospace can use an (R,Q) policy for the inventory of part 10003487. The assumptions of the model are satisfied.
- 1- The part is a stable product.
- 2- Its inventory level is under continuous review.
- 3- While the production of the part itself has no lead time, it is typically delayed by the lead time of 1.5 months of the little steel part. Assume the lead time is 1.5 months.
- 4- The demand for the part is the same as for the jet engine MX332, since it is used only for this particular engine. Hence, assume that the demand is approximately normally distributed with mean 28 and variance 53.1667.
- 5- Excess demand is backlogged.
- 6- There is a fixed setup cost K = \$5,800, a holding cost h = \$750 and a shortage cost p = \$3,250.

Note that the average demand per year is  $12 \times 28 = 336$ , the average demand during the lead time is  $1.5 \times 28 = 42$  and it has a standard deviation of  $1.5 \times 7.29154 = 10.93732$ .

| Data                                                                                                                                              | Results                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| D=- 336 (average demand/unit time)  K= 5800. (setup.cost):  h= 750 (unit holding cost):  p= 3250. (unit shortage cost):  U= 0.85: (service level) | Q== 79.9753808<br>R== 53.3357995 |

**Demand During Lead Time** 

| Distribution = 2<br>mean = 2<br>stand #dev = 10.93 | N= (U=uniform; N=Normal) |
|----------------------------------------------------|--------------------------|
| mean≔ 2                                            | 12                       |
| stand dev = 10.93                                  | 373214 <b>#</b>          |

American Aerospace should implement the (R,Q) policy with R=53.34 and Q=79.98. These can be rounded to R=53 and Q=80, since the order for the part should be integer-valued.

(c) The average inventory just before an order arrives is 53-42=11 and the one just after an order has arrived is 11+80=91. Then, the average inventory is (11+91)/2=51, with an average holding cost of 51(750)=\$38,250 per year. The average number of setups in a year is 336/80=4.2, with a resulting average setup cost of 4.2(5,800)=\$24,360 per year.

(d) The new service level is L = 0.95.

| Data                                                                                                                                            | Results                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| D = 336 (average demand/unit time)  K = 5800 (setup cost)  h = 750 (unit holding cost)  p = 3250 (unit shortage cost)  L = 0.95 (service level) | Q= 79.9753808<br>R= 59.990286 |

# **Demand During Lead Time**

| Distribution = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A DESCRIPTION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 Telephone Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Co | N. Farrick Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N (U=uniform; N=Normal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AND THE RESERVE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 開発を表すっています。 これがある とのできない (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the compan |
| mean =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE RESERVE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE | AT THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF THE COURSE OF |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STATE OF THE PROPERTY OF SERVICE STATE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF TH |
| THE RESERVE THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF TH | A CONTROL OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF T |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Round these values up to get R=60 and Q=80. The average inventory just before an order arrives is 80-60=20 and just after an order has arrived is 20+80=100, so the average inventory is 60 and the resulting average inventory holding cost is 60(750)=\$45,000 per year. Note that the average holding cost has increased substantially. This is a consequence of increasing the safety stock to 20 from 11. The average number of setups per year is still 4.2 and the average setup cost is \$24,360 per year.

- (e) Scarlett's independent analysis of the stationary part 10003487 can be justified since there is only one jet engine that needs this part and this part appears to be the bottleneck in the production process. However, in general, a stationary part is used for several jet engines, so the demand for stationary parts depends on the demand for several jet engines and a stock-out in one stationary part affects the demand for other parts. These interdependencies cannot be captured by an independent analysis of each part; therefore, Scarlett's approach is most likely to result in rather inaccurate inventory policies for many other stationary parts.
- (f) Scarlett could try to forecast the demand for jet engines based on sales data from previous years.

#### **SUPPLEMENT 1 TO CHAPTER 18**

# DERIVATION OF THE OPTIMAL POLICY FOR THE STOCHASTIC SINGLE-PERIOD MODEL FOR PERISHABLE PRODUCTS

# 18S1-1.

$$C(\underline{S}) = c\underline{S} + h \int_0^{\underline{S}} (\underline{S} - x) \underline{f}(x) dx + p \int_S^{\infty} (x - \underline{S}) \underline{f}(x) dx + kP\{D \geq \underline{S}\}$$

D is uniformly distributed on [a,b], so  $P\{D \ge \underline{S}\} = \frac{b-\underline{S}}{b-a}$ .

$$C(\underline{S}) = c\underline{S} + k\frac{b-\underline{S}}{b-a} + L(\underline{S}) \Rightarrow \frac{dC(\underline{S})}{d\underline{S}} = c - \frac{k}{b-a} + h\underline{F}(\underline{S}) - p\{1 - \underline{F}(\underline{S})\} = 0$$
$$\Rightarrow \underline{F}(\underline{S}) = \frac{p + \frac{k}{b-a} - c}{p + h}$$

Let 
$$p = c + 2, k = 14, h = -(c - 1), a = 40, b = 60.$$

$$\Rightarrow \underline{F(S)} = \frac{\underline{S}-40}{20} = \frac{2.7}{3} = 0.9 \Rightarrow \underline{S} = 58$$

# 18S1-2.

(a)

$$\begin{split} &C(\underline{I},\underline{S}) = c(\underline{S} - \underline{I}) + pP\{D > \underline{S}\} = c(\underline{S} - \underline{I}) + pe^{-\underline{S}} \\ &\Rightarrow \frac{\partial C(\underline{I},\underline{S})}{\partial S} = c - pe^{-\underline{S}} = 0 \Rightarrow \underline{S} = -\ln\left(c/p\right) \end{split}$$

Order up to  $\underline{S}$  if  $\underline{I} < \underline{S}$ , do not order otherwise.

(b)

$$C(\underline{I},\underline{S}) = \begin{cases} K + c(\underline{S} - \underline{I}) + pe^{-\underline{S}} & \text{if } \underline{I} < \underline{S} \\ pe^{-\underline{I}} & \text{if } \underline{I} = \underline{S} \end{cases}$$

An (s,S) policy is optimal with  $S=-\ln{(c/p)}$  and s being the smallest value such that  $cs+pe^{-s}=K-c\ln{(c/p)}+c.$ 

# SUPPLEMENT 2 TO CHAPTER 18 STOCHASTIC PERIODIC-REVIEW MODELS

#### 18S2-1.

# (a) Single-period model with no setup cost:

Demand density is exponential with  $\lambda=25$ . Per unit production/purchasing cost is c=10. Per unit inventory holding cost is h=6 and per unit shortage cost is p=15. The optimal one-period inventory level is S(0)=6.79834.

# (b) Two-period model with no setup cost:

Demand density is exponential with  $\lambda=25$ . Per unit production/purchasing cost is c=10. Per unit inventory holding cost is h=6 and per unit shortage cost is p=15. The optimal two-period policy consists of the inventory levels  $S_1(0)=23.2932$  and  $S_2(0)=6.79834$ .

#### 18S2-2.

# (a) Single-period model with no setup cost:

Demand density is uniform on [0, 50]. Per unit production/purchasing cost is c = 10. Per unit inventory holding cost is h = 8 and per unit shortage cost is p = 15. The optimal one-period inventory level is  $S^* = 10.8696$ . It is optimal to order up to  $S^*$  if the initial inventory is below  $S^*$  and not to order otherwise.

# (b) Two-period model with no setup cost:

Demand density is uniform on [0, 50]. Per unit production/purchasing cost is c = 10. Per unit inventory holding cost is h = 8 and per unit shortage cost is p = 15. The optimal two-period policy consists of the inventory levels  $S_1^* = 9.26156$  and  $S_2^* = 10.8696$ . It is optimal to order up to  $S_i^*$  if the initial inventory is below  $S_i^*$  in period i and not to order otherwise.

# 18S2-3.

Two-period model with no setup cost:

Demand density is exponential with  $\lambda=25$ . Per unit production/purchasing cost is c=1. Per unit inventory holding cost is h=0.25 and per unit shortage cost is h=0.25 and per unit shortage cost is h=0.25. The discount factor is 0.9. The optimal two-period policy is the same as the one for the infinite-period model, so consists of the inventory level h=0.25.

#### 18S2-4.

Two-period model with no setup cost:

Demand density is exponential with  $\lambda=25$ . Per unit production/purchasing cost is c=1. Per unit inventory holding cost is h=0.25 and per unit shortage cost is p=2. The optimal two-period policy consists of the inventory levels  $S_1(0)=36.521$  and  $S_2(0)=14.6947$ .

#### 18S2-5.

Infinite-period model with no setup cost:

Demand density is exponential with  $\lambda=25$ . Per unit production/purchasing cost is c=1. Per unit inventory holding cost is h=0.25 and per unit shortage cost is p=2. The discount factor is 0.9. The optimal policy consists of the inventory level S(0)=46.5188.

#### 18S2-6.

Infinite-period model with no setup cost:

Demand density is exponential with  $\lambda=1$ . Per unit production/purchasing cost is c=2. Per unit inventory holding cost is h=1 and per unit shortage cost is p=5. The discount factor is 0.95. The optimal policy consists of the inventory level S(0)=1.69645.

#### 18S2-7.

12-period model with no setup cost:

The answer is the same as in 18S2-6, so the optimal policy consists of the inventory level S(0) = 1.69645.

# 18S2-8.

Infinite-period model with no setup cost:

Demand density is uniform on [2000, 3000]. Per unit production/purchasing cost is c = 150. Per unit inventory holding cost is h = 2 and per unit shortage cost is p = 30. The discount factor is 0.9. The optimal policy consists of the inventory level S(0) = 2,468.75.

#### 18S2-9.

Infinite-period model with no setup cost:

Demand density is exponential with  $\lambda=1000$ . Per unit production/purchasing cost is c=80. Per unit inventory holding cost is h=0.70 and per unit shortage cost is h=2. The discount factor is 0.998. The optimal policy consists of the inventory level S(0)=497.

#### 18S2-10.

$$\begin{split} h &= 0.3, p = 2.5 \\ G(\underline{S}) &= 0.3 \int_0^{\underline{S}} \frac{(\underline{S} - \underline{x})}{25} e^{-\underline{x}/25} d\underline{x} + 2.5 \int_{\underline{S}}^{\infty} \frac{(\underline{x} - \underline{S})}{25} e^{-\underline{x}/25} d\underline{x} = 0.3\underline{S} + 70e^{-\underline{S}/25} - 7.5 \\ G'(\underline{S}) &= 0.3 - 2.8e^{-\underline{S}/25} = 0 \Rightarrow \underline{S} = 55.84 \\ G''(\underline{S}) &= \frac{2.8}{25} e^{-\underline{S}/25} > 0 \Rightarrow \underline{S} = 55.84 \text{ minimizes } G(\underline{S}). \\ G(k) &= G(k+100) \Leftrightarrow 0.3k + 70e^{-k/25} = 0.3(k+100) + 70e^{-(k+100)/25} \\ \Leftrightarrow 70e^{-k/25}(1-e^{-4}) = 30 \Leftrightarrow k = 20.72 \approx 21 \\ k &= 21 < \underline{S} = 55.84 < 121 = k + 100 \text{ and } G(21) \approx G(121) \end{split}$$

Hence, the optimal policy is a (k, Q) = (21, 100) policy.

# 18S2-11.

Since c=0, the answer is identical to that for 18.S2-10, viz., (k,Q)=(21,100) is optimal.

# 18S2-12.

$$\begin{split} L(\underline{S}) &= \int_0^{\underline{S}} h(\underline{S} - \underline{x}) \underline{f}(\underline{x}) d\underline{x} + \int_{\underline{S}}^{\infty} p(\underline{x} - \underline{S}) \underline{f}(\underline{x}) d\underline{x} \\ \frac{dL(\underline{S})}{d\underline{S}} &= \int_0^{\underline{S}} h \underline{f}(\underline{x}) d\underline{x} + \int_{\underline{S}}^{\infty} -p \underline{f}(\underline{x}) d\underline{x} = h \underline{F}(\underline{S}) - p[1 - \underline{F}(\underline{S})] \\ \frac{dL(\underline{S})}{d\underline{S}} + c(1 - \alpha) &= 0 \Rightarrow -p + p \underline{F}(\underline{S}) + h \underline{F}(\underline{S}) + c(1 - \alpha) = 0 \\ \Rightarrow \underline{F}(\underline{S}) &= \frac{p - c(1 - \alpha)}{p + h} \end{split}$$

# **CHAPTER 19: MARKOV DECISION PROCESSES**

# 19.2-1.

Bank One, one of the major credit card issuers in the United States has developed the portfolio control and optimization (PORTICO) system to manage APR and credit-line changes of its card holders. Customers prefer low APR and high credit lines, which can reduce the bank's profitability and increase the risk. Consequently, the bank faces the need to find a balance between revenue growth and risk. PORTICO formulates the problem as a Markov decision process. The state variables are chosen in a way to satisfy Markovian assumption as closely as possible while keeping the dimension of the state space at a tractable level. The resulting variables are (x, y), where x corresponds to the credit line and APR level and y represents the behavior variables. The transition probabilities are estimated from the available data. The objective is to maximize the expected net present value of the cash flows over a 36-month horizon. The dynamic programming equation for the decision periods of the problem is

$$V_t(x,y) = \max_{a \in A(x,y)} \Big\{ r(x \pm a, y) + \beta \sum_{j \in \mathcal{S}} p(x \pm a, y; j) V_{t+1}(x \pm a, j) \Big\},$$

where  $r(\cdot)$  denotes the immediate net cash flow and  $\beta$  is the discount factor. The solution obtained is then adjusted to conform to business rules.

Benchmark tests are performed to evaluate the output policy. These tests suggest that the new policy improves profitability. By adopting this policy, Bank One is expected to increase its annual profit by more than \$75 million.

# 19.2-2.

(a) Let the states i = 0, 1, 2 be the number of customers at the facility. There are two possible actions when the facility has one or two customers. Let decision 1 be to use the slow configuration and decision 2 be to use the fast configuration. Also let  $C_{ij}$  denote the expected net immediate cost of using decision j in state i. Then,

$$C_{11} = C_{21} = 3 - \frac{3}{5} \times 50 = -27$$
  
 $C_{12} = C_{22} = 9 - \frac{4}{5} \times 50 = -31$   
 $C_{01} = 3$   
 $C_{02} = 9$ 

(b) In state 0, the configuration chosen does not affect the transition probabilities, so it is best to choose the slow configuration when there are no customers in line. Consequently, the number of stationary policies is four.

| i | $d_i(R_1)$ | $d_i(R_2)$ | $d_i(R_3)$ | $d_i(R_4)$ |
|---|------------|------------|------------|------------|
| 1 | 1          | 1          | 2          | 2          |
| 2 | 1          | 2          | 1          | 2          |

| Policy | Transition Matrix                                                                                                                            | Expected Average Cost              |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| $R_1$  | $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{3}{10} & \frac{1}{2} & \frac{1}{5}\\ 0 & \frac{3}{5} & \frac{2}{5} \end{pmatrix}$     | $C_1 = 3\pi_0 - 27\pi_1 - 27\pi_2$ |
| $R_2$  | $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{3}{10} & \frac{1}{2} & \frac{1}{5}\\ 0 & \frac{4}{5} & \frac{1}{5} \end{pmatrix}$     | $C_2 = 3\pi_0 - 27\pi_1 - 31\pi_2$ |
| $R_3$  | $ \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{2}{5} & \frac{1}{2} & \frac{1}{10} \\ 0 & \frac{3}{5} & \frac{2}{5} \end{pmatrix} $ | $C_3 = 3\pi_0 - 31\pi_1 - 27\pi_2$ |
| $R_4$  | $ \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{2}{5} & \frac{1}{2} & \frac{1}{10} \\ 0 & \frac{4}{5} & \frac{1}{5} \end{pmatrix} $ | $C_4 = 3\pi_0 - 31\pi_1 - 31\pi_2$ |

(c)

| Policy | $\pi_0$ | $\pi_1$ | $\pi_2$ | Average Cost   |
|--------|---------|---------|---------|----------------|
| $R_1$  | 0.3103  | 0.5172  | 0.1724  | $C_1 = -17.69$ |
| $R_2$  | 0.3243  | 0.5405  | 0.1351  | $C_2 = -17.81$ |
| $R_3$  | 0.4068  | 0.5085  | 0.0847  | $C_3 = -16.83$ |
| $R_4$  | 0.416   | 0.519   | 0.065   | $C_4 = -16.87$ |

 $C_2$  is the minimum, so the optimal policy is  $R_2$ , i.e., to use slow configuration when no customer or only one customer is present and fast configuration when there are two customers.

19.2-3.

(a) Let the states represent whether the student's car is dented, i = 1, or not, i = 0.

| Decision | Action                       | State | Immediate Cost |
|----------|------------------------------|-------|----------------|
| 1        | Park on street in one space  | 0     | $C_{01} = 0$   |
| 2        | Park on street in two spaces | 0     | $C_{02} = 4.5$ |
| 3        | Park in lot                  | 0     | $C_{03} = 5$   |
| 4        | Have it repaired             | 1     | $C_{14} = 50$  |
| 5        | Drive dented                 | 1     | $C_{15} = 9$   |

(b) Assuming the student's car has no dent initially, once she decides to park in lot, state 1 will never be entered. In that case, the decision chosen in state 1 does not affect the expected average cost. Hence, it is enough to consider five stationary deterministic policies.

| i | $d_i(R_1)$ | $d_i(R_2)$ | $d_i(R_3)$ | $d_i(R_4)$ | $d_i(R_5)$ |
|---|------------|------------|------------|------------|------------|
| 0 | 1          | 1          | 2          | 2          | 3          |
| 1 | 4          | 5          | 4          | 5          | _          |

| Policy | Transition Matrix                                                   | Expected Average Cost      |
|--------|---------------------------------------------------------------------|----------------------------|
| $R_1$  | $ \left(\begin{array}{cc} 0.9 & 0.1 \\ 1 & 0 \end{array}\right) $   | $C_1 = 0\pi_0 + 50\pi_1$   |
| $R_2$  | $ \begin{pmatrix} 1 & 0 \\ 0.9 & 0.1 \\ 0 & 1 \end{pmatrix} $       | $C_2 = 0\pi_0 + 9\pi_1$    |
| $R_3$  | $ \left(\begin{array}{cc} 0.98 & 0.02 \\ 1 & 0 \end{array}\right) $ | $C_3 = 4.5\pi_0 + 50\pi_1$ |
| $R_4$  | $ \begin{pmatrix} 0.98 & 0.02 \\ 0 & 1 \end{pmatrix} $              | $C_4 = 4.5\pi_0 + 9\pi_1$  |
| $R_5$  | $ \left(\begin{array}{cc} 1 & 0 \\ - & - \end{array}\right) $       | $C_5 = 5\pi_0$             |

(c)

| Policy | $\pi_0$ | $\pi_1$ | Average Cost                |
|--------|---------|---------|-----------------------------|
| $R_1$  | 0.909   | 0.091   | 4.55                        |
| $R_2$  | 0       | 1       | 9                           |
| $R_3$  | 0.98    | 0.02    | 5.41                        |
| $R_4$  | 0       | 1       | 9                           |
| $R_5$  | 1       | 0       | 5 (if initially not dented) |

The policy  $R_1$  has the minimum cost, so it is optimal to park on the street in one space if not dented and to have it repaired if dented.

# 19.2-4.

(a) Let states 0 and 1 denote the good and the bad mood respectively. The decision in each state is between providing refreshments or not.

| Decision | Action                   | State | Immediate Cost |
|----------|--------------------------|-------|----------------|
| 1        | Provide refreshments     | 0     | $C_{01} = 14$  |
| 2        | Not provide refreshments | 0     | $C_{02} = 0$   |
| 1        | Provide refreshments     | 1     | $C_{11} = 14$  |
| 2        | Not provide refreshments | 1     | $C_{12} = 75$  |

(b) There are four possible stationary policies.

| i | $d_i(R_1)$ | $d_i(R_2)$ | $d_i(R_3)$ | $d_i(R_4)$ |
|---|------------|------------|------------|------------|
| 0 | 1          | 1          | 2          | 2          |
| 1 | 1          | 2          | 1          | 2          |

| Policy | Transition Matrix                                                | Expected Average Cost     |
|--------|------------------------------------------------------------------|---------------------------|
| $R_1$  | $ \begin{pmatrix} 0.875 & 0.125 \\ 0.875 & 0.125 \end{pmatrix} $ | $C_1 = 14\pi_0 + 14\pi_1$ |
| $R_2$  | $ \begin{pmatrix} 0.875 & 0.125 \\ 0.125 & 0.875 \end{pmatrix} $ | $C_2 = 14\pi_0 + 75\pi_1$ |
| $R_3$  | $ \begin{pmatrix} 0.125 & 0.875 \\ 0.875 & 0.125 \end{pmatrix} $ | $C_3 = 14\pi_1$           |
| $R_4$  | $ \begin{pmatrix} 0.125 & 0.875 \\ 0.125 & 0.875 \end{pmatrix} $ | $C_4 = 75\pi_1$           |

(c)

| Policy | $\pi_0$ | $\pi_1$ | Average Cost   |
|--------|---------|---------|----------------|
| $R_1$  | 0.875   | 0.125   | $C_1 = 14$     |
| $R_2$  | 0.5     | 0.5     | $C_2 = 44.5$   |
| $R_3$  | 0.5     | 0.5     | $C_3 = 7$      |
| R4     | 0.125   | 0.875   | $C_4 = 65.625$ |

The optimal policy is  $R_3$ , i.e., to provide refreshments only if the group begins the night in a bad mood.

19.2-5.

(a) Let state 0 denote point over, two serves to go on next point and state 1 denote one serve left. The decision in each state is to attempt an ace or a lob.

| Decision | Action      | State | Immediate Cost                                                                                            |
|----------|-------------|-------|-----------------------------------------------------------------------------------------------------------|
| 1        | Attempt ace | 0     | $C_{01} = \frac{3}{8} \left( \frac{2}{3} (-1) + \frac{1}{3} (1) \right) = -\frac{1}{8}$                   |
| 2        | Attempt lob | 0     | $C_{02} = \frac{7}{8} \left( \frac{1}{3} (-1) + \frac{2}{3} (1) \right) = \frac{7}{24}$                   |
| 1        | Attempt ace | 1     | $C_{11} = \frac{3}{8} \left( \frac{2}{3} (-1) + \frac{1}{3} (1) \right) + \frac{5}{8} (1) = \frac{1}{2}$  |
| 2        | Attempt lob | 1     | $C_{12} = \frac{7}{8} \left( \frac{1}{3} (-1) + \frac{2}{3} (1) \right) + \frac{1}{8} (1) = \frac{5}{12}$ |

(b) There are four possible stationary deterministic policies.

| i | $d_i(R_1)$ | $d_i(R_2)$ | $d_i(R_3)$ | $d_i(R_4)$ |
|---|------------|------------|------------|------------|
| 0 | 1          | 1          | 2          | 2          |
| 1 | 1          | 2          | 1          | 2          |

| Policy | Transition Matrix                                                 | Expected Average Cost             |
|--------|-------------------------------------------------------------------|-----------------------------------|
| $R_1$  | $\begin{pmatrix} 3/8 & 5/8 \\ 1 & 0 \end{pmatrix}$                | $C_1 = (-1/8)\pi_0 + (1/2)\pi_1$  |
| $R_2$  | $\begin{pmatrix} 3/8 & 5/8 \\ 1 & 0 \end{pmatrix}$                | $C_2 = (-1/8)\pi_0 + (5/12)\pi_1$ |
| $R_3$  | $ \left(\begin{array}{cc} 7/8 & 1/8 \\ 1 & 0 \end{array}\right) $ | $C_3 = (7/24)\pi_0 + (1/2)\pi_1$  |
| $R_4$  | $ \left(\begin{array}{cc} 7/8 & 1/8 \\ 1 & 0 \end{array}\right) $ | $C_4 = (7/24)\pi_0 + (5/12)\pi_1$ |

(c)

| Policy | $\pi_0$ | $\pi_1$ | Average Cost  |
|--------|---------|---------|---------------|
| $R_1$  | 0.615   | 0.385   | $C_1 = 0.270$ |
| $R_2$  | 0.615   | 0.385   | $C_2 = 0.237$ |
| $R_3$  | 0.889   | 0.111   | $C_3 = 0.315$ |
| R4     | 0.889   | 0.111   | $C_4 = 0.306$ |

The optimal policy is  $R_3$ , i.e., to attempt lob in state 0 and ace in state 1.

# 19.2-6.

(a) Let states i=0,1,2 represent the state of the market, 13,000,14,000 and 15,000 respectively. The decision is between two funds, namely the Go-Go Fund and the Go-Slow Mutual Fund. All the costs are expressed in thousand dollars.

| Decision | Action                | State | Immediate Cost                        |
|----------|-----------------------|-------|---------------------------------------|
| 1        | Invest in the Go-Go   | 0     | $C_{01} = 0.4(-25) + 0.2(-60) = -22$  |
| 2        | Invest in the Go-Slow | 0     | $C_{02} = 0.4(-10) + 0.2(-25) = -9$   |
| 1        | Invest in the Go-Go   | 1     | $C_{11} = 0.3(25) + 0.3(-60) = -10.5$ |
| 2        | Invest in the Go-Slow | 1     | $C_{12} = 0.3(10) + 0.3(-25) = -4.5$  |
| 1        | Invest in the Go-Go   | 2     | $C_{21} = 0.1(60) + 0.4(25) = 16$     |
| 2        | Invest in the Go-Slow | 2     | $C_{22} = 0.1(25) + 0.4(10) = 6.5$    |

(b) There are eight possible stationary policies.

| i | $d_i(R_1)$ | $d_i(R_2)$ | $d_i(R_3)$ | $d_i(R_4)$ | $d_i(R_5)$ | $d_i(R_6)$ | $d_i(R_7)$ | $d_i(R_8)$ |
|---|------------|------------|------------|------------|------------|------------|------------|------------|
| 0 | 1          | 1          | 1          | 1          | 2          | 2          | 2          | 2          |
| 1 | 1          | 1          | 2          | 2          | 2          | 1          | 1          | 2          |
| 2 | 1          | 2          | 2          | 1          | 1          | 2          | 1          | 2          |

All  $R_i$ 's have the same transition matrix:  $\begin{pmatrix} 0.4 & 0.4 & 0.2 \\ 0.3 & 0.4 & 0.3 \\ 0.1 & 0.4 & 0.5 \end{pmatrix}$ 

| Policy | Expected Average Cost                   |
|--------|-----------------------------------------|
| Policy | Expected Average Cost                   |
| $R_1$  | $C_1 = -22\pi_0 - 10.5\pi_1 + 16\pi_2$  |
| $R_2$  | $C_2 = -22\pi_0 - 10.5\pi_1 + 6.5\pi_2$ |
| $R_3$  | $C_3 = -22\pi_0 - 4.5\pi_1 + 6.5\pi_2$  |
| $R_4$  | $C_4 = -22\pi_0 - 4.5\pi_1 + 16\pi_2$   |
| $R_5$  | $C_5 = -9\pi_0 - 4.5\pi_1 + 16\pi_2$    |
| $R_6$  | $C_6 = -9\pi_0 - 10.5\pi_1 + 6.5\pi_2$  |
| $R_7$  | $C_7 = -9\pi_0 - 10.5\pi_1 + 16\pi_2$   |
| $R_8$  | $C_8 = -9\pi_0 - 4.5\pi_1 + 6.5\pi_2$   |

(c)  $\pi = (0.257, 0.4, 0.343)$ 

| Policy | Average Cost |
|--------|--------------|
| $R_1$  | -4.371       |
| $R_2$  | -7.629       |
| $R_3$  | -5.229       |
| $R_4$  | -1.971       |
| $R_5$  | 1.371        |
| $R_6$  | -4.286       |
| $R_7$  | -1.029       |
| $R_8$  | -1.886       |

The optimal policy is  $R_5$ , i.e. to invest in the Go-Go Fund in states 0 and 1, in the Go-Slow Fund in state 2.

# 19.2-7.

(a) Let states 0 and 1 represent whether the machine is broken down or is running respectively. The decision is between Buck and Bill.

| Decision | Action | State | Immediate Cost   |
|----------|--------|-------|------------------|
| 1        | Buck   | 0     | $C_{01} = 0$     |
| 2        | Bill   | 0     | $C_{02} = 0$     |
| 1        | Buck   | 1     | $C_{11} = -1200$ |
| 2        | Bill   | 1     | $C_{12} = -1200$ |

(b) There are four possible stationary deterministic policies.

| i | $d_i(R_1)$ | $d_i(R_2)$ | $d_i(R_3)$ | $d_i(R_4)$ |
|---|------------|------------|------------|------------|
| 0 | 1          | 1          | 2          | 2          |
| 1 | 1          | 2          | 1          | 2          |

| Policy | Transition Matrix                                        | Expected Average Cost |
|--------|----------------------------------------------------------|-----------------------|
| $R_1$  | $ \begin{pmatrix} 0.4 & 0.6 \\ 0.6 & 0.4 \end{pmatrix} $ | $C_1 = -1200\pi_1$    |
| $R_2$  | $ \begin{pmatrix} 0.4 & 0.6 \\ 0.4 & 0.6 \end{pmatrix} $ | $C_2 = -1200\pi_1$    |
| $R_3$  | $ \begin{pmatrix} 0.5 & 0.5 \\ 0.6 & 0.4 \end{pmatrix} $ | $C_3 = -1200\pi_1$    |
| $R_4$  | $\begin{pmatrix} 0.5 & 0.5 \\ 0.4 & 0.6 \end{pmatrix}$   | $C_4 = -1200\pi_1$    |

(c)

| Policy | $\pi_0$ | $\pi_1$ | Average Cost   |
|--------|---------|---------|----------------|
| $R_1$  | 0.5     | 0.5     | $C_1 = -600$   |
| $R_2$  | 0.4     | 0.6     | $C_2 = -720$   |
| $R_3$  | 0.545   | 0.455   | $C_3 = -546$   |
| R4     | 0.444   | 0.556   | $C_4 = -667.2$ |

The largest expected average profit is given by  $R_2$ .

# 19.2-8.

(a) Let the states be the number of items in inventory at the beginning of the period and the decision be the number of items ordered. To conform to the software package, one needs to relabel the decisions as 1, 2, 3 respectively. The cost matrix is:

| $c_{ik}$ | 1    | 2    | 3  |
|----------|------|------|----|
| 0        | 40/3 | 56/3 | 24 |
| 1        | 4    | 19   | _  |
| 2        | 4    | _    | _  |

Let  $R_3$  denote the policy to order 2 items when the inventory level is initially 0 and not to order when the inventory level is initially either 0 or 1. In other words,  $d_0(R_3) = 3$  and  $d_1(R_3) = d_2(R_3) = 1$ .

$$P(R_3) = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 2/3 & 1/3 & 0 \\ 1/3 & 1/3 & 1/3 \end{pmatrix} \Rightarrow \pi = (4/9, 3/9, 2/9)$$

Expected average cost:  $(4/9)C_{03} + (3/9)C_{11} + (2/9)C_{21} = 116/9 \approx $12.89$ /period

(b) There are  $3^3 = 27$  stationary policies, since one can order 0, 1 or 2 items in each state. However, only six of these are feasible. The remaining 21 policies are infeasible and the decision at least in one of the states leads to over capacity.

| i | $d_i(R_1)$ | $d_i(R_2)$ | $d_i(R_3)$ | $d_i(R_4)$ | $d_i(R_5)$ | $d_i(R_6)$ |
|---|------------|------------|------------|------------|------------|------------|
| 0 | 1          | 2          | 3          | 1          | 2          | 3          |
| 1 | 1          | 1          | 1          | 2          | 2          | 2          |
| 2 | 1          | 1          | 1          | 1          | 1          | 1          |

# 19.3-1.

(a) minimize 
$$3y_{01} + 9y_{02} + 3y_{11} + 9y_{12} + 28y_{21} + 34y_{22}$$
  
subject to  $y_{01} + y_{02} + y_{11} + y_{12} + y_{21} + y_{22} = 1$   
 $y_{01} + y_{02} - \left(\frac{1}{2}y_{01} + \frac{1}{2}y_{02} + \frac{3}{10}y_{11} + \frac{2}{5}y_{12}\right) = 0$   
 $y_{11} + y_{12} - \left(\frac{1}{2}y_{01} + \frac{1}{2}y_{02} + \frac{1}{2}y_{11} + \frac{1}{2}y_{12} + \frac{3}{5}y_{21} + \frac{4}{5}y_{22}\right) = 0$   
 $y_{21} + y_{22} - \left(\frac{2}{10}y_{11} + \frac{1}{10}y_{12} + \frac{2}{5}y_{21} + \frac{1}{5}y_{22}\right) = 0$   
 $y_{ik} > 0$  for  $i = 0, 1, 2$  and  $k = 1, 2$ 

(b) Using the simplex method, we find  $y_{01} = 0.32432$ ,  $y_{11} = 0.54054$ ,  $y_{22} = 0.13514$  and the remaining  $y_{ik}$ 's are zero. Hence, the optimal policy uses decision 1 in states 0 and 1, decision 2 in state 2.

# 19.3-2.

(a) minimize 
$$4.5y_{02} + 5y_{03} + 50y_{14} + 9y_{15}$$
subject to 
$$y_{01} + y_{02} + y_{03} + y_{14} + y_{15} = 1$$

$$y_{01} + y_{02} + y_{03} - \left(\frac{9}{10}y_{01} + \frac{49}{50}y_{02} + y_{03} + y_{14}\right) = 0$$

$$y_{14} + y_{15} - \left(\frac{1}{10}y_{01} + \frac{1}{50}y_{02} + y_{15}\right) = 0$$

$$y_{01}, y_{02}, y_{03}, y_{14}, y_{15} \ge 0$$

(b) Using the simplex method, all  $y_{ik}$ 's turn out to be zero except that  $y_{01} = 0.90909$  and  $y_{14} = 0.09091$ , so the policy that uses decision 1 in state 0 and decision 4 in state 1 is optimal.

19.3-3.

(a) minimize 
$$14y_{01} + 14y_{11} + 75y_{12}$$
subject to 
$$y_{01} + y_{02} + y_{11} + y_{12} = 1$$

$$y_{01} + y_{02} - \left(\frac{7}{8}y_{01} + \frac{1}{8}y_{02} + \frac{7}{8}y_{11} + \frac{1}{8}y_{12}\right) = 0$$

$$y_{11} + y_{12} - \left(\frac{1}{8}y_{01} + \frac{7}{8}y_{02} + \frac{1}{8}y_{11} + \frac{7}{8}y_{12}\right) = 0$$

$$y_{ik} \ge 0 \text{ for } i = 0, 1 \text{ and } k = 1, 2$$

(b) Using the simplex method, we find  $y_{02} = y_{11} = 0.5$ ,  $y_{01} = y_{12} = 0$ , so the optimal policy is to use decision 2 in state 0 and decision 1 in state 1.

# 19.3-4.

(a) minimize 
$$-\frac{1}{8}y_{01} + \frac{7}{24}y_{02} + \frac{1}{2}y_{11} + \frac{5}{12}y_{12}$$
subject to 
$$y_{01} + y_{02} + y_{11} + y_{12} = 1$$

$$y_{01} + y_{02} - \left(\frac{3}{8}y_{01} + \frac{7}{8}y_{02} + y_{11} + y_{12}\right) = 0$$

$$y_{11} + y_{12} - \left(\frac{5}{8}y_{01} + \frac{1}{8}y_{02}\right) = 0$$

$$y_{ik} \ge 0 \text{ for } i = 0, 1 \text{ and } k = 1, 2$$

(b) Using the simplex method, we find  $y_{02} = 0.8889$ ,  $y_{11} = 0.1111$ ,  $y_{01} = y_{12} = 0$ , so the optimal policy is to use decision 2 (lob) in state 0 and decision 1 (ace) in state 1.

# 19.3-5.

(a) minimize 
$$-22y_{01} - 9y_{02} - 10.5y_{11} - 4.5y_{12} + 16y_{21} + 6.5y_{22}$$
 subject to 
$$y_{01} + y_{02} + y_{11} + y_{12} + y_{21} + y_{22} = 1$$
 
$$y_{01} + y_{02} - \left(\frac{4}{10}y_{01} + \frac{4}{10}y_{02} + \frac{3}{10}y_{11} + \frac{3}{10}y_{12} + \frac{1}{10}y_{21} + \frac{1}{10}y_{22}\right) = 0$$
 
$$y_{11} + y_{12} - \left(\frac{4}{10}y_{01} + \frac{4}{10}y_{02} + \frac{4}{10}y_{11} + \frac{4}{10}y_{12} + \frac{4}{10}y_{21} + \frac{4}{10}y_{22}\right) = 0$$
 
$$y_{21} + y_{22} - \left(\frac{2}{10}y_{01} + \frac{2}{10}y_{02} + \frac{3}{10}y_{11} + \frac{3}{10}y_{12} + \frac{5}{10}y_{21} + \frac{5}{10}y_{22}\right) = 0$$
 
$$y_{ik} \ge 0 \text{ for } i = 0, 1, 2 \text{ and } k = 1, 2$$

(b) Using the simplex method, we find  $y_{01} = 0.257$ ,  $y_{11} = 0.4$ ,  $y_{22} = 0.343$  and the remaining  $y_{ik}$ 's are zero. Hence, the optimal policy uses decision 1 (the Go-Go Fund) in states 0 and 1, decision 2 in state 2 (the Go-Slow Fund).

19.3-6.

(a) minimize 
$$-1200y_{11}-1200y_{12}$$
  
subject to  $y_{01}+y_{02}+y_{11}+y_{12}=1$   
 $y_{01}+y_{02}-\left(0.4y_{01}+0.5y_{02}+0.6y_{11}+0.4y_{12}\right)=0$   
 $y_{11}+y_{12}-\left(0.6y_{01}+0.5y_{02}+0.4y_{11}+0.6y_{12}\right)=0$   
 $y_{ik}\geq 0 \text{ for } i=0,1 \text{ and } k=1,2$ 

(b) Using the simplex method, we find  $y_{01} = 0.4$ ,  $y_{12} = 0.6$ ,  $y_{02} = y_{11} = 0$ , so the optimal policy is to use decision 1 (Buck) in state 0 and decision 2 (Bill) in state 1.

# 19.3-7.

(a) minimize 
$$\frac{40}{3}y_{01} + \frac{56}{3}y_{02} + 24y_{03} + 4y_{11} + 19y_{12} + 4y_{21}$$
subject to 
$$y_{01} + y_{02} + y_{03} + y_{11} + y_{12} + y_{21} = 1$$

$$y_{01} + y_{02} - \left(y_{01} + \frac{2}{3}y_{02} + \frac{1}{3}y_{03} + \frac{2}{3}y_{11} + \frac{1}{3}y_{12} + \frac{1}{3}y_{21}\right) = 0$$

$$y_{11} + y_{12} - \left(\frac{1}{3}y_{02} + \frac{1}{3}y_{03} + \frac{1}{3}y_{11} + \frac{1}{3}y_{12} + \frac{1}{3}y_{21}\right) = 0$$

$$y_{21} - \left(\frac{1}{3}y_{03} + \frac{1}{3}y_{11} + \frac{1}{3}y_{12} + \frac{1}{3}y_{21}\right) = 0$$

$$y_{ik} > 0 \text{ for } i = 0, 1, 2 \text{ and } k = 1, 2, 3$$

(b) Using the simplex method, we find  $y_{03} = 0.4444$ ,  $y_{11} = 0.3333$ ,  $y_{21} = 0.2222$  and the remaining  $y_{ik}$ 's are zero. Hence, the optimal policy is to order 2 items in state 0 and not to order in states 1 and 2.

#### 19.4-1.

Number of states: 3

Number of decisions: 2

Cost Matrix, 
$$C_{ik}$$
:  $\begin{bmatrix} 0 & 0 \\ -27 & -31 \\ -27 & -31 \end{bmatrix}$ 

$$p_{ij}(1) = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.3 & 0.5 & 0.2 \\ 0 & 0.6 & 0.4 \end{bmatrix} \qquad p_{ij}(2) = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.4 & 0.5 & 0.1 \\ 0 & 0.8 & 0.2 \end{bmatrix}$$

Initial Policy:

 $d_0(R_1) = 1$ 

 $d_1(R_1) = 1$ 

 $d_2(R_1) = 2$  Discount Factor = 1

Iteration # 1

Value Determination:

$$g(R_1) = 0 + 0.5v_0(R_1) + 0.5v_1(R_1) + 0v_2(R_1) - v_0(R_1)$$
  
 $g(R_1) = -27 + 0.3v_0(R_1) + 0.5v_1(R_1) + 0.2v_2(R_1) - v_1(R_1)$   
 $g(R_1) = -31 + 0v_0(R_1) + 0.8v_1(R_1) + 0.2v_2(R_1) - v_2(R_1)$ 

Solution of Value Determination Equations:

$$g(R_1) = -18.8$$

 $v_0(R_1) = 52.84$ 

 $v_1(R_1) = 15.27$ 

 $v_2(R_1) = 0$ 

Policy Improvement:

State 0:

0 + 
$$0.5(52.84)$$
 +  $0.5(15.27)$  +  $(0)$  -  $(52.84)$  =  $-18.8$   
0 +  $0.5(52.84)$  +  $0.5(15.27)$  +  $(0)$  -  $(52.84)$  =  $-18.8$ 

State 1:

$$-27 + 0.3(52.84) + 0.5(15.27) + (0) - (15.27) = -18.8$$
  
 $-31 + 0.4(52.84) + 0.5(15.27) + (0) - (15.27) = -17.5$ 

State 2:

$$-27 + 0(52.84) + 0.6(15.27) + (0) - (0) = -17.8$$
  
 $-31 + 0(52.84) + 0.8(15.27) + (0) - (0) = -18.8$ 

Optimal Policy: 
$$g(R_2) = -18.8$$
  
 $d_0(R_2) = 1$   $v_0(R_2) = 52.84$   
 $d_1(R_2) = 1$   $v_1(R_2) = 15.27$   
 $d_2(R_2) = 2$   $v_2(R_2) = 0$ 

```
19.4-2.
 Number of states = 2
                               Cost Matrix, C(ik):
Number of decisions = 5
                                         4.5
                                                5
                                         ----
                                                      50 9
Transition Matrix, p(ij)[1]:
                                    Transition Matrix, p(ij)[2]:
0.9
          0.1
          0
                                    1 0.98
                                              0.02
                                    1_ 0
                                              0
Transition Matrix, p(ij)[3]:
                                   Transition Matrix, p(ij)[4]:
                                    | 0
| 1
                                              0
  Transition Matrix, p(ij)[5]:
            1
 Initial Policy:
 d0(R1) = 1
                   Discount Factor = 1
d1(R1) = 4
ITERATION # 1
Value Determination:
g(R1) = 0
              + 0.9v0(R1) + 0.1v1(R1) - v0(R1)
g(R1) = 50 +
                1v0(R1) +
                               0v1(R1) - v1(R1)
 Solution of Value Determination Equations:
 g(R1) = 4.545
 VO(R1) = -45.5
 V1(R1) = 0
 Policy Improvement:
 State 0:
 0 + 0.9 (-45.5) + 0.1 (0) - (-45.5) * 4.545
 4.5 + 0.98 (-45.5) + 0.02 (0) - (-45.5) = 5.409
 5 + 1
             (-45.5) + 0 (0) - (-45.5) = 5
             (-45.5) + 0
                            (0) - (-45.5) = ---
 --- + 0
             (-45.5) + 0
                             (0) - (-45.5) = ---
 State 1:
                             (0) - (0) = ---

(0) - (0) = ---

(0) - (0) = ---

(0) - (0) = 4.545
 --- + 0
             (-45.5) + 0
```

(0) - (0) = 9

--- + 0

--- + 0

50 + 1

+ 0

(-45.5) + 0

(-45.5) + 0

(-45.5) + 0

(-45.5) + 1

```
19.4-3.
```

```
Cost Matrix, C(ik):
Number of states = 2
                                | 0
| 75
                                            14
Number of decisions = 2
                                            14
 Transition Matrix, p(ij)[1]: Transition Matrix, p(ij)[2]:
| 0.125 0.875 |
| 0.125 0.875 |
                                   1 0.875 0.125 1
                                   |_ 0.875 0.125 |
Initial Policy:
dO(R1) = 1
dl(R1) = 2
Discount Factor = 1
ITERATION # 1
Value Determination:
g(R1) = 0
              +0.125v0(R1) + 0.875v1(R1) - v0(R1)
g(R1) = 14 + 0.875v0(R1) + 0.125v1(R1) - v1(R1)
Solution of Value Determination Equations:
g(R1) = 7
VO(R1) = -8
V1(R1) = 0
Policy Improvement:
State 0:
    + 0.125( -8) + 0.875(0) - (-8 ) = 7
+ 0.875( -8) + 0.125(0) - (-8 ) = 15
State 1:
75 + 0.125( -8) + 0.875(0) - (0) = 74
14 + 0.875( -8) + 0.125(0) - (0) = 7
Optimal Policy: g(R1) = 7
                  VO(R1) = -8
  dO(R2) = 1 VO(R1) = -8

dI(R2) = 2 VI(R1) = 0
```

```
19.4-4.
```

```
Number of states: 2
                                 Cost Matrix, C<sub>ik</sub>: [ -0.12 0.292 ] 0.5 0.417 ]
Number of decisions: 2
p_{ij}(1) = \begin{bmatrix} 0.375 & 0.625 \\ 1 & 0 \end{bmatrix} p_{ij}(2) = \begin{bmatrix} 0.875 & 0.125 \\ 1 & 0 \end{bmatrix}
 Initial Policy:
      d_0(R_1) = 1
     d_1(R_1) = 1
 Iteration # 1
Value Determination:
g(R_1) = -0.12+0.375v_0(R_1) + 0.625v_1(R_1) - v_0(R_1)
g(R_1) = 0.5 + 1v_0(R_1) +
                                  0v_1(R_1) - v_1(R_1)
 Solution of Value Determination Equations:
     g(R_1) = 0.115
    v_0(R_1) = -0.38
    v_1(R_1) = 0
 Policy Improvement:
State 0:
-0.12 + 0.375(-0.38) + (0) - (-0.38) = 0.115
0.292 + 0.875(-0.38) + (0) - (-0.38) = 0.34
State 1:
0.5 +
             1(-0.38) + (0) - (0) = 0.115

1(-0.38) + (0) - (0) = 0.032
0.417+
New Policy:
  d_0(R_2) = 1
  d_1(R_2) = 2
Iteration # 2
Value Determination:
g(R_2) = -0.12+0.375v_0(R_2) + 0.625v_1(R_2) - v_0(R_2)
g(R_2) = 0.417+
                  1v_0(R_2) + 0v_1(R_2) - v_1(R_2)
Solution of Value Determination Equations:
 g(R_2) = 0.083
 v_0(R_2) = -0.33
 v_1(R_2) = 0
Policy Improvement:
State 0:
-0.12+0.375(-0.33)+(0)-(-0.33)=0.083
0.292 + 0.875(-0.33) + (0) - (-0.33) = 0.333
State 1:
0.5 + 1(-0.33) + (0) - (0) = 0.167

0.417 + 1(-0.33) + (0) - (0) = 0.083
             1(-0.33) + (0) - (0) =
```

```
New Policy:
  d_0(R_3) = 2
  d_1(R_3) = 1
Iteration # 3
Value Determination:
g(R_3) = -0.12 + 0.375 v_0(R_3) + 0.625 v_1(R_3) - v_0(R_3)
g(R_3) = 0.5 + 1v_0(R_3) + 1v_1(R_3) - v_1(R_3)
Solution of Value Determination Equations:
    g(R_3) = 0.115
   v_0(R_3) = -0.38
   v_1(R_3) = 0
 Policy Improvement:
 State 0:
 -0.12+0.375(-0.38)+(0)-(-0.38)=0.115
 0.292 + 0.875(-0.38) + (0) - (-0.38) = 0.34
 State 1:
                                        0.115
            1(-0.38) + (0) - (0) =
 0.5 +
 0.417+
            1(-0.38) + (0) - (0) =
                                      0.032
Optimal Policy: g(R_4) = 0.115
  d_0(R_4) = 2 v_0(R_4) = -0.38

d_1(R_4) = 1 v_1(R_4) = 0
19.4-5.
Initial Policy:
dO(R1) = 1
d1(R1) = 1
d2(R1) = 1
ITERATION # 1
Value Determination:
q(R1) = -22 + 0.4vO(R1) +
                               0.4v1(R1) + 0.2v2(R1) - v0(R1)
g(R1) = -10.5 + 0.3 vO(R1) +
                               0.4v1(R1) + 0.3v2(R1) - v1(R1)
g(R1) = 16 + 0.1v0(R1) +
                               0.4v1(R1) +
                                             0.5v2(R1) - v2(R1)
Solution of Value Determination Equations:
g(R1) = -4.37
v0(R1) = -54.3
v1(R1) = -37.4
v2(R1) = 0
```

```
Policy Improvement:
State 0:
-22 + 0.4 (-54.3) + 0.4 (-37.4) + 0.2 (0) - (-54.3) = -4.37
-9 + 0.4 (-54.3) + 0.4 (-37.4) + 0.2 (0) - (-54.3) = 8.629
State 1:
-10.5 + 0.3 (-54.3) + 0.4 (-37.4) + 0.3 (0) - (-37.4) = -4.37
-4.5 + 0.3 + 0.3 + 0.4 + 0.4 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3 + 0.3
State 2:
16 + 0.1 (-54.3) + 0.4 (-37.4) + 0.5 (0) - (0) = -4.37
6.5 + 0.1 (-54.3) + 0.4 (-37.4) + 0.5 (0) - (0) = -13.9
New Policy:
     dO(R2) = 1
      d1(R2) = 1
      d2(R2) = 2
ITERATION # 2
Value Determination:
g(R2) = -22 + 0.4v0(R2) + 0.4v1(R2) + 0.2v2(R2) - v0(R2)
g(R2) = -10.5 + 0.3v0(R2) + 0.4v1(R2) + 0.3v2(R2) - v1(R2)
g(R2) = 6.5 + 0.1vO(R2) + 0.4v1(R2) + 0.5v2(R2) - v2(R2)
Solution of Value Determination Equations:
q(R2) = -7.63
v0(R2) = -40.7
v1(R2) = -25.1
v2(R2) = 0
Policy Improvement:
State 0:
 -22 + 0.4 (-40.7) + 0.4 (-25.1) + 0.2 (0) - (-40.7) = -7.63
-9 + 0.4 (-40.7) + 0.4 (-25.1) + 0.2 (0) - (-40.7) = 5.371
State 1:
 -10.5 + 0.3 (-40.7) + 0.4 (-25.1) + 0.3 (0) - (-25.1) = -7.63
-4.5 + 0.3 (-40.7) + 0.4 (-25.1) + 0.3 (0) - (-25.1) = -1.63
State 2:
 16 + 0.1 (-40.7) + 0.4 (-25.1) + 0.5 (0) - (0) = 1.871
 6.5 + 0.1 (-40.7) + 0.4 (-25.1) + 0.5 (0) - (0) = -7.63
Optimal Policy:
    dO(R3) = 1
     d1(R3) = 1
     d2(R3) = 2
```

```
19.4-6.
```

```
Cost Matrix, C(ik):
Number of states = 2
                                                   0
Number of decisions = 2
                                                   | -1200 -1200
Transition Matrix, p(ij)[1]:
                                                   Transition Matrix, p(ij)[2]:
 0.4
             0.6
                                                   0.5
                                                               0.5
1_ 0.6
             0.4
                                                   0.4
                                                               0.6
 Initial Policy:
 d0(R1) = 1
d1(R1) = 1
                               Discount Factor = 1
ITERATION # 1
Value Determination:
g(R1) = 0 + 0.4v0(R1) + 0.6v1(R1) - v0(R1)

g(R1) = -1200+ 0.6v0(R1) + 0.4v1(R1) - v1(R1)
Solution of Value Determination Equations:
g(R1) = -600
V0(R1) = 1000
v1(R1) = 0
Policy Improvement:
State 0:
      + 0.4 ( 1000) + 0.6 (0) - (1000 ) = -600
+ 0.5 ( 1000) + 0.5 (0) - (1000 ) = -500
State 1:
-1200+0.6 ( 1000) + 0.4 (0) - (0) = -600
-1200+ 0.4 ( 1000) + 0.6 (0) - (0) = -800
New Policy:
  d0(R2) = 1
  d1(R2) = 2
ITERATION # 2
Value Determination:
g(R2) = 0 + 0.4v0(R2) + 0.6v1(R2) - v0(R2)

g(R2) = -1200+ 0.4v0(R2) + 0.6v1(R2) - v1(R2)
Solution of Value Determination Equations:
g(R2) = -720
v0(R2) = 1200
v1(R2) = 0
Policy Improvement:
State 0:
0 + 0.4 (1200) + 0.6 (0) - (1200) = -720 
 <math>0 + 0.5 (1200) + 0.5 (0) - (1200) = -600
-1200+0.6 ( 1200) + 0.4 (0) - (0) = -480
-1200+ 0.4 ( 1200) + 0.6 (0) - (0) = -720
Optimal Policy: g(R2) = -720
  d0(R3) = 1 V0(R2) = 1200

d1(R3) = 2 V1(R2) = 0
```

# 19.4-7.

```
Markovian Decision Processes Model:
Number of states - 3
                               Cost Matrix, C(ik):
                               1 13.33 18.67 24
Number of decisions - 3
                               1 4
                                        19
                                         ....
Transition Matrix, p(ij)[1]:
                           Transition Matrix, p(ij)[2]:
                                                      Transition Matrix, p(ij)[3]:
0.667 0.333 0 1
0.333 0.333 0.333 |
                                                        [ 0.333 0.333 0.333 ]
                                                        0 0 0
1_ 0.333 0.333 0.333 |
                           1_0 0 0
 Initial Policy:
 d0(R1) = 3
                             Discount Factor = 1
 d1(R1) - 1
 d2(R1) - 1
Average Cost Policy Improvement Algorithm:
ITERATION # 1
Value Determination:
g(R1) = 24 + 0.333v0(R1) + 0.333v1(R1) + 0.333v2(R1) - v0(R1)
g(R1) = 4 + 0.667vO(R1) + 0.333v1(R1) + 0v2(R1) - v1(R1)
g(R1) = 4
           +0.333v0(R1) + 0.333v1(R1) + 0.333v2(R1) - v2(R1)
Solution of Value Determination Equations:
g(R1) = 12.89
v0(R1) = 20
v1(R1) - 6.667
v2(R1) = 0
Policy Improvement:
State 0:
               20) + 0 (6.667) + 0 (0) - (20 ) = 13.33
20) + 0.333(6.667) + 0 (0) - (20 ) = 14.22
13.33+ 1
18.67+ 0.667(
24 + 0.333(
               20) + 0.333(6.667) + 0.333(0) - (20
                                                     ) - 12.89
State 1:
4 + 0.667(
19 + 0.333(
--- + 0 (
                20) + 0.333(6.667) + 0 (0) - (6.667) - 12.89
                20) + 0.333(6.667) + 0.333(0) - (6.667) = 21.22
                20) + 0 (6.667) + 0 (0) - (6.667) - ---
State 2:
4 + 0.333(
                20) + 0.333(6.667) + 0.333(0) - (0) - 12.89
--- + 0 (
                20) + 0 (6.667) + 0 (0) - (0) - ---
--- + 0
                20) + 0
                           (6.667) + 0
                                         (0) - (0) - ---
New Policy:
  d0(R2) - 3
 d1(R2) - 1
 d2(R2) - 1
```

# 19.4-8.

When the number of pints of blood delivered can be specified at the time of delivery, the starting number of pints including the delivery will never exceed the largest possible demand in a period, so we can restrict our attention to states i=0,1,2,3. The admissible actions in state i are to order  $0 \le k \le 3 - i$ . Given a decision k, the transition probabilities and the immediate cost are computed as follows:

$$p_{ij}(k) = P\{D = i + k - j\} \text{ if } j \ge 1$$
  
 $p_{i0}(k) = P\{D \ge i + k\}$   
 $C_{ik} = 50k + E[100(i + k - D)^{+}].$ 

Initialization:  $d_i(R_1) = 1$  for i = 0, 1, 2 and  $d_3(R_1) = 0$ 

$$P(R_1) = \begin{pmatrix} 0.6 & 0.4 & 0 & 0 \\ 0.3 & 0.3 & 0.4 & 0 \\ 0.1 & 0.2 & 0.3 & 0.4 \\ 0.1 & 0.2 & 0.3 & 0.4 \end{pmatrix} \quad C(R_1) = \begin{pmatrix} 90 \\ 60 \\ 50 \\ 0 \end{pmatrix}$$

#### Iteration 1:

Step 1: Value determination:

$$\begin{split} g(R_1) &= 90 + 0.6v_0(R_1) + 0.4v_1(R_1) - v_0(R_1) \\ g(R_1) &= 60 + 0.3v_0(R_1) + 0.3v_1(R_1) + 0.4v_2(R_1) - v_1(R_1) \\ g(R_1) &= 50 + 0.1v_0(R_1) + 0.2v_1(R_1) + 0.3v_2(R_1) + 0.4v_3(R_1) - v_2(R_1) \\ g(R_1) &= 0 + 0.1v_0(R_1) + 0.2v_1(R_1) + 0.3v_2(R_1) + 0.4v_3(R_1) - v_3(R_1) \\ v_3(R_1) &= 0 \end{split}$$

$$\Rightarrow g(R_1) = 57.8, v_0(R_1) = 196.3, v_1(R_1) = 115.9, v_2(R_1) = 50, v_3(R_1) = 0$$

Step 2: Policy improvement.

$$\begin{aligned} & \text{minimize} \begin{pmatrix} 100 + v_0(R_1) - v_0(R_1) = 100 \\ 90 + 0.6v_0(R_1) + 0.4v_1(R_1) - v_0(R_1) = 57.8 \\ 110 + 0.3v_0(R_1) + 0.3v_1(R_1) + 0.4v_2(R_1) - v_0(R_1) = 27.36 \\ 150 + 0.1v_0(R_1) + 0.2v_1(R_1) + 0.3v_2(R_1) + 0.4v_3(R_1) - v_0(R_1) = \mathbf{11.51} \end{pmatrix} \\ & \Rightarrow d_0(R_2) = 3 \\ & \text{minimize} \begin{pmatrix} 40 + 0.6v_0(R_1) + 0.4v_1(R_1) - v_1(R_1) = 88.24 \\ 60 + 0.3v_0(R_1) + 0.3v_1(R_1) + 0.4v_2(R_1) - v_1(R_1) = 57.8 \\ 100 + 0.1v_0(R_1) + 0.2v_1(R_1) + 0.3v_2(R_1) + 0.4v_3(R_1) - v_1(R_1) = \mathbf{41.91} \end{pmatrix} \\ & \Rightarrow d_1(R_2) = 2 \\ & \text{minimize} \begin{pmatrix} 10 + 0.3v_0(R_1) + 0.3v_1(R_1) + 0.4v_2(R_1) - v_2(R_1) = 73.66 \\ 50 + 0.1v_0(R_1) + 0.2v_1(R_1) + 0.3v_2(R_1) + 0.4v_3(R_1) - v_2(R_1) = \mathbf{57.8} \end{pmatrix} \\ & \Rightarrow d_2(R_2) = 1 \end{aligned}$$

 $R_2$  is not identical to  $R_1$ , so optimality test fails.

# Iteration 2:

Step 1: Value determination:

$$g(R_2) = 150 + 0.1v_0(R_2) + 0.2v_1(R_2) + 0.3v_2(R_2) + 0.4v_3(R_2) - v_0(R_2)$$

$$g(R_2) = 100 + 0.1v_0(R_2) + 0.2v_1(R_2) + 0.3v_2(R_2) + 0.4v_3(R_2) - v_1(R_2)$$

$$g(R_2) = 50 + 0.1v_0(R_2) + 0.2v_1(R_2) + 0.3v_2(R_2) + 0.4v_3(R_2) - v_2(R_2)$$

$$g(R_2) = 0 + 0.1v_0(R_2) + 0.2v_1(R_2) + 0.3v_2(R_2) + 0.4v_3(R_2) - v_3(R_2)$$

$$v_3(R_2) = 0$$

$$\Rightarrow g(R_2) = 50, v_0(R_2) = 150, v_1(R_2) = 100, v_2(R_2) = 50, v_3(R_2) = 0$$

Step 2: Policy improvement:

$$\begin{aligned} & \text{minimize} \begin{pmatrix} 100 + v_0(R_2) - v_0(R_2) = 100 \\ 90 + 0.6v_0(R_2) + 0.4v_1(R_2) - v_0(R_2) = 70 \\ 110 + 0.3v_0(R_2) + 0.3v_1(R_2) + 0.4v_2(R_2) - v_0(R_2) = 55 \\ 150 + 0.1v_0(R_2) + 0.2v_1(R_2) + 0.3v_2(R_2) + 0.4v_3(R_2) - v_0(R_2) = \mathbf{50} \end{pmatrix} \\ & \Rightarrow d_0(R_3) = 3 \\ & \text{minimize} \begin{pmatrix} 40 + 0.6v_0(R_2) + 0.4v_1(R_2) - v_1(R_2) = 70 \\ 60 + 0.3v_0(R_2) + 0.3v_1(R_2) + 0.4v_2(R_2) - v_1(R_2) = 55 \\ 100 + 0.1v_0(R_2) + 0.2v_1(R_2) + 0.3v_2(R_2) + 0.4v_3(R_2) - v_1(R_2) = \mathbf{50} \end{pmatrix} \\ & \Rightarrow d_1(R_3) = 2 \\ & \text{minimize} \begin{pmatrix} 10 + 0.3v_0(R_1) + 0.3v_1(R_1) + 0.4v_2(R_1) - v_2(R_1) = 55 \\ 50 + 0.1v_0(R_1) + 0.2v_1(R_1) + 0.3v_2(R_1) + 0.4v_3(R_1) - v_2(R_1) = \mathbf{50} \end{pmatrix} \\ & \Rightarrow d_2(R_3) = 1 \end{aligned}$$

 $R_3$  is identical to  $R_2$ , so it is optimal to start every period with 3 pints of blood after delivery of the order.

# 19.5-1.

Let states 0, 1 and 2 denote \$600, \$800 and \$1000 offers respectively and let state 3 designate the case that the car has already been sold (state  $\infty$  of the hint). Let decisions 1 and 2 be to reject and to accept the offer respectively.

$$P(1) = \begin{pmatrix} 5/8 & 1/4 & 1/8 & 0 \\ 5/8 & 1/4 & 1/8 & 0 \\ 5/8 & 1/4 & 1/8 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, P(2) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Start with the policy to reject only the \$600 offer. The relevant equations are:

$$V_0 = 60 + 0.95 \left( \frac{5}{8} V_0 + \frac{1}{4} V_1 + \frac{1}{8} V_2 \right)$$

$$V_1 = -800 + 0.95 V_3$$

$$V_2 = -1000 + 0.95 V_3$$

$$V_3 = 0.95 V_3$$

which admit the unique solution  $(V_0, V_1, V_2, V_3) = (-7960/13, -800, -1000, 0)$ .

Policy improvement:

State 0 with decision 2: 
$$-600 + 0.95V_3 = -600 > V_0$$

State 1 with decision 1: 
$$60 + 0.95[(5/8)V_0 + (1/4)V_1 + (1/8)V_2] = -7960/13 > V_1$$

State 2 with decision 1: 
$$60 + 0.95[(5/8)V_0 + (1/4)V_1 + (1/8)V_2] = -7960/13 > V_2$$

Hence, the policy to reject the \$600 offer and to accept \$800 and \$1000 offers is optimal.

# 19.5-2.

(a) minimize 
$$60y_{01} - 600y_{02} + 60y_{11} - 800y_{12} + 60y_{21} - 1000y_{22}$$
  
subject to  $y_{01} + y_{02} - 0.95\left(\frac{5}{8}\right)\left(y_{01} + y_{11} + y_{21}\right) = \frac{1}{3}$   
 $y_{11} + y_{12} - 0.95\left(\frac{1}{4}\right)\left(y_{01} + y_{11} + y_{21}\right) = \frac{1}{3}$   
 $y_{21} + y_{22} - 0.95\left(\frac{1}{8}\right)\left(y_{01} + y_{11} + y_{21}\right) = \frac{1}{3}$   
 $y_{ik} \ge 0 \text{ for } i = 0, 1, 2 \text{ and } k = 1, 2$ 

(b) Using the simplex method, we find  $y_{01} = 0.81979$ ,  $y_{12} = 0.5277$ ,  $y_{22} = 0.43056$  and the remaining  $y_{ik}$ 's are zero. Hence, the optimal policy is to reject the \$600 offer and to accept the \$800 and \$1000 offers.

#### 19.5-3.

$$\begin{split} V_i^n &= \min\{60 + 0.95((5/8)V_0^{n-1} + (1/4)V_1^{n-1} + (1/8)V_2^{n-1}), -(\text{offer})\} \text{ for } i = 0, 1, 2 \\ V_i^0 &= 0 \text{ for } i = 0, 1, 2 \\ \underline{\text{Iteration 1:}} \qquad V_i^1 &= \min\{60, -(\text{offer})\} = -(\text{offer}) \text{ for } i = 0, 1, 2 \Rightarrow \text{Accept} \\ \underline{\text{Iteration 2:}} \qquad V_0^2 &= \min\{-605, -600\} = -605 \Rightarrow \text{Reject} \\ V_1^2 &= \min\{-605, -800\} = -800 \Rightarrow \text{Accept} \end{split}$$

$$V_2^2 = \min\{-605, -1000\} = -1000 \Rightarrow \text{Accept}$$
 
$$\underbrace{V_0^3 = \min\{-607.97, -600\}}_{} = -607.97 \Rightarrow \text{Reject}$$
 
$$V_1^3 = \min\{-607.97, -800\} = -800 \Rightarrow \text{Accept}$$

The approximate optimal solution is to reject the \$600 offer and to accept the \$800 and \$1000 offers. This policy is indeed optimal, as found in Problem 19.5-1 and 19.5-2.

 $V_2^3 = \min\{-607.97, -1000\} = -1000 \Rightarrow \text{Accept}$ 

# 19.5-4.

Let states 0, 1 and 2 denote the selling price of \$10, \$20 and \$30 respectively and let state 3 designate the case that the stock has already been sold. Let decisions 1 and 2 be to hold and to sell the stock respectively.

$$C_{01} = C_{11} = C_{21} = 0$$
,  $C_{02} = -10$ ,  $C_{12} = -20$  and  $C_{22} = -30$ 

$$P(1) = \begin{pmatrix} 4/5 & 1/5 & 0 & 0 \\ 1/4 & 1/4 & 1/2 & 0 \\ 0 & 3/4 & 1/4 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, P(2) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Start with the policy to sell only when the price is \$30. The relevant equations are:

$$V_0 = 0 + 0.9 \left( \frac{4}{5} V_0 + \frac{1}{5} V_1 \right)$$

$$V_1 = 0 + 0.9 \left( \frac{1}{4} V_0 + \frac{1}{4} V_1 + \frac{1}{2} V_2 \right)$$

$$V_2 = -30 + 0.9 V_3$$

$$V_3 = 0 + 0.9 V_3,$$

which admit the unique solution  $(V_0, V_1, V_2, V_3) = (-4860/353, -7560/353, -30, 0)$ .

Policy improvement:

State 0 with decision 2: 
$$-10 + 0.9V_3 = -10 > V_0$$

State 1 with decision 2: 
$$-20 + 0.9V_3 = -20 > V_1$$

State 2 with decision 1: 
$$0 + 0.9[(3/4)V_1 + (1/4)V_2] = -21.21 > V_2$$

Hence, the policy to hold the stock when the price is \$10 and \$20, and to sell it when the price is \$30.

# 19.5-5.

(a) minimize 
$$-10y_{02} - 20y_{12} - 30y_{22}$$
subject to 
$$y_{01} + y_{02} - 0.9\left(\frac{4}{5}y_{01} + \frac{1}{4}y_{11}\right) = \frac{1}{3}$$

$$y_{11} + y_{12} - 0.9\left(\frac{1}{5}y_{01} + \frac{1}{4}y_{11} + \frac{3}{4}y_{21}\right) = \frac{1}{3}$$

$$y_{21} + y_{22} - 0.9\left(\frac{1}{2}y_{11} + \frac{1}{4}y_{21}\right) = \frac{1}{3}$$

$$y_{ik} \ge 0 \text{ for } i = 0, 1, 2 \text{ and } k = 1, 2$$

(b) Using the simplex method, we find  $y_{01} = 1.96059$ ,  $y_{11} = 0.95851$ ,  $y_{22} = 0.76463$  and the remaining  $y_{ik}$ 's are zero. Hence, the optimal policy is to hold the stock at the prices \$10 and \$20 and to sell it at the price \$30.

#### 19.5-6.

$$\begin{split} V_0^n &= \min\{0.9((4/5)V_0^{n-1} + (1/5)V_1^{n-1}), -10\} \\ V_1^n &= \min\{0.9((1/4)V_0^{n-1} + (1/4)V_1^{n-1} + (1/2)V_2^{n-1}), -20\} \\ V_2^n &= \min\{0.9((3/4)V_1^{n-1} + (1/4)V_2^{n-1}), -30\} \\ V_i^0 &= 0 \text{ for } i = 0, 1, 2 \\ \underline{\text{Iteration 1:}} \qquad V_0^1 &= \min\{0, -10\} = -10 \Rightarrow \text{Sell} \\ V_1^1 &= \min\{0, -20\} = -20 \Rightarrow \text{Sell} \\ V_2^1 &= \min\{0, -30\} = -30 \Rightarrow \text{Sell} \end{split}$$

$$\begin{array}{ll} \underline{\text{Iteration 2:}} & V_0^2 = \min\{-10.8, -10\} = -10.8 \Rightarrow \text{Hold} \\ & V_1^2 = \min\{-20.25, -20\} = -20.25 \Rightarrow \text{Hold} \\ & V_2^2 = \min\{-20.25, -30\} = -30 \Rightarrow \text{Sell} \\ \underline{\text{Iteration 3:}} & V_0^3 = \min\{-11.42, -10\} = -11.42 \Rightarrow \text{Hold} \\ & V_1^3 = \min\{-20.49, -20\} = -20.49 \Rightarrow \text{Hold} \\ & V_2^3 = \min\{-20.42, -30\} = -30 \Rightarrow \text{Sell} \end{array}$$

The approximate optimal solution is to sell if the price is \$30 and to hold otherwise. This policy is indeed optimal, as found in Problem 19.5-3 and 19.5-4.

#### 19.5-7.

(a) Let states 0 and 1 be the chemical produced this month, C1 and C2 respectively, and decisions 1 and 2 refer to the process to be used next month, A and B respectively. There are four stationary deterministic policies.

| i | $d_i(R_1)$ | $d_i(R_2)$ | $d_i(R_3)$ | $d_i(R_4)$ |
|---|------------|------------|------------|------------|
| 0 | 1          | 1          | 2          | 2          |
| 1 | 1          | 2          | 1          | 2          |

The transition matrix is the same for every decision, viz.

$$P = \begin{pmatrix} 0.3 & 0.7 \\ 0.4 & 0.6 \end{pmatrix}.$$

The costs  $C_{ik}$  correspond to the expected amount of pollution using the process k in the next period.

$$C_{01} = 0.3(15) + 0.7(2) = 5.9,$$
  
 $C_{02} = 0.3(3) + 0.7(8) = 6.5,$   
 $C_{11} = 0.4(15) + 0.6(2) = 7.2,$   
 $C_{12} = 0.4(3) + 0.6(8) = 6.$ 

(b)

Initial Policy:

$$dO(R1) = 1$$
  
 $dI(R1) = 1$ 

Discount Factor = 0.5

Discounted Cost Policy Improvement Algorithm:

ITERATION # 1

Value Determination:

$$g(R1) = 5.9 + (0.5) [ 0.3VO(R1) + 0.7V1(R1) ]$$
  
 $g(R1) = 7.2 + (0.5) [ 0.4VO(R1) + 0.6V1(R1) ]$ 

Solution of Value Determination Equations:

V1(R1) = 12.67

V2(R1) = 13.9

```
Policy Improvement:
```

```
State 0:
5.9 + (0.5) [0.3 (12.67) + 0.7 (13.9)] = 12.67
6.5 + (0.5) [0.3 (12.67) + 0.7 (13.9)] = 13.27
State 1:
7.2 + (0.5) [0.4 (12.67) + 0.6 (13.9)] = 13.9
   + (0.5) [0.4 (12.67) + 0.6 (13.9)] = 12.7
New Policy:
  dO(R2) = 1
  d1(R2) = 2
ITERATION # 2
Value Determination:
g(R2) = 5.9 + (0.5) [ 0.3VO(R2) + 0.7V1(R2) ]
g(R2) = 6 + (0.5) [ 0.4VO(R2) + 0.6V1(R2) ]
Solution of Value Determination Equations:
V1(R2) = 11.87
V2(R2) = 11.96
Policy Improvement:
State 0:
5.9 + (0.5) [0.3 (11.87) + 0.7 (11.96)] = 11.87
6.5 + (0.5) [0.3 (11.87) + 0.7 (11.96)] = 12.47
State 1:
7.2 + (0.5) [0.4 (11.87) + 0.6 (11.96)] = 13.16
     + (0.5) [0.4 (11.87) + 0.6 (11.96) ] = 11.96
Optimal Policy:
   dO(R3) = 1
   d1(R3) = 2
```

#### 19.5-8.

(a) minimize 
$$5.9y_{01} + 6.5y_{02} + 7.2y_{11} + 6y_{12}$$
  
subject to  $y_{01} + y_{02} - \frac{1}{2} \left( \frac{3}{10} y_{01} + \frac{4}{10} y_{11} + \frac{3}{10} y_{02} + \frac{4}{10} y_{12} \right) = \frac{1}{2}$   
 $y_{11} + y_{12} - \frac{1}{2} \left( \frac{7}{10} y_{01} + \frac{6}{10} y_{11} + \frac{7}{10} y_{02} + \frac{6}{10} y_{12} \right) = \frac{1}{2}$   
 $y_{ik} \ge 0 \text{ for } i = 0, 1 \text{ and } k = 1, 2$ 

(b) Using the simplex method, we find  $y_{01} = 0.857$ ,  $y_{12} = 1.143$  and  $y_{02} = y_{11} = 0$ . Hence, the optimal policy is to use process A if C1 is produced and B if C2 is produced this month.

#### 19.5-9.

```
Discount Factor = 0.5
Method of Successive Approximations:
Initial V(i):
 v(1) = 0
  v(2) = 0
ITERATION #1
New Policy and New V(i):
 dO(R1) = 1, V(0) = 5.9 d1(R1) = 2, V(1) = 6
ITERATION # 2
State 0:
5.9 + (0.5) [0.3 ( 5.9) + 0.7 ( 6) ] = 8.885
6.5 + (0.5) [0.3 (5.9) + 0.7 (6)] = 9.485
State 1:
7.2 + (0.5) [0.4 (5.9) + 0.6 (6)] = 10.18
     + (0.5) [0.4 ( 5.9) + 0.6 ( 6) ] = 8.98
New Policy and New V(i):
  dO(R2) = 1, V(0) = 8.885
                    V(1) = 8.98
  d1(R2) = 2,
ITERATION # 3
State 0:
5.9 + (0.5) [0.3 (8.885) + 0.7 (8.98)] = 10.38
6.5 + (0.5) [0.3 (8.885) + 0.7 (8.98)] = 10.98
State 1:
7.2 + (0.5) [0.4 (8.885) + 0.6 (8.98)] = 11.67
6 + (0.5) [0.4 (8.885) + 0.6 (8.98)] = 10.47
New Policy and New V(i):
   dO(R3) = 1, V(0) = 10.38 d1(R3) = 2, V(1) = 10.47
```

#### 19.5-10.

The three iterations of successive approximations in Problem 19.5-9 gives the optimal policy for the three-period problem. The optimal policy is, therefore, to use the process A if C1 is produced and B if C2 is produced in all periods.

# 19.5-11.

```
V_0^n = \min\{0 + 0.90((7/8)V_1^{n-1} + (1/16)V_2^{n-1} + (1/16)V_3^{n-1}), 4000 + 0.90V_1^{n-1}, 6000 + 0.90V_0^{n-1}\}
V_1^n = \min\{1000 + 0.90((3/4)V_1^{n-1} + (1/8)V_2^{n-1} + (1/8)V_3^{n-1}), 4000 + 0.90V_1^{n-1}, 6000 + 0.90V_0^{n-1}\}
V_2^n = \min\{3000 + 0.90((1/2)V_2^{n-1} + (1/2)V_3^{n-1}), 4000 + 0.90V_1^{n-1}, 6000 + 0.90V_0^{n-1}\}
V_3^n = 6000 + 0.90V_0^{n-1}
V_i^0 = 0 for i = 0, 1, 2, 3
                V_0^1 = \min\{0, 4000, 6000\} = 0 \Rightarrow \text{Do nothing}
Iteration 1:
                   V_1^1 = \min\{1000, 4000, 6000\} = 1000 \Rightarrow \text{Do nothing}
                   V_2^1 = \min\{3000, 4000, 6000\} = 3000 \Rightarrow \text{Do nothing}
                   V_3^1 = 6000 \Rightarrow \text{Replace}
                  V_0^2 = \min\{1293.75, 4900, 6000\} = 1293.75 \Rightarrow \text{Do nothing}
Iteration 2:
                   V_1^2 = \min\{2687.5, 4900, 6000\} = 2687.5 \Rightarrow \text{Do nothing}
                   V_2^2 = \min\{7050, 4900, 6000\} = 4900 \Rightarrow \text{Overhaul}
                   V_3^2 = 6000 \Rightarrow \text{Replace}
                  V_0^3 = \min\{2729.53, 6418.75, 7164.38\} = 2729.53 \Rightarrow \text{Do nothing}
Iteration 3:
                   V_1^3 = \min\{4040.31, 6418.75, 7164.38\} = 4040.31 \Rightarrow \text{Do nothing}
                   V_2^3 = \min\{7905, 6418.75, 7164.38\} = 6418.75 \Rightarrow \text{Overhaul}
                   V_3^3 = 7164.38 \Rightarrow \text{Replace}
                   V_0^4 = \min\{3945.80, 7636.28, 8456.58\} = 3945.80 \Rightarrow \text{Do nothing}
Iteration 4:
                   V_1^4 = \min\{5255.31, 7636.28, 8456.58\} = 5255.31 \Rightarrow \text{Do nothing}
                   V_2^4 = \min\{9112.41, 7636.28, 8456.58\} = 7636.28 \Rightarrow \text{Overhaul}
                   V_3^4 = 8456.58 \Rightarrow \text{Replace}
```

The optimal policy is to do nothing in states 0, 1 and to replace in state 3 in all periods. When in state 2, it is best to overhaul in periods 1, 2, 3 and to do nothing in period 4.

# **CHAPTER 20: SIMULATION**

# 20.1-1.

(a) 0.0000 to 0.4999 correspond to tails. 0.5000 to 0.9999 correspond to heads.

Random observations: 0.6961 = heads, 0.2086 = tails, 0.1457 = tails, 0.3098 = tails, 0.6996 = heads, 0.9617 = heads

(b) 0.0000 to 0.5999 correspond to strikes. 0.6000 to 0.9999 correspond to balls.

Random observations: 0.6961 = ball, 0.2086 = strike, 0.1457 = strike, 0.3098 = strike, 0.6996 = ball, 0.9617 = ball

(c) 0.0000 to 0.3999 correspond to green lights. 0.4000 to 0.4999 correspond to yellow lights. 0.5000 to 0.9999 correspond to red lights.

Random observations: 0.6961 = red, 0.2086 = green, 0.1457 = green, 0.3098 = green, 0.6996 = red, 0.9617 = red

#### 20.1-2.

(a) If it is raining: 0.0000 to 0.5999 correspond to rain next day, 0.6000 to 0.9999 correspond to clear next day.

If it is clear: 0.0000 to 0.7999 correspond to clear next day, 0.8000 to 0.9999 correspond to rain next day.

| Day | Random Number | Weather |
|-----|---------------|---------|
| 1   | 0.6996        | Clear   |
| 2   | 0.9617        | Rain    |
| 3   | 0.6117        | Clear   |
| 4   | 0.3948        | Clear   |
| 5   | 0.7769        | Clear   |
| 6   | 0.5750        | Clear   |
| 7   | 0.6271        | Clear   |
| 8   | 0.2017        | Clear   |
| 9   | 0.7760        | Clear   |
| 10  | 0.9918        | Rain    |

(b)

| Day | Random Number | Weather |
|-----|---------------|---------|
| 1   | 0.8212        | Rain    |
| 2   | 0.1449        | Rain    |
| 3   | 0.1762        | Rain    |
| 4   | 0.7318        | Clear   |
| 5   | 0.9218        | Rain    |
| 6   | 0.1237        | Rain    |
| 7   | 0.2881        | Rain    |
| 8   | 0.8235        | Clear   |
| 9   | 0.5954        | Clear   |
| 10  | 0.8405        | Rain    |

# 20.1-3.

(a)

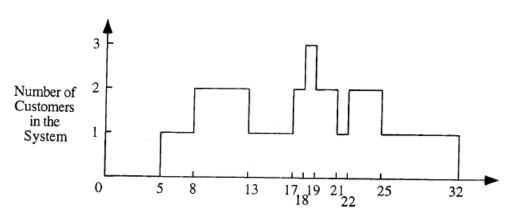
$$P(2) = \frac{4}{25}, P(3) = \frac{7}{25}, P(4) = \frac{8}{25}, P(5) = \frac{5}{25}, P(6) = \frac{1}{25}$$

(b)

Mean: 
$$(2)\frac{4}{25} + (3)\frac{7}{25} + (4)\frac{8}{25} + (5)\frac{5}{25} + (6)\frac{1}{25} = 3.68$$
 stoves

- (c) 0.0000 to 0.1599 correspond to 2 stoves being sold.
  - 0.1600 to 0.4399 correspond to 3 stoves being sold.
  - 0.4400 to 0.7599 correspond to 4 stoves being sold.
  - 0.7600 to 0.9599 correspond to 5 stoves being sold.
  - 0.9600 to 0.9999 correspond to 6 stoves being sold.
- (d)  $0.4476 \Rightarrow 4$  stoves,  $0.9713 \Rightarrow 6$  stoves,  $0.0629 \Rightarrow 2$  stoves

The average of these is (4+6+2)/3 = 4, which exceeds the mean in (b) by 0.32.


(e) Answers will vary. The following 300-day simulation yielded an average demand of 3.72.

| Day | Random Number | Demand |
|-----|---------------|--------|
| 1   | 0.5475        | 4      |
| 2   | 0.3597        | 3      |
| 3   | 0.6539        | 4      |
| 4   | 0.6263        | 4      |
| 5   | 0.9576        | 5      |
| 6   | 0.8396        | 5      |
| 7   | 0.1005        | 2      |
| 297 | 0.5809        | 4      |
| 298 | 0.3673        | 3      |
| 299 | 0.4453        | 4      |
| 300 | 0.1361        | 2      |

| Distribution of Demand |            |        |  |  |  |
|------------------------|------------|--------|--|--|--|
| Probability            | Cumulative | Demand |  |  |  |
| 0.16                   | 0          | 2      |  |  |  |
| 0.28                   | 0.16       | 3      |  |  |  |
| 0.32                   | 0.44       | 4      |  |  |  |
| 0.20                   | 0.76       | 5      |  |  |  |
| 0.04                   | 0.96       | 6      |  |  |  |

# 20.1-4.

(a)

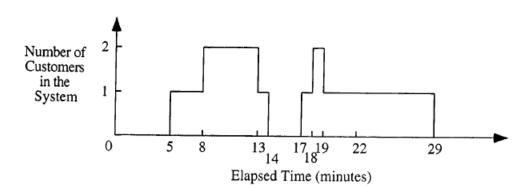


Elapsed Time (minutes)

$$\operatorname{Est}\{P_0\} = \frac{5}{32} = 0.156 \qquad \operatorname{Est}\{P_1\} = \frac{3+4+1+7}{32} = 0.469$$

$$\operatorname{Est}\{P_2\} = \frac{5+1+2+3}{32} = 0.344 \qquad \operatorname{Est}\{P_3\} = \frac{1}{32} = 0.031$$

$$\operatorname{Est}\{L\} = \sum_{n=0}^{3} n P_n = 0 \cdot 0.156 + 1 \cdot 0.469 + 2 \cdot 0.344 + 3 \cdot 0.031 = 1.25 \text{ customers}$$


$$\operatorname{Est}\{L_q\} = \sum_{n=1}^{3} (n-1)P_n = 0 \cdot 0.469 + 1 \cdot 0.344 + 2 \cdot 0.031 = 0.406 \text{ customers}$$

| Customers | Arrival Time | Service Time | Departure Time | System Time | Wait Time |
|-----------|--------------|--------------|----------------|-------------|-----------|
| 1         | 5            | 8            | 13             | 8           | 0         |
| 2         | 8            | 6            | 19             | 11          | 5         |
| 3         | 17           | 2            | 21             | 4           | 2         |
| 4         | 18           | 4            | 25             | 7           | 3         |
| 5         | 22           | 7            | 32             | 10          | 3         |

$$\operatorname{Est}\{W\} = \frac{\operatorname{sum\ of\ observed\ system\ times}}{\operatorname{number\ of\ observed\ system\ times}} = \frac{40}{5} = 8 \ \operatorname{minutes}$$

$$\mathrm{Est}\{W_q\} = \frac{\mathrm{sum\ of\ observed\ waiting\ times}}{\mathrm{number\ of\ observed\ waiting\ times}} = \frac{32}{5} = 2.6\ \mathrm{minutes}$$

(c)



(d) 
$$\operatorname{Est}\{P_0\} = \frac{5+3}{29} = 0.276 \qquad \operatorname{Est}\{P_1\} = \frac{3+1+1+3+7}{29} = 0.517$$
 
$$\operatorname{Est}\{P_2\} = \frac{5+1}{29} = 0.207$$

$$Est\{L\} = \sum_{n=0}^{2} nP_n = 0 \cdot 0.276 + 1 \cdot 0.517 + 2 \cdot 0.207 = 0.931 \text{ customers}$$

Est
$$\{L_q\} = \sum_{n=1}^{2} (n-1)P_n = 0 \cdot 0.517 + 1 \cdot 0.207 = 0.207$$
 customers

| Customers | Arrival Time | Service Time | Departure Time | System Time | Wait Time |
|-----------|--------------|--------------|----------------|-------------|-----------|
| 1         | 5            | 8            | 13             | 8           | 0         |
| 2         | 8            | 6            | 14             | 6           | 0         |
| 3         | 17           | 2            | 19             | 2           | 0         |
| 4         | 18           | 4            | 22             | 4           | 0         |
| 5         | 22           | 7            | 29             | 7           | 0         |

$$\operatorname{Est}\{W\} = \frac{\operatorname{sum of observed system times}}{\operatorname{number of observed system times}} = \frac{27}{5} = 5.4 \text{ minutes}$$

$$\mathrm{Est}\{W_q\} = \frac{\mathrm{sum\ of\ observed\ waiting\ times}}{\mathrm{number\ of\ observed\ waiting\ times}} = \frac{0}{5} = 0 \ \mathrm{minutes}$$

## 20.1-5.

(a) Interarrival Time  $\sim$ Exp(1/6 per minute), Service Time  $\sim$ Exp(1/5 per minute)

Next interarrival time:  $-6 \ln r_A$ 

Next service time:  $-5 \ln r_D$ 

Let t and N(t) denote the time in minutes and the number of customers in the system at time t respectively. In the table below, N.I.T. stands for Next Interarrival Time and N.S.T. for Next Service Time.

| t      | N(t) | $r_A$ | N.I.T. | $r_D$ | N.S.T. | Next Arriv. | Next Dep. | Next Event |
|--------|------|-------|--------|-------|--------|-------------|-----------|------------|
| 0      | 0    | 0.096 | 14.060 | _     | _      | 14.060      | _         | Arrival    |
| 14.060 | 1    | 0.569 | 3.383  | 0.665 | 2.040  | 17.443      | 16.100    | Departure  |
| 16.100 | 0    | _     | _      | _     | _      | 17.443      | _         | Arrival    |
| 17.443 | 1    | 0.764 | 1.615  | 0.842 | 0.860  | 19.058      | 18.303    | Departure  |
| 18.303 | 0    | _     | _      | _     | _      | 19.058      | _         | Arrival    |
| 19.058 | 1    |       |        |       |        |             |           |            |

(b)

 $P\{\text{arrival in two-minute period}\}=1-e^{-\frac{1}{3}}=0.283$ 

 $P\{\text{departure in two-minute period}\}=1-e^{-\frac{2}{5}}=0.330$ 

 $r_A < 0.283 \Rightarrow$  arrival occurred,  $r_A \ge 0.283 \Rightarrow$  arrival did not occur.

 $r_D < 0.330 \Rightarrow$  departure occurred,  $r_D \ge 0.330 \Rightarrow$  departure did not occur.

Let t and N(t) denote the time in minutes and the number of customers in the system at time t respectively.

| t  | N(t) | $r_A$ | Arrival? | $r_D$ | Departure? |
|----|------|-------|----------|-------|------------|
| 0  | 0    |       |          |       |            |
| 2  | 1    | 0.096 | Yes      |       | _          |
| 4  | 1    | 0.569 | No       | 0.665 | No         |
| 6  | 1    | 0.764 | No       | 0.842 | No         |
| 8  | 0    | 0.492 | No       | 0.224 | Yes        |
| 10 | 0    | 0.950 | No       | -     | _          |
| 12 | 0    | 0.610 | No       | -     | _          |
| 14 | 1    | 0.145 | Yes      |       | _          |
| 16 | 1    | 0.484 | No       | 0.552 | No         |
| 18 | 1    | 0.350 | No       | 0.590 | No         |
| 20 | 0    | 0.430 | No       | 0.041 | Yes        |

# (c) Interarrival Time $\sim$ Exp(1/10), Service Time $\sim$ Exp(1/12) | Number of |

| 1       | Number of | 1            | -   |         |     |              |
|---------|-----------|--------------|-----|---------|-----|--------------|
| Current | Customers | Customer     |     | Next    | N   | Mext Service |
| Time    | in Queue  | Being Served | 1   | Arrival | 1   | Completion   |
|         |           | <u> </u>     | _ _ |         | I   |              |
| 0       | 0         | Yes          | -   | 1.59516 |     | 0.05791      |
| 0.05791 | 0         | l No         | -   | 1.59516 |     |              |
| 1.59516 | 0         | Yes          | -   | 2.01515 |     | 2.32053      |
| 2.01515 | 1         | Yes          | -   | 2.18621 |     | 2.32053      |
| 2.18621 | 2         | Yes          | -   | 2.52934 |     | 2.32053      |
| 2.32053 | 1         | Yes          | 1   | 2.52934 |     | 2.57411      |
| 2.52934 | 2         | Yes          |     | 4.67015 |     | 2.57411      |
| 2.57411 | 1         | Yes          | 1   | 4.67015 | - 1 | 3.44101      |
| 3.44101 | 0         | Yes          | -   | 4.67015 |     | 3.5073       |
| 3.5073  | 0         | l No         | I   | 4.67015 | I   |              |
| 4.67015 | 0         | Yes          | - 1 | 5.45971 | 1   | 4.84881      |
| 4.84881 | 0         | No           |     | 5.45971 |     |              |
| 5.45971 | 0         | Yes          |     | 8.54887 | - 1 | 5.55357      |
| 5.55357 | 0         | No           |     | 8.54887 | - 1 |              |
| 8.54887 | 0         | Yes          |     | 8.59868 | - 1 | 10.9813      |
| 8.59868 | 1         | Yes          |     | 9.33448 | - 1 | 10.9813      |
| 9.33448 | 2         | Yes          |     | 11.3485 | - 1 | 10.9813      |
| 10.9813 | 1         | Yes          |     | 11.3485 | - 1 | 11.7831      |
| 11.3485 | 2         | Yes          | - 1 | 11.5231 | - 1 | 11.7831      |
| 11.5231 | 3         | Yes          | - 1 | 11.8163 | - 1 | 11.7831      |
| 11.7831 | 2         | Yes          | - 1 | 11.8163 | 1   | 12.4319      |
| 11.8163 | 3         | Yes          | 1   | 12.7794 | 1   | 12.4319      |
| 12.4319 | 2         | Yes          | i   | 12.7794 | i   | 16.7805      |
| 12.7794 | 3         | Yes          | i   | 12.8719 | i   | 16.7805      |
| 12.8719 | 4         | Yes          | i   | 16.5715 | i   | 16.7805      |
| 16.5715 | 5         | Yes          | i   | 17.4063 | i   | 16.7805      |
| 16.7805 | 4         | Yes          | i   | 17.4063 | i   | 17.1525      |
| 17.1525 | 3         | Yes          | i   | 17.4063 | i   | 18.7851      |
| 17.4063 | 4         | Yes          | i   | 17.7437 | i   | 18.7851      |
| 17.7437 | 5         | Yes          | i   | 18.1435 | i   | 18.7851      |
|         |           | •            |     |         |     |              |

| 18.1435 | 6 | 1 | Yes | 1 | 18.4939 |     | 18.7851 |
|---------|---|---|-----|---|---------|-----|---------|
| 18.4939 | 7 | 1 | Yes | 1 | 20.2767 | I   | 18.7851 |
| 18.7851 | 6 | 1 | Yes | 1 | 20.2767 | I   | 19.0576 |
| 19.0576 | 5 | 1 | Yes | 1 | 20.2767 | I   | 19.16   |
| 19.16   | 4 | 1 | Yes | 1 | 20.2767 | I   | 20.9374 |
| 20.2767 | 5 | 1 | Yes | 1 | 20.706  | - 1 | 20.9374 |
| 20.706  | 6 | 1 | Yes | 1 | 21.3904 | - 1 | 20.9374 |
| 20.9374 | 5 | 1 | Yes | 1 | 21.3904 | - 1 | 21.2357 |
| 21.2357 | 4 | 1 | Yes | 1 | 21.3904 | - 1 | 22.0278 |
| 21.3904 | 5 | 1 | Yes | 1 | 24.1124 | - 1 | 22.0278 |
| 22.0278 | 4 | 1 | Yes | 1 | 24.1124 | - 1 | 23.6643 |
| 23.6643 | 3 | 1 | Yes | 1 | 24.1124 | - 1 | 23.7054 |
|         |   |   |     |   |         |     |         |

Average number waiting to begin service: 2.33652 Average number waiting for or in service: 3.167162 Average waiting time excluding service: 2.30529 Average waiting time including service: 3.21887

(d)

| į |                   |           | Results     |               |
|---|-------------------|-----------|-------------|---------------|
| Ţ |                   | Point     | 95% Confide | ence Interval |
| _ |                   | Estimate  | Low         | High          |
| 1 | L=                | 5.7749101 | 4.34834384  | 7.201476355   |
|   | Lզ =              | 4.942339  | 3.537019642 | 6.347658336   |
| 1 | W=                | 0.580131  | 0.444220564 | 0.71604147    |
|   | $W_q =$           | 0.4964933 | 0.361637568 | 0.631349023   |
| 1 |                   |           |             |               |
|   | $P_0 =$           | 0.1674289 | 0.14167657  | 0.193181214   |
|   | $P_1 =$           | 0.1414463 | 0.12109788  | 0.161794649   |
|   | P <sub>2</sub> =  | 0.1147575 | 0.098821547 | 0.130693466   |
|   | $P_3 =$           | 0.0883648 | 0.076687015 | 0.100042668   |
|   | P <sub>4</sub> =  | 0.0746175 | 0.064766646 | 0.084468439   |
|   | P <sub>5</sub> =  | 0.0623432 | 0.052996622 | 0.071689766   |
|   | P <sub>6</sub> =  | 0.0492943 | 0.041116902 | 0.05747167    |
|   | P <sub>7</sub> =  | 0.0387165 | 0.031563519 | 0.045869425   |
|   | P <sub>8</sub> =  | 0.0334397 | 0.026950751 | 0.039928583   |
|   | P <sub>9</sub> =  | 0.0280708 | 0.022245604 | 0.03389596    |
| 1 | P <sub>10</sub> = | 0.0224129 | 0.017018014 | 0.027807755   |

(e)

|                   | Data     |                     |                  |             |
|-------------------|----------|---------------------|------------------|-------------|
| λ=                | 10       | (mean arrival rate) |                  |             |
| μ=                | 12       | (mean service rate) |                  | Results     |
| s =               | 1        | (# servers)         | L=               | 5           |
|                   |          |                     | La=              | 4.166666667 |
| Pr(W > t) =       | 0.135335 |                     |                  |             |
| when t =          | 1        |                     | W=               | 0.5         |
|                   |          |                     | W <sub>q</sub> = | 0.416666667 |
| $Prob(W_q > t) =$ | 0.112779 |                     |                  |             |
| when t =          | 1        |                     | ρ=               | 0.833333333 |

Every measure is inside the 95% confidence level.

#### 20.1-6.

(a) The system is a single-server queueing system with the crew being servers and the machines being customers. The service time has a uniform distribution between 0 and twice the mean. The interarrival time is exponentially distributed with mean being 5 hours. A simulation clock records the amount of simulated time that elapses. The state N(t) of the system at time t is the number of machines that need repair at time t. The breakdowns and repairs that occur over time are randomly generated by generating random observations from the distributions of interarrival and service times. The state of the system needs to be adjusted when a breakdown or repair occurs:

Reset 
$$N(t) = \begin{cases} N(t) + 1 & \text{if a breakdown occurs at time } t, \\ N(t) - 1 & \text{if a repair occurs at time } t. \end{cases}$$

The time on the simulation clock is adjusted by using the next-event time advance procedure. The time t is in hours.

(b) The random numbers  $r_A$  and  $r_D$  are obtained from Table 20.3 starting from the front of the first row. N.I.T. stands for Next Interarrival Time and N.S.T. for Next Service Time. Interarrival times are computed as  $-5 \ln r_A$  and service times correspond to  $8 r_D$ . Initially there is one broken machine in the system.

| t      | N(t) | $r_A$ | N.I.T. | $r_D$ | N.S.T. | Next Arriv. | Next Dep. | Next Event |
|--------|------|-------|--------|-------|--------|-------------|-----------|------------|
| 0      | 1    | 0.096 | 11.717 | 0.569 | 4.552  | 11.717      | 4.552     | Departure  |
| 4.552  | 0    | _     | _      | _     | _      | 11.717      | _         | Arrival    |
| 11.717 | 1    | 0.665 | 2.040  | 0.764 | 6.112  | 13.757      | 17.829    | Arrival    |
| 13.757 | 2    | 0.842 | 0.860  | _     | _      | 14.617      | 17.829    | Arrival    |
| 14.617 | 3    | 0.492 | 3.546  | _     | _      | 18.163      | 17.829    | Departure  |
| 17.829 | 2    | _     | _      | 0.224 | 1.792  | 18.163      | 19.621    | Arrival    |
| 18.163 | 3    | 0.950 | 0.256  | _     | _      | 18.420      | 19.621    | Arrival    |
| 18.420 | 4    | 0.610 | 2.471  | _     | _      | 20.891      | 19.621    | Departure  |
| 19.621 | 3    | _     | _      | 0.145 | 1.160  | 20.891      | 20.781    | Departure  |

(c)

 $P\{\text{arrival in one-hour period}\}=1-e^{-1/5}=0.181$ 

 $P\{\text{departure in one-hour period}\} = 1/8 = 0.125$ 

 $r_A < 0.181 \Rightarrow \text{arrival occurred}, r_A \geq 0.181 \Rightarrow \text{arrival did not occur}.$ 

 $r_D < 0.125 \Rightarrow$  departure occurred,  $r_D \ge 0.125 \Rightarrow$  departure did not occur.

Let t and N(t) denote the time in hours and the number of broken machines in the system at time t respectively.  $r_A$  and  $r_D$  are obtained from Table 20.3 starting from the front of the first row.

| t  | N(t) | $r_A$ | Arrival? | $r_D$ | Departure? |
|----|------|-------|----------|-------|------------|
| 0  | 1    |       |          |       |            |
| 0  | 2    | 0.096 | Yes      | 0.569 | No         |
| 1  | 2    | 0.665 | No       | 0.764 | No         |
| 2  | 2    | 0.842 | No       | 0.492 | No         |
| 3  | 2    | 0.224 | No       | 0.950 | No         |
| 4  | 2    | 0.610 | No       | 0.145 | No         |
| 5  | 2    | 0.484 | No       | 0.552 | No         |
| 6  | 2    | 0.350 | No       | 0.590 | No         |
| 7  | 1    | 0.430 | No       | 0.041 | Yes        |
| 8  | 1    | 0.802 | No       | 0.471 | No         |
| 9  | 1    | 0.255 | No       | 0.799 | No         |
| 10 | 1    | 0.608 | No       | 0.577 | No         |
| 11 | 1    | 0.347 | No       | 0.933 | No         |
| 12 | 1    | 0.581 | No       | 0.173 | No         |
| 13 | 0    | 0.603 | No       | 0.040 | Yes        |
| 14 | 0    | 0.605 | No       | _     | _          |
| 15 | 0    | 0.842 | No       | _     | _          |
| 16 | 0    | 0.720 | No       | _     | _          |
| 17 | 0    | 0.449 | No       | _     | _          |
| 18 | 1    | 0.076 | Yes      | _     | _          |
| 19 | 1    | 0.407 | No       | 0.202 | No         |
| 20 | 1    | 0.963 | No       | 0.412 | No         |

## (d) Crew size = 2

| Current<br>Time | Number of<br>Customers | Customer<br>Being | Next Arrival | Next Service<br>Completion |
|-----------------|------------------------|-------------------|--------------|----------------------------|
|                 | in Queue               | Served?           |              | ·                          |
| 0.00000         | 0                      | Yes               | 0.45442      | 5.06774                    |
| 0.45442         | 1                      | Yes               | 23.52844     | 5.06774                    |
| 5.06774         | 0                      | Yes               | 23.52844     | 12.56525                   |
| 12.56525        | 0                      | No                | 23.52844     | -                          |
| 23.52844        | 0                      | Yes               | 24.13347     | 29.98968                   |
| 24.13347        | 1                      | Yes               | 35.10738     | 29.98968                   |
| 29.98968        | 0                      | Yes               | 35.10738     | 32.23639                   |
| 32.23639        | 0                      | No                | 35.10738     | -                          |
| 35.10738        | 0                      | Yes               | 41.89761     | 39.87832                   |
| 39.87832        | 0                      | No                | 41.89761     | -                          |
| 41.89761        | 0                      | Yes               | 45.97317     | 44.93853                   |
| 44.93853        | 0                      | No                | 45.97317     | 1                          |
| 45.97317        | 0                      | Yes               | 48.46326     | 50.40101                   |
| 48.46326        | 1                      | Yes               | 51.81284     | 50.40101                   |
| 50.40101        | 0                      | Yes               | 51.81284     | 55.84630                   |
| 51.81284        | 1                      | Yes               | 52.94219     | 55.84630                   |
| 52.94219        | 2                      | Yes               | 89.09479     | 55.84630                   |
| 55.84630        | 1                      | Yes               | 89.09479     | 61.63057                   |
| 61.63057        | 0                      | Yes               | 89.09479     | 63.08379                   |
| 63.08379        | 0                      | No                | 89.09479     | -                          |
| 89.09479        | 0                      | Yes               | 99.09964     | 94.10255                   |

Average waiting time excluding service: 3.141 hours Average waiting time including service: 7.982 hours Average number waiting to begin service: 0.282 Average number waiting or in service: 0.717

Crew size = 3

| Current<br>Time | Number of<br>Customers<br>in Queue | Customer<br>Being<br>Served | Next Arrival | Next Service<br>Completion |
|-----------------|------------------------------------|-----------------------------|--------------|----------------------------|
| 0.00000         | 0                                  | Yes                         | 3.23986      | 5.22623                    |
| 3.23986         | 1                                  | Yes                         | 7.47514      | 5.22623                    |
| 5.22623         | 0                                  | Yes                         | 7.47514      | 10.29107                   |
| 7.47514         | 1                                  | Yes                         | 15.15030     | 10.29107                   |
| 10.29107        | 0                                  | Yes                         | 15.15030     | 15.57362                   |
| 15.15030        | 1                                  | Yes                         | 27.53296     | 15.57362                   |
| 15.57362        | 0                                  | Yes                         | 27.53296     | 16.06349                   |
| 16.06349        | 0                                  | No                          | 27.53296     | -                          |
| 27.53296        | 0                                  | Yes                         | 42.72952     | 29.37910                   |
| 29.37910        | 0                                  | No                          | 42.72952     | -                          |
| 42.72952        | 0                                  | Yes                         | 46.23502     | 46.66759                   |
| 46.23502        | 1                                  | Yes                         | 48.75186     | 46.66759                   |
| 46.66759        | 0                                  | Yes                         | 48.75186     | 48.69142                   |
| 48.69142        | 0                                  | No                          | 48.75186     | -                          |
| 48.75186        | 0                                  | Yes                         | 50.75080     | 54.60197                   |
| 50.75080        | 1                                  | Yes                         | 50.88372     | 54.60197                   |
| 50.88372        | 2                                  | Yes                         | 55.78357     | 54.60197                   |
| 54.60197        | 1                                  | Yes                         | 55.78357     | 59.86150                   |
| 55.78357        | 2                                  | Yes                         | 56.25391     | 59.86150                   |

Average waiting time excluding service: 1.057 hours Average waiting time including service: 4.943 hours Average number waiting to begin service: 0.258 Average number waiting or in service: 0.812

Crew size = 4

| Current<br>Time | Number of<br>Customers<br>in Queue | Customer<br>Being<br>Served | Next Arrival | Next Service<br>Completion |
|-----------------|------------------------------------|-----------------------------|--------------|----------------------------|
| 0.00000         | 0                                  | Yes                         | 28.44578     | 3.45477                    |
| 3.45477         | 0                                  | No                          | 28.44578     | -                          |
| 28.44578        | 0                                  | Yes                         | 29.78728     | 29.41541                   |
| 29.41541        | 0                                  | No                          | 29.78728     | -                          |
| 29.78728        | 0                                  | Yes                         | 32.76097     | 32.96767                   |
| 32.76097        | 1                                  | Yes                         | 38.62356     | 32.96767                   |
| 32.96767        | 0                                  | Yes                         | 38.62356     | 36.41909                   |
| 36.41909        | 0                                  | No                          | 38.62356     | -                          |
| 38.62356        | 0                                  | Yes                         | 48.10272     | 40.47197                   |
| 40.47197        | 0                                  | No                          | 48.10272     | •                          |
| 48.10272        | 0                                  | Yes                         | 54.56103     | 51.69710                   |
| 51.69710        | 0                                  | No                          | 54.56103     | 1                          |
| 54.56103        | 0                                  | Yes                         | 55.07481     | 57.13491                   |
| 55.07481        | 1                                  | Yes                         | 57.38123     | 57.13491                   |
| 57.13491        | 0                                  | Yes                         | 57.38123     | 57.30586                   |
| 57.30586        | 0                                  | No                          | 57.38123     | -                          |
| 57.38123        | 0                                  | Yes                         | 58.73878     | 58.40348                   |
| 58.40348        | 0                                  | No                          | 58.73878     | -                          |
| 58.73878        | 0                                  | Yes                         | 62.16265     | 59.34633                   |
| 59.34633        | 0                                  | No                          | 62.16265     | -                          |
| 62.16265        | 0                                  | Yes                         | 65.06976     | 64.07583                   |

Average waiting time excluding service: 0.227 hours Average waiting time including service: 2.314 hours Average number waiting to begin service: 0.036 Average number waiting or in service: 0.372

# (e) Crew size = 2

| Queueing Simulat       | or          |                                       |                   |           |             |               |
|------------------------|-------------|---------------------------------------|-------------------|-----------|-------------|---------------|
|                        | Data        |                                       |                   |           | Results     |               |
| Number of Servers =    | 1           |                                       |                   | Point     | 95% Confide | ence Interval |
|                        |             |                                       |                   | Estimate  | Low         | High          |
| Interarrival Times     |             |                                       | L =               | 2.640024  | 2.391023    | 2.889024      |
| Distribution =         | Exponential |                                       | $L_q =$           | 1.846050  | 1.608886    | 2.083214      |
| Mean =                 | 5           |                                       | W =               | 13.172814 | 12.069683   | 14.275946     |
|                        |             | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | W <sub>q</sub> =  | 9.211156  | 8.123435    | 10.298876     |
| Service Times          |             |                                       | P <sub>0</sub> =  | 0.206026  | 0.189914    | 0.222138      |
| Distribution =         | Uniform     |                                       | P <sub>1</sub> =  | 0.210335  |             | 0.224004      |
| Minimum Value =        | 0           |                                       | P <sub>2</sub> =  | 0.176818  | 0.166556    | 0.187079      |
| Maximum Value =        | 8           |                                       | P <sub>3</sub> =  | 0.129046  | 0.120984    | 0.137108      |
|                        |             |                                       | P <sub>4</sub> =  | 0.092375  | 0.084072    | 0.100678      |
| Length of Simulation F | Run         |                                       | P <sub>5</sub> =  | 0.059729  | 0.052306    | 0.067152      |
| Number of Arrivals =   | 10,000      |                                       | P <sub>6</sub> =  | 0.040612  | 0.033736    | 0.047488      |
|                        |             |                                       | P <sub>7</sub> =  | 0.025701  | 0.019924    | 0.031478      |
|                        |             |                                       | P <sub>8</sub> =  | 0.019530  | 0.014201    | 0.024858      |
| Dun Ginaula            | 4:          |                                       | P <sub>9</sub> =  | 0.013836  | 0.008579    | 0.019092      |
| Run Simula             | tion        | F                                     | P <sub>10</sub> = | 0.008875  | 0.004711    | 0.013039      |

Crew size = 3

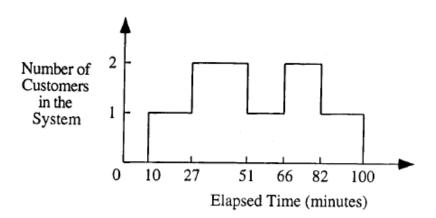
| Queueing Simulat       | or          |   |                   |          |             |               |
|------------------------|-------------|---|-------------------|----------|-------------|---------------|
|                        | Data        |   |                   |          | Results     |               |
| Number of Servers =    | 1           |   |                   | Point    | 95% Confide | ence Interval |
|                        |             |   |                   | Estimate | Low         | High          |
| Interarrival Times     |             |   | L=                | 1.178656 | 1.111742    | 1.245570      |
| Distribution =         | Exponential |   | $L_q =$           | 0.581427 | 0.524765    | 0.638089      |
| Mean =                 | 5           |   | W =               | 5.919185 | 5.650535    | 6.187836      |
|                        |             | 1 | $W_q =$           | 2.919913 | 2.666936    | 3.17289       |
|                        |             |   |                   |          |             |               |
| Service Times          |             |   | $P_0 =$           | 0.402771 | 0.389561    | 0.415981      |
| Distribution =         | Uniform     |   | P <sub>1</sub> =  | 0.287935 | 0.280079    | 0.295791      |
| Minimum Value =        | 0           |   | P <sub>2</sub> =  | 0.161810 | 0.155143    | 0.168477      |
| Maximum Value =        | 6           |   | P <sub>3</sub> =  | 0.079673 | 0.073661    | 0.085684      |
|                        |             |   | P <sub>4</sub> =  | 0.036517 | 0.031748    | 0.041286      |
| Length of Simulation F | Run         |   | P <sub>5</sub> =  | 0.017571 | 0.013323    | 0.021820      |
| Number of Arrivals =   | 10,000      |   | P <sub>6</sub> =  | 0.007611 | 0.005156    | 0.010066      |
|                        |             |   | P <sub>7</sub> =  | 0.002871 | 0.001559    | 0.004182      |
|                        |             |   | P <sub>8</sub> =  | 0.001559 | 0.000479    | 0.002639      |
|                        |             |   | P <sub>9</sub> =  | 0.001021 | 0.000143    | 0.001898      |
| Run Simula             | tion        |   | P <sub>10</sub> = | 0.000540 | -0.000050   | 0.001129      |

Crew size = 4

| Queueing Simulat       | or          |                   |          |             |               |
|------------------------|-------------|-------------------|----------|-------------|---------------|
|                        | Data        |                   |          | Results     |               |
| Number of Servers =    | 1           |                   | Point    | 95% Confide | ence Interval |
|                        |             |                   | Estimate | Low         | High          |
| Interarrival Times     |             | L =               | 0.581799 | 0.557904    | 0.605694      |
| Distribution =         | Exponential | L <sub>q</sub> =  | 0.184646 | 0.168481    | 0.200810      |
| Mean =                 | 5           | W =               | 2.917323 | 2.835377    | 2.999270      |
|                        |             | W <sub>q</sub> =  | 0.925872 | 0.855488    | 0.996256      |
| Service Times          |             | P <sub>0</sub> =  | 0.602847 | 0.593328    | 0.612366      |
| Distribution =         | Uniform     | P <sub>1</sub> =  | 0.265406 | 0.259908    | 0.270904      |
| Minimum Value =        | 0           | P <sub>2</sub> =  | 0.093625 | 0.089000    | 0.098250      |
| Maximum Value =        | 4           | P <sub>3</sub> =  | 0.027373 | 0.024388    | 0.030358      |
|                        |             | P <sub>4</sub> =  | 0.007793 | 0.006052    | 0.009534      |
| Length of Simulation F | Run         | P <sub>5</sub> =  | 0.002086 | 0.001273    | 0.002900      |
| Number of Arrivals =   | 10,000      | P <sub>6</sub> =  | 0.000670 | 0.000185    | 0.001156      |
|                        |             | P <sub>7</sub> =  | 0.000198 | -0.000025   | 0.000421      |
|                        |             | P <sub>8</sub> =  | 0.000001 | -0.000001   | 0.000004      |
|                        |             | P <sub>9</sub> =  | 0.000000 | 0.000000    | 0.000000      |
| Run Simula             | tion        | P <sub>10</sub> = | 0.000000 | 0.000000    | 0.000000      |

According to these simulation runs, a crew size of 3 is enough to get the average waiting time before repair below 3 hours. If the high end of the 95% confidence interval is required to be less than 3 hours, then a crew size of 4 should be chosen.

(f)  $\lambda$ ,  $1/\mu$ ,  $\sigma^2$ , and s denote the mean breakdown rate, the expected repair time, the variance of the repair time, and the number of servers respectively. The variance of a random variable uniformly distributed between a and b is  $(b-a)^2/12$ .


$$\begin{array}{ll} \underline{\text{Crew size}} = \underline{2}; & \lambda = 0.2, \frac{1}{\mu} = 4, a = 0, b = 8, \sigma^2 = 5.333 \\ & \rho = \frac{\lambda}{\mu} = 0.8 \\ & L_q = \frac{\lambda^2 \sigma^2 + \rho^2}{2(1-\rho)} = 2.133, L = \rho + L_q = 2.933 \\ & W_q = \frac{L_q}{\lambda} = 10.667, W = W_q + \frac{1}{\mu} = 14.667 \\ \underline{\text{Crew size}} = \underline{3}; & \lambda = 0.2, \frac{1}{\mu} = 3, a = 0, b = 6, \sigma^2 = 3 \\ & \rho = \frac{\lambda}{\mu} = 0.6 \\ & L_q = \frac{\lambda^2 \sigma^2 + \rho^2}{2(1-\rho)} = 0.6, \quad L = \rho + L_q = 1.2 \\ & W_q = \frac{L_q}{\lambda} = 3, W = W_q + \frac{1}{\mu} = 6 \end{array}$$

$$\begin{array}{ll} \underline{\text{Crew size}} = 4 : & \lambda = 0.2, \frac{1}{\mu} = 2, a = 0, b = 4, \sigma^2 = 1.333 \\ & \rho = \frac{\lambda}{\mu} = 0.4 \\ & L_q = \frac{\lambda^2 \sigma^2 + \rho^2}{2(1-\rho)} = 0.178, L = \rho + L_q = 0.578 \\ & W_q = \frac{L_q}{\lambda} = 0.889, W = W_q + \frac{1}{\mu} = 2.889 \end{array}$$

A crew size of 3 is enough to have the average waiting time before repair begins no more than 3 hours.

## 20.1-7.

(a)



(c) 
$$\text{Est}\{L\} = \sum_{n=0}^3 n P_n = 0 \cdot 0.1 + 1 \cdot 0.4 + 2 \cdot 0.4 + 3 \cdot 0 = 1.2 \text{ customers}$$
 
$$\text{Est}\{L_q\} = \sum_{n=1}^3 (n-1) P_n = 0 \cdot 0.4 + 1 \cdot 0.4 + 2 \cdot 0 = 0.4 \text{ customers}$$

(d) 
$$\text{Est}\{W\} = \frac{\text{sum of observed system times}}{\text{number of observed system times}} = \frac{41+55+34}{3} = 43.33 \text{ minutes}$$
 
$$\text{Est}\{W_q\} = \frac{\text{sum of observed waiting times}}{\text{number of observed waiting times}} = \frac{0+24+16}{3} = 13.33 \text{ minutes}$$

20.1-8.

(a)

Distr. of interarrival times: Translated Exp. Min = 0.5 Mean = 1 Distr. of service times: Erlang Mean = 1.5 k = 4

| 1        |           |     |          |         |           |          |
|----------|-----------|-----|----------|---------|-----------|----------|
|          | Number of |     | omer     |         | Next Se   | ervice   |
| Current  | Customers |     | Served   | Next    | Comple    | etion    |
| Time     | in Oueue  |     | Server 2 | Arrival | Server 1  | Server 2 |
| 1.6685   | 0         | Yes | No       | 1.6685  | 3.00911   |          |
| 2.2903   | 0         | Yes | Yes      | 2.2903  | 3.00911   | 4.06113  |
| 3.00911  | 1         | Yes | Yes      | 3.45204 | 3.00911   | 4.06113  |
| 3.45204  | 0         | Yes | Yes      | 3.45204 | 4.31305   | 4.06113  |
| 3.99204  | 1         | Yes | Yes      | 3.99204 | 4.31305   | 4.06113  |
| 4.06113  | 2         | Yes | Yes      | 5.08213 | ľ         | 4.06113  |
| 4.31305  | 1         | Yes | Yes      | 5.08213 |           | 4.82208  |
| 4.82208  |           | Yes | Yes      | 5.08213 |           | 4.82208  |
| 5.08213  | 0         | Yes | No       | 5.08213 | 7.01408   |          |
| 5.80875  | 0<br>1    | Yes | Yes      | 5.80875 |           | 6.56763  |
| 6.42612  | 2         | Yes | Yes      | 6.42612 |           | 6.56763  |
| 6.56763  |           | Yes | Yes      | 8.45996 |           | 6.56763  |
| 7.01408  | 1 0       | Yes | Yes      | 8.45996 | 7.01408   | 7.793    |
| 7.793    | ő         | Yes | Yes      | 8.45996 | 9.25094   | 7.793    |
| 8.45996  | ö         | Yes | No       | 8.45996 | 9.25094   |          |
| 0.439901 | 0         | Yes | Yes      | 8.45996 | 9.25094   | 8.95073  |
|          |           |     |          |         |           |          |
| 8.45996  | 1         | Yes | Yes      | 9.01185 | 1 9.25094 | 8.95073  |
| 8.95073  | 0         | Yes | Yes      | 9.01185 | 9.25094   | 10.3732  |
| 9.01185  | 1         | Yes | Yes      | 10.7538 | 9.25094   | 10.3732  |
| 9.25094  | 0         | Yes | Yes      | 10.7538 | 11.0051   | 10.3732  |
| 10.3732  | 0         | Yes | No       | 10.7538 | 11.0051   |          |
| 10.7538  | 0         | Yes | Yes      | 11.8319 | 11.0051   | 11.9901  |
| 11.0051  | 0         | No  | Yes      | 11.8319 |           | 11.9901  |
| 11.8319  | 0         | Yes | Yes      | 12.5131 | 13.3238   | 11.9901  |
| 11.9901  | 0         | Yes | No       | 12.5131 | 13.3238   |          |
| 12.5131  | 0         | Yes | Yes      | 15.8697 | 13.3238   | 14.986   |
| 13.3238  | 0         | No  | Yes      | 15.8697 |           | 14.986   |
| 14.986   | 0         | No  | No       | 15.8697 |           |          |
| 15.8697  | 0         | Yes | No       | 18.1124 | 16.8485   |          |
| 16.8485  | 0         | No  | No       | 18.1124 |           |          |
| 18.1124  | 0         | Yes | No       | 19.0569 | 18.8949   |          |
| 18.1124  | 0         | Yes | No       | 19.0569 | 18.8949   |          |
| 18.8949  | 0         | No  | No       | 19.0569 |           |          |
| 19.0569  | 0         | Yes | No       | 19.8234 | 21.8863   |          |
| 19.8234  | 0         | Yes | Yes      | 20.7688 | 21.8863   | 21.3164  |
| 20.7688  | 0         | Yes | Yes      |         | 21.8863   | 21.3164  |
|          |           |     |          |         |           |          |

Average number waiting to begin service: 0.186891 Average number waiting for or in service: 1.522408 Average waiting time excluding service: 0.18669 Average waiting time including service: 1.87597

# (b) Two Tellers

| Queueing Simulat       | or                     |   |                  |           |             |               |
|------------------------|------------------------|---|------------------|-----------|-------------|---------------|
|                        | Data                   |   |                  |           | Results     |               |
| Number of Servers =    | 2                      |   |                  | Point     | 95% Confide | ence Interval |
|                        |                        |   |                  | Estimate  | Low         | High          |
| Interarrival Times     |                        |   | L =              | 1.8916169 | 1.797799179 | 1.98543456    |
| Distribution =         | Translated Exponential |   | $L_q =$          | 0.3821604 | 0.314682897 | 0.449637826   |
| Minimum Value =        | 0.5                    |   | W =              | 1.8883612 | 1.806278584 | 1.970443834   |
| Mean =                 | 1                      | ١ | W <sub>q</sub> = | 0.3815026 | 0.316252552 | 0.446752699   |
| Service Times          |                        |   | P <sub>0</sub> = | 0.0831748 | 0.074555785 | 0.091793811   |
| Distribution =         | Erlang                 |   | P <sub>1</sub> = | 0.3241939 | 0.30548793  | 0.342899863   |
| Mean =                 | 1.5                    |   | P <sub>2</sub> = | 0.3399268 | 0.325527051 | 0.354326542   |
| k =                    | 4                      |   | P <sub>3</sub> = | 0.1618758 | 0.14916797  | 0.174583587   |
|                        |                        |   | P <sub>4</sub> = | 0.0619756 | 0.049305086 | 0.07464612    |
| Length of Simulation I | Run                    |   | P <sub>5</sub> = | 0.0208701 | 0.012224227 | 0.029515958   |
| Number of Arrivals =   | 5,000                  |   | P <sub>6</sub> = | 0.006311  | 0.002235605 | 0.010386453   |
|                        |                        |   | P <sub>7</sub> = | 0.0015531 | -0.00011068 | 0.003216788   |
|                        |                        |   | P <sub>8</sub> = | 0.000119  | -0.00011327 | 0.000351178   |
| Dum Oissaula           | tia n                  |   | P <sub>9</sub> = | 0         | 0           | C             |
| Run Simula             | tion                   | F | - <sub>10</sub>  | 0         | 0           | 0             |

# (c) Three Tellers

| Queueing Simulat       | or                     |                 |                |           |             |               |
|------------------------|------------------------|-----------------|----------------|-----------|-------------|---------------|
|                        | Data                   |                 |                |           | Results     |               |
| Number of Servers =    | 3                      |                 |                | Point     | 95% Confide | ence Interval |
|                        |                        |                 | _              | Estimate  | Low         | High          |
| Interarrival Times     |                        | L               | _ =            | 1.5159924 | 1.484880165 |               |
| Distribution =         | Translated Exponential | Lq              | a =            | 0.0118407 | 0.009081176 | 0.014600248   |
| Minimum Value =        | 0.5                    | W               | / =            | 1.5116824 | 1.489782703 | 1.533582175   |
| Mean =                 | 1                      | $W_q$           | <sub>q</sub> = | 0.011807  | 0.009089235 | 0.014524863   |
|                        |                        |                 | _              |           |             |               |
| Service Times          |                        | Po              | o =            | 0.1018135 | 0.093997406 | 0.109629589   |
| Distribution =         | Erlang                 | P <sub>1</sub>  | 1 =            | 0.4119282 | 0.400147287 | 0.423709211   |
| Mean =                 | 1.5                    | P <sub>2</sub>  | 2 =            | 0.3665514 | 0.35560916  | 0.377493556   |
| k =                    | 4                      | P <sub>3</sub>  | 3 =            | 0.1082202 | 0.099939007 | 0.116501306   |
|                        |                        | P <sub>4</sub>  | 4 =            | 0.0111328 | 0.008716351 | 0.013549183   |
| Length of Simulation F | Run                    | P <sub>5</sub>  | 5 =            | 0.000354  | 4.87263E-05 | 0.000659219   |
| Number of Arrivals =   | 5,000                  | P₀              | в =            | 0         | 0           | 0             |
|                        |                        | P <sub>7</sub>  | 7 =            | 0         | 0           | 0             |
|                        |                        | P <sub>8</sub>  | в =            | 0         | 0           | 0             |
| Dun Cinavila           | tion                   |                 | 9 =            | 0         | 0           | 0             |
| Run Simula             | tion                   | P <sub>10</sub> | <sub>D</sub> = | 0         | 0           | 0             |

## (d) Two Tellers

| Queueing Simulat       | or                     |                   |           |             |               |
|------------------------|------------------------|-------------------|-----------|-------------|---------------|
|                        | Data                   |                   |           | Results     |               |
| Number of Servers =    | 2                      |                   | Point     | 95% Confide | ence Interval |
|                        |                        |                   | Estimate  | Low         | High          |
| Interarrival Times     |                        | L =               | 2.3908912 | 2.241805543 | 2.539976948   |
| Distribution =         | Translated Exponential | $L_q =$           | 0.7236811 |             | 0.849459547   |
| Minimum Value =        | 0.5                    | W =               | 2.1487678 | 2.026740049 | 2.270795538   |
| Mean =                 | 0.9                    | $W_q =$           | 0.6503945 | 0.540866912 | 0.759922142   |
|                        |                        |                   |           |             |               |
| Service Times          |                        | $P_0 =$           | 0.0448497 | 0.038617135 | 0.051082232   |
| Distribution =         | Erlang                 | P <sub>1</sub> =  | 0.2430905 | 0.223049896 | 0.263131024   |
| Mean =                 | 1.5                    | P <sub>2</sub> =  | 0.3214538 | 0.301005391 | 0.34190214    |
| k =                    | 4                      | P <sub>3</sub> =  | 0.2008161 | 0.187347516 | 0.214284666   |
|                        |                        | P <sub>4</sub> =  | 0.1044243 | 0.087200271 | 0.121648324   |
| Length of Simulation F | Run                    | P <sub>5</sub> =  | 0.0500277 | 0.036075878 | 0.063979621   |
| Number of Arrivals =   | 5,000                  | P <sub>6</sub> =  | 0.02027   | 0.010643612 | 0.029896401   |
|                        |                        | P <sub>7</sub> =  | 0.0089975 | 0.003725713 | 0.014269206   |
|                        |                        | P <sub>8</sub> =  | 0.0046276 | -0.00016476 | 0.009419952   |
| (=                     |                        | P <sub>9</sub> =  | 0.0014429 | -0.00067057 | 0.00355635    |
| Run Simula             | tion                   | P <sub>10</sub> = | 0         | 0           | 0             |

Three Tellers

| Queueing Simulat       | or                     |                   |           |             |               |
|------------------------|------------------------|-------------------|-----------|-------------|---------------|
|                        | Data                   |                   |           | Results     |               |
| Number of Servers =    | 3                      |                   | Point     | 95% Confide | ence Interval |
|                        |                        |                   | Estimate  | Low         | High          |
| Interarrival Times     |                        | L=                | 1.7050114 | 1.670548122 | 1.739474655   |
| Distribution =         | Translated Exponential | L <sub>q</sub> =  | 0.0222237 | 0.017359202 | 0.027088241   |
| Minimum Value =        | 0.5                    | W =               | 1.5209078 | 1.496862881 | 1.544952626   |
| Mean =                 | 0.9                    | W <sub>q</sub> =  | 0.019824  | 0.015539702 | 0.024108397   |
| Service Times          |                        | P <sub>0</sub> =  | 0.0688074 | 0.062324314 | 0.075290568   |
| Distribution =         | Erlang                 | P <sub>1</sub> =  | 0.35062   | 0.337180867 | 0.364059144   |
| Mean =                 | 1.5                    | P <sub>2</sub> =  | 0.40955   | 0.398544607 | 0.420555391   |
| k =                    | 4                      | P <sub>3</sub> =  | 0.1499384 | 0.139825152 | 0.160051587   |
|                        |                        | P <sub>4</sub> =  | 0.0200063 | 0.016017091 | 0.023995492   |
| Length of Simulation F | Run                    | P <sub>5</sub> =  | 0.0010163 | 0.000432052 | 0.001600449   |
| Number of Arrivals =   | 5,000                  | P <sub>6</sub> =  | 6.164E-05 | -5.9202E-05 | 0.000182488   |
|                        |                        | P <sub>7</sub> =  | 0         | 0           | 0             |
|                        |                        | P <sub>8</sub> =  | 0         | 0           | 0             |
| Bun Cimula             | tion                   | P <sub>9</sub> =  | 0         | 0           | 0             |
| Run Simula             | lion                   | P <sub>10</sub> = | 0         | 0           | 0             |

(e) Let  $\lambda$  denote the average time between customer arrivals. Some performance measures are given for two-teller and three-teller systems in the following tables.

|       | Two Tellers | Three Tellers |       | Two Tellers | Three Tellers |
|-------|-------------|---------------|-------|-------------|---------------|
| L     | 1.892       | 1.516         | L     | 2.391       | 1.705         |
| $L_q$ | 0.382       | 0.012         | $L_q$ | 0.724       | 0.022         |
| W     | 1.888       | 1.512         | W     | 2.149       | 1.521         |
| $W_q$ | 0.382       | 0.012         | $W_q$ | 0.650       | 0.020         |
| Idle  | 0.407       | 0.881         | Idle  | 0.288       | 0.830         |

 $\lambda = 1$   $\lambda = 0.9$ 

The last row corresponds to the probability that at least one of the tellers is idle. For the two-teller system it is  $P_0+P_1$  and for the three-teller system it is  $P_0+P_1+P_2$ . There is a big difference between the idle-time ratios of the two-teller and three-teller systems for both  $\lambda$  values. For this reason, it may be better to hire two tellers. Two tellers also provide reasonable wait times,  $W_q=0.382$  minutes for  $\lambda=1$  and  $W_q=0.650$  minutes for  $\lambda=0.9$ . A thorough analysis would also incorporate the cost of hiring and the profit from the completion of each job. Another consideration can be the robustness of the system and its sensitivity to the uncertainty in  $\lambda$ . The following table gives the percent changes in the performance measures when  $\lambda$  decreases from 1 to 0.9 minute.

| % Change | Two Tellers | Three Tellers |
|----------|-------------|---------------|
| L        | 26.4        | 12.5          |
| $L_q$    | 89.5        | 83.3          |
| W        | 13.8        | 0.5           |
| $W_q$    | 70.2        | 66.7          |
| Idle     | 29.2        | 5.8           |

20.1-9.

Priority Class 1 (higher priority) customers

Distr. of interarrival times: Uniform Min = 1 Max = 3 Distr. of service times: Erlang Mean = 1.5 k = 4

Priority Class 2 (lower priority) customers

Distr. of interarrival times: Translated Exp. Min = 0.5 Mean = 1 Distr. of service times: Erlang Mean = 1.5 k = 4

|         | ـ |         |                       |             |               |     |          |          |
|---------|---|---------|-----------------------|-------------|---------------|-----|----------|----------|
|         |   | stomers |                       | f Customer  | Next          | - 1 | Next S   | ervice   |
| Current |   | Line    |                       | Served      | Arrival       | - 1 |          | etion    |
| Time    |   | Class 2 |                       | 1 Server 2  | Class 1 Class |     | Server 1 | Server 2 |
| 0       | 0 | 0       | 1                     | idle        | 1.19323 0.590 | 76  | 4.05587  |          |
| 0.59076 | 0 | 0       | 1                     | 2           | 1.19323 1.984 | 38  | 4.05587  | 1.75598  |
| 1.19323 | 1 | 0       | 1                     | 2           | 4.03947 1.984 | 38  | 4.05587  | 1.75598  |
| 1.75598 | 0 | 0       | 1                     | 1           | 4.03947 2.572 |     | 4.05587  | 2.6547   |
| 2.57211 | 0 | 1       | 1                     | 1           | 4.03947 4.358 | 52  | 4.05587  | 2.6547   |
| 2.6547  | 0 | 0       | 1                     | 2           | 4.03947 4.358 | 52  | 4.05587  | 5.02524  |
| 4.03947 | 1 | 0       | 1                     | 2           | 6.60605 4.358 |     | 4.05587  | 5.02524  |
| 4.05587 | 0 | 0       | 1                     | 2           | 6.60605 4.358 |     | 6.31076  | 5.02524  |
| 4.35852 | 0 | 1       | 1                     | 2           | 6.60605 5.604 |     | 6.31076  | 5.02524  |
| 5.02524 | 0 | 0       | 1                     | 2           | 6.60605 5.604 | 71  | 6.31076  | 6.5263   |
| 5.60471 | 0 | 1       | 1                     | 2           | 6.60605 6.323 |     | 6.31076  | 6.5263   |
| 6.31076 | 0 | 0       | 2                     | 2           | 6.60605 6.323 |     | 7.80267  | 6.5263   |
| 6.32351 | 0 | 1       | 2                     | 2           | 6.60605 7.679 | 72  | 7.80267  | 6.5263   |
| 6 5063  |   | •       |                       | •           | 1             |     | 1        |          |
| 6.5263  | 0 | 0       | 2                     | 2           | 6.60605 7.679 |     | 7.80267  | 7.41307  |
| 6.60605 | 1 | 0       | 2                     | 2<br>2      | 7.66733 7.679 |     | 7.80267  | 7.41307  |
| 7.66733 | 2 | 0       | 2                     |             | 9.48954 7.679 |     | 7.80267  | 7.41307  |
| 7.41307 | 1 | 0       | 2                     | 1           | 9.48954 7.679 |     | 7.80267  | 8.0084   |
| 7.67972 | 1 | 1       | 2                     | 1           | 9.48954 8.76  |     | 7.80267  | 8.0084   |
| 7.80267 | 0 | 1       | 1                     | 1           | 9.48954 8.76  |     | 9.39632  | 8.0084   |
| 8.0084  | 0 | 0       | 1                     | 2           | 9.48954 8.76  |     | 9.39632  | 10.085   |
| 8.7606  | 0 | 1       | 1                     | 2<br>2<br>2 | 9.48954 9.546 |     | 9.39632  | 10.085   |
| 9.39632 | 0 | 0       | 2                     | 2           | 9.48954 9.546 |     | 11.8025  | 10.085   |
| 9.48954 | 1 | 0       | 2                     | 2           | 11.0103 9.546 |     | 11.8025  | 10.085   |
| 9.54627 | 1 | 1       | 2                     | 2           | 11.0103 10.4  |     | 11.8025  | 10.085   |
| 10.085  | 0 | 1       | 2                     | 1           | 11.0103 10.4  |     | 11.8025  | 10.6113  |
| 10.484  | 0 | 2       | 2                     | 1           | 11.0103 11.20 |     | 11.8025  | 10.6113  |
| 10.6113 | 0 | 1       | 2                     | 2           | 11.0103 11.20 |     | 11.8025  | 11.1199  |
| 11.0103 | 1 | 1       | 2                     | 2           | 13.2226 11.20 |     | 11.8025  | 11.1199  |
| 11.1199 | 0 | 1       | 2                     | 1           | 13.2226 11.20 |     | 11.8025  | 12.4916  |
| 11.2066 | 0 | 2       | 2                     | 1           | 13.2226 11.8  |     | 11.8025  | 12.4916  |
| 11.804  | 0 | 3       | 2                     | 1           | 13.2226 12.64 |     | 11.8025  | 12.4916  |
| 11.8025 | 0 | 2       | 2                     | 1<br>2<br>2 | 13.2226 12.64 |     | 13.5255  | 12.4916  |
| 12.4916 | 0 | 1       | 2                     | 2           | 13.2226 12.64 |     | 13.5255  | 13.1055  |
| 12.6438 | 0 | 2       | 2<br>2<br>2<br>2<br>2 | 2           | 13.2226 13.19 |     | 13.5255  | 13.1055  |
| 13.1055 | 0 | 1       | 2                     | 2           | 13.2226 13.19 |     | 13.5255  | 14.1874  |
| 13.1919 | 0 | 2       | 2                     | 2           | 13.2226 14.10 |     | 13.5255  | 14.1874  |
| 13.2226 | 1 | 2       | 2                     | 2           | 15.2685 14.10 |     | 13.5255  | 14.1874  |
| 13.5255 | 0 | 2       | 1                     | 2           | 15.2685 14.10 | 07  | 15.9147  | 14.1874  |

Class 1 Customers: Average number waiting to begin service: 0.209215

Average number waiting for or in service: 1.007613 Average waiting time excluding service: 1.07381 Average waiting time including service: 2.59826

Class 2 Customers: Average number waiting to begin service: 1.406468

Average number waiting for or in service: 2.575706 Average waiting time excluding service: 0.38188 Average waiting time including service: 1.91684

## 20.1-10.

(a) For parts (a) through (f), each type of car corresponds to an M/M/1 system and they are independent of each other. For parts (g) through (i), the system is an M/M/2 system. Both interarrival and service times are exponentially distributed. A simulation clock records the amount of simulated time that elapses. The state of the system at time t consists of the number  $N_J(t)$  of Japanese cars that need to be repaired at time t and the number  $N_G(t)$  of German cars that need to be repaired at time t. The breakdowns and repairs that occur over time are generated by random observations with exponential distributions. The state of the system follows the dynamics:

$$N_J(t) = \begin{cases} N_J(t) + 1 & \text{if a Japanese car arrives to the shop,} \\ N_J(t) - 1 & \text{if a Japanese car is repaired,} \end{cases}$$
 
$$N_G(t) = \begin{cases} N_G(t) + 1 & \text{if a German car arrives to the shop,} \\ N_G(t) - 1 & \text{if a German car is repaired.} \end{cases}$$

The time is advanced using the next-event time advance procedure.

(b)

| Current<br>Time | Number of<br>Customers<br>in Queue | Customer<br>Being Served | Next<br>Arrival | Next Service<br>Completion |
|-----------------|------------------------------------|--------------------------|-----------------|----------------------------|
| 0               | 0                                  | Yes                      | 0.03044         | 0.04731                    |
| 0.03044         | 1                                  | Yes                      |                 |                            |
| 0.04731         | 0                                  |                          | 0.16674         | 0.04731                    |
|                 | 0                                  | Yes                      | 0.16674         | 0.0818                     |
| 0.0818          | 0                                  | l No                     | 0.16674         | -                          |
| 0.16674         | 0                                  | Yes                      | 0.32435         | 0.33876                    |
| 0.32435         | 1                                  | Yes                      |                 | 0.33876                    |
| 0.32435         | 2                                  | Yes                      |                 |                            |
| 0.32435         |                                    |                          |                 | 0.33876                    |
|                 | 2                                  | Yes                      | 1.47007         | 0.33954                    |
| 1.47007         | 2                                  | Yes                      | 1.73755         | 1.71047                    |
| 1.73755         | 2                                  | Yes                      | 2.05826         | 1.92858                    |
| 2.05826         | 2                                  | Yes                      |                 |                            |
| 2.15076         |                                    |                          | 2.15076         | 2.17713                    |
|                 | 2                                  | Yes                      | 2.5451          | 2.16401                    |
| 2.5451          | 2                                  | Yes                      | 2.64143         | 2.84944                    |
| 2.64143         | 2                                  | Yes                      | 2.67262         | 2.69043                    |

# (c) German Cars

| Queueing Simulat       | or          |                 |                |           |             |               |
|------------------------|-------------|-----------------|----------------|-----------|-------------|---------------|
|                        | Data        |                 |                |           | Results     |               |
| Number of Servers =    | 1           |                 |                | Point     | 95% Confide | ence Interval |
|                        |             |                 |                | Estimate  | Low         | High          |
| Interarrival Times     |             | L               | _ =            | 4.4538246 | 3.761705456 | 5.145943841   |
| Distribution =         | Exponential | L               | a =            | 3.6316608 | 2.954275722 | 4.309045972   |
| Mean =                 | 0.25        | W               | / =            | 1.1282513 | 0.964537526 | 1.291965065   |
|                        |             | W.              | <sub>q</sub> = | 0.9199792 | 0.757831377 | 1.082127031   |
|                        |             |                 |                |           |             |               |
| Service Times          |             | Po              | o =            | 0.1778362 | 0.157439907 | 0.198232489   |
| Distribution =         | Exponential | P <sub>1</sub>  | 1 =            | 0.1474538 | 0.132348578 | 0.162559057   |
| Mean =                 | 0.2         | P <sub>2</sub>  | 2 =            | 0.1176296 | 0.106278491 | 0.128980671   |
|                        |             | P <sub>3</sub>  | 3 =            | 0.0995436 | 0.090603325 | 0.10848388    |
|                        |             | P <sub>4</sub>  | 4 =            | 0.0790584 | 0.07099058  | 0.087126172   |
| Length of Simulation F | Run         | P,              | 5 =            | 0.0654922 | 0.057986283 | 0.072998158   |
| Number of Arrivals =   | 10,000      | P <sub>6</sub>  | <sub>8</sub> = | 0.0578711 | 0.051080135 | 0.064662027   |
|                        |             | P-              | <sub>7</sub> = | 0.048298  | 0.041318086 | 0.055277946   |
|                        |             | Pg              | в =            | 0.0417734 | 0.034304357 | 0.049242459   |
| [D                     | 41          | Pg              | 9 =            | 0.0335036 | 0.027074919 | 0.039932367   |
| Run Simula             | tion        | P <sub>10</sub> | <sub>D</sub> = | 0.0270032 | 0.020815767 | 0.033190534   |

# (d) Japanese Cars

| Queueing Simulat       | or          |                   |           |             |               |
|------------------------|-------------|-------------------|-----------|-------------|---------------|
|                        | Data        |                   |           | Results     |               |
| Number of Servers =    | 1           |                   | Point     | 95% Confide | ence Interval |
|                        |             |                   | Estimate  | Low         | High          |
| Interarrival Times     |             | L=                | 0.6351417 | 0.606304224 | 0.663979234   |
| Distribution =         | Exponential | L <sub>q</sub> =  | 0.239814  | 0.219494995 | 0.260132923   |
| Mean =                 | 0.5         | W =               | 0.3205858 | 0.308944485 | 0.332227141   |
|                        |             | $W_q =$           | 0.1210454 | 0.11183276  | 0.13025794    |
| Service Times          |             | P <sub>0</sub> =  | 0.6046722 | 0.594213424 | 0.615131035   |
| Distribution =         | Exponential | P <sub>1</sub> =  | 0.2406602 | 0.234997801 | 0.246322589   |
| Mean =                 | 0.2         | P <sub>2</sub> =  | 0.0987168 | 0.093620357 | 0.103813177   |
|                        |             | P <sub>3</sub> =  | 0.0365163 | 0.032896287 | 0.040136323   |
|                        |             | P <sub>4</sub> =  | 0.0128289 | 0.010707379 | 0.014950515   |
| Length of Simulation I | Run         | P <sub>5</sub> =  | 0.0043899 | 0.00309776  | 0.005682118   |
| Number of Arrivals =   | 10,000      | P <sub>6</sub> =  | 0.0014922 | 0.000769328 | 0.002215104   |
|                        |             | P <sub>7</sub> =  | 0.0005442 | 9.5186E-05  | 0.000993248   |
|                        |             | P <sub>8</sub> =  | 0.0001419 | 5.59536E-06 | 0.000278139   |
| Dun Cinanta            | 4:          | P <sub>9</sub> =  | 3.732E-05 | -1.5451E-05 | 9.00845E-05   |
| Run Simula             | tion        | P <sub>10</sub> = | 0         | 0           | C             |

(e)

| Current<br>Time | Number of<br>Customers<br>in Queue | Cust<br>Being<br>Server 1 |     | Next<br>Arrival |         | ervice<br>etion<br>Server |
|-----------------|------------------------------------|---------------------------|-----|-----------------|---------|---------------------------|
| 0               | 0                                  | Yes                       | No  | 0.03044         | 0.04731 |                           |
| 0.03044         | 0                                  | Yes                       | Yes | 0.76195         | 0.04731 | 0.06493                   |
| 0.04731         | 0                                  | No                        | Yes | 0.76195         |         | 0.06493                   |
| 0.06493         | 0                                  | No                        | No  | 0.76195         |         |                           |
| 0.76195         | o o                                | Yes                       | No  | 0.83716         | 1.01054 |                           |
| 0.83716         | 1                                  | Yes                       | No  | 0.85615         | 1.05115 | 1.07757                   |
| 0.85615         | 1                                  | Yes                       | No  | 1.17686         | 1.04719 | 0.93015                   |
| 1.17686         | 1                                  | Yes                       | No  | 1.32545         | 1.49234 | 1.19012                   |
| 1.32545         | 1                                  | Yes                       | No  | 1.42178         | 1.62979 | 1.3504                    |
| 1.42178         | 1                                  | Yes                       | No  | 1.48302         | 1.42802 | 1.53588                   |
| 1.48302         | 1                                  | Yes                       | No  | 1.81541         | 1.57642 | 1.68985                   |
| 1.81541         | 1                                  | Yes                       | No  | 1.8777          | 2.5102  | 2.03288                   |

# (f) German Cars

| Queueing Simulat       | or          |                   |           |             |               |
|------------------------|-------------|-------------------|-----------|-------------|---------------|
|                        | Data        |                   |           | Results     |               |
| Number of Servers =    | 2           |                   | Point     | 95% Confide | ence Interval |
|                        |             |                   | Estimate  | Low         | High          |
| Interarrival Times     |             | L =               | 0.9567591 | 0.915925579 | 0.997592612   |
| Distribution =         | Exponential | L <sub>q</sub> =  | 0.1634491 | 0.140317796 | 0.186580344   |
| Mean =                 | 0.25        | W =               | 0.2388033 | 0.230574713 | 0.24703197    |
|                        |             | $W_q =$           | 0.0407963 | 0.03529884  | 0.04629366    |
| Service Times          |             | P <sub>0</sub> =  | 0.432362  | 0.420452565 | 0.44407400    |
|                        |             |                   |           |             |               |
| Distribution =         | Exponential | P <sub>1</sub> =  |           | 0.334264013 |               |
| Mean =                 | 0.2         | P <sub>2</sub> =  |           |             |               |
|                        |             | P <sub>3</sub> =  | 0.0557089 | 0.051360155 | 0.06005757    |
|                        |             | P <sub>4</sub> =  | 0.0215388 | 0.01873507  | 0.02434257    |
| Length of Simulation F | Run         | P <sub>5</sub> =  | 0.0093106 | 0.007264255 | 0.01135685    |
| Number of Arrivals =   | 10,000      | P <sub>6</sub> =  | 0.004544  | 0.003111739 | 0.00597625    |
|                        |             | P <sub>7</sub> =  | 0.0021068 | 0.001110676 | 0.00310282    |
|                        |             | P <sub>8</sub> =  | 0.0007196 | 0.000243238 | 0.0011959     |
| Dun Ginnele            |             | P <sub>9</sub> =  | 0.000107  | 1.94028E-06 | 0.0002120     |
| Run Simula             | lion        | P <sub>10</sub> = | 0.0001615 | -0.00015081 | 0.00047386    |

(g) This option significantly decreases the waiting time for German cars without the added cost of an additional mechanic.

| Queueing Simulat       | or          |                   |           |             |               |
|------------------------|-------------|-------------------|-----------|-------------|---------------|
|                        | Data        |                   |           | Results     |               |
| Number of Servers =    | 2           |                   | Point     | 95% Confide | ence Interval |
|                        |             |                   | Estimate  | Low         | High          |
| Interarrival Times     |             | L=                | 2.3907479 | 2.245678563 | 2.535817333   |
| Distribution =         | Exponential | L <sub>q</sub> =  | 1.065088  | 0.940183481 | 1.189992432   |
| Mean =                 | 0.1667      | W =               | 0.3926979 | 0.371240571 | 0.414155241   |
|                        |             | W <sub>q</sub> =  | 0.1749485 | 0.155447354 | 0.194449682   |
|                        |             |                   |           |             |               |
| Service Times          |             | $P_0 =$           | 0.2023543 | 0.192371626 | 0.212337051   |
| Distribution =         | Exponential | P <sub>1</sub> =  | 0.2696313 | 0.26015233  | 0.279110333   |
| Mean =                 | 0.22        | P <sub>2</sub> =  | 0.1731333 | 0.167267547 | 0.178999127   |
|                        |             | P <sub>3</sub> =  | 0.1146076 | 0.109533387 | 0.119681718   |
|                        |             | P <sub>4</sub> =  | 0.0807285 | 0.076124011 | 0.085333063   |
| Length of Simulation R | lun         | P <sub>5</sub> =  | 0.0536806 | 0.049303681 | 0.058057479   |
| Number of Arrivals =   | 20,000      | P <sub>6</sub> =  | 0.0345925 | 0.030785253 | 0.038399827   |
|                        |             | P <sub>7</sub> =  | 0.0241606 | 0.020850571 | 0.027470673   |
|                        |             | P <sub>8</sub> =  | 0.0160514 | 0.012976417 | 0.019126365   |
|                        |             | P <sub>9</sub> =  | 0.011016  | 0.008413719 | 0.013618288   |
| Run Simulat            | lion        | P <sub>10</sub> = | 0.0069186 | 0.004757367 | 0.009079852   |

(h)

| Part | $\operatorname{Est}\{W\}$ | W     |
|------|---------------------------|-------|
| (c)  | 1.128                     | 1.000 |
| (d)  | 0.321                     | 0.333 |
| (f)  | 0.238                     | 0.238 |
| (g)  | 0.393                     | 0.390 |

The results of the simulation were quite accurate.

(i) Answers will vary. The option of training the two current mechanics significantly decreases the waiting time for German cars, without a significant impact on the wait for German cars, and does so without the added cost of a third mechanic. Adding a third mechanic reduces the average wait for German cars even more, but comes with the added cost of a third mechanic.

## 20.1-11.

(a) There are two independent G/M/1 systems: printers and monitors. For printers, the arrival stream is deterministic; for monitors, the arrival process is uniformly distributed between 10 and 20. The inspection time is exponentially distributed with a mean of 10 minutes. A simulation clock records the amount of simulated time that elapses. The state of the system at time t consists of the number  $N_M(t)$  of monitors in the inspection station at time t and the number  $N_P(t)$  of printers in the inspection station at time t. The arrivals to the stations and the inspection times are generated by sampling distributions according to interarrival and service time distributions. The system evolves according to the law:

$$N_M(t) = \begin{cases} N_M(t) + 1 & \text{if a monitor arrives to the inspection station,} \\ N_M(t) - 1 & \text{if a monitor is repaired,} \end{cases}$$

$$N_P(t) = \begin{cases} N_P(t) + 1 & \text{if a printer arrives to the inspection station,} \\ N_P(t) - 1 & \text{if a printer is repaired.} \end{cases}$$

The time is advanced using the next-event time advance procedure.

(b)

| Current<br>Time | Number of<br>Customers<br>in Queue | Customer<br>Being Served | Next<br>Arrival | Next Service<br>Completion |
|-----------------|------------------------------------|--------------------------|-----------------|----------------------------|
| 0               | 0                                  | Yes                      | 18.8535         | 2.3654                     |
| 2.3654          | 0                                  | No                       | 18.8535         | 2.3034                     |
| 18.8535         | 0                                  | Yes                      | 30.1903         | 20.578                     |
| 20.578          | 0                                  | No                       | 30.1903         | 20.376                     |
| 30.1903         | 0                                  | Yes                      | 45.5138         | 38.7912                    |
| 38.7912         | 0                                  | No                       | 45.5138         | 40.7702                    |
| 45.5138         | 0                                  | Yes                      | 62.9157         | 57.9432                    |
| 62.9157         | 0                                  | Yes                      | 73.018          | 63.6754                    |
| 73.018          | 0                                  | Yes                      | 86.4483         | 85.0383                    |
| 86.4483         | 0                                  | Yes                      | 99.2208         | 96.0002                    |
| 99.2208         | 0                                  | Yes                      | 116.128         | 105.164                    |
| 116.128         | 0                                  | Yes                      | 128.193         | 116.791                    |
| 128.193         | 0                                  | Yes                      | 144.996         | 143.41                     |
| 144.996         | 0                                  | Yes                      | 163.823         | 147.445                    |

(c)

| Current<br>Time | Number of<br>Customers<br>in Queue | Customer<br>Being Served | Next<br>Arrival | Next Service<br>Completion |
|-----------------|------------------------------------|--------------------------|-----------------|----------------------------|
| ō               | 0                                  | Yes                      | 15              | 1.21772                    |
| 1.21772         | Ö                                  | No                       | 15              |                            |
| 15              | Ö                                  | Yes                      | 30              | 20.4518                    |
| 20.4518         | Ö                                  | No                       | 30              |                            |
| 30              | Ö                                  | Yes                      | 45              | 50.1234                    |
| 45              | 0                                  | Yes                      | 60              | 46.7245                    |
| 60              | Ō                                  | Yes                      | 75              | 60.6191                    |
| 75              | Ō                                  | Yes                      | 90              | 80.4591                    |
| 90              | 0                                  | Yes                      | 105             | 96.3044                    |
| 105             | Ö                                  | Yes                      | 120             | 113.601                    |
| 120             | 0                                  | Yes                      | 135             | 127.452                    |
| 135             | 0                                  | Yes                      | 150             | 136.979                    |

# (d) Monitors

| Queueing Simulat       | or          |                   |           |             |               |
|------------------------|-------------|-------------------|-----------|-------------|---------------|
|                        | Data        |                   |           | Results     |               |
| Number of Servers =    | 1           |                   | Point     | 95% Confide | ence Interval |
|                        |             |                   | Estimate  | Low         | High          |
| Interarrival Times     |             | L=                | 1.1451012 | 1.066454729 | 1.223747677   |
| Distribution =         | Uniform     | L <sub>q</sub> =  | 0.4846536 | 0.416642611 | 0.552664538   |
| Minimum Value =        | 10          | W =               | 17.151366 | 15.98246531 | 18.3202666    |
| Maximum Value =        | 20          | $W_q =$           | 7.2591582 | 6.244300569 | 8.274015886   |
| Service Times          |             | P <sub>0</sub> =  | 0.3395524 | 0.326131941 | 0.352972802   |
| Distribution =         | Exponential | P <sub>1</sub> =  | 0.3820527 | 0.371544309 | 0.392561116   |
| Mean =                 | 10          | P <sub>2</sub> =  | 0.1623795 | 0.154529275 | 0.170229821   |
|                        |             | P <sub>3</sub> =  | 0.064742  | 0.057617043 | 0.071866998   |
|                        |             | P <sub>4</sub> =  | 0.0292033 | 0.023308637 | 0.035097966   |
| Length of Simulation F | Run         | P <sub>5</sub> =  | 0.0121333 | 0.008145886 | 0.016120745   |
| Number of Arrivals =   | 10,000      | P <sub>6</sub> =  | 0.0054888 | 0.002494257 | 0.00848335    |
|                        |             | P <sub>7</sub> =  | 0.0028845 | 0.000585366 | 0.005183675   |
|                        |             | P <sub>8</sub> =  | 0.0009369 | 1.27914E-05 | 0.001860937   |
| D 0:                   | #           | P <sub>9</sub> =  | 0.0003059 | -0.0002381  | 0.00084993    |
| Run Simula             | tion        | P <sub>10</sub> = | 0.000316  | -0.00030101 | 0.000932933   |

## Printers

| ueueing Simulat        | or          |   |                  |           |             |               |
|------------------------|-------------|---|------------------|-----------|-------------|---------------|
|                        | Data        |   |                  |           | Results     |               |
| Number of Servers =    | 1           |   |                  | Point     | 95% Confide | ence Interval |
|                        |             |   |                  | Estimate  | Low         | High          |
| Interarrival Times     |             |   | L=               | 1.1396349 | 1.070247268 | 1.2090226     |
| Distribution =         | Constant    |   | _q =             | 0.4690206 | 0.409350919 | 0.52869032    |
| Value =                | 15          |   | N =              | 17.094524 | 16.05370902 | 18.1353394    |
|                        |             | W | / <sub>q</sub> = | 7.0353093 | 6.140263782 | 7.93035489    |
|                        |             |   |                  |           |             |               |
| Service Times          |             | F | - ٥              | 0.3293857 | 0.316571485 | 0.34219986    |
| Distribution =         | Exponential | F | o <sub>1</sub> = | 0.3896143 | 0.379366603 | 0.39986192    |
| Mean =                 | 10          | F | o <sub>2</sub> = | 0.1686762 | 0.160479858 | 0.17687247    |
|                        |             | F | 3 =              | 0.0682924 | 0.060680329 | 0.07590449    |
|                        |             | F | o <sub>4</sub> = | 0.0264922 | 0.021086762 | 0.03189754    |
| Length of Simulation F | Run         | F | o <sub>5</sub> = | 0.0103902 | 0.006984888 | 0.01379544    |
| Number of Arrivals =   | 10,000      | F | o <sub>6</sub> = | 0.0035434 | 0.001709995 | 0.00537671    |
|                        |             | F | P <sub>7</sub> = | 0.0015595 | 0.00023512  | 0.00288379    |
|                        |             | F | 9 =              | 0.0009594 | -0.00045006 | 0.00236894    |
| <u> </u>               |             | F | 9 =              | 0.0008664 | -0.00077164 | 0.00250437    |
| Run Simula             | tion        |   | 10 =             | 0.0002034 | -0.00019399 | 0.00060085    |

## (e) Monitors

| Queueing Simulat       | or      |                 | $\Box$        |           |             |               |
|------------------------|---------|-----------------|---------------|-----------|-------------|---------------|
|                        | Data    |                 |               |           | Results     |               |
| Number of Servers =    | 1       |                 |               | Point     | 95% Confide | ence Interval |
|                        |         |                 |               | Estimate  | Low         | High          |
| Interarrival Times     |         | _               | -             | 0.7509682 |             |               |
| Distribution =         | Uniform | Lq              | =             | 0.0850358 | 0.076444155 | 0.093627449   |
| Minimum Value =        | 10      | W               | =             | 11.255076 | 11.05317253 | 11.45697848   |
| Maximum Value =        | 20      | W <sub>q</sub>  | =             | 1.2744673 | 1.146677882 | 1.402256631   |
| Service Times          |         | Po              | =             | 0.3340676 | 0.327214214 | 0.340921011   |
| Distribution =         | Erlang  | P <sub>1</sub>  | $\rightarrow$ |           | 0.580168141 |               |
| Mean =                 | 10      | P <sub>2</sub>  | =             | 0.075767  | 0.069970369 | 0.081563664   |
| k =                    | 4       | P <sub>3</sub>  | =             | 0.0045899 | 0.002570327 | 0.006609419   |
|                        |         | P <sub>4</sub>  | =             | 2.968E-05 | -5.9577E-06 | 6.53172E-05   |
| Length of Simulation F | Run     | P <sub>5</sub>  | =             | 0         | 0           | 0             |
| Number of Arrivals =   | 10,000  | P <sub>6</sub>  | =             | 0         | 0           | 0             |
|                        |         | P <sub>7</sub>  | ,=            | 0         | 0           | 0             |
|                        |         | P <sub>8</sub>  | =             | 0         | 0           | 0             |
| Dun Cinavila           | # a m   | P <sub>9</sub>  |               | 0         | 0           | 0             |
| Run Simula             | tion    | P <sub>10</sub> | =             | 0         | 0           | 0             |

## **Printers**

| Queueing Simulat       | or       |                   |           |             |               |
|------------------------|----------|-------------------|-----------|-------------|---------------|
|                        | Data     |                   |           | Results     |               |
| Number of Servers =    | 1        |                   | Point     | 95% Confide | ence Interval |
|                        |          |                   | Estimate  | Low         | High          |
| Interarrival Times     |          | L=                | 0.733283  | 0.720311183 | 0.746254753   |
| Distribution =         | Constant | $L_q =$           | 0.0677194 | 0.060150124 | 0.075288764   |
| Value =                | 15       | W =               | 10.999245 | 10.80466775 | 11.1938213    |
|                        |          | $W_q =$           | 1.0157917 | 0.902251861 | 1.129331454   |
|                        |          |                   |           |             |               |
| Service Times          |          | $P_0 =$           | 0.3344365 | 0.327790024 | 0.341082927   |
| Distribution =         | Erlang   | P <sub>1</sub> =  | 0.6008208 | 0.595646493 | 0.605995151   |
| Mean =                 | 10       | P <sub>2</sub> =  | 0.0617782 | 0.056011597 | 0.067544899   |
| k =                    | 4        | P <sub>3</sub> =  | 0.0029522 | 0.001566686 | 0.004337647   |
|                        |          | P <sub>4</sub> =  | 1.229E-05 | -6.0691E-06 | 3.06443E-05   |
| Length of Simulation F | Run      | P <sub>5</sub> =  | 0         | 0           | 0             |
| Number of Arrivals =   | 10,000   | P <sub>6</sub> =  | 0         | 0           | 0             |
|                        |          | P <sub>7</sub> =  | 0         | 0           | 0             |
|                        |          | P <sub>8</sub> =  | 0         | 0           | 0             |
| Dun Oissula            | #in.m    | P <sub>9</sub> =  |           | 0           | 0             |
| Run Simula             | tion     | P <sub>10</sub> = | 0         | 0           | 0             |

The new inspection equipment would drastically reduce the average waiting time for both monitors (from 7.3 minutes to 1.3 minutes) and printers (from 7 minutes to 1 minute).

#### 20.2-1.

Merrill Lynch launched the Management Science Group to deal with the issues raised by the rise of electronic trading in the late 1990s. The group studied various product structure and pricing alternatives. They focused on two main pricing options, viz., an asset-based pricing option and a direct online pricing option. Monte Carlo simulation is applied to simulate the behavior of the clients who choose between the two product and pricing options in the light of economic and qualitative factors. In the simulation model, "the observed system data consist of every revenue-generating component of every account of every client at Merrill Lynch. The output measures are the resulting revenue at the firm level, the compensation impact on each FA, and the percentage of clients considered adverse selectors" [p. 13]. Sensitivity analysis is performed to evaluate various scenarios.

"The benefits were significant and fell into four areas: seizing the marketplace initiative, finding the pricing sweet spot, improving financial performance, and adopting the approach in other strategic initiatives in other strategic initiatives" [p. 15]. As a result of this study, Merrill Lynch also acquired new clients.

**20.2-2.**Answers will vary.

#### 20.3-1.

| (a) | n | $x_n$ | $x_n + 3$ | $\frac{x_n+3}{10}$                                                                                     | $x_{n+1}$ |
|-----|---|-------|-----------|--------------------------------------------------------------------------------------------------------|-----------|
|     | 0 | 2     | 5         | $\frac{5}{10}$                                                                                         | 5         |
|     | 1 | 5     | 8         | $ \begin{array}{r} \underline{x_n+3} \\ 10 \\ \underline{5} \\ 10 \\ \underline{8} \\ 10 \end{array} $ | 8         |
|     | 2 | 8     | 11        | $1\frac{1}{10}$                                                                                        | 1         |
|     | 3 | 1     | 4         | $\frac{4}{10}$                                                                                         | 4         |
|     | 4 | 4     | 7         | $\frac{7}{10}$                                                                                         | 7         |
|     | 5 | 7     | 10        | $1\frac{0}{10}$                                                                                        | 0         |
|     | 6 | 0     | 3         | $ \begin{array}{r} 1\frac{0}{10} \\ \frac{3}{10} \\ \frac{6}{10} \end{array} $                         | 3         |
|     | 7 | 3     | 6         | $\frac{6}{10}$                                                                                         | 6         |
|     | 8 | 6     | 9         | $\frac{9}{10}$                                                                                         | 9         |
|     | 9 | 9     | 12        | $1\frac{2}{10}$                                                                                        | 2         |

| (b) | n | $x_n$ | $5x_n + 1$ | $\frac{5x_n+1}{8}$                                                                            | $x_{n+1}$ |
|-----|---|-------|------------|-----------------------------------------------------------------------------------------------|-----------|
|     | 0 | 1     | 6          | <u>6</u><br>8                                                                                 | 6         |
|     | 1 | 6     | 31         | $\frac{\frac{6}{8}}{3\frac{7}{8}}$                                                            | 7         |
|     | 2 | 7     | 36         | $4\frac{4}{8}$                                                                                | 4         |
|     | 3 | 4     | 21         | $ \begin{array}{r} 4\frac{4}{8} \\ 2\frac{5}{8} \\ 3\frac{2}{8} \\ 1\frac{3}{8} \end{array} $ | 5         |
|     | 4 | 5     | 26         | $3\frac{2}{8}$                                                                                | 2         |
|     | 5 | 2     | 11         | $1\frac{3}{8}$                                                                                | 3         |
|     | 6 | 3     | 16         | $1\frac{0}{8}$                                                                                | 0         |
|     | 7 | 0     | 1          | $\frac{1}{8}$                                                                                 | 1         |

| (c) | n | $x_n$ | $61x_n + 27$ | $\frac{61x_n+27}{100}$ | $x_{n+1}$ |
|-----|---|-------|--------------|------------------------|-----------|
|     | 0 | 10    | 637          | $6\frac{37}{100}$      | 37        |
|     | 1 | 37    | 2284         | $22\frac{84}{100}$     | 84        |
|     | 2 | 84    | 5151         | $51\frac{51}{100}$     | 51        |
|     | 3 | 51    | 3138         | $31\frac{38}{100}$     | 38        |
|     | 4 | 38    | 2345         | $23\frac{45}{100}$     | 45        |

## 20.3-2.

(a)

$$U_{n+1} = \frac{x_{n+1} + \frac{1}{2}}{10}, n = 0, 1, \dots, 9$$

(b)

$$U_{n+1} = \frac{x_{n+1} + \frac{1}{2}}{8}, n = 0, 1, \dots, 7$$

(c)

$$U_{n+1} = \frac{x_{n+1} + \frac{1}{2}}{100}, n = 0, 1, \dots, 99$$

## 20.3-3.

| n | $x_n$ | $11x_n + 23$ | $\frac{11x_n+23}{100}$ | $x_{n+1}$ |
|---|-------|--------------|------------------------|-----------|
| 0 | 52    | 595          | $5\frac{95}{100}$      | 95        |
| 1 | 95    | 1068         | $10\frac{68}{100}$     | 68        |
| 2 | 68    | 771          | $7\frac{71}{100}$      | 71        |
| 3 | 71    | 804          | $8\frac{4}{100}$       | 4         |
| 4 | 4     | 67           | $\frac{67}{100}$       | 67        |

## 20.3-4.

| n | $x_n$ | $201x_n + 503$ | $\frac{201x_n+503}{1000}$ | $x_{n+1}$ |
|---|-------|----------------|---------------------------|-----------|
| 0 | 485   | 97988          | $97\frac{988}{1000}$      | 988       |
| 1 | 988   | 199091         | $199\frac{91}{1000}$      | 91        |
| 2 | 91    | 18794          | $18\frac{794}{1000}$      | 794       |

## 20.3-5.

(a)

| n | $x_n$ | $13x_n + 15$ | $\frac{13x_n+15}{32}$ | $x_{n+1}$ |
|---|-------|--------------|-----------------------|-----------|
| 0 | 14    | 197          | $6\frac{5}{32}$       | 5         |
| 1 | 5     | 80           | $2\frac{16}{32}$      | 16        |
| 2 | 16    | 223          | $6\frac{31}{32}$      | 31        |
| 3 | 31    | 418          | $13\frac{2}{32}$      | 2         |
| 4 | 2     | 41           | $1\frac{9}{32}$       | 9         |

(b)

$$U_{n+1} = \frac{x_{n+1} + \frac{1}{2}}{32}, n = 0, 1, \dots, 4 \Rightarrow (0.1719, 0.5156, 0.9844, 0.0781, 0.2696)$$

## 20.3-6.

(a) 
$$x_1 = 7, x_2 = 10, x_3 = 5, x_4 = 9, x_5 = 11, x_6 = 12,$$
  
 $x_7 = 6, x_8 = 3, x_9 = 8, x_{10} = 4, x_{11} = 2, x_{12} = 1$ 

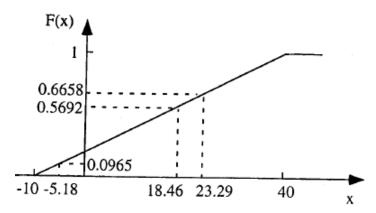
- (b) Each integer appears only once in part (a).
- (c)  $x_{13}, x_{14}, \ldots$  will repeat the cycle  $x_1, \ldots, x_{12}$  with length 12.

## 20.4-1.

- (a) Answers will vary.
- (b) The formula in cell D10 is = VLOOKUP(C10, \$J\$8:\$K\$9, 2).

|          | В               | С             | D         | E        | F     | G     | Н | 1            | J          | К         |
|----------|-----------------|---------------|-----------|----------|-------|-------|---|--------------|------------|-----------|
| 3        | Summary of Game |               |           |          |       |       |   | Distribution | of         |           |
| 4        | Numbe           | er of Flips = |           | 2        |       |       |   | Coin Flips   |            |           |
| 5        | Winnin          | ngs =         |           | 2<br>\$6 |       |       |   |              |            | Result    |
| 6        |                 |               |           |          |       |       |   |              |            | (0=Tails, |
| 7        |                 | 1             | Result    |          |       | i     |   | Probability  | Cumulative | 1=Heads)  |
| 8        |                 | Random        | (0=Tails, | Total    | Total | l     |   | 0.5          | 9 0        | 0         |
| 9        | Flip            | Number        | 1=Heads)  | Heads    | Tails | Stop? |   | 0.5          | 0.5        |           |
| 10       | 1               | 0.1921        | 0         | 0        | 1     |       | • |              |            |           |
| 11       | 2               | 0.4894        | 0         | 0        | 2     |       |   |              |            | 1         |
| 12       | 3               | 0.4593        | 0         | 0        | 3     | Stop  |   |              |            | - 1       |
| 13       | 4               | 0.1960        | 0         | 0        | 4     | NA    |   |              |            | [         |
| 14<br>58 | 5               | 0.4498        | 0         | 0        | 5     | NA    |   |              |            |           |
| 58       | 49              | 0.4746        | 0         | 21       | 28    | NA    |   |              |            |           |
| 59       | 50              | 0.7349        | 1         | 22       | 28    | NA    |   |              |            |           |

(c) A simulation with 14 replications:


|      | Number   |          |
|------|----------|----------|
| Play | of Flips | Winnings |
|      | 7        | \$1      |
| 1    | 11       | -\$3     |
| 2    | 5        | \$3      |
| 3    | 5        | \$3      |
| 4    | 9        | -\$1     |
| 5    | 7        | \$1      |
| 6    | 7        | \$1      |
| 7    | 5        | \$3      |
| 8    | 3        | \$5      |
| 9    | 17       | -\$9     |
| 10   | 5        | \$3      |
| 11   | 5        | \$3      |
| 12   | 3        | \$5      |
| 13   | 9        | -\$1     |
| 14   | 7        | \$1      |
| Avg. | 7        | \$1      |

(d) A simulation with 1000 replications:

|      | Number   |          |
|------|----------|----------|
| Play | of Flips | Winnings |
|      | 11       | -\$3     |
| 1    | 5        | \$3      |
| 2    | 13       | -\$5     |
| 3    | 15       | -\$7     |
| 4    | 5        | \$3      |
| 5    | 19       | -\$11    |
| 6    | 11       | -\$3     |
| 7    | 3        | \$5      |
| 8    | 3        | \$5      |
| 9    | 3        | \$5      |
| 10   | 7        | \$1      |
| 995  | 5        | \$3      |
| 996  | 3        | \$5      |
| 997  | 3        | \$5      |
| 998  | 3        | \$5      |
| 999  | 21       | -\$13    |
| 1000 | 5        | \$3      |
| Avg. | 9.15     | \$1.15   |

20.4-2.

(a)



(b) 
$$F(x) = \frac{x+10}{50} \Rightarrow F(-5.18) = 0.0965, F(18.46) = 0.5692, F(23.29) = 0.6658$$

(c) If cell A1 contains the uniform random number, then the Excel function is " = 50\*A1 - 10." 20.4-3.

(a) 
$$r = P\{X \le x\} = \int_{25}^{x} \frac{dt}{50} = \frac{x-25}{50} \Rightarrow x = 50r + 25$$

$$\begin{array}{c|c}
r & X \\
\hline
0.096 & 29.80 \\
\hline
0.569 & 53.45
\end{array}$$

| r     | X     |
|-------|-------|
| 0.096 | 29.80 |
| 0.569 | 53.45 |
| 0.665 | 58.25 |

(b) 
$$r = P\{X \le x\} = \int_{-1}^{x} \frac{(t+1)^3}{4} dt = \frac{(x+1)^4}{16} \Rightarrow x = 2r^{1/4} - 1$$

| r    |    | X     |
|------|----|-------|
| 0.09 | 96 | 0.113 |
| 0.56 | 69 | 0.737 |
| 0.60 | 65 | 0.806 |

(c) 
$$r = P\{X \le x\} = \int_{40}^{x} \frac{(t-40)}{200} dt = \frac{(x-40)^2}{400} \Rightarrow x = 20(2+\sqrt{r})$$

| r     | X      |
|-------|--------|
| 0.096 | 46.197 |
| 0.569 | 55.086 |
| 0.665 | 56.310 |

20.4-4.

(a) To determine whether X = 0 or X is distributed uniformly between -5 and 15, look at a three-digit random number from Table 20.3.

$$000 \le r \le 499 \Rightarrow X = 0.$$

$$500 \le r \le 999 \Rightarrow X$$
 is uniformly distributed.

If X = 0, nothing else need to be done. Otherwise, use the next three-digit random number as a decimal to generate X.

$$r = P\{X \le x\} = \int_{-5}^{x} \frac{dt}{20} = \frac{x+5}{20} \Rightarrow x = 20r - 5$$

| r     |                               |
|-------|-------------------------------|
| 0.096 | $X_1 = 0$                     |
| 0.569 | $X_2 \sim U(-5, 15)$          |
| 0.665 | $X_2 = 20(0.665) - 5 = 8.3$   |
| 0.764 | $X_3 \sim U(-5, 15)$          |
| 0.842 | $X_3 = 20(0.842) - 5 = 11.84$ |

Hence, the sequence is (0, 8.3, 11.84).

(b)

$$P\{1 \le X \le 2\} = \int_1^2 (t-1)dt = \frac{1}{2}, P\{2 \le X \le 3\} = \int_2^3 (3-t)dt = \frac{1}{2}$$

For 
$$0 \le r \le \frac{1}{2}$$
,  $r = \int_1^x (t-1)dt = \frac{(x-1)^2}{2} \Rightarrow x = \sqrt{2r} + 1$ .

For 
$$\frac{1}{2} \le r \le 1$$
,  $r = \frac{1}{2} + \int_2^x (3-t)dt = \frac{1}{2} - \frac{(3-x)^2}{2} \Rightarrow x = 3 - \sqrt{2-2r}$ .

| r     | X     |
|-------|-------|
| 0.096 | 1.438 |
| 0.569 | 2.072 |
| 0.665 | 2.181 |

(c) Let Z be a Bernoulli random variable with p=1/3, i.e.,  $P\{Z=1\}=1/3$  and  $P\{Z=0\}=2/3$ . Then, X is a random variable denoting the number of trials until the Bernoulli random variable takes the value 1.

$$000 \le r \le 332 \Rightarrow Z = 1.$$
  
 $333 \le r \le 999 \Rightarrow Z = 0.$ 

Hence, the sequence is (1, 6, 3).

## 20.4-5.

(a) Answers will vary.

(b) 0.0000 to 0.4999 correspond to heads. 0.5000 to 0.9999 correspond to tails.

Group 1: HHH, Group 2: THH, Group 3: HTT, Group 4: THT,

Group 5: THH, Group 6: HHT, Group 7: THT, Group 8: TTH

Number of groups with 0 heads: 0 Number of groups with 1 heads: 4 Number of groups with 2 heads: 3 Number of groups with 3 heads: 1

 Flip
 Random Number
 Result

 1
 0.6447
 Heads

 2
 0.6897
 Heads

 3
 0.1961
 Tails

Total number of heads: 2

(d) Answers will vary. The following eight replications have two replications with no heads (1/4), four replications with one heads (1/2), one replication with two heads (1/8), and one replication with three heads (1/8). This is not very close to the expected probability distribution.

| Replication     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|-----------------|---|---|---|---|---|---|---|---|
| Number of Heads | 1 | 3 | 2 | 0 | 1 | 1 | 1 | 0 |

(e) Answers will vary. Among the following 800 replications, 93 have no heads (93/800), 303 have one heads (303/800), 309 have two heads (309/800), and 95 have three heads (95/800). This is quite close to the expected probability distribution.

| Replication     | 1 | 2 | 3 | 4 | 5 | 798 | 799 | 800 |
|-----------------|---|---|---|---|---|-----|-----|-----|
| Number of Heads | 1 | 2 | 1 | 1 | 1 | 0   | 2   | 1   |

## 20.4-6.

(a)

## Summary of Results:

| Win? (1=Yes, 0=No) | 0 |
|--------------------|---|
| Number of Tosses = | 3 |

#### Simulated Tosses

| L | Toss | Die 1 | Die 2 | Sum |
|---|------|-------|-------|-----|
| ı | 1    | 4     | 2     | 6   |
| ı | 2    | 3     | 2     | 5   |
| ı | 3    | 6     | 1     | 7   |
| ı | 4    | 5     | 2     | 7   |
| ĺ | 5    | 4     | 4     | 8   |
| l | 6    | 1     | 4     | 5   |
| ì | 7    | 2     | 6     | 8   |

#### Results

| Win? | Lose? | Continue? |
|------|-------|-----------|
| 0    | 0     | Yes       |
| 0    | 0     | Yes       |
| 0    | 1     | No        |
| NA   | NA    | No        |
| NA   | NA    | No        |
| NA   | NA    | No        |
| NA   | NA    | No        |

(b) Answers will vary. Below is the results from a 25-replication simulation.

| Ga | me | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9, \dots, 15$ | 16 | 17 | 18 | 19 | $20,\ldots,24$ | 25 |
|----|----|---|---|---|---|---|---|---|---|----------------|----|----|----|----|----------------|----|
| Wi | n? | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0              | 1  | 0  | 1  | 0  | 1              | 0  |

(c) 9 wins and 16 loses  $\Rightarrow P\{\text{win}\} = 9/25$  and  $P\{\text{lose}\} = 16/25$ 

(d)

$$\begin{split} & \frac{\overline{X} - 0.493}{0.5 / \sqrt{n}} \sim N(0, 1) \Rightarrow P\left\{\frac{\overline{X} - 0.493}{0.5 / \sqrt{n}} \le 1.64\right\} = 0.95 \\ & \Rightarrow P\left\{\overline{X} \le \frac{0.82}{\sqrt{n}} + 0.493\right\} = 0.95 \\ & \frac{0.82}{\sqrt{n}} + 0.493 = 0.5 \Rightarrow n = 13.689 \end{split}$$

## 20.4-7.

$$r = P\{X \le x\} = P\left\{\frac{X-1}{2} \le \frac{x-1}{2}\right\} = 1 - \Phi\left(\frac{x-1}{2}\right) \Rightarrow x = 2\Phi^{-1}(1-r) + 1$$

We can use r directly instead of 1-r, since both have uniform distribution. The following values  $\Phi^{-1}(r)$  are obtained in Excel using the function NORMINV(r, 0, 1).

| r     | $\Phi^{-1}(r)$ | x      |
|-------|----------------|--------|
| 0.096 | -1.305         | -1.609 |
| 0.569 | 0.174          | 1.348  |
| 0.665 | 0.426          | 1.852  |
| 0.764 | 0.719          | 2.438  |
| 0.842 | 1.003          | 3.005  |
| 0.492 | -0.020         | 0.960  |
| 0.224 | -0.759         | -0.518 |
| 0.950 | 1.645          | 4.290  |
| 0.610 | 0.279          | 1.559  |
| 0.145 | -1.058         | -1.116 |

Average: 1.221

## 20.4-8.

(a)

| $r_i^1$ | $r_i^2$ | $r_i^3$ |
|---------|---------|---------|
| 0.096   | 0.764   | 0.224   |
| 0.569   | 0.842   | 0.950   |
| 0.665   | 0.492   | 0.610   |

| $\sum_{i=1}^{3} r_i^k$ | $x_k = 20 \left(\sum_{i=1}^3 r_i^k\right) - 25$ |
|------------------------|-------------------------------------------------|
| 1.330                  | 1.6                                             |
| 2.098                  | 17.0                                            |
| 1.784                  | 10.7                                            |

(b) 
$$x = 5\Phi^{-1}(r) + 10$$

| r     | $\Phi^{-1}(r)$ | x      |
|-------|----------------|--------|
| 0.096 | -1.305         | 3.475  |
| 0.569 | 0.174          | 10.870 |
| 0.665 | 0.426          | 12.130 |

## 20.4-9.

| (a) | $r_i^1$ | $r_i^2$ | $r_i^3$ | $r_i^4$ |
|-----|---------|---------|---------|---------|
|     | 0.096   | 0.764   | 0.224   | 0.145   |
|     | 0.569   | 0.842   | 0.950   | 0.484   |
|     | 0.665   | 0.492   | 0.610   | 0.552   |

| $\sum_{i=1}^{3} r_i^k$ | $x_k = 2\bigg(\sum_{i=1}^3 r_i^k\bigg) - 3$ |
|------------------------|---------------------------------------------|
| 1.330                  | -0.340                                      |
| 2.098                  | 1.196                                       |
| 1.784                  | 0.568                                       |
| 1.181                  | -0.638                                      |

Let  $z_i$  denote the chi-square observations, for i = 1, 2. Then

$$z_1 = x_1^2 + x_2^2 = 1.546$$
 and  $z_2 = x_3^2 + x_4^2 = 0.730$ .

(b) 
$$\begin{array}{c|cccc} r & \Phi^{-1}(r) \\ \hline 0.096 & -1.305 \\ 0.569 & 0.174 \\ \hline 0.665 & 0.426 \\ 0.764 & 0.719 \\ \end{array}$$

(c) 
$$Y = X_1^2 + X_2^2$$

From (a),  $Y_1 = 1.546$  and  $Y_2 = 0.730$ . From (b),  $Y_1 = 1.733$  and  $Y_2 = 0.698$ .

## 20.4-10.

(a) 
$$\begin{array}{c|cc} r & x = -10\ln(r) \\ \hline 0.096 & 23.434 \\ \hline 0.569 & 5.639 \\ \end{array}$$

 $r_i^2$  $r_i^1$ (c) 0.224 0.0960.5690.9500.6650.6100.7640.145 0.8420.4840.4920.552

| $\sum_{i=1}^{6} r_i^k$ | $x_k = 4igg(\sum_{i=1}^6 r_i^kigg) - 2$ |
|------------------------|-----------------------------------------|
| 3.428                  | 11.71                                   |
| 2.965                  | 9.86                                    |

## 20.4-11.

| (a) | Uniform Random Number | Random Observation |
|-----|-----------------------|--------------------|
|     | 0.2655                | 9.22               |
|     | 0.3472                | 9.49               |
|     | 0.0248                | 7.25               |
|     | 0.9205                | 12.21              |
|     | 0.6130                | 10.38              |

(b) If cell C4 contains the uniform random number, then the Excel function would be: = IF(C4<0.2, 7+(2/0.2)\*C4, IF(C4<0.8, 9+(2/0.6)\*(C4-0.2), 11+(2/0.2)\*(C4-0.8))).

#### 20.4-12.

| r     | $x = -20\ln(r)$ |
|-------|-----------------|
| 0.096 | 46.868          |
| 0.569 | 11.278          |
| 0.665 | 8.159           |
| 0.764 | 5.384           |

Hence, the Erlang observation is  $\sum_{i=1}^{4} x_k = 71.689$ .

#### 20.4-13.

(a) TRUE. Both  $r_i$  and  $1 - r_i$  are uniformly distributed.

(b) FALSE. Numerically,  $\prod r_i \neq \prod (1 - r_i) \Rightarrow \sum x_i \neq \sum y_i$ .

(c) TRUE. The sum of independent exponential random variables each with the same mean has Erlang distribution.

## 20.4-14.

(a) It is not valid, since  $P\{x_i = 8\} = P\{8/8 \le r_i < 9/8\} = 0$ . Replace n by n-1 to make it a valid method. Generate uniform random numbers  $r_i$  and set  $x_i = n$  where n satisfies  $(n-1)/8 \le r_i < n/8$ .

(b) It is valid. When  $(n-1)/8 \le r_i < n/8, n \le 1 + 8r_i < n+1$ .

(c) It is not valid, since  $x_0' = 4$ ,  $x_1' = 3$ ,  $x_2' = 6$ ,  $x_3' = 5$ ,  $x_4' = 0$ ,  $x_5' = 7$ ,  $x_6' = 2$ ,  $x_7' = 1$ , and  $x_8' = 4$ , so this method does not cover the number 8. Instead, let  $x_i = x_i' + 1$ , then it is a valid method.

## 20.4-15.

| $r_1$ | x     | $r_2$ | f(x)  | Accept? |
|-------|-------|-------|-------|---------|
| 0.096 | 0.192 | 0.569 | 0.192 | No      |
| 0.665 | 1.330 | 0.764 | 0.670 | No      |
| 0.842 | 1.684 | 0.492 | 0.316 | No      |
| 0.224 | 0.448 | 0.950 | 0.448 | No      |
| 0.610 | 1.220 | 0.145 | 0.780 | Yes     |
| 0.484 | 0.968 | 0.552 | 0.968 | Yes     |
| 0.350 | 0.700 | 0.590 | 0.700 | Yes     |

The three samples from the triangular distribution are 1.220, 0.968, and 0.700.

20.4-16.

Let  $x = 10r_1 + 10$ .

| $r_1$ | x     | $r_2$ | f(x)   | Accept? |  |
|-------|-------|-------|--------|---------|--|
| 0.096 | 10.96 | 0.569 | 0.0192 | No      |  |
| 0.665 | 16.65 | 0.764 | 0.1350 | No      |  |
| 0.842 | 18.42 | 0.492 | 0.1684 | No      |  |
| 0.224 | 12.24 | 0.950 | 0.0448 | No      |  |
| 0.610 | 16.10 | 0.145 | 0.1220 | No      |  |
| 0.484 | 14.84 | 0.552 | 0.0968 | No      |  |
| 0.350 | 13.50 | 0.590 | 0.0700 | No      |  |
| 0.430 | 14.30 | 0.041 | 0.0860 | Yes     |  |
| 0.802 | 18.02 | 0.471 | 0.1604 | No      |  |
| 0.255 | 12.55 | 0.799 | 0.0510 | No      |  |
| 0.608 | 16.08 | 0.577 | 0.1216 | No      |  |
| 0.347 | 13.47 | 0.933 | 0.0694 | No      |  |
| 0.581 | 15.81 | 0.173 | 0.1162 | No      |  |
| 0.603 | 16.03 | 0.040 | 0.1206 | Yes     |  |
| 0.605 | 16.05 | 0.842 | 0.1210 | No      |  |
| 0.720 | 17.20 | 0.449 | 0.1440 | No      |  |
| 0.076 | 10.76 | 0.407 | 0.0152 | No      |  |
| 0.202 | 12.02 | 0.963 | 0.0404 | No      |  |
| 0.412 | 14.12 | 0.369 | 0.0824 | No      |  |
| 0.976 | 19.76 | 0.171 | 0.1952 | Yes     |  |

The three samples from the given distribution are 14.30, 16.03, and 19.76.

## 20.4-17.

| Run    | 1 | Run 2 |      |  |
|--------|---|-------|------|--|
| U size |   | U     | size |  |
| 0.096  | 0 | 0.492 | 0    |  |
| 0.569  | 0 | 0.224 | 0    |  |
| 0.665  | 0 | 0.950 | 2    |  |
| 0.764  | 1 | 0.610 | 0    |  |

| U     | x     |
|-------|-------|
| 0.842 | 164.4 |

| U     | x     |
|-------|-------|
| 0.145 | 8.41  |
| 0.484 | 91.09 |

Total loss:  $\sum_{i=1}^{4} I_{(\text{size}>0)} \sum_{j=1}^{\text{size}} x_{ij}$ 

Two simulation runs give 164.4 and 99.5. Actually, 100 runs give 145.

#### 20.4-18.

Since the number N of employees incurring medical expenses has a binomial distribution with p = 0.9 and n = 3:

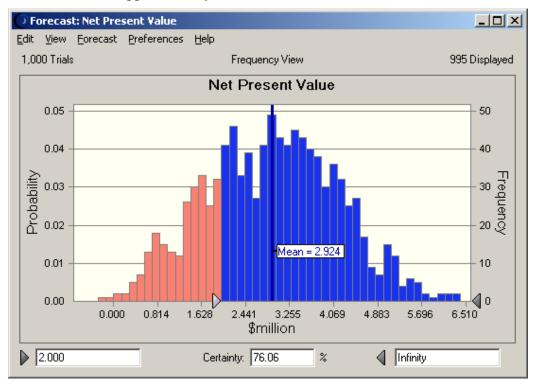
$$\begin{split} P\{N=0\} &= C_3^0 \cdot 0.9^0 \cdot 0.1^3 = 0.001, \\ P\{N=1\} &= C_3^1 \cdot 0.9^1 \cdot 0.1^2 = 0.027, \\ P\{N=2\} &= C_3^2 \cdot 0.9^2 \cdot 0.1^1 = 0.243, \\ P\{N=3\} &= C_3^3 \cdot 0.9^3 \cdot 0.1^0 = 0.729. \\ \text{Let } p_0 &= 0, p_1 = 0.001, p_2 = 0.028, p_3 = 0.271, p_4 = 1. \\ N &= i \text{ if } p_i \leq U < p_{i+1} \\ 0.01 &\Rightarrow N = 1, 0.20 \Rightarrow N = 2 \\ \text{Total amount} &= \begin{cases} 100 & \text{if } 0 \leq U < 0.9 \\ 10,000 & \text{if } 0.9 \leq U < 1 \end{cases} \end{split}$$

Only 0.95 causes an actual payment from the insurance company and the total payment is \$5,000.

## 20.5-1.

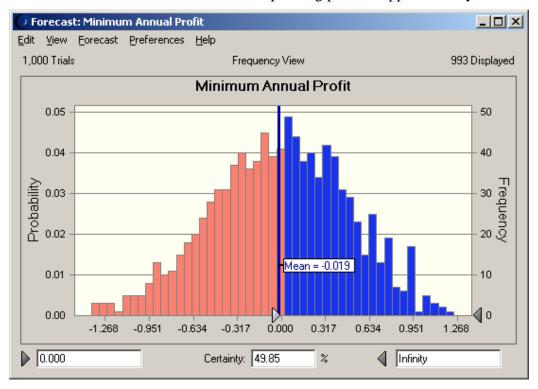
AT&T uses a discrete event simulation model to simulate inbound call centers. "The call processing simulator (CAPS) simulates the interactive behavior of the operational variables in inbound call centers. AT&T uses CAPS to propose optimal staffing, trunking (number of phone lines), network routing, and premises routing. CAPS can demonstrate cost/benefit trade-offs and can show the implications of good versus bad service levels. It can also show the effects of proposed operational changes in an inbound call center, using what-if scenarios" [p. 9]. Simulation allows modeling complex systems and evaluating different modes of operation without changing the actual operation of the call center. Three steps of the CAPS process are data collection, data case simulation and alternative scenario simulation.

As a result of this study, "AT&T has increased, protected, and regained more than \$1 billion from a business customer base of about 2,000 accounts per year. Much of its effective market and revenue-share management results from using CAPS to demonstrate advanced 800 network features. CAPS is vital to the marketability of such new and exclusive AT&T 800 network offerings" [p. 20]. The revenues are increased also from equipment sales to business customers whose need for new equipment is shown by CAPS studies. This study improved AT&T's consultative profile, its credibility and the profitability of 800 services. It also reduced the access charges and the overhead. The benefits of the study for business customers include reduced overhead costs due to the reduction in labor costs, increased call completion, reduced queue time, optimal utilization of operators, increased revenues, higher customer satisfaction and repeated sales.


## 20.6-1.

- (a) Answers will vary. A typical set of 5 runs: (45.72, 44.24, 46.68, 46.24, 47.90)
- (b) Answers will vary. A typical set of 5 runs: (46.60, 47.06, 46.67, 46.76, 46.84)
- (c) The mean profits in part (b) seem to be more consistent.

## 20.6-2.

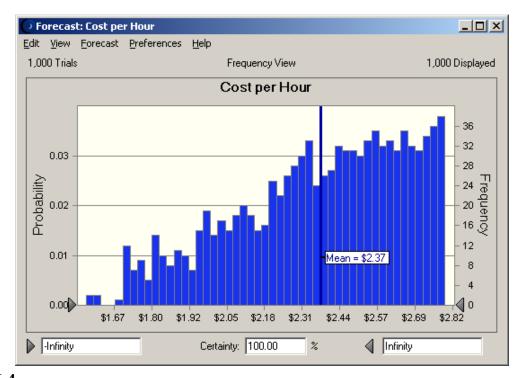

|    | Α                 | В                           | С          | D          | Е        | F     | G      | Н      | ı      | J      | K      |
|----|-------------------|-----------------------------|------------|------------|----------|-------|--------|--------|--------|--------|--------|
| 1  |                   |                             |            |            |          | Now   | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 |
| 2  | Land Purchase     | Fixed                       |            |            |          | -1    |        |        |        |        |        |
| 3  | Construction Cost | Triangular(min,likely,max)  | -2.4       | -2         | -1.6     |       | -2     |        |        |        |        |
| 4  | Operating Profit  | Normal(mean,s.dev.)         | 0.7        | 0.7        |          |       |        | 0.7    | 0.7    | 0.7    | 0.7    |
| 5  | Selling Price     | Uniform(min,max)            | 4          | 8          |          |       |        |        |        |        | 6      |
| 6  |                   |                             |            |            |          |       |        |        |        |        |        |
| 7  |                   |                             | Т          | otal Cas   | h Flow   | -1    | -2     | 0.7    | 0.7    | 0.7    | 6.7    |
| 8  |                   |                             |            |            |          |       |        |        |        |        |        |
| 9  |                   |                             |            | Discount   | Factor   | 10%   |        |        |        |        |        |
| 10 |                   |                             |            |            |          |       |        |        |        |        |        |
| 11 |                   | Net Pr                      | esent \    | √alue (\$r | nillion) | 2.925 |        |        |        |        |        |
| 12 |                   |                             |            |            |          |       |        |        |        |        |        |
| 13 | N                 | finimum Annual Operating Pr | rofit (\$r | million in | y2-y5)   | 0.700 |        |        |        |        |        |

(a) The mean NPV is approximately \$2.9 million.



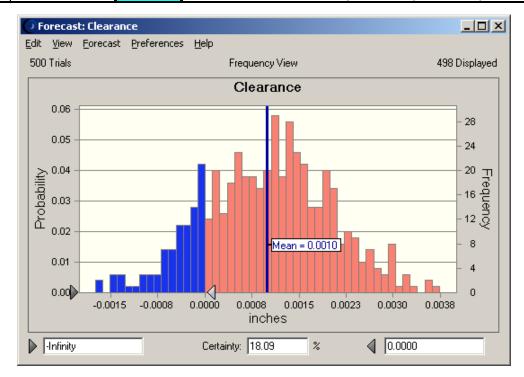
(b) The probability that the NPV will be at least \$2 million is approximately 77%.

(c) The mean value of the minimum annual operating profit is approximately zero.




(d) The probability that the minimum annual operating profit will be at least zero in all four years of operation is approximately 49.9%.

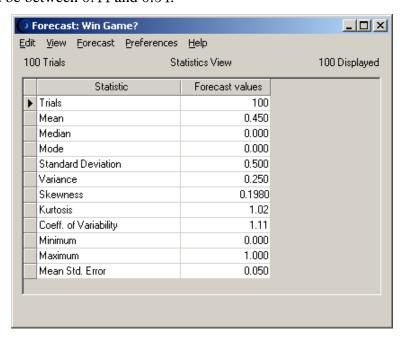
20.6-3.


The expected cost with the proposed system of replacing all relays whenever any one of them fails is approximately \$2.37 per hour. This is cheaper than the current system of replacing each relay as it fails. Therefore, they should replace all four relays with the first failure.

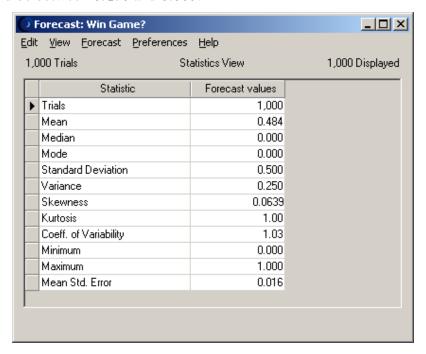
|    | Α                       | В       | С       | D     | E     |
|----|-------------------------|---------|---------|-------|-------|
| 1  |                         | Time to |         |       |       |
| 2  |                         | Failure |         |       |       |
| 3  |                         | (hours) |         | Min   | Max   |
| 4  | Relay 1                 | 1,500   | Uniform | 1,000 | 2,000 |
| 5  | Relay 2                 | 1,500   | Uniform | 1,000 | 2,000 |
| 6  | Relay 3                 | 1,500   | Uniform | 1,000 | 2,000 |
| 7  | Relay 4                 | 1,500   | Uniform | 1,000 | 2,000 |
| 8  |                         |         |         |       |       |
| 9  | Time to First Failure   | 1,500   |         |       |       |
| 10 | Time to End of Shutdown | 1,502   |         |       |       |
| 11 | Total Cost              | \$2,800 |         |       |       |
| 12 | Cost per Hour           | \$1.86  |         |       |       |



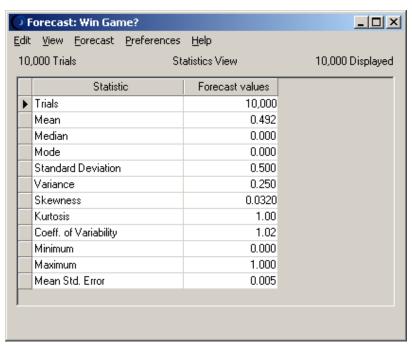
**20.6-4.** The chance of negative clearance is approximately 18.4%.


|   | А              | В      | С                          | D     | Е     | F     |
|---|----------------|--------|----------------------------|-------|-------|-------|
| 1 | Shaft Radius   | 1.001  | Triangular(min,likely,max) | 1.000 | 1.001 | 1.002 |
| 2 | Bushing Radius | 1.002  | Normal(mean,st.dev.)       | 1.002 | 0.001 |       |
| 3 |                |        |                            |       |       |       |
| 4 | Clearance      | 0.0010 |                            |       |       |       |




20.6-5.

|    | Α    | В     | С     | D   | Е    | F     | G         | Н | I            |
|----|------|-------|-------|-----|------|-------|-----------|---|--------------|
| 1  | Toss | Die 1 | Die 2 | Sum | Win? | Lose? | Continue? |   | Win          |
| 2  | 1    | 4     | 4     | 7   | Yes  | No    | No        |   | Game?        |
| 3  | 2    | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   | (1=yes,0=no) |
| 4  | 3    | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   | 1            |
| 5  | 4    | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 6  | 5    | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 7  | 6    | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 8  | 7    | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 9  | 8    | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 10 | 9    | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 11 | 10   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 12 | 11   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 13 | 12   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 14 | 13   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 15 | 14   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 16 | 15   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 17 | 16   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 18 | 17   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 19 | 18   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 20 | 19   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 21 | 20   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 22 | 21   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 23 | 22   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 24 | 23   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 25 | 24   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 26 | 25   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 27 | 26   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 28 | 27   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 29 | 28   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 30 | 29   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |
| 31 | 30   | 4     | 4     | 7   | #N/A | #N/A  | #N/A      |   |              |


(a) Answers will vary. The mean standard error is approximately 0.05, so the typical values should be between 0.44 and 0.54.



(b) Answers will vary. The mean standard error is approximately 0.016, so the typical values should be between 0.476 and 0.509.



(c) Answers will vary. The mean standard error is approximately 0.005, so the typical values should be between 0.487 and 0.497.



(d) Answers will vary. There is a fair amount of variability in the number of wins, so a large number of iterations, say 10,000, is necessary to predict the true probability. With 10,000 iterations, the mean standard error is less than 0.007.

**20.6-6.** The order quantity that maximizes the mean profit is approximately 55.

| (5) (5) (5) (5) (5) (6) (7) (8) (6) (8) (8) (8) (8) (8) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9 |
|------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------|

## 20.7-1.

Answers will vary.

## 20.7-2.

Answers will vary.

## Cases

20-1 a) Status quo at the presses – 7.5 sheets of in-process inventory.

|              | A B                      | С           | D | E                 | F          | G            | H            |
|--------------|--------------------------|-------------|---|-------------------|------------|--------------|--------------|
| 1            | Template for Queueing S  | imulation   |   |                   |            |              |              |
| 2            |                          |             |   |                   |            |              |              |
| 3            |                          | Data        |   |                   |            | Results      |              |
| 4            | Number of Servers =      | 10          |   |                   | Point      | 95% Confider | nce Interval |
| 5            | 1,000,000,000,000        |             |   |                   | Estimate   | Low          | High         |
| 6            | Interarrival Times       |             |   |                   | 7.48596004 | 7.122474949  | 7.849445126  |
| <del>Ť</del> | Distribution =           | Exponential |   |                   | 0.55020043 | 0.347368991  | 0.753031867  |
| 8            | Mean =                   | 0.142857143 |   | W=                | 1,0770836  | 1.036422591  | 1,117744603  |
| 9            |                          |             |   | W, =              | 0.07916311 | 0.050901621  | 0.107424593  |
| 10           |                          |             |   |                   |            |              |              |
| 11           | Service Times            |             |   | P <sub>o</sub> =  | 0.00110924 | 0.000312762  | 0.001905718  |
| 12           | Distribution =           | Exponential |   | P <sub>1</sub> =  | 0.00582387 | 0.003292739  | 0.008355008  |
| 13           | Mean =                   | 1           |   | P <sub>2</sub> =  | 0.02306409 | 0.018701971  | 0.027426208  |
| 14           |                          |             |   | P <sub>3</sub> =  | 0.05166684 | 0.043052172  | 0.060281501  |
| 15           |                          |             |   | P4 =              | 0.0866959  | 0.077527167  | 0.09586463   |
| 16           | Length of Simulation Run |             |   | P <sub>5</sub> =  | 0.12118604 | 0.112124348  | 0.130247735  |
| 17           | Number of Arrivals =     | 10.000      |   | P <sub>6</sub> =  | 0.14062225 | 0.13442836   | 0.14681614   |
| 18           |                          |             |   | P <sub>7</sub> =  | 0.14294653 | 0,134902634  | 0.150990419  |
| 19           |                          |             | İ | P <sub>e</sub> =  | 0.12452751 | 0.11900339   | 0.130051626  |
| 20           |                          |             |   | P <sub>9</sub> =  | 0.08806336 | 0.084082813  | 0.092043901  |
| 21           | Run Simulation           |             |   | P <sub>10</sub> = | 0.06192446 | 0.055935883  | 0.067913035  |

Status quo at the inspection station -3.6 wing sections of in-process inventory.

|    | TA  | В                        | С           | D | E                 | F          | G            | H            |
|----|-----|--------------------------|-------------|---|-------------------|------------|--------------|--------------|
| 1  | Te  | emplate for Queueing Si  | nulation    |   |                   |            |              |              |
| 2  | 1 - |                          |             |   |                   |            |              |              |
| 3  | 1   |                          | Data        |   |                   |            | Results      |              |
| 4  | 1   | Number of Servers =      | 1           |   |                   | Point      | 95% Confider | nce Interval |
| 5  | 1 - |                          |             |   |                   | Estimate   | Low          | High         |
| 6  | 1   | Interarrival Times       |             |   | L=                | 3,57765981 | 3.096884037  | 4,058435589  |
| 7  | 1   | Distribution =           | Exponential |   | L, =              | 2.71234549 | 2.244158962  | 3,180532014  |
| 8  | 1   | Mean =                   | 0.142857143 |   | W =               | 0.51681506 | 0.454627294  | 0.57900283   |
| 9  | 1   |                          |             |   | W <sub>q</sub> =  | 0.39181506 | 0.329627294  | 0.45400283   |
| 10 | 1 - |                          |             |   |                   |            |              |              |
| 11 | 1 - | Service Times            |             |   | P <sub>o</sub> =  | D.13468567 | 0.118076335  | 0.151295015  |
| 12 | 1 - | Distribution =           | Constant    |   | P <sub>1</sub> =  | 0.18444199 | 0.164766618  | 0.204117359  |
| 13 | 1 - | Value =                  | 0.125       |   | P <sub>2</sub> =  | 0.16054199 | 0.145653686  | 0.175430299  |
| 14 | 1   |                          |             |   | P <sub>3</sub> =  | 0.12577666 | 0.114607169  | 0.136946159  |
| 15 | 1 - |                          |             |   | P4 =              | 0.09279878 | 0.083029162  | 0.102568391  |
| 16 | 1 - | Length of Simulation Run |             |   | P <sub>5</sub> =  | 0.07546784 | 0.065828646  | 0.085107034  |
| 17 | 1-  | Number of Arrivals =     | 10.000      |   | P <sub>6</sub> =  | 0.0548405  | 0.045754492  | 0.063926513  |
| 18 | 1   |                          |             |   | P <sub>7</sub> =  | 0.04326737 | 0:033313657  | 0.053221074  |
| 19 | 1   |                          |             |   | P <sub>8</sub> =  | 0.03643173 | 0.026094365  | 0.046769093  |
| 20 | 1   |                          | <u> </u>    |   | P <sub>9</sub> =  | 0.02983638 | 0.020206033  | 0.039466733  |
| 21 | 1 - | Run Simulation           |             |   | P <sub>10</sub> = | 0.02245891 | 0.014710033  | 0.030207788  |

Inventory cost = (7.5 + 3.6)(\$8/hour) = \$88.80 / hourMachine cost = (10)(\$7/hour) = \$70 / hourInspector cost = \$17 / hour

Total cost = \$175.80 / hour

b) Proposal 1 will increase the in-process inventory at the presses to 10.6 sheets since the mean service rate has decreased.

|    | A B                                          | c           | D | E                 | F          | G             | Н            |
|----|----------------------------------------------|-------------|---|-------------------|------------|---------------|--------------|
| 1  | Template for Queueing                        | Simulation  |   |                   |            |               |              |
| 2  |                                              |             |   |                   |            |               |              |
| 3  |                                              | Data        |   |                   |            | Results       |              |
| 4  | Number of Servers =                          | 10          |   |                   | Point      | 95% Confider  | nce Interval |
| 5  |                                              |             |   |                   | Estimate   | Low           | High         |
| 6  | Interarrival Times                           |             |   | L=                | 10:6124208 | - 10,07045277 | 11.15438883  |
| 7  | Distribution =                               | Exponential |   | _ ե՞ =            | 2.34034351 | 1.812410733   | 2.868276277  |
| 8  | Mean =                                       | 0.142857143 |   | W =               | 1.5192496  | 1.422904809   | 1.615594383  |
| 9  | <u>                                     </u> |             |   | W <sub>q</sub> =  | 0.33503816 | 0.255248897   | 0.41482742   |
| 10 |                                              |             |   |                   | l .        |               |              |
| 11 | Service Times                                |             |   | P <sub>o</sub> =  | 0.00034416 | -0.000135983  | 0.000824295  |
| 12 | Distribution =                               | Exponential |   |                   | 0:00330079 | 0.002146705   | 0.004454878  |
| 13 | Mean =                                       | 1.2         |   |                   | 0.00683624 | 0.005191338   | 0.008481139  |
| 14 |                                              |             |   | P <sub>3</sub> =  | 0.0225304  | 0.017788623   | 0.027272181  |
| 15 |                                              |             |   | P4 =              | 0.0437143  | 0.041059108   | 0,0463695    |
| 16 | Length of Simulation Run                     |             |   | P <sub>5</sub> =  | 0,06530488 | 0.058747044   | 0.071862716  |
| 17 | Number of Arrivals =                         | 10,000      |   | P <sub>6</sub> =  | 0.08305601 | 0.074729232   | 0.091382794  |
| 18 |                                              |             |   | P <sub>7</sub> =  | 0,09066307 | 0.081970997   | 0.099355138  |
| 19 |                                              |             |   | P <sub>8</sub> =  | 0.09495054 | 0.09393376    | 0.095967318  |
| 20 |                                              |             |   | P <sub>9</sub> =  | 0.09944674 | 0.090813615   | 0.108079863  |
| 21 | Run Simulation                               |             |   | P <sub>10</sub> = | 0.08672109 | 0.077951648   | 0.095490525  |

The in-process inventory at the inspection station will not change.

Inventory cost = 
$$(10.6 + 3.6)(\$8/\text{hour}) = \$113.60 / \text{hour}$$
  
Machine cost =  $(10)(\$6.50) = \$65 / \text{hour}$   
Inspector cost =  $\$17 / \text{hour}$ 

Total cost = \$195.60 / hour

This total cost is higher than for the status quo so should not be adopted. The main reason for the higher cost is that slowing down the machines won't change in-process inventory for the inspection station.

c) Proposal 2 will increase the in-process inventory at the inspection station to 4.2 wing sections since the variability of the service rate has increased.

|    | Α                | В                        | С          | D | E                 | F          | G            | Н            |
|----|------------------|--------------------------|------------|---|-------------------|------------|--------------|--------------|
| 1  | T                | emplate for Queueing Sim | ulation    |   |                   |            |              |              |
| 2  |                  |                          |            |   |                   |            |              |              |
| 3  | i                |                          | Data       |   |                   |            | Results      |              |
| 4  | l                | Number of Servers =      | 1          |   |                   | Point      | 95% Confider | nce Interval |
| 5  | L                |                          |            |   |                   | Estimate   | Low          | High         |
| 6  | L                | Interarrival Times       |            |   | L=                | 4.15349196 | 3.51945922   | 4.787524705  |
| 7  | l                | Distribution = E         | xponential |   | L,=               | 3.31066782 | 2.691612222  | 3.929723426  |
| 8  |                  | Mean = 0.                | 142857143  |   | W =               | 0.58953022 | 0.506614288  | 0.672446148  |
| 9  | $\mathbb{L}_{-}$ |                          |            |   | W <sub>q</sub> =  | 0.46990309 | 0.387653637  | 0.552152552  |
| 10 |                  |                          |            |   |                   |            |              |              |
| 11 | <u> </u>         | Service Times            |            |   | P <sub>0</sub> =  | 0.15717586 | 0.13797724   | 0.176374483  |
| 12 | $\mathbb{L}_{-}$ | Distribution =           | Erlang     |   | P <sub>1</sub> =  | 0.16164362 | 0.143938659  | 0.179348578  |
| 13 |                  | Mean =                   | 0.12       |   | P <sub>2</sub> =  | 0.1417251  | 0.127306603  | 0.156143599  |
| 14 |                  | k =                      | 2          |   | P <sub>3</sub> =  | 0.11157869 | 0.100074725  | 0.123082653  |
| 15 |                  |                          |            |   | P <sub>4</sub> =  | 0.08340382 | 0.074497166  | 0.092310469  |
| 16 |                  | Length of Simulation Run |            |   | P <sub>5</sub> =  | 0.0729656  | 0.064546969  | 0.081384232  |
| 17 |                  | Number of Arrivals =     | 10,000     |   | P <sub>6</sub> =  | 0.05422094 | 0.04655526   | 0.061886616  |
| 18 |                  |                          | <u> </u>   |   |                   | 0.04033746 | 0.033104015  | 0.047570898  |
| 19 |                  |                          |            |   | P <sub>8</sub> =  | 0.03068653 | 0.023437928  | 0.037935133  |
| 20 |                  |                          |            |   |                   | 0.02468793 | 0.018553583  | 0.030822285  |
| 21 |                  | Run Simulation           |            |   | P <sub>10</sub> = | 0.02288346 | 0.016278465  | 0.029488445  |

The in-process inventory at the presses will not change.

Inventory cost = 
$$(7.5 + 4.2)(\$8/\text{hour}) = \$93.60 / \text{hour}$$
  
Machine cost =  $(10)(\$7/\text{hour}) = \$70 / \text{hour}$   
Inspector cost =  $\$17 / \text{hour}$ 

Total cost = \$180.60 / hour

This total cost is higher than for the status quo so should not be adopted. The main reason for the higher cost is the increase in the service rate variability (Erlang rather than constant) and the resulting increase in the in-process inventory.

d) They should consider *increasing* power to the presses (increasing there cost to \$7.50 per hour but reducing their average time to form a wing section to 0.8 hours). This would decrease the in-process inventory at the presses to 5.7.

|    | Α  | В                        | С           | D | E                 | F          | G            | Н            |
|----|----|--------------------------|-------------|---|-------------------|------------|--------------|--------------|
| 1  | Te | emplate for Queueing     | Simulation  |   | 1                 |            |              |              |
| 2  |    |                          |             |   |                   |            |              |              |
| 3  |    |                          | Data        |   |                   |            | Results      |              |
| 4  |    | Number of Servers =      | 10          |   |                   | Point      | 95% Confider | nce Interval |
| 5  |    |                          |             |   |                   | Estimate   | Low          | High         |
| 6  |    | Interarrival Times       |             |   | L =               | 5.74237458 | 5.581608211  | 5.903140941  |
| 7  |    | Distribution =           | Exponential |   | L <sub>q</sub> ≃  | 0.11624317 | 0.076181593  | 0.156304743  |
| 8  | L  | Mean =                   | 0.142857143 |   | W =               | 0.81487258 | 0.801697429  | 0.828047729  |
| 9  |    |                          |             |   | W <sub>q</sub> =  | 0.01649551 | 0.011001805  | 0.021989206  |
| 10 | L  |                          |             |   |                   |            |              |              |
| 11 |    | Service Times            |             |   |                   | 0.00445475 | 0.002433487  | 0.00647602   |
| 12 |    | Distribution =           | Exponential |   |                   | 0.0241519  | 0.019051394  | 0.0292524    |
| 13 |    | Mean =                   | 0.8         |   |                   | 0.06075455 | 0.0522877    | 0.069221409  |
| 14 |    |                          |             |   |                   | 0.10828334 | 0.096234     | 0.120332681  |
| 15 |    |                          |             |   |                   | 0.14577459 | 0.138731319  | 0.152817867  |
| 16 |    | Length of Simulation Run |             |   |                   | 0.1580859  | 0.148929657  | 0.167242144  |
| 17 |    | Number of Arrivals =     | 10,000      |   |                   | D.14882682 | 0.137378613  | 0.160275035  |
| 18 |    |                          |             |   |                   | 0.12347465 | 0.116102784  | 0.13084652   |
| 19 |    |                          |             |   |                   | 0.0909915  | 0.084900257  | 0.097082738  |
| 20 |    |                          |             |   |                   | 0.05514285 | 0.050413495  | 0.059872212  |
| 21 |    | Run Simulation           |             |   | P <sub>10</sub> = | 0.03360049 | 0.029185971  | 0.038015016  |

Inventory cost = (5.7 + 3.6)(\$8/hour) = \$74.40 / hourMachine cost = (10)(\$7.50/hour) = \$75 / hourInspector cost = \$17 / hour

Total cost = \$166.40 / hour

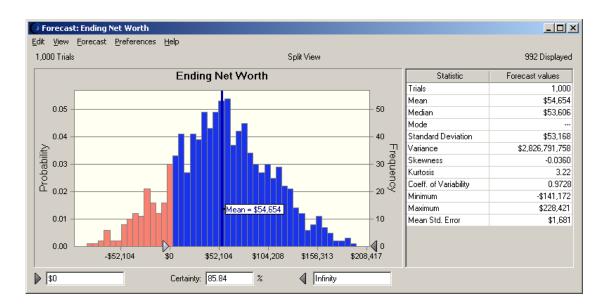
This total cost is lower than the status quo and both proposals.

# **CASE 20.2 Action Adventures**

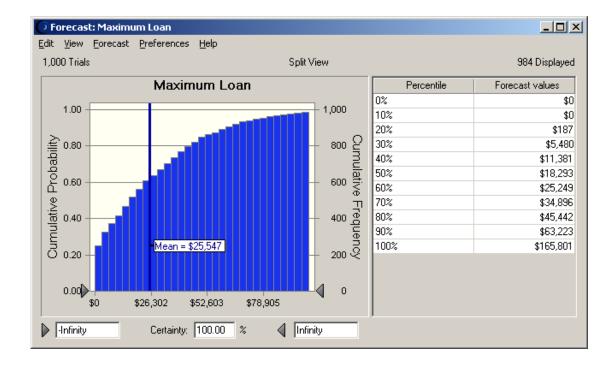
(a) The spreadsheet model is spread over the next several pages:

|                                                                                                                | A                                                                                                                                                                                                                    | В                                              | С                                                                                                                           | D                                                                                                                                  | Е                                                                                                                            | F                                                                                                                           | G                                                                                                                            | Н                                                                                                                                  | -                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                              |                                                                                                                                                                                                                      | & Revenue                                      | _                                                                                                                           | U                                                                                                                                  |                                                                                                                              |                                                                                                                             | rest Rate D                                                                                                                  |                                                                                                                                    | ı                                                                                                                            |
| 2                                                                                                              | Selling Price                                                                                                                                                                                                        | \$10                                           | Data                                                                                                                        |                                                                                                                                    | Initial                                                                                                                      | Prime Rate                                                                                                                  | 5%                                                                                                                           | ala                                                                                                                                |                                                                                                                              |
| 3                                                                                                              | Replacement Part Cost                                                                                                                                                                                                | \$5,000                                        |                                                                                                                             |                                                                                                                                    |                                                                                                                              | Prime Gap                                                                                                                   | 2%                                                                                                                           |                                                                                                                                    |                                                                                                                              |
| 4                                                                                                              | Monthly Fixed Cost                                                                                                                                                                                                   | \$15,000                                       |                                                                                                                             |                                                                                                                                    |                                                                                                                              | Maximum                                                                                                                     | 9%                                                                                                                           |                                                                                                                                    |                                                                                                                              |
| 5                                                                                                              | Minimum Balance                                                                                                                                                                                                      | \$20,000                                       |                                                                                                                             | Sa                                                                                                                                 | vings Rate Prime Gap                                                                                                         |                                                                                                                             | -2%                                                                                                                          |                                                                                                                                    |                                                                                                                              |
| 6                                                                                                              |                                                                                                                                                                                                                      | Starting Balance \$25,000 Savings Rate Minimum |                                                                                                                             | 2%                                                                                                                                 |                                                                                                                              |                                                                                                                             |                                                                                                                              |                                                                                                                                    |                                                                                                                              |
| 7                                                                                                              | Otal ting Balance                                                                                                                                                                                                    | Ψ20,000                                        |                                                                                                                             | `                                                                                                                                  | Javingo i tat                                                                                                                | o iviii iii ii diii                                                                                                         | 270                                                                                                                          |                                                                                                                                    |                                                                                                                              |
| 8                                                                                                              | Sales                                                                                                                                                                                                                | Dec                                            | Jan                                                                                                                         | Feb                                                                                                                                | Mar                                                                                                                          | Apr                                                                                                                         | May                                                                                                                          | June                                                                                                                               | July                                                                                                                         |
| 9                                                                                                              | Seasonality Index                                                                                                                                                                                                    | 1.18                                           | 0.79                                                                                                                        | 0.88                                                                                                                               | 0.95                                                                                                                         | 1.05                                                                                                                        | 1.09                                                                                                                         | 0.84                                                                                                                               | 0.74                                                                                                                         |
| 10                                                                                                             | Base Sales                                                                                                                                                                                                           | 6,000                                          | 6,000                                                                                                                       | 6,000                                                                                                                              | 6,000                                                                                                                        | 6,000                                                                                                                       | 6,000                                                                                                                        | 6,000                                                                                                                              | 6,000                                                                                                                        |
| 11                                                                                                             | Actual Sales                                                                                                                                                                                                         | 7,080                                          | 4,740                                                                                                                       | 5,280                                                                                                                              | 5,700                                                                                                                        | 6,300                                                                                                                       | 6,540                                                                                                                        | 5,040                                                                                                                              | 4,440                                                                                                                        |
| 12                                                                                                             | Fraction Cash Customers                                                                                                                                                                                              | 42%                                            | 39%                                                                                                                         | 39%                                                                                                                                | 39%                                                                                                                          | 39%                                                                                                                         | 39%                                                                                                                          | 39%                                                                                                                                | 39%                                                                                                                          |
| 13                                                                                                             |                                                                                                                                                                                                                      |                                                |                                                                                                                             |                                                                                                                                    |                                                                                                                              |                                                                                                                             |                                                                                                                              |                                                                                                                                    |                                                                                                                              |
| 14                                                                                                             | Interest Rates                                                                                                                                                                                                       |                                                |                                                                                                                             |                                                                                                                                    |                                                                                                                              |                                                                                                                             |                                                                                                                              |                                                                                                                                    |                                                                                                                              |
| 15                                                                                                             | Prime Rate Change                                                                                                                                                                                                    |                                                | 0.00%                                                                                                                       | 0.00%                                                                                                                              | 0.00%                                                                                                                        | 0.00%                                                                                                                       | 0.00%                                                                                                                        | 0.00%                                                                                                                              | 0.00%                                                                                                                        |
| 16                                                                                                             | Prime Rate                                                                                                                                                                                                           | 5.00%                                          | 5.00%                                                                                                                       | 5.00%                                                                                                                              | 5.00%                                                                                                                        | 5.00%                                                                                                                       | 5.00%                                                                                                                        | 5.00%                                                                                                                              | 5.00%                                                                                                                        |
| 17                                                                                                             | Loan Interest Rate                                                                                                                                                                                                   | 7.00%                                          | 7.00%                                                                                                                       | 7.00%                                                                                                                              | 7.00%                                                                                                                        | 7.00%                                                                                                                       | 7.00%                                                                                                                        | 7.00%                                                                                                                              | 7.00%                                                                                                                        |
| 18                                                                                                             | Savings Interest Rate                                                                                                                                                                                                | 3.00%                                          | 3.00%                                                                                                                       | 3.00%                                                                                                                              | 3.00%                                                                                                                        | 3.00%                                                                                                                       | 3.00%                                                                                                                        | 3.00%                                                                                                                              | 3.00%                                                                                                                        |
| 19                                                                                                             |                                                                                                                                                                                                                      |                                                |                                                                                                                             |                                                                                                                                    |                                                                                                                              |                                                                                                                             |                                                                                                                              |                                                                                                                                    |                                                                                                                              |
| 20                                                                                                             | Manufacturing Costs                                                                                                                                                                                                  |                                                |                                                                                                                             |                                                                                                                                    |                                                                                                                              |                                                                                                                             |                                                                                                                              |                                                                                                                                    |                                                                                                                              |
| 21                                                                                                             | Replacement Parts Needed                                                                                                                                                                                             |                                                | 0.8                                                                                                                         | 0.8                                                                                                                                | 0.8                                                                                                                          | 0.8                                                                                                                         | 0.8                                                                                                                          | 0.8                                                                                                                                | 0.8                                                                                                                          |
|                                                                                                                |                                                                                                                                                                                                                      |                                                |                                                                                                                             |                                                                                                                                    | 0.0                                                                                                                          |                                                                                                                             |                                                                                                                              |                                                                                                                                    |                                                                                                                              |
| 22                                                                                                             | •                                                                                                                                                                                                                    |                                                |                                                                                                                             |                                                                                                                                    |                                                                                                                              |                                                                                                                             |                                                                                                                              |                                                                                                                                    |                                                                                                                              |
| 22<br>23                                                                                                       | Variable Cost                                                                                                                                                                                                        |                                                | \$7                                                                                                                         | \$7                                                                                                                                | \$7                                                                                                                          | \$7                                                                                                                         | \$7                                                                                                                          | \$7                                                                                                                                | \$7                                                                                                                          |
| 22<br>23<br>24                                                                                                 |                                                                                                                                                                                                                      |                                                | \$7                                                                                                                         |                                                                                                                                    |                                                                                                                              | \$7                                                                                                                         | \$7                                                                                                                          | \$7                                                                                                                                | \$7                                                                                                                          |
| 22<br>23<br>24<br>25                                                                                           | Cash Flows                                                                                                                                                                                                           |                                                |                                                                                                                             | \$7                                                                                                                                | \$7                                                                                                                          |                                                                                                                             |                                                                                                                              |                                                                                                                                    |                                                                                                                              |
| 22<br>23<br>24<br>25<br>26                                                                                     | Cash Flows  Beginning Balance                                                                                                                                                                                        |                                                | \$25,000                                                                                                                    | <b>\$7</b><br>\$32,962                                                                                                             | <b>\$7</b><br>\$27,479                                                                                                       | \$23,827                                                                                                                    | \$20,762                                                                                                                     | \$20,533                                                                                                                           | \$26,469                                                                                                                     |
| 22<br>23<br>24<br>25<br>26<br>27                                                                               | Cash Flows  Beginning Balance  Cash Receipts                                                                                                                                                                         |                                                | \$25,000<br>\$18,328                                                                                                        | \$7<br>\$32,962<br>\$20,416                                                                                                        | \$7<br>\$27,479<br>\$22,040                                                                                                  | \$23,827<br>\$24,360                                                                                                        | \$20,762<br>\$25,288                                                                                                         | \$20,533<br>\$19,488                                                                                                               | \$26,469<br>\$17,168                                                                                                         |
| 22<br>23<br>24<br>25<br>26<br>27<br>28                                                                         | Cash Flows  Beginning Balance Cash Receipts 30-Day Credit Receipts                                                                                                                                                   |                                                | \$25,000<br>\$18,328<br>\$41,064                                                                                            | \$7<br>\$32,962<br>\$20,416<br>\$29,072                                                                                            | \$7<br>\$27,479<br>\$22,040<br>\$32,384                                                                                      | \$23,827<br>\$24,360<br>\$34,960                                                                                            | \$20,762<br>\$25,288<br>\$38,640                                                                                             | \$20,533<br>\$19,488<br>\$40,112                                                                                                   | \$26,469<br>\$17,168<br>\$30,912                                                                                             |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29                                                                   | Cash Flows  Beginning Balance Cash Receipts 30-Day Credit Receipts Fixed Cost                                                                                                                                        |                                                | \$25,000<br>\$18,328<br>\$41,064<br>-\$15,000                                                                               | \$32,962<br>\$20,416<br>\$29,072<br>-\$15,000                                                                                      | \$7<br>\$27,479<br>\$22,040<br>\$32,384<br>-\$15,000                                                                         | \$23,827<br>\$24,360<br>\$34,960<br>-\$15,000                                                                               | \$20,762<br>\$25,288<br>\$38,640<br>-\$15,000                                                                                | \$20,533<br>\$19,488<br>\$40,112<br>-\$15,000                                                                                      | \$26,469<br>\$17,168<br>\$30,912<br>-\$15,000                                                                                |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30                                                             | Cash Flows  Beginning Balance Cash Receipts 30-Day Credit Receipts Fixed Cost Total Variable Cost                                                                                                                    |                                                | \$25,000<br>\$18,328<br>\$41,064<br>-\$15,000<br>-\$33,180                                                                  | \$32,962<br>\$20,416<br>\$29,072<br>-\$15,000<br>-\$36,960                                                                         | \$7<br>\$27,479<br>\$22,040<br>\$32,384<br>-\$15,000<br>-\$39,900                                                            | \$23,827<br>\$24,360<br>\$34,960<br>-\$15,000<br>-\$44,100                                                                  | \$20,762<br>\$25,288<br>\$38,640<br>-\$15,000<br>-\$45,780                                                                   | \$20,533<br>\$19,488<br>\$40,112<br>-\$15,000<br>-\$35,280                                                                         | \$26,469<br>\$17,168<br>\$30,912<br>-\$15,000<br>-\$31,080                                                                   |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31                                                       | Cash Flows  Beginning Balance Cash Receipts 30-Day Credit Receipts Fixed Cost Total Variable Cost Repair Cost                                                                                                        |                                                | \$25,000<br>\$18,328<br>\$41,064<br>-\$15,000<br>-\$33,180<br>-\$4,000                                                      | \$32,962<br>\$20,416<br>\$29,072<br>-\$15,000<br>-\$36,960<br>-\$4,000                                                             | \$7<br>\$27,479<br>\$22,040<br>\$32,384<br>-\$15,000<br>-\$39,900<br>-\$4,000                                                | \$23,827<br>\$24,360<br>\$34,960<br>-\$15,000<br>-\$44,100<br>-\$4,000                                                      | \$20,762<br>\$25,288<br>\$38,640<br>-\$15,000<br>-\$45,780<br>-\$4,000                                                       | \$20,533<br>\$19,488<br>\$40,112<br>-\$15,000<br>-\$35,280<br>-\$4,000                                                             | \$26,469<br>\$17,168<br>\$30,912<br>-\$15,000<br>-\$31,080<br>-\$4,000                                                       |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32                                                 | Cash Flows  Beginning Balance Cash Receipts 30-Day Credit Receipts Fixed Cost Total Variable Cost Repair Cost Loan Payoff                                                                                            |                                                | \$25,000<br>\$18,328<br>\$41,064<br>-\$15,000<br>-\$33,180<br>-\$4,000<br>\$0                                               | \$32,962<br>\$20,416<br>\$29,072<br>-\$15,000<br>-\$4,000<br>\$0                                                                   | \$7<br>\$27,479<br>\$22,040<br>\$32,384<br>-\$15,000<br>-\$4,000<br>\$0                                                      | \$23,827<br>\$24,360<br>\$34,960<br>-\$15,000<br>-\$44,100<br>-\$4,000                                                      | \$20,762<br>\$25,288<br>\$38,640<br>-\$15,000<br>-\$45,780<br>-\$4,000<br>\$0                                                | \$20,533<br>\$19,488<br>\$40,112<br>-\$15,000<br>-\$35,280<br>-\$4,000<br>\$0                                                      | \$26,469<br>\$17,168<br>\$30,912<br>-\$15,000<br>-\$31,080<br>-\$4,000<br>\$0                                                |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33                                           | Cash Flows  Beginning Balance Cash Receipts 30-Day Credit Receipts Fixed Cost Total Variable Cost Repair Cost Loan Payoff Loan Interest                                                                              |                                                | \$25,000<br>\$18,328<br>\$41,064<br>-\$15,000<br>-\$33,180<br>-\$4,000<br>\$0                                               | \$32,962<br>\$20,416<br>\$29,072<br>-\$15,000<br>-\$36,960<br>-\$4,000<br>\$0                                                      | \$7<br>\$27,479<br>\$22,040<br>\$32,384<br>-\$15,000<br>-\$39,900<br>-\$4,000<br>\$0                                         | \$23,827<br>\$24,360<br>\$34,960<br>-\$15,000<br>-\$44,100<br>-\$4,000<br>\$0                                               | \$20,762<br>\$25,288<br>\$38,640<br>-\$15,000<br>-\$45,780<br>-\$4,000<br>\$0                                                | \$20,533<br>\$19,488<br>\$40,112<br>-\$15,000<br>-\$35,280<br>-\$4,000<br>\$0                                                      | \$26,469<br>\$17,168<br>\$30,912<br>-\$15,000<br>-\$31,080<br>-\$4,000<br>\$0                                                |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34                                     | Cash Flows  Beginning Balance Cash Receipts 30-Day Credit Receipts Fixed Cost Total Variable Cost Repair Cost Loan Payoff Loan Interest Savings Interest                                                             |                                                | \$25,000<br>\$18,328<br>\$41,064<br>-\$15,000<br>-\$33,180<br>-\$4,000<br>\$0<br>\$0                                        | \$32,962<br>\$20,416<br>\$29,072<br>-\$15,000<br>-\$36,960<br>-\$4,000<br>\$0<br>\$989                                             | \$7<br>\$27,479<br>\$22,040<br>\$32,384<br>-\$15,000<br>-\$39,900<br>-\$4,000<br>\$0<br>\$0<br>\$824                         | \$23,827<br>\$24,360<br>\$34,960<br>-\$15,000<br>-\$44,100<br>-\$4,000<br>\$0<br>\$0<br>\$715                               | \$20,762<br>\$25,288<br>\$38,640<br>-\$15,000<br>-\$45,780<br>-\$4,000<br>\$0<br>\$0<br>\$623                                | \$20,533<br>\$19,488<br>\$40,112<br>-\$15,000<br>-\$35,280<br>-\$4,000<br>\$0<br>\$0<br>\$616                                      | \$26,469<br>\$17,168<br>\$30,912<br>-\$15,000<br>-\$31,080<br>-\$4,000<br>\$0<br>\$0<br>\$794                                |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35                               | Cash Flows  Beginning Balance Cash Receipts 30-Day Credit Receipts Fixed Cost Total Variable Cost Repair Cost Loan Payoff Loan Interest Savings Interest Balance Before Loan                                         |                                                | \$25,000<br>\$18,328<br>\$41,064<br>-\$15,000<br>-\$33,180<br>-\$4,000<br>\$0<br>\$750<br>\$32,962                          | \$7<br>\$32,962<br>\$20,416<br>\$29,072<br>-\$15,000<br>-\$36,960<br>-\$4,000<br>\$0<br>\$989<br>\$27,479                          | \$7<br>\$27,479<br>\$22,040<br>\$32,384<br>-\$15,000<br>-\$39,900<br>-\$4,000<br>\$0<br>\$0<br>\$824<br>\$23,827             | \$23,827<br>\$24,360<br>\$34,960<br>-\$15,000<br>-\$44,100<br>-\$4,000<br>\$0<br>\$715<br>\$20,762                          | \$20,762<br>\$25,288<br>\$38,640<br>-\$15,000<br>-\$45,780<br>-\$4,000<br>\$0<br>\$0<br>\$623<br>\$20,533                    | \$20,533<br>\$19,488<br>\$40,112<br>-\$15,000<br>-\$35,280<br>-\$4,000<br>\$0<br>\$0<br>\$616<br>\$26,469                          | \$26,469<br>\$17,168<br>\$30,912<br>-\$15,000<br>-\$31,080<br>-\$4,000<br>\$0<br>\$0<br>\$794<br>\$25,263                    |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36                         | Cash Flows  Beginning Balance Cash Receipts 30-Day Credit Receipts Fixed Cost Total Variable Cost Repair Cost Loan Payoff Loan Interest Savings Interest Balance Before Loan New Loan                                | \$25,000                                       | \$25,000<br>\$18,328<br>\$41,064<br>-\$15,000<br>-\$33,180<br>-\$4,000<br>\$0<br>\$750<br>\$32,962<br>\$0                   | \$7<br>\$32,962<br>\$20,416<br>\$29,072<br>-\$15,000<br>-\$36,960<br>-\$4,000<br>\$0<br>\$989<br>\$27,479<br>\$0                   | \$7<br>\$27,479<br>\$22,040<br>\$32,384<br>-\$15,000<br>-\$39,900<br>-\$4,000<br>\$0<br>\$0<br>\$824<br>\$23,827<br>\$0      | \$23,827<br>\$24,360<br>\$34,960<br>-\$15,000<br>-\$44,000<br>\$0<br>\$715<br>\$20,762<br>\$0                               | \$20,762<br>\$25,288<br>\$38,640<br>-\$15,000<br>-\$45,780<br>-\$4,000<br>\$0<br>\$0<br>\$623<br>\$20,533<br>\$0             | \$20,533<br>\$19,488<br>\$40,112<br>-\$15,000<br>-\$35,280<br>-\$4,000<br>\$0<br>\$616<br>\$26,469<br>\$0                          | \$26,469<br>\$17,168<br>\$30,912<br>-\$15,000<br>-\$31,080<br>-\$4,000<br>\$0<br>\$794<br>\$25,263<br>\$0                    |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36                         | Cash Flows  Beginning Balance Cash Receipts 30-Day Credit Receipts Fixed Cost Total Variable Cost Repair Cost Loan Payoff Loan Interest Savings Interest Balance Before Loan                                         | \$25,000                                       | \$25,000<br>\$18,328<br>\$41,064<br>-\$15,000<br>-\$33,180<br>-\$4,000<br>\$0<br>\$750<br>\$32,962<br>\$0<br>\$32,962       | \$7<br>\$32,962<br>\$20,416<br>\$29,072<br>-\$15,000<br>-\$36,960<br>-\$4,000<br>\$0<br>\$0<br>\$989<br>\$27,479<br>\$0            | \$7<br>\$27,479<br>\$22,040<br>\$32,384<br>-\$15,000<br>-\$39,900<br>-\$4,000<br>\$0<br>\$0<br>\$23,827                      | \$23,827<br>\$24,360<br>\$34,960<br>-\$15,000<br>-\$44,000<br>\$0<br>\$715<br>\$20,762<br>\$0<br>\$20,762                   | \$20,762<br>\$25,288<br>\$38,640<br>-\$15,000<br>-\$45,780<br>-\$4,000<br>\$0<br>\$0<br>\$623<br>\$20,533<br>\$0<br>\$20,533 | \$20,533<br>\$19,488<br>\$40,112<br>-\$15,000<br>-\$35,280<br>-\$4,000<br>\$0<br>\$616<br>\$26,469<br>\$0<br>\$26,469              | \$26,469<br>\$17,168<br>\$30,912<br>-\$15,000<br>-\$31,080<br>-\$4,000<br>\$0<br>\$794<br>\$25,263<br>\$0<br>\$25,263        |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37                   | Cash Flows  Beginning Balance Cash Receipts 30-Day Credit Receipts Fixed Cost Total Variable Cost Repair Cost Loan Payoff Loan Interest Savings Interest Balance Before Loan New Loan Ending Balance                 | \$25,000                                       | \$25,000<br>\$18,328<br>\$41,064<br>-\$15,000<br>-\$33,180<br>-\$4,000<br>\$0<br>\$750<br>\$32,962<br>\$0<br>\$32,962<br>>= | \$7<br>\$32,962<br>\$20,416<br>\$29,072<br>-\$15,000<br>-\$36,960<br>-\$4,000<br>\$0<br>\$989<br>\$27,479<br>\$0<br>\$27,479<br>>= | \$7<br>\$27,479<br>\$22,040<br>\$32,384<br>-\$15,000<br>-\$4,000<br>\$0<br>\$0<br>\$824<br>\$23,827<br>\$0<br>\$23,827<br>>= | \$23,827<br>\$24,360<br>\$34,960<br>-\$15,000<br>-\$44,100<br>-\$4,000<br>\$0<br>\$715<br>\$20,762<br>\$0<br>\$20,762<br>>= | \$20,762<br>\$25,288<br>\$38,640<br>-\$15,000<br>-\$45,780<br>-\$4,000<br>\$0<br>\$0<br>\$623<br>\$20,533<br>\$0<br>\$20,533 | \$20,533<br>\$19,488<br>\$40,112<br>-\$15,000<br>-\$35,280<br>-\$4,000<br>\$0<br>\$0<br>\$616<br>\$26,469<br>\$0<br>\$26,469<br>>= | \$26,469<br>\$17,168<br>\$30,912<br>-\$15,000<br>-\$31,080<br>-\$4,000<br>\$0<br>\$0<br>\$794<br>\$25,263<br>\$0<br>\$25,263 |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38             | Cash Flows  Beginning Balance Cash Receipts 30-Day Credit Receipts Fixed Cost Total Variable Cost Repair Cost Loan Payoff Loan Interest Savings Interest Balance Before Loan New Loan                                | \$25,000                                       | \$25,000<br>\$18,328<br>\$41,064<br>-\$15,000<br>-\$33,180<br>-\$4,000<br>\$0<br>\$750<br>\$32,962<br>\$0<br>\$32,962       | \$7<br>\$32,962<br>\$20,416<br>\$29,072<br>-\$15,000<br>-\$36,960<br>-\$4,000<br>\$0<br>\$0<br>\$989<br>\$27,479<br>\$0            | \$7<br>\$27,479<br>\$22,040<br>\$32,384<br>-\$15,000<br>-\$39,900<br>-\$4,000<br>\$0<br>\$0<br>\$23,827                      | \$23,827<br>\$24,360<br>\$34,960<br>-\$15,000<br>-\$44,000<br>\$0<br>\$715<br>\$20,762<br>\$0<br>\$20,762                   | \$20,762<br>\$25,288<br>\$38,640<br>-\$15,000<br>-\$45,780<br>-\$4,000<br>\$0<br>\$0<br>\$623<br>\$20,533<br>\$0<br>\$20,533 | \$20,533<br>\$19,488<br>\$40,112<br>-\$15,000<br>-\$35,280<br>-\$4,000<br>\$0<br>\$616<br>\$26,469<br>\$0<br>\$26,469              | \$26,469<br>\$17,168<br>\$30,912<br>-\$15,000<br>-\$31,080<br>-\$4,000<br>\$0<br>\$794<br>\$25,263<br>\$0<br>\$25,263        |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38             | Cash Flows  Beginning Balance Cash Receipts 30-Day Credit Receipts Fixed Cost Total Variable Cost Repair Cost Loan Payoff Loan Interest Savings Interest Balance Before Loan New Loan Ending Balance Minimum Balance |                                                | \$25,000<br>\$18,328<br>\$41,064<br>-\$15,000<br>-\$33,180<br>-\$4,000<br>\$0<br>\$750<br>\$32,962<br>\$0<br>\$32,962<br>>= | \$7<br>\$32,962<br>\$20,416<br>\$29,072<br>-\$15,000<br>-\$36,960<br>-\$4,000<br>\$0<br>\$989<br>\$27,479<br>\$0<br>\$27,479<br>>= | \$7<br>\$27,479<br>\$22,040<br>\$32,384<br>-\$15,000<br>-\$4,000<br>\$0<br>\$0<br>\$824<br>\$23,827<br>\$0<br>\$23,827<br>>= | \$23,827<br>\$24,360<br>\$34,960<br>-\$15,000<br>-\$44,100<br>-\$4,000<br>\$0<br>\$715<br>\$20,762<br>\$0<br>\$20,762<br>>= | \$20,762<br>\$25,288<br>\$38,640<br>-\$15,000<br>-\$45,780<br>-\$4,000<br>\$0<br>\$0<br>\$623<br>\$20,533<br>\$0<br>\$20,533 | \$20,533<br>\$19,488<br>\$40,112<br>-\$15,000<br>-\$35,280<br>-\$4,000<br>\$0<br>\$0<br>\$616<br>\$26,469<br>\$0<br>\$26,469<br>>= | \$26,469<br>\$17,168<br>\$30,912<br>-\$15,000<br>-\$31,080<br>-\$4,000<br>\$0<br>\$0<br>\$794<br>\$25,263<br>\$0<br>\$25,263 |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40 | Cash Flows  Beginning Balance Cash Receipts 30-Day Credit Receipts Fixed Cost Total Variable Cost Repair Cost Loan Payoff Loan Interest Savings Interest Balance Before Loan New Loan Ending Balance                 | \$25,000<br>\$57,681                           | \$25,000<br>\$18,328<br>\$41,064<br>-\$15,000<br>-\$33,180<br>-\$4,000<br>\$0<br>\$750<br>\$32,962<br>\$0<br>\$32,962<br>>= | \$7<br>\$32,962<br>\$20,416<br>\$29,072<br>-\$15,000<br>-\$36,960<br>-\$4,000<br>\$0<br>\$989<br>\$27,479<br>\$0<br>\$27,479<br>>= | \$7<br>\$27,479<br>\$22,040<br>\$32,384<br>-\$15,000<br>-\$4,000<br>\$0<br>\$0<br>\$824<br>\$23,827<br>\$0<br>\$23,827<br>>= | \$23,827<br>\$24,360<br>\$34,960<br>-\$15,000<br>-\$44,100<br>-\$4,000<br>\$0<br>\$715<br>\$20,762<br>\$0<br>\$20,762<br>>= | \$20,762<br>\$25,288<br>\$38,640<br>-\$15,000<br>-\$45,780<br>-\$4,000<br>\$0<br>\$0<br>\$623<br>\$20,533<br>\$0<br>\$20,533 | \$20,533<br>\$19,488<br>\$40,112<br>-\$15,000<br>-\$35,280<br>-\$4,000<br>\$0<br>\$0<br>\$616<br>\$26,469<br>\$0<br>\$26,469<br>>= | \$26,469<br>\$17,168<br>\$30,912<br>-\$15,000<br>-\$31,080<br>-\$4,000<br>\$0<br>\$0<br>\$794<br>\$25,263<br>\$0<br>\$25,263 |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38             | Cash Flows  Beginning Balance Cash Receipts 30-Day Credit Receipts Fixed Cost Total Variable Cost Repair Cost Loan Payoff Loan Interest Savings Interest Balance Before Loan New Loan Ending Balance Minimum Balance |                                                | \$25,000<br>\$18,328<br>\$41,064<br>-\$15,000<br>-\$33,180<br>-\$4,000<br>\$0<br>\$750<br>\$32,962<br>\$0<br>\$32,962<br>>= | \$7<br>\$32,962<br>\$20,416<br>\$29,072<br>-\$15,000<br>-\$36,960<br>-\$4,000<br>\$0<br>\$989<br>\$27,479<br>\$0<br>\$27,479<br>>= | \$7<br>\$27,479<br>\$22,040<br>\$32,384<br>-\$15,000<br>-\$4,000<br>\$0<br>\$0<br>\$824<br>\$23,827<br>\$0<br>\$23,827<br>>= | \$23,827<br>\$24,360<br>\$34,960<br>-\$15,000<br>-\$44,100<br>-\$4,000<br>\$0<br>\$715<br>\$20,762<br>\$0<br>\$20,762<br>>= | \$20,762<br>\$25,288<br>\$38,640<br>-\$15,000<br>-\$45,780<br>-\$4,000<br>\$0<br>\$0<br>\$623<br>\$20,533<br>\$0<br>\$20,533 | \$20,533<br>\$19,488<br>\$40,112<br>-\$15,000<br>-\$35,280<br>-\$4,000<br>\$0<br>\$0<br>\$616<br>\$26,469<br>\$0<br>\$26,469<br>>= | \$26,469<br>\$17,168<br>\$30,912<br>-\$15,000<br>-\$31,080<br>-\$4,000<br>\$0<br>\$794<br>\$25,263<br>\$0<br>\$25,263        |

|    | Α                        | В                                             | С                                                                         |
|----|--------------------------|-----------------------------------------------|---------------------------------------------------------------------------|
| 1  |                          | Cost & Revenue Data                           |                                                                           |
| 2  | Selling Price            | 10                                            |                                                                           |
| 3  | Replacement Part Cost    | 5000                                          |                                                                           |
| 4  | Monthly Fixed Cost       | 15000                                         |                                                                           |
| 5  | Minimum Balance          | 20000                                         |                                                                           |
| 6  | Starting Balance         | 25000                                         |                                                                           |
| 7  |                          |                                               |                                                                           |
| 8  | Sales                    | Dec                                           | Jan                                                                       |
| 9  | Seasonality Index        | 1.18                                          | 0.79                                                                      |
| 10 | Base Sales               | 6000                                          | 6000                                                                      |
| 11 | Actual Sales             | =SeasonalityIndex*BaseSales                   | =SeasonalityIndex*BaseSales                                               |
| 12 | Fraction Cash Customers  | 0.42                                          | 0.38666666666667                                                          |
| 13 |                          |                                               |                                                                           |
| 14 | Interest Rates           |                                               |                                                                           |
| 15 | Prime Rate Change        |                                               | 1.6784487245436E-19                                                       |
| 16 | Prime Rate               | =InitialPrimeRate                             | =B16+PrimeRateChange                                                      |
| 17 | Loan Interest Rate       | =MIN(PrimeRate+LoanRateGap,LoanRateMax)       | =MIN(PrimeRate+LoanRateGap,LoanRateMax)                                   |
| 18 |                          | =MAX(PrimeRate+SavingsRateGap,SavingsRateMin) | =MAX(PrimeRate+SavingsRateGap,SavingsRateMin)                             |
| 19 | <u> </u>                 | , , , , , , , , , , , , , , , , , , , ,       | ,                                                                         |
| 20 | Manufacturing Costs      |                                               |                                                                           |
| 21 | Replacement Parts Needed |                                               | 0.8                                                                       |
| 22 |                          |                                               |                                                                           |
| 23 | Variable Cost            |                                               | 7                                                                         |
| 24 |                          |                                               |                                                                           |
| 25 | Cash Flows               |                                               |                                                                           |
| 26 | Beginning Balance        |                                               | =B37                                                                      |
| 27 | Cash Receipts            |                                               | =ActualSales*FractionCashCustomers*SellingPrice                           |
| 28 | 30-Day Credit Receipts   |                                               | =B11*(1-B12)*SellingPrice                                                 |
| 29 | Fixed Cost               |                                               | =-MonthlyFixedCost                                                        |
| 30 | Total Variable Cost      |                                               | =-VariableCost*ActualSales                                                |
| 31 | Repair Cost              |                                               | =-ReplacementPartsNeeded*ReplacementPartCost                              |
| 32 | Loan Payoff              |                                               | =-B36                                                                     |
| 33 | Loan Interest            |                                               | =-B36*B17                                                                 |
| 34 | Savings Interest         |                                               | =B37*B18                                                                  |
| 35 | Balance Before Loan      |                                               | =SUM(C26:C34)                                                             |
| 36 | New Loan                 |                                               | =IF(BalanceBeforeLoan<=MinimumBalance,MinimumBalance-BalanceBeforeLoan,0) |
| 37 | Ending Balance           | =StartingBalance                              | =BalanceBeforeLoan+NewLoan                                                |
| 38 |                          | <u> </u>                                      | >=                                                                        |
| 39 | Minimum Balance          |                                               | =MinimumBalance                                                           |
| 40 |                          |                                               |                                                                           |
| 41 | Ending Net Worth         | =035                                          |                                                                           |
| 42 | Enang Not Worth          |                                               |                                                                           |
| 43 | Maximum Loan             | =MAX(NewLoan)                                 |                                                                           |
| 43 | Waxiiiiuiii Luaii        | -IVIAA(IVEWLOGII)                             |                                                                           |


|    | Δ.                       |           | 1/        |           |           | N I       |            |          |      |        |
|----|--------------------------|-----------|-----------|-----------|-----------|-----------|------------|----------|------|--------|
| 1  | A                        | J         | K         | L         | M         | N         | 0          | Р        | Q    | R      |
| _  | 0 11: 0:                 |           |           |           |           |           |            |          |      |        |
| 2  | Selling Price            |           |           |           |           |           |            |          |      |        |
| 3  | Replacement Part Cost    |           |           |           |           |           |            |          |      |        |
| 4  | Monthly Fixed Cost       |           |           |           |           |           |            |          |      |        |
| 5  | Minimum Balance          |           |           |           |           |           |            |          |      |        |
| 6  | Starting Balance         |           |           |           |           |           |            |          |      |        |
| 7  |                          |           |           |           |           |           |            |          |      |        |
| 8  | Sales                    | August    | Sept      |           | November  |           | January    |          |      |        |
| 9  | Seasonality Index        | 0.98      | 1.06      | 1.1       | 1.16      | 1.18      |            |          |      |        |
| 10 | Base Sales               | 6,000     | 6,000     | 6,000     | 6,000     | 6,000     | Normal     | prev mo. | 500  |        |
| 11 | Actual Sales             | 5,880     | 6,360     | 6,600     | 6,960     | 7,080     |            |          |      |        |
| 12 | Fraction Cash Customers  | 39%       | 39%       | 39%       | 39%       | 39%       | Triangular | 28%      | 40%  | 48%    |
| 13 |                          |           |           |           |           |           |            |          |      |        |
| 14 | Interest Rates           |           |           |           |           |           |            |          |      |        |
| 15 | Prime Rate Change        | 0.00%     | 0.00%     | 0.00%     | 0.00%     | 0.00%     | Custom     | -0.50%   | 0.05 |        |
| 16 | Prime Rate               | 5.00%     | 5.00%     | 5.00%     | 5.00%     | 5.00%     |            | -0.25%   | 0.1  |        |
| 17 | Loan Interest Rate       | 7.00%     | 7.00%     | 7.00%     | 7.00%     | 7.00%     |            | 0%       | 0.7  |        |
| 18 | Savings Interest Rate    | 3.00%     | 3.00%     | 3.00%     | 3.00%     | 3.00%     |            | 0.25%    | 0.1  |        |
| 19 |                          |           |           |           |           |           |            | 0.50%    | 0.05 |        |
|    | Manufacturing Costs      |           |           |           |           |           |            |          |      |        |
| 21 | Replacement Parts Needed | 0.8       | 0.8       | 0.8       | 8.0       | 0.8       | Binomial   | 10%      | 8    |        |
| 22 |                          |           |           |           |           |           |            |          |      |        |
| 23 | Variable Cost            | \$7       | \$7       | \$7       | \$7       | \$7       | Uniform    | \$6      | \$8  |        |
| 24 |                          |           |           |           |           |           |            |          |      |        |
| 25 | Cash Flows               |           |           |           |           |           |            |          |      |        |
| 26 | Beginning Balance        |           | \$20,000  | \$20,000  | \$20,000  | \$20,000  | \$20,000   |          |      |        |
| 27 | Cash Receipts            | \$22,736  | \$24,592  | \$25,520  | \$26,912  | \$27,376  |            |          |      |        |
| 28 | 30-Day Credit Receipts   | \$27,232  | \$36,064  | \$39,008  | \$40,480  | \$42,688  | \$43,424   |          |      |        |
| 29 | Fixed Cost               |           | -\$15,000 | -\$15,000 | -\$15,000 | -\$15,000 |            |          |      |        |
| 30 | Total Variable Cost      | -\$41,160 | -\$44,520 | -\$46,200 | -\$48,720 | -\$49,560 |            |          |      |        |
| 31 | Repair Cost              | -\$4,000  | -\$4,000  | -\$4,000  | -\$4,000  | -\$4,000  |            |          |      |        |
| 32 | Loan Payoff              | \$0       | -\$4,171  | -\$6,727  | -\$7,270  | -\$7,507  | -\$5,928   |          |      |        |
| 33 | Loan Interest            | \$0       | -\$292    | -\$471    | -\$509    | -\$525    | -\$415     |          |      |        |
| 34 | Savings Interest         | \$758     | \$600     | \$600     | \$600     | \$600     | \$600      |          |      |        |
| 35 | Balance Before Loan      | \$15,829  | \$13,273  | \$12,730  | \$12,493  | \$14,072  | \$57,681   |          |      |        |
| 36 | New Loan                 | \$4,171   | \$6,727   | \$7,270   | \$7,507   | \$5,928   |            |          |      |        |
| 37 | Ending Balance           | \$20,000  | \$20,000  | \$20,000  | \$20,000  | \$20,000  |            |          |      |        |
| 38 | -                        | >=        | >=        | >=        | >=        | >=        |            |          |      |        |
| 39 | Minimum Balance          | \$20,000  | \$20,000  | \$20,000  | \$20,000  | \$20,000  |            |          |      |        |
| 40 |                          |           |           |           |           |           |            |          |      |        |
| 41 | Ending Net Worth         |           |           |           |           |           |            |          |      |        |
| 42 | <u> </u>                 |           |           |           |           |           |            |          |      | $\Box$ |
| 43 | Maximum Loan             |           |           |           |           |           |            |          |      |        |
|    | Maximum Luan             |           |           |           | l .       | 1         |            | 1        | 1    | 1      |

|    | A                        | N                                                                         | 0                         |
|----|--------------------------|---------------------------------------------------------------------------|---------------------------|
| 1  |                          |                                                                           |                           |
| 2  | Selling Price            |                                                                           |                           |
| 3  | Replacement Part Cost    |                                                                           |                           |
| 4  | Monthly Fixed Cost       |                                                                           |                           |
| 5  | Minimum Balance          |                                                                           |                           |
| 6  | Starting Balance         |                                                                           |                           |
| 7  |                          |                                                                           |                           |
| 8  | Sales                    | December                                                                  | January                   |
| 9  | Seasonality Index        | 1.18                                                                      | ,                         |
| 10 | Base Sales               |                                                                           | Normal                    |
| 11 | Actual Sales             | =SeasonalityIndex*BaseSales                                               |                           |
| 12 | Fraction Cash Customers  |                                                                           | Triangular                |
| 13 |                          |                                                                           |                           |
| 14 | Interest Rates           |                                                                           |                           |
| 15 | Prime Rate Change        | 1.6784487245436E-19                                                       | Custom                    |
| 16 | Prime Rate               | =M16+PrimeRateChange                                                      |                           |
| 17 | Loan Interest Rate       | =MIN(PrimeRate+LoanRateGap,LoanRateMax)                                   |                           |
| 18 | Savings Interest Rate    | =MAX(PrimeRate+SavingsRateGap,SavingsRateMin)                             |                           |
| 19 | -                        | ,                                                                         |                           |
| 20 | Manufacturing Costs      |                                                                           |                           |
| 21 | Replacement Parts Needed | 0.8                                                                       | Binomial                  |
| 22 |                          |                                                                           |                           |
| 23 | Variable Cost            | 7                                                                         | Uniform                   |
| 24 |                          |                                                                           |                           |
|    | Cash Flows               |                                                                           |                           |
| 26 | Beginning Balance        |                                                                           | =N37                      |
| 27 |                          | =ActualSales*FractionCashCustomers*SellingPrice                           |                           |
| 28 |                          | =M11*(1-M12)*SellingPrice                                                 | =N11*(1-N12)*SellingPrice |
| 29 |                          | =-MonthlyFixedCost                                                        |                           |
| 30 |                          | =-VariableCost*ActualSales                                                |                           |
| 31 |                          | =-ReplacementPartsNeeded*ReplacementPartCost                              |                           |
| 32 | Loan Payoff              |                                                                           | =-N36                     |
| 33 | Loan Interest            |                                                                           | =-N36*N17                 |
| 34 | Savings Interest         |                                                                           | =N37*N18                  |
| 35 | Balance Before Loan      |                                                                           | =SUM(O26:O34)             |
| 36 |                          | =IF(BalanceBeforeLoan<=MinimumBalance,MinimumBalance-BalanceBeforeLoan,0) |                           |
| 37 | Ending Balance           | =BalanceBeforeLoan+NewLoan                                                |                           |
| 38 |                          | >=                                                                        |                           |
| 39 | Minimum Balance          | =MinimumBalance                                                           |                           |
| 40 |                          |                                                                           |                           |
| 41 | Ending Net Worth         |                                                                           |                           |
| 42 |                          |                                                                           |                           |
| 43 | Maximum Loan             |                                                                           |                           |


The range names are as follows:

| Range Name             | Cells   |
|------------------------|---------|
| ActualSales            | B11:N11 |
| BalanceBeforeLoan      | C35:N35 |
| BaseSales              | B10:N10 |
| BeginningBalance       | C26:N26 |
| CashReceipts           | C27:N27 |
| CreditReceipts         | C28:N28 |
| EndingBalance          | C37:N37 |
| EndingNetWorth         | B41     |
| FixedCost              | C29:N29 |
| FractionCashCustomers  | B12:N12 |
| InitialPrimeRate       | G2      |
| LoanInterest           | C33:N33 |
| LoanPayoff             | C32:N32 |
| LoanRate               | B17:N17 |
| LoanRateGap            | G3      |
| LoanRateMax            | G4      |
| MaximumLoan            | B43     |
| MinimumBalance         | B5      |
| MonthlyFixedCost       | B4      |
| NewLoan                | C36:N36 |
| PrimeRate              | B16:N16 |
| PrimeRateChange        | C15:N15 |
| RepairCost             | C31:N31 |
| ReplacementPartCost    | B3      |
| ReplacementPartsNeeded | C21:N21 |
| SavingsInterest        | C34:N34 |
| SavingsRate            | B18:N18 |
| SavingsRateGap         | G5      |
| SavingsRateMin         | G6      |
| SeasonalityIndex       | B9:N9   |
| SellingPrice           | B2      |
| StartingBalance        | B6      |
| TotalVariableCost      | C30:N30 |
| VariableCost           | C23:N23 |

(b) The mean ending net worth is approximately \$54.7 thousand. The probability that it will be greater than \$0 is approximately 85.8%.



(c) The maximum short-term loan is forecasted in cell B43. The cumulative chart and percentile chart follow. These charts indicate that the maximum short-term loan averages just over \$25 thousand. However, to be fairly sure that the credit limit is high enough, it should probably be set quite a bit higher. The cumulative chart shows the probability that any given credit limit will be large enough. For example, a \$75 thousand credit limit has about a 95% chance of being sufficient.



20.3 <u>Current Situation</u>: A simulation run (shown below) indicates that the average number of jobs in the system is 2.0. Of these, half will be platen castings (1) and half will be housing castings (1). The waiting cost is therefore (\$200)(1) + (\$100)(1) = \$300 / hour.

|    | Α   | В                        | С                     | D    | E                 | F          | G            | Н            |
|----|-----|--------------------------|-----------------------|------|-------------------|------------|--------------|--------------|
| 1  | Te  | emplate for Queueing     | Simulation            |      |                   |            |              |              |
| 2  | 1   |                          |                       | 2.11 |                   |            |              |              |
| 3  | 1 - |                          | Data                  |      |                   |            | Results      |              |
| 4  | 1 - | Number of Servers =      | 2                     |      |                   | Point      | 95% Confider | nce Interval |
| 5  | 1 - |                          | Γ                     |      |                   | Estimate   | Low          | High         |
| 6  | 1   | Interarrival Times       |                       |      | L=                | 1.98365641 | -1.870700578 | 2.096612244  |
| 7  | 1 - | Distribution =           | Exponential           |      | L, =              | 0.66628639 | 0.575783306  | 0.756789465  |
| 8  |     | Mean =                   | 15                    |      | W=                | 30.0811805 | 28.73655618  | 31,4258049   |
| 9  | 1 - |                          |                       |      | W <sub>4</sub> =  | 10.1039076 | 8.845870432  | 11,36194473  |
| 10 | 1   |                          |                       |      |                   |            |              |              |
| 11 | 1 " | Service Times            |                       |      | P <sub>0</sub> =  | 0.19988054 | 0.188799674  | 0.210961405  |
| 12 | 1   | Distribution =           | ranslated Exponential |      | P <sub>1</sub> =  | 0.2828689  | 0.271597628  | -0.294140162 |
| 13 | 1   | Minimum Value =          | 10                    |      | P <sub>2</sub> =  | 0.21948306 | -0.211376682 | 0.227589435  |
| 14 | 1   | Mean =                   | 20                    |      | P <sub>3</sub> =  | 0.13257277 | 0.125756108  | 0.13938943   |
| 15 | 1   |                          |                       |      | P₄ =              |            | 0.0660523    | 0.078447105  |
| 16 | 1   | Length of Simulation Run |                       |      | P <sub>5</sub> =  | 0.04178641 | 0.036150923  | 0.047421901  |
| 17 | 1 - | Number of Arrivals =     | 10,000                |      | P <sub>6</sub> =  | 0.02261418 | 0.018147395  | 0.027080961  |
| 18 | 1   |                          |                       |      | P <sub>7</sub> =  | 0.0129863  | 0.009197547  | 0.016775062  |
| 19 | 1-  |                          |                       |      | P <sub>8</sub> =  | 0.00771744 | 0.004659116  | 0.010775773  |
| 20 | 1 - |                          |                       |      | P <sub>9</sub> =  | 0.003861   | 0.001884639  | 0.005837354  |
| 21 | † – | Run Simulation           |                       |      | P <sub>10</sub> = | 0.00185903 | 0.000591296  | 0.003126755  |

<u>Proposal 1</u>: A simulation run (shown below) indicates that the average number of jobs in the system with three planers is approximately 1.4. Of these, half will be platen castings (0.7) and half will be housing castings (0.7). The waiting cost is therefore (\$200)(0.7) + (\$100)(0.7) = \$210 / hour. The savings (\$90 / hour) is substantially more than the added cost of the third planer (\$30 / hour), so this looks to be worthwhile. The net savings would be \$60 / hour.

|    | А В                      | C                                          | D | E                 | F          | G            | Н            |
|----|--------------------------|--------------------------------------------|---|-------------------|------------|--------------|--------------|
| 1  | Template for Queuein     | ng Simulation                              |   |                   |            |              |              |
| 2  | T                        |                                            |   |                   |            |              |              |
| 3  |                          | Data                                       |   |                   |            | Results      |              |
| 4  | Number of Servers :      | 3                                          |   |                   | Point      | 95% Confiden | ce Interval  |
| 5  |                          |                                            |   |                   | Estimate   | Low          | High         |
| 6  | Interarrival Times       |                                            |   | L =               | 1.42409865 | 1,380256124  | 1.467941167  |
| 7  | Distribution :           | Exponential                                |   | L <sub>a</sub> =  | 0.09771456 | 0.076609893. | 0,11881923   |
| 8  | Mean :                   | = 15                                       |   | W =               | 21.4712624 | 21.07385924  | 21,86866564  |
| 9  |                          |                                            |   | W <sub>q</sub> =  | 1.47325117 | 1.168148546  | 1.778353785  |
| 10 |                          |                                            |   |                   |            |              |              |
| 11 | Service Times            |                                            |   |                   | 0 25534157 | 0.245577077  | 0.265106061  |
| 12 | Distribution :           | <ul> <li>Translated Exponential</li> </ul> |   |                   | 0.33796761 | 0.329893149  | 0.346042064  |
| 13 | Minimum Value :          | 10                                         |   |                   | 0.231656   | 0.224819899  | 0.238492092  |
| 14 | Mean :                   | = 20                                       |   | P <sub>3</sub> =  | 0.11158027 | 0:106409547  | 0.116750986  |
| 15 |                          |                                            |   |                   | 0.04233244 | 0.038546771  | 0.046118111  |
| 16 | Length of Simulation Run |                                            |   |                   | 0.01406273 | 0.011836939  | 0.016288531  |
| 17 | Number of Arrivals :     | = 10,000                                   |   | P <sub>6</sub> =  | 0.00409905 |              | 0.005378708  |
| 18 |                          |                                            |   | P <sub>7</sub> =  | 0.00133435 | 0.000425396  | 0.002243309  |
| 19 |                          |                                            |   | P <sub>8</sub> =  | 0.00080672 | -0.000131529 | 0.001744969  |
| 20 |                          |                                            |   | P <sub>9</sub> =  | 0.00036429 | -0.000147459 | _0.000876045 |
| 21 | Run Simulatio            | n                                          |   | P <sub>10</sub> = | 0.00025729 | -0.000188128 | 0.000702701  |

<u>Proposal 2</u>: A simulation run (shown below) indicates that the average number of jobs in the system with constant interarrival times is approximately 1.4. Of these, half will be platen castings (0.7) and half will be housing castings (0.7). The waiting cost is therefore (\$200)(0.7) + (\$100)(0.7) = \$210 / hour. The savings (\$90 / hour) is somewhat more than the added cost of changing the preceding production cost (\$60 / hour). The net savings (\$30) is less than for proposal 1, so this option is less worthwhile.

|    |                                         | С                      | D | ΙE                | F          | G            | н           |
|----|-----------------------------------------|------------------------|---|-------------------|------------|--------------|-------------|
|    | A B                                     |                        |   |                   | <b>'</b>   | <del> </del> |             |
| 1  | Template for Queueing                   | simulation             |   |                   |            |              |             |
| 2  |                                         |                        |   |                   |            |              |             |
| 3  |                                         | Data                   |   |                   |            | Results      |             |
| 4  | Number of Servers =                     | 2                      |   |                   | Point      | 95% Confiden |             |
| 5  |                                         |                        |   |                   | Estimate   | Low          | High        |
| 6  | Interarrival Times                      |                        |   | L=                | 1.40396168 | 1.383412164  | 1.424511205 |
| 7  | Distribution =                          | Constant               |   | L,=               | D.06455913 | 0.055139154  | 0.073979097 |
| 8  | Value =                                 | 15                     |   | W =               | 21.0594253 | 20.75118246  | 21,36766807 |
| 9  |                                         |                        |   | W <sub>a</sub> =  | 0.96838689 | 0.82708731   | 1,109686461 |
| 10 |                                         |                        |   |                   |            |              |             |
| 11 | Service Times                           |                        |   | P <sub>o</sub> =  | 0.05142644 | 0.049243293  | 0.053609594 |
| 12 |                                         | Translated Exponential |   | P, =              | 0.55774455 | 0.547877528  | 0.56761158  |
| 13 | Minimum Value =                         | 10                     |   | P <sub>2</sub> =  | 0.33345643 |              | 0.341234095 |
| 14 | Mean =                                  | 20                     |   | P <sub>3</sub> =  | 0.05060063 |              | 0.055938746 |
| 15 |                                         |                        |   | P₄=               | 0.00635733 | 0.004037203  | 0.008677449 |
| 16 | Length of Simulation Run                |                        |   | P <sub>5</sub> =  | 0.00041461 | 2.30036E-06  | 0.000826928 |
| 17 | Number of Arrivals =                    | 10,000                 |   | P <sub>6</sub> =  |            | 0            | 0           |
| 18 | *************************************** | *                      |   | P <sub>7</sub> =  |            | 0            | -0          |
| 19 | l                                       |                        |   | P <sub>8</sub> =  | 0          | - 0          | -0          |
| 20 | t                                       |                        |   | P <sub>9</sub> =  | 0          | 0            | 0           |
| 21 | Run Simulation                          |                        |   | P <sub>10</sub> = | -0         | 0            | 0           |

<u>Proposal 1 and 2</u>: A simulation run (shown below) indicates that the average number of jobs in the system with both three planers and constant interarrival times is approximately 1.33. Of these, half will be platen castings (0.665) and half will be housing castings (0.665). The waiting cost is therefore (\$200)(0.665) + (\$100)(0.665) = \$200 / hour. The savings (\$85 / hour) is less than the combined cost of adding a third planer and changing the preceding production cost (\$90 / hour), so this combined option does not appear to be worthwhile.

|    | IAI B                                   | С                      | D      | Ε                 | F .        | G            | Н           |
|----|-----------------------------------------|------------------------|--------|-------------------|------------|--------------|-------------|
| 1  | Template for Queueing                   | Simulation             |        |                   |            |              |             |
| 2  |                                         |                        |        |                   |            |              |             |
| 3  |                                         | Data                   |        |                   |            | Results      |             |
| 4  | Number of Servers =                     | 3                      |        |                   | Point      | 95% Confider |             |
| 5  | *************************************** |                        |        |                   | Estimate   | Low          | High        |
| 6  | Interarrival Times                      |                        |        | L=                | 1,32985569 | 1,316690172  | 1.343021211 |
| 7  | Distribution =                          | Constant               |        | L <sub>a</sub> =  | 0.00052554 | 0.000184596  |             |
| 8  | Value =                                 | 15                     |        | W =               | 19.9478354 | 19,75035259  | 20.14531816 |
| 9  | 1                                       |                        |        | W <sub>a</sub> =  | 0.00788307 | 0.002768944  | 0.012997201 |
| 10 | 1                                       |                        |        |                   |            |              |             |
| 11 | Service Times                           |                        |        | P <sub>0</sub> =  | 0.05754771 | 0.055474824  | 0.059620587 |
| 12 | Distribution =                          | Translated Exponential |        | P₁ =              | 0.58946474 | 0.581401676  | 0.5975278   |
| 13 | Minimum Value =                         | 10                     | - Same | P <sub>2</sub> =  | 0.31909725 | 0.311531281  | 0.326663225 |
| 14 | Mean =                                  | 20                     |        | P <sub>3</sub> =  | 0.03336476 | 0.03022801   | 0.036501519 |
| 15 | - Ancarr                                | <del></del>            |        | P4 =              | 0.00052554 | 0.000184596  | 0.00086648  |
| 16 | Length of Simulation Run                |                        |        | P <sub>5</sub> =  |            | 0            | d           |
| 17 | Number of Arrivals =                    | 10.000                 | 7.11   | P <sub>6</sub> =  |            | - 0          | q           |
| 18 | Number of Amvais -                      | 10,000                 |        | P <sub>7</sub> =  |            | 0-           | d           |
| 19 | 4                                       |                        |        | P, =              | - 60       | 0            | - 0         |
|    |                                         |                        | ·      | P <sub>e</sub> =  |            | 0            | d           |
| 20 | Run Simulation                          | 1                      |        | P <sub>10</sub> = |            | - 0          | - 0         |

Overall recommendation: Proposal 1 appears to be the most worthwhile with a net savings of about \$36/hour over the current situation. Other proposals that may be worth looking into should include giving priority to platen castings, because of the higher waiting cost for that type of job.

### **CASE 20.4 Pricing under Pressure**

(a) Before we begin the formal problem, we must first calculate the mean  $\mu$  and standard deviation  $\sigma$  of the normally distributed random variable N. We are told that the annual interest rate will be used to estimate  $\mu$  and the historical annual volatility will be used to estimate  $\sigma$ . Because the case is simulating weekly – not yearly – change, we must convert these yearly values to weekly values.

We first convert the annual interest rate r = 8% to a weekly interest rate w with the following formula:

$$w = (1+r)^{(1/52)} - 1$$
  
=  $(1+0.08)^{(1/52)} - 1$   
=  $(1.08)^{(1/52)} - 1$   
=  $0.00148$ 

We next convert the annual volatility  $V_a = 0.30$  to a weekly volatility  $V_w$  with the following formula:

$$V_{\rm w} = V_{\rm a} / \sqrt{52}$$
  
= 0.30 /  $\sqrt{52}$   
= 0.0416

Once we have the weekly interest rate and volatility, we can calculate  $\mu$  and  $\sigma$ .

$$\mu = w - 0.5(V_{\rm w})^2$$

$$= 0.00148 - 0.5(0.0416)^2$$

$$= 0.0006$$

$$\sigma = V_{\rm w}$$

$$= 0.0416$$

- 1. One component appears in this system: the stock price. The stock price in the previous week is used to calculate the stock price in the next week. The relationship between the stock price in the previous week and the stock price in the next week is given by  $s_n = e^N s_c$ .
- 2. State of the system: P(t) = price of the stock at time t.
- 3. This simulation requires generating a series of random observations from the normal distribution. Each random observation is a normally distributed random variable that determines the increase or decrease of the stock price at the end of next week. The random variable is substituted for N in the following equation:

$$s_n = e^N s_c$$

To generate a series of random variables, we define an assumption cell with normal distribution, where  $\mu = 0.0006$  and  $\sigma = 0.0416$ .

- 4. The formula  $s_n = e^N s_c$  gives us a procedure for changing the price (the state of the system) when an event occurs.
- 5. In this simulation, the time periods are fixed. We have a twelve-week period, and we need to calculate the change in the stock price each week. We have a formula  $s_n = e^N s_c$  that relates the stock price at the end of the next week to the stock price at the end of the previous week. Thus, we do not have to worry about advancing the clock. We simply have to generate N for each of the twelve weeks.
- 6. We need to build a spreadsheet using the Crystal Ball. We start with the current stock price of \$42.00. We then use the formula  $s_n = e^N s_c$  to calculate the stock price at the end of each of the twelve weeks. We substitute a Crystal Ball assumption cell with normal distribution (with mean  $\mu = 0.0006$ , and standard deviation  $\sigma = 0.0416$ ) for N.

We then use the stock price at the end of the twelfth week to calculate the value of the option at the end of the twelfth week. If the stock price at the end of the twelfth week is greater than the exercise price of \$44.00, the value of the option is the difference between the value of the stock at the end of the twelfth week and the exercise price. If the stock price at the end of the twelfth week is less than or equal to the exercise price of \$44.00, the value of the option is \$0.

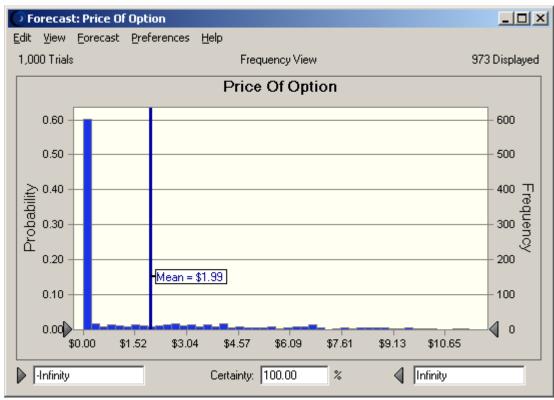
Finally, we need to discount the value of the option at the end of the twelfth week to the value of the option in today's dollars using the following formula:

(Value of the option at the end of the twelfth week)  $/ (1.00148)^{12}$ 

The spreadsheet model is shown below. The assumption cells are the N values (B8:B19), and the forecast cell is the price of the option today (C22).


|    | А               | В                     | С               | D  | E                    | F      |
|----|-----------------|-----------------------|-----------------|----|----------------------|--------|
| 1  | Simulation      | Model to Estin        | nate Option Val | ue |                      |        |
| 2  |                 |                       |                 |    |                      |        |
| 3  |                 | Current Stock Price   | \$42.00         |    | Annual Interest Rate | 8%     |
| 4  |                 | Exercise Price        | \$44.00         |    | Weekly Interest Rate | 0.148% |
| 5  |                 |                       |                 |    |                      |        |
| 6  |                 |                       | Stock Price at  |    | Annual Volatility    | 30%    |
| 7  | Week            | N                     | End of Week     |    | Weekly Volatility    | 4.160% |
| 8  | 1               | 0.000615731           | \$42.03         |    |                      |        |
| 9  | 2               | 0.000615731           | \$42.05         |    | μ=                   | 0.0006 |
| 10 | 3               | 0.000615731           | \$42.08         |    | σ=                   | 0.0416 |
| 11 | 4               | 0.000615731           | \$42.10         |    |                      |        |
| 12 | 5               | 0.000615731           | \$42.13         |    |                      |        |
| 13 | 6               | 0.000615731           | \$42.16         |    |                      |        |
| 14 | 7               | 0.000615731           | \$42.18         |    |                      |        |
| 15 | 8               | 0.000615731           | \$42.21         |    |                      |        |
| 16 | 9               | 0.000615731           | \$42.23         |    |                      |        |
| 17 | 10              | 0.000615731           | \$42.26         |    |                      |        |
| 18 | 11              | 0.000615731           | \$42.29         |    |                      |        |
| 19 | 12              | 0.000615731           | \$42.31         |    |                      |        |
| 20 |                 |                       |                 |    |                      |        |
| 21 | Price of Option | on at end of Week 12  | \$0.00          |    |                      |        |
| 22 | F               | Price of Option Today | \$0.00          |    |                      |        |

|    | Α   | В                                 | С                                          |
|----|-----|-----------------------------------|--------------------------------------------|
| 3  |     | Current Stock Price               | 42                                         |
| 4  |     | Exercise Price                    | 44                                         |
| 5  |     |                                   |                                            |
| 6  |     |                                   | Stock Price at                             |
| 7  | eek | N                                 | End of Week                                |
| 8  | 1   | 0.000615731176617215              | =CurrentStockPrice*EXP(B8)                 |
| 9  | 2   | 0.000615731176617215              | =EXP(B9)*C8                                |
| 10 | 3   | 0.000615731176617215              | =EXP(B10)*C9                               |
| 11 | 4   | 0.000615731176617215              | =EXP(B11)*C10                              |
| 12 | 5   | 0.000615731176617215              | =EXP(B12)*C11                              |
| 13 | 6   | 0.000615731176617215              | =EXP(B13)*C12                              |
| 14 | 7   | 0.000615731176617215              | =EXP(B14)*C13                              |
| 15 | 8   | 0.000615731176617215              | =EXP(B15)*C14                              |
| 16 | 9   | 0.000615731176617215              | =EXP(B16)*C15                              |
| 17 | 10  | 0.000615731176617215              | =EXP(B17)*C16                              |
| 18 | 11  | 0.000615731176617215              | =EXP(B18)*C17                              |
| 19 | 12  | 0.000615731176617215              | =EXP(B19)*C18                              |
| 20 |     |                                   |                                            |
| 21 |     | Price of Option at end of Week 12 | =IF(C19>ExercisePrice,C19-ExercisePrice,0) |
| 22 |     | Price of Option Today             | =C21/(1+WeeklyInterestRate)^12             |


| Range Name         | Cells |
|--------------------|-------|
| AnnualInterestRate | F3    |
| AnnualVolatility   | F6    |
| CurrentStockPrice  | C3    |
| ExercisePrice      | C4    |
| Mean               | F9    |
| PriceOfOption      | C22   |
| StandardDeviation  | F10   |
| WeeklyInterestRate | F4    |
| WeeklyVolatility   | F7    |

|    | E                    | F                                            |
|----|----------------------|----------------------------------------------|
| 3  | Annual Interest Rate | 0.08                                         |
| 4  | Weekly Interest Rate | =((1+AnnualInterestRate)^(1/52))-1           |
| 5  |                      |                                              |
| 6  | Annual Volatility    | 0.3                                          |
| 7  | Weekly Volatility    | =AnnualVolatility/SQRT(52)                   |
| 8  |                      |                                              |
| 9  | $\mu =$              | =WeeklyInterestRate-0.5*(WeeklyVolatility^2) |
| 10 | $\sigma =$           | =WeeklyVolatility                            |

The mean of the "Price of Option Today" is the price of the option in today's dollars. The simulation results after 100, 500, and 1,000 trials are shown below.







(b) Using the Black-Scholes Formula, the price of the option is \$1.88. The spreadsheet used to calculate the Black-Scholes Formula in Excel follows:

|    | Α                                           | В                            | С       | D | E        | F            |
|----|---------------------------------------------|------------------------------|---------|---|----------|--------------|
| 1  | 1 Black-Scholes Calculation of Option Value |                              |         |   |          |              |
| 2  |                                             |                              | -       |   |          |              |
| 3  |                                             | Current Stock Price          | \$42.00 |   | Black-Sc | holes        |
| 4  |                                             |                              |         |   | d1 =     | -0.127503153 |
| 5  |                                             | Weeks to exercise date       | 12      |   | d2 =     | -0.271618491 |
| 6  |                                             | Exercise Price               | \$44.00 |   |          |              |
| 7  |                                             | Exercise Price Present Value | \$43.23 |   | N[d1] =  | 0.449271051  |
| 8  |                                             |                              |         |   | N[d2] =  | 0.39295775   |
| 9  |                                             | Annual Interest Rate         | 8%      |   |          |              |
| 10 |                                             | Weekly Interest Rate         | 0.148%  |   | Value =  | \$1.88       |
| 11 |                                             |                              |         |   |          |              |
| 12 |                                             | Annual Volatility            | 30%     |   |          |              |
| 13 |                                             | Weekly Volatility            | 4.160%  |   |          |              |
| 14 |                                             |                              |         |   |          | _            |
| 15 |                                             | $\mu =$                      | 0.0006  |   |          |              |
| 16 |                                             | $\sigma =$                   | 0.0416  |   |          |              |

|    | E             | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  | Black-Scholes |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4  |               | =LN(CurrentStockPrice/ExercisePricePV)/(StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDeviation*SQRT(WeeksToExerciseDate) |
| 5  | d2 =          | =d_1-StandardDeviation*SQRT(WeeksToExerciseDate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7  | N[d1] =       | =NORMSDIST(d_1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8  | N[d2] =       | =NORMSDIST(d_2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10 | Value =       | =Nd1*CurrentStockPrice-Nd2*ExercisePricePV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Range Name          | Cells |
|---------------------|-------|
| AnnualInterestRate  | C9    |
| AnnualVolatility    | C12   |
| CurrentStockPrice   | C3    |
| d_1                 | F4    |
| d_2                 | F5    |
| ExercisePrice       | C6    |
| ExercisePricePV     | C7    |
| Mean                | C15   |
| Nd1                 | F7    |
| Nd2                 | F8    |
| StandardDeviation   | C16   |
| Value               | F10   |
| WeeklyInterestRate  | C10   |
| WeeklyVolatility    | C13   |
| WeeksToExerciseDate | C5    |

The price of the option obtained by simulation and the price of the option obtained by the Black-Scholes formula are fairly close. The 1,000-iteration simulation price is off by just thirteen cents.

(c) No, a random walk does not completely describe the price movement of the stock because the random walk assumes a consistent lognormal increase or decrease in the price of the stock. The price of the stock could change according to a different distribution, however, especially if an event occurs to trigger a dramatic increase or decrease in the stock. In this case, the European Space Agency may award Fellare the International Space Station contract. The award notice would most likely trigger a dramatic movement in the stock. The random walk does not take into account this dramatic event.

# SUPPLEMENT 1 TO CHAPTER 20 VARIANCE-REDUCING TECHNIQUES

## **20S1-1.**

(a)

$$r = P\{X \le x\} = \int_1^x \frac{dt}{t^2} = 1 - \frac{1}{x} \Rightarrow x = \frac{1}{1-r}$$

| r     | x = 1/(1-r) |
|-------|-------------|
| 0.096 | 1.106       |
| 0.569 | 2.320       |
| 0.665 | 2.985       |
| 0.764 | 4.237       |
| 0.842 | 6.329       |
| 0.492 | 1.969       |
| 0.224 | 1.289       |
| 0.950 | 20.000      |
| 0.610 | 2.564       |
| 0.145 | 1.170       |

$$\hat{\mu} = \frac{43.969}{10} = 4.3969$$

(b) Stratum 1: r' = 0.0 + 0.6r

Stratum 2: r' = 0.6 + 0.3r

Stratum 3: r' = 0.9 + 0.1r

Let w denote the sampling weight.

| Stratum | r     | r'    | x = 1/(1 - r') | w   | x/w    |
|---------|-------|-------|----------------|-----|--------|
| 1       | 0.096 | 0.058 | 1.062          | 1/2 | 2.124  |
| 1       | 0.569 | 0.341 | 1.517          | 1/2 | 3.034  |
| 1       | 0.665 | 0.399 | 1.664          | 1/2 | 3.328  |
| 2       | 0.764 | 0.829 | 5.848          | 1   | 5.848  |
| 2       | 0.842 | 0.853 | 6.803          | 1   | 6.803  |
| 2       | 0.492 | 0.748 | 3.968          | 1   | 3.968  |
| 3       | 0.224 | 0.922 | 12.821         | 4   | 3.205  |
| 3       | 0.950 | 0.995 | 200.000        | 4   | 50.000 |
| 3       | 0.610 | 0.961 | 25.641         | 4   | 6.410  |
| 3       | 0.145 | 0.915 | 11.765         | 4   | 2.941  |

$$\hat{\mu} = \frac{87.661}{10} = 8.7661$$

(c)

$$r' = 1 - r \Rightarrow x' = \frac{1}{1 - r'} = \frac{1}{r}$$

| r               | x = 1/(1 - r') | x'=1/r |
|-----------------|----------------|--------|
| 0.096           | 1.106          | 10.417 |
| 0.569           | 2.320          | 1.757  |
| 0.665           | 2.985          | 1.504  |
| 0.764           | 4.237          | 1.309  |
| 0.842           | 6.329          | 1.188  |
| 0.492           | 1.969          | 2.033  |
| 0.224           | 1.289          | 4.464  |
| 0.950           | 20.000         | 1.053  |
| 0.610           | 2.564          | 1.639  |
| 0.145           | 1.170          | 6.897  |
| Sum             | 43.969         | 32.261 |
| $\widehat{\mu}$ | 4.3969         | 3.2261 |

$$\widehat{\mu} = \frac{4.3969 + 3.2261}{2} = 3.8115$$

## **20S1-2.**

| Stratum | $\boldsymbol{x}$ | $x^2$ | w     | x/w    | $x^2/w$ |
|---------|------------------|-------|-------|--------|---------|
| 1       | 8                | 64    | 18/10 | 80/18  | 640/18  |
| 1       | 5                | 25    | 18/10 | 50/18  | 250/18  |
| 1       | 1                | 1     | 18/10 | 10/18  | 10/18   |
| 1       | 6                | 36    | 18/10 | 60/18  | 360/18  |
| 1       | 3                | 9     | 18/10 | 30/18  | 90/18   |
| 1       | 7                | 49    | 18/10 | 70/18  | 490/18  |
| 2       | 3                | 9     | 9/10  | 60/18  | 180/18  |
| 2       | 5                | 25    | 9/10  | 100/18 | 500/18  |
| 2       | 2                | 4     | 9/10  | 40/18  | 80/18   |
| 3       | 2                | 4     | 3/10  | 120/18 | 240/18  |

$$\widehat{\mu} = \frac{620/18}{10} = 3\frac{4}{9}, E[X^2] = \frac{2840/18}{10} = 15\frac{7}{9}$$

# **20S1-3.**

(a)

$$X = \begin{cases} 0 & \text{if } 0.1 \le r_i < 1\\ 100r_i + 5 & \text{if } 0 \le r_i < 0.1 \end{cases}$$

| $r_i$ | 0.096 | 0.665 | 0.842 | 0.224 | 0.610 |
|-------|-------|-------|-------|-------|-------|
| X     | 14.5  | 0     | 0     | 0     | 0     |

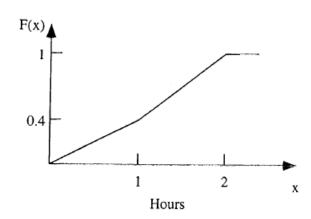
$$\widehat{\mu} = 2.9$$

(b) Stratum 1:  $r^* = 0.0 + 0.9r$ Stratum 2:  $r^* = 0.9 + 0.1r$ ,  $x = 100(r^* - 0.9) + 5$ 

| Stratum | r     | $r^*$  | x     | w   | x/w   |
|---------|-------|--------|-------|-----|-------|
| 1       | 0.096 | 0.0864 | 0.00  | 2/9 | 0.00  |
| 2       | 0.665 | 0.9665 | 11.65 | 8   | 1.46  |
| 2       | 0.842 | 0.9842 | 13.42 | 8   | 1.68  |
| 2       | 0.224 | 0.9224 | 7.24  | 8   | 0.905 |
| 2       | 0.610 | 0.9610 | 11.10 | 8   | 1.39  |

$$\widehat{\mu} = \frac{5.435}{5} = 1.087$$

#### 20S1-4.


(a) 0.0000 to 0.3999 correspond to a minor repair. 0.4000 to 0.9999 correspond to a major repair.

Random observations: 0.7256 = major, 0.0817 = minor, 0.4392 = major

Using random numbers, generate length of each repair: 1.2243 hours, 0.9503 hours, 1.6104 hours. Then the average repair time is

$$(1.2243 + 0.9503 + 1.6104)/3 = 1.26$$
 hours.

(b)



(c)

$$F(x) = \begin{cases} 0.4x & \text{if } 0 \le x \le 1\\ 0.4 + 0.6(x - 1) & \text{if } x \ge 1 \end{cases}$$

$$F(x) = 0.2243 \Rightarrow x = 0.561$$
 hours

$$F(x) = 0.9503 \Rightarrow x = 1.917 \text{ hours}$$

$$F(x) = 0.6104 \Rightarrow x = 1.351 \text{ hours}$$

Average repair time: (0.561 + 1.917 + 1.351)/3 = 1.28 hours

(d) 
$$F(x) = 0.7757 \Rightarrow x = 1.626 \text{ hours}$$

$$F(x) = 0.0497 \Rightarrow x = 0.124 \text{ hours}$$

$$F(x) = 0.3896 \Rightarrow x = 0.974 \text{ hours}$$

Average repair time: (1.626 + 0.124 + 0.974)/3 = 0.91 hours

## (e) Average repair time:

$$(0.561 + 1.917 + 1.351 + 1.626 + 0.124 + 0.974)/6 = 1.09$$
 hours

- (f) The method of complementary random numbers in (e) gave the closest estimate. It performs well because using complements helps counteract rather extreme random numbers such as 0.9503.
- (g) Results will vary. The following 300-day simulation using the method of complementary random numbers yielded an overall average service time of 1.095 minutes. This is very close to the true mean, which is 1.1 minutes.

|     | Random    | Service | Complimentary | Complimentary |
|-----|-----------|---------|---------------|---------------|
| Day | Number    | Time    | Random Number | Service Time  |
| 1   | 0.1348    | 0.337   | 0.8652        | 1.775         |
| 2   | 0.6798    | 1.466   | 0.3202        | 0.800         |
| 3   | 0.7941    | 1.657   | 0.2059        | 0.515         |
| 4   | 0.1825    | 0.456   | 0.8175        | 1.696         |
| 5   | 0.6502    | 1.417   | 0.3498        | 0.874         |
| 6   | 0.1088    | 0.272   | 0.8912        | 1.819         |
| 7   | 0.1153    | 0.288   | 0.8847        | 1.808         |
| 297 | 0.5456    | 1.243   | 0.4544        | 1.091         |
| 298 | 0.3514    | 0.878   | 0.6486        | 1.414         |
| 299 | 0.8990    | 1.832   | 0.1010        | 0.253         |
| 300 | 0.1544    | 0.386   | 0.8456        | 1.743         |
|     | Average   | 1.102   |               | 1.088         |
|     | Overall A | verage  | 1.095         |               |

(h) We get 0.7256, 0.2744, 0.0817, 0.9183, 0.4382, 0.5608 for minor repair times and 1.2243, 1.7757, 1.9503, 1.0497, 1.6104, 1.3896 for major repair times. The weight for minor repair times is (6/12)/0.4 = 1.25 and the weight for major repair times is (6/12)/0.6 = 1.089. By dividing each sample by its corresponding weight, we obtain 1.1 minutes as the estimate of the mean of the overall distribution of repair times.

#### 20S1-5.

- (a) 0.0000 to 0.3999 correspond to no claims filled.
  - 0.4000 to 0.7999 correspond to small claims filled.
  - 0.8000 to 0.9999 correspond to large claims filled.

Random observations: 0.7256 = small, 0.0817 = no, 0.4392 = small

Using random numbers, generate size of each claim:

$$0.2243 \cdot 2,000 = \$448.60, \$0, 0.6104 \cdot 2,000 = \$1,220.80.$$

Then the average claim size is

$$(448.60 + 0 + 1, 220.80)/3 = $556.47.$$

(b)

(c)

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ 0.4 + 0.4 \frac{x}{2,000} & \text{if } 0 \le x \le 2,000\\ 0.8 + 0.2 \frac{(x - 2,000)}{18,000} & \text{if } 2,000 \le x \le 20,000 \end{cases}$$

$$F(x) = 0.2243 \Rightarrow x = \$0$$

$$F(x) = 0.9503 \Rightarrow x = $15,527$$

$$F(x) = 0.6104 \Rightarrow x = \$1,052$$

Average claim size: (\$0 + \$15, 527 + \$1, 052)/3 = \$5, 526.33

(d) 
$$F(x) = 0.7757 \Rightarrow x = \$1,880$$

$$F(x) = 0.0497 \Rightarrow x = \$0$$

$$F(x) = 0.3896 \Rightarrow x = \$0$$

Average claim size: (\$1,880 + \$0 + \$0)/3 = \$626.67

- (e) Average claim size: (\$0 + \$15, 527 + \$1, 052 + \$1, 880 + \$0 + \$0)/6 = \$3,076.50
- (f) The method of complementary random numbers in (e) gave the closest estimate. It performs well because using complements helps counteract rather extreme random numbers such as 0.9503.
- (g) Results will vary. The following 300-day simulation using the method of complementary random numbers yielded an overall average claim size of \$2,547.15. This is very close to the true mean, which is \$2,600.

|     |           |             | Complimentary | Complimentary |
|-----|-----------|-------------|---------------|---------------|
|     | Random    | Size of     | Random        | Size of       |
| Day | Number    | Claim       | Number        | Claim         |
| 1   | 0.2837    | \$0.00      | 0.7163        | \$1,581.27    |
| 2   | 0.4067    | \$33.50     | 0.5933        | \$966.50      |
| 3   | 0.4202    | \$101.18    | 0.5798        | \$898.82      |
| 4   | 0.3473    | \$0.00      | 0.6527        | \$1,263.54    |
| 5   | 0.9728    | \$17,550.20 | 0.0272        | \$0.00        |
| 6   | 0.8839    | \$9,547.73  | 0.1161        | \$0.00        |
| 7   | 0.6365    | \$1,182.61  | 0.3635        | \$0.00        |
| 297 | 0.1141    | \$0.00      | 0.8859        | \$9,734.86    |
| 298 | 0.3657    | \$0.00      | 0.6343        | \$1,171.49    |
| 299 | 0.7641    | \$1,820.30  | 0.2359        | \$0.00        |
| 300 | 0.0532    | \$0.00      | 0.9468        | \$15,215.71   |
|     | Average = | \$2,648.11  |               | \$2,446.19    |

Overall Average = \$2,547.15

(h) We get 1451.2, 163.4, 878.4, 548.8, 1836.6, 1121.6 for small claims and 6037.4, 19105.4, 12987.2, 15962.6, 2894.6, 9012.8 for large claims. The weight for small claims is (6/12)/0.4 = 1.25 and the weight for large claims is (6/12)/0.2 = 2.5. By dividing each sample by its corresponding weight, we obtain \$2,600 as the estimate of the mean of the overall distribution of claim sizes.

#### 20S1-6.

$$F(x) = \int_{-\infty}^{x} f(y)dy = \begin{cases} 0 & \text{if } x < -1 \\ \frac{1}{2}(x+1)^2 & \text{if } -1 \le x < 0 \\ 1 - \frac{1}{2}(1-x)^2 & \text{if } 0 \le x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$

$$\Rightarrow x = \begin{cases} \sqrt{2r} - 1 & \text{if } 0 \le r < \frac{1}{2} \\ 1 - \sqrt{2(1-r)} & \text{if } \frac{1}{2} \le r < 1 \end{cases}$$

$$\frac{r}{0.096} \frac{x}{-0.5618} \frac{1-r}{0.904} \frac{x}{0.5618}$$

$$\frac{0.569}{0.0716} \frac{0.0716}{0.431} \frac{0.0716}{-0.0716}$$

 $\Rightarrow$  sample mean: 0

#### 20S1-7.

$$F(x) = \int_{-\infty}^{x} f(y)dy = \begin{cases} 0 & \text{if } x < -1\\ \frac{x^{3}+1}{2} & \text{if } -1 \le x < 1\\ 1 & \text{if } x \ge 1 \end{cases}$$

$$\Rightarrow x = \sqrt[3]{2r - 1}$$

| r     | x       | 1-r   | x       |
|-------|---------|-------|---------|
| 0.096 | -0.9314 | 0.904 | 0.9314  |
| 0.569 | 0.5168  | 0.431 | -0.5168 |

 $\Rightarrow$  sample mean: 0

### 20S1-8.

(a)

$$P\{X=k\} = \begin{cases} 0.125 & \text{if } k=0 \\ 0.375 & \text{if } k=1 \\ 0.375 & \text{if } k=2 \\ 0.125 & \text{if } k=3 \end{cases} \quad X = \begin{cases} 0 & \text{if } 0 \le r < 0.125 \\ 1 & \text{if } 0.125 \le r < 0.5 \\ 2 & \text{if } 0.5 \le r < 0.875 \\ 3 & \text{if } 0.875 \le r < 1 \end{cases}$$

| r     | $\boldsymbol{x}$ | 1-r   | $\boldsymbol{x}$ |
|-------|------------------|-------|------------------|
| 0.096 | 0                | 0.904 | 3                |
| 0.569 | 2                | 0.431 | 1                |
| 0.665 | 2                | 0.335 | 1                |

 $\Rightarrow$  sample mean: (0 + 2 + 2)/3 = 1.33

(b) Sample mean: (4+5)/6 = 1.5

(c)

$$X = \begin{cases} \text{head} & \text{if } 0 \le r < \frac{1}{2} \\ \text{tail} & \text{if } \frac{1}{2} \le r < 1 \end{cases}$$

$$r_1 = \{0.096, 0.569, 0.665\} \Rightarrow X_1 = 1$$

$$r_2 = \{0.764, 0.842, 0.492\} \Rightarrow X_2 = 1$$

$$r_3 = \{0.224, 0.950, 0.610\} \Rightarrow X_3 = 1$$

sample mean: 3/3 = 1

(d) 
$$r_1^* = \{0.904, 0.431, 0.335\} \Rightarrow X_1^* = 2$$
  
 $r_2^* = \{0.236, 0.158, 0.508\} \Rightarrow X_2^* = 2$   
 $r_3^* = \{0.776, 0.050, 0.390\} \Rightarrow X_3^* = 2$ 

sample mean: (3+6)/3 = 3

## **20S1-9.**

(a)

Shaft radius: 
$$r_s = \int_1^s 400 e^{-400(t-1)} dt = 1 - e^{-400(s-1)} \Rightarrow s = 1 + \frac{\ln(1-r_s)}{-400}$$

Bushing radius:  $r_b = \int_1^b 100 dt = 100(b-1) \Rightarrow b = 1 + \frac{r_b}{100}$ 

| $r_s$ | s        | $r_b$ | b       | s > b? |
|-------|----------|-------|---------|--------|
| 0.096 | 1.000252 | 0.569 | 1.00569 | No     |
| 0.665 | 1.002734 | 0.764 | 1.00764 | No     |
| 0.842 | 1.004613 | 0.492 | 1.00492 | No     |
| 0.224 | 1.000634 | 0.950 | 1.00950 | No     |
| 0.610 | 1.002354 | 0.145 | 1.00145 | Yes    |
| 0.484 | 1.001654 | 0.552 | 1.00552 | No     |
| 0.350 | 1.001077 | 0.590 | 1.00590 | No     |
| 0.430 | 1.001405 | 0.041 | 1.00041 | Yes    |
| 0.802 | 1.001405 | 0.471 | 1.00471 | No     |
| 0.255 | 1.000736 | 0.799 | 1.00799 | No     |

When s>b, interference occurs, so the probability of interference is estimated as 2/10=20%.

(b)

| Stratun | Portion of Distribution | Stratum Random Number | Size | Weight |
|---------|-------------------------|-----------------------|------|--------|
| 1       | $0.0 \le F(b) \le 0.2$  | $r_b' = 0.2r_b$       | 6    | 1/3    |
| 2       | $0.2 \le F(b) \le 0.6$  | $r_b' = 0.2 + 0.4r_b$ | 2    | 1/2    |
| 3       | $0.6 \le F(b) \le 1.0$  | $r_b' = 0.6 + 0.4r_b$ | 2    | 1/2    |

| Stratum | $r_s$ | s        | $r_b$ | $r_b'$ | b       | Interference Weight |
|---------|-------|----------|-------|--------|---------|---------------------|
| 1       | 0.096 | 1.000252 | 0.569 | 0.114  | 1.00114 | 0                   |
| 1       | 0.665 | 1.002734 | 0.764 | 0.153  | 1.00153 | 1/3                 |
| 1       | 0.842 | 1.004613 | 0.492 | 0.098  | 1.00098 | 1/3                 |
| 1       | 0.224 | 1.000634 | 0.950 | 0.190  | 1.00190 | 0                   |
| 1       | 0.610 | 1.002354 | 0.145 | 0.029  | 1.00029 | 1/3                 |
| 1       | 0.484 | 1.001654 | 0.552 | 0.110  | 1.00110 | 1/3                 |
| 2       | 0.350 | 1.001077 | 0.590 | 0.436  | 1.00436 | 0                   |
| 2       | 0.430 | 1.001405 | 0.041 | 0.216  | 1.00216 | 0                   |
| 3       | 0.802 | 1.001405 | 0.471 | 0.788  | 1.00788 | 0                   |
| 3       | 0.255 | 1.000736 | 0.799 | 0.920  | 1.00920 | 0                   |

Estimated probability of interference: 4/30 = 2/15

(c)

| $r_s$ | s        | $r_b$ | b       | s > b? | s'       | b'      | s' > b' |
|-------|----------|-------|---------|--------|----------|---------|---------|
| 0.096 | 1.000252 | 0.569 | 1.00569 | No     | 1.005859 | 1.00431 | Yes     |
| 0.665 | 1.002734 | 0.764 | 1.00764 | No     | 1.001020 | 1.00236 | No      |
| 0.842 | 1.004613 | 0.492 | 1.00492 | No     | 1.000430 | 1.00508 | No      |
| 0.224 | 1.000634 | 0.950 | 1.00950 | No     | 1.003740 | 1.00050 | Yes     |
| 0.610 | 1.002354 | 0.145 | 1.00145 | Yes    | 1.001236 | 1.00855 | No      |
| 0.484 | 1.001654 | 0.552 | 1.00552 | No     | 1.001814 | 1.00448 | No      |
| 0.350 | 1.001077 | 0.590 | 1.00590 | No     | 1.002625 | 1.00410 | No      |
| 0.430 | 1.001405 | 0.041 | 1.00041 | Yes    | 1.002110 | 1.00959 | No      |
| 0.802 | 1.004048 | 0.471 | 1.00471 | No     | 1.000552 | 1.00529 | Yes     |
| 0.255 | 1.000736 | 0.799 | 1.00799 | No     | 1.003416 | 1.00201 | Yes     |

Estimated probability of interference:  $\frac{1}{2} \left( \frac{1}{5} + \frac{2}{5} \right) = 30\%$ 

# Summary:

| Method:                   | Monte Carlo | Stratified Sampling | Complementary RNs |
|---------------------------|-------------|---------------------|-------------------|
| Interference Probability: | 1/5         | 2/15                | 3/10              |

## **SUPPLEMENT 2 TO CHAPTER 20**

#### REGENERATIVE METHOD OF STATISTICAL ANALYSIS

#### 20S2-1.

(a) 
$$y_1 = 0 + 5 + 4$$
  $= 9$ ;  $z_1 = 3$   $y_2 = 0 + 2$   $= 2$ ;  $z_2 = 2$   $y_3 = 0 + 3 + 1 + 6$   $= 10$ ;  $z_3 = 4$   $\overline{y} = 21/3 = 7$ ;  $\overline{z} = 9/3 = 3$  Est $\{W_q\} = \frac{7}{3} = 2\frac{1}{3}$   $s_{11}^2 = (81 + 4 + 100)/2 - (9 + 2 + 10)^2/6 = 19$   $s_{22}^2 = (9 + 4 + 16)/2 - (3 + 2 + 4)^2/6 = 1$   $s_{12}^2 = (27 + 4 + 40)/2 - (21)(9)/6 = 4$   $s^2 = 19 - (2)(7/3)(4) + (7/3)^2 = 5.778 \Rightarrow s = 2.404$   $1 - 2\alpha = 0.90 \Rightarrow \alpha = 0.05 \Rightarrow K_\alpha = 1.645$   $P\{1.572 \le W_q \le 3.094\} = 0.90$  (b)  $y_1 = 0 + 3 + 2$   $= 5$ ;  $z_1 = 3$   $y_2 = 0 + 3 + 1 + 5 = 9$ ;  $z_2 = 4$   $y_3 = 0$   $= 0$ ;  $z_3 = 1$   $y_4 = 0 + 2 + 4$   $= 6$ ;  $z_4 = 3$   $y_5 = 0 + 3 + 5 + 2$   $= 10$ ;  $z_5 = 4$   $\overline{y} = 30/5 = 6$ ;  $\overline{z} = 15/5 = 3$  Est $\{W_q\} = \frac{6}{3} = 2$   $s_{11}^2 = (25 + 81 + 36 + 100)/4 - (10 + 6 + 0 + 9 + 5)^2/20 = 15\frac{1}{2}$   $s_{12}^2 = (9 + 16 + 1 + 9 + 16)/4 - (3 + 4 + 1 + 3 + 4)^2/20 = 1\frac{1}{2}$   $s_{12}^2 = (15 + 36 + 0 + 18 + 40)/4 - (30)(15)/20 = 4\frac{3}{4}$   $s^2 = 15\frac{1}{2} - (2)(2)\left(4\frac{3}{4}\right) + (2)^2\left(1\frac{1}{2}\right) = 2\frac{1}{2} \Rightarrow s = 1.581$   $1 - 2\alpha = 0.90 \Rightarrow \alpha = 0.05 \Rightarrow K_\alpha = 1.645$   $P\{1.612 < W_q < 2.388\} = 0.90$ 

#### 20S2-2.

When a service completion occurs, t minutes have passed since the last arrival, where  $0 \le t \le 25$ . The time until the next arrival is uniformly distributed between  $\overline{t}$  and 25 - t, where  $\overline{t} = \max(0, 5 - t)$ . Thus, the probabilistic structure of when future arrivals will occur depends on the history, so this cannot be a regeneration point.

#### 20S2-3.

(a) For any new tube, the time of the next failure is given by "current time +1000 + 1000r," where r is a random number from Table 20.3. At each shutdown, one hour is added to the time of the next failure for all tubes when simulating the status quo and two hours are added when simulating the proposal.

### Simulation of the status quo:

|      |       |       |       |       | Time of Failure of |        |        |        |
|------|-------|-------|-------|-------|--------------------|--------|--------|--------|
| Time | $r_1$ | $r_2$ | $r_3$ | $r_4$ | Tube 1             | Tube 2 | Tube 3 | Tube 4 |
| 0    | 0.096 | 0.569 | 0.665 | 0.764 | 1096               | 1569   | 1665   | 1764   |
| 1096 | 0.842 | _     | _     | _     | 2939               | 1570   | 1666   | 1765   |
| 1570 | _     | 0.492 | _     | _     | 2940               | 3063   | 1667   | 1766   |
| 1667 | _     | _     | 0.224 | _     | 2941               | 3064   | 2892   | 1767   |
| 1767 | _     | _     | _     | 0.950 | 2942               | 3065   | 2893   | 3718   |
| 2893 | _     | _     | 0.610 | _     | 2943               | 3066   | 4504   | 3719   |
| 2943 | 0.145 | _     | _     | _     | 4089               | 3067   | 4505   | 3720   |
| 3067 | _     | 0.484 | _     | _     | 4090               | 4552   | 4506   | 3721   |
| 3721 | _     | _     | _     | 0.552 | 4091               | 4553   | 4507   | 5274   |
| 4091 | 0.350 | _     | _     | _     | 5442               | 4554   | 4508   | 5275   |
| 4508 | _     | _     | 0.590 | _     | 5443               | 4555   | 6099   | 5276   |
| 4555 |       | 0.430 |       | _     | 5444               | 5986   | 6100   | 5277   |
| 5000 | _     | _     | _     | _     | 5444               | 5986   | 6100   | 5277   |

Estimated cost of the status quo:  $11 \times \$1,200 = \$13,200$ 

### Simulation of the proposal:

| Time | $r_1$ | $r_2$ | $r_3$ | $r_4$ | First Tube to Fail | Time of Failure |
|------|-------|-------|-------|-------|--------------------|-----------------|
| 0    | 0.096 | 0.569 | 0.665 | 0.764 | Tube 1             | 1096            |
| 1096 | 0.842 | 0.492 | 0.224 | 0.950 | Tube 3             | 2322            |
| 2322 | 0.610 | 0.145 | 0.484 | 0.552 | Tube 2             | 3469            |
| 3469 | 0.350 | 0.590 | 0.430 | 0.041 | Tube 4             | 4512            |
| 4512 | 0.802 | 0.471 | 0.255 | 0.799 | Tube 3             | 5769            |

Estimated cost of the proposal:  $4 \times \$2,800 = \$11,200$ 

- (b) Based on the simulation results in part (a), the proposal should be accepted.
- (c) For the proposed policy, each shutdown is a regeneration point because all tubes are replaced and the process begins a new. For the status quo, the process never repeats itself because each tube is replaced when it fails.

(d)

| Cycle | Cycle Cost | Cycle Length |
|-------|------------|--------------|
| 1     | \$2,800    | 1096         |
| 2     | \$2,800    | 1226         |
| 3     | \$2,800    | 1147         |
| 4     | \$2,800    | 1043         |

$$\overline{y} = \$2, 800, \overline{z} = 1128$$

$$Est{cost/hour} = 2800/1128 = $2.482$$

$$\begin{split} s_{11}^2 &= \frac{(4 \times 2800^2)}{3} - \frac{(4 \times 2800)^2}{12} = 0 \\ s_{22}^2 &= \frac{(1086^2 + 1226^2 + 1147^2 + 1043^2)}{3} - \frac{(1086 + 1226 + 1147 + 1043)^2}{12} = 6071\frac{1}{3} \\ s_{12}^2 &= \frac{(2800)(1086 + 1226 + 1147 + 1043)}{3} - \frac{(4)(2800)(1086 + 1226 + 1147 + 1043)}{12} = 0 \\ s^2 &= 0 - (2.482)(0)(2) + (2.482)^2 \left(6071\frac{1}{3}\right) = 37410 \Rightarrow s = 193.4 \\ 1 - 2\alpha &= 0.95 \Rightarrow \alpha = 0.025 \Rightarrow K_\alpha = 1.96 \end{split}$$

# $P\{2.314 \le \text{cost/hour} \le 2.650\} = 0.95$

## 20S2-4.

(a)

(i)

|                        | Data        |  |                   |           | Results     |              |
|------------------------|-------------|--|-------------------|-----------|-------------|--------------|
| Number of Servers =    | 1           |  |                   | Point     | 95% Confide | nce Interval |
|                        |             |  |                   | Estimate  | Low         | High         |
| Interarrival Times     |             |  | L =               | 4.8790378 | 3.344529192 | 6.413546353  |
| Distribution =         | Exponential |  | $L_q =$           | 4.0690374 | 2.552881224 | 5.585193514  |
| Mean =                 | 1.25        |  | W =               | 6.0870551 | 4.231161152 | 7.942948994  |
|                        |             |  | ₩ <sub>q</sub> =  | 5.076504  | 3.233440493 | 6.91956742   |
|                        |             |  |                   |           |             |              |
| Service Times          |             |  | $P_0 =$           | 0.1899996 | 0.16425264  | 0.215746552  |
| Distribution =         | Exponential |  | P <sub>1</sub> =  | 0.151018  | 0.132489844 | 0.169546091  |
| Mean =                 | 1           |  | P <sub>2</sub> =  | 0.1253097 | 0.111337121 | 0.139282371  |
|                        |             |  | P <sub>3</sub> =  | 0.0954104 | 0.084720833 | 0.106099913  |
|                        |             |  | P <sub>4</sub> =  | 0.076206  | 0.066901918 | 0.085509995  |
| Length of Simulation F | Run         |  | P <sub>5</sub> =  | 0.0622451 | 0.054038618 | 0.070451571  |
| Number of Arrivals =   | 10,000      |  | P <sub>6</sub> =  | 0.0562059 | 0.047527927 | 0.064883901  |
|                        |             |  | P <sub>7</sub> =  | 0.0420322 | 0.035157883 | 0.048906526  |
|                        |             |  | P <sub>8</sub> =  | 0.0311873 | 0.025046424 | 0.037328273  |
|                        |             |  | P <sub>9</sub> =  | 0.0271509 | 0.020825618 | 0.033476206  |
| Run Simulat            | tion        |  | P <sub>10</sub> = | 0.0229525 | 0.016668188 | 0.029236719  |

(ii)

|                        | Data          |                      |           | Results     |               |
|------------------------|---------------|----------------------|-----------|-------------|---------------|
| Number of Servers =    | 1             |                      | Point     | 95% Confide | ence Interval |
|                        |               |                      | Estimate  | Low         | High          |
| Interarrival Times     |               | L =                  | 2.7233857 | 2.426711315 | 3.020060108   |
| Distribution =         | Exponential   | $L_q =$              | 1.929419  | 1.646668271 | 2.212169662   |
| Mean =                 | 1.25          | W =                  | 3.4255718 | 3.099322189 | 3.751821491   |
|                        |               | $W_q =$              | 2.4268921 | 2.104137696 | 2.749646512   |
|                        |               |                      |           |             |               |
| Service Times          |               | $P_0 =$              | 0.2060333 | 0.188347397 | 0.223719112   |
| Distribution =         | Erlang        | P <sub>1</sub> =     | 0.2123885 | 0.196737339 | 0.228039706   |
| Mean =                 | 1             | <br>P <sub>2</sub> = | 0.1691555 | 0.157922441 | 0.180388584   |
| k =                    | 4             | <br>P <sub>3</sub> = | 0.1203942 | 0.111814695 | 0.128973778   |
|                        |               | P <sub>4</sub> =     |           | 0.074401677 | 0.089620118   |
| Length of Simulation F | Run           | P <sub>5</sub> =     | 0.0604059 | 0.053059888 | 0.067751862   |
| Number of Arrivals =   | 10,000        | P <sub>6</sub> =     | 0.0464817 | 0.038778844 | 0.054184579   |
|                        |               | P <sub>7</sub> =     | 0.0345098 | 0.02699144  | 0.042028079   |
|                        |               | P <sub>8</sub> =     | 0.0237711 | 0.017106209 | 0.030436065   |
|                        | $\overline{}$ | P <sub>9</sub> =     | 0.0150995 | 0.009781903 | 0.020417036   |
| Run Simula             | tion          | P <sub>10</sub> =    | 0.0107493 | 0.005500231 | 0.015998293   |

(iii)

|                        | Data        |                   |           | Results     |             |
|------------------------|-------------|-------------------|-----------|-------------|-------------|
| Number of Servers =    | 1           |                   | Point     | 95% Confide |             |
|                        |             |                   | Estimate  | Low         | High        |
| Interarrival Times     |             | L =               | 2.3610223 | 2.133069489 | 2.588975073 |
| Distribution =         | Exponential | $L_q =$           | 1.5623811 | 1.346964384 | 1.777797733 |
| Mean =                 | 1.25        | W =               | 2.956299  | 2.715448043 | 3.197150042 |
|                        |             | $W_q =$           | 1.956299  | 1.715448043 | 2.197150042 |
|                        |             |                   |           |             |             |
| Service Times          |             | $P_0 =$           | 0.2013588 | 0.18542182  | 0.217295736 |
| Distribution =         | Constant    | P <sub>1</sub> =  | 0.2465909 | 0.230719649 | 0.262462131 |
| Value =                | 1           | P <sub>2</sub> =  | 0.1855193 | 0.175252934 | 0.195785632 |
|                        |             | P <sub>3</sub> =  | 0.1236632 | 0.115231596 | 0.1320948   |
|                        |             | P <sub>4</sub> =  | 0.0861806 | 0.078092827 | 0.094268471 |
| Length of Simulation F | Run         | P <sub>5</sub> =  | 0.0560059 | 0.048413787 | 0.063597968 |
| Number of Arrivals =   | 10,000      | P <sub>6</sub> =  | 0.038352  | 0.030657389 | 0.04604656  |
|                        |             | P <sub>7</sub> =  | 0.0256758 | 0.018972941 | 0.032378704 |
|                        |             | P <sub>8</sub> =  | 0.0158616 | 0.010224825 | 0.021498383 |
|                        |             | P <sub>9</sub> =  | 0.0096232 | 0.005462589 | 0.013783841 |
| Run Simula             | tion        | P <sub>10</sub> = | 0.0054207 | 0.002088955 | 0.00875247  |

$$L_{q_2}/L_{q_1} = 1.93/4.07 = 0.47, L_{q_3}/L_{q_1} = 1.56/4.07 = 0.38$$

(b) 
$$L_q=\tfrac{\lambda^2\sigma^2+\rho^2}{2(1-\rho)}, L=\rho+L_q, W_q=\tfrac{L_q}{\lambda}, W=W_q+\tfrac{1}{\mu}$$

(i) 
$$L_{q_1} = \frac{0.64 + 0.64}{2 \times 0.2} = 3.2, L_1 = 4, W_{q_1} = 4, W_1 = 5$$

(ii) 
$$L_{q_2} = \frac{0.64 \times 0.25 + 0.64}{2 \times 0.2} = 2, L_2 = 2.8, W_{q_2} = 2.5, W_2 = 3.5$$

(iii) 
$$L_{q_3} = \frac{0.64}{2\times0.2} = 1.6, L_3 = 2.4, W_{q_3} = 2, W_3 = 3$$
 
$$L_{q_2}/L_{q_1} = 0.675, L_{q_3}/L_{q_1} = 1.6/3.2 = 0.5$$

They all fall into 95% confidence intervals in (a).

# 20S2-5.

(i)

|                        | Data        |     |                   |           | Results     |                |
|------------------------|-------------|-----|-------------------|-----------|-------------|----------------|
| Number of Servers =    | 2           |     |                   | Point     | 95% Confide | en ce Interval |
|                        |             |     |                   | Estimate  | Low         | High           |
| Interarrival Times     |             |     | L =               | 4.4169819 | 3.762741932 | 5.071221805    |
| Distribution =         | Exponential |     | $L_q =$           | 2.8189572 | 2.196408584 | 3.441505892    |
| Mean =                 | 0.625       |     | W =               | 2.7745954 | 2.374659281 | 3.174531514    |
|                        |             |     | W <sub>q</sub> =  | 1.7707715 | 1.386379475 | 2.155163601    |
|                        |             |     |                   |           |             |                |
| Service Times          |             |     | $P_0 =$           | 0.1130209 | 0.098946991 | 0.127094867    |
| Distribution =         | Exponential |     | P <sub>1</sub> =  | 0.1759335 | 0.157735081 | 0.194131942    |
| Mean =                 | 1           |     | P <sub>2</sub> =  | 0.1490888 | 0.135041965 | 0.163135721    |
|                        |             |     | P <sub>3</sub> =  | 0.1132411 | 0.103224222 | 0.123258055    |
|                        |             |     | P <sub>4</sub> =  | 0.0904506 | 0.081666149 | 0.099235032    |
| Length of Simulation F | Run         |     | P <sub>5</sub> =  | 0.0700615 | 0.062387405 | 0.077735635    |
| Number of Arrivals =   | 10,000      |     | P <sub>6</sub> =  | 0.054781  | 0.047780672 | 0.061781305    |
|                        |             |     | P <sub>7</sub> =  | 0.0470371 | 0.040150589 | 0.053923562    |
|                        |             |     | P <sub>8</sub> =  | 0.0388488 | 0.032048832 | 0.045648736    |
|                        |             |     | P <sub>9</sub> =  | 0.0316042 | 0.024904844 | 0.038303496    |
| Run Simula             | tion J      | ļ F | P <sub>10</sub> = | 0.0238166 | 0.01786118  | 0.029771984    |

(ii)

|                        | Data        |          |                   |           | Results     |               |
|------------------------|-------------|----------|-------------------|-----------|-------------|---------------|
| Number of Servers =    | 2           | <u> </u> |                   | Point     | 95% Confide | ence Interval |
|                        |             |          |                   | Estimate  | Low         | High          |
| Interarrival Times     |             |          | L =               | 3.0227816 | 2.758114081 | 3.287449176   |
| Distribution =         | Erlang      |          | $L_q =$           | 1.4278496 | 1.189613949 | 1.666085338   |
| Mean =                 | 0.625       |          | ₩=                | 1.8907137 | 1.7298684   | 2.051558948   |
| k =                    | 4           |          | $W_q =$           | 0.8931028 | 0.746329377 | 1.039876295   |
|                        |             |          |                   |           |             |               |
| Service Times          |             |          | P <sub>0</sub> =  | 0.0856493 | 0.076363741 | 0.094934929   |
| Distribution =         | Exponential |          | P <sub>1</sub> =  | 0.2337693 | 0.215976216 | 0.251562476   |
| Mean =                 | 1           |          | P <sub>2</sub> =  | 0.2148076 | 0.202324676 | 0.227290474   |
|                        |             |          | P <sub>3</sub> =  | 0.1528126 | 0.143082694 | 0.162542553   |
|                        |             |          | P <sub>4</sub> =  | 0.1019164 | 0.093254948 | 0.110577874   |
| Length of Simulation F | Run         |          | P <sub>5</sub> =  | 0.0700971 | 0.061808978 | 0.078385177   |
| Number of Arrivals =   | 10,000      |          | P <sub>6</sub> =  | 0.0446838 | 0.036937765 | 0.052429909   |
|                        |             |          | P <sub>7</sub> =  | 0.0292769 | 0.022588535 | 0.035965318   |
|                        |             |          | P <sub>8</sub> =  | 0.0229797 | 0.016760364 | 0.029198939   |
|                        |             |          | P <sub>9</sub> =  | 0.0139757 | 0.009611176 | 0.018340127   |
| Run Simula             | tion        |          | P <sub>10</sub> = | 0.008787  | 0.005231761 | 0.012342204   |

# (iii)

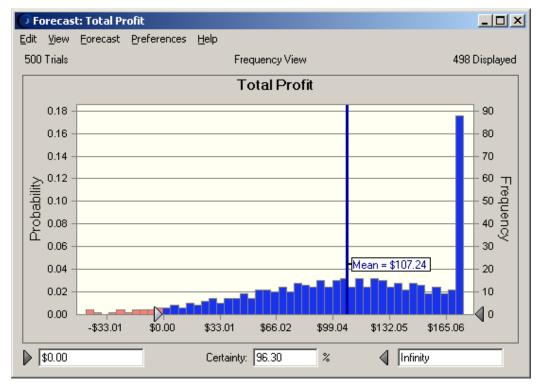
|                        | Data        |                      |           | Results     |                |
|------------------------|-------------|----------------------|-----------|-------------|----------------|
| Number of Servers =    | 2           |                      | Point     | 95% Confide | en ce Interval |
|                        |             |                      | Estimate  | Low         | High           |
| Interarrival Times     |             | L =                  | 2.7171114 | 2.486527419 | 2.94769536     |
| Distribution =         | Constant    | L <sub>q</sub> =     | 1.1162964 | 0.911632383 | 1.320960417    |
| Value =                | 0.625       | W =                  | 1.6981946 | 1.554079637 | 1.8423096      |
|                        |             | $W_q =$              | 0.6976853 | 0.56977024  | 0.825600261    |
|                        |             |                      |           |             |                |
| Service Times          |             | $P_0 =$              | 0.070462  | 0.063259787 | 0.077664229    |
| Distribution =         | Exponential | P <sub>1</sub> =     | 0.258261  | 0.23901565  | 0.277506339    |
| Mean =                 | 1           | <br>P <sub>2</sub> = | 0.2538447 | 0.238401452 | 0.269287903    |
|                        |             | P <sub>3</sub> =     | 0.1564562 | 0.146459176 | 0.166453132    |
|                        |             | P <sub>4</sub> =     | 0.0955554 | 0.085682    | 0.10542875     |
| Length of Simulation F | Run         | P <sub>5</sub> =     | 0.0565784 | 0.047834224 | 0.065322534    |
| Number of Arrivals =   | 10,000      | P <sub>6</sub> =     | 0.0382855 | 0.029977035 | 0.04659395     |
|                        |             | P <sub>7</sub> =     | 0.0272313 | 0.019025996 | 0.035436574    |
|                        |             | P <sub>8</sub> =     | 0.0183559 | 0.011310208 | 0.025401589    |
|                        |             | P <sub>9</sub> =     | 0.0118822 | 0.006451832 | 0.017312476    |
| Run Simulat            | tion        | P <sub>10</sub> =    | 0.0060134 | 0.002734597 | 0.009292269    |

 $L_{q_2}/L_{q_1} = 1.43/2.82 = 0.51, L_{q_3}/L_{q_1} = 1.12/2.82 = 0.4$ 

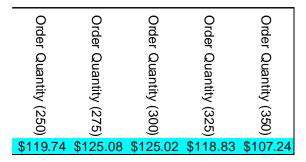
# **20S2-6.**

|                        | Data        |     |                   |           | Results     |               |
|------------------------|-------------|-----|-------------------|-----------|-------------|---------------|
| Number of Servers =    | 1           |     |                   | Point     | 95% Confide | ence Interval |
|                        |             |     |                   | Estimate  | Low         | High          |
| Interarrival Times     |             |     | L =               | 4.8790378 | 3.344529192 | 6.413546353   |
| Distribution =         | Exponential | l l | Lq =              | 4.0690374 | 2.552881224 | 5.585193514   |
| Mean =                 | 1           | ١   | ₩ =               | 4.8696441 | 3.384928921 | 6.354359196   |
|                        |             | W   | ا= <sub>و</sub> ۷ | 4.0612032 | 2.586752395 | 5.535653936   |
|                        |             |     |                   |           |             |               |
| Service Times          |             | F   | ₽₀ =              | 0.1899996 | 0.16425264  | 0.215746552   |
| Distribution =         | Exponential | F   | ₽₁ =              | 0.151018  | 0.132489844 | 0.169546091   |
| Mean =                 | 0.8         | F   |                   | 0.1253097 | 0.111337121 | 0.139282371   |
|                        |             | F   | $P_3 =$           | 0.0954104 | 0.084720833 | 0.106099913   |
|                        |             | F   | P <sub>4</sub> =  | 0.076206  | 0.066901918 | 0.085509995   |
| Length of Simulation F | Run         | F   | ₽5 =              | 0.0622451 | 0.054038618 | 0.070451571   |
| Number of Arrivals =   | 10,000      | F   | P <sub>6</sub> =  | 0.0562059 | 0.047527927 | 0.064883901   |
|                        |             | F   | P <sub>7</sub> =  | 0.0420322 | 0.035157883 | 0.048906526   |
|                        |             | F   | P <sub>8</sub> =  | 0.0311873 | 0.025046424 | 0.037328273   |
| <u></u>                |             | F   | P <sub>9</sub> =  | 0.0271509 | 0.020825618 | 0.033476206   |
| Run Simula             | tion        | Р   | 10 =              | 0.0229525 | 0.016668188 | 0.029236719   |

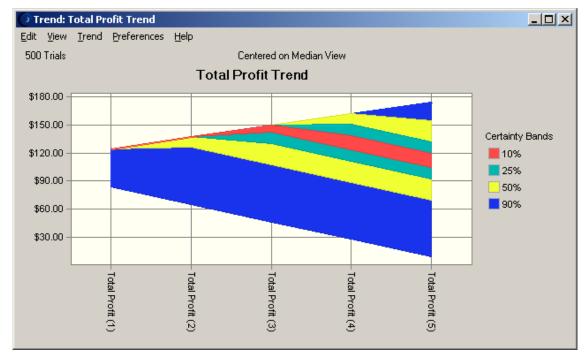
|                                                                                                            | Data                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T                                                       |                                                                                                                                            | Results                                                                                                                                                                                                            | ]                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of Servers =                                                                                        | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T                                                       | Point                                                                                                                                      | 95% Confide                                                                                                                                                                                                        | nce Interval                                                                                                                                              |
|                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         | Estimate                                                                                                                                   | Low                                                                                                                                                                                                                | High                                                                                                                                                      |
| Interarrival Times                                                                                         |                                         | : -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =                                                       | 2.723309                                                                                                                                   | 2.194934622                                                                                                                                                                                                        | 3.251683349                                                                                                                                               |
| Distribution =                                                                                             | Erlang                                  | Lq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =                                                       | 1.9243222                                                                                                                                  | 1.410008106                                                                                                                                                                                                        | 2.438636196                                                                                                                                               |
| Mean =                                                                                                     | 1                                       | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         | 2.7189869                                                                                                                                  | 2.198334959                                                                                                                                                                                                        |                                                                                                                                                           |
| k =                                                                                                        | 4                                       | W <sub>q</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                                                       | 1.9212681                                                                                                                                  | 1.412587093                                                                                                                                                                                                        | 2.429949189                                                                                                                                               |
|                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |                                                                                                                                            |                                                                                                                                                                                                                    |                                                                                                                                                           |
| Service Times                                                                                              |                                         | P₀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =                                                       | 0.2010132                                                                                                                                  | 0.181930867                                                                                                                                                                                                        | 0.220095464                                                                                                                                               |
| Distribution =                                                                                             | Exponential                             | P <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                                                       | 0.242906                                                                                                                                   | 0.222885871                                                                                                                                                                                                        | 0.262926189                                                                                                                                               |
| Mean =                                                                                                     | 0.8                                     | P <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                                                       | 0.1663002                                                                                                                                  | 0.153868897                                                                                                                                                                                                        | 0.178731601                                                                                                                                               |
|                                                                                                            |                                         | P <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                                                       | 0.1134182                                                                                                                                  | 0.103373945                                                                                                                                                                                                        | 0.123462432                                                                                                                                               |
|                                                                                                            |                                         | P <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                                                       | 0.0799261                                                                                                                                  | 0.071322345                                                                                                                                                                                                        | 0.088529927                                                                                                                                               |
| Length of Simulation F                                                                                     | Run                                     | P <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                                                       | 0.0564405                                                                                                                                  | 0.048182688                                                                                                                                                                                                        | 0.064698214                                                                                                                                               |
| Number of Arrivals =                                                                                       | 10,000                                  | Pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         | 0.0391303                                                                                                                                  | 0.031599012                                                                                                                                                                                                        | 0.046661643                                                                                                                                               |
|                                                                                                            |                                         | P <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                                                       | 0.0296395                                                                                                                                  | 0.022208383                                                                                                                                                                                                        | 0.037070549                                                                                                                                               |
|                                                                                                            |                                         | l P <sub>e</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | 0.0217429                                                                                                                                  | 0.014858914                                                                                                                                                                                                        | 0.02862694                                                                                                                                                |
|                                                                                                            |                                         | l P <sub>o</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | 0.0143098                                                                                                                                  | 0.008863696                                                                                                                                                                                                        |                                                                                                                                                           |
| Run Simulat                                                                                                | tion }                                  | P <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         | 0.0095029                                                                                                                                  | 0.004996216                                                                                                                                                                                                        |                                                                                                                                                           |
|                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |                                                                                                                                            |                                                                                                                                                                                                                    |                                                                                                                                                           |
|                                                                                                            | _                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |                                                                                                                                            |                                                                                                                                                                                                                    |                                                                                                                                                           |
|                                                                                                            | Data                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         | B : .                                                                                                                                      | Results                                                                                                                                                                                                            |                                                                                                                                                           |
| Number of Sewers =                                                                                         | Data<br>1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         | Point                                                                                                                                      | 95% Confid                                                                                                                                                                                                         | ence Interval                                                                                                                                             |
|                                                                                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                                       | Estimate                                                                                                                                   | 95% Confid<br>Low                                                                                                                                                                                                  | High                                                                                                                                                      |
| Interarrival Times                                                                                         | 1                                       | : -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _ =                                                     | Estimate<br>2.1663884                                                                                                                      | 95% Confid<br>Low<br>1.965340222                                                                                                                                                                                   | High<br>2.367436515                                                                                                                                       |
| Interarrival Times Distribution =                                                                          | 1<br>Constant                           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =                                                       | Estimate<br>2.1663884<br>1.3576707                                                                                                         | 95% Confid<br>Low<br>1.965340222<br>1.168672404                                                                                                                                                                    | High<br>2.367436515<br>1.546669                                                                                                                           |
| Interarrival Times                                                                                         | 1                                       | L,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , =<br>/ =                                              | Estimate<br>2.1663884<br>1.3576707<br>2.1663884                                                                                            | 95% Confid<br>Low<br>1.965340222<br>1.168672404<br>1.965340222                                                                                                                                                     | High<br>2.367436515<br>1.546669<br>2.367436515                                                                                                            |
| Interarrival Times Distribution =                                                                          | 1<br>Constant                           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , =<br>/ =                                              | Estimate<br>2.1663884<br>1.3576707<br>2.1663884                                                                                            | 95% Confid<br>Low<br>1.965340222<br>1.168672404                                                                                                                                                                    | High<br>2.367436515<br>1.546669<br>2.367436515                                                                                                            |
| Interarrival Times Distribution = Value =                                                                  | 1<br>Constant                           | W,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ; =<br>/ =<br>! =                                       | Estimate<br>2.1663884<br>1.3576707<br>2.1663884<br>1.3576707                                                                               | 95% Confid<br>Low<br>1.965340222<br>1.168672404<br>1.965340222<br>1.168672404                                                                                                                                      | High<br>2,367436516<br>1,546669<br>2,367436516<br>1,546669                                                                                                |
| Interarrival Times Distribution = Value = Service Times                                                    | Constant<br>1                           | L <sub>0</sub>   W <sub>0</sub>   W <sub>0</sub>   P <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =<br>/ =<br>=<br>1 =<br>1 =<br>1 =                      | Estimate<br>2.1663884<br>1.3576707<br>2.1663884<br>1.3576707<br>0.1912823                                                                  | 95% Confid<br>Low<br>1.965340222<br>1.168672404<br>1.965340222<br>1.168672404<br>0.175681523                                                                                                                       | High<br>2.367436515<br>1.546669<br>2.367436515<br>1.546669<br>0.206883144                                                                                 |
| Interarrival Times  Distribution =  Value =  Service Times  Distribution =                                 | Constant<br>1                           | L <sub>0</sub>   W   W   P <sub>0</sub>   P <sub>1</sub>   P <sub>1</sub>   P <sub>2</sub>   P <sub>3</sub>   P <sub>4</sub>   P <sub>1</sub>   P <sub>2</sub>   P <sub>3</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub>   P <sub>4</sub> | / =<br>/ =<br>  =<br>  =<br>  =                         | Estimate<br>2.1663884<br>1.3576707<br>2.1663884<br>1.3576707<br>0.1912823<br>0.2902171                                                     | 95% Confid<br>Low<br>1.965340222<br>1.168672404<br>1.965340222<br>1.168672404<br>0.175681523<br>0.27140572                                                                                                         | High 2.367436516 1.546669 2.367436516 1.546669 0.206883144 0.30902839                                                                                     |
| Interarrival Times Distribution = Value = Service Times                                                    | Constant<br>1                           | L <sub>0</sub>   W   W   P   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =                 | Estimate<br>2.1663884<br>1.3576707<br>2.1663884<br>1.3576707<br>0.1912823<br>0.2902171<br>0.18444177                                       | 95% Confid<br>Low<br>1.965340222<br>1.168672404<br>1.965340222<br>1.168672404<br>0.175681523<br>0.27140572<br>0.174531753                                                                                          | High 2.367436516 1.546669 2.367436516 1.546669 0.206883144 0.30902839 0.194303653                                                                         |
| Interarrival Times  Distribution =  Value =  Service Times  Distribution =                                 | Constant<br>1                           | L <sub>1</sub>   W   W   P <sub>1</sub>   P <sub>2</sub>   P <sub>3</sub>   P <sub>4</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub>   P <sub>5</sub> | / =<br>/ =<br>=<br>- =<br>- =<br>- =<br>- =<br>- =<br>- | Estimate 2.1663884 1.3576707 2.1663884 1.3576707 0.1912823 0.2902171 0.1844177 0.1274616                                                   | 95% Confid<br>Low<br>1.965340222<br>1.168672404<br>1.965340222<br>1.168672404<br>0.175681523<br>0.27140572<br>0.174531753<br>0.117413441                                                                           | High 2.367436516 1.546669 2.367436516 1.546669 0.206883144 0.30902839 0.194303653 0.137509763                                                             |
| Interarrival Times  Distribution =  Value =  Service Times  Distribution =  Mean =                         | Constant 1 Exponential 0.8              | P <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / = / = / = / = / = / = / = / = / = / =                 | Estimate 2.1663884 1.3576707 2.1663884 1.3576707 0.1912823 0.2902171 0.1844177 0.1274616 0.0809442                                         | 95% Confid<br>Low<br>1.965340222<br>1.168672404<br>1.965340222<br>1.168672404<br>0.175681523<br>0.27140572<br>0.174531753<br>0.117413441<br>0.070654919                                                            | High 2.367436516 1.546669 2.367436516 1.546669 0.206883144 0.30902839 0.194303653 0.137509763                                                             |
| Interarrival Times  Distribution =  Value =  Service Times  Distribution =  Mean =  Length of Simulation F | Constant 1 Exponential 0.8              | P <sub>1</sub> P <sub>2</sub> P <sub>3</sub> P <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 1 = 2 = 3 = 4 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5 = 5     | Estimate<br>2.1663884<br>1.3576707<br>2.1663884<br>1.3576707<br>0.1912823<br>0.2902171<br>0.1844177<br>0.1274616<br>0.0809442<br>0.0511365 | 95% Confid<br>Low<br>1.965340222<br>1.168672404<br>1.965340222<br>1.168672404<br>0.175681523<br>0.27140572<br>0.174531753<br>0.117413441<br>0.070654919<br>0.042240076                                             | High 2.367436516 1.546669 2.367436516 1.546669 0.206883144 0.30902839 0.194303653 0.137509763 0.091233476 0.060032961                                     |
| Interarrival Times  Distribution =  Value =  Service Times  Distribution =  Mean =                         | Constant 1 Exponential 0.8              | P <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = '= '= '= '= '= '= '= '= '= '= '= '= '=                | Estimate 2.1663884 1.3576707 2.1663884 1.3576707 0.1912823 0.2902171 0.1844177 0.1274616 0.0809442 0.0511365 0.0318558                     | 95% Confid<br>Low<br>1.965340222<br>1.168672404<br>1.965340222<br>1.168672404<br>0.175681523<br>0.27140572<br>0.174531753<br>0.17413441<br>0.070654919<br>0.042240076<br>0.023999424                               | High 2.367436516 1.546669 2.367436516 1.546669 0.206883144 0.30902839 0.194303653 0.197509763 0.091233476 0.060032961 0.039712241                         |
| Interarrival Times  Distribution =  Value =  Service Times  Distribution =  Mean =  Length of Simulation F | Constant 1 Exponential 0.8              | P <sub>1</sub> P <sub>2</sub> P <sub>3</sub> P <sub>4</sub> P <sub>4</sub> P <sub>5</sub> P <sub>6</sub> P <sub>7</sub> P <sub>7</sub> P <sub>8</sub> P <sub>8</sub> P <sub>8</sub> P <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | / = / = / = / = / = / = / = / = / = / =                 | Estimate 2.1663884 1.3576707 2.1663884 1.3576707 0.1912823 0.2902171 0.1844177 0.1274616 0.0809442 0.0511365 0.0318558 0.0199732           | 95% Confid<br>Low<br>1.965340222<br>1.168672404<br>1.965340222<br>1.168672404<br>0.175681523<br>0.27140572<br>0.174531753<br>0.117413441<br>0.070654919<br>0.042240076<br>0.023999424<br>0.013343687               | High 2.367436516 1.546669 2.367436516 1.546669 0.206883144 0.30902839 0.194303653 0.137509763 0.091233476 0.060032961 0.039712241                         |
| Interarrival Times  Distribution =  Value =  Service Times  Distribution =  Mean =  Length of Simulation F | Constant 1 Exponential 0.8              | L <sub>1</sub>   W   W   W   P   P   P   P   P   P   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | / = / = / = / = / = / = / = / = / = / =                 | Estimate 2.1663884 1.3576707 2.1663884 1.3576707 0.1912823 0.2902171 0.1844177 0.1274616 0.0809442 0.0511365 0.0318558 0.0199732 0.0105021 | 95% Confid<br>Low<br>1.965340222<br>1.168672404<br>1.965340222<br>1.168672404<br>0.175681523<br>0.27140572<br>0.174531753<br>0.117413441<br>0.070654919<br>0.042240076<br>0.023999424<br>0.013343687<br>0.00624001 | High 2.367436516 1.546669 2.367436516 1.546669 0.206883144 0.30902839 0.194303653 0.137509763 0.091233478 0.060032961 0.039712241 0.026602654 0.014764245 |
| Interarrival Times  Distribution =  Value =  Service Times  Distribution =  Mean =  Length of Simulation F | Constant 1  Exponential 0.8  Run 10,000 | L <sub>1</sub>   W   W   W   P   P   P   P   P   P   P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =                 | Estimate 2.1663884 1.3576707 2.1663884 1.3576707 0.1912823 0.2902171 0.1844177 0.1274616 0.0809442 0.0511365 0.0318558 0.0199732 0.0105021 | 95% Confid<br>Low<br>1.965340222<br>1.168672404<br>1.965340222<br>1.168672404<br>0.175681523<br>0.27140572<br>0.174531753<br>0.117413441<br>0.070654919<br>0.042240076<br>0.023999424<br>0.013343687               | High 2.367436515 1.546669 2.367436515 1.546669 0.206883144 0.30902839 0.194303653 0.137509763 0.091233476 0.060032961 0.039712241                         |


 $L_{q_2}/L_{q_1} = 1.92/4.07 = 0.47, L_{q_3}/L_{q_1} = 1.36/4.07 = 0.33$ 

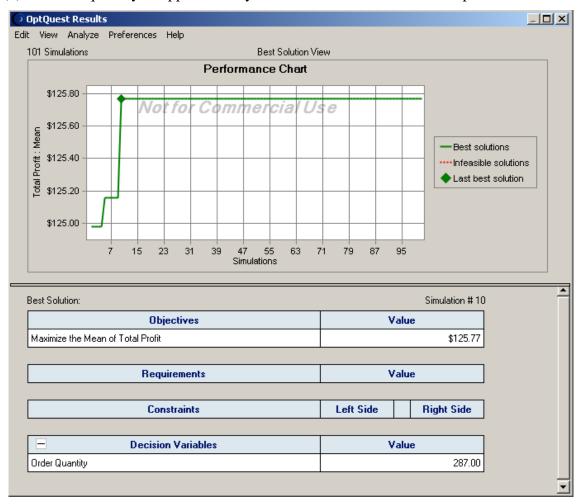
# SUPPLEMENT 3 TO CHAPTER 20 OPTIMIZING WITH OPTQUEST


20S3-1.

|    | А              | В        | С      | D    | Е        |
|----|----------------|----------|--------|------|----------|
| 1  | Purchase Price | \$0.75   |        |      |          |
| 2  | Selling Price  | \$1.25   |        |      |          |
| 3  |                |          |        |      |          |
| 4  | Order Quantity | 350      |        |      |          |
| 5  |                |          |        | Mean | St. Dev. |
| 6  | Demand         | 300      | Normal | 300  | 50       |
| 7  | Rounded Demand | 300      |        |      |          |
| 8  |                |          |        |      |          |
| 9  | Revenue        | \$375.00 |        |      |          |
| 10 | Purchase Cost  | \$262.50 |        |      |          |
| 11 | Total Profit   | \$112.50 |        |      |          |


(a) The mean profit is approximately \$107. The chance of making a nonnegative profit is approximately 96.3%.

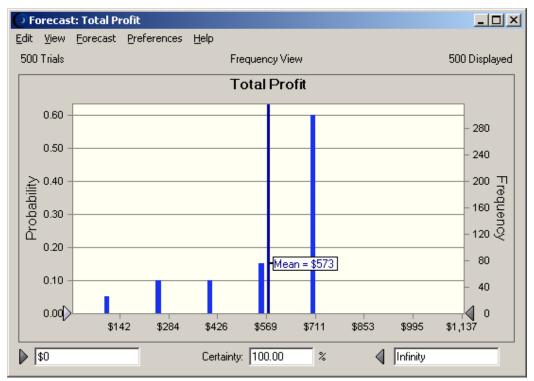



(b) The order quantities 275 and 300 are very close to maximizing the mean profit, so the order quantity that actually maximizes the mean profit is probably somewhere between these two quantities.



(c)

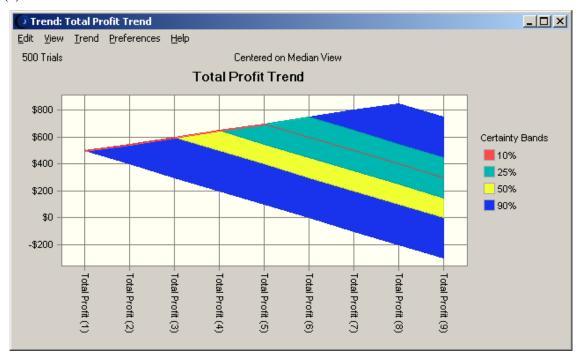



(d) An order quantity of approximately 287 maximizes Michael's mean profit.

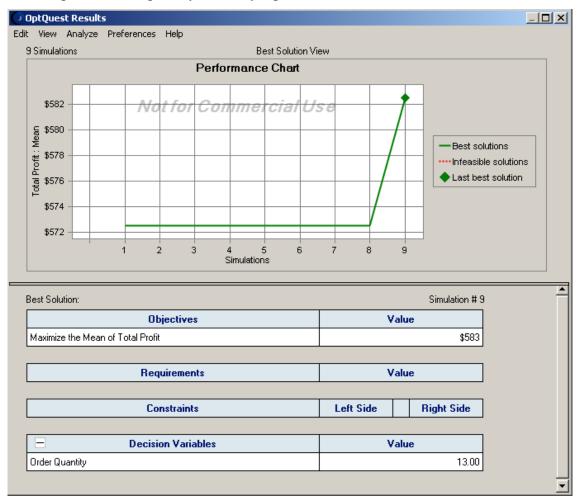


20S3-2.

|    | А              | В       | С                 | D     | E           |
|----|----------------|---------|-------------------|-------|-------------|
| 1  | Purchase Price | \$100   |                   |       |             |
| 2  | Selling Price  | \$150   |                   |       |             |
| 3  |                |         |                   |       |             |
| 4  | Order Quantity | 14      |                   |       |             |
| 5  |                |         |                   | Value | Probability |
| 6  | Demand         | 14      | Discrete (Custom) | 10    | 0.05        |
| 7  |                |         |                   | 11    | 0.1         |
| 8  | Revenue        | \$2,100 |                   | 12    | 0.1         |
| 9  | Purchase Cost  | \$1,400 |                   | 13    | 0.15        |
| 10 | Total Profit   | \$700   |                   | 14    | 0.2         |
| 11 |                |         |                   | 15    | 0.15        |
| 12 |                |         |                   | 16    | 0.1         |
| 13 |                |         |                   | 17    | 0.1         |
| 14 |                |         |                   | 18    | 0.05        |


(a) The mean profit is approximately \$573. There is a 100% chance of making a nonnegative profit.

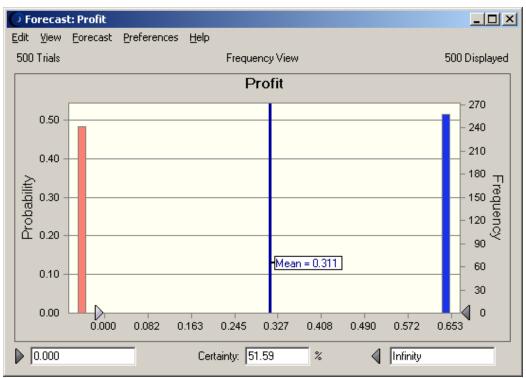



(b) Susan's mean profit is maximized with 13 tickets.

Order Quantity (18)
Order Quantity (17)
Order Quantity (16)
Order Quantity (15)
Order Quantity (14)
Order Quantity (14)
Order Quantity (12)
\$500 \$543 \$570 \$583 \$573 \$533 \$470 \$393 \$300

(c)

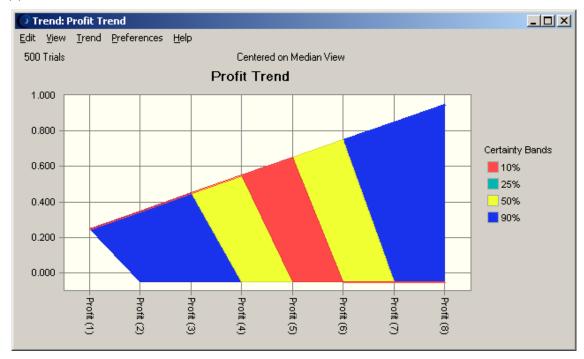



(d) The optimal order quantity found by OptQuest is 13.

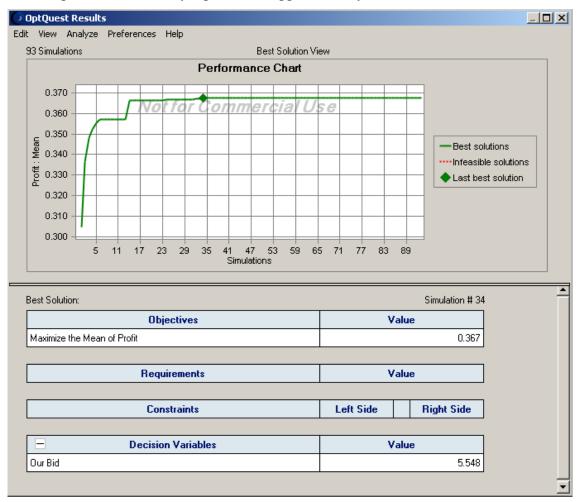


20S3-3.

|    | А                             | В                   | С                  | D            | Е            |
|----|-------------------------------|---------------------|--------------------|--------------|--------------|
| 1  | Data                          |                     |                    |              |              |
| 2  | Our Project Cost (\$million)  | 5.000               |                    |              |              |
| 3  | Our Bid Cost (\$million)      | 0.050               |                    |              |              |
| 4  |                               |                     |                    |              |              |
| 5  | Competitor Bids               | Competitor 1        | Competitor 2       | Competitor 3 | Competitor 4 |
| 6  | Bid (\$million)               | 6.083               | 6.083              | 6.083        | 6.083        |
| 7  |                               |                     |                    |              |              |
| 8  | Distribution                  | Triangular          | Triangular         | Triangular   | Triangular   |
| 9  |                               |                     |                    |              |              |
| 10 | Competitor Distribution Paran | neters (Proportion  | n of Our Project C | ost)         |              |
| 11 | Minimum                       | 105%                | 105%               | 105%         | 105%         |
| 12 | Most Likely                   | 120%                | 120%               | 120%         | 120%         |
| 13 | Maximum                       | 140%                | 140%               | 140%         | 140%         |
| 14 |                               |                     |                    |              |              |
| 15 | Competitor Distribution Paran | neters (\$millions) |                    |              |              |
| 16 | Minimum                       | 5.250               | 5.250              | 5.250        | 5.250        |
| 17 | Most Likely                   | 6.000               | 6.000              | 6.000        | 6.000        |
| 18 | Maximum                       | 7.000               | 7.000              | 7.000        | 7.000        |
| 19 |                               |                     |                    |              |              |
| 20 | Minimum Competitor            |                     |                    |              |              |
| 21 | Bid (\$million)               | 6.083               |                    |              |              |
| 22 |                               |                     |                    |              |              |
| 23 | Our Bid (\$million)           | 5.700               |                    |              |              |
| 24 |                               |                     |                    |              |              |
| 25 | Win Bid?                      | 1                   | (1=yes, 0=no)      |              |              |
| 26 |                               |                     |                    |              |              |
| 27 | Profit (\$million)            | 0.650               |                    |              |              |


(a) The mean profit is approximately \$0.31 million. The probability of winning the bid is approximately 51.6% .

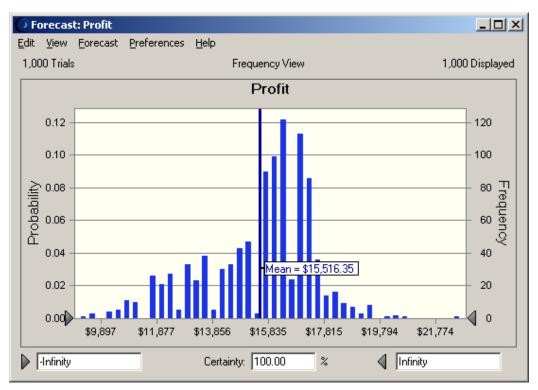


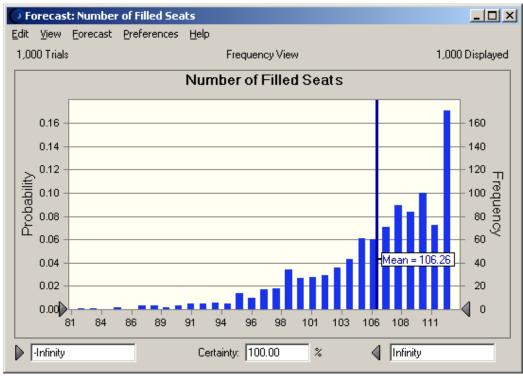

(b) RPI's mean profit is maximized with a bid of approximately \$5.5 million.

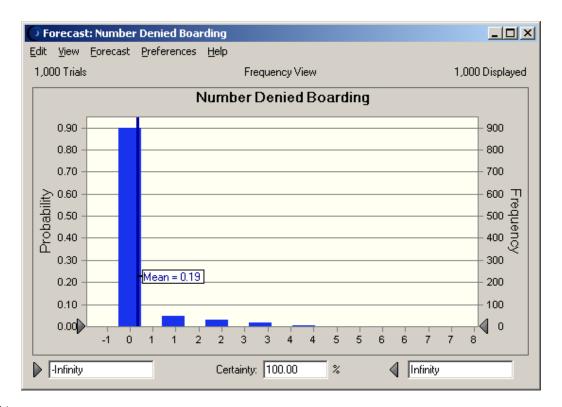
| Our Bid (5.300) | Our Bid (5.400) | Our Bid (5.500) | Our Bid (5.600) | Our Bid (5.700) | Our Bid (5.800) | Our Bid (5.900) | Our Bid (6.000) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 0.248           | 0.324           | 0.361           | 0.354           | 0.311           | 0.222           | 0.141           | 0.060           |

(c)




(d) The optimal bid found by OptQuest is approximately \$5.55 million.

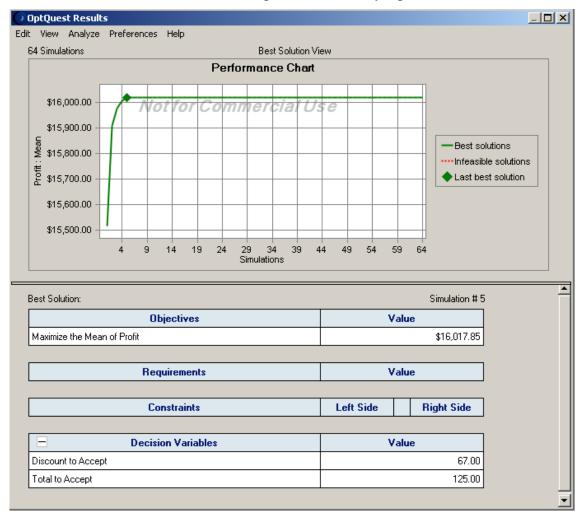




# **20S3-4.**

|    | Α  | В                      | С             | D  | E                       | F           |
|----|----|------------------------|---------------|----|-------------------------|-------------|
| 1  | Αi | rline Overbooking      |               |    |                         |             |
| 2  |    | _                      |               |    | Discount                |             |
| 3  |    | Data                   |               |    | Reservations            |             |
| 4  |    | Seats Available        | 112           |    | to Accept               | 75          |
| 5  |    | Fixed Cost             | \$10,000      |    |                         |             |
| 6  |    | Discount Fare          | \$150         |    | Total                   |             |
| 7  |    | Full Coach Fare        | \$400         |    | Reservations            |             |
| 8  |    | Cost of Bumping        | \$600         |    | to Accept               | 120         |
| 9  |    |                        |               |    |                         |             |
| 10 |    | Discount Ticket Demand | d (Triangular | ·) |                         |             |
| 11 |    | Minimum                | 50            |    | Discount-Fare Demand    | 96.66666667 |
| 12 |    | Most Likely            | 90            |    | Rounded                 | 97          |
| 13 |    | Maximum                | 150           |    | Tickets Purchased       | 75          |
| 14 |    | Probability to Show Up | 95%           |    | Number that Show        | 71.25       |
| 15 |    |                        |               |    |                         |             |
| 16 |    | Full-Coach Ticket Dema | ind (Uniform) | )  | Full Coach Demand       | 50          |
| 17 |    | Minimum                | 30            |    | Rounded                 | 50          |
| 18 |    | Maximum                | 70            |    | Tickets Purchased       | 45          |
| 19 |    | Probability to Show Up | 85%           |    | Number that Show        | 38.25       |
| 20 |    |                        |               |    |                         |             |
| 21 |    |                        |               |    | Number Denied Boarding  | 0           |
| 22 |    |                        |               |    | Number of Filled Seats  | 109.5       |
| 23 |    |                        |               |    |                         |             |
| 24 |    |                        |               |    | Revenue (Discount Fare) | \$11,250    |
| 25 |    |                        |               |    | Revenue (Full Coach)    | \$15,300    |
| 26 |    |                        |               |    | Bumping Cost            | \$0         |
| 27 |    |                        |               |    | Fixed Cost              | \$10,000    |
| 28 |    |                        |               |    | Profit                  | \$16,550.00 |

(a)








(b)

|                       | Dis         | Dis         | Di.         | Di.         | D.          |
|-----------------------|-------------|-------------|-------------|-------------|-------------|
| Trend Chart           | scount      | scount      | Discount    | Discount    | scount      |
| Overlay Chart         | ð           | ť           | ð           | ð           | ð           |
|                       | Accept      | Accept      | Accept      | Accept      | Accept      |
| Forecast Charts       | pt (50)     | pt (60)     | pt (70)     | pt (80)     | pt (90)     |
|                       | 9           | 9           | 9           | 9           | 0)          |
| Total to Accept (112) | \$14,234.40 | \$14,627.05 | \$14,202.90 | \$13,117.10 | \$11,818.25 |
| Total to Accept (117) | \$14,467.20 | \$15,284.45 | \$15,263.50 | \$14,518.70 | \$13,348.45 |
| Total to Accept (122) | \$14,503.80 | \$15,668.65 | \$15,909.10 | \$15,334.70 | \$14,161.65 |
| Total to Accept (127) | \$14,503.80 | \$15,725.25 | \$15,948.30 | \$15,263.50 | \$13,920.25 |
| Total to Accept (132) | \$14,503.80 | \$15,715.05 | \$15,789.50 | \$14,923.30 | \$13,423.25 |

(c) They should accept approximately 67 discount reservations and up to approximately 125 total in order to maximize the mean profit, as found by OptQuest.



### **CHAPTER 21: THE ART OF MODELING WITH SPREADSHEETS**

# 21.1.

|    | A                | В    | С    | D    | Е          | F            | G            | Н       | I        | J       | K  | L       |
|----|------------------|------|------|------|------------|--------------|--------------|---------|----------|---------|----|---------|
| 1  | LT Rate          | 7%   |      |      |            |              |              |         |          |         |    |         |
| 2  | ST Rate          | 10%  |      |      |            |              |              |         |          |         |    |         |
| 3  | Savings Interest | 3%   |      |      |            |              |              |         |          |         |    |         |
| 4  |                  |      |      |      |            |              |              |         |          |         |    |         |
| 5  | Start Balance    | 1    |      | (all | cash figur | es in millio | ons of dolla | ars)    |          |         |    |         |
| 6  | Minimum Cash     | 0.5  |      |      |            |              |              |         |          |         |    |         |
| 7  |                  |      |      |      |            |              |              |         |          |         |    |         |
| 8  |                  | Cash | LT   | ST   | LT         | ST           | LT           | ST      | Savings  |         |    | Minimum |
| 9  | Year             | Flow | Loan | Loan | Interest   | Interest     | Payback      | Payback | Interest | Balance |    | Balance |
| 10 | 2010             | -8   | 7.50 | 0.00 |            |              |              |         |          | 0.50    | >= | 0.50    |
| 11 | 2011             | -2   |      | 2.51 | -0.53      | 0.00         |              | 0.00    | 0.015    | 0.50    | >= | 0.50    |
| 12 | 2012             | -4   |      | 7.27 | -0.53      | -0.25        |              | -2.51   | 0.015    | 0.50    | >= | 0.50    |
| 13 | 2013             | 3    |      | 5.51 | -0.53      | -0.73        |              | -7.27   | 0.015    | 0.50    | >= | 0.50    |
| 14 | 2014             | 6    |      | 0.57 | -0.53      | -0.55        |              | -5.51   | 0.015    | 0.50    | >= | 0.50    |
| 15 | 2015             | 3    |      | 0    | -0.53      | -0.06        |              | -0.57   | 0.015    | 2.36    | >= | 0.50    |
| 16 | 2016             | -4   |      | 2.59 | -0.53      | 0            |              | 0       | 0.07093  | 0.50    | >= | 0.50    |
| 17 | 2017             | 7    |      | 0    | -0.53      | -0.26        |              | -2.59   | 0.015    | 4.14    | >= | 0.50    |
| 18 | 2018             | -2   |      | 0    | -0.53      | 0            |              | 0       | 0.12423  | 1.74    | >= | 0.50    |
| 19 | 2019             | 10   |      | 0    | -0.53      | 0            |              | 0       | 0.05221  | 11.27   | >= | 0.50    |
| 20 | 2020             |      |      |      | -0.53      | 0            | -7.50        | 0       | 0.33803  | 3.58    | >= | 0.50    |

# 21.2.

(a) The COO will need to know how many of each product to produce. Thus, the decisions are how many end tables, how many coffee tables, and how many dining room tables to produce. The objective is to maximize total profit.

(b) Pine wood used = (3 end tables)(8 pounds/end table)

+ (3 dining room tables)(80 pounds/dining room table)

= 264 pounds

Labor used = (3 end tables)(1 hour/end table)

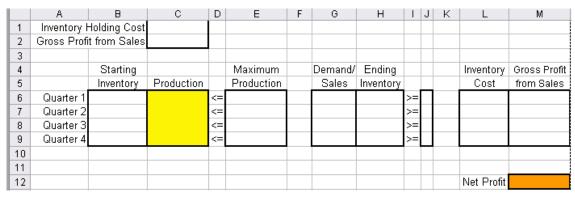
+ (3 dining room tables)(4 hours/dining room table)

= 15 hours

(c)

|   | А              | В          | С                 | D                  | Е          | F  | G            |
|---|----------------|------------|-------------------|--------------------|------------|----|--------------|
| 1 |                | End Tables | Coffee Tables     | Dining Room Tables |            |    |              |
| 2 | Unit Profit    |            |                   |                    |            |    |              |
| 3 |                |            |                   |                    |            |    |              |
| 4 |                | Resource   | e Used per unit F | Produced           | Total Used |    | Available    |
| 5 | Pine Wood      |            |                   |                    |            | <= |              |
| 6 | Labor          |            |                   |                    |            | <= |              |
| 7 |                |            |                   |                    |            |    |              |
| 8 |                | End Tables | Coffee Tables     | Dining Room Tables |            |    | Total Profit |
| 9 | Units Produced |            |                   |                    |            |    |              |
|   |                | 1          |                   |                    |            |    |              |

(d)


|   | А              | В          | С             | D                  | Е          | F  | G            |
|---|----------------|------------|---------------|--------------------|------------|----|--------------|
| 1 |                | End Tables | Coffee Tables | Dining Room Tables |            |    |              |
| 2 | Unit Profit    | \$50       | \$100         | \$220              |            |    |              |
| 3 |                |            |               |                    |            |    |              |
| 4 |                | Resource   | Used per unit | Produced           | Total Used |    | Available    |
| 5 | Pine Wood      | 8          | 15            | 80                 | 3000       | <= | 3000         |
| 6 | Labor          | 1          | 2             | 4                  | 200        | <= | 200          |
| 7 |                |            |               |                    |            |    |              |
| 8 |                | End Tables | Coffee Tables | Dining Room Tables |            |    | Total Profit |
| 9 | Units Produced | 0          | 40            | 30                 |            |    | \$10,600     |

## 21.3.

(a) Top management will need to know how much to produce in each quarter. Thus, the decisions are the production levels in quarters 1, 2, 3, and 4. The objective is to maximize the net profit.

(b)

Ending Inventory(Q1) = Starting Inventory(Q1) + Production(Q1) - Sales(Q1) = 1,000 + 5,000 - 3,000 = 3,000Ending Inventory(Q2) = Starting Inventory(Q2) + Production(Q2) - Sales(Q2) = 3,000 + 5,000 - 4,000 = 4,000Profit from Sales(Q1) = Sales(Q1) × (\$20) = 3,000 × (\$20) = \$60,000 Profit from Sales(Q2) = Sales(Q2) × (\$20) = 4,000 × (\$20) = \$80,000 Inventory Cost(Q1) = Ending Inventory(Q1) × (\$8) = 3,000 × (\$8) = \$24,000 Inventory Cost(Q2) = Ending Inventory(Q2) × (\$8) = 4,000 × (\$8) = \$32,000 (c)



(d)

|    | А          | В             | С          | D  | E          | F | G       | Н         | -1 | J | K      | L          | M            |
|----|------------|---------------|------------|----|------------|---|---------|-----------|----|---|--------|------------|--------------|
| 1  | Inventory  | Holding Cost  | \$8        |    |            |   |         |           |    |   |        |            |              |
| 2  | Gross Prof | īt from Sales | \$20       |    |            |   |         |           |    |   |        |            |              |
| 3  |            |               |            |    |            |   |         |           |    |   |        |            |              |
| 4  |            | Starting      |            |    | Maximum    |   | Demand/ | Ending    |    |   |        | Inventory  | Gross Profit |
| 5  |            | Inventory     | Production |    | Production |   | Sales   | Inventory |    |   |        | Cost       | from Sales   |
| 6  | Quarter 1  | 1,000         | 2,000      | <= | 6,000      |   | 3,000   | 0         | >= | 0 |        | \$0        | \$60,000     |
| 7  | Quarter 2  | 0             | 4,000      | <= | 6,000      |   | 4,000   | 0         | >= | 0 |        | \$0        | \$80,000     |
| 8  |            |               |            |    |            |   |         |           |    |   | Totals | \$0        | \$140,000    |
| 9  |            |               |            |    |            |   |         |           |    |   |        |            |              |
| 10 |            |               |            |    |            |   |         |           |    |   |        | Net Profit | \$140,000    |

(e)

|    | A         | В               | С          | D  | E          | F | G       | Н         | -1 | J | K      | L          | М            |
|----|-----------|-----------------|------------|----|------------|---|---------|-----------|----|---|--------|------------|--------------|
| 1  | Inventory | Holding Cost    | \$8        |    |            |   |         |           |    |   |        |            |              |
| 2  | Gross Pro | ifit from Sales | \$20       |    |            |   |         |           |    |   |        |            |              |
| 3  |           |                 |            |    |            |   |         |           |    |   |        |            |              |
| 4  |           | Starting        |            |    | Maximum    |   | Demand/ | Ending    |    |   |        | Inventory  | Gross Profit |
| 5  |           | Inventory       | Production |    | Production |   | Sales   | Inventory |    |   |        | Cost       | from Sales   |
| 6  | Quarter 1 | 1,000           | 3,000      | <= | 6,000      |   | 3,000   | 1,000     | >= | 0 |        | \$8,000    | \$60,000     |
| 7  | Quarter 2 | 1,000           | 6,000      | <= | 6,000      |   | 4,000   | 3,000     | >= | 0 |        | \$24,000   | \$80,000     |
| 8  | Quarter 3 | 3,000           | 6,000      | <= | 6,000      |   | 8,000   | 1,000     | >= | 0 |        | \$8,000    | \$160,000    |
| 9  | Quarter 4 | 1,000           | 6,000      | <= | 6,000      |   | 7,000   | 0         | >= | 0 |        | \$0        | \$140,000    |
| 10 |           |                 |            |    |            |   |         |           |    |   | Totals | \$40,000   | \$440,000    |
| 11 |           |                 |            |    |            |   |         |           |    |   |        |            |              |
| 12 |           |                 |            |    |            |   |         |           |    |   |        | Net Profit | \$400,000    |

### 21.4.

(a) Fairwinds needs to know how much to participate in each of the three projects and what their ending balances will be. The decisions to be made are how much to participate in each of the three projects. The objective is to maximize the ending balance at the end of six years.

(b)

Ending Balance(Y1) = Starting Balance + Project A + Project C + Other Projects = 
$$10 + (100\%)(-4) + (50\%)(-10) + 6 = \$7$$
 million Ending Balance(Y2) = Starting Balance + Project A + Project C + Other Projects =  $7 + (100\%)(-6) + (50\%)(-7) + 6 = \$3.5$  million

(c)

|    | A             | В            | С                  | D               | E         | F        | G       | Н  | 1       |
|----|---------------|--------------|--------------------|-----------------|-----------|----------|---------|----|---------|
| 1  | Starting Cash |              |                    |                 |           |          |         |    |         |
| 2  |               |              |                    |                 |           |          |         |    |         |
| 3  |               |              |                    |                 | Total     |          |         |    |         |
| 4  |               | Cash Flow (a | at full participat | ion, \$million) | Cash Flow | Other    | Ending  |    | Minimum |
| 5  | Year          | Project A    | Project B          | Project C       | From ABC  | Projects | Balance |    | Balance |
| 6  | 1             |              |                    |                 |           |          |         | >= |         |
| 7  | 2             |              |                    |                 |           |          |         | >= |         |
| 8  | 3             |              |                    |                 |           |          |         | >= |         |
| 9  | 4             |              |                    |                 |           |          |         | >= |         |
| 10 | 5             |              |                    |                 |           |          |         | >= |         |
| 11 | 6             |              |                    |                 |           |          |         | >= |         |
| 12 |               |              |                    |                 |           |          |         |    |         |
| 13 | Participation |              |                    |                 |           |          |         |    |         |
| 14 |               | <=           | <=                 | <=              |           |          |         |    |         |
| 15 |               | 100%         | 100%               | 100%            |           |          |         |    |         |

(d)

|    | Α             | В            | С                  | D               | E             | F          | G       | Н  | I       |
|----|---------------|--------------|--------------------|-----------------|---------------|------------|---------|----|---------|
| 1  | Starting Cash | 10           |                    | all cash n      | umbers are ir | \$millions |         |    |         |
| 2  |               |              |                    |                 |               |            |         |    |         |
| 3  |               |              |                    |                 | Total         |            |         |    |         |
| 4  |               | Cash Flow (a | at full participat | ion, \$million) | Cash Flow     | Other      | Ending  |    | Minimum |
| 5  | Year          | Project A    | Project B          | Project C       | From ABC      | Projects   | Balance |    | Balance |
| 6  | 1             | -4           | -8                 | -10             | 0             | 6          | 16      | >= | 1       |
| 7  | 2             | -6           | -8                 | -7              | 0             | 6          | 22      | >= | 1       |
| 8  |               |              |                    |                 |               |            |         |    |         |
| 9  |               |              |                    |                 |               |            |         |    |         |
| 10 |               |              |                    |                 |               |            |         |    |         |
| 11 |               |              |                    |                 |               |            |         |    |         |
| 12 |               |              |                    |                 |               |            |         |    |         |
| 13 | Participation | 0%           | 0%                 | 0%              |               |            |         |    |         |
| 14 |               | <=           | <=                 | <=              |               |            |         |    |         |
| 15 |               | 100%         | 100%               | 100%            |               |            |         |    |         |

(e)

|    | A             | В            | С                  | D               | E             | F          | G       | Н  |         |
|----|---------------|--------------|--------------------|-----------------|---------------|------------|---------|----|---------|
| 1  | Starting Cash | 10           |                    | all cash n      | umbers are ir | \$millions |         |    |         |
| 2  |               |              |                    |                 |               |            |         |    |         |
| 3  |               |              |                    |                 | Total         |            |         |    |         |
| 4  |               | Cash Flow (a | at full participat | ion, \$million) | Cash Flow     | Other      | Ending  |    | Minimum |
| 5  | Year          | Project A    | Project B          | Project C       | From ABC      | Projects   | Balance |    | Balance |
| 6  | 1             | -4           | -8                 | -10             | -10.75        | 6          | 5.25    | >= | 1       |
| 7  | 2             | -6           | -8                 | -7              | -8.125        | 6          | 3.125   | >= | 1       |
| 8  | 3             | -6           | -4                 | -7              | -8.125        | 6          | 1       | >= | 1       |
| 9  | 4             | 24           | -4                 | -5              | -0.5          | 6          | 6.5     | >= | 1       |
| 10 | 5             | 0            | 30                 | -3              | -3            | 6          | 9.5     | >= | 1       |
| 11 | 6             | 0            | 0                  | 44              | 44            | 6          | 59.5    | >= | 1       |
| 12 |               |              |                    |                 |               |            |         |    |         |
| 13 | Participation | 18.75%       | 0%                 | 100%            |               |            |         |    |         |
| 14 |               | <=           | <=                 | <=              |               |            |         |    |         |
| 15 |               | 100%         | 100%               | 100%            |               |            |         |    |         |

### 21.5.

- (a) Web Mercantile needs to know each month how many square feet to lease and for how long. The decisions therefore are for each month how many square feet to lease for one month, two months, three months, etc. The objective is to minimize the overall leasing cost.
- (b) Total Cost = (30,000 sq feet)(\$190/sq foot) + (20,000 sq feet)(\$100/sq foot) = \$7.7 million

(c)

|    | А                | В | С | D | Е | F   | G    | Н    | -    | J   | Κ   | L   | M | N | 0 | Р | Q         | R  | S          |
|----|------------------|---|---|---|---|-----|------|------|------|-----|-----|-----|---|---|---|---|-----------|----|------------|
| 1  |                  |   |   |   | ħ | Иon | th ( | Cove | ered | lby | Lea | ase | ? |   |   |   | Total     |    | Space      |
| 2  | Month of Lease:  | 1 | 1 | 1 | 1 | 1   | 2    | 2    | 2    | 2   | 3   | 3   | 3 | 4 | 4 | 5 | Leased    |    | Required   |
| 3  | Length of Lease: | 1 | 2 | 3 | 4 | 5   | 1    | 2    | 3    | 4   | 1   | 2   | 3 | 1 | 2 | 1 | (sq. ft.) |    | (sq. ft.)  |
| 4  | Month 1          |   |   |   |   |     |      |      |      |     |     |     |   |   |   |   |           | Α  |            |
| 5  | Month 2          |   |   |   |   |     |      |      |      |     |     |     |   |   |   |   |           | >= |            |
| 6  | Month 3          |   |   |   |   |     |      |      |      |     |     |     |   |   |   |   |           | >= |            |
| 7  | Month 4          |   |   |   |   |     |      |      |      |     |     |     |   |   |   |   |           | >= |            |
| 8  | Month 5          |   |   |   |   |     |      |      |      |     |     |     |   |   |   |   |           | >= |            |
| 9  |                  |   |   |   |   |     |      |      |      |     |     |     |   |   |   |   |           |    |            |
| 10 | Cost of Lease    |   |   |   |   |     |      |      |      |     |     |     |   |   |   |   |           |    |            |
| 11 | (per sq. ft.)    |   |   |   |   |     |      |      |      |     |     |     |   |   |   |   |           |    |            |
| 12 |                  |   |   |   |   |     |      |      |      |     |     |     |   |   |   |   |           |    | Total Cost |
| 13 | Lease (sq. ft.)  |   |   |   |   |     |      |      |      |     |     |     |   |   |   |   |           |    |            |

(d)

|    | А                | В        | С         | D     | Е         | F  | G           |
|----|------------------|----------|-----------|-------|-----------|----|-------------|
| 1  | Mor              | ith Cove | red by Le | ease? | Total     |    | Space       |
| 2  | Month of Lease:  | 1        | 1         | 2     | Leased    |    | Required    |
| 3  | Length of Lease: | 1        | 2         | 1     | (sq. ft.) |    | (sq. ft.)   |
| 4  | Month 1          | 1        | 1         |       | 30,000    | >= | 30,000      |
| 5  | Month 2          |          | 1         | 1     | 20,000    | >= | 20,000      |
| 6  |                  |          |           |       |           |    |             |
| 7  | Cost of Lease    | \$65     | \$100     | \$65  |           |    |             |
| 8  | (per sq. ft.)    |          |           |       |           |    |             |
| 9  |                  |          |           |       |           |    | Total Cost  |
| 10 | Lease (sq. ft.)  | 10,000   | 20,000    | 0     |           |    | \$2,650,000 |

(e)

|    | А                | В    | С     | D     | E     | F      | G    | Н      | 1     | J      | K      | L     | M     | N    | 0     | Р      | Q         | R  | S           |
|----|------------------|------|-------|-------|-------|--------|------|--------|-------|--------|--------|-------|-------|------|-------|--------|-----------|----|-------------|
| 1  |                  |      |       |       |       |        | Mor  | nth Co | vered | by Le: | ase?   |       |       |      |       |        | Total     |    | Space       |
| 2  | Month of Lease:  | 1    | 1     | 1     | 1     | 1      | 2    | 2      | 2     | 2      | 3      | 3     | 3     | 4    | 4     | 5      | Leased    |    | Required    |
| 3  | Length of Lease: | 1    | 2     | 3     | 4     | 5      | 1    | 2      | 3     | 4      | 1      | 2     | 3     | 1    | 2     | 1      | (sq. ft.) |    | (sq. ft.)   |
| 4  | Month 1          | 1    | 1     | 1     | 1     | 1      |      |        |       |        |        |       |       |      |       |        | 30,000    | >= | 30,000      |
| 5  | Month 2          |      | 1     | 1     | 1     | 1      | 1    | 1      | 1     | 1      |        |       |       |      |       |        | 30,000    | >= | 20,000      |
| 6  | Month 3          |      |       | 1     | 1     | 1      |      | 1      | 1     | 1      | 1      | 1     | 1     |      |       |        | 40,000    | >= | 40,000      |
| 7  | Month 4          |      |       |       | 1     | 1      |      |        | 1     | 1      |        | 1     | 1     | 1    | 1     |        | 30,000    | >= | 10,000      |
| 8  | Month 5          |      |       |       |       | 1      |      |        |       | 1      |        |       | 1     |      | 1     | 1      | 50,000    | >= | 50,000      |
| 9  |                  |      |       |       |       |        |      |        |       |        |        |       |       |      |       |        |           |    |             |
| 10 | Cost of Lease    | \$65 | \$100 | \$135 | \$160 | \$190  | \$65 | \$100  | \$135 | \$160  | \$65   | \$100 | \$135 | \$65 | \$100 | \$65   |           |    |             |
| 11 | (per sq. ft.)    |      |       |       |       |        |      |        |       |        |        |       |       |      |       |        |           |    |             |
| 12 |                  |      |       |       |       |        |      |        |       |        |        |       |       |      |       |        |           |    | Total Cost  |
| 13 | Lease (sq. ft.)  | 0    | 0     | 0     | 0     | 30,000 | 0    | 0      | 0     | 0      | 10,000 | 0     | 0     | 0    | 0     | 20,000 |           |    | \$7,650,000 |

# 21.6.

(a) Larry needs to know how many employees should work each possible shift. Therefore, the decision variables are the number of employees that work each shift. The objective is to minimize the total cost of the employees.

(b) Working 8 A.M.-noon: 3 FT morning + 3 PT = 6

Working Noon-4 P.M.: 3 FT morning + 2 FT afternoon + 3 PT = 8Working 4 P.M.: 2 FT afternoon + 4 FT evening + 3 PT = 9

Working 8 P.M-midnight: 4 FT evening + 3 PT = 7

Total cost per day = (9 FT)(8 hrs)(\$40/hr) + (12 PT)(4 hrs)(\$30/hr) = \$4,320

| (c) |                   |           |           |                |             |             |           |              |         |    |        |
|-----|-------------------|-----------|-----------|----------------|-------------|-------------|-----------|--------------|---------|----|--------|
| `   | A                 | В         | С         | D              | E           | F           | G         | Н            | I       | J  | K      |
| 1   |                   | Full Time | Full Time | Full Time      | Part Time   | Part Time   | Part Time | Part Time    |         |    |        |
| 2   |                   | 8am-4pm   | noon-8pm  | 4pm-midnight   | 8am-noon    | noon-4pm    | 4pm-8pm   | 8pm-midnight |         |    |        |
| 3   | Cost per Shift    |           |           |                |             |             |           |              |         |    |        |
| 4   |                   |           |           |                |             |             |           |              | Total   |    | Total  |
| 5   |                   |           |           | Shift Covers T | ime of Day? | (1=yes, 0=n | 10)       |              | Working |    | Needed |
| 6   | 8am-noon          |           |           |                |             |             |           |              |         | >= |        |
| 7   | noon-4pm          |           |           |                |             |             |           |              |         | >= |        |
| 8   | 4pm-8pm           |           |           |                |             |             |           |              |         | >= |        |
| 9   | 8pm-midnight      |           |           |                |             |             |           |              |         | >= |        |
| 10  |                   |           |           |                |             |             |           |              |         |    |        |
| 11  | Workers per Shift |           |           |                |             |             |           |              |         |    |        |
| 12  |                   |           |           |                |             |             |           |              |         |    |        |
| 13  |                   |           |           |                |             |             |           |              |         |    |        |
| 14  |                   | Total     |           | Times Total    |             |             |           | Total        |         |    |        |
| 15  | Time of Day       | Full Time |           | Part Time      |             |             |           | Cost         |         |    |        |
| 16  | 8am-noon          |           | >=        |                |             |             |           |              |         |    |        |
| 17  | noon-4pm          |           | >=        |                |             |             |           |              |         |    |        |
| 18  | 4pm-8pm           |           | >=        |                |             |             |           |              |         |    |        |
| 19  | 8pm-midnight      |           | >=        |                |             |             |           |              |         |    |        |

| (d)               |           |           |                |             |             |           |              |         |    |        |
|-------------------|-----------|-----------|----------------|-------------|-------------|-----------|--------------|---------|----|--------|
|                   | Full Time | Full Time | Full Time      | Part Time   | Part Time   | Part Time | Part Time    |         |    |        |
|                   | 8am-4pm   | noon-8pm  | 4pm-midnight   | 8am-noon    | noon-4pm    | 4pm-8pm   | 8pm-midnight |         |    |        |
| Cost per Shift    | \$320     | \$320     | \$320          | \$120       | \$120       | \$120     | \$120        |         |    |        |
|                   |           |           |                |             |             |           |              | Total   |    | Total  |
|                   |           |           | Shift Covers T | ime of Day? | (1=yes, 0=r | 10)       |              | Working |    | Needed |
| 8am-noon          | 1         |           |                | 1           |             |           |              | 4       | >= | 4      |
| noon-4pm          | 1         | 1         |                |             | 1           |           |              | 8       | >= | 8      |
| 4pm-8pm           |           | 1         | 1              |             |             | 1         |              | 10      | >= | 10     |
| 8pm-midnight      |           |           | 1              |             |             |           | 1            | 6       | >= | 6      |
|                   |           |           |                |             |             |           |              |         |    |        |
| Workers per Shift | 2.6666667 | 2.6666667 | 4              | 1.3333333   | 2.6666667   | 3.3333333 | 2            |         |    |        |
|                   |           |           |                |             |             |           |              |         |    |        |
|                   |           |           | 2              |             |             |           |              |         |    |        |
|                   | Total     |           | Times Total    |             |             |           | Total        |         |    |        |
| Time of Day       | Full Time |           | Part Time      |             |             |           | Cost         |         |    |        |
| 8am-noon          | 2.6666667 | >=        | 2.666666667    |             |             |           | \$4,107      |         | Ī  |        |
| noon-4pm          | 5.3333333 | >=        | 5.333333333    |             |             |           |              |         |    |        |
| 4pm-8pm           | 6.6666667 | >=        | 6.666666667    |             |             |           |              |         |    |        |
| 8pm-midnight      | 4         | >=        | 4              |             |             |           |              |         |    |        |

#### 21.7.

(a) Al will need to know how much to invest in each possible investment each year. Thus, the decisions are how much to invest in investment A in year 1, 2, 3, and 4; how much to invest in B in year 1, 2, and 3; how much to invest in C in year 2; and how much to invest in D in year 5. The objective is to accumulate the maximum amount of money by the beginning of year 6.

(b)

```
Ending Cash(Y1) = (\$60,000)(Starting Balance)-(\$20,000)(A in Y1) = \$40,000
Ending Cash(Y2) = (\$40,000)(Starting Balance)-(\$20,000)(B in Y2)-(\$20,000)(C in Y2) = \$0
Ending Cash(Y3) = (\$0)(Starting Balance)+(\$20,000)(1.4)(investment A) = \$28,000
Ending Cash(Y4) = (\$28,000)(Starting Balance)
Ending Cash(Y5) = (\$28,000)(Starting Balance)+(\$20,000)(1.7)(investment B) = \$62,000
Ending Cash(Y6) = (\$62,000)(Starting Balance)+(\$20,000)(1.9)(investment C) = \$100,000
```

(c)

|    | Α                 | В | С | D | Е | F | G | Н | - 1 | J | K       | L  | M       |
|----|-------------------|---|---|---|---|---|---|---|-----|---|---------|----|---------|
| 1  | Beginning Balance |   |   |   |   |   |   |   |     |   |         |    |         |
| 2  | Minimum Balance   |   |   |   |   |   |   |   |     |   |         |    |         |
| 3  |                   |   |   |   |   |   |   |   |     |   |         |    |         |
| 4  | Investment        | Α | Α | Α | Α | В | В | В | С   | D | Ending  |    | Minimum |
| 5  | Year              | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 2   | 5 | Balance |    | Balance |
| 6  | Year 1            |   |   |   |   |   |   |   |     |   |         | >= |         |
| 7  | Year 2            |   |   |   |   |   |   |   |     |   |         | >= |         |
| 8  | Year 3            |   |   |   |   |   |   |   |     |   |         | >= |         |
| 9  | Year 4            |   |   |   |   |   |   |   |     |   |         | >= |         |
| 10 | Year 5            |   |   |   |   |   |   |   |     |   |         | >= |         |
| 11 | Year 6            |   |   |   |   |   |   |   |     |   |         | >= |         |
| 12 |                   |   |   |   |   |   |   |   |     |   |         |    |         |
| 13 | Dollars Invested  |   |   |   |   |   |   |   |     |   |         |    |         |

(d)

|    | А                 | В        | С   | D   | Е   | F   | G           | Н   | I        | J  | K       |
|----|-------------------|----------|-----|-----|-----|-----|-------------|-----|----------|----|---------|
| 1  | Beginning Balance | \$60,000 |     |     |     |     |             |     |          |    |         |
| 2  | Minimum Balance   | \$0      |     |     |     |     |             |     |          |    |         |
| 3  |                   |          |     |     |     |     |             |     |          |    |         |
| 4  | Investment        | Α        | Α   | Α   | В   | В   | В           | С   | Ending   |    | Minimum |
| 5  | Year              | 1        | 2   | 3   | 1   | 2   | 3           | 2   | Balance  |    | Balance |
| 6  | Year 1            | -1       |     |     | -1  |     |             |     | \$0      | >= | \$0     |
| 7  | Year 2            |          | -1  |     |     | -1  |             | -1  | \$0      | >= | \$0     |
| 8  | Year 3            | 1.4      |     | -1  |     |     | -1          |     | \$84,000 | >= | \$0     |
| 9  |                   |          |     |     |     |     |             |     |          |    |         |
| 10 | Dollars Invested  | \$60,000 | \$0 | \$0 | \$0 | \$0 | <b>\$</b> 0 | \$0 |          |    |         |

(e)

|    | A                 | В        | С   | D        | Е   | F   | G   | Н   | - 1 | J         | K         | L  | М       |
|----|-------------------|----------|-----|----------|-----|-----|-----|-----|-----|-----------|-----------|----|---------|
| 1  | Beginning Balance | \$60,000 |     |          |     |     |     |     |     |           |           |    |         |
| 2  | Minimum Balance   | \$0      |     |          |     |     |     |     |     |           |           |    |         |
| 3  |                   |          |     |          |     |     |     |     |     |           |           |    |         |
| 4  | Investment        | Α        | Α   | Α        | Α   | В   | В   | В   | С   | D         | Ending    |    | Minimum |
| 5  | Year              | 1        | 2   | 3        | 4   | 1   | 2   | 3   | 2   | 5         | Balance   |    | Balance |
| 6  | Year 1            | -1       |     |          |     | -1  |     |     |     |           | \$0       | >= | \$0     |
| 7  | Year 2            |          | -1  |          |     |     | -1  |     | -1  |           | \$0       | >= | \$0     |
| 8  | Year 3            | 1.4      |     | -1       |     |     |     | -1  |     |           | \$0       | >= | \$0     |
| 9  | Year 4            |          | 1.4 |          | -1  | 1.7 |     |     |     |           | \$0       | >= | \$0     |
| 10 | Year 5            |          |     | 1.4      |     |     | 1.7 |     |     | -1        | \$0       | >= | \$0     |
| 11 | Year 6            |          |     |          | 1.4 |     |     | 1.7 | 1.9 | 1.3       | \$152,880 | >= | \$0     |
| 12 |                   |          |     |          |     |     |     |     |     |           |           |    |         |
| 13 | Dollars Invested  | \$60,000 | \$0 | \$84,000 | \$0 | \$0 | \$0 | \$0 | \$0 | \$117,600 |           |    |         |

# 21.8.

In the poor formulation, the data are not separated from the formula - they are buried inside the equations in column C. In contrast, the spreadsheet in Figure 21.6 separates all of the data in their own cells, and then the formulas for hours used and total profit refer to these data cells.

In the poor formulation, no range names are used. The spreadsheet in Figure 21.6 uses range names for UnitProfit, HoursUsed, TotalProfit, etc.

The poor formulation uses no borders, shading, or colors to distinguish between cell types. The spreadsheet in Figure 21.6 uses borders and shading to distinguish the data cells, changing cells, and target cell.

The poor formulation does not show the entire model on the spreadsheet. There is no indication of the constraints on the spreadsheet (they are only displayed in the Solver dialogue box). Furthermore, the right-hand-sides of the constraints are not on the spreadsheet, but buried in the Solver dialogue box. The spreadsheet in Figure 21.6 shows all of the constraints of the model in three adjacent cells on the spreadsheet.

#### 21.9.

Cell F16 has -0.47 for LT Interest, rather than -LTRate\*LTLoan.

Cell G14 for the 2013 ST Interest uses the LT Loan amount rather than the ST Loan amount.

Cell H21 for the LT Payback refers to the 2010 ST Loan rather than the LT Loan to determine the payback amount.

#### 21.10.

Cell G21 for the 2020 ST Interest uses LTRate instead of STRate.

Cell H21 for the LT Payback in 2020 has -6.649 instead of -LTLoan.

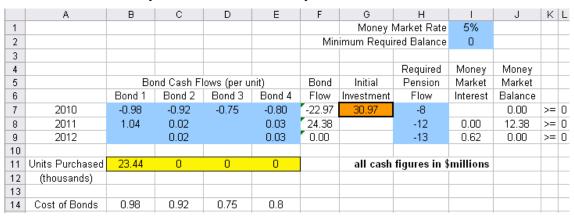
Cell I15 for ST Payback in 2014 has -LTLoan instead of -E14 (STLoan for 2013).

#### **CASES**

#### **CASE 21.1 Prudent Provisions for Pensions**

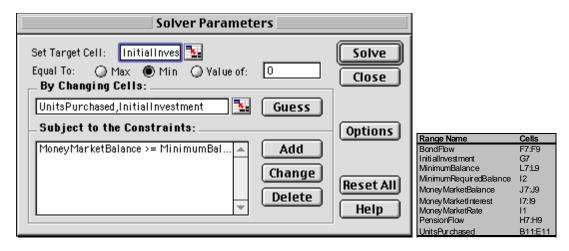
(a) PFS needs to know how many units of each of the four bonds to purchase, how much to invest in the money market, and their ending balance in the money market fund each year after paying the pensions. The decisions are how many units of each bond to purchase, as well as the initial investment in 2007 in the money market. The objective is to minimize the overall initial investment necessary in 2007 in order to meet the pension payments through 2016.

(b)

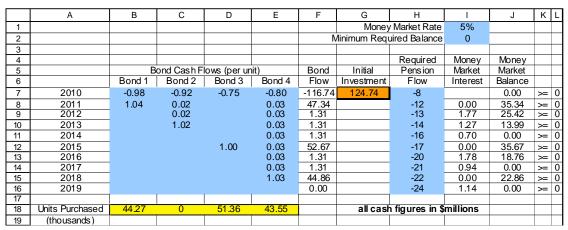

```
Payment received from Bond 1 (2008) = (10,000 \text{ units})(\$1,000 \text{ face value})
                                       + (10,000 \text{ units})(\$1,000 \text{ face value})(0.04)
                                       = $10.4 million
Payment received from Bond 1 (2009) = $0
Payment received from Bond 2 (2008) = (10,000 \text{ units})(\$1,000 \text{ face value})(0.02)
                                       = $0.2 million
Payment received from Bond 2 (2009) = (10,000 \text{ units})(\$1,000 \text{ face value})(0.02)
                                       = $0.2 million
Balance in money market fund (2007) = $28 million (initial investment)
                                       - $8 million (pension payment)
                                       = $20 million
Balance in money market fund (2008) = $20 million (starting balance)
                                       + $10.4 million (payment from Bond 1)
                                       + $0.2 million (payment from Bond 2)
                                       - $12 million (pension payment)
                                       + $1 million (money market interest)
                                       = $19.6 million
Balance in money market fund (2009) = $19.6 million (starting balance)
                                       + $0.2 million (payment from Bond 2)
                                       - $13 million (pension payment)
                                       + $0.98 million (money market interest)
                                       = $7.78 million
```

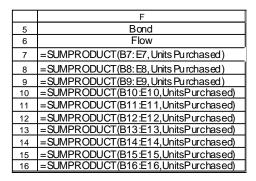
(c) PFS will need to track the flow of cash from bond investments, the initial investment, the required pension payments, interest from the money market, and the money market balance. The decisions are the number of units to purchase of each bond. Data for the problem include the yearly cash flows from the bonds (per unit purchased), the money market rate, and the minimum required balance in the money market fund at the end of each year. A sketch of a spreadsheet model might appear as follows.

|    | А               | В      | С          | D           | Е      | F                        | G          | Н           | I        | J       | K  | L |
|----|-----------------|--------|------------|-------------|--------|--------------------------|------------|-------------|----------|---------|----|---|
| 1  |                 |        |            |             |        |                          | Money I    | Market Rate |          |         |    |   |
| 2  |                 |        |            |             |        | Minimum Required Balance |            |             |          |         |    | Г |
| 3  |                 |        |            |             |        |                          |            |             |          |         |    |   |
| 4  |                 |        |            |             |        |                          |            | Required    | Money    | Money   |    |   |
| 5  |                 | Во     | nd Cash Fl | lows (per u | nit)   | Bond                     | Initial    | Pension     | Market   | Market  |    |   |
| 6  |                 | Bond 1 | Bond 2     | Bond 3      | Bond 4 | Flow                     | Investment | Flow        | Interest | Balance |    |   |
| 7  | 2010            |        |            |             |        |                          |            |             |          |         | >= | 0 |
| 8  | 2011            |        |            |             |        |                          |            |             |          |         | >= | 0 |
| 9  | 2012            |        |            |             |        |                          |            |             |          |         | >= | 0 |
| 10 | 2013            |        |            |             |        |                          |            |             |          |         | >= | 0 |
| 11 | 2014            |        |            |             |        |                          |            |             |          |         | >= | 0 |
| 12 | 2015            |        |            |             |        |                          |            |             |          |         | >= | 0 |
| 13 | 2016            |        |            |             |        |                          |            |             |          |         | >= | 0 |
| 14 | 2017            |        |            |             |        |                          |            |             |          |         | >= | 0 |
| 15 | 2018            |        |            |             |        |                          |            |             |          |         | >= | 0 |
| 16 | 2019            |        |            |             |        |                          |            |             |          |         | >= | 0 |
| 17 |                 |        |            |             |        |                          |            |             |          |         |    |   |
| 18 | Units Purchased |        |            |             |        |                          |            |             |          |         |    |   |

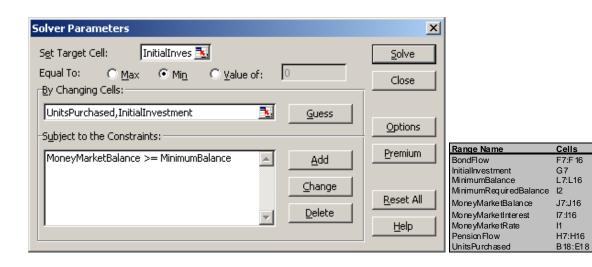

(d) The bond cash flows (per unit) are calculated in B7:E9. For example, one unit of Bond 1 costs \$0.98 in 2007, and returns the face value (\$1) plus the coupon rate (\$0.04) in 2008. The total cash flow from bonds is then calculated in column F. The Initial Investment (G7) is both a decision variable and the target cell. It includes all money invested on January 1, 2007 (including enough to pay for the bonds and pension payment in 2007, as well as any initial investment in the money market).

If just years 2007 through 2009 are considered, then 23.44 thousand units of Bond 1 should be purchased at a cost of \$22.97 million, along with an initial \$8 million investment in the money market fund on January 1, 2007.



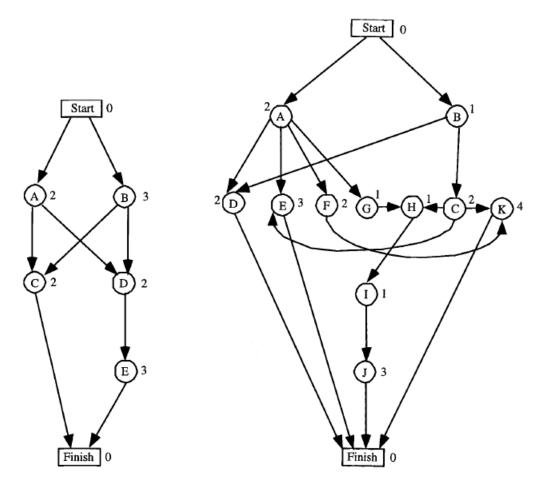


|   | F                                 |
|---|-----------------------------------|
| 5 | Bond                              |
| 6 | Flow                              |
| 7 | =SUMPRODUCT(B7:E7,UnitsPurchased) |
| 8 | =SUMPRODUCT(B8:E8,UnitsPurchased) |
| 9 | =SUMPRODUCT(B9:E9,UnitsPurchased) |

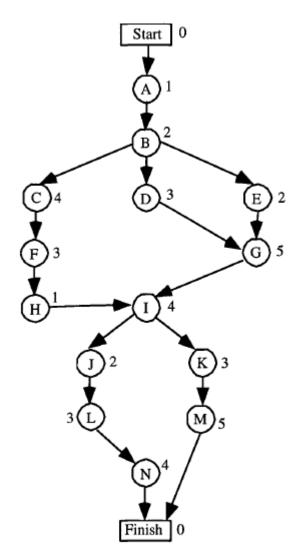
|   |                        | J              |
|---|------------------------|----------------|
| 4 | Money                  | Money          |
| 5 | Market                 | Market         |
| 6 | Interest               | Balance        |
| 7 |                        | =SUM(F7:17)    |
| 8 | =MoneyMarketRate*J7    | =J7+SUM(F8:I8) |
| 9 | =Mone vMarketR ate *J8 | =J8+SUM(F9:I9) |




(e) Expanded to consider all years through 2016, the spreadsheet is as shown below. PFS should purchase 44.27 thousand units of Bond 1, 51.36 thousand units of Bond 3, and 43.55 thousand units of Bond 4 (at a cost of \$116.74 million), and invest an additional \$8 million in the money market on January 1, 2007.

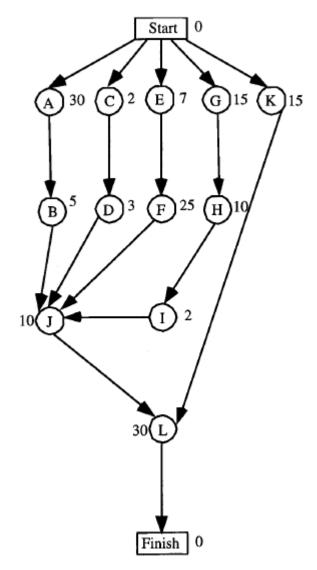






|    | I                    | J                 |
|----|----------------------|-------------------|
| 4  | Money                | Money             |
| 5  | Market               | Market            |
| 6  | Interest             | Balance           |
| 7  |                      | =SUM( F7: I7)     |
| 8  | =MoneyMarketRate*J7  | =J7+SUM(F8:18)    |
| 9  | =MoneyMarketRate*J8  | =J8+SUM(F9:19)    |
| 10 | =MoneyMarketRate*J9  | =J9+SUM(F10:I10)  |
| 11 | =MoneyMarketRate*J10 | =J10+SUM(F11:I11) |
| 12 | =MoneyMarketRate*J11 | =J11+SUM(F12:I12) |
| 13 | =MoneyMarketRate*J12 | =J12+SUM(F13:I13) |
| 14 | =MoneyMarketRate*J13 | =J13+SUM(F14:I14) |
| 15 | =MoneyMarketRate*J14 | =J14+SUM(F15:I15) |
| 16 | =MoneyMarketRate*J15 | =J15+SUM(F16:I16) |



# **CHAPTER 22: PROJECT MANAGEMENT WITH PERT/CPM**


22.2-1. 22.2-2.





# 22.3-1.

(a)



Hence, Start  $\to A \to B \to J \to L \to \text{Finish}$  is the critical path.

$$(c) - (d) - (e)$$

| Activity | ES | EF | LS | LF | Slack | Critical Path |
|----------|----|----|----|----|-------|---------------|
| Start    | 0  | 0  | 0  | 0  | 0     | Yes           |
| Α        | 0  | 30 | 0  | 30 | 0     | Yes           |
| В        | 30 | 35 | 30 | 35 | 0     | Yes           |
| C        | 0  | 2  | 30 | 32 | 30    | No            |
| D        | 2  | 5  | 32 | 35 | 30    | No            |
| Е        | 0  | 7  | 3  | 10 | 3     | No            |
| F        | 7  | 32 | 10 | 35 | 3     | No            |
| G        | 0  | 15 | 8  | 23 | 8     | No            |
| Н        | 15 | 25 | 23 | 33 | 8     | No            |
| I        | 25 | 27 | 33 | 35 | 8     | No            |
| J        | 35 | 45 | 35 | 45 | 0     | Yes           |
| K        | 0  | 15 | 30 | 45 | 30    | No            |
| L        | 45 | 75 | 45 | 75 | 0     | Yes           |
| Finish   | 75 | 75 | 75 | 75 | 0     | Yes           |

Critical Path: Start  $\rightarrow A \rightarrow B \rightarrow J \rightarrow L \rightarrow$  Finish

(f) Dinner will be delayed three minutes because of the phone call. If the food processor is used, dinner will not be delayed, since there was a slack of three minutes, five minutes of cutting time is saved and the call used only six minutes of these eight minutes.

#### 22.3-2.

Hence, Start  $\rightarrow B \rightarrow D \rightarrow E \rightarrow$  Finish is the critical path.

(b)

| Activity | ES | EF | LS | LF | Slack | Critical Path |
|----------|----|----|----|----|-------|---------------|
| Start    | 0  | 0  | 0  | 0  | 0     | Yes           |
| Α        | 0  | 2  | 1  | 3  | 1     | No            |
| В        | 0  | 3  | 0  | 3  | 0     | Yes           |
| C        | 3  | 5  | 6  | 8  | 3     | No            |
| D        | 3  | 5  | 3  | 5  | 0     | Yes           |
| E        | 5  | 8  | 5  | 8  | 0     | Yes           |
| Finish   | 8  | 8  | 8  | 8  | 0     | Yes           |

Critical Path: Start  $\rightarrow B \rightarrow D \rightarrow E \rightarrow$  Finish

(c) No, this will not shorten the length of the project because the activity is not on the critical path.

### 22.3-3.

Critical Paths: Start 
$$\to A \to F \to K \to \text{Finish}$$
  
Start  $\to A \to G \to H \to I \to J \to \text{Finish}$   
Start  $\to B \to C \to H \to I \to J \to \text{Finish}$ 

(b)

| Activity | ES | EF | LS | LF | Slack | Critical Path |
|----------|----|----|----|----|-------|---------------|
| Start    | 0  | 0  | 0  | 0  | 0     | Yes           |
| Α        | 0  | 2  | 0  | 2  | 0     | Yes           |
| В        | 0  | 1  | 0  | 1  | 0     | Yes           |
| C        | 1  | 3  | 1  | 3  | 0     | Yes           |
| D        | 2  | 4  | 6  | 8  | 4     | No            |
| Е        | 3  | 6  | 5  | 8  | 2     | No            |
| F        | 2  | 4  | 2  | 4  | 0     | Yes           |
| G        | 2  | 3  | 2  | 3  | 0     | Yes           |
| Н        | 3  | 4  | 3  | 4  | 0     | Yes           |
| I        | 4  | 5  | 4  | 5  | ő     | Yes           |
| J        | 5  | 8  | 5  | 8  | ő     | Yes           |
| K        | 4  | 8  | 4  | 8  | ő     | Yes           |
| Finish   | 8  | 8  | 8  | 8  | ŏ     | Yes           |

Critical Paths: Start 
$$\to A \to F \to K \to \text{Finish}$$
  
Start  $\to A \to G \to H \to I \to J \to \text{Finish}$   
Start  $\to B \to C \to H \to I \to J \to \text{Finish}$ 

(c) No, this will not shorten the length of the project because A is not on all of the critical paths.

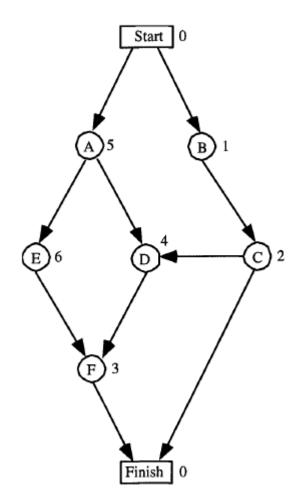
#### 22.3-4.

Critical Paths: Start 
$$\to B \to E \to J \to M \to \text{Finish}$$
  
Start  $\to C \to G \to L \to N \to \text{Finish}$ 

(b)

| Activity | ES | EF | LS | LF | Slack | Critical Path |
|----------|----|----|----|----|-------|---------------|
| Start    | 0  | 0  | 0  | 0  | 0     | Yes           |
| Α        | 0  | 6  | 1  | 7  | 1     | No            |
| В        | 0  | 3  | 0  | 3  | 0     | Yes           |
| C        | 0  | 4  | 0  | 4  | 0     | Yes           |
| D        | 6  | 10 | 7  | 11 | 1     | No            |
| E        | 3  | 10 | 3  | 10 | 0     | Yes           |
| F        | 4  | 8  | 8  | 12 | 4     | No            |
| G        | 4  | 10 | 4  | 10 | 0     | Yes           |
| H        | 10 | 13 | 11 | 14 | 1     | No            |
| I        | 6  | 11 | 9  | 14 | 3     | No            |
| J        | 10 | 14 | 10 | 14 | 0     | Yes           |
| K        | 8  | 11 | 12 | 15 | 4     | No            |
| L        | 10 | 15 | 10 | 15 | 0     | Yes           |
| M        | 14 | 20 | 14 | 20 | 0     | Yes           |
| N        | 15 | 20 | 15 | 20 | 0     | Yes           |
| Finish   | 20 | 20 | 20 | 20 | 0     | Yes           |

Ken will be able to meet his deadline.


(c) Critical Paths: Start 
$$\to B \to E \to J \to M \to \text{Finish}$$
  
Start  $\to C \to G \to L \to N \to \text{Finish}$ 

Focus attention on activities with no slack.

(d) If activity I takes two more weeks, there will be no delay because its slack is three. If activity H takes two extra weeks, then there will be a delay of one week because its slack is only one week. If activity J takes two more weeks, there will be a delay of two weeks, since it has no slack.

22.3-5.

(a)



(b)

| Activity | ES | EF | LS | LF | Slack | Critical Path |
|----------|----|----|----|----|-------|---------------|
| Start    | 0  | 0  | 0  | 0  | 0     | Yes           |
| Α        | 0  | 5  | 0  | 5  | 0     | Yes           |
| В        | 0  | 1  | 11 | 12 | 11    | No            |
| C        | 1  | 3  | 12 | 14 | 11    | No            |
| D        | 5  | 9  | 7  | 11 | 2     | No            |
| E        | 5  | 11 | 5  | 11 | 0     | Yes           |
| F        | 11 | 14 | 11 | 14 | 0     | Yes           |
| Finish   | 14 | 14 | 14 | 14 | 0     | Yes           |

Critical Path: Start  $\rightarrow A \rightarrow E \rightarrow F \rightarrow$  Finish

(c) 6 months

22.3-6.

| Activity | ES | EF | LS | LF | Slack | Critical Path |
|----------|----|----|----|----|-------|---------------|
| Start    | 0  | 0  | 0  | 0  | 0     | Yes           |
| Α        | 0  | 3  | 0  | 3  | 0     | Yes           |
| В        | 3  | 11 | 3  | 11 | 0     | Yes           |
| C        | 11 | 29 | 11 | 29 | 0     | Yes           |
| D        | 29 | 39 | 29 | 39 | 0     | Yes           |
| E        | 29 | 34 | 30 | 35 | 1     | No            |
| F        | 34 | 44 | 35 | 45 | 1     | No            |
| G        | 39 | 50 | 39 | 50 | 0     | Yes           |
| H        | 50 | 67 | 50 | 67 | 0     | Yes           |
| I        | 29 | 38 | 36 | 45 | 7     | No            |
| J        | 44 | 53 | 45 | 54 | 1     | No            |
| K        | 53 | 57 | 57 | 61 | 4     | No            |
| L        | 53 | 60 | 54 | 61 | 1     | No            |
| M        | 67 | 70 | 67 | 70 | 0     | Yes           |
| N        | 60 | 69 | 61 | 70 | 1     | No            |
| Finish   | 70 | 70 | 70 | 70 | 0     | Yes           |

Critical Path: Start  $\to A \to B \to C \to D \to G \to H \to M \to \text{Finish}$ 

Total duration: 70 weeks

22.3-7.

| _Activity | ES | EF | LS | LF  | Slack | Critical Path |
|-----------|----|----|----|-----|-------|---------------|
| Start     | 0  | 0  | 0  | 0   | 0     | Yes           |
| Α         | 0  | 1  | 0  | 1 1 | 0     | Yes           |
| В         | 1  | 3  | 1  | 3   | 0     | I .           |
| C         | 3  | 9  | 3  | 9   | 0     | Yes           |
| D         | 9  | 13 | 11 | 15  | 2     | Yes           |
| E         | 9  | 10 | 9  | 10  | ı     | No            |
| F         | 10 | 14 | 10 | 14  | 0     | Yes           |
| G         | 13 | 18 | 15 | 1   | 0     | Yes           |
| Н         | 18 | 23 | 20 | 20  | 2     | No            |
| ī         | 9  | 12 |    | 25  | 2     | No            |
| Î         | 14 | 17 | 11 | 14  | 2     | No            |
| ĸ         | 17 | ı  | 14 | 17  | 0     | Yes           |
| L I       | 17 | 21 | 17 | 21  | 0     | Yes           |
| M         |    | 18 | 20 | 21  | 3     | No            |
|           | 23 | 24 | 25 | 26  | 2     | No            |
| N         | 21 | 26 | 21 | 26  | 0     | Yes           |
| Finish    | 26 | 26 | 26 | 26  | 0     | Yes           |

Critical Path: Start  $\to A \to B \to C \to E \to F \to J \to K \to N \to \text{Finish}$ 

Total duration: 26 weeks

22.3-8.

| Activity | ES | EF | LS | LF | Slack | Critical Path |
|----------|----|----|----|----|-------|---------------|
| Start    | 0  | 0  | 0  | 0  | 0     | Yes           |
| Α        | 0  | 1  | 0  | 1  | 0     | Yes           |
| В        | 1  | 3  | 1  | 3  | 0     | Yes           |
| C        | 3  | 10 | 3  | 10 | 0     | Yes           |
| D        | 10 | 14 | 13 | 17 | 3     | No            |
| E        | 10 | 13 | 10 | 13 | 0     | Yes           |
| F        | 13 | 16 | 13 | 16 | 0     | Yes           |
| G        | 14 | 18 | 17 | 21 | 3     | No            |
| Н        | 18 | 24 | 21 | 27 | 3     | No            |
| I        | 10 | 15 | 11 | 16 | 1     | No            |
| J        | 16 | 22 | 16 | 22 | 0     | Yes           |
| K        | 22 | 25 | 22 | 25 | 0     | Yes           |
| L        | 22 | 25 | 22 | 25 | 0     | Yes           |
| M        | 24 | 25 | 27 | 28 | 3     | No            |
| N        | 25 | 28 | 25 | 28 | 0     | Yes           |
| Finish   | 28 | 28 | 28 | 28 | 0     | Yes           |

Critical Path: Start  $\to A \to B \to C \to E \to F \to J \to K \to N \to \text{Finish}$ Start  $\to A \to B \to C \to E \to F \to J \to L \to N \to \text{Finish}$ 

Total duration: 28 weeks

#### 22.4-1.

$$\mu = \frac{o+4m+p}{6} = \frac{30+4(36)+48}{6} = 37$$

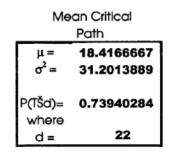
$$\sigma^2 = \left(\frac{p-o}{6}\right)^2 = \left(\frac{48-30}{6}\right)^2 = 9$$

#### 22.4-2.

 $\begin{array}{lll} \text{(a)} & \operatorname{Start} \to A \to E \to I \to \operatorname{Finish} & \operatorname{Length} = 17 \text{ months} \\ \operatorname{Start} \to A \to C \to F \to I \to \operatorname{Finish} & \operatorname{Length} = 17 \text{ months} \\ \operatorname{Start} \to B \to D \to G \to J \to \operatorname{Finish} & \operatorname{Length} = 17 \text{ months} \\ \operatorname{Start} \to B \to H \to J \to \operatorname{Finish} & \operatorname{Length} = 18 \text{ months} \\ \end{array}$ 

Critical Path: Start  $\rightarrow B \rightarrow H \rightarrow J \rightarrow$  Finish

(b) 
$$\frac{d-\mu_p}{\sqrt{\sigma_p}} = \frac{22-18}{\sqrt{31}} = 0.718 \Rightarrow P\{T \le 22\} \approx 0.77$$


(c) Start 
$$\rightarrow A \rightarrow E \rightarrow I \rightarrow \text{Finish}$$
:  $\frac{d-\mu_p}{\sqrt{\sigma_p}} = \frac{22-17}{\sqrt{25}} = 1 \Rightarrow P\{T \le 22\} \approx 0.84$   
Start  $\rightarrow A \rightarrow C \rightarrow F \rightarrow I \rightarrow \text{Finish}$ :  $\frac{d-\mu_p}{\sqrt{\sigma_p}} = \frac{22-17}{\sqrt{27}} = 0.962 \Rightarrow P\{T \le 22\} \approx 0.84$   
Start  $\rightarrow B \rightarrow D \rightarrow G \rightarrow J \rightarrow \text{Finish}$ :  $\frac{d-\mu_p}{\sqrt{\sigma_p}} = \frac{22-17}{\sqrt{28}} = 0.945 \Rightarrow P\{T \le 22\} \approx 0.84$ 

(d) There is approximately a 77% chance that the drug will be ready in 22 weeks.

# 22.4-3.

Start 
$$\rightarrow$$
 B  $\rightarrow$  H  $\rightarrow$  J  $\rightarrow$  Finish

# Start $\rightarrow$ A $\rightarrow$ E $\rightarrow$ I $\rightarrow$ Finish



Mean Critical Path 
$$\mu$$
 = 17.0833333  $\sigma^2$  = 25.3402778  $\Phi$  P(TŠd)= 0.83564332  $\Phi$  where  $\Phi$  = 22

Start 
$$\rightarrow$$
 A  $\rightarrow$  C  $\rightarrow$  F  $\rightarrow$  I  $\rightarrow$  Finish

Start 
$$\rightarrow$$
 B  $\rightarrow$  D  $\rightarrow$  G  $\rightarrow$  J  $\rightarrow$  Finish

| Mean Critical<br>Path |                          |  |  |  |
|-----------------------|--------------------------|--|--|--|
| $\mu = \sigma^2 =$    | 17.5833333<br>27.3680556 |  |  |  |
| P(TŠd)=<br>where      | 0.80073605               |  |  |  |
| <b>d</b> =            | 22                       |  |  |  |

| Mean Critical |            |  |  |  |
|---------------|------------|--|--|--|
|               | Path       |  |  |  |
| μ=            | 17.8333333 |  |  |  |
| $\sigma^2 =$  | 28.0416667 |  |  |  |
|               |            |  |  |  |
| P(TŠd)=       | 0.78431252 |  |  |  |
| where         |            |  |  |  |
| d =           | 22         |  |  |  |

There is approximately a 73% chance that the drug will be ready in 22 weeks.

# 22.4-4.

(a)



(b)

| Activity | $\mu$ | $\sigma^2$ |
|----------|-------|------------|
| A        | 4     | 0.111      |
| В        | 2     | 0          |
| С        | 4.83  | 0.25       |
| D        | 3     | 0.444      |
| Е        | 3.17  | 0.25       |

$$\begin{array}{lll} \text{(c)} & \operatorname{Start} \to A \to B \to C \to \operatorname{Finish} & \operatorname{Length} = 10.83 \text{ weeks} \\ \operatorname{Start} \to A \to B \to E \to \operatorname{Finish} & \operatorname{Length} = 9.17 \text{ weeks} \\ \operatorname{Start} \to A \to D \to E \to \operatorname{Finish} & \operatorname{Length} = 10.17 \text{ weeks} \\ \end{array}$$

Critical Path: Start  $\rightarrow A \rightarrow B \rightarrow C \rightarrow$  Finish

(d) 
$$\frac{d-\mu_p}{\sqrt{\sigma_p}} = \frac{11-10.83}{\sqrt{0.361}} = 0.028 \Rightarrow P\{T \le 11\} = 0.6$$

(e) Make the bid, since there is approximately a 60% chance that the project will be completed in 11 weeks or less.

#### 22.4-5.

(a)

| Activity | $\mu$ | $\sigma^2$ |
|----------|-------|------------|
| A        | 12    | 0          |
| В        | 23    | 16         |
| С        | 15    | 1          |
| D        | 27    | 9          |
| Е        | 18    | 4          |
| F        | 6     | 4          |

$$\begin{array}{ll} \text{(b)} & \operatorname{Start} \to A \to C \to E \to F \to \operatorname{Finish} & \operatorname{Length} = 51 \ \operatorname{days} \\ \operatorname{Start} \to B \to D \to \operatorname{Finish} & \operatorname{Length} = 50 \ \operatorname{days} \end{array}$$

Critical Path: Start  $\to A \to C \to E \to F \to \text{Finish}$ 

(c) 
$$\frac{d-\mu_p}{\sqrt{\sigma_p}} = \frac{57-51}{\sqrt{9}} = 2 \Rightarrow P\{T \le 57\} = 0.9772$$
 (Normal Distribution table)

(d) 
$$\frac{d-\mu_p}{\sqrt{\sigma_p}}=\frac{57-50}{\sqrt{25}}=1.4\Rightarrow P\{T\leq 57\}=0.9192$$
 (Normal Distribution table)

(e) (0.9772)(0.9192) = 0.8982, so the procedure used in (c) overestimates the probability of completing the project within 57 days.

## 22.4-6.

(a)

| Activity | $\mu$ | $\sigma^2$ |
|----------|-------|------------|
| A        | 32    | 1.78       |
| В        | 27.7  | 2.78       |
| С        | 36    | 11.1       |
| D        | 16    | 0.444      |
| Е        | 32    | 0          |
| F        | 53.7  | 32.1       |
| G        | 16.7  | 4          |
| Н        | 20.3  | 2.78       |
| I        | 34    | 7.11       |
| J        | 17.7  | 9          |

Critical Path: Start  $\rightarrow B \rightarrow F \rightarrow J \rightarrow$  Finish

(c) 
$$\frac{d-\mu_p}{\sqrt{\sigma_p}} = \frac{100-99.1}{\sqrt{43.89}} = 0.136 \Rightarrow P\{T \le 100\} = 0.4443$$
 (Normal Distribution table)

(d) Higher

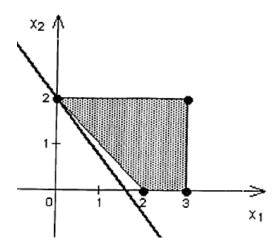
#### 22.4-7.

- (a) TRUE. The optimistic and pessimistic estimates lie at the extremes of what is possible, p.33.
- (b) FALSE. The probability distribution is a Beta distribution, p.33.
- (c) FALSE. The mean critical path will turn out to be the longest path in the project network.

22.5-1.

|                   |            | Length | of Path |
|-------------------|------------|--------|---------|
| Activity to Crash | Crash Cost | A-C    | B-D     |
|                   |            | 14     | 16      |
| B                 | \$5,000    | 14     | 15      |
| B                 | \$5,000    | 14     | 15      |
| D                 | \$6,000    | 14     | 14      |
| C                 | \$4,000    | 13     | 14      |
| D                 | \$6,000    | 13     | 13      |
| C                 | \$4,000    | 12     | 13      |
| D                 | \$6,000    | 12     | 12      |

# 22.5-2.


(a) Let  $x_A$  and  $x_C$  be the reduction in A and C respectively, due to crashing.

subject to 
$$x_A \leq 3$$

$$x_C \le 2$$

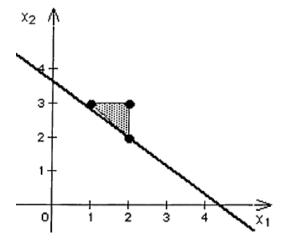
$$\begin{aligned} x_A &\leq 3 \\ x_C &\leq 2 \\ x_A + x_C &\geq 2 \\ x_A, x_C &\geq 0 \end{aligned}$$

and 
$$x_A, x_C \ge 0$$



Optimal Solution:  $(x_A, x_C) = (0, 2)$  and  $C^* = 8,000$ .

(b) Let  $x_B$  and  $x_D$  be the reduction in B and D respectively, due to crashing.


minimize 
$$C = 5000x_B + 6000x_D$$

subject to 
$$x_B \leq x_B$$

$$x_D \leq 3$$
  
 $x_D + x_D > 3$ 

oject to 
$$x_B \leq 2$$
  
 $x_D \leq 3$   
 $x_B + x_D \geq 4$   
If  $x_B, x_D \geq 0$ 

and 
$$x_B, x_D \ge 0$$



Optimal Solution:  $(x_B, x_D) = (2, 2)$  and  $C^* = 22,000$ .

(c) Let  $x_A$ ,  $x_B$ ,  $x_C$ , and  $x_D$  be the reduction in the duration of A, B, C, and D respectively, due to crashing.

$$\begin{array}{ll} \text{minimize} & C = 5000x_A + 5000x_B + 4000x_C + 6000x_D \\ \text{subject to} & x_A \leq 3 \\ & x_B \leq 2 \\ & x_C \leq 2 \\ & x_D \leq 3 \\ & x_A + x_C \geq 2 \\ & x_B + x_D \geq 4 \\ \text{and} & x_A, x_B, x_C, x_D \geq 0 \end{array}$$

Optimal Solution:  $(x_A, x_B, x_C, x_D) = (0, 2, 2, 2)$  and  $C^* = 30,000$ .

(d) Let  $x_j$  be the reduction in the duration of activity j due to crashing for j = A, B, C, D. Also let  $y_j$  denote the start time of activity j for j = C, D and  $y_{\text{FINISH}}$  the project duration.

$$\begin{array}{ll} \text{minimize} & C = 5000x_A + 5000x_B + 4000x_C + 6000x_D \\ \text{subject to} & x_A \leq 3, x_B \leq 2, x_C \leq 2, x_D \leq 3 \\ & y_C \geq 0 + 8 - x_A \\ & y_D \geq 0 + 9 - x_B \\ & y_{\text{FINISH}} \geq y_C + 6 - x_C \\ & y_{\text{FINISH}} \geq y_D + 7 - x_D \\ & y_{\text{FINISH}} \leq 12 \\ \text{and} & x_A, x_B, x_C, x_D, y_C, y_D, y_{\text{FINISH}} \geq 0 \end{array}$$

(e)

|          | Tim    | ne    |         | Cost    | Maximum<br>Time | Crash Cost<br>per Week |              | Time      | Finish |
|----------|--------|-------|---------|---------|-----------------|------------------------|--------------|-----------|--------|
| Activity | Normal | Crash | Normal  | Crash   | Reduction       | saved                  | Time         | Reduction | Time   |
| A        | 8      | 5     | \$25000 | \$40000 | 3               | \$5000                 | 0            | dia O     |        |
| В        | 9      | 7     | \$20000 | \$30000 | 2               | \$5000                 | 0 11         | 2         | 7      |
| С        | 6      | 4     | \$16000 | \$24000 | 2               | \$4000                 | 8            |           | 12     |
| D        | 7      | 4     | \$27000 | \$45000 | 3               | \$6000                 | 7            | 2         | 12     |
|          |        |       |         |         |                 |                        | Einlich Timo | 10        |        |

(f) The solution found using LINGO agrees with the solution in (e), i.e., it is optimal to reduce the duration of activities B, C, and D by two months. Then the entire project takes 12 months and costs 25 + 30 + 24 + (27 + 12) = 118 thousand dollars.

| Variable | Value    | Reduced Cost |
|----------|----------|--------------|
| XA       | 0.000000 | 0.000000     |
| XB       | 2.000000 | 0.000000     |
| XC       | 2.000000 | 0.000000     |
| XD       | 2.000000 | 0.000000     |

| Row | Slack or Surplus | Dual Price |
|-----|------------------|------------|
| 1   | 30000.00         | -1.000000  |
| 2   | 3.000000         | 0.000000   |
| 3   | 0.000000         | 1000.000   |
| 4   | 0.000000         | 1000.000   |
| 5   | 1.000000         | 0.000000   |
| 6   | 0.000000         | -5000.000  |
| 7   | 0.000000         | -6000.000  |

# (g) Deadline of 11 months

| !        | Tim    | ne    |         | cost    | Maximum<br>Time | Crash Cost<br>per Week | Start | Time      | Finish |
|----------|--------|-------|---------|---------|-----------------|------------------------|-------|-----------|--------|
| Activity | Normal | Crash | Normal  | Crash   | Reduction       | saved                  | Time  | Reduction | Time   |
| Α        | 8      | 5     | \$25000 | \$40000 | 3               | \$5000                 | 0     | 1         | 7      |
| В        | 9      | 7     | \$20000 | \$30000 | 2               | \$5000                 | 0     | 2 2       | 7      |
| С        | 6      | 4     | \$16000 | \$24000 | 2               | \$4000                 | 7     | 2         | 11     |
| D .      | 7      | 4     | \$27000 | \$45000 | 3               | \$6000                 | 7     | 3         | 11     |

Finish Time = 11 Total Cost = \$129000

# Deadline of 13 months

|        | -      | Tim    | ne    |         | Cost    | Maximum<br>Time | Crash Cost<br>per Week |      | Time               | Finish |
|--------|--------|--------|-------|---------|---------|-----------------|------------------------|------|--------------------|--------|
| Activi | ity    | Normal | Crash | Normal  | Crash   | Reduction       | saved                  | Time | Reduction          | Time_  |
| Α.     | $\neg$ | 8      | 5     | \$25000 | \$40000 | 3               | \$5000                 | 0    | 0                  | 8      |
| В      | - 1    | 9      | 7     | \$20000 | \$30000 | 2               | \$5000                 | 0    | 2                  | 7      |
| С      | - 1    | 6      | 4     | \$16000 | \$24000 | 2               | \$4000                 | 8    |                    | 13     |
| D      |        | 7      | 4     | \$27000 | \$45000 | 3               | \$6000                 | 7    | THE REAL PROPERTY. | 13     |

Finish Time = 13 Total Cost = \$108000

# 22.5-3.

(a)

| Activity to Crash | Crash Cost | Length of Path B-D |
|-------------------|------------|--------------------|
|                   |            | 50                 |
| В                 | \$10,000   | 49                 |
| В                 | \$10,000   | 48                 |
| В                 | \$10,000   | 47                 |

(b)

| Activity to Crash | Crash Cost | Length of Path A-C-E-F |
|-------------------|------------|------------------------|
|                   |            | 51                     |
| С                 | \$10,000   | 50                     |
| С                 | \$10,000   | 49                     |
| С                 | \$10,000   | 48                     |
| Е                 | \$15,000   | 47                     |

22-15

(c)

| .        | Tim    | ne     |          | Cost     | Maximum<br>Time | Crash Cost<br>per Week | l    | Time      | Finish |
|----------|--------|--------|----------|----------|-----------------|------------------------|------|-----------|--------|
| Activity | Normal | Crash_ | Normal   | Crash    | Reduction       | saved                  | Tlme | Reduction | Time   |
| Α        | 12     | 9      | \$210000 | \$270000 | 3               | \$20000                | 0    | 0         | 12     |
| В        | 23     | 18     | \$410000 | \$460000 | 5               | \$10000                | 0    | 3         | 20     |
| С        | 15     | 12     | \$290000 | \$320000 | 3               | \$10000                | 12   | 3         | 24     |
| D        | 27     | 21     | \$440000 | \$500000 | 6               | \$10000                | 20   | 0         | 47     |
| Ε        | 18     | 14     | \$350000 | \$410000 | 4               | \$15000                | 24   | 1         | 41     |
| F        | 6      | 4      | \$160000 | \$210000 | 2               | \$25000                | 41   | 0         | 47     |

Finish Time = 47 Total Cost = \$ 193,500

# 22.5-4.

(a)

| Activity | ES | EF | LS | LF | Slack | Critical Path |
|----------|----|----|----|----|-------|---------------|
| Start    | 0  | 0  | 0  | 0  | 0     | Yes           |
| A        | 0  | 3  | 0  | 3  | 0     | Yes           |
| В        | 3  | 7  | 4  | 8  | 1     | No            |
| С        | 3  | 8  | 3  | 8  | 0     | Yes           |
| D        | 7  | 10 | 9  | 12 | 2     | No            |
| Е        | 8  | 12 | 8  | 12 | 0     | Yes           |
| Finish   | 12 | 12 | 12 | 12 | 0     | Yes           |

Critical Path: Start  $\rightarrow A \rightarrow C \rightarrow E \rightarrow$  Finish

Total Duration: 12 weeks

(b) \$7,834 is saved by the new plan given below.

|                   |            | Length of Path |       |       |  |  |  |  |
|-------------------|------------|----------------|-------|-------|--|--|--|--|
| Activity to Crash | Crash Cost | A-B-D          | A-B-E | A-C-E |  |  |  |  |
|                   |            | 10             | 11    | 12    |  |  |  |  |
| C                 | \$1,333    | 10             | 11    | 11    |  |  |  |  |
| E                 | \$2,500    | 10             | 10    | 10    |  |  |  |  |
| D & E             | \$4,000    | 9              | 9     | 9     |  |  |  |  |
| B & C             | \$4,333    | 8              | 8     | 8     |  |  |  |  |

| Activity | Duration | Cost     |
|----------|----------|----------|
| A        | 3 weeks  | \$54,000 |
| B        | 3 weeks  | \$65,000 |
| C        | 3 weeks  | \$58,666 |
| D        | 2 weeks  | \$41,500 |
| E        | 2 weeks  | \$80,000 |

(c)

|     |       | Tim    | ne    | c       | ost     | Maximum<br>Time | Crash Cost<br>per Week | Start | Time      | Finish |
|-----|-------|--------|-------|---------|---------|-----------------|------------------------|-------|-----------|--------|
| Act | ivity | Normal | Crash | Normal  | Crash   | Reduction       | saved                  | Time  | Reduction | Time   |
|     | A     | 3      | 2     | \$54000 | \$60000 | 1               | \$6000                 | 0     | 0         | -3     |
|     | В     | 4      | 3     | \$62000 | \$65000 | 1               | \$3000                 | 4     | 0         | 8      |
| (   | C     | 5      | 2     | \$66000 | \$70000 | 3               | \$1333                 | 3     | 0         | 8      |
| 1   | D ¦   | 3      | 1     | \$40000 | \$43000 | 2               | \$1500                 | 9     | 0         | 12     |
|     | E     | 4      | 2     | \$75000 | \$80000 | 2               | \$2500                 | 8     | 0         | 12     |

# Finish Time = 12 Total Cost = \$ 297,000

|          | Tim    | ne l  | ٥       | cost    | Maximum<br>Time | Crash Cost<br>per Week | Start | Time      | Finish |
|----------|--------|-------|---------|---------|-----------------|------------------------|-------|-----------|--------|
| Activity | Normal | Crash | Normal  | Crash   | Reduction       | saved                  | Time  | Reduction | Time   |
| A        | 3      | 2     | \$54000 | \$60000 | 1               | \$6000                 | 0     | 0         | 3      |
| В        | 4      | 3     | \$62000 | \$65000 | 3               | \$3000                 | 3     | 0         | 7      |
| С        | 5      | 2     | \$66000 | \$70000 | 3               | \$1333                 | 3     | 1         | 7      |
| D        | 3      | 1     | \$40000 | \$43000 | 2               | \$1500                 | 8     | 0         | 11     |
| E        | 4      | 2     | \$75000 | \$80000 | 2               | \$2500                 | 7     | 0         | 11     |

## Finish Time = 11 Total Cost = \$ 298,333

|          | Tim    | ne    | c       | ost     | Maximum<br>Time | Crash Cost<br>per Week | Start | Time      | Finish |
|----------|--------|-------|---------|---------|-----------------|------------------------|-------|-----------|--------|
| Activity | Normal | Crash | Normal  | Crash   | Reduction       | saved                  | Time  | Reduction | Time   |
| Α        | 3      | 2     | \$54000 | \$60000 | 1               | \$6000                 | 0     | 0         | 3      |
| В        | 4      | 3     | \$62000 | \$65000 | 1               | \$3000                 | 3     | 0         | 7      |
| С        | 5      | 2     | \$66000 | \$70000 | 3               | \$1333                 | 3     | 1         | 7      |
| D        | 3      | 1     | \$40000 | \$43000 | 2               | \$1500                 | 7     | 1.22E-15  | 10     |
| E        | 4      | 2     | \$75000 | \$80000 | 2               | \$2500                 | 7     | 1         | 10     |

## Finish Time = 10 Total Cost = \$ 300,833

|   |          | l      |       |         |         | Maximum   | Crash Cost |       |           |        |
|---|----------|--------|-------|---------|---------|-----------|------------|-------|-----------|--------|
|   |          | Tim    | 10    | C       | Cost    |           | per Week   | Start | Time      | Finish |
|   | Activity | Normal | Crash | Normal  | Crash   | Reduction | saved      | Time  | Reduction | Time   |
| • | Α        | 3      | 2     | \$54000 | \$60000 | 1         | \$6000     | 0     | 0         | 3      |
|   | В        | 4      | 3     | \$62000 | \$65000 | 1         | \$3000     | 3 4.6 | 6E-12     | 7      |
|   | C        | 5      | 2     | \$66000 | \$70000 | 3         | \$1333     | 3     | 1         | 7      |
|   | D        | 3      | 1 :   | \$40000 | \$43000 | 2         | \$1500     | 7     | 1         | 9      |
|   | E        | 4      | 2     | \$75000 | \$80000 | 2         | \$2500     | 7     | 2         | 9      |

# Finish Time = 9 Total Cost = \$ 304,833

|          |        |       |         |         | Maximum   | Crash Cost |       |           |        |
|----------|--------|-------|---------|---------|-----------|------------|-------|-----------|--------|
|          | Tim    | ne e  | С       | ost     | Time      | per Week   | Start | Time      | Finish |
| Activity | Normal | Crash | Normal  | Crash   | Reduction | saved      | Time  | Reduction | Time   |
| Α        | 3      | 2     | \$54000 | \$60000 | 1         | \$6000     | 0     | 3.66E-11  | 3      |
| В        | 4      | 3     | \$62000 | \$65000 | 1         | \$3000     | 3     | 1         | 6      |
| С        | 5      | 2     | \$66000 | \$70000 | 3         | \$1333     | 3     | 2         | 6      |
| D        | 3      | 1     | \$40000 | \$43000 | 2         | \$1500     | 6     | 1         | 8      |
| Ε        | 4      | 2     | \$75000 | \$80000 | 2         | \$2500     | 6     | 2         | 8      |

Finish Time = 8 Total Cost = \$ 309,167

|          | Time   |       |         |         |           |        | Start | Time      | Finish |
|----------|--------|-------|---------|---------|-----------|--------|-------|-----------|--------|
| Activity | Normat | Crash | Normal  | Crash   | Reduction | saved  | Time  | Reduction | Time   |
| Α        | 3      | 2     | \$54000 | \$60000 | 1         | \$6000 | 0     | 1         | 2      |
| В        | 4      | 3     | \$62000 | \$65000 | 1         | \$3000 | 2     | 1         | 5      |
| С        | 5      | 2     | \$66000 | \$70000 | 3         | \$1333 | 2     | 2         | 5      |
| D        | 3      | 1     | \$40000 | \$43000 | 2         | \$1500 | 5     | 1         | 7      |
| ε        | 4      | 2     | \$75000 | \$80000 | 2         | \$2500 | 5     | 2         | 7      |

Finish Time = 7 Total Cost = \$ 315,167

Crash to 8 weeks.

#### 22.5-5.

(a) Let  $x_j$  be the reduction in the duration of activity j and  $y_j$  be the start time of activity j.

$$\begin{array}{lll} \text{minimize} & C = 6x_A + 12x_B + 4x_C + 6.67x_D + 10x_E + 7.33x_F + 5.75x_G + 8x_H \\ \text{subject to} & 0 \leq x_A \leq 2 & 0 \leq x_B \leq 1 & 0 \leq x_C \leq 2 & 0 \leq x_D \leq 3 \\ & 0 \leq x_E \leq 1 & 0 \leq x_F \leq 3 & 0 \leq x_G \leq 4 & 0 \leq x_H \leq 2 \\ & y_A + 5 - x_A \leq y_C & y_A + 5 - x_A \leq y_D \\ & y_B + 3 - x_B \leq y_E & y_B + 3 - x_B \leq y_F \\ & y_C + 4 - x_C \leq y_G & y_D + 6 - x_D \leq y_H \\ & y_E + 5 - x_E \leq y_G & y_F + 7 - x_F \leq y_H \\ & y_G + 9 - x_G \leq y_{\text{FINISH}} & y_H + 8 - x_H \leq y_{\text{FINISH}} \\ & 0 \leq y_{\text{FINISH}} \leq 15 \\ & y_i \geq 0 \end{array}$$

(b) Finish Time: 15 weeks, total crashing cost: \$45.75 million, total cost: \$259.75 million.

| Activity | Normal<br>Time | Crash<br>Time | Normal<br>Cost | Crash<br>Cost | Maximum<br>Time<br>Reduction | per Week | Start<br>Time | Time<br>Reduction | Finish<br>Time |
|----------|----------------|---------------|----------------|---------------|------------------------------|----------|---------------|-------------------|----------------|
| Α        | 5              | 3             | 24             | 36            | 2                            | 6.00     | 0             | 2                 | 3              |
| В        | 3              | 2             | 13             | 25            | 1                            | 12.00    | 0             | 1                 | 2              |
| С        | 4              | 2             | 21             | 29            | 2                            | 4.00     | 3             | 0                 | 7              |
| D        | 6              | 3             | 30             | 50            | 3                            | 6.67     | 3             | 0                 | 9              |
| E        | 5              | 4             | 26             | 36            | 1                            | 10.00    | 2             | 0                 | 7              |
| F        | 7              | 4             | 35             | 57            | 3                            | 7.33     | 2             | 0                 | 9              |
| G        | 9              | 5             | 30             | 53            | 4                            | 5.75     | 7             | 1                 | 15             |
| Н        | 8              | 6             | 35             | 51            | 2                            | 8.00     | 9             | 2                 | 15             |

#### 22.5-6.

(a) Let  $x_i$  be the reduction in the duration of activity j and  $y_i$  be the start time of activity j.

(b) Finish Time: 92 weeks, total crashing cost: \$43 million, total cost: \$1.388 billion.

| Activity | Normal<br>Time | Crash<br>Time | Normal<br>Cost | Crash<br>Cost | Maximum<br>Time<br>Reduction | Crash Cost<br>per Week<br>Saved | Start<br>Time | Time<br>Reduction | Finish<br>Time |
|----------|----------------|---------------|----------------|---------------|------------------------------|---------------------------------|---------------|-------------------|----------------|
| Α        | 32             | 28            | 160            | 180           | 4                            | 5                               | 8             | 0                 | 40             |
| В        | 28             | 25            | 125            | 146           | 3                            | 7                               | 0             | 3                 | 25             |
| С        | 36             | 31            | 170            | 210           | 5                            | 8                               | 40            | 0                 | 76             |
| D        | 16             | 13            | 60             | 72            | 3                            | 4                               | 25            | 0                 | 41             |
| E        | 32             | 27            | 135            | 160           | 5                            | 5                               | 26            | 0                 | 58             |
| F        | 54             | 47            | 215            | 257           | 7                            | 6                               | 25            | 3                 | 76             |
| G        | 17             | 15            | 90             | 96            | 2                            | 3                               | 41            | 0                 | 58             |
| Н        | 20             | 17            | 120            | 132           | 3                            | 4                               | 58            | 0                 | 78             |
|          | 34             | 30            | 190            | 226           | 4                            | 9                               | 58            | 0                 | 92             |
| J        | 18             | 16            | 80             | 84            | 2                            | 2                               | 76            | 2                 | 92             |

# 22.6-1.

| (a) | Activity | ES | EF |
|-----|----------|----|----|
|     | Start    | 0  | 0  |
|     | A        | 0  | 3  |
|     | В        | 3  | 6  |
|     | С        | 3  | 6  |
|     | D        | 6  | 8  |
|     | Е        | 6  | 8  |
|     | Finish   | 8  | 8  |

Total Duration: 8 weeks

| Activity | Estimated<br>Duration<br>(weeks) | Estimated<br>Cost | l Stort | Cost per week<br>of it's duration |       | Week<br>2 | Week<br>3 | Week<br>4 | Week<br>5 | Week<br>6 | Week<br>7 | Week<br>8 |
|----------|----------------------------------|-------------------|---------|-----------------------------------|-------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Α        | 3                                | \$54,000          | 0       | \$ 18,000                         | 18000 | 18000     | 18000     | 0         | 0         | 0         | 0         | 0         |
| В        | 3                                | \$65,000          | 3       | \$ 21,667                         | 0     | 0         | 0         | 21667     | 21667     | 21667     | 0         | 0         |
| C        | 3                                | \$68,666          | 3       | \$ 22,889                         | 0     | 0         | 0         | 22889     | 22889     | 22889     | 0         | 0         |
| D        | 2                                | \$41,500          | 6       | \$ 20,750                         | 0     | 0         | 0         | 0         | 0         | 0         | 20750     | 20750     |
| E        | 2                                | \$80,000          | 6       | \$ 40,000                         | 0     | 0         | 0         | 0         | 0         | 0         | 40000     | 40000     |
|          | 1                                |                   | *       | 1                                 | 0     | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
|          |                                  | 1                 | Weeki   | y Project Cost                    | 1800  | 1800      | 1800      | 44555     | 44555     | 44555     | 60750     | 60750     |
|          |                                  | Cı                | ımulat  | ive Project Cost                  | 1800  | 3600      | 1800      | 5400      | 98555     | 14311     | 187666    | 309166    |

(e)

| Activit<br>y | Budgeted<br>Cost                 | Percent<br>Complete<br>d | Value<br>Completed               | Actual Cost<br>To Date           | Cost Overrun<br>To Date           |
|--------------|----------------------------------|--------------------------|----------------------------------|----------------------------------|-----------------------------------|
| A<br>B<br>C  | \$54,000<br>\$65,000<br>\$68,666 | 100%<br>100%<br>33%      | \$54,000<br>\$65,000<br>\$22,660 | \$65,000<br>\$55,000<br>\$44,000 | \$11,000<br>-\$10,000<br>\$21,340 |
| Total        | \$187,666                        |                          | \$141,660                        | \$164,000                        | \$22,340                          |

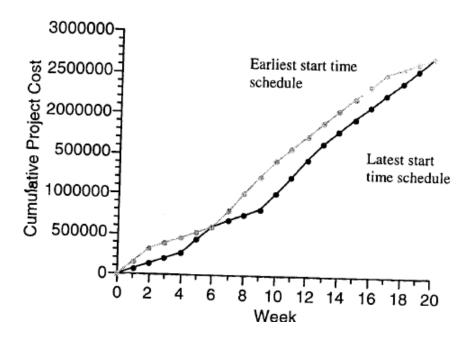
Michael should concentrate his efforts on activity C, since it is not yet completed. **22.6-2.** 

# (a)

| Activity | ES | EF | LS | LF | Slack |
|----------|----|----|----|----|-------|
| Start    | 0  | 0  | 0  | 0  | 0     |
| A        | 0  | 6  | 0  | 6  | 0     |
| В        | 0  | 2  | 4  | 6  | 4     |
| С        | 6  | 10 | 9  | 13 | 3     |
| D        | 6  | 11 | 6  | 11 | 0     |
| Е        | 10 | 17 | 13 | 20 | 3     |
| F        | 11 | 20 | 11 | 20 | 0     |
| Finish   | 20 | 20 | 20 | 20 | 0     |

The earliest finish time for this project is 20 weeks.

(b)


| Activity | Estimated<br>Duration<br>(weeks) | Estimated<br>Cost | Start<br>Time | Cost per week<br>of it's duration | Week<br>1 | Week<br>2 | Week<br>3 | Week<br>4 | Week<br>5 | Week<br>6 | Week<br>7 | Week<br>8 |
|----------|----------------------------------|-------------------|---------------|-----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|          | 6                                | \$420,000         | T 0 '         | \$ 70,000                         | 7000      | 7000      | 7000      | 7000      | 7000      | 7000      | 0         | 0         |
| B        | 2                                | \$180,000         | 0             | \$ 90,000                         | 9000      | 9000      | 0         | 0         | 0         | 0         | 0         | 0         |
| c        | 4                                | \$540,000         | 6             | \$ 135,000                        | 0         | 0         | 0         | 0         | Ō         | Ö         | 135000    | 135000    |
| D        | 5                                | \$360,000         | 6             | \$ 72,000 額                       | 0         | 0         | 0         | 0         | 0         | 0         | 72000     | 72000     |
| E        | 7                                | \$590,000         | 10            | \$ 84,286                         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
| F        | 9                                | \$630,000         | 11            | \$ 70,000                         | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
|          |                                  |                   |               | I                                 | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |
|          |                                  | We                | ekly          | Project Cost                      | 160000    | 160000    | 70000     | 70000     | 70000     | 70000     | 207000    | 207000    |
|          |                                  | Cum               | ulatis        | e Project Cost                    | 160000    | 320000    | 390000    | 460000    | 530000    | 600000    | 807000    | 1014000   |

| Week<br>9 | Week<br>10 | Week<br>11 | Week<br>12 | Week<br>13 | Week<br>14 | Week<br>15 | Week<br>16 | Week<br>17 | Week<br>18 | Week<br>19 | Week<br>20 |
|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 0         | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| ō         | ŏ          | ŏ          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| 135000    | 135000     | ŏ          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| 72000     | 72000      | 72000      | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| 0         | 0          | 84286      | 84285.7    | 84285.7    | 84285.7    | 84285.7    | 84285.7    | 84285.7    | . 0        | 0          | 0          |
| ŏ         | ŏ          | 0          | 7000       | 7000       | 7000       | 7000       | 7000       | 7000       | 7000       | 7000       | 7000       |
| ō         | ŏ          | ŏ          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |
| 207000    | 207000     | 156285.7   | 154286     | 154286     | 154286     | 154286     | 154286     | 154286     | 70000      | 70000      | 70000      |
| 1221000   | 1428000    | 1584286    | 1738571    | 1892857    | 2047143    | 2201429    | 2355714    | 2510000    | 2580000    | 2650000    | 2720000    |

| (c)      |                                  |                   |               |                 |       |           |           |       |           |           |           |           |
|----------|----------------------------------|-------------------|---------------|-----------------|-------|-----------|-----------|-------|-----------|-----------|-----------|-----------|
| Activity | Estimated<br>Duration<br>(weeks) | Estimated<br>Cost | Start<br>Time | Cost Per Week   | Week  | Week<br>2 | Week<br>3 | Week  | Week<br>5 | Week<br>6 | Week<br>7 | Week<br>8 |
| A        | 6                                | \$420,000         | 0             | \$70,000        | 70000 | 70000     | 70000     | 70000 | 70000     | 70000     | 0         | 0         |
| В        | 2                                | \$180,000         | 4             | \$90,000        | 0     | 0         | 0         | 0     | 90000     | 90000     | 0         | 0         |
| č        | l ã                              | \$540,000         | 0             | \$135,000       | 0     | 0         | 0         | 0     | . 0       | 0         | 0         | 0         |
| Ď        | 5                                | \$360,000         | 6             | \$72,000        | 0     | 0         | D         | 0     | 0         | 0         | 72000     | 72000     |
| Ē        | 7                                | \$590,000         | 13            | \$84,286        |       | 0         | 0         | . 0   | 0         | 0         | 0         | 0         |
| ě        | 0                                | \$630,000         | l ii          | \$70,000        | 0     | 0         | 0         | 0     | 0         | 0         | 0         | 0         |
|          |                                  | 1000.000          |               | n hárasáb, m. t | ő     | 0         | 0         | 0     | 0         | 0         | 0         | 0         |

| W    | eek Week    | Week<br>11 | Week<br>12 | Week    | Week    | Week    | Week<br>16 | Week    | Week<br>18 | Week<br>19 | Week<br>20 |
|------|-------------|------------|------------|---------|---------|---------|------------|---------|------------|------------|------------|
|      | 0 0         | 0          | 0          | 0 **    | 0       | 0       | 0          | 0       | 0          | 0          | 0          |
| (    | 0           | 0          | 0          | 0       | 0       | 0       | 0          | 0       | 0          | 0          | 0          |
| (    | 135000      | 135000     | 135000     | 135000  | 0       | 0       | 0          | . 0     | 0          | 0          | 0          |
| 720  | 00 72000    | 72000      | . 0        | 0       | 0       | 0       | 0          | 0.      | 0          | 0          | 0          |
| (    | 0 0         | 0          | 0          | 0       | 84285.7 | 84285.7 | 84285.7    | 84285,7 | 84285.7    | 84285.7    | 84285.7    |
| (    | 0 0         | 0          | 70000      | 70000   | 70000   | 70000   | 70000      | 70000   | 70000      | 70000      | 70000      |
|      | 0 0         | 0          | 0          | 0       | 0       | 0       | 0          | 0       | 0          | 0          | 0          |
| 720  | 000 2070000 | 207000     | 205000     | 205000  | 154286  | 154286  | 154286     | 154286  | 154286     | 154286     | 154286     |
| 8160 |             | 1230000    | 1435000    | 1640000 | 1794286 | 1948571 | 2102857    | 2257143 | 2411429    | 2565714    | 2720000    |

(d)



(e)

| Activit<br>y | Budgeted<br>Cost | Percent<br>Complete<br>d | Value<br>Completed | Actual Cost<br>To Date | Cost Overrun<br>To Date |
|--------------|------------------|--------------------------|--------------------|------------------------|-------------------------|
| Α            | \$420,000        | 50%                      | \$210,000          | \$200,000              | -\$10,000               |
| В            | \$180,000        | 100%                     | \$180,000          | \$200,000              | \$20,000                |
| D            | \$360,000        | 50%                      | \$180,000          | \$210,000              | \$30,000                |
| Total        | \$960,000        |                          | \$570,000          | \$610,000              | \$40,000                |

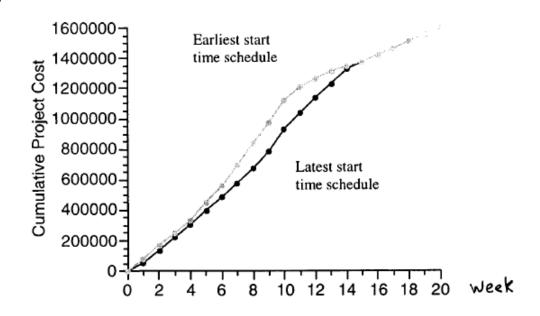
The project manager should focus attention on activity D, since it is not yet finished and they are running over budget.

22.6-3.

(a)

|          | المصاد والمسا |           |             |                  |        |        |        |        |        |        |        |        |
|----------|---------------|-----------|-------------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|
|          | Estimated     |           |             | C+ C Wook        | Wash   | Week   | Week   | Week   | Week   | Week   | Week   | Week   |
|          | Duration      | Estimated | Start       | Cost Per Week    | Week   |        | WOOK   | 4      | 5      | 6      | 7      | 8      |
| Activity | (weeks)       | Cost      |             | of Its Duration  |        | 2      | 20000  |        |        | 30000  | 0      | 0      |
| A        | 6             | \$180,000 | 0           | \$30,000         | 300000 | 30000  | 30000  | 30000  | 30000  |        | 0      | ő      |
| В        | 3             | \$75,000  | 0           | \$25,000         | 25000  | 25000  | 25000  | 0      | 0      | 0      | 0      | ŏ      |
| С        | 4             | \$120,000 | 0           | \$30,000         | 300000 | 30000  | 30000  | 30000  | 0      | 0      | U      | 25000  |
| D        | 4             | \$140,000 | 6           | \$35.000         | 0      | 0      | 0      | 0      | 0      | 0      | 35000  | 35000  |
| Ē        | 7             | \$175,000 | 3           | \$25,000         | 0      | 0      | 0      | 25000  | 25000  | 25000  | 25000  | 25000  |
| F        | 1 4           | \$80,000  | 4           | \$20,000         | 0      | 0      | 0      | 0      | 20000  | 20000  | 20000  | 20000  |
| G        | 6             | \$210,000 | 4           | \$35,000         | 0      | 0      | 0      | 0      | 35000  | 35000  | 35000  | 35000  |
| н        | 3             | \$45,000  | 10          | \$15,000         | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| ï        | 5             | \$125,000 | 6           | \$25,000         | 0      | 0      | 0      | 0      | 0      | Ω      | 25000  | 25000  |
| - 1      | 1 %           | \$100,000 | 10          | \$25,000         | ŏ      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| ĸ        | 3             | \$60,000  | l a         | \$20,000         | ō      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| î        | 5             | \$50.000  | 10          | \$10,000         | ŏ      | ō      | Ō      | 0      | 0      | 0      | 0      | 0      |
| M        | 1 %           | \$90,000  | 14          | \$15,000         | ŏ      | ō      | Ō      | 0      | 0      | 0      | 0      | 0      |
|          | 5             | \$150,000 | 15          | \$30,000         | ŏ      | ŏ      | ŏ      | 0      | 0      | 0      | 0      | 0      |
| N        | ٥ ا           | \$150.000 | 13          | \$30,000         | ŏ      | ő      | ŏ      | ŏ      | ň      | ō      | 0      | 0      |
|          | 1             | ı         | ı           | ı                | U      | U      | U      | •      | Ü      |        | -      |        |
|          |               |           | Woo         | kly Project Cost | 85000  | 85000  | 85000  | 85000  | 110000 | 110000 | 140000 | 140000 |
|          |               | C         |             | lve Project Cost |        | 170000 | 255000 | 340000 | 450000 | 560000 | 700000 | 840000 |
|          |               | -         | on a market |                  |        |        |        |        |        |        |        |        |

| Week        | Week<br>10 | Week  | Week<br>12 | Week<br>13 | Week<br>14 | Week<br>15 | Week<br>16       | Week<br>17       | Week<br>18       | Week<br>19       | Week<br>20       |
|-------------|------------|-------|------------|------------|------------|------------|------------------|------------------|------------------|------------------|------------------|
| <del></del> | 0          | - 1   | 12         | 0          | 0          | 0          | 0                | 0                | 0                | 0                | 0                |
| Ü           | 0          | 0     | 0          | ŏ          | 0          | ñ          | ő                | ō                | Ö                | 0                | 0                |
| 0           | 0          | ŏ     | Ö          | ň          | ň          | ő          | ő                | ŏ                | ō                | Ó                | 0                |
| 25000       | 25000      | 0     | 0          | ŏ          | ŏ          | ñ          | ñ .              | ñ                | ō                | Ö                | 0                |
| 35000       | 35000      | ŏ     | 0          | 0 .        | ŏ          | ŏ          | ő                | ň                | õ                | 0                | 0                |
| 25000       | 25000      | 0     | 0          | 0          | 0          | ŏ          | ñ                | ñ                | ñ                | 0                | 0                |
| 0           | 0          | Ü     | Ü          | ů.         | ů.         | 0          | ŏ                | ň                | ŏ                | n                | Ö                |
| 35000       | 35000      | 0     | 0          | u          | U          | U          | 0                |                  | č                | 0                | Õ                |
| 0           | 0          | 15000 | 15000      | 15000      | 0          | 0          | 0                | 0                | U                | 0                | 0                |
| 25000       | 25000      | 25000 | 0          | 0          | 0          | 0          | 0                | 0                | 0                | 0                | 0                |
| 0           | 0          | 25000 | 25000      | 25000      | 25000      | 0          | 0                | 0                | 0                | 0                | 0                |
| 20000       | 20000      | 20000 | 0          | 0          | 0          | 0          | 0                | 0                | 0                | 0                | 0                |
| 0           | 0          | 10000 | 10000      | 10000      | 10000      | 10000      | 0                | 0                | 0                | 0                | 0                |
| ŏ           | ŏ          | 0     | 0          | 0          | 0          | 15000      | 15000            | 15000            | 15000            | 15000            | 15000            |
| n           | ñ          | õ     | õ          | ō          | Ō          | 0          | 30000            | 30000            | 30000            | 30000            | 30000            |
| ň           | ŏ          | ñ     | ň          | ñ          | ō          | 0          | 0                | 0                | 0                | 0                | 0                |
| U           | Ü          | •     |            |            | J          |            | -                |                  |                  |                  |                  |
| 140000      | 140000     | 95000 | 50000      | 50000      | 35000      | 25000      | 45000<br>1420000 | 45000<br>1465000 | 45000<br>1510000 | 45000<br>1555000 | 45000<br>1600000 |


(b)

|          | Estimated |           | l     | 1               |       |       |       |       |       |       |       |       |
|----------|-----------|-----------|-------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | Duration  | Estimated | Start | Cost Per Week   | Week  | Week  | Week  | Week  | Week  | Week  | Week  | Week  |
| Activity | (weeks)   | Cost      | Time  | of Its Duration | _1    | 2     | 3     | 4     | 5     | 6     | 7     | 8     |
| _ A      | 6         | \$180,000 | 1     | \$30,000        | 0     | 30000 | 30000 | 30000 | 30000 | 30000 | 30000 | 0     |
| В        | 3         | \$75.000  | 0     | \$25,000        | 25000 | 25000 | 25000 | 0     | 0     | 0     | 0     | 0     |
| С        | 4         | \$120,000 | 0     | \$30,000        | 30000 | 30000 | 30000 | 30000 | 0     | 0     | 0     | 0     |
| D        | 4         | \$140,000 | 7     | \$35,000        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 35000 |
| E        | 7         | \$175,000 | 3     | \$25,000        | 0     | 0     | 0     | 25000 | 25000 | 25000 | 25000 | 25000 |
| F        | 4         | \$80,000  | 8     | \$20,000        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| G        | 6         | \$210,000 | 4     | \$35,000        | 0     | 0     | 0     | 0     | 35000 | 35000 | 35000 | 35000 |
| н        | 3         | \$45,000  | 11    | \$15,000        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 1        | 5         | \$125,000 | 9     | \$25,000        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| J        | 4         | \$100,000 | 10    | \$25,000        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| ĸ        | 3         | \$60,000  | 12    | \$20,000        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| L        | 5         | \$50,000  | 10    | \$10,000        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| M        | 6         | \$90,000  | 14    | \$15,000        | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| N        | 5         | \$150,000 | 15    | \$30,000        | 0     | 0     | 0     | 0     | 0     | 0     | Ó     | 0     |
|          |           |           | l     | 1               | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

Weekly Project Cost 55000 85000 85000 85000 90000 90000 90000 95000 Cumulative Project Cost 55000 140000 225000 310000 400000 490000 580000 675000

| Week             | Week             | Week<br>11        | Week<br>12       | Week<br>13       | Week<br>14       | Week<br>15       | Week<br>16       | Week<br>17       | Week<br>18       | Week<br>19       | Week<br>20       |
|------------------|------------------|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 9                | 10               |                   | 0                | 0                | 0                | 0                | 0                | 0                | 0                | 0                | 0                |
| 0                | 0                | 0                 | Ü                | Ü                | 0                | ŏ                | ŏ                | ñ                | 0                | 0                | 0                |
| 0                | 0                | 0                 | Ü                | ŭ                | 0                | ŏ                | ŏ                | ň                | õ                | 0                | 0                |
| 0                | 0                | 0                 | 0                | 0                | Ů,               | ŏ                | ŏ                | ŏ                | ñ                | ō                | 0                |
| 35000            | 35000            | 35000             | 0                | 0                | 0                | Ü                | 0                | 0                | ŏ                | ő                | ñ                |
| 25000            | 25000            | 0                 | 0                | 0                | 0                | 0                | U                | 0                | 0                | ŏ                | n                |
| 20000            | 20000            | 20000             | 20000            | 0                | 0                | 0                | 0                | 0                | 0                | 0                | ŏ                |
| 35000            | 35000            | 0                 | 0                | 0                | 0                | 0                | 0                | 0                | 0                | Ü                | 0                |
| 0                | 0                | 0                 | 15000            | 15000            | 15000            | 0                | 0                | 0                | 0                | U                | U                |
| ñ                | 25000            | 25000             | 25000            | 25000            | 25000            | 0                | 0                | 0                | 0                | 0                | U                |
| ň                | 0                | 25000             | 25000            | 25000            | 25000            | 0                | 0                | 0                | 0                | 0                | 0                |
| ŏ                | ŏ                | 0                 | 0                | 20000            | 20000            | 20000            | 0                | 0                | 0                | 0                | 0                |
| Ö                | 0                | 10000             | 10000            | 10000            | 10000            | 10000            | 0                | 0                | 0                | 0                | 0                |
| ŏ                | ŏ                | 1000              | 0                | 0                | 0                | 15000            | 15000            | 15000            | 15000            | 15000            | 15000            |
| 0                | 0                | 0                 | ŏ                | ň                | ŏ                | 0                | 30000            | 30000            | 30000            | 30000            | 30000            |
| 0                | Ü                | 0                 | ŏ                | ŏ                | ň                | ŏ                | 0                | 0                | 0                | 0                | 0                |
| 0                | 0                | 0                 | U                | U                | U                | U                | •                | _                |                  |                  |                  |
| 115000<br>790000 | 140000<br>930000 | 115000<br>1045000 | 95000<br>1140000 | 95000<br>1235000 | 95000<br>1330000 | 45000<br>1375000 | 45000<br>1420000 | 45000<br>1465000 | 45000<br>1510000 | 45000<br>1555000 | 45000<br>1600000 |

(c)



(d)

| Activity | Budgeted    | Percent  | Value     | Actual Cost | Cost Overrun |
|----------|-------------|----------|-----------|-------------|--------------|
|          | Cost        | Complete | Completed | To Date     | To Date      |
|          |             | d        |           |             |              |
| Α        | \$180,000   | 100%     | \$180,000 | \$190,000   | \$10,000     |
| В        | \$75,000    | 100%     | \$75,000  | \$70,000    | -\$5,000     |
| C        | \$120,000   | 100%     | \$120,000 | \$150,000   | \$30,000     |
| D        | \$140,000   | 40%      | \$56,000  | \$70,000    | \$14,000     |
| E        | \$175,000   | 50%      | \$87,500  | \$100,000   | \$12,500     |
| F        | \$80,000    | 60%      | \$48,000  | \$45,000    | -\$3,000     |
| G        | \$210,000   | 25%      | \$52,500  | \$50,000    | -\$2,500     |
| I        | \$125,000   | 20%      | \$25,000  | \$35,000    | \$10,000     |
| Total    | \$1,105,000 |          | \$644,000 | \$710,000   | \$66,000     |

The project manager should investigate activities D, E and I, since they are not yet finished and they are running over budget.

CASE 22.1 "School's Out Forever ..." Alice Cooper

(a) START Write initial Register Search Attend company Attend orientation 5 online Internet resume G ♥ ★ ✓ Attend mock Submit Review initial resume 2 interview industry expert resume jobs career fair Decide Write cover Bid letters ubmit cover letters Revise cover letters Drop FINISH 0

The estimated project duration equals the length of the longest path in the project network. To calculate this length, we use the layout of the Excel spreadsheets for Reliable's project in this chapter. We need to modify the spreadsheet to reflect the network unique to this case.

|                | A | В        | T C                     | ō    | E                      | F                     | G          | Н                 | 1         | J                          |
|----------------|---|----------|-------------------------|------|------------------------|-----------------------|------------|-------------------|-----------|----------------------------|
| 3              |   | Activity | Description             | Time | ES .                   | 9                     | LS         | £F.               | Slack     | Critical?                  |
| 4              |   | Α        | Register online         | 2    | 0                      | =E4+D4                | =H4-D4     | =MIN(G9,G10,G1 1: | = H4-F4   | F(I4=0."Yes","No")         |
| 5              |   | В        | At tend orientation     | 5    | 0                      | #E5+D6                | ⇒H5-D5     | •MN(G9,G10,G1 **  | = H5-F5   | = F(15=0,"Yes","No")       |
| -6<br>7        |   | C        | Write initial resume    | 7    | 0                      | =E6+D6                |            | =MN(G11,G10)      |           | = F(16=0,"Yes","No")       |
|                |   | D        | Search Internet         | 10   | 00                     | =E7+D7                | =H7-D7     | =G16              |           | = IF(17=0, "Yes", "No")    |
| 8              |   |          | Attend company sessions | 25   | 0                      | =E8+D8                | =H8-D8     | =G1.8             |           | F(I8=0, Yes', No")         |
| 9              |   | F        | Review industry, etc.   | 7    | = MAX(F4, F5)          | =E9+D9                | =H9-D9     | -G15              |           | = F(19 =0, Yes', No')      |
| 10             |   |          | At tend mock interview  | 4    | = MAX(F4 , F5 ,F6 )    | ∞E10+D1 0             | ⊫H1 0-D1 0 |                   |           | FF(I10=0, "Yes", "No ")    |
| 11             |   | Н        | Submit initial resume   | 2    | = MAX(F4 , F5 , F6 )   | =E11+D11              | =H1 1-D1 1 |                   |           | = F(I1 1= 0, "Yes", "No.") |
| 12             |   | 1        | Meet resume expert      | 1    | =F11                   | =E 12+D1 2            | =H1 2-D1 2 |                   |           | = F(I1 2= 0, "Yes", "No ") |
| 13             |   | J        | Revise resume           | 4    | =F12                   | =E13+D13              | =H1 3-D1 3 |                   | =H13-F13  | = F(I13=0, "Yes", "No")    |
| 14             |   | K        | Attend career feir      | 1    | =F13                   | =E14+D1 4             | =H1 4-D1 4 |                   |           | = F(I1 4= 0, "Yes", "No ") |
| 15             |   | L        | Search jobs             | 5    | = F9                   | =E 15+D1 5            | =H1 5-D1 5 |                   |           | = F(115=0, "Yes", "No ")   |
| 16             |   |          | Decide jobs             | 3    | = MAX(F1 5 ,F1 4 ,F7 ) |                       |            | =MIN(G1 7,G1 8)   |           | = F(I16=0, "Yes", "No ")   |
| 77             |   | N        | Bid                     | 3    | =F16                   | =E17+D17              | =H17-D17   |                   |           | = IF(I1 /= 0, "Yes", "No") |
| 18             |   |          | Write cover letters     |      | = MAX(F16,FB)          | =E18+D18              | =H1 8-D1 8 |                   |           | = F(I18=0, "Yes", "No")    |
| 19             |   | Ъ        | Submit cover letters    | 4    | =F18                   | =E19+D19              | =H19-D19   | =G20              |           | = F(I1 9= 0, "Yes", "No")  |
| 20             |   | Q        | Revise cover letters    | 4    | =F19                   | =E20+D20              | =H2 0-D2 0 | =MIN(G2 1,G2 2)   |           | = F(I20=0, "Yes", "No")    |
| 2.1            |   | R        | Mail                    | 6    | =F20                   | =E21 +D2 1            | =H2 1-D2 1 | =F25              |           | = F(I2 1= 0, "Yes", "No ") |
| 21<br>22<br>23 |   | S        | Drop                    | 2    | =F2.0                  | =E22+D22              | =H22-D22   | =F25              | =H22 F2 2 | = F(12 2= 0, "Yes", "No")  |
| 23             |   |          |                         |      |                        |                       |            |                   |           |                            |
| 24<br>25       |   |          |                         |      |                        |                       |            |                   |           |                            |
| 25             |   |          |                         |      | Project Duration :     | =MAX(F22,F21,F17,F10) |            |                   |           |                            |

|    | Α | В        | С                       | D     | Ε      | F   | G  | Н  | 1     | J         |
|----|---|----------|-------------------------|-------|--------|-----|----|----|-------|-----------|
| 3  |   | Activity | Description             | Time  | B      | 田   | LS | 占  | Slack | Critical? |
| 4  |   | Α        | Register online         | 2     | 0      | 2   | 8  | 10 | 8     | No        |
| 5  |   | В        | Attend orientation      | 5     | 0      | 5   | 5  | 10 | _5    | No        |
| 6  |   | С        | Write initial resume    | 7     | 0      | 7   | 7_ | 14 |       | No        |
| 7  |   | D        | Search Internet         | 10    | 0      | 10  | 12 | 22 | 12    | No        |
| 8  |   | E        | Attend company sessions | 25    | 0      | 25  | 0  | 25 |       | Yes       |
| 9  |   | F        | Review industry, etc.   | 7     | 5      | 12  | 10 |    | 5     | No        |
| 10 |   | G        | Attend mock interview   | 4     | 7      | 11  | 45 | 49 | 38    | No        |
| 11 |   | Н        | Submit initial resume   | 2     | 7      | 9   | 14 | 16 |       | No        |
| 12 |   |          | Meet resume expert      | 1     | 9      | 10  | 16 | 17 | . 7   | No        |
| 13 |   | J        | Revise resume           | 4     | 10     | 14  | 17 | 21 | 7     | No        |
| 14 |   | K        | Attend career fair      | 1     | 14     | 15  |    | 22 |       | No        |
| 15 |   | L        | Search jobs             | 5     | 12     | 17  | 17 | 22 | 5     | No        |
| 16 |   | М        | Decide jobs             | 3     | 17     | 20  | 22 | 25 | 5     | No        |
| 17 |   | N        | Bid                     | 3     | 20     | 23  | 46 | 49 | 26    | No        |
| 18 |   | 0        | Write cover letters     | 10    | 25     | 35  | 25 | 35 | 0     | Yes       |
| 19 |   | Р        | Submit cover letters    | 4     | 35     | 39  | 35 | 39 |       | Yes       |
| 20 |   | Q        | Revise cover letters    | 4     | 39     | 43  | 39 | 43 | 0     | Yes       |
| 21 |   | R        | Mail                    | 6     | 43     | 49  |    | 49 |       | Yes       |
| 22 |   | S        | Drop                    | 2     | 43     | 45  | 47 | 49 | 4     | No        |
| 23 |   |          |                         |       |        |     |    |    |       |           |
| 24 |   |          |                         |       |        |     |    |    |       |           |
| 25 |   |          | Project                 | Durat | tion : | -49 |    |    |       |           |

Brent can start the interviews in 49 days. The critical steps in the process are: Start  $\to E \to O \to P \to Q \to R \to \text{Finish}$ .

(b) We substitute first the pessimistic, then the optimistic estimates for the time values used in part (a).

# Pessimistic Estimates:

|    | Α | В        | С                       | D    | E                | F               | G  | Н  | ı     | J         |
|----|---|----------|-------------------------|------|------------------|-----------------|----|----|-------|-----------|
| 3  |   | Activity | Description             | Time | ES               | 田               | LS | LF | Slack | Critical? |
| 4  | - | Α        | Register online         | 4    | 0                | 4               | 6  | 10 | 6     | No        |
| 5  |   | В        | Attend orientation      | 10   | 0                | 10              | 0  | 10 |       | Yes       |
| 6  |   | С        | Write initial resume    | 14   | 0                | 14              | 4  | 18 |       | No        |
| 7  |   | D        | Search Internet         | 12   | 0                | 12              |    |    | 20    | No        |
| 8  |   | Е        | Attend company sessions | 30   | 0                | 30              | 6  | 36 |       | No        |
| 9  |   | F        | Review industry, etc.   | 12   | 10               | 22              | 10 | 22 | 0     | Yes       |
| 10 |   | G        | Attend mock interview   | 8    | 14               | 22              | 66 | 74 | 52    | No        |
| 11 |   | Н        | Submit initial resume   | 6    | 14               | 20              | 18 | 24 | 4     | No        |
| 12 |   | - 1      | Meet resume expert      | 1    | 20               | 21              | 24 | 25 | 4     | No        |
| 13 |   | J        | Revise resume           | 6    | 21               | 27              | 25 |    | 4     | No        |
| 14 |   | K        | Attend career fair      | 1_   | 27               | 28              | 31 | 32 | 4     | No        |
| 15 |   | L        | Search jobs             | 10   | 22               | 32              | 22 | 32 | 0     | Yes       |
| 16 |   | М        | Decide jobs             | 4    | 32               | 36              | 32 | 36 | 0     | Yes       |
| 17 |   | N        | Bid                     | 8    | 36               | 44              | 66 | 74 | 30    | No        |
| 18 |   | 0        | Write cover letters     | 12   | 36               | 48              | 36 | 48 | 0     | Yes       |
| 19 |   | Р        | Submit cover letters    | 7    | 48               | 55              | 48 |    |       | Yes       |
| 20 |   | Q        | Revise cover letters    | 9    | 55               | 64              | 55 |    |       | Yes       |
| 21 |   | R        | Mail                    | 10   | 64               | 74              | 64 | _  |       | Yes       |
| 22 |   | S        | Drop                    | 3    | 64               | 67              | 71 | 74 | 7     | No        |
| 23 |   |          |                         |      |                  |                 |    |    |       |           |
| 24 |   |          |                         |      |                  |                 |    |    |       |           |
| 25 |   |          |                         |      | Project Duration | <del>-</del> 74 |    |    |       |           |

Under the worst-case scenario, Brent will require 74 days before he is ready to start interviewing. The critical path is:

$${\sf Start} \to B \to F \to L \to M \to O \to P \to Q \to R \to {\sf Finish}.$$

# Optimistic Estimates:

|    | Α | В        | С                       | D    | E                | F   | G  | Н  | ı     | J         |
|----|---|----------|-------------------------|------|------------------|-----|----|----|-------|-----------|
| 3  |   | Activity | Description             | Time | ES               | 盱   | LS | LF | Slack | Critical? |
| 4  |   | Α        | Register online         | 1    | 0                | 1   | 9  | 10 | . 9   | No        |
| 5  |   | В        | Attend orientation      | 3    | 0                | 3   | 7  | 10 | 7     | No        |
| 6  |   | C        | Write initial resume    | 5    | 0                | 5   | 7  | 12 | 7     | No        |
| 7  |   | D        | Search Internet         | 7    | 0                | 7   | 11 | 18 | 11    | No        |
| 8  |   | E        | Attend company sessions |      | 0                | 20  | 0  | 20 | 0     | Yes       |
| 9  |   | F        | Review industry, etc.   | 5    | 3                | 8   | 10 | 15 | 7     | No        |
| 10 |   | G        | Attend mock interview   | 3    | 5                | 8   | 29 | 32 | 24    | No        |
| 11 |   | Н        | Submit initial resume   | 1    | 5                | 6   | 12 | 13 |       | No        |
| 12 |   | 1        | Meet resume expert      | 1    | 6                | 7   | 13 | 14 | 7     | No        |
| 13 |   | J        | Revise resume           | 3    | 7                | 10  | 14 | 17 | 7     | No        |
| 14 |   | K        | Attend career fair      | 1    | 10               | 11  | 17 | 18 | 7     | No        |
| 15 |   | L        | Search jobs             | 3    | 8                | 11  | 15 | 18 | 7     | No        |
| 16 |   | M        | Decide jobs             | 2    | 11               | 13  | 18 | 20 | 7     | No        |
| 17 |   | N        | Bid                     | 2    | 13               | 15  | 30 | 32 | 17    | No        |
| 18 |   | 0        | Write cover letters     | 3    | 20               | 23  | 20 | 23 | 0     | Yes       |
| 19 |   | Р        | Submit cover letters    | 2    | 23               | 25  | 23 | 25 | 0     | Yes       |
| 20 |   | Q        | Revise cover letters    | 3    | 25               | 28  |    | 28 | . 0   | Yes       |
| 21 |   |          | Mail                    | 4    | 28               | 32  | 28 | 32 | 0     | Yes       |
| 22 |   | S        | Drop                    | 1    | 28               | 29  | 31 | 32 | 3     | No        |
| 23 |   |          |                         |      |                  |     |    |    |       |           |
| 24 |   |          |                         |      |                  |     |    |    |       |           |
| 25 |   |          |                         |      | Project Duration | =32 |    |    |       |           |

Under the best-case scenario, Brent will require 32 days before he is ready to begin interviewing. The critical path remains the same as in (a).

(c) The mean critical path is the path in the project network that would be critical path if the duration of each activity equals its mean. To compute the mean duration of each activity, we use the Excel spreadsheet named PERT.

|    | Α | В        | С        | D     | E  | F                                | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----|---|----------|----------|-------|----|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  |   |          | Time Est | mates |    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4  |   | Activity | 0 .      | m     | р  | μ                                | σ- ً                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5  |   | Α        | 1        | 2     | 4  | =!F(C5=1":,"",(C5+4*D5+E5)/6)    | =IF(C5="","",((E5-C5)/6)^2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6  |   | В        | 3        | 5     | 10 | =iF(C6='"',"",(C6+4*D6+E6)/6)    | =IF(C6="","",((E6-C6)/6)^2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7  |   | C        | 5        | 7     | 14 | =IF(C7="","",(C7+4*D7+E7)/6)     | =IF(C7="","",((E7-C7)/6)^2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8  |   | D        | 7        | 10    | 12 | =IF(C8="","",(C8+4*D8+E8)/6)     | =IF(C8="","",((E8-C8)/6)^2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9  |   | Ε        | 20       | 25    | 30 | =IF(C9="","",(C9+4*D9+E9)/6)     | =IF(C9="","",((E9-C9)/6)^2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10 |   | F        | 5        | 7     | 12 | =IF(C10="","",(C10+4*D10+E10)/6) | =IF(C10="","",((E10-C10)/6)^2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11 |   | G        | 3        | 4     | 8  | =IF(C11="',"",(C11+4*D11+E11)/6) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12 |   | н        | 1        | 2     | 6  | =IF(C12="","",(C12+4*D12+E12)/6) | 200 - C. Marine (CO. 1 / Marine CO. 1 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 / 1002 |
| 13 |   |          | 1        | 1     | 1  | =IF(C13="","",(C13+4*D13+E13)/6) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14 |   | J        | 3        | 4     | 6  | =IF(C14="","",(C14+4*D14+E14)/6) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15 |   | . к      | 1        | 1     | 1  | =IF(C15="","",(C15+4*D15+E15)/6) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16 |   | L        | 3        | 5     | 10 | =IF(C16="","",(C16+4*D16+E16)/6) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17 |   | . M      | 2        | 3     | 4  | =IF(C17="","",(C17+4*D17+E17)/6) | CONT. SCHOOL SCHOOL ALL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL SCHOOL |
| 18 |   | . N      | 2        | 3     | 8  | =IF(C18="","",(C18+4*D18+E18)/6) | PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF TH |
| 19 |   | . 0      | 3        | 10    | 12 | =IF(C19="","",(C19+4*D19+E19)/6) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 |   | . Р      | 2        | 4     |    | =IF(C20="","",(C20+4*D20+E20)/6) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21 |   | . Q      | 3        | 4     | 9  | = F(C21="",",(C21+4*D21+E21)/6)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22 |   | R        | 4        | 6     | 10 | =IF(C22="","",(C22+4*D22+E22)/6) | =IF(C22="","",((E22-C22)/6)^2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 23 |   | S        | 1        | 2     | 3  | =1F(C23="","",(C23+4*D23+E23)/6) | =IF(C23="',"',((E23-C23)/6)^2)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|    | Α  | В         | С   | D       | E     | F     | G               |
|----|----|-----------|-----|---------|-------|-------|-----------------|
| 3  |    |           | Tim | e Estin | nates |       |                 |
| 4  |    | Activit y | 0   | m       | р     | μ     | σ <sup>*</sup>  |
| 5  |    | Α         | 1   | 2       | 4     | 2.167 | 0,25            |
| 6  |    | В         | 3   | 5       | 10    | 5.5   | 1.36            |
| 7  |    | С         | 5   | 7       | 14    | 7,833 | 2.25            |
| 8  |    | D         | 7   | 10      | 12    | 9.833 | 0.694           |
| 9  |    | E         | 20  | 25      | 30    | 25    | 2.778           |
| 10 |    | F         | 5   | 7       | 12    | 7.5   | 1.36            |
| 11 | L_ | G         | 3   | 4       | 8     | 4,5   | 0.694           |
| 12 |    | н         | 1   | 2       | 6     | 2.5   | 0.694           |
| 13 |    | ı         | 1   | 1       | 1     | 1     | - 0             |
| 14 | _  | J         | 3   | 4       | 6     | 4.167 | 0.25            |
| 15 | _  | K         | 1   | 1       | 1     | 313   | 0               |
| 16 | _  | L         | 3   | 5       | 10    | 5.5   | 1.36            |
| 17 |    | M         | 2   | 3       | 4     | 3     | 0.11            |
| 18 | L  | N         | 2   | 3       | 8     | 3,667 | 1               |
| 19 | _  | 0         | 3   | 10      | 12    | 9.167 | SHIP 5-4 PT 104 |
| 20 | _  | P         | 2   | 4       | 7     | 4.167 | 0.694           |
| 21 | _  | Q         | 3   | 4       | 9     | 4,667 | 1               |
| 22 |    | R<br>S    | 4   | 6       | 10    | 6.333 | -2 <b>1</b>     |
| 23 |    | S         | 1   | 2       | 3     | 2     | 0.111           |

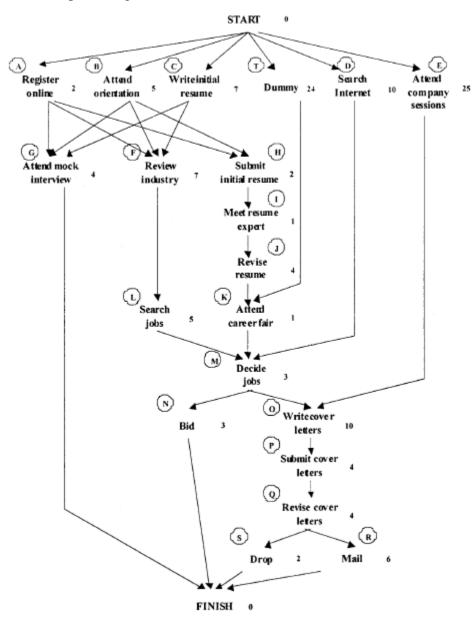
Now, substitute the mean duration of each activity for the time values.

|     | Α | В        | С                       | D    | E                  | F              | G     | H      | 1     | J          |
|-----|---|----------|-------------------------|------|--------------------|----------------|-------|--------|-------|------------|
| 3   |   | Activity | Description             | Time | 63                 | EF             | LS    | LF     | Slack | Crit ical? |
| 4   |   | Α        | Register online         | 2.17 | 0.00               | 2.17           | 6.83  | 9.00   | 6.833 | No         |
| 5   |   | В        | Attend orientation      | 5.5  | 0.00               | 5.50           | 3.50  | 9.00   | 3.5   | No         |
| 6   |   | С        | Write initial resume    | 7.83 | 0.00               | 7.83           | 5.50  | 1 3.33 | 5.5   | No         |
| 7   |   | D        | Search Internet         | 9.83 | 0.00               |                |       |        | 12.17 |            |
| 8   |   | E        | Attend company sessions | 25   | 0.00               | 25.00          | 0.00  | 25.00  | 0     | Yes        |
| 9   |   | F        | Review industry, etc.   | 7.5  | 5.50               |                | 9.00  |        |       | No         |
| 10  |   | G        | Attend mock interview   | 4.5  | 7.83               | 12.33          | 44.83 | 4 9.33 | 37    | No         |
| 11  |   | Н        | Submit initial resume   | 2.5  | 7.83               |                | 13.33 |        |       | _No        |
| 12  |   | - 1      | Meet resume expert      | 1    | 1 0.33             | 11.33          | 15.83 | 1 6.83 |       | No         |
| 13  |   | J        | Revise resume           | 4.17 | 1 1.33             |                | 16.83 |        |       | No         |
| 14  |   | K        | Attend career fair      | 1    | 1 5.50             |                | 21.00 |        |       | No         |
| 1.5 |   | L        | Search jobs             | 5.5  | 1 3.00             | 18.50          | 16.50 | 22.00  |       | No         |
| 16  |   | M        | Decide jobs             | 3    | 1 8.50             |                | 22.00 |        |       | No         |
| 17  |   | N        | Bid                     | 3.67 | 21.50              |                |       |        | 24.17 | No         |
| 18  |   | 0        | Write cover letters     | 9.17 |                    |                | 25.00 |        |       | Yes        |
| 19  |   | P        | Submit cover let ters   | 4.17 |                    |                | 34.17 |        |       | Yes        |
| 20  |   | Q        | Revise cover letters    | 4.67 |                    |                | 38.33 |        |       | Yes        |
| 21  |   | R        | Mail                    | 6.33 |                    |                | 43.00 |        |       | Yes        |
| 22  |   | S        | Drop                    | 2    | 4 3.00             | 45.00          | 47.33 | 4 9.33 | 4.333 | No         |
| 23  |   |          |                         |      |                    |                |       |        |       |            |
| 24  |   |          |                         |      |                    |                |       |        |       |            |
| 25  |   |          |                         |      | Project Duration : | <b>=49</b> .33 |       |        |       |            |

The mean critical path is the same as in (a). To compute the variance of the project duration, we use the PERT template again.

|   | J  | K                           |
|---|----|-----------------------------|
| 5 |    | Mean Critical               |
| 6 |    | Path                        |
| 7 | μ= | =SUMIF(H5:H23," * *,F5:F23) |
| 8 | σ= | =SUMIF(H5:H23,***,G5:G23)   |

The mean and the variance of the mean critical path are  $\mu = 49.333$  and  $\sigma_2 = 7.722$ .


(d) We use the PERT template as in part (c). We substitute the value 60 for d in cell K12.

|     | J            | K                                     |    | J        | K        |
|-----|--------------|---------------------------------------|----|----------|----------|
| 5   |              | Mean Critical                         | 5  | Mean     | Critical |
| 6   |              | Path                                  | 6  | P        | ath      |
| 7   | μ=           | =SUMIF(H5:H23," * *,F5:F23)           | 7  | μ=       | 49.3333  |
| 8   | $\sigma^2 =$ | =SUMIF(H5:H23," * *,G5:G23)           | 8  | σ'=      | 7.7222   |
| 9   |              | · · · · · · · · · · · · · · · · · · · | 9  |          | 62.5     |
| 1.0 | P(T=d) =     | =NORMDIST(K12,K7,SORT(K8),1)          | 10 | P(T=d) = | 0.9999   |
| 11  | where        |                                       | 11 | where    |          |
| 12  | d =          | 60                                    | 12 | d =      | 60       |

Brent will be ready for his interviews within 60 days with probability 99.994%.

(e) The earliest start time for the career fair is day 24 and the career fair itself still lasts one day. To ensure that the earliest start time for the career fair is day 24, we add a

dummy node T with duration 24 days to the project network, directly following the START node and preceding the career fair node K.



(f) To obtain the mean critical path for the new network and the probability that Brent will complete the project within 60 days, we first use the PERT template to compute the mean duration for each activity. We add the new node T to the list of activities.

|    | Α        | В       | С  | D    | Е   | F                         | G                                      |
|----|----------|---------|----|------|-----|---------------------------|----------------------------------------|
| 3  |          | Ti      | me | Esti | ma  | tes                       |                                        |
| 4  |          | Activit | 0  | m    | р   | μ                         | σ <sup>2</sup>                         |
| 5  |          | Α       | 1  | 2    | 4   | 2.17                      | 0.25                                   |
| 6  |          | В       | 3  | 5    | 1 d | 5.50                      | 1.36111111                             |
| 7  |          | С       | 5  | 7    | 14  | 7.83                      | 2.25                                   |
| 8  |          | D       | 7  | 10   | 12  | 9.83                      | 0.69444444                             |
| 9  |          | E       | 20 | 25   | 30  | 25.00                     | 2.7777777                              |
| 10 |          | T       | 24 | 24   | 24  | 24.00                     | 0 0                                    |
| 11 |          | F       | 5  | 7    | 12  | 7,50                      | 1.36111111                             |
| 12 |          | G       | 3  | 4    | 8   | 10 and 10 mag 100 min 700 | 0.69444444                             |
| 13 |          | н       | 1  | 2    | 6   | 2.50                      | 0.6944444                              |
| 14 |          | . 1     | 1  | 1    | 1   | 1.00                      | 0                                      |
| 15 | <u> </u> | J       | 3  | 4    | 6   | 4.17                      | ** ** ** ** ** ** ** ** ** ** ** ** ** |
| 16 |          | K       | 1  | 1    | 1   | 1.00                      | CONTROL OF THE REAL PROPERTY.          |
| 17 |          | L       | 3  | 5    | 10  | 5.50                      |                                        |
| 18 |          | М       | 2  | 3    | 4   | 1,86,90100                | 0.1111111                              |
| 19 |          | N       | 2  | 3    | 8   | 3.67                      | 1.1                                    |
| 20 |          | 0       | 3  | 10   | 12  | 9.17                      | 2.25                                   |
| 21 |          | Р       | 2  | 4    | 7   | [1980] (But 1980)         | 0.6944444                              |
| 22 |          | Q       | 3  | 4    | 9   | 4.67                      | 1                                      |
| 23 |          | R       | 4  | 6    | 10  | 6.33                      | 1.54                                   |
| 24 | L        | S       | 1  | 2    | 3   | 2.00                      | 0.11111111                             |

We next substitute these mean duration values for the time values to find the critical path. We need to add node T to the spreadsheet used in (a).

| 1 4      | Тв      | С                       | D     | E                | F                  | G         | . н              |            |                                  |
|----------|---------|-------------------------|-------|------------------|--------------------|-----------|------------------|------------|----------------------------------|
| 3        | Ad ivit | Description             | Time  | ES               | EF                 | LS        | LF.              | Stack      | Critical?                        |
| 4        | _ A     | Register online         | 2,166 | 0                | ≖E4+D4             | ≈H4-D4    | MIN(G10,G11,G12) | H4-F4      | =IF(I4=0, "Yes", "No")           |
| 5        | В       | Attend orientation      | 5.5   | D                | ≃E5+D5             | ≠H5-D5    | MIN(G10,G11,G12) | H5-F5      | =#F(15=0, "Yes", "No")           |
|          | C       | Write initial resume    | 7,833 | n                | ∞E6+D6             | =146-D6   | MIN(G12,G11)     | - H6-F6    | =iF(16=0, "Yes", "No")           |
| 6<br>7   | T Š     | Search Internet         | 9.833 | 0                | =E7+D7             | ≠H7-D7    | ≠G17             | : H7-F7    | =!F(17=0, "Yes", "No")           |
| В        | E       | Attend company sessions | 25    | 0                | =E8+D8             | ≈H8-D8    | -G19             | - H8-F8    | <pre>=IF(18=0."Yes", "No")</pre> |
| 9        | Ţ       |                         | 24    | 0                | ⊯E9+D9             | -H9-D9    | •G15             | H9-F9      | =IF(19=0, "Yes", "No.")          |
| 10       | F       | Review industry, etc.   | 7.5   | =MAX(F4,F5)      | ≠E10+D10           | ≥H1.0-D10 | rG16             | H10-F1 0   | =IF(I10=0, Yes, No.              |
| 11       | G       | Attend mock interview   | 4.5   | -MAX(F4,F5,F6)   | ≈E11+D11           | H1 1-D11  | =F2.6            | H11-F11    | =IF(I11=0, Yes", No."            |
|          | н       | Submit initial resume   | 0.5   | =MAX(F4,F5,F6)   | ∝E12+D12           | ≈H1 2-D12 | -G13             | H12-F1.2   | -IF(112 -0."Yes"."No."           |
| 13       |         | Meet resume expert      | F     | -F12             | ₩E13+D13           | ■H1 3-D13 |                  | H13-F1 3   | =IF(I13=0."Yes"."No"             |
| 12<br>13 | + :-    | Revise resume           | 4.166 | =F13             | =E14+D14           | ≠H1 4-D14 |                  | H14-F1 4   | =IF(114 =0, "Yes", "No."         |
| 15       | Ťĸ      | Attend career fair      | h     | -MAX(F14,F9)     | ∞E15+D15           | ■H1 5-D15 |                  | H15-F1 5   | =IF(I15=0."Yes"."No"             |
| 15       | L       | Search jobs             | 5.5   | -F10             | =E16+D16           | =H1 6-D16 | =G17             | H16-F1.6   | =IF(I16=0,"Yes", No."            |
| 17       | M       | Dedde jobs              | h     | =MAX(F16,F15,F7  | =E17+D17           | =H17-D17  | -MNG18G19)       | H17 F1.7   | =iF(117=0,"Yes", "No"            |
| 18       | N       | Bid                     | 3.666 | =F1 7            | =E18+D18           | =H1 8-D18 | ⊭F2 6            | H18-F18    | -IF(I18-0,"Yes","No"             |
| 19       | 0       | Write cover letters     |       | =MAX(F17,F8)     | =E19+D19           | ■H1 9-D19 | ≈G20             | -H19-F1 9  | =1F(119 =0,"Yes","No"            |
| 20       | P       | Submit cover letters    | 4.166 |                  | =F20+D20           | =H2 0-D20 |                  |            | =1F(120 =0."Yes"."No."           |
| 21       | 0       | Revise cover letters    | 4.666 | =F2 0            | =E21+D21           | H2 1-D21  | ►MNG22G23)       | - H21-F2 1 | =1F(121 =0."Yes". No."           |
| 22       | B       | Mail                    |       | -F21             | =E22+D22           | ⊨H2 2-D22 | ≈F2.6            | :H22-F2.2  | =1F(122 =0."Yes"."No."           |
| 23       | s       | Drop                    | b     | -F2 1            | ≖E23.+D23          | =H2 3-D23 | ≠F2.6            | H23-F2.3   | =1F(123=0, Yes, No               |
|          |         |                         |       |                  |                    |           |                  |            |                                  |
| 24       |         |                         |       |                  |                    |           |                  |            | ļ                                |
| 26       |         |                         |       | Project Duration | MAK(F2.3.F2.2.F1.8 | F1.1)     | I                | J          | I                                |

|    | A. | В                 | С                       | D     | E                  | F             | G     | Н     | 1     | J          |
|----|----|-------------------|-------------------------|-------|--------------------|---------------|-------|-------|-------|------------|
| 3  |    | Act ivit y        | Description             | Time  | ES                 | EF            | LS    | LF    | Slack | Crit ical? |
| 4  |    | Α                 | Register online         | 2.17  | 0.00               | 2.17          | 9.83  | 12.00 | 9.833 | No         |
| 5  |    | В                 | Attend orient ation     | 5.50  | 0.00               | 5.50          | 6.50  | 12.00 | 6.5   | No         |
| 6  |    | С                 | Write initial resume    | 7.83  | 0.00               | 7.83          | 8.50  | 16.33 | 8.5   | No         |
| 7  |    |                   | Search Internet         | 9.83  | 0.00               | 9.83          | 15.17 | 25.00 | 15.17 | No         |
| 8  |    | E                 | Attend company sessions | 25.00 | 0.00               | 25.00         | 3.00  | 28.00 | 3     | No         |
| 9  |    | T                 | Dummy for career fair   | 24.00 |                    | 24.00         | 0.00  | 24.00 |       | Yes        |
| 10 |    |                   | Review industry, etc.   | 7.50  | 5.50               |               | 12.00 |       |       | No         |
| 11 |    |                   | Attend mock interview   | 4.50  | 7.83               |               | 47.83 |       |       | No         |
| 12 |    | Н                 | Submit initial resume   | 2.50  | 7.83               |               | 16.33 |       |       | No         |
| 13 |    | 1                 | Meet resume expert      | 1.00  | 10.33              |               | 18.83 |       |       | No         |
| 14 |    |                   | Revise resume           | 4.17  | 11.33              |               | 19.83 |       |       | No         |
| 15 |    | K                 | Attend career fair      | 1.00  | 24.00              |               | 24.00 |       |       | Yes        |
| 16 |    |                   | Search jobs             | 5.50  | 13.00              |               | 19.50 |       |       | No         |
| 17 |    | M                 | Decide jobs             | 3.00  | 25.00              |               | 25.00 |       |       | Yes        |
| 18 |    |                   | Bid                     | 3.67  | 28.00              |               | 48.67 |       |       | No         |
| 19 |    | The second second | Write cover letters     | 9.17  | 28.00              |               | 28.00 |       |       | Yes        |
| 20 |    | Р                 | Submit cover letters    | 4.17  |                    |               | 37.17 |       |       | Yes        |
| 21 |    |                   | Revise cover letters    | 4.67  | 41.33              |               | 41.33 |       |       | Yes        |
| 22 |    | R                 | Mail                    | 6.33  | 46.00              |               | 46.00 |       |       | Yes        |
| 23 |    | S                 | Drop                    | 2.00  | 46.00              | 48.00         | 50.33 | 52.33 | 4.333 | No         |
| 24 | _  |                   |                         |       |                    |               |       |       |       |            |
| 25 |    |                   |                         |       |                    |               |       |       |       |            |
| 26 |    |                   |                         |       | Project Duration : | <b>-52.33</b> |       |       |       |            |

The mean project duration is now 52.33 days and the new mean critical path is:

$$\mathsf{Start} \to T \to K \to M \to O \to P \to Q \to R \to \mathsf{Finish}.$$

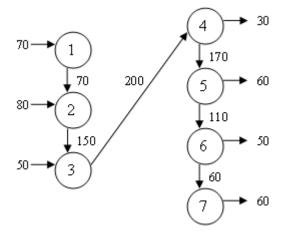
We specify this new critical path in the PERT spreadsheet to obtain the probability that Brent will complete the project within 60 days.

|    |          | K        |
|----|----------|----------|
| ш  | J        | N        |
| 5  | Mean     | Critical |
| 6  | Pã       | ath      |
| 7  | μ=       | 52.3333  |
| 8  | σ²=      | 5:05556  |
| 9  |          | 1 com    |
| 10 | P(T=d) = | 0.9996   |
| 11 | where    |          |
| 12 | d =      | 60       |

Brent will be ready for his interviews within 60 days with probability 99.967%, which is slightly less than the probability computed in part (d). This decrease is a result of the increase in the mean project duration. However, since the variance of the project duration is smaller than the one found in (d), the probability decreases only slightly.

# CHAPTER 23: ADDITIONAL SPECIAL TYPES OF LINEAR PROGRAMMING PROBLEMS

# 23.1-1.


(a) Locations 1, 2, 3 are supply centers and locations 4, 5, 6, 7 are receiving centers. Shipments can be sent via intermediate points.

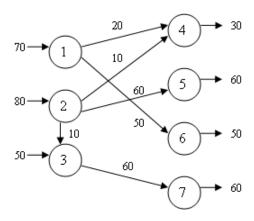
(b)

|         | 1   | 2   | 3   | 4   | 5   | 6   | 7   | $s_i$ |
|---------|-----|-----|-----|-----|-----|-----|-----|-------|
| 1       | 0   | 21  | 50  | 62  | 93  | 77  | M   | 270   |
| 2       | 29  | 0   | 17  | 54  | 67  | M   | 48  | 280   |
| 3       | 50  | 17  | 0   | 60  | 98  | 67  | 25  | 250   |
| 4       | 62  | 54  | 60  | 0   | 27  | M   | 38  | 200   |
| 5       | 93  | 67  | 98  | 27  | 0   | 47  | 42  | 200   |
| 6       | 77  | M   | 67  | M   | 47  | 0   | 35  | 200   |
| 7       | M   | 48  | 25  | 38  | 42  | 35  | 0   | 200   |
| $d_{j}$ | 200 | 200 | 200 | 230 | 260 | 250 | 260 |       |

(c)

|       | 1   | 2   | 3   | 4   | 5   | 6   | 7   | $s_i$ |
|-------|-----|-----|-----|-----|-----|-----|-----|-------|
| 1     | 200 | 70  |     |     |     |     |     | 270   |
| 2     |     | 130 | 150 |     |     |     |     | 280   |
| 3     |     |     | 50  | 200 |     |     |     | 250   |
| 4     |     |     |     | 30  | 170 |     |     | 200   |
| 5     |     |     |     |     | 90  | 110 |     | 200   |
| 6     |     |     |     |     |     | 140 | 60  | 200   |
| 7     |     |     |     |     |     |     | 200 | 200   |
| $d_i$ | 200 | 200 | 200 | 230 | 260 | 250 | 260 |       |




The shipping pattern obtained with the northwest corner rule forms a chain where location i ships only to location i + 1.

(d)

Optimal Solution: The main body of the table shows the optimal number of units (if not zero) to be sent from each source to each destination.

|        | ſ   |     |     | Dest | ination | ı   |     |     |         |
|--------|-----|-----|-----|------|---------|-----|-----|-----|---------|
|        |     | 1   | 2   | 3    | 4       | 5   | 6   | 7_  | Supply  |
|        | 1   | 200 |     |      | 20      |     | 50  |     | 270     |
|        | 2   |     | 200 | 10   | 10      | 60  |     |     | 280     |
|        | 3   |     |     | 190  |         |     |     | 60  | 250     |
| Source | 4   |     |     |      | 200     |     |     |     | 200     |
| Dource | 5   |     |     |      |         | 200 |     |     | 200     |
|        | 6   |     |     |      |         |     | 200 |     | 200     |
|        | 7 I |     |     |      |         |     |     | 200 | 200     |
| Dem    | and | 200 | 200 | 200  | 230     | 260 | 250 | 260 | Cost is |
| 2011   |     | 200 |     |      |         |     |     |     | 11320   |

Shipping pattern:



# 23.1-2.

(a) Let the supply center be year 0 with a supply of 1 and the receiving center be year 3 with a demand of 1. Years 1 and 2 are transshipment points. The parameter table is as follows:

| Years  | 0 | 1  | 2  | 3  | Supply |
|--------|---|----|----|----|--------|
| 0      | 0 | 13 | 28 | 48 | 1      |
| 1      | M | 0  | 17 | 33 | 0      |
| 2      | M | M  | 0  | 20 | 0      |
| 3      | M | M  | M  | 0  | 0      |
| Demand | 0 | 0  | 0  | 1  |        |

(b) The transportation problem is the same as above except that all supplies and demands are increased by one.

|        |     | Cost Per | Unit   | Distrib | ıted |        |
|--------|-----|----------|--------|---------|------|--------|
|        |     | ľ        | estina | tion    | I    |        |
|        | - 1 | 1        | 2      | 3       | 4    | Supply |
|        | I_  |          |        |         | I    |        |
|        | 1   | 0        | 13     | 28      | 48   | 2      |
| Source | 2   | 1 M      | 0      | 17      | 33   | 1      |
|        | 3   | 1 M      | 1 M    | 0       | 20   | 1      |
|        | 4   | 1 M      | 1 M    | 1 M     | 0    | 1      |
|        | I_  |          |        |         | I    |        |
| Demand |     | 1        | 1      | 1       | 2    |        |

# (c) Vogel's approximation

|        | l           | Destin |       |     |          |      |
|--------|-------------|--------|-------|-----|----------|------|
|        | 1           | 2      | 3     | 4   | Supply   | u[i] |
|        | l!          | !      | !     |     |          |      |
|        | . 01_1      | 13     | 28    | 48  |          |      |
| 1      | B           | B      |       |     |          | 10   |
|        | 1           | 1      | 2     | 2   | 2        | 13   |
|        |             | ——;    | 17    | 331 |          |      |
| 2      |             | BI     | 1     | B   |          |      |
| _      | 1M+13       | 01     | 41    | 1   | 1        | 0    |
|        | i i         | i      | i     |     | i i      |      |
|        |             |        | i     | 20  | ĺ        |      |
| 3      |             |        | B     | B   | 1        |      |
|        | 1M+26       | 1M+13  | 1     | 0   | 1        | -13  |
|        | lI          | l      |       |     | I I      |      |
|        | M           | M      | M     | 0   | l I      |      |
| 4      |             |        |       | B   |          |      |
|        | 1M+46       | 1M+33  | 1M+20 | 1   | 1        | -33  |
| Damand | اا          |        |       |     | <u> </u> |      |
| Demand | 1           | 1      | 1     | 4   | <br>     |      |
|        | -13         | 0      | 13    | 33  | <br>     |      |
| . [7]  | , <u>20</u> | Ŭ      |       | 30  | Z = 46   |      |
|        | '           |        |       | '   |          |      |

(d) Vogel's approximation prices out optimal.

#### 23.1-3.

(a) Let  $c_{ij}^k$  be the cost of buying a very old car (k=1) or a moderately old car (k=2) at the beginning of year i and trading it in at the end of year j. This cost is the difference of the purchase price, operating and maintenance costs for years  $1, 2, \ldots, j-i+1$  from the trade in value after j-i+1 years.

|   |   | $c_{ij}^1$ |      |      |       |
|---|---|------------|------|------|-------|
| I |   | 1          | 2    | 3    | 4     |
| I | 1 | 2400       | 4800 | 7400 | 10300 |
| ĺ | 2 | M          | 2400 | 4800 | 7400  |
| I | 3 | M          | M    | 2400 | 4800  |
| I | 4 | M          | M    | M    | 2400  |

| $c_{ar{i}j}$ |      |      |      |       |  |  |  |  |  |  |
|--------------|------|------|------|-------|--|--|--|--|--|--|
|              | 1    | 2    | 3    | 4     |  |  |  |  |  |  |
| 1            | 3000 | 5000 | 7200 | 10700 |  |  |  |  |  |  |
| 2            | M    | 3000 | 5000 | 7200  |  |  |  |  |  |  |
| 3            | M    | M    | 3000 | 5000  |  |  |  |  |  |  |
| 4            | M    | M    | M    | 3000  |  |  |  |  |  |  |
|              |      |      |      |       |  |  |  |  |  |  |

Let  $c_{i,j+1} = \min \{c_{ij}^1, c_{ij}^2\}$ . Let the supply center be year 1 with unit supply and the demand center be year 5 with unit demand. Years 2, 3, 4 are transshipment points.  $c_{ii} = 0$ ,  $c_{i1} = M$  for i > 1 and  $c_{5j} = M$  for j < 5. The following is the parameter table of this transshipment problem:

| Year i | 1 | 1 2 3 4 5 |      |      |       |   |  |  |
|--------|---|-----------|------|------|-------|---|--|--|
| 1      | 0 | 2400      | 4800 | 7200 | 10300 | 1 |  |  |
| 2      | M | 0         | 2400 | 4800 | 7200  | 0 |  |  |
| 3      | M | M         | 0    | 2400 | 4800  | 0 |  |  |
| 4      | M | M         | M    | 0    | 2400  | 0 |  |  |
| 5      | M | M         | M    | M    | 0     | 0 |  |  |
| Demand | 0 | 0         | 0    | 0    | 1     |   |  |  |

(b) The cost and requirements table of the equivalent transportation problem is identical to the one in (a) except that all supplies and demands need to be increased by one.

(c)

|        | 1 | 2 | 3 | 4 | 5 | Supply      |
|--------|---|---|---|---|---|-------------|
| 1      | 1 | 1 |   |   |   | 2           |
| 2      |   |   |   |   | 1 | 1           |
| 3      |   |   | 1 |   |   | 1           |
| 4      |   |   |   | 1 |   | 1           |
| 5      |   |   |   |   | 1 | 1           |
| Demand | 1 | 1 | 1 | 1 | 2 | Cost: 9,600 |

The optimal solution is to purchase a very old car for year 1 and a moderately old one for years 2, 3, and 4. The cost of this is \$9,600.

#### 23.1-4.

Suppose there are m supply centers, n receiving centers and p transshipment points.

$$\begin{array}{ll} \text{minimize} & \sum\limits_{i=1}^{m+n+p} \sum\limits_{j=1}^{m+n+p} c_{ij}x_{ij} \\ \\ \text{subject to} & \sum\limits_{j=1}^{m+n+p} (x_{ij}-x_{ji}) = \begin{cases} s_i & \text{for } i=1,2,\ldots,m \\ -d_i & \text{for } i=m+1,\ldots,m+n \\ 0 & \text{for } i=m+n+1,\ldots,m+n+p \end{cases} \\ \\ x_{ij} \geq 0, \text{ for all } i \neq j \\ \end{array}$$

This model has the special structure that each decision variable appears in exactly two constraints, once with a coefficient of +1 and once with a coefficient of -1. The table of constraint coefficients is:

| 6 | $x_{12}$ | $x_{13}$ | <br>$x_{1,m+n+p}$ | $x_{21}$ | $x_{23}$ | <br>$x_{2,m+n+p}$ | <br>$x_{m+n+p,1}$ | $x_{m+n+p,2}$ | <br>$x_{m+n+p,m+n+p-1}$ |
|---|----------|----------|-------------------|----------|----------|-------------------|-------------------|---------------|-------------------------|
|   | 1        | 1        | <br>1             | -1       | 0        | <br>0             | <br>-1            | 0             | <br>0                   |
| - | -1       | 0        | <br>0             | 1        | 1        | <br>1             | <br>0             | -1            | <br>0                   |
|   |          | :        | :                 | :        | :        | :                 | :                 | :             | :                       |
|   | 0        | 0        | <br>-1            | 0        | 0        | <br>-1            | <br>1             | 1             | <br>1                   |

# 23.2-1.

(b) After converting  $\geq$  inequalities to  $\leq$  inequalities, the coefficient table becomes:

| $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ |
|-------|-------|-------|-------|-------|-------|
| 5     | -2    | 3     | 4     | 2     | 1     |
| 2     | 4     |       | 2     |       | 3     |
| 3     | 2     | 3     |       |       |       |
| 5     |       | -1    |       |       |       |
| 1     | -2    | -1    |       |       |       |
|       |       |       | 1     |       |       |
|       |       |       | -1    |       |       |
|       |       |       |       | 2     | -1    |
|       |       |       |       | 2     | 3     |

#### 23.2-2.

(a)

|                | Constraint | $x_1$ | $x_4$ | $x_2$ | $x_5$ | $x_7$ | $x_3$ | $x_6$ |
|----------------|------------|-------|-------|-------|-------|-------|-------|-------|
| Master Problem | 3          | 4     | 2     | 3     | 4     | 1     | -2    | 0     |
|                | 6          | 0     | 0     | 5     | 1     | 4     | 3     | -2    |
| Subproblem 1   | 2          | 0     | 1     |       |       |       |       |       |
|                | 5          | 1     | 1     |       |       |       |       |       |
|                | 9          | 2     | 4     |       |       |       |       |       |
| Subproblem 2   | 1          |       |       | 1     | 1     | 1     |       |       |
|                | 8          |       |       | 2     | 1     | 3     |       |       |
| Subproblem 3   | 4          |       |       |       |       |       | 2     | 4     |
|                | 7          |       |       |       |       |       | 0     | 1     |

(b) The first constraint of Subproblem 1 and the second constraint of Subproblem 3 are the upper-bound constraints. The second constraint of Subproblem 1 and the first constraint of Subproblem 2 are the GUB constraints.

#### 23.2-3.

(a) maximize 
$$7x_1 + 3x_2 + 5x_3 + 4x_4 + 7x_5 + 5x_6$$
 subject to 
$$16x_1 + 7x_2 + 13x_3 + 8x_4 + 20x_5 + 10x_6 \le 150$$
 
$$10x_1 + 3x_2 + 7x_3 \le 50$$
 
$$4x_1 + 2x_2 + 5x_3 \le 30$$
 
$$6x_4 + 13x_5 + 9x_6 \le 45$$
 
$$3x_4 + 8x_5 + 2x_6 \le 25$$
 
$$xj \ge 0, \text{ for } j = 1, 2, \dots, 6$$

(b)

| $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ |
|-------|-------|-------|-------|-------|-------|
| 16    | 7     | 13    | 8     | 20    | 10    |
| 10    | 3     | 7     |       |       |       |
| 4     | 2     | 5     |       |       |       |
|       |       |       | 6     | 13    | 9     |
|       |       |       | 3     | 8     | 2     |

23.3-1.

$$A = \begin{pmatrix} 3 & 2 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}, A_1 = (3), A_2 = (2), A_3 = (1), A_4 = (2)$$

$$c_1 = (3), c_2 = (5), \vec{x_1} = (x_1), \vec{x_2} = (x_2), b = 18, b_1 = 4, b_2 = 12$$

Subproblem 1: maximize 
$$z_1 = 3x_1$$
 subject to  $x_1 \le 4, x_1 \ge 0$ 

$$x_{11}^* = 0 \rightarrow \rho_{11}, x_{12}^* = 4 \rightarrow \rho_{12}$$

Subproblem 2: maximize  $z_2 = 5x_2$ 

subject to 
$$2x_2 \le 12, x_2 \ge 0$$

$$x_{21}^* = 0 \rightarrow \rho_{21}, x_{22}^* = 6 \rightarrow \rho_{22}$$

Reformulate: maximize 
$$\begin{array}{ll} 12\rho_{12} + 30\rho_{22} \\ \text{subject to} & 12\rho_{12} + 12\rho_{22} + x_5 = 18 \\ \rho_{11} + \rho_{12} = 1 \\ \rho_{21} + \rho_{22} = 1 \\ \rho \geq 0, x_5 \geq 0 \end{array}$$

(1) Start with 
$$x_B = \begin{pmatrix} x_5 \\ \rho_{11} \\ \rho_{21} \end{pmatrix}$$
,  $B = I = B^{-1}$ ,  $B^{-1}b = \begin{pmatrix} 18 \\ 1 \\ 1 \end{pmatrix}$ 

$$\begin{array}{ll} \underline{j=1:} \ \ \text{minimize} & w_1=-3x_1 \\ \text{subject to} & x_1 \leq 4, \, x_1 \geq 0 \to x_1^*=4=x_{12}^*, \, w_1^*=-12 \end{array}$$

$$j=2$$
: minimize  $w_2=-5x_2$  subject to  $2x_2 \le 12, x_2 \ge 0 \rightarrow x_2^*=6=x_{22}^*, w_2^*=-30$ 

Not optimal,  $w_2^* < w_1^*$ , so  $\rho_{22}$  enters the basis.

$$A_k' = \begin{pmatrix} 12 \\ 0 \\ 1 \end{pmatrix}, B^{-1}b = \begin{pmatrix} 18 \\ 1 \\ 1 \end{pmatrix}$$
, minimum ratio:  $1/1$ , so  $\rho_{21}$  leaves the basis.

(2) 
$$x_B = \begin{pmatrix} x_5 \\ \rho_{11} \\ \rho_{22} \end{pmatrix}$$
,  $c_B = \begin{pmatrix} 0 & 0 & 30 \end{pmatrix}$ ,  $B = \begin{pmatrix} 1 & 1 & 12 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ,  $B^{-1} = \begin{pmatrix} 1 & 0 & -12 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 

$$w_1 = -3x_1, x_1^* = 4 = x_{12}^*, w_1^* = -12$$
  
 $w_2 = -5x_2 + 30, x_2^* = 6 = x_{22}^*, w_2^* = 0$ 

Not optimal,  $w_1^* < w_2^*$ , so  $\rho_{12}$  enters the basis.

$$A'_k = \begin{pmatrix} 12\\1\\0 \end{pmatrix}, B^{-1}b = \begin{pmatrix} 6\\1\\1 \end{pmatrix}$$
, minimum ratio: 6/12, so  $x_5$  leaves the basis.

(3) 
$$x_B = \begin{pmatrix} \rho_{12} \\ \rho_{11} \\ \rho_{22} \end{pmatrix}$$
,  $c_B = \begin{pmatrix} 12 & 0 & 30 \end{pmatrix}$ ,  $B = \begin{pmatrix} 12 & 0 & 12 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ , 
$$B^{-1} = \begin{pmatrix} 1/12 & 0 & -1 \\ -1/12 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
$$w_1 = 0x_1 + 0$$

$$w_2 = -3x_2 + 18, x_2^* = 6 = x_{22}^*, w_2^* = 0$$

 $c_B B^{-1} = 1 > 0$ , so the solution is optimal, stop.

$$x_B = \begin{pmatrix} \rho_{12} \\ \rho_{11} \\ \rho_{22} \end{pmatrix} = B^{-1}b = \begin{pmatrix} 1/2 \\ 1/2 \\ 1 \end{pmatrix}$$

$$\Rightarrow x_1 = 0(1/2) + 4(1/2) = 2, x_2 = 0(0) + 6(1) = 6, z = 36$$
23.3-2.

# (a) Reformulate:

Subproblem 1: 
$$x_{11}^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
,  $x_{12}^* = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$ ,  $x_{13}^* = \begin{pmatrix} 5/2 \\ 15/2 \end{pmatrix}$ ,  $x_{14}^* = \begin{pmatrix} 0 \\ 10 \end{pmatrix}$ 
Subproblem 2:  $x_{21}^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ ,  $x_{22}^* = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$ ,  $x_{23}^* = \begin{pmatrix} 10/3 \\ 10/3 \end{pmatrix}$ ,  $x_{14}^* = \begin{pmatrix} 0 \\ 5 \end{pmatrix}$ 
maximize  $50\rho_{12} + \frac{125}{2}\rho_{13} + 50\rho_{14} + 40\rho_{22} + 50\rho_{23} + 35\rho_{24}$ 
subject to  $30\rho_{12} + \frac{105}{2}\rho_{13} + 50\rho_{14} + 20\rho_{22} + \frac{100}{3}\rho_{23} + 30\rho_{24} + x_5 = 40$ 
 $\rho_{11} + \rho_{12} + \rho_{13} + \rho_{14} = 1$ 
 $\rho_{21} + \rho_{22} + \rho_{23} + \rho_{24} = 1$ 
 $\rho \geq 0, x_5 \geq 0$ 

(b) Start with 
$$x_B = \begin{pmatrix} x_5 \\ \rho_{11} \\ \rho_{21} \end{pmatrix}$$
,  $B = I = B^{-1}$ ,  $B^{-1}b = \begin{pmatrix} 40 \\ 1 \\ 1 \end{pmatrix}$ ,  $c_B = 0$ 

$$\begin{array}{ll} \underline{j=1:} & \text{minimize} & w_1 = 10x_1 - 5x_2 \\ & \text{subject to} & 3x_1 + x_2 \leq 15, \, x_1 + x_2 \leq 10, \, x_1, \, x_2 \geq 0 \\ \\ x_{13}^* = \begin{pmatrix} 5/2 \\ 15/2 \end{pmatrix} \text{ is optimal, } w_1^* = -125/2. \end{array}$$

Not optimal,  $w_1^* < w_2^*$ , so  $\rho_{13}$  enters the basis.

$$A'_k = \begin{pmatrix} 105/2 \\ 1 \\ 0 \end{pmatrix}$$
,  $B^{-1}b = \begin{pmatrix} 40 \\ 1 \\ 1 \end{pmatrix}$ , minimum ratio: 80/105, so  $x_5$  leaves the basis.

(2) 
$$x_B = \begin{pmatrix} \rho_{13} \\ \rho_{11} \\ \rho_{21} \end{pmatrix}$$
,  $c_B = \begin{pmatrix} 125/2 & 0 & 0 \end{pmatrix}$ ,  $B = \begin{pmatrix} 105/2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ,

$$B^{-1} = \begin{pmatrix} 2/105 & 0 & 0 \\ -2/105 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$w_1 = -\frac{20}{7}x_1 + \frac{20}{21}x_2$$
,  $x_{12}^*$  is optimal,  $w_1^* = -14.28$ .

$$w_2 = -\frac{68}{21}x_3 + \frac{1}{7}x_4$$
,  $x_{22}^*$  is optimal,  $w_2^* = -16.19$ .

Not optimal,  $w_2^* < w_1^*$ , so  $\rho_{22}$  enters the basis.

$$A'_k = \begin{pmatrix} 40/105 \\ -40/105 \\ 1 \end{pmatrix}$$
,  $B^{-1}b = \begin{pmatrix} 80/105 \\ 25/105 \\ 1 \end{pmatrix}$ , minimum ratio:  $1/1$ , so  $\rho_{21}$  leaves the basis.

(3) 
$$x_B = \begin{pmatrix} \rho_{13} \\ \rho_{11} \\ \rho_{22} \end{pmatrix}$$
,  $c_B = \begin{pmatrix} 125/2 & 0 & 40 \end{pmatrix}$ ,  $B = \begin{pmatrix} 105/2 & 0 & 20 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ,

$$B^{-1} = \begin{pmatrix} 2/105 & 0 & -40/105 \\ -2/105 & 1 & 40/105 \\ 0 & 0 & 1 \end{pmatrix}$$

$$w_1 = -\frac{20}{7}x_1 + \frac{20}{21}x_2, x_{12}^*$$
 is optimal,  $w_1^* = -14.28$ .

$$w_2 = -\frac{68}{21}x_3 + \frac{1}{7}x_4 - \frac{500}{21} + 40, x_{22}^*$$
 is optimal,  $w_2^* = 0$ .

Not optimal,  $w_1^* < w_2^*$ , so  $\rho_{12}$  enters the basis.

$$A'_k = \begin{pmatrix} 60/105 \\ 55/105 \\ 0 \end{pmatrix}$$
,  $B^{-1}b = \begin{pmatrix} 40/105 \\ 65/105 \\ 1 \end{pmatrix}$ , minimum ratio:  $40/60$ , so  $\rho_{13}$  leaves the basis.

(4) 
$$x_B = \begin{pmatrix} \rho_{12} \\ \rho_{11} \\ \rho_{22} \end{pmatrix}$$
,  $c_B = \begin{pmatrix} 50 & 0 & 40 \end{pmatrix}$ ,  $B = \begin{pmatrix} 30 & 0 & 20 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ,

$$B^{-1} = \begin{pmatrix} 1/30 & 0 & -2/3 \\ -1/30 & 1 & 2/3 \\ 0 & 0 & 1 \end{pmatrix}$$

 $w_1 = \frac{10}{3}x_2, x_{11}^*$  and  $x_{12}^*$  are both optimal,  $w_1^* = 0$ .

$$w_2 = -\frac{4}{3}x_3 + 3x_4 - \frac{100}{3} + 40$$
,  $x_{22}^*$  is optimal,  $w_2^* = 0$ .

 $c_B B^{-1} = 5/3 > 0$ , so optimality test holds, stop.

$$x_{B} = \begin{pmatrix} \rho_{12} \\ \rho_{11} \\ \rho_{22} \end{pmatrix} = B^{-1}b = \begin{pmatrix} 2/3 \\ 1/3 \\ 1 \end{pmatrix}$$

$$\Rightarrow \vec{x_{1}} = \frac{1}{3} \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \frac{2}{3} \begin{pmatrix} 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 10/3 \\ 0 \end{pmatrix}, \vec{x_{2}} = 1 \begin{pmatrix} 5 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$

$$\Rightarrow x_{1} = 10/3, x_{2} = 0, x_{3} = 5, x_{4} = 0, z = 220/3$$

#### 23.3-3.

The problem has three subproblems and two linking constraints.

(1) Initial basis: 
$$x_B = \begin{pmatrix} x_{51} \\ x_{52} \\ \rho_{11} \\ \rho_{21} \\ \rho_{31} \end{pmatrix}, B = B^{-1} = I, c_B = 0$$

$$j = 1: \text{ minimize } -8x_1 - 5x_2 - 6x_3$$

$$\begin{array}{ll} \underline{\jmath=1:} \ \ \text{minimize} & -8x_1 - 5x_2 - 6x_3 \\ \text{subject to} & 2x_1 + 4x_2 + 3x_3 \leq 10 \\ & 7x_1 + 3x_2 + 6x_3 \leq 15 \\ & 5x_1 & + 3x_3 \leq 12 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

$$x_{1k}^* = \begin{pmatrix} 15/11 \\ 20/11 \\ 0 \end{pmatrix}$$
 is optimal,  $w_1^* = -20$ .

$$x_{2k}^* = \begin{pmatrix} 3/5 \\ 0 \\ 13/5 \end{pmatrix}$$
 is optimal,  $w_2^* = -28.8$ .

$$\begin{array}{ll} \underline{j=3:} \ \ \text{minimize} & -6x_7-5x_8 \\ \text{subject to} & 8x_7+5x_8 \leq 25 \\ & 7x_7+9x_8 \leq 30 \\ & 6x_7+4x_8 \leq 20 \\ & x_7,x_8 \geq 0 \\ \\ x_3^* = \begin{pmatrix} 75/37 \\ 65/37 \end{pmatrix} \ \text{is optimal, } w_2^* = -20.95. \end{array}$$

 $w_2^*$  is smallest, so  $\rho_{2k}$  enters the basis.

$$A'_{k} = \begin{pmatrix} A_{2}x_{2k}^{*} \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 2 & 0 & 3 \\ 3 & 7 & 0 \end{pmatrix} \begin{pmatrix} 3/5 \\ 0 \\ 13/5 \end{pmatrix} \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 9 \\ 9/5 \\ 0 \\ 1 \\ 0 \end{pmatrix}, B^{-1}b = \begin{pmatrix} 30 \\ 20 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

minimum ratio: 1/1, so  $\rho_{21}$  leaves.

$$(2) x_{B} = \begin{pmatrix} x_{51} \\ x_{52} \\ \rho_{11} \\ \rho_{2k} \\ \rho_{31} \end{pmatrix}, c_{B} = \begin{pmatrix} 0 & 0 & 0 & 144/5 & 0 \end{pmatrix}, B^{-1} = \begin{pmatrix} 1 & 0 & 0 & -9 & 0 \\ 0 & 1 & 0 & -9/5 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$w_1$$
 same,  $w_1^* = -20$   
 $w_2 = (-9 \quad -7 \quad -9)\vec{x_2} + 144/5, w_2^* = 0$   
 $w_3$  same,  $w_3^* = -20.95$ 

 $w_3^*$  is smallest, so  $\rho_{3k}$  enters the basis.

$$A'_{k} = \begin{pmatrix} A_{3}x_{3k}^{*} \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 4 & 6 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 75/37 \\ 65/37 \end{pmatrix} \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 18.65 \\ 2.03 \\ 0 \\ 0 \\ 1 \end{pmatrix}, B^{-1}b = \begin{pmatrix} 21 \\ 91/5 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

minimum ratio: 1/1, so  $\rho_{31}$  leaves.

Let 
$$x_B=\begin{pmatrix} x_{51}\\ x_{52}\\ \rho_{11}\\ \rho_{2k}\\ \rho_{3k} \end{pmatrix}$$
 and continue. This suggests that in the next iteration,  $\rho_{11}$  will be

replaced by  $\rho_{1k}$ .

23.4-1.

| Constraint | $x_3$ | $x_6$ | $x_7$ | $x_1$ | $x_2$ | $x_4$ | $x_5$ | $x_8$ | $x_9$ | $x_{10}$ |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|
| 1          | 0     | 0     | 0     | 3     | 1     |       |       |       |       |          |
| 2          | -1    | 0     | 0     | 1     | 2     |       |       |       |       |          |
| 3          | 0     | 0     | 0     |       |       | 1     | 5     |       |       |          |
| 4          | 1     | -1    | -1    |       |       | 2     | -1    |       |       |          |
| 5          | 0     | 0     | 0     |       |       | 0     | 1     |       |       |          |
| 6          | 1     | 1     | 1     |       |       |       |       | 1     | 3     | 2        |
| 7          | 0     | 0     | 0     |       |       |       |       | 2     | -1    | 1        |

#### 23.4-2.

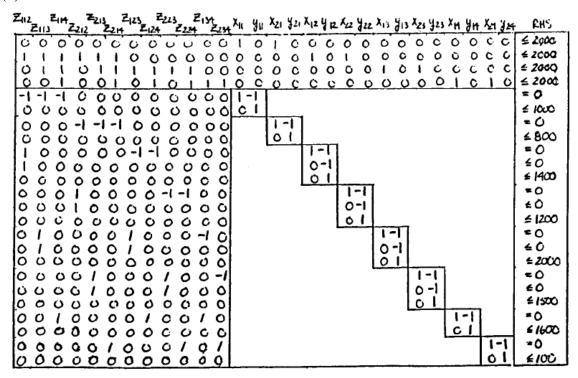
(a) Let  $x_{ij}$  denote the number of units of product i to be produced in year j for i=1,2 and j=1,2,3. Let  $y_{ij}$  denote the number of units of product i to be sold in year j for i=1,2 and j=1,2,3. Let  $z_{ijk}$  denote the number of units of product i to be produced and stored in year j and sold in year k, for i=1,2,j=1,2,3, and  $k=j+1,j+2,\ldots,3$ .

$$\begin{array}{ll} \text{maximize} & 3y_{11} + 5y_{21} + 4y_{12} + 4y_{22} + 5y_{13} + 8y_{23} \\ & - 2z_{112} - 2z_{212} - 4z_{113} - 4z_{213} - 2z_{123} - 2z_{223} \\ \text{subject to} & x_{11} \leq 4 \\ & 2x_{21} \leq 12 \\ & 3x_{11} + 2x_{21} \leq 18 \\ & x_{11} - y_{11} - z_{112} - z_{113} = 0 \\ & x_{21} - y_{21} - z_{212} - z_{213} = 0 \\ & x_{12} \leq 6 \\ & 2x_{22} \leq 12 \\ & 3x_{12} + 2x_{22} \leq 24 \\ & z_{112} + x_{12} - y_{12} - z_{123} = 0 \\ & z_{112} - y_{12} \leq 0 \\ & z_{212} + x_{22} - y_{22} - z_{223} = 0 \\ & z_{212} - y_{22} \leq 0 \\ & x_{13} \leq 3 \\ & 2x_{23} \leq 10 \\ & 3x_{13} + 2x_{23} \leq 15 \\ & z_{113} + z_{123} + x_{13} - y_{13} = 0 \\ & z_{213} + z_{223} + x_{23} - y_{23} = 0 \\ & x_{ij} \geq 0, y_{ij} \geq 0, z_{ijk} \geq 0, \text{ for all } i, j, k. \end{array}$$

(b) Table of constraint coefficients:

| 적은 장은 작은              |                      |                |                  |
|-----------------------|----------------------|----------------|------------------|
| Z112 Z123 Z123 Z123 Z | 223<br>V. H. Y., Y., | X. U > U.      | . ) v Y .u       |
| 000000                | 1000                 | 1 42 812 72 32 | 2 13 713 223 723 |
| 000000                | 0020                 | 1              | 1 1              |
| 000000                |                      |                | 1                |
| 1-10000               |                      |                | 1 1              |
| 00-1-100              | 001-1                |                | 1                |
| 000000                |                      | 1000           | 1 1              |
| 000000                | <u>'</u>             | 0020           | 1 1              |
| 000000                | j                    | 3020           | ! !              |
| 1000-10               |                      | 1-100          |                  |
| 100000                |                      | 0-100          |                  |
| 00100-1               |                      | 001-1          |                  |
| 001000                | 1                    | 000-1          |                  |
| 000000                |                      |                | 1000             |
| 000000                |                      |                | 0020             |
| 010010                |                      |                | 3020             |
| 1000000               | - 1                  |                | 1-100            |
| ·                     |                      |                | 0011             |

## 23.5-1.


| Constraint | $x_2$ | $x_8$ | $x_1$ | $x_4$ | $x_3$ | $x_7$ | $x_5$ | $x_9$ | $x_{10}$ | $x_6$ |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|----------|-------|
| 3          | -1    | 0     | 5     | -1    | 2     | -3    | -1    | 0     | 4        | 0     |
| 7          | 1     | 1     | 2     | 3     | 0     | 0     | 0     | -1    | 0        | 2     |
| 1          | 0     | 1     | 2     | 3     |       |       |       |       |          |       |
| 6          | 0     | 0     | 1     | 1     |       |       |       |       |          |       |
| 2          | 1     | 2     |       |       | 1     | 2     |       |       |          |       |
| 8          | -1    | -1    |       |       | 2     | 1     |       |       |          |       |
| 5          | -1    | -2    |       |       |       |       | 2     | 5     | 3        |       |
| 9          | 0     | 0     |       |       |       |       | 1     | 2     | 1        |       |
| 10         | -1    | 0     |       |       |       |       | 4     | 1     | 5        |       |
| 4          | 0     | -1    |       |       |       |       |       |       |          | 1     |

#### 23.5-2.

(a) Let types 1 and 2 denote raw lumber and plywood respectively. Let  $x_{ij}$  be the thousand board feet of type i to be purchased in season j, for i = 1, 2 and j = 1, 2, 3, 4. Let  $y_{ij}$  be the thousand board feet of type i to be sold in season j, for i = 1, 2 and j = 1, 2, 3, 4. Let  $z_{ijk}$  be the thousand board feet of type i to be purchased and stored in season j and sold in season k, for i = 1, 2, j = 1, 2, 3, 4, and  $k = j+1, j+2, \ldots, 4$ .

```
-410x_{11} + 425y_{11} - 17z_{112} - 27z_{113} - 37z_{114}
maximize
                      -680x_{21} + 705y_{21} - 24z_{212} - 42z_{213} - 60z_{214}
                      -430x_{12} + 440y_{12} - 17z_{123} - 27z_{124}
                      -715x_{22} + 730y_{22} - 24z_{223} - 42z_{224}
                      -460x_{13} + 465y_{13} - 17z_{134} - 760x_{23} + 770y_{23} - 24z_{234}
                      -450x_{14} + 455y_{14} - 740x_{24} + 750y_{24}
subject to
                      x_{11} - y_{11} - z_{112} - z_{113} - z_{114} = 0
                      x_{21} - y_{21} - z_{212} - z_{213} - z_{214} = 0
                      x_{11} + x_{21} \le 2000
                      y_{11} \le 1000
                      y_{21} \leq 800
                      z_{112} + x_{12} - y_{12} - z_{123} - z_{124} = 0
                      z_{112} - y_{12} \le 0
                      z_{212} + x_{22} - y_{22} - z_{223} - z_{224} = 0
                      z_{212} - y_{22} \le 0
                      z_{112} + z_{113} + z_{114} + z_{212} + z_{213} + z_{214} + x_{12} + x_{22} \le 2000
                      y_{12} \le 1400
                      y_{22} \le 1200
                      z_{113} + z_{123} + x_{13} - y_{13} - z_{134} = 0
                      z_{113} + z_{123} - y_{13} \le 0
                      z_{213} + z_{223} + x_{23} - y_{23} - z_{234} = 0
                      z_{213} + z_{223} - y_{23} \le 0
                      z_{113} + z_{114} + z_{123} + z_{124} + z_{213} + z_{214} + z_{223} + z_{224} + x_{13} + x_{23} \le 2000
                      y_{13} \le 2000
                      y_{23} \le 1500
                      z_{114} + z_{124} + z_{134} + x_{14} - y_{14} = 0
                      z_{214} + z_{224} + z_{234} + x_{24} - y_{24} = 0
                      z_{114} + z_{124} + z_{134} + z_{214} + z_{224} + z_{234} + x_{14} + x_{24} \le 2000
                      y_{14} \le 1600
                      y_{24} \le 100
                      x_{ij} \ge 0, y_{ij} \ge 0, z_{ijk} \ge 0, \text{ for all } i, j, k.
```

(b)



## 23.6-1.

(a) maximize 
$$20x_1 + 30x_2 + 25x_3$$
  
subject to  $3x_1 + 2x_2 + x_3 \le 29$   
 $2x_1 + 4x_2 + 2x_3 \le 48$   
 $x_1 + 3x_2 + 5x_3 \le 57$   
 $x_1, x_2, x_3 \ge 0$ 

(b) Let  $x_{21}$ ,  $x_{22}$ ,  $x_{23}$  be the values of  $x_2$  when 29, 30, 31 are observed respectively for  $b_1$  and  $x_{31}$ ,  $x_{32}$ , ...,  $x_{39}$  be the values of  $x_3$  when the values for  $(b_1, b_2)$  are (29, 48), (29, 50), (29, 52), (30, 48), (30, 50), (30, 52), (31, 48), (31, 50), (31, 52) respectively.

$$\begin{array}{ll} \text{maximize} & 20x_1 & + \left(\frac{1}{4}\right) \left\{30x_{21} + 25\left[\left(\frac{1}{4}\right)x_{31} + \left(\frac{1}{2}\right)x_{32} + \left(\frac{1}{4}\right)x_{33}\right]\right\} \\ & + \left(\frac{1}{2}\right) \left\{30x_{22} + 25\left[\left(\frac{1}{4}\right)x_{34} + \left(\frac{1}{2}\right)x_{38} + \left(\frac{1}{4}\right)x_{36}\right]\right\} \\ & + \left(\frac{1}{4}\right) \left\{30x_{23} + 25\left[\left(\frac{1}{4}\right)x_{37} + \left(\frac{1}{2}\right)x_{38} + \left(\frac{1}{4}\right)x_{39}\right]\right\} \\ \text{subject to} & 3x_1 + 2x_{21} + x_{31} \leq 29 \\ & 3x_1 + 2x_{21} + x_{33} \leq 29 \\ & 3x_1 + 2x_{21} + x_{33} \leq 29 \\ & 3x_1 + 2x_{22} + x_{34} \leq 30 \\ & 3x_1 + 2x_{22} + x_{35} \leq 30 \\ & 3x_1 + 2x_{22} + x_{35} \leq 31 \\ & 3x_1 + 2x_{23} + x_{39} \leq 31 \\ & 2x_1 + 4x_{21} + 2x_{31} \leq 48 \\ & 2x_1 + 4x_{21} + 2x_{31} \leq 48 \\ & 2x_1 + 4x_{21} + 2x_{33} \leq 52 \\ & 2x_1 + 4x_{22} + 2x_{34} \leq 48 \\ & 2x_1 + 4x_{22} + 2x_{35} \leq 50 \\ & 2x_1 + 4x_{22} + 2x_{35} \leq 50 \\ & 2x_1 + 4x_{22} + 2x_{35} \leq 50 \\ & 2x_1 + 4x_{22} + 2x_{35} \leq 50 \\ & 2x_1 + 4x_{23} + 2x_{37} \leq 48 \\ & 2x_1 + 4x_{23} + 2x_{37} \leq 48 \\ & 2x_1 + 4x_{23} + 2x_{35} \leq 57 \\ & 2x_1 + 3x_{21} + 5x_{32} \leq 57 \\ & x_1 + 3x_{21} + 5x_{33} \leq 57 \\ & x_1 + 3x_{21} + 5x_{33} \leq 57 \\ & x_1 + 3x_{22} + 5x_{35} \leq 57 \\ & x_1 + 3x_{22} + 5x_{35} \leq 57 \\ & x_1 + 3x_{22} + 5x_{36} \leq 57 \\ & x_1 + 3x_{23} + 5x_{37} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{36} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} + 5x_{35} \leq 57 \\ & x_1 + 3x_{23} +$$

23.7-1.

(a) 
$$P\left\{7 + \frac{44}{3} + \frac{19}{3} \le b_1\right\} = P\{-2 \le z\} = 0.9772$$
  
 $P\left\{\frac{14}{3} + \frac{88}{3} + \frac{38}{3} \le b_2\right\} = P\{-5/3 \le z\} = 0.9515$   
 $P\left\{\frac{7}{3} + 22 + \frac{95}{3} \le b_3\right\} = P\{-4/3 \le z\} = 0.9082$ 

P{all constraints are satisfied} =  $0.9772 \times 0.9515 \times 0.9082 = 0.8450$ 

The solution is feasible.

(b) maximize 
$$20x_1 + 30x_2 + 25x_3$$
  
subject to  $3x_1 + 2x_2 + x_3 \le 28.04$   
 $2x_1 + 4x_2 + 2x_3 \le 46.71$   
 $x_1 + 3x_2 + 5x_3 \le 56.16$   
 $x_1, x_2, x_3 \ge 0$ 

(c) maximize 
$$20y_1 - 30y_2 - 25y_3$$
 subject to 
$$3y_1 - 2y_2 - y_3 \le -26.96$$
 
$$2y_1 - 4y_2 - 2y_3 \le -63.29$$
 
$$y_1 - 3y_2 - 5y_3 \le -90.15$$
 
$$y_1, y_2, y_3 \ge 0$$

$$\mu_{1} = 30 - 2\left[\left(\frac{1}{4}\right)30\right] - 1\left[\left(\frac{1}{2}\right)30 + \left(\frac{1}{2}\right)50\right] = -25$$

$$\mu_{2} = 50 - 4\left[\left(\frac{1}{4}\right)30\right] - 2\left[\left(\frac{1}{2}\right)30 + \left(\frac{1}{2}\right)50\right] = -60$$

$$\mu_{3} = 60 - 3\left[\left(\frac{1}{4}\right)30\right] - 5\left[\left(\frac{1}{2}\right)30 + \left(\frac{1}{2}\right)50\right] = -\frac{330}{4}$$

$$\sigma_{1}^{2} = \left(\frac{1}{2}\right)^{2} \cdot 4 + \left(1 - \frac{1}{2} - \frac{1}{2}\right)^{2} \cdot 1 = 1$$

$$\sigma_{2}^{2} = \left[4\left(\frac{1}{4}\right) + 2\left(\frac{1}{2}\right)\right]^{2} \cdot 1 + \left[1 - 2\left(\frac{1}{2}\right)\right]^{2} \cdot 4 = 4$$

$$\sigma_{3}^{2} = \left[3\left(\frac{1}{4}\right) + 5\left(\frac{1}{2}\right)\right]^{2} \cdot 1 + \left[5\left(\frac{1}{2}\right)\right]^{2} \cdot 4 = \frac{569}{16}$$

23.7-2.

(a)  $b_i - \sum_{j=1}^n a_{ij} x_j$  has a normal distribution with mean  $\mathrm{E}(b_i) - \sum_{j=1}^n x_j \mathrm{E}(a_{ij})$  and variance  $\sigma^2(b_i) + \sum_{j=1}^n x_j^2 \sigma^2(a_{ij})$ . Hence,

$$\mathbf{P}\Big\{0 \leq b_i - \sum_{j=1}^n a_{ij} x_j\Big\} = \mathbf{P}\bigg\{\frac{-\mathbf{E}(b_i) + \sum\limits_{j=1}^n x_j \mathbf{E}(a_{ij})}{\left[\sigma^2(b_i) + \sum\limits_{i=1}^n x_j^2 \sigma^2(a_{ij})\right]^{1/2}} \leq z\bigg\} \geq \alpha_i$$

if and only if

$$-E(b_i) + \sum_{j=1}^n x_j E(a_{ij}) \le K_{\alpha_i} \left[ \sigma^2(b_i) + \sum_{j=1}^n x_j^2 \sigma^2(a_{ij}) \right]^{1/2}.$$

(b)  $b_i - \sum_{j=1}^n a_{ij} x_j = b_i - \sum_{j=1}^n a_{ij} \sum_{k=1}^m b_k d_{jk}$  has a normal distribution with mean  $\mathrm{E}(b_i) - \sum_{j=1}^n a_{ij} \sum_{k=1}^m d_{jk} \mathrm{E}(b_k)$  and variance  $\sigma^2(b_i) + \sum_{j=1}^n a_{ij}^2 \sum_{k=1}^m d_{jk}^2 \sigma^2(b_k)$ . Hence,

$$\mathbf{P}\Big\{0 \le b_i - \sum_{j=1}^n a_{ij} x_j\Big\} = \mathbf{P}\bigg\{\frac{-\mathbf{E}(b_i) + \sum\limits_{j=1}^n a_{ij} \sum\limits_{k=1}^m d_{jk} \mathbf{E}(b_k)}{\left[\sigma^2(b_i) + \sum\limits_{j=1}^n a_{ij}^2 \sum\limits_{k=1}^m d_{jk}^2 \sigma^2(b_k)\right]^{1/2}} \le z\bigg\} \ge \alpha_i$$

if and only if

$$-\mathrm{E}(b_i) + \sum_{j=1}^n a_{ij} \sum_{k=1}^m d_{jk} \mathrm{E}(b_k) \le K_{\alpha_i} \Big[ \sigma^2(b_i) + \sum_{j=1}^n a_{ij}^2 \sum_{k=1}^m d_{jk}^2 \sigma^2(b_k) \Big]^{1/2}.$$

#### **CHAPTER 24: PROBABILITY THEORY**

## 24.1.

(a) The six colored sides: red, white, blue, green, yellow, and violet.

(b) 
$$P{X = 0} = P{X = 1} = P{X = 2} = 1/3$$

(c) 
$$E(Y) = E(X+1)^2 = \sum_{k=0}^{2} (k+1)^2 P\{X=k\} = 4\frac{2}{3}$$

## 24.2.

(a) 
$$P_{X_1}(i) = \begin{cases} P\{w_1 \cup w_2\} = P\{w_1\} + P\{w_2\} = 1/3 + 1/5 = 8/15 & \text{if } i = 1 \\ P\{w_3\} = 3/10 & \text{if } i = 4 \\ P\{w_4\} = 1/6 & \text{if } i = 5 \\ 0 & \text{else} \end{cases}$$

(b) 
$$E(X_1) = 1 \cdot \frac{8}{15} + 4 \cdot \frac{3}{10} + 5 \cdot \frac{1}{6} = 2\frac{17}{30}$$

(c) 
$$P_{X_1+X_2}(i) = \begin{cases} P\{w_1 \cup w_2\} = P\{w_1\} + P\{w_2\} = 1/3 + 1/5 = 8/15 & \text{if } i = 2\\ P\{w_3\} = 3/10 & \text{if } i = 5\\ P\{w_4\} = 1/6 & \text{if } i = 10\\ 0 & \text{else} \end{cases}$$

(d) 
$$E(X_1 + X_2) = 2 \cdot \frac{8}{15} + 5 \cdot \frac{3}{10} + 10 \cdot \frac{1}{6} = 4\frac{7}{30}$$
  
 $E(X_2) = 1 \cdot \left(\frac{1}{3} + \frac{1}{5} + \frac{3}{10}\right) + 5 \cdot \frac{1}{6} = 1\frac{2}{3}$ 

or 
$$E(X_2) = E(X_1 + X_2) - E(X_1)$$

$$\text{(e) } F_{X_1X_2}(b_1,b_2) = \begin{cases} 0 & \text{for } b_1 < 1 \text{ or } b_2 < 1 \\ 8/15 & \text{for } 1 \leq b_1 < 4 \text{ and } 1 \leq b_2 < \infty \\ 5/6 & \text{for } 4 \leq b_1 < 5 \text{ and } 1 \leq b_2 < \infty \\ 5/6 & \text{for } 4 \leq b_1 < \infty \text{ and } 1 \leq b_2 < 5 \\ 1 & \text{for } 5 \leq b_1 \text{ and } 5 \leq b_2 \end{cases}$$

(f)

$$\rho = \frac{E[X_1 - E(X_1)][X_2 - E(X_2)]}{\sqrt{E[X_1 - E(X_1)]^2 E[X_2 - E(X_2)]^2}}$$

Since  $E(X_1)=77/30,\ E(X_1^2)=285/30,\ E(X_2)=50/30,\ E(X_2^2)=150/30$  and  $E(X_1X_2)=177/30,\ \rho\simeq 0.64.$ 

(g) 
$$E(2X_1 - 3X_2) = 2E(X_1) - 3E(X_2) = 2/15$$

## 24.3.

| (a) | (b) | (c)  |
|-----|-----|------|
| GG  | 4   | 1/4  |
| GM  | 3   | 1/6  |
| GB  | 2   | 1/12 |
| MG  | 3   | 1/6  |
| MM  | 2   | 1/9  |
| MB  | 1   | 1/18 |
| BG  | 2   | 1/12 |
| BM  | 1   | 1/18 |
| BB  | 0   | 1/36 |

(d) 
$$X \in \{0, 1, 2, 3, 4\}$$

$$P\{X = 0\} = 1/36,$$

$$P\{X = 1\} = 1/18 + 1/18 = 1/9,$$

$$P\{X = 2\} = 1/12 + 1/9 + 1/12 = 5/18,$$

$$P\{X = 3\} = 1/6 + 1/6 = 1/3,$$

$$P\{X = 4\} = 1/4,$$

$$P\{X = k\} = 0 \text{ for } k \notin \{0, 1, 2, 3, 4\}.$$

(e) 
$$E(X) = 0 \cdot 1/36 + 1 \cdot 1/9 + 2 \cdot 5/18 + 3 \cdot 1/3 + 4 \cdot 1/4 = 2\frac{2}{3}$$

## 24.4.

(a) 
$$1 = \int_0^1 f_X(y) dy = \int_0^\theta \theta dy + \int_\theta^1 K dy = \theta^2 + K - K\theta$$
, so  $K = \frac{(1-\theta)^2}{(1-\theta)} = 1 + \theta$ 

(b) 
$$F_X(b) = \begin{cases} 0 & \text{if } b < 0 \\ \int_0^b \theta dy = \theta b & \text{if } 0 \le b < \theta \\ \theta^2 + \int_\theta^b (1+\theta) dy = \theta^2 + (1+\theta)b - (1+\theta)\theta = b + \theta b - \theta & \text{if } \theta \le b < 1 \\ 1 & \text{if } 1 \le b \end{cases}$$

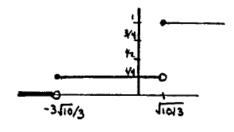
(c) 
$$E(X) = \int_0^\theta y \theta dy + \int_\theta^1 y (1+\theta) dy = (1+\theta-\theta^2)/2$$

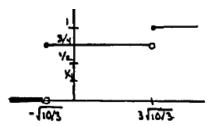
(d) No, a counterexample is obtained by choosing  $0 \le a \le \theta = 1/3$ . In that case,

$$P\{X - 1/3 < a\} = P\{X < a + 1/3\} = F_X(a + 1/3)$$

$$= (a + 1/3) + (1/3)(a + 1/3) - 1/3 = (4/3)a + 1/9$$

$$P\{-(X - 1/3) < a\} = P\{X > -a + 1/3\} = 1 - F_X(-a + 1/3)$$


$$= 1 - (1/3)(-a + 1/3) = (1/3)a + 8/9,$$


so the equality does not hold.

24.5.

(a) 
$$E(X) = \frac{1}{4}x_1 + \frac{3}{4}x_2 = 0 \implies x_1 = -3x_2$$
$$\operatorname{var}(X) = E(X^2) - [E(X)]^2 = E(X^2) = \frac{1}{4}x_1^2 + \frac{3}{4}x_2^2 = 10$$
$$\Rightarrow \frac{1}{4}(-3x_2)^2 + \frac{3}{4}x_2^2 = 3x_2^2 = 10 \implies \begin{cases} x_1 = -3\sqrt{10/3} \text{ and } x_2 = \sqrt{10/3} \\ x_1 = 3\sqrt{10/3} \text{ and } x_2 = -\sqrt{10/3} \end{cases}$$

(b) Depending on  $x_1$  and  $x_2$ , the CDF can be represented as either one of the following two graphs





24.6.

(a) 
$$P\{X \ge 250\} = 1 - P\{X < 250\} = 1 - \int_0^{250} f_X(y) dy = 1 - \int_{100}^{250} \frac{100}{y^2} dy$$
  
=  $1 - \left(-\frac{100}{y}\right)_{100}^{250} = 1 + 2/5 - 1 = 2/5$ 

(b) 
$$E(X) = \int_0^\infty y f_X(y) dy = \int_{100}^\infty \frac{100}{y} dy = 100 (\ln \infty - \ln 100) = \infty$$

24.7.

(a) 
$$\begin{cases} P\{-1 < X < 2\} = P\{X = 0\} + P\{X = 1\} = 0.4 \\ P\{X = 0\} = 0.3 \\ P\{|X| \le 1\} = P\{X = -1\} + P\{X = 0\} + P\{X = 1\} = 0.6 \\ P\{X \ge 2\} = P\{X = 2\} = P\{X = -1\} + P\{X = 1\} \\ P\{X = -2\} + P\{X = -1\} + P\{X = 0\} + P\{X = 1\} + P\{X = 2\} = 1 \end{cases}$$

Solving this system of equations gives:  $\begin{vmatrix} k & -2 & -1 & 0 & 1 & 2 \\ P\{X=k\} & 0.1 & 0.2 & 0.3 & 0.1 & 0.3 \end{vmatrix}$ 

(b)

(c) 
$$E(X) = 0.1 \cdot (-2) + 0.2 \cdot (-1) + 0.3 \cdot (0) + 0.1 \cdot (1) + 0.3 \cdot (2) = 0.3$$

24.8.

(a) 
$$\int_{-1}^{1} K(1-y^2) dy = K\left(y - \frac{y^3}{3}\right)_{-1}^{1} = \frac{4K}{3} = 1 \implies K = \frac{3}{4}$$

(b)

$$F_X(b) = \begin{cases} 0 & \text{if } b < -1\\ \int_{-1}^b K(1 - y^2) dy = \frac{3}{4} \left( y - \frac{y^3}{3} \right)_{-1}^b = \frac{3}{4} (b+1) - \frac{1}{4} (b^3 + 1) & \text{if } -1 \ge b < 1\\ 1 & \text{if } 1 \ge b \end{cases}$$

(c) 
$$E(2X-1)=2E(X)-1=2\Big(\int_{-1}^1 y\frac{3}{4}(1-y^2)dy\Big)-1=\frac{3}{2}\Big(\frac{y^2}{2}-\frac{y^4}{4}\Big)_{-1}^1-1=-1$$

Note that E(X) = 0.

(d) 
$$\operatorname{var}(X) = E(X^2) - [E(X)]^2 = E(X^2) = \int_{-1}^1 y^2 \frac{3}{4} (1 - y^2) dy = 1/5$$

(e) From the Central Limit Theorem,  $\overline{X}$  is approximately normal with mean E(X) and variance var(X), equivalently  $\frac{\overline{X} - E(X)}{\sqrt{\text{var}(X)/n}} \sim \text{N}(0,1)$  and hence

$$P\{\overline{X}>0\} = P\bigg\{\frac{\overline{X} - E(X)}{\sqrt{\text{var}(X)/n}} > \frac{-E(X)}{\sqrt{\text{var}(X)/n}}\bigg\} = P\{\text{N}(0,1)>0\} = 0.5$$

24.9.

(a) 
$$1 = \int_0^{1000} \frac{a}{1000} \left( 1 - \frac{y}{1000} \right) dy = \frac{a}{1000} \left( y - \frac{y^2}{2000} \right)_0^{1000} = \frac{a}{2} \implies a = 2$$

(b) 
$$E(X) = \int_0^{1000} y \frac{2}{1000} \left( 1 - \frac{y}{1000} \right) dy = \frac{1}{500} \left( \frac{y^2}{2} - \frac{y^3}{3000} \right)_0^{1000} = 333\frac{1}{3}$$

(c) 
$$F_X(b) = \begin{cases} 0 & \text{if } b < 0 \\ \int_0^b \frac{2}{1000} \left(1 - \frac{y}{1000}\right) dy = \frac{1}{500} \left(y - \frac{y^2}{2000}\right)_0^b = \frac{b}{500} - \frac{b^2}{10^6} & \text{if } 0 \le b < 1000 \\ 1 & \text{if } 1000 \le b \end{cases}$$

(d) 
$$F_Z(b) = F_X(b/3) = \begin{cases} 0 & \text{if } b < 0 \\ \frac{b}{1500} - \frac{b^2}{9 \cdot 10^6} & \text{if } 0 \le b < 3000 \\ 1 & \text{if } 3000 \le b \end{cases}$$

24.10.

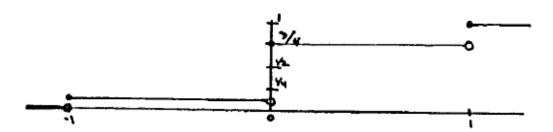
(a) 
$$P\{X \ge 25\} = 1 - P\{X \le 24\} = 1 - 0.473 = 0.527$$
  
 $P\{X = 20\} = P\{X \le 20\} - P\{X \le 19\} = 0.185 - 0.134 = 0.051$ 

(b) 
$$P\{\text{shortage}\} = P\{X > 35\} = 1 - P\{X \le 35\} = 1 - 0.978 = 0.022$$

#### 24.11.

(a) 
$$E(X) = \sum_{n=1}^{\infty} 2^n (1/2)^n = \sum_{n=1}^{\infty} 1 = \infty$$

Hence, player B should pay  $\infty$  to player A so that the game is fair. Otherwise, the game can never be made fair.


(b) Since the mean is infinite and  $E(X^2) \ge [E(X)]^2 = \infty$ , the variance is  $\infty - \infty$ , so not well-defined.

(c) 
$$P\{X \le 8\} = P\{X = 2\} + P\{X = 4\} + P\{X = 8\} = 1/2 + 1/4 + 1/8 = 7/8$$
  
**24.12.**

(a) 
$$1 = P\{D = -1\} + P\{D = 0\} + P\{D = 1\} = 1/8 + 5/8 + c/8 = 6/8 + c/8$$
  
Solving this equation for  $c$  gives  $c = 2$ .

(b) 
$$E(e^{D^2}) = \frac{1}{8} \cdot e + \frac{5}{8} \cdot 1 + \frac{2}{8} \cdot e = \frac{1}{8}(5+3e)$$

(c)



## 24.13.

(a) Let 
$$X_i$$
 denote the volume of bottle  $i$  for  $i=1,2,3$  and  $Z=X_1+X_2+X_3$ .  
 $E(Z)=E(X_1)+E(X_2)+E(X_3)=3\cdot 15=45$ 

$$\text{var}(Z)=\text{var}(X_1)+\text{var}(X_2)+\text{var}(X_3)=3\cdot (0.08)^2=0.0192$$

$$\sigma_Z=\sqrt{\text{var}(Z)}=0.139$$

(b) 
$$Z \sim N(45, 0.0192)$$
 
$$P\{Z \ge 45.2\} = P\left\{\frac{Z-45}{0.139} \ge \frac{45.2-45}{0.139}\right\} = P\{N(0, 1) \ge 1.44\} = 0.075$$

## 24.14.

(a) 
$$F_X(b) = \begin{cases} 0 & \text{if } b < 0 \\ \int_0^b 6y(1-y)dy = 6\left(\frac{y^2}{2} - \frac{y^3}{3}\right)_0^b = 3b^2 - 2b^3 & \text{if } 0 \le b < 1 \\ 1 & \text{if } 1 \le b \end{cases}$$

(b) 
$$E(X) = \int_0^1 y 6y (1 - y) dy = 6 \left(\frac{y^3}{3} - \frac{y^4}{4}\right)_0^1 = 0.5$$
$$\operatorname{var}(X) = E(X^2) - [E(X)]^2 = \int_0^1 y^2 6y (1 - y) dy - 0.25$$
$$= 6 \left(\frac{y^4}{4} - \frac{y^5}{5}\right)_0^1 - 0.25 = 0.05$$

(c) 
$$P\{X > 0.5\} = 1 - P\{X \le 0.5\} = 1 - (3 \cdot 0.5^2 - 2 \cdot 0.5^3) = 0.5$$

(d) 
$$E\left(\frac{X_1+X_2+X_3+X_4+X_5+X_6}{6}\right) = \frac{1}{6} \cdot 6 \cdot E(X_1) = 0.5$$

(e) 
$$\operatorname{var}\left(\frac{X_1 + X_2 + X_3 + X_4 + X_5 + X_6}{6}\right) = \frac{1}{36} \cdot 6 \cdot \operatorname{var}(X_1) = 1/120$$

## 24.15.

(a) Let  $X_1$  and  $X_2$  be the voltage of battery 1 and 2 respectively, and  $Z = X_1 + X_2$ . Since

$$\begin{split} X_1 \sim \mathrm{N}\Big(1\tfrac{1}{2}, 0.0625) \text{ and } X_2 \sim \mathrm{N}\Big(1\tfrac{1}{2}, 0.0625), Z \sim \mathrm{N}(3, 0.125). \\ P\{\text{failure}\} &= P\{Z < 2.75\} + P\{Z > 3.25\} = 2 \cdot P\{Z > 3.25\} \\ &= 2 \cdot P\Big\{\mathrm{N}(0, 1) > \tfrac{3.25 - 3}{\sqrt{0.125}}\Big\} = 2 \cdot P\{\mathrm{N}(0, 1) > 0.707\} = 0.48 \end{split}$$

The second equality is a result of the symmetry of normal distribution.

(b) Chebyshev's Inequality states  $P\{|X-\mu| \geq K\sigma\} \leq 1/K^2$ . Hence, the probability  $P\{Z < 2.75\} + P\{Z > 3.25\} = P\{|X-\mu| \geq 0.25\} \leq 1/(0.25/\sigma)^2$  and since  $\sigma \simeq 0.354$ , the upper bound is  $1/(0.706)^2$ . This value exceeds 1, so it is not a useful bound on the probability.

#### 24.16.

$$P\left\{1000 \cdot \frac{1}{5000} \cdot |\overline{X} - \mu| \le 15\right\} = 0.90 \Leftrightarrow P\{|\overline{X} - \mu| \le 75\} = 0.90$$

$$\Leftrightarrow P\{|\overline{X} - \mu| > 75\} = 0.10 \Leftrightarrow P\{\overline{X} - \mu > 75\} = 0.05$$

$$\Leftrightarrow P\left\{\frac{|\overline{X} - \mu|}{\sigma_{\overline{X}}} > \frac{75}{\sigma_{\overline{X}}}\right\} = 0.05 \Leftrightarrow P\left\{N(0, 1) > \frac{75}{\sigma_{\overline{X}}}\right\} = 0.05$$

$$\Leftrightarrow \frac{75}{\sigma_{\overline{X}}} = 1.645 \Leftrightarrow \sigma_{\overline{X}} = 45.6 \text{ or } \sigma_{\overline{X}}^2 \simeq 2079$$

Since  $\sigma_{\overline{X}}^2 = \sigma_X^2/n$ ,  $2079 = 40000/n \implies n = 19.24$ . Hence, choosing  $n \ge 20$  is sufficient.

### 24.17.

(a) 
$$f_{X_1}(s) = \int_{-\infty}^{\infty} f_{X_1,X_2}(s,t) dt$$

Let 
$$\mu = \frac{s-\mu_{X_1}}{\sigma_{X_1}}$$
 and  $\nu = \frac{t-\mu_{X_2}}{\sigma_{X_2}}$  so that  $dt = \sigma_{X_2} dv$ .

$$\begin{split} f_{X_1}(s) &= \frac{1}{2\pi\sigma_{X_1}\sqrt{1-\rho^2}} \int_{-\infty}^{\infty} \exp\Bigl\{\Bigl(\frac{-1}{2(1-\rho^2)}\Bigr) (\mu^2 - 2\rho\mu\nu + \nu^2)\Bigr\} dv \\ &= \frac{1}{2\pi\sigma_{X_1}\sqrt{1-\rho^2}} \int_{-\infty}^{\infty} \exp\Bigl\{\Bigl(\frac{-1}{2(1-\rho^2)}\Bigr) (\nu^2 - 2\rho\mu\nu + \rho^2\mu^2 - \rho^2\mu^2 + \mu^2)\Bigr\} dv \end{split}$$

Now let  $z = \frac{\nu - \rho \mu}{\sqrt{1 - \rho^2}}$  so that  $dv = \sqrt{1 - \rho^2} dz$ .

$$f_{X_1}(s) = \frac{\exp(-\mu^2/2)}{2\pi\sigma_{X_1}} \int_{-\infty}^{\infty} \exp(-z^2/2) dz = \frac{\exp(-\mu^2/2)}{2\pi\sigma_{X_1}} \cdot \sqrt{2\pi} = \frac{1}{\sqrt{2\pi}\sigma_{X_1}} \exp\left[-\frac{1}{2}\left(\frac{s-\mu_{X_1}}{\sigma_{X_1}}\right)^2\right]$$

Hence,  $X_1 \sim N(\mu_{X_1}, \sigma_{X_1}^2)$  and the same analysis leads to the conclusion  $X_2 \sim N(\mu_{X_2}, \sigma_{X_2}^2)$ .

(b) 
$$\operatorname{Corr}(X_1, X_2) = \frac{E[X_1 - E(X_1)][X_2 - E(X_2)]}{\sigma_{X_1} \sigma_{X_2}}$$
  

$$= \frac{1}{\sigma_{X_1} \sigma_{X_2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (s - \mu_{X_1})(t - \mu_{X_2}) f_{X_1, X_2}(s, t) ds dt$$

Let 
$$\mu = \frac{s - \mu_{X_1}}{\sigma_{X_1}}$$
 and  $\nu = \frac{t - \mu_{X_2}}{\sigma_{X_2}}$ .

$$\operatorname{Corr}(X_{1}, X_{2}) = \frac{1}{2\pi\sqrt{1-\rho^{2}}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mu \nu \exp\left\{\left(\frac{-1}{2(1-\rho^{2})}\right) (\mu^{2} - 2\rho\mu\nu + \nu^{2})\right\} d\mu d\nu \\
= \frac{1}{2\pi\sqrt{1-\rho^{2}}} \int_{-\infty}^{\infty} d\mu \ \mu e^{-\mu^{2}/2} \int_{-\infty}^{\infty} d\nu \ \nu \exp\left\{\left(\frac{-1}{2(1-\rho^{2})}\right) (\nu - \rho\mu)^{2}\right\}$$

Now let  $z = \frac{\nu - \rho \mu}{\sqrt{1 - \rho^2}}$ .

$$Corr(X_1, X_2) = \frac{1}{2\pi\sqrt{1-\rho^2}} \int_{-\infty}^{\infty} d\mu \ \mu e^{-\mu^2/2} [0 + \rho\mu\sqrt{1-\rho^2}\sqrt{2\pi}]$$
$$= \frac{\rho}{\sqrt{2\pi}} \int_{-\infty}^{\infty} d\mu \ \mu e^{-\mu^2/2} = \rho$$

(c) See part (a).

(d) Let 
$$\mu = \frac{x_1 - \mu_{X_1}}{\sigma_{X_1}}$$
 and  $\nu = \frac{x_2 - \mu_{X_2}}{\sigma_{X_2}}$ .

$$\begin{split} f_{X_1|X_2}(x_1|x_2) &= \frac{f_{X_1,X_2}(x_1,x_2)}{f_{X_2}(x_2)} = \frac{\left(\frac{1}{2\pi\sigma_{X_1}\sigma_{X_2}\sqrt{1-\rho^2}}\right) \exp\left\{\left(\frac{-1}{2(1-\rho^2)}\right)(\mu^2 - 2\rho\mu\nu + \nu^2)\right\}}{\left(\frac{1}{\sqrt{2\pi}\sigma_{X_2}}\right)e^{-\nu^2/2}} \\ &= \frac{1}{\sqrt{2\pi}\sigma_{X_1}\sqrt{1-\rho^2}} \exp\left\{\left(-\frac{1}{2}\right)\left[\frac{x_2 - \mu_{X_1} - \rho\frac{\sigma_{X_1}}{\sigma_{X_2}}(x_2 - \mu_{X_2})}{\sigma_{X_1}\sqrt{1-\rho^2}}\right]\right\} \end{split}$$

### 24.18.

(a) 
$$1 = \int_{100}^{150} \int_{50}^{100} c ds dt = 2500c \implies c = 1/2500$$

(b)

$$F_{X_1X_2}(b_1,b_2) = \begin{cases} 0 & \text{for } b_1 < 100 \text{ or } b_2 < 50 \\ \int_{100}^{b_1} \int_{50}^{b_2} \frac{1}{2500} ds dt = \frac{1}{2500} (b_1 - 100)(b_2 - 50) & \text{for } 100 \le b_1 < 150 \text{ and } 50 \le b_2 < 100 \\ \int_{100}^{150} \int_{50}^{b_2} \frac{1}{2500} ds dt = \frac{(b_2 - 50)}{50} & \text{for } 150 \le b_1 \text{ and } 50 \le b_2 < 100 \\ \int_{100}^{b_1} \int_{50}^{100} \frac{1}{2500} ds dt = \frac{(b_1 - 100)}{50} & \text{for } 100 \le b_1 < 150 \text{ and } 100 \le b_2 \\ 1 & \text{for } 150 \le b_1 \text{ and } 100 \le b_2 \end{cases}$$

$$F_{X_1}(b_1) = \begin{cases} 0 & \text{for } b_1 < 100 \\ \int_{100}^{b_1} \int_{50}^{100} \frac{1}{2500} ds dt = \frac{(b_1 - 100)}{2500} & \text{for } 100 \le b_1 < 150 \\ 1 & \text{for } 150 \le b_1 \end{cases}$$

$$F_{X_2}(b_2) = \begin{cases} 0 & \text{for } b_2 < 50 \\ \int_{100}^{150} \int_{50}^{b_2} \frac{1}{2500} ds dt = \frac{(b_2 - 50)}{2500} & \text{for } 50 \le b_2 < 100 \\ 1 & \text{for } 100 < b_2 \end{cases}$$

$$F_{X_2}(b_2) = \begin{cases} 0 & \text{for } b_2 < 50\\ \int_{100}^{150} \int_{50}^{b_2} \frac{1}{2500} ds dt = \frac{(b_2 - 50)}{2500} & \text{for } 50 \le b_2 < 100\\ 1 & \text{for } 100 \le b_2 \end{cases}$$

(c) 
$$f_{X_1}(s) = 1/50$$
 for  $100 \le s < 150$ 

$$f_{X_2|X_1=s}(t) = \frac{f_{X_1,X_2}(s,t)}{f_{X_1}(s)} = \frac{1/2500}{1/50} = \frac{1}{50} \text{ for } 100 \le s < 150 \text{ and } f_{X_2|X_1=s}(t) = 0 \text{ else.}$$

## 24.19.

(a) 
$$P_{X_1}(0) = \sum_{k=0}^{2} P_{X_1,X_2}(0,k) = 1/2$$

$$P_{X_1}(1) = 1 - P_{X_1}(0) = 1/2$$

$$P_{X_2}(0) = \sum_{k=0}^{1} P_{X_1,X_2}(k,0) = 1/8$$

$$P_{X_2}(1) = \sum_{k=0}^{1} P_{X_1,X_2}(k,1) = 3/8$$

$$P_{X_2}(2) = 1 - P_{X_2}(0) - P_{X_2}(1) = 1/2$$
(b) 
$$P_{X_1|X_2=1}(0) = \frac{P_{X_1,X_2}(0,1)}{P_{X_2}(1)} = \frac{1/4}{3/8} = \frac{2}{3}$$

$$P_{X_1|X_2=1}(1) = \frac{P_{X_1,X_2}(1,1)}{P_{X_2}(1)} = \frac{1/8}{3/8} = \frac{1}{3}$$

(c) No, consider 
$$P_{X_1|X_2=1}(0) = 2/3 \neq 1/2 = P_{X_1}(0)$$
.

(d) 
$$E(X_1) = 1/2$$
 and  $var(X_1) = 1/4$   
 $E(X_2) = 11/8$  and  $var(X_2) = 31/64$ 

(e) 
$$P_{X_1+X_2}(0) = 1/8$$
  
 $P_{X_1+X_2}(1) = 1/4 + 0 = 1/4$   
 $P_{X_1+X_2}(2) = 1/8 + 1/8 = 1/4$   
 $P_{X_1+X_2}(3) = 3/8$ 

# 24.20.

(a) 
$$P\{F\} = P\{F \cap \Omega\} = P\{F \cap (E_1 \cup E_2 \cup \dots \cup E_m)\} = P\{\bigcup_{i=1}^m (F \cap E_i)\}$$
  
 $= \sum_{i=1}^m P\{F \cap E_i\} \text{ since } P\{E_i \cap E_j\} = 0 \text{ for } i \neq j$   
 $= \sum_{i=1}^m P\{F \mid E_i\} P\{E_i\} \text{ since } P\{F \mid E_i\} = \frac{P\{F \cap E_i\}}{P\{E_i\}}$   
(b)  $P\{E_i \mid F\} = \frac{P\{E_i \cap F\}}{P\{F\}} = \frac{P\{E_i \cap F\}}{\sum_{i=1}^m P\{F \mid E_i\} P\{E_i\}} = \frac{P\{F \mid E_i\} P\{E_i\}}{\sum_{i=1}^m P\{F \mid E_i\} P\{E_i\}}$ 

## **CHAPTER 25: RELIABILITY**

## 25.1-1.

The minimal paths for the system are  $X_1X_2$  and  $X_1X_3$ . Hence,

$$\phi(X_1, X_2, X_3) = \max[X_1 X_2, X_1 X_3] = X_1 \max[X_2, X_3]$$
$$= X_1 [1 - (1 - X_2)(1 - X_3)].$$

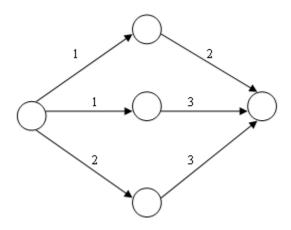
## 25.1-2.

The minimal paths for the system are  $X_1X_2X_3$  and  $X_1X_2X_4$ . Hence,

$$\phi(X_1, X_2, X_3, X_4) = \max[X_1 X_2 X_3, X_1 X_2 X_4] = X_1 X_2 \max[X_3, X_4]$$
$$= X_1 X_2 [1 - (1 - X_3)(1 - X_4)].$$

# 25.2-1.

Note that throughout this chapter we assume that the component reliabilities are independent.

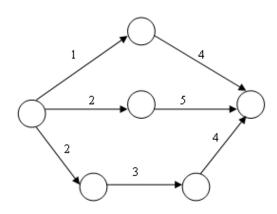

$$R(p_1, p_2, p_3) = E[\phi(X_1, X_2, X_3)] = p_1[1 - (1 - p_2)(1 - p_3)]$$

## 25.2-2.

$$R(p_1, p_2, p_3, p_4) = E[\phi(X_1, X_2, X_3, X_4)] = p_1 p_2 [1 - (1 - p_3)(1 - p_4)]$$

## 25.3-1.

- (a) Yes, k = 2, n = 3.
- (b)



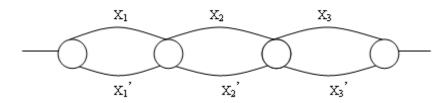

(c) 
$$\phi(X_1, X_2, X_3) = 1 - (1 - X_1 X_2)(1 - X_1 X_3)(1 - X_2 X_3)$$
  
=  $X_1^2 X_2 X_3 + X_1 X_2^2 X_3 + X_1 X_2 X_3^2 - X_1 X_2 - X_1 X_3 - X_1^2 X_2^2 X_3^2$ 

(d) 
$$R(p_1, p_2, p_3) = 1 - (1 - p_1 p_2)(1 - p_1 p_3)(1 - p_2 p_3)$$

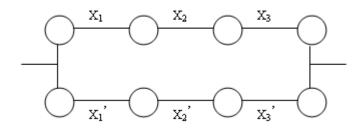
# 25.3-2.

(a)




(b) 
$$\phi(X_1, X_2, X_3, X_4, X_5) = 1 - (1 - X_1 X_4)(1 - X_2 X_5)(1 - X_2 X_3 X_4)$$

(c) 
$$R(t) = 1 - (1 - R_1(t)R_4(t))(1 - R_2(t)R_5(t))(1 - R_2(t)R_3(t)R_4(t))$$


## 25.3-3.

Let  $X_i$  and  $X_i'$  denote the two units of type i = 1, 2, 3. Then, the two systems to be compared can be represented as follows.

## System A



# System B



$$\phi_A(X_1,X_2,X_3,X_1',X_2',X_3') = [\max(X_1,X_1')][\max(X_2,X_2')][\max(X_3,X_3')]$$

$$\phi_B(X_1, X_2, X_3, X_1', X_2', X_3') = \max(X_1 X_2 X_3, X_1' X_2' X_3')$$

$$[\max(X_1,X_1')][\max(X_2,X_2')][\max(X_3,X_3')] \geq X_1X_2X_3$$

$$[\max(X_1, X_1')][\max(X_2, X_2')][\max(X_3, X_3')] \ge X_1' X_2' X_3'$$

Hence,  $\phi_A(X, X') \ge \max(X_1 X_2 X_3, X_1' X_2' X_3') = \phi_B(X, X'')$  and system A is more reliable than system B.

## 25.4-1.

- (a) Minimal paths:  $X_1X_3$  and  $X_2X_4$ Minimal cuts:  $X_1X_2$ ,  $X_1X_4$ ,  $X_2X_3$  and  $X_3X_4$
- (b) From the minimal path representation:

$$\phi(X_1, X_2, X_3, X_4) = \max[X_1 X_3, X_2 X_4] = 1 - (1 - X_1 X_3)(1 - X_2 X_4)$$

$$R(p_1, p_2, p_3, p_4) = 1 - (1 - p_1 p_3)(1 - p_2 p_4).$$

If  $p_i = p = 0.90$  for all i, R(p) = 0.9639.

(c) Upper bound = 
$$1 - (1 - p_1 p_3)(1 - p_2 p_4)$$
  
Lower bound =  $(1 - q_1 q_2)(1 - q_1 q_4)(1 - q_2 q_3)(1 - q_3 q_4)$ 

where  $q_i = 1 - p_i$ . If  $p_i = p = 0.90$  for all i, then the upper bound is 0.9639 and the lower bound is 0.96060.

### 25.4-2.

- (a) Minimal paths:  $X_1X_5$ ,  $X_1X_3X_4$ ,  $X_2X_3X_5$  and  $X_2X_4$ Minimal cuts:  $X_1X_2$ ,  $X_1X_3X_4$ ,  $X_2X_3X_5$  and  $X_4X_5$
- (b)  $R(p_1, p_2, p_3, p_4, p_5)$

$$= P\{(X_1X_5=1) \cup (X_1X_3X_4=1) \cup (X_2X_3X_5=1) \cup (X_2X_4=1)\}$$

$$= P(X_1X_5 = 1) + P(X_1X_3X_4 = 1) + P(X_2X_3X_5 = 1) + P(X_2X_4 = 1)$$

$$-P(X_1X_3X_4X_5=1)-P(X_1X_2X_3X_5=1)-P(X_1X_2X_4X_5=1)$$

$$-P(X_1X_2X_3X_4X_5=1)-P(X_1X_2X_3X_4=1)-P(X_2X_3X_4X_5=1)$$

$$+P(X_1X_2X_3X_4X_5=1)+P(X_1X_2X_3X_4X_5=1)+P(X_1X_2X_3X_4X_5=1)$$

+ 
$$P(X_1X_2X_3X_4X_5 = 1) - P(X_1X_2X_3X_4X_5 = 1)$$

$$= p_1p_5 + p_1p_3p_4 + p_2p_3p_5 + p_2p_4 - p_1p_3p_4p_5 - p_1p_2p_3p_5 - p_1p_2p_4p_5 - p_1p_2p_3p_4$$

$$-p_2p_3p_4p_5+2p_1p_2p_3p_4p_5$$

If  $p_i = p = 0.90$  for all i, R(p) = 0.97848.

(c) Upper bound = 
$$1 - (1 - p_1 p_5)(1 - p_1 p_3 p_4)(1 - p_2 p_3 p_5)(1 - p_2 p_4)$$
  
Lower bound =  $(1 - q_1 q_2)(1 - q_1 q_3 q_4)(1 - q_2 q_3 q_5)(1 - q_4 q_5)$ 

where  $q_i = 1 - p_i$ . If  $p_i = p = 0.90$  for all i, then the upper bound is 0.99735 and the lower bound is 0.97814.

### 25.4-3.

- (a) Minimal paths:  $X_1X_2$  and  $X_2X_3$ Minimal cuts:  $X_1X_3$  and  $X_2$
- (b) From the minimal path representation:

$$\phi(X_1, X_2, X_3) = \max[X_1 X_2, X_2 X_3] = X_2[1 - (1 - X_1)(1 - X_3)]$$

$$R(p_1, p_2, p_3) = p_2[1 - (1 - p_1)(1 - p_3)] = p_1p_2 + p_2p_3 - p_1p_2p_3.$$

If 
$$p_i = p = 0.90$$
 for all  $i$ ,  $R(p) = 0.891$ .

(c) Upper bound =  $1 - (1 - p_1 p_2)(1 - p_2 p_3)$ Lower bound =  $(1 - q_1 q_3)(1 - q_2)$ 

where  $q_i = 1 - p_i$ . If  $p_i = p = 0.90$  for all i, then the upper bound is 0.9639 and the lower bound is 0.891.

## 25.4-4.

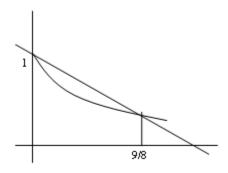
- (a) Minimal paths:  $X_1X_5$ ,  $X_1X_3X_6$ ,  $X_2X_6$  and  $X_2X_4X_5$ Minimal cuts:  $X_1X_2$ ,  $X_1X_4X_6$ ,  $X_2X_3X_5$  and  $X_5X_6$
- (b)  $R(p_1, p_2, p_3, p_4, p_5, p_6)$

$$= P\{(X_1X_5 = 1) \cup (X_1X_3X_6 = 1) \cup (X_2X_6 = 1) \cup (X_2X_4X_5 = 1)\}\$$

$$=p_1p_5+p_1p_3p_6+p_2p_6+p_2p_4p_5-p_1p_3p_5p_6-p_1p_2p_5p_6-p_1p_2p_4p_5-p_1p_2p_3p_6$$

 $-p_2p_4p_5p_6+p_1p_2p_3p_5p_6+p_1p_2p_4p_5p_6$ 

If  $p_i = p$  for all i,  $R(p) = 2p^2 + 2p^3 - 5p^4 + 2p^5$  and if p = 0.9, then R(p) = 0.97848..


(c) Upper bound = 
$$1 - (1 - p_1 p_5)(1 - p_1 p_3 p_6)(1 - p_2 p_6)(1 - p_2 p_4 p_5)$$
  
Lower bound =  $(1 - q_1 q_2)(1 - q_1 q_4 q_6)(1 - q_2 q_3 q_5)(1 - q_5 q_6)$ 

where  $q_i = 1 - p_i$ . If  $p_i = p = 0.90$  for all i, then the upper bound is 0.99735 and the lower bound is 0.97814.

#### 25-5.1.

(a) 
$$R(t) \ge e^{-t/\mu}$$
 for  $t \le \mu \Rightarrow R(1/4) \ge e^{-(1/4)/0.6} \approx 0.659$ , so  $0.659 \le R(1/4) \le 1$ .

(b)  $R(t) \le e^{-wt}$  for  $t > \mu$  where  $1 - \mu w = e^{-wt}$ , so we need to find w such that  $e^{-w} = 1 - 0.6w$ .



Hence,  $w \approx 9/8$  and  $0 \le R(t) \le e^{-9/8} \approx 0.325$ .

## 25-5.2.

$$f(t)=\tfrac{\beta}{\eta}t^{\beta-1}e^{-t^\beta/\eta} \text{ and } R(t)=e^{-t^\beta/\eta} \text{, so } r(t)=\tfrac{f(t)}{R(t)}=\tfrac{\beta}{\eta}t^{\beta-1},$$

which is nondecreasing if  $\beta \geq 1$ , nonincreasing if  $\beta \leq 1$ . Therefore, the Weibull distribution is IFR for  $\beta \geq 1$  and DFR for  $\beta \leq 1$ .

## 25-5.3.

$$R(t) = P\{T_1 > t \text{ and } T_2 > t\} = e^{-\frac{t}{\theta_1}} e^{-\frac{t}{\theta_2}} = e^{-t\left(\frac{1}{\theta_1} + \frac{1}{\theta_2}\right)},$$

so the failure rate of the system is exponentially distributed with parameter  $(1/\theta_1)+(1/\theta_2)$  and as noted in Section 25.5, the exponential distribution is both IFR and DFR.

#### 25.5-4.

Let  $X_i$  denote the failure time of component i and X the failure time of the system. Also let  $\lambda_i = 1/\mu_i$ . Then

$$F(t) = P\{X \le t\} = P\{X_1 \le t, X_2 \le t\} = (1 - e^{-\lambda_1 t})(1 - e^{-\lambda_2 t}),$$

$$r(t) = \frac{f(t)}{1 - F(t)} = \frac{\lambda_1 e^{-\lambda_1 t} + \lambda_2 e^{-\lambda_2 t} - (\lambda_1 + \lambda_2) e^{-(\lambda_1 + \lambda_2)t}}{e^{-\lambda_1 t} + e^{-\lambda_2 t} - e^{-(\lambda_1 + \lambda_2)t}}.$$

Note that r(0) = 0.

$$\begin{split} \frac{dr(t)}{dt} &= \frac{\lambda_1^2 e^{-(\lambda_1 + 2\lambda_2)t} + \lambda_2^2 e^{-(2\lambda_1 + \lambda_2)t} - (\lambda_1 - \lambda_2)^2 e^{-(\lambda_1 + \lambda_2)t}}{[e^{-\lambda_1 t} + e^{-\lambda_2 t} - e^{-(\lambda_1 + \lambda_2)t}]^2} \\ &= \frac{e^{-(\lambda_1 + \lambda_2)t} [\lambda_1^2 e^{-\lambda_2 t} + \lambda_2^2 e^{-\lambda_1 t} - (\lambda_1 - \lambda_2)^2]}{[e^{-\lambda_1 t} + e^{-\lambda_2 t} - e^{-(\lambda_1 + \lambda_2)t}]^2} \end{split}$$

Let  $K(t)=\lambda_1^2e^{-\lambda_2t}+\lambda_2^2e^{-\lambda_1t}-(\lambda_1-\lambda_2)^2$  and note that:

$$K(0)=2\lambda_1\lambda_2>0,$$
  $K(\infty)=-(\lambda_1-\lambda_2)^2<0$ , since  $\lambda_1\neq\lambda_2$  and  $\frac{dK(t)}{dt}=-\lambda_1^2\lambda_2e^{-\lambda_2t}-\lambda_1\lambda_2^2e^{-\lambda_1t}<0.$ 

Hence, K(t) is a strictly decreasing function of t. It is positive at t = 0 and negative as t tends to  $\infty$ . These together with the continuity imply that K(t) = 0 has a unique solution. Now, suppose  $K(t_0) = 0$  for some  $0 < t_0 < \infty$ .

$$K(t) \begin{cases} > 0 & \text{for } t < t_0 \\ = 0 & \text{for } t = t_0 \\ < 0 & \text{for } t > t_0 \end{cases} \qquad \frac{dr(t)}{dt} \begin{cases} > 0 & \text{for } t < t_0 \\ = 0 & \text{for } t = t_0 \\ < 0 & \text{for } t > t_0 \end{cases}$$

Then, r(t) is increasing for  $t \le t_0$  and decreasing for  $t \ge t_0$ . Thus, the system can be IFR if and only if  $t_0 = \infty$ . But since  $K(\infty) = -(\lambda_1 - \lambda_2)^2$ , this can occur if and only if  $\lambda_1 = \lambda_2$ , which contradicts the assumption that  $\mu_1 \ne \mu_2$ .

## 25.5-5.

Each component has an exponential failure time. The exponential distribution is IFR and hence the time to failure distribution of each component is IFRA, so the system of Problem 25.5-4 is composed of two independent IFRA components. The last paragraph of Section 25.5 states the result that the time to failure distribution of the system is IFRA.

# **CHAPTER 26: THE APPLICATION OF QUEUEING THEORY**

## 26.2-1.

|     | Service Costs                                           | Waiting Costs                                   |
|-----|---------------------------------------------------------|-------------------------------------------------|
| (a) | Salaries of checkers, cost of cash registers            | Lost profit from lost business                  |
| (b) | Salaries of firemen, cost of fire trucks                | Cost of destruction due to waiting              |
| (c) | Salaries of toll takers, cost of constructing toll lane | Cost of waiting for commuters                   |
| (d) | Salaries of repairpersons, cost of tools                | Lost profit from lost business                  |
| (e) | Salaries of longshoremen, cost of equipment             | Lost profit from ships not loaded or unloaded   |
| (f) | Salary of an operator as a function of their experience | Lost profit/productivity from unused machines   |
| (g) | Salaries of operators, cost of equipment                | Lost profit/productivity from waiting materials |
| (h) | Salaries of plumbers, cost of tools                     | Lost profit from lost business                  |
| (i) | Salaries of employees, cost of equipment                | Lost profit from lost business                  |
| (j) | Salaries of typists, cost of typewriters                | Lost profit from unfinished jobs                |

## 26.3-1.

$$s=1, \lambda=2, \mu=4 \Rightarrow \rho=0.5 \Rightarrow P_n=0.5^{n+1} \text{ and } f_n(t)=2e^{-2t}$$

The answers in (a) and (b) are based on the following identities.

(i) 
$$\sum_{n=0}^{\infty} nx^n = \frac{x}{(1-x)^2}$$
 if  $|x| < 1$ 

(ii) 
$$\sum_{n=0}^{\infty} n^2 x^n = \frac{2x^2}{(1-x)^3} + \frac{x}{(1-x)^2}$$
 if  $|x| < 1$ 

(iii) 
$$\int_0^b x e^{-\alpha x} dx = \frac{1}{\alpha^2} (1 - e^{-\alpha b} - \alpha b e^{-\alpha b}) \Rightarrow \int_0^\infty x e^{-\alpha x} dx = \frac{1}{\alpha^2}$$

(iv) 
$$\int_0^\infty x^3 e^{-\alpha x} dx = \frac{6}{\alpha^4}$$

(a) 
$$E(WC) = \sum_{n=0}^{\infty} (10n + 2n^2) P_n = 10 \sum_{n=0}^{\infty} n 0.5^{n+1} + 2 \sum_{n=0}^{\infty} n^2 0.5^{n+1}$$

$$= 5 \sum_{n=0}^{\infty} n 0.5^n + \sum_{n=0}^{\infty} n^2 0.5^n = 5 \left( \frac{0.5}{\left( 1 - 0.5 \right)^2} \right) + \left( \frac{2 \cdot 0.5^2}{\left( 1 - 0.5 \right)^3} + \frac{0.5}{\left( 1 - 0.5 \right)^2} \right) = 16$$

(b) 
$$\begin{aligned} \mathsf{E}(\mathsf{WC}) &= \lambda \mathsf{E}[h(\mathcal{W})] = 2 \int_0^\infty (25w + w^3) (2e^{-2w}) dw \\ &= 100 \int_0^\infty w e^{-2w} dw + 4 \int_0^\infty w^3 e^{-2w} dw = 100 \cdot \frac{1}{2^2} + 4 \cdot \frac{6}{2^4} = 26.5 \end{aligned}$$

## 26.3-2.

The answers in (a) and (b) are based on the following identities.

(i) 
$$\sum_{n=0}^{\infty} nx^n = \frac{x}{(1-x)^2}$$
 if  $|x| < 1$ 

(ii) 
$$\sum_{n=0}^{\infty} n^2 x^n = \frac{2x^2}{(1-x)^3} + \frac{x}{(1-x)^2}$$
 if  $|x| < 1$ 

(iii) 
$$\sum_{n=0}^{\infty} n^3 x^n = \frac{6x^3}{(1-x)^4} + \frac{6x^2}{(1-x)^3} + \frac{x}{(1-x)^2} \quad \text{if } |x| < 1$$

(iv) 
$$\int_0^b x e^{-\alpha x} dx = \frac{1}{\alpha^2} (1 - e^{-\alpha b} - \alpha b e^{-\alpha b}) \Rightarrow \int_0^\infty x e^{-\alpha x} dx = \frac{1}{\alpha^2}$$

(v) 
$$\int_{b}^{\infty} x^{2} e^{-\alpha x} dx = \frac{1}{\alpha^{3}} (2 + 2\alpha b + \alpha^{2} b^{2}) e^{-\alpha b}$$

(a) 
$$E(WC) = 10\sum_{n=0}^{2} n0.5^{n+1} + \sum_{n=3}^{5} 6n^20.5^{n+1} + \sum_{n=6}^{\infty} n^30.5^{n+1}$$

$$= 10 \cdot \frac{1}{4} + 20 \cdot \frac{1}{8} + 54 \cdot \frac{1}{16} + 96 \cdot \frac{1}{32} + 150 \cdot \frac{1}{64} + \sum_{n=6}^{\infty} n^30.5^{n+1}$$

$$= 20 + \frac{419}{128} = 23.273$$

(b) 
$$\begin{aligned} \text{E(WC)} &= 2 \int_0^1 w 2e^{-2w} dw + 2 \int_1^\infty w^2 2e^{-2w} dw \\ &= 4 \left[ \frac{1}{2^2} (1 - e^{-2} - 2e^{-2}) \right] + 4 \left[ \frac{1}{2^3} (2 + 4 + 4)e^{-2} \right] \\ &= 1 - 3e^{-2} + 5e^{-2} = 1.271 \end{aligned}$$

## 26.4-1.

$$\lambda = 4, \, \mu = 5, \, C_S = 20$$

$$g(N) = \begin{cases} 0 & \text{for } N = 0\\ 120 & \text{for } N = 1\\ 120 + 180(N - 1) & \text{for } N \ge 2 \end{cases}$$

$$E(WC) = \sum_{n=0}^{\infty} g(n)P_n = 120\sum_{n=1}^{\infty} P_n + 180\sum_{n=2}^{\infty} nP_n - 180\sum_{n=2}^{\infty} P_n$$
$$= 120(1 - P_0) + 180(L - P_1) - 180(1 - P_0 - P_1) = 60P_0 + 180L - 60$$

| s | $\rho = 4/55$ | $P_0$ | L    | E(WC)  | E(SC) | E(TC)  |
|---|---------------|-------|------|--------|-------|--------|
| 1 | 0.8           | 0.20  | 4.0  | 672.00 | 20.0  | 692.00 |
| 2 | 0.4           | 0.43  | 0.95 | 136.80 | 40.0  | 176.80 |
| 3 | 0.267         | 0.45  | 0.82 | 114.60 | 60.0  | 174.60 |
| 4 | 0.2           | 0.44  | 0.80 | 110.40 | 80.0  | 190.40 |

Hence,  $s^* = 3$  and E(TC) = \$174.60 per hour.

## 26.4-2.

(a) Model 2 with s = 1 fixed,  $A = \{30, 40\}, \lambda = 20$ ,

$$f(\mu) = \begin{cases} 4 & \text{for } \mu = 30\\ 12 & \text{for } \mu = 40 \end{cases}$$

We need to choose between a slow server consisting of only the cashier and a fast one consisting of the cashier and a box boy.

(b) 
$$E(WC) = \lambda E[h(W)] = \lambda E[(0.08)W] = \lambda (0.08)W = 0.08L = 0.08 \frac{\lambda}{\mu - \lambda}$$

| $\mu$ | $f(\mu)$ | E(WC) | E(TC) |
|-------|----------|-------|-------|
| 30    | 4        | 0.16  | 4.16  |
| 40    | 12       | 0.08  | 12.08 |

Hence, the status quo should be maintained.

26.4-3.

(a) 
$$L = 1.5 \Rightarrow W = \frac{L}{\lambda} = \frac{1.5}{0.2} = 7.5 \Rightarrow W_q = W - \frac{1}{\mu} = 7.5 - \frac{1}{0.167} = 1.5$$
  
  $\Rightarrow L_q = \lambda W_q = 0.2(1.5) = 0.3$ 

(b)

| Te | mplate f | or M/D/1 | <b>Queueing Model</b> |                  |         |
|----|----------|----------|-----------------------|------------------|---------|
|    |          | D ata    |                       |                  | Results |
|    | λ =      | 0.2      | (mean arrival rate)   | L=               | 1.05    |
|    | μ=       | 0.333333 | (mean service rate)   | L <sub>4</sub> = | 0.45    |
|    | s=       | 1        | (# serv ers)          |                  |         |
|    |          |          |                       | W=               | 5.25    |
|    |          |          |                       | W <sub>q</sub> = | 2.25    |

(c) TC(Alternative 1) = 
$$$70 + ($100)(L) = $220$$
  
TC(Alternative 2) =  $$100 + ($100)(L) = $205$ 

Alternative 2 should be chosen.

## 26.4-4.

(a)

| Tem   | Template for the M/G/1 Queueing Model |                         |                  |         |  |  |  |  |  |
|-------|---------------------------------------|-------------------------|------------------|---------|--|--|--|--|--|
|       | Data                                  |                         |                  | Results |  |  |  |  |  |
| λ:    | = 0.05                                | (mean arrival rate)     | L=               | 3.000   |  |  |  |  |  |
| 1/μ = | = 15                                  | (expected service time) | L <sub>q</sub> = | 2.250   |  |  |  |  |  |
| σ:    | = 15                                  | (standard deviation)    |                  |         |  |  |  |  |  |
| S:    | 1                                     | (# serv ers)            | W =              | 60.000  |  |  |  |  |  |
|       |                                       |                         | W <sub>q</sub> = | 45.000  |  |  |  |  |  |

(b)

| Te | Template for the M/G/1 Queueing Model |          |                         |  |         |         |  |  |  |  |
|----|---------------------------------------|----------|-------------------------|--|---------|---------|--|--|--|--|
|    |                                       | Data     |                         |  |         | Results |  |  |  |  |
|    | λ =                                   | 0.05     | (mean arrival rate)     |  | L=      | 2.963   |  |  |  |  |
|    | 1/μ=                                  | 16       | (expected service time) |  | ᇉ=      | 2.163   |  |  |  |  |
|    | σ=                                    | 9.486833 | (standard deviation)    |  |         |         |  |  |  |  |
|    | s=                                    | 1        | (# serv ers)            |  | W =     | 59.250  |  |  |  |  |
|    |                                       |          |                         |  | $W_q =$ | 43.250  |  |  |  |  |

- (c) The new proposal shows that they will be slightly better off if they switch to the new queueing system.
- (d) TC(Status quo) =  $$40 + (L_q)($20) = $85/hour$  TC(Proposal) =  $$40 + (L_q)($20) = $83/hour$

# 26.4-5.

(a) 
$$L=2 \Rightarrow W=\frac{L}{\lambda}=\frac{2}{0.3}=6.67 \Rightarrow W_q=W-\frac{1}{\mu}=6.67-\frac{1}{0.2}=1.67$$
  $\Rightarrow L_q=\lambda W_q=0.3(1.67)=0.5$ 

(b)

| Te | Template for the M/G/1 Queueing Model |       |                         |         |         |  |  |  |  |
|----|---------------------------------------|-------|-------------------------|---------|---------|--|--|--|--|
|    |                                       | D ata |                         |         | Results |  |  |  |  |
|    | λ =                                   | 0.3   | (mean arrival rate)     | L=      | 5.587   |  |  |  |  |
| 1  | 1/μ=                                  | 3     | (expected service time) |         | 4.687   |  |  |  |  |
|    | σ=                                    | 1.19  | (standard deviation)    |         |         |  |  |  |  |
|    | s =                                   | 1     | (# serv ers)            | W=      | 18.624  |  |  |  |  |
|    |                                       |       |                         | $W_q =$ | 15.624  |  |  |  |  |

(c) TC(Alternative 1) = 
$$$3000 + ($150)(L) = $3,300$$
  
TC(Alternative 2) =  $$2750 + ($150)(L) = $3,589$ 

Alternative 1 should be chosen.

#### 26.4-6.

For the status quo, the system has Poisson arrivals with  $\lambda=15$ , exponential service time with  $\mu=15$ , s=1 and the capacity of the waiting room is K=4. There is a waiting cost of  $6W_q$  for each customer due to loss of good will and also a waiting cost of \$45 per hour when the system is full (i.e., when there are four cars in the system) due to loss of potential customers.

$$\begin{split} & \text{E(TC)} = \text{E(WC)} = \lambda 6W_q + 45P_4 = 6L_q + 45P_4 \\ & \rho = \lambda/\mu = 1 \Rightarrow P_n = \frac{1}{K+1} = \frac{1}{5} \text{ for } n = 0, 1, 2, 3, 4 \\ & L = \sum_{n=1}^K nP_n = \frac{1}{5}(1+2+3+4) = 2 \\ & L_q = L - (1-P_0) = 2 - \frac{4}{5} = \frac{6}{5} \\ & \text{E(TC)} = 6 \cdot \frac{6}{5} + 45 \cdot \frac{1}{5} = \$16.20 \text{ per hour} \end{split}$$

For Proposal 1, the system has Poisson arrivals with  $\lambda = 15$ , exponential service time with  $\mu = 20$  and s = 1. In addition to the waiting cost of  $6L_q$  due to loss of good will, there is an expected waiting cost of \$2 per customer that waits longer than half an hour before his car is ready. The expected value of this additional waiting cost is given by:

$$\begin{split} &2\lambda P\{\mathcal{W}>0.5\}=2\lambda e^{-\mu(1-\rho)/2}=30e^{-2.5}=2.46.\\ &L_q=\frac{\lambda^2}{\mu(\mu-\lambda)}=\frac{225}{20\cdot 5}=2.25\\ &\mathrm{E(TC)}=3+6\cdot 2.25+2.46=\$18.96~\mathrm{per~hour,} \end{split}$$

where \$3 is the capitalized cost of the new equipment.

For Proposal 2, the system has Poisson arrivals with  $\lambda = 15$ , Erlang service time with  $\mu = 30, k = 2$  and s = 1. The only waiting cost is  $6L_q$  due to loss of good will.

$$L_q = \left(\frac{k+1}{2k}\right) \left(\frac{\lambda^2}{\mu(\mu-\lambda)}\right) = \frac{3}{4} \cdot \frac{225}{30 \cdot 15} = 0.375$$

$$E(TC) = 10 + 2.25 = \$12.25 \text{ per hour}$$

Hence, Proposal 2 should be adopted.

# 26.4-7.

(a) The customers are trucks to be loaded or unloaded and the servers are crews. The system currently has one server.

(b)

| Τe | mplate for                 | the M/M  | 1/s Queueing M      | lo del |         |             |
|----|----------------------------|----------|---------------------|--------|---------|-------------|
|    |                            |          |                     |        |         |             |
|    |                            | Data     |                     |        |         | Results     |
|    | λ =                        | 1        | (mean arrival rate) |        | L=      | 0.333333333 |
|    | μ=                         | 4        | (mean service rate) |        | եզ =    | 0.083333333 |
|    | s=                         | 1        | (# serv ers)        |        |         |             |
|    |                            |          |                     |        | W =     | 0.333333333 |
|    | Pr(W > t) =                | 0.049787 |                     |        | $W_q =$ | 0.083333333 |
|    | when t =                   | 1        |                     |        |         |             |
|    |                            |          |                     |        | ρ=      | 0.25        |
|    | Prob(W <sub>q</sub> > t) = | 0.012447 |                     |        |         |             |
|    | when t =                   | 1        |                     |        | n       | Р,          |
|    |                            |          |                     |        | 0       | 0.75        |

(c)

| Template for               | the M/N  | M/s Queueing M      | 1odel |         |             |
|----------------------------|----------|---------------------|-------|---------|-------------|
|                            |          |                     |       |         |             |
| λ =                        | 1        | (mean arrival rate) |       | L=      | 0.5         |
| μ=                         | 3        | (mean service rate) |       | եզ =    | 0.166666667 |
| s=                         | 1        | (# serv ers)        |       |         |             |
|                            |          |                     |       | W =     | 0.5         |
| Pr(W > t) =                | 0.135335 |                     |       | $W_q =$ | 0.166666667 |
| when t =                   | 1        |                     |       |         |             |
|                            |          |                     |       | ρ=      | 0.333333333 |
| Prob(W <sub>q</sub> > t) = | 0.045112 |                     |       |         |             |
| when t =                   | 1        |                     |       | n       | Ρ,          |
|                            |          |                     |       | 0       | 0.666666667 |

(d)

| Template for               | the M/N  | ///s Queueing N     | /lodel |         |         |
|----------------------------|----------|---------------------|--------|---------|---------|
|                            |          |                     |        |         |         |
|                            | Data     |                     |        |         | Results |
| λ =                        | 1        | (mean arrival rate) |        | L=      | 1       |
| μ=                         | 2        | (mean service rate) |        | եզ =    | 0.6     |
| s=                         | 1        | (# serv ers)        |        |         |         |
|                            |          |                     |        | W=      | 1       |
| Pr(W > t) =                | 0.367879 |                     |        | $W_q =$ | 0.6     |
| when t =                   | 1        |                     |        |         |         |
|                            |          |                     |        | ρ=      | 0.6     |
| Prob(W <sub>q</sub> > t) = | 0.18394  |                     |        |         |         |
| when t =                   | 1        |                     |        | n       | Ρ,      |
|                            |          |                     |        | 0       | 0.6     |

(e) A one person team should not be considered since that would lead to a utilization factor of  $\rho=1$ , which is not permitted in this model.

(f) - (g) 
$$\begin{aligned} &\text{TC}(m) = (\$20)(m) + (\$30)(L_q) \\ &\text{TC}(4) = (\$20)(4) + (\$30)(0.0833) = \$82.50/\text{hour} \\ &\text{TC}(3) = (\$20)(3) + (\$30)(0.167) = \$65/\text{hour} \\ &\text{TC}(2) = (\$20)(2) + (\$30)(0.5) = \$55/\text{hour} \end{aligned}$$

A crew of 2 people will minimize the expected total cost per hour.

(h)

| s | $\mu_{\rm s} = \sqrt{\rm s}$ | $L = \frac{\lambda}{\mu_s - \lambda}$ | E(WC) = 15L | E(SC) = 10s | E(TC)    |
|---|------------------------------|---------------------------------------|-------------|-------------|----------|
| 1 | 1.000                        | $\infty$                              | $\infty$    | 10          | $\infty$ |
| 2 | 1.414                        | 2.414                                 | 36.21       | 20          | 56.21    |
| 3 | 1.732                        | 1.366                                 | 20.49       | 30          | 50.49    |
| 4 | 2.000                        | 1.000                                 | 15.00       | 40          | 55.00    |
| 5 | 2.236                        | 0.809                                 | 13.75       | 50          | 63.75    |

Since clearly E(SC) > 50.49 for  $s \ge 6$ , it follows that  $s^* = 3$ .

#### 26.4-8.

$$\lambda = 4, \mu = 6n, E(N) = \lambda/(\mu - \lambda) = 4/(6n - 4)$$
  
Hourly cost  $c(n) = 18n + 20E(N) = 18n + \frac{80}{6n - 4}$ 

One can easily check that c(n) is convex in n. When n is restricted to be integer, c(n) attains its minimum at n = 2, so two leaders would minimize the expected hourly cost.

## 26.4-9.

$$\lambda = 3, E(T) = (\mu - 3)^{-1}$$
 Expected cost  $c(\mu) = 5\mu + 60E(T) \cdot \lambda = 5\mu + 180(\mu - 3)^{-1}$  
$$c'(\mu) = 5 - 180(\mu - 3)^{-2}$$

The derivative is zero at  $\mu = 9$  and  $c(\mu)$  is convex in  $\mu$ , so  $c(\mu)$  attains its minimum at  $\mu = 9$ . Equivalently, an hourly wage of \$45 minimizes the expected total cost.

## 26.4-10.

(a) 
$$\lambda = 0.5$$
,  $s = 1$   
Recall:  $\rho = \frac{\lambda}{s\mu}$ ,  $P_0 = 1 - \rho$ ,  $P_n = (1 - \rho)\rho^n$   

$$L = \frac{\lambda}{\mu - \lambda}$$
,  $L_q = \frac{\lambda^2}{\mu(\mu - \lambda)}$ 

$$P(W > t) = e^{-\mu(1 - \rho)t}$$
,  $P(W_q > t) = \rho e^{-\mu(1 - \rho)t}$ 

$$W = \frac{1}{\mu - \lambda}$$
,  $W_q = \frac{\lambda}{\mu(\mu - \lambda)}$ 

$$\underline{\mu = 2}$$
:  $\rho = 0.25$ ,  $P_0 = 0.75$ ,  $P_n = 0.75 \cdot 0.25^n$ 

$$L = 1/3$$
,  $L_q = 0.083$ 

$$P(W > s) = 0.000553$$
,  $P(W_q > s) = 0.000138$ 

$$W = 0.67$$
,  $W_q = 0.17$ 

(b) 
$$TC(mean = 0.5) = 1.60 + 0.8(1/3) = 1.87$$
  
 $TC(mean = 1) = 0.40 + 0.8(1) = 1.20$   
 $TC(mean = 1.5) = 0.20 + 0.8(3) = 2.60$ 

 $W = 6, W_a = 4.5$ 

Hence,  $\mu^* = 1$ .

## 26.4-11.

Given that s = 1, from the optimality of a single server result,

$$\begin{split} \mathbf{E}(\mathbf{TC}) &= C_r \mu + C_w \mathbf{L} = C_r \mu + C_w \left(\frac{\lambda}{\mu - \lambda}\right) \\ \frac{d\mathbf{E}(\mathbf{TC})}{d\mu} &= C_r - C_w \left(\frac{\lambda}{(\mu - \lambda)^2}\right) = 0 \Rightarrow \mu = \lambda + \sqrt{\lambda C_w / C_r} \\ \frac{d^2 \mathbf{E}(\mathbf{TC})}{d\mu^2} &= 2C_w \left(\frac{\lambda}{(\mu - \lambda)^3}\right) > 0 \text{ for all } \mu > \lambda. \end{split}$$

Assuming  $C_w > 0$  and  $C_w \neq 0$ , E(TC) is strictly convex in  $\mu$  and  $\mu = \lambda + \sqrt{\lambda C_w/C_r}$  is the unique minimizer.

## 26.4-12.

$$\begin{split} & \text{E(TC)} = D\mu + \frac{\lambda C}{(\mu - \lambda)^2} \\ & \frac{d \text{E(TC)}}{d\mu} = D - \frac{2\lambda C}{(\mu - \lambda)^3} = 0 \Rightarrow \mu = \lambda + \sqrt[3]{2\lambda C/D} \\ & \frac{d^2 \text{E(TC)}}{d\mu^2} = \frac{6\lambda C}{(\mu - \lambda)^4} > 0 \text{ for all } C > 0, \end{split}$$

so E(TC) is strictly convex in  $\mu$  and  $\mu = \lambda + \sqrt[3]{2\lambda C/D}$  is the unique minimizer.

### 26.4-13.

- (a) The original design would give a smaller expected number of customers in the system because of the pooling effect of multiple servers.
- (b) The original design is an M/M/2 queue where  $\lambda=5$  and  $\mu=6$ . Running ProMod, we find L = 1.1 from Figure 17.7. The alternative design consists of two M/M/1 queues with L =  $2\lambda/(\mu-\lambda)=10$ . This result agrees with the claim in (a).

## 26.4-14.

(a) Part (a) of Problem 17.6-31 is a special case of Model 3, in which s=1 is fixed and the goal is to determine the mean arrival rate  $\lambda$ , or equivalently the number of machines assigned to one operator.

- (b) (i) The resulting system is an M/M/s queue with finite calling population, whose size equals the total number of machines. The associated decision problem fits Model 1, with s being unknown.
- (ii) The resulting system is a collection of independent M/M/1 queues with finite calling populations. The appropriate decision model is a combination of Model 2 and Model 3, since the goal is to determine  $\mu$ , depending on the number of operators assigned, and  $\lambda$ , depending on the number of machines assigned. In this case, s=1 is fixed.
  - (iii) This system does not fit any of the models described in section 26.4.

Each of the proposed alternatives allows resource (operator) sharing to some extent in contrast to the original proposal. Since in the original proposal, the operators would be idle most of the time, it is reasonable to expect that allowing interaction will result in an increase of the production rate obtained with the same number of operators. As a consequence of this, the number of operators needed to achieve a given production rate will decrease. Then, the question is what could prevent this from happening. In alternatives (i) and (iii), the travel time, which is not considered in the preceding argument, may pose a problem. The idle time could turn into travel time rather than service time. Moreover, in alternative (iii), the service rate of a group of n workers can be smaller than n times the individual service rate, since they will not be working together regularly. This is not the case in alternative (ii), where the members of a crew do work together regularly; even then, the service rate of a crew of n operators may be strictly less than n times the individual rate.

**26.4-15.** From Table 17.3:

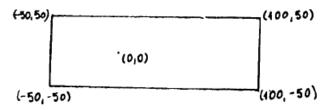
|                                | s = 1 | s=2     |
|--------------------------------|-------|---------|
| $\mathbf{W}_1 - \frac{1}{\mu}$ | 0.024 | 0.00037 |
| $\mathbf{W}_2 - \frac{1}{\mu}$ | 0.154 | 0.00793 |
| $W_3 - \frac{1}{\mu}$          | 1.033 | 0.06542 |

Note that  $\lambda_1 = 0.2$ ,  $\lambda_2 = 0.6$  and  $\lambda_3 = 1.2$ .

| S |          | E(W     | E(SC)  | E(TC)  |       |        |
|---|----------|---------|--------|--------|-------|--------|
|   | critical | serious | stable | total  |       |        |
| 1 | 480.00   | 92.40   | 12.40  | 584.80 | 40.00 | 624.80 |
| 2 | 7.40     | 4.76    | 0.79   | 12.95  | 80.00 | 92.95  |

Hiring two doctors incurs less cost.

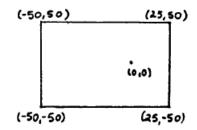
## 26.5-1.


$$a=b=c=d=300$$
 and  $v=3$  miles/hour  $=264$  feet/min

$$E(T) = \frac{1}{264} \Big[ \frac{(300)^2 + (300)^2}{(300 + 300)} + \frac{(300)^2 + (300)^2}{(300 + 300)} \Big] = 2.27 \text{ minutes}$$

## 26.5-2.

$$\mu = 30, s = 1, \lambda_p = 24, C_f = 20, C_s = 15, C_t = 25$$


$$\underline{n=1}$$
:  $\lambda=\lambda_p/n=24$ ,  $a=b=d=50$  and  $c=100$ 



$$2E(T) = \frac{1}{5,000} \left( \frac{50^2 + 100^2}{50 + 100} + \frac{50^2 + 50^2}{50 + 50} \right) = 0.0267 \text{ hours}$$

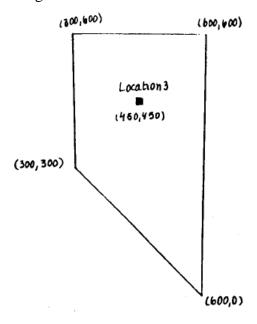
$$L = \frac{\lambda}{\mu - \lambda} = 4$$

 $\underline{n=2}$ :  $\lambda=\lambda_p/n=12$ , a=b=d=50 and c=25 by relabeling symmetric areas:



$$E(T) = \frac{1}{5,000} \left( \frac{50^2 + 25^2}{50 + 25} + \frac{50^2 + 50^2}{50 + 50} \right) = 0.0183 \text{ hours}$$

$$L = \frac{\lambda}{\mu - \lambda} = \frac{2}{3}$$


$$E(TC) = n[(C_f + C_s) + C_tL + \lambda C_tE(T)]$$

| n | λ  | E(T)   | L   | $C_f + C_s$ | $C_t L$ | $\lambda C_t \mathrm{E}(\mathrm{T})$ | E(TC)  |
|---|----|--------|-----|-------------|---------|--------------------------------------|--------|
| 1 | 24 | 0.0267 | 4   | 35          | 100     | 16                                   | 151    |
| 2 | 12 | 0.0183 | 2/3 | 35          | 50/3    | 5.5                                  | 114.33 |

So, there should be two facilities.

## 26.5-3.

The first step is to relabel Location 3 as the origin (0,0) for an (x,y) coordinate system by subtracting 450 from all coordinates shown in the following figure.



The probability density function of X is obtained by using the height of the area assigned to the tool crib at Location 3 for each possible value of X = x and then dividing by the size of the area, as given in figure 1-(a) below. This then yields the uniform distribution of |X| shown in 1-(b).

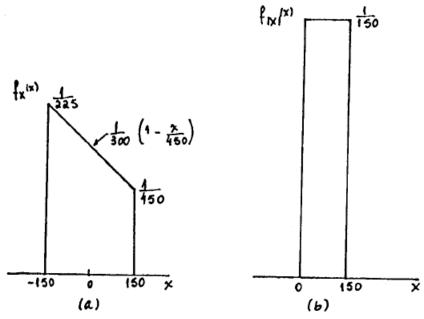
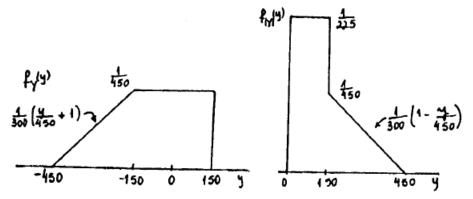


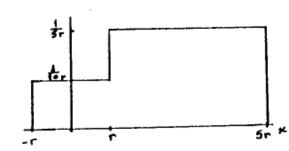

Figure 1 - Probability density functions of (a) X and (b) |X|

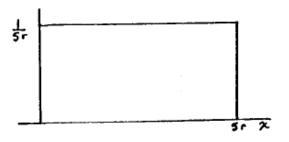
Thus, 
$$E(|X|) = \frac{1}{150} \int_0^{150} x dx = 75.$$

The probability density function of Y is obtained by using the width of the area assigned to tool crib at Location 3 for each possible value of Y = y and then dividing by the size

of the area, as given in figure 2-(a). This then leads to the probability density function of |Y| shown in 2-(b).



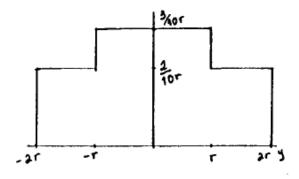


Figure 2 - Probability density functions of (a )  $\boldsymbol{Y}$  and (b)  $|\boldsymbol{Y}|$ 

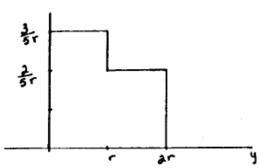

Thus, 
$$\mathrm{E}(|Y|) = \frac{1}{225} \int_0^{150} y dy + \frac{1}{300} \int_{150}^{450} \left(1 - \frac{y}{450}\right) y dy = 133 \frac{1}{3}.$$

$$\mathrm{E(T)} = \frac{2}{v}[\mathrm{E}(|X|) + \mathrm{E}(|Y|)] = \frac{2}{15,000} \Big(75 + 133\frac{1}{3}\Big) = 0.0278~\mathrm{hr}$$

# 26.5-4.

(a) Total area 
$$= (2r)^2 + (4r)^2 = 20r^2$$



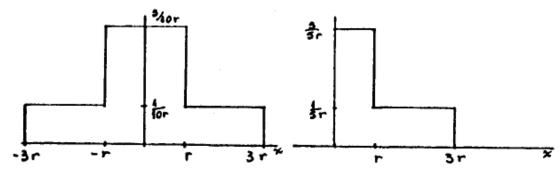

Probability density of X

 $E(|X|) = \int_0^{5r} \frac{1}{5r} x dx = 2.5r$ 

Probability density of  $\left|X\right|$ 






Probability density of Y

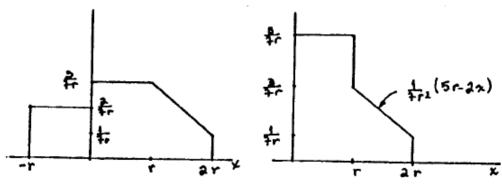
 $E(|Y|) = \int_0^r \frac{3}{5r} y dy + \int_r^{2r} \frac{2}{5r} y dy = 0.9r$ 

$$E(T) = \frac{2}{v}(2.5 + 0.9)r = \frac{6.8r}{v}$$

Probability density of |Y|

(b) The area is symmetric about (0,0), so  $\mathrm{E}(|X|)=\mathrm{E}(|Y|)$  and the total area is  $5(2r)^2=20r^2$ .

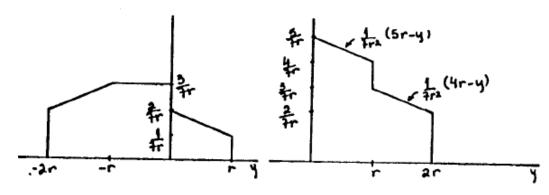



Probability density of X

Probability density of |X|

$$E(|X|) = \int_0^r \frac{3}{5r} x dx + \int_r^{3r} \frac{1}{5r} x dx = 1.1r$$

$$E(T) = \frac{2}{v}(1.1 + 1.1)r = \frac{4.4r}{v}$$


(c) Total area  $= 2(2r^2 + r^2 + 0.5r^2) = 7r^2$ 

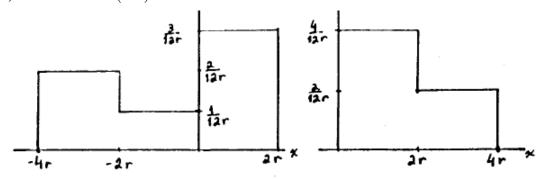


Probability density of X

Probability density of |X|

$$\mathrm{E}(|X|) = \int_0^r rac{5}{7r} x dx + \int_r^{2r} rac{1}{7r^2} (5r - 2x) x dx = rac{16}{21} r$$

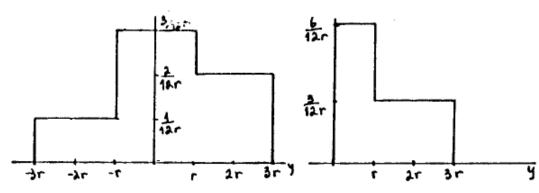



Probability density of Y

Probability density of |Y|

$$E(|Y|) = \frac{1}{7r^2} \left( \int_0^r (5r - y)y dy + \int_r^{2r} (4r - y)y dy = \frac{5}{6}r \right)$$

$$E(T) = \frac{2}{v} \left( \frac{16}{21} + \frac{5}{6} \right) r = \frac{3.19r}{v}$$


(d) Total area  $= 6(4r^2) = 24r^2$ 



Probability density of X

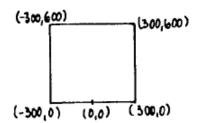
Probability density of |X|

$$\mathrm{E}(|X|) = \int_0^{2r} rac{4}{12r} x dx + \int_{2r}^{4r} rac{2}{12r} x dx = rac{5}{3} r$$



Probability density of Y

Probability density of |Y|


$$E(|Y|) = \int_0^r \frac{6}{12r} y dy + \int_r^{3r} \frac{3}{12r} y dy = \frac{5}{4} r$$

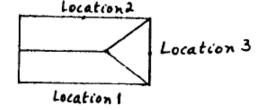
$$E(T) = \frac{2}{v} \left(\frac{5}{3} + \frac{5}{4}\right) r = \frac{5.83r}{v}$$

## 26.5-5.

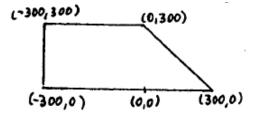
Given  $C_f=10$ ,  $C_m=15$ ,  $C_t=40$ ,  $\lambda_p=90$ , v=20,000 feet/hour, the expected loading time is 1/20 hours. For unloading,  $\mu_m=30m$  where m is the crew size.

$$\underline{n=1}$$
:  $a=c=300, b=0, d=600$ 

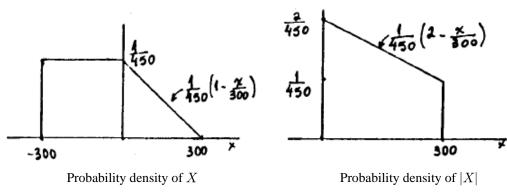



$$E(T) = \frac{1}{20,000} \left[ \frac{(300)^2 + (300)^2}{(300 + 300)} + \frac{(600)^2}{600} \right] = 0.045 \text{ hours}$$

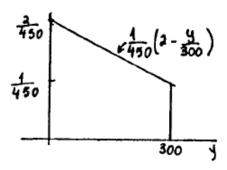
$$L = \frac{\lambda}{\mu_m - \lambda} = \frac{3}{m - 3}$$


$$\underline{n=2}$$
:  $a=c=300$ ,  $b=0$ ,  $d=300$ 

$$\begin{split} & E(T) = \frac{1}{20,000} \left[ \frac{(300)^2 + (300)^2}{(300 + 300)} + \frac{(300)^2}{300} \right] = 0.030 \text{ hours} \\ & L = \frac{\lambda}{\mu_m - \lambda} = \frac{3}{2m - 3} \text{ since } \lambda = \frac{\lambda_p}{n} = 45 \end{split}$$


 $\underline{n=3}$ : The facilities would be located as follows:




Consider Locations 1 and 2, which are symmetric. Each can be labeled as:

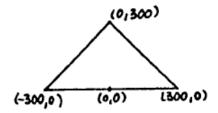


with a total area of 135,000.

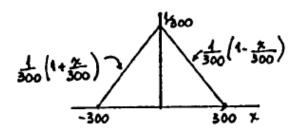


$$\mathrm{E}(|X|) = \int_0^{300} \frac{1}{450} \Big( 2 - \frac{x}{300} \Big) x dx = \frac{400}{3}$$



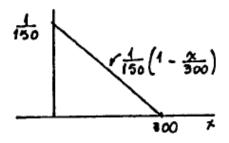

Probability density of Y = |Y|

$$E(|Y|) = E(|X|) = \frac{400}{3}$$

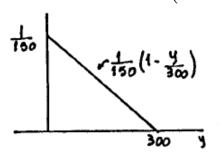

$$E(T) = \frac{2}{20,000} \left( \frac{400}{3} + \frac{400}{3} \right) = \frac{4}{150} = 0.0267$$

$$L = \frac{135/4}{30m - 135/4} = \frac{9}{8m - 9}$$
 since  $\lambda = \frac{135}{4}$ 

Now consider Location 3. The area would be labeled as follows:




with a total area of 90,000.




Probability density of X

$$\mathrm{E}(|X|) = \int_0^{300} \frac{1}{150} \Big( 1 - \frac{x}{300} \Big) x dx = 100$$



Probability density of |X|



Probability density of Y = |Y|

$$E(|Y|) = E(|X|) = 100$$

$$E(T) = \frac{2}{20,000}(100 + 100) = 0.020 \text{ hours}$$

$$L = \frac{45/2}{30m - 45/2} = \frac{3}{4m - 3}$$

 $\underline{n=4}$ : The areas served by the four facilities would be identical to that of Location 3 for n=3, so E(T)=4/200=0.020 hours and L=3/(4m-3).

| n       | E(T) in hours | L                |
|---------|---------------|------------------|
| 1       | 0.045         | $\frac{3}{m-3}$  |
| 2       | 0.030         | $\frac{3}{2m-3}$ |
| 3 L1,L2 | 0.0267        | $\frac{9}{8m-9}$ |
| L3      | 0.020         | $\frac{3}{4m-3}$ |
| 4       | 0.020         | $\frac{3}{4m-3}$ |

where L1, L2, and L3 represent Locations 1, 2 and 3 respectively.

If n = 1,  $E(TC) = (C_f + mC_m) + C_tL + \lambda C_tE(T) + \lambda C_t/20$  where  $\lambda = 90$ .

| m | L    | E(T)  | $C_f + mC_m$ | $C_t L$ | $\lambda C_t \mathbf{E}(\mathbf{T})$ | $\lambda C_t/20$ | E(TC)  |
|---|------|-------|--------------|---------|--------------------------------------|------------------|--------|
| 4 | 3    | 0.045 | 70           | 120     | 162                                  | 180              | 532.00 |
| 5 | 1.5  | 0.045 | 85           | 60      | 162                                  | 180              | 487.00 |
| 6 | 1    | 0.045 | 100          | 40      | 162                                  | 180              | 482.00 |
| 7 | 0.75 | 0.045 | 115          | 30      | 162                                  | 180              | 487.00 |

For n = 1, the minimum cost per hour is \$482 with m = 6.

If n = 2,  $E(TC) = 2[(C_f + mC_m) + C_tL + \lambda C_tE(T) + \lambda C_t/20]$  where  $\lambda = 45$ .

| m | L   | E(T)  | $C_f + mC_m$ | $C_t L$ | $\lambda C_t \mathrm{E}(\mathrm{T})$ | $\lambda C_t/20$ | E(TC)  |
|---|-----|-------|--------------|---------|--------------------------------------|------------------|--------|
| 2 | 3   | 0.030 | 40           | 120     | 54                                   | 90               | 608.00 |
| 3 | 1   | 0.030 | 55           | 40      | 54                                   | 90               | 478.00 |
| 4 | 0.6 | 0.030 | 70           | 24      | 54                                   | 90               | 476.00 |
| 5 | 3/7 | 0.030 | 85           | 17.14   | 54                                   | 90               | 492.29 |

For n=2, the minimum cost per hour is \$476 with m=4.

If n = 3, at Locations 1 and 2 where  $\lambda = 135/4$ :

| m | L    | E(T)   | $C_f + mC_m$ | $C_t L$ | $\lambda C_t \mathrm{E}(\mathrm{T})$ | $\lambda C_t/20$ | E(TC)  |
|---|------|--------|--------------|---------|--------------------------------------|------------------|--------|
| 2 | 9/7  | 0.0267 | 40           | 51.43   | 36                                   | 67.5             | 194.93 |
| 3 | 3/5  | 0.0267 | 55           | 24      | 36                                   | 67.5             | 182.50 |
| 4 | 9/23 | 0.0267 | 70           | 15.65   | 36                                   | 67.5             | 189.15 |

At Location 3 where  $\lambda = 22.5$ :

| m | L   | E(T)  | $C_f + mC_m$ | $C_t L$ | $\lambda C_t \mathrm{E}(\mathrm{T})$ | $\lambda C_t/20$ | E(TC)  |
|---|-----|-------|--------------|---------|--------------------------------------|------------------|--------|
| 1 | 3   | 0.020 | 25           | 120     | 18                                   | 45               | 208.00 |
| 2 | 3/5 | 0.020 | 40           | 24      | 18                                   | 45               | 127.00 |
| 3 | 1/3 | 0.020 | 55           | 13.33   | 18                                   | 45               | 131.33 |

So, for n = 3, the minimum cost per hour is 2(182.50) + 127 = 492 with m = 3 at Locations 1 and 2, and m = 2 at Location 3.

If n=4, since all areas served are symmetric and each one is same as Location 3 of the case with n=3, the minimum cost per hour is 4(127)=508 with m=2.

The following table summarizes these results.

| n | m                      | E(TC) |
|---|------------------------|-------|
| 1 | 6                      | 482   |
| 2 | 4 at both locations    | 476   |
| 3 | 3 at Locations 1 and 2 | 492   |
|   | 2 at Location 3        |       |
| 4 | 2 at all locations     | 508   |

Therefore, the best is to have two facilities with a crew size of 4.

#### **CHAPTER 27: FORECASTING**

#### 27.1-1.

Answers will vary.

#### 27.1-2.

Answers will vary.

#### 27.4-1.

(a)

$$F_6 = x_5 = 39$$

(b)

$$F_6 = \frac{\sum_{t=1}^{5} x_t}{5} = \frac{5+17+29+41+39}{5} = 26$$

(c)

$$F_6 = \frac{\sum\limits_{t=3}^{5} x_t}{3} = \frac{29+41+39}{3} = 36$$

(d) The demand seems to be rising, so the average forecasting method may be inappropriate, since it uses older, out of data.

#### 27.4-2.

(a)

$$F_6 = x_5 = 13$$

(b)

$$F_6 = \frac{\sum_{t=1}^{5} x_t}{5} = \frac{15 + 18 + 12 + 17 + 13}{5} = 15$$

(c)

$$F_6 = \frac{\sum\limits_{t=3}^{5} x_t}{3} = \frac{12+17+13}{3} = 14$$

(d) The averaging method seems to be the best, since all five months of data are relevant in determining the forecast of sales for the next month.

#### 27.4-3.

$$F_{t+1} = \frac{1977 - 1945}{4} + 2083 = 2091$$

### 27.4-4

$$F_{t+1} = \frac{793 - 805}{3} + 782 = 778$$

### 27.4-5.

$$F_{t+1} = \frac{1532 - 1632}{10} + 1551 = 1541$$

#### 27.4-6.

$$F_{t+1} = \alpha x_t + (1 - \alpha)F_t$$

$$F_{t+1}(0.1) = (0.1)(792) + (1 - 0.1)(782) = 783$$

$$F_{t+1}(0.3) = (0.3)(792) + (1 - 0.3)(782) = 785$$

$$F_{t+1}(0.5) = (0.5)(792) + (1 - 0.5)(782) = 787$$

$$27-1$$

#### 27.4-7.

$$F_{t+1} = \alpha x_t + (1 - \alpha)F_t$$

$$F_{t+1}(0.1) = (0.1)(1973) + (1 - 0.1)(2083) = 2072$$

$$F_{t+1}(0.3) = (0.3)(1973) + (1 - 0.3)(2083) = 2050$$

$$F_{t+1}(0.5) = (0.5)(1973) + (1 - 0.5)(2083) = 2028$$

#### 27.4-8.

$$\alpha = 0 \Rightarrow F_{t+1} = F_t = \dots = F_1$$

The forecast remains equal to the best initial guess for the variable and never changes.

$$\alpha = 1 \Rightarrow F_{t+1} = x_t$$

The forecast always equals the current value of the variable.

#### 27.4-9.

(a) 
$$F_{t+1} = \alpha x_t + (1-\alpha)F_t \Rightarrow x_t = \frac{1}{\alpha}[F_{t+1} - (1-\alpha)F_t] = 2F_{t+1} - F_t$$

 $\Rightarrow$  Actual demand in April: 2(390) - 380 = 400

Actual demand in May: 2(380) - 390 = 370

(b) 
$$F_{\text{Feb}} = 0.5x_{\text{Jan}} + 0.5F_{\text{Jan}}$$
  
 $F_{\text{March}} = 0.5x_{\text{Feb}} + 0.5F_{\text{Feb}} = 0.5x_{\text{Feb}} + 0.25x_{\text{Jan}} + 0.25F_{\text{Jan}}$   
 $x'_{\text{Jan}} = x_{\text{Jan}} + 32, x'_{\text{Feb}} = x_{\text{Feb}}, F'_{\text{Jan}} = F_{\text{Jan}}$   
 $\Rightarrow F'_{\text{March}} = F_{\text{March}} + (0.25)(32) = 408$ 

|          | Jan | Feb | March | April | May | June |
|----------|-----|-----|-------|-------|-----|------|
| Forecast |     |     | 408   | 384   | 392 | 381  |
| Actual   | 400 |     | 360   | 400   | 370 |      |

#### 27.5-1.

(a)

| Quarter | Call Volume | Seasonal Factor            |
|---------|-------------|----------------------------|
| 1       | 6809        | $\frac{6809}{7027} = 0.97$ |
| 2       | 6465        | $\frac{6465}{7027} = 0.92$ |
| 3       | 6569        | $\frac{6569}{7027} = 0.93$ |
| 4       | 8266        | $\frac{8266}{7027} = 1.18$ |

(b)

| Quarter | Seasonal Factor | Actual Call Volume | Seasonally Adjusted Call Volume |
|---------|-----------------|--------------------|---------------------------------|
| 1       | 0.97            | 7257               | $\frac{7257}{0.97} = 7481$      |
| 2       | 0.92            | 7064               | $\frac{7064}{0.92} = 7678$      |
| 3       | 0.93            | 7784               | $\frac{7784}{0.93} = 8370$      |
| 4       | 1.18            | 8724               | $\frac{8724}{1.18} = 7393$      |

(c)

| Quarter | Two-year Average | Seasonal Factor            |
|---------|------------------|----------------------------|
| 1       | 7033             | $\frac{7033}{7367} = 0.95$ |
| 2       | 6765             | $\frac{6765}{7367} = 0.92$ |
| 3       | 7177             | $\frac{7177}{7367} = 0.97$ |
| 4       | 8495             | $\frac{8495}{7367} = 1.15$ |

(d)

| Quarter | Seasonal Factor | Actual Call Volume | Seasonally Adjusted Call Volume |
|---------|-----------------|--------------------|---------------------------------|
| 1       | 0.95            | 6992               | $\frac{6992}{0.95} = 7360$      |
| 2       | 0.92            | 6822               | $\frac{6822}{0.92} = 7415$      |
| 3       | 0.97            | 7949               | $\frac{7949}{0.97} = 8195$      |
| 4       | 1.15            | 9650               | $\frac{9650}{1.15} = 8391$      |

## 27.5-2.

(a)

| Quarter | Unemployment Rate | Seasonal Factor              |
|---------|-------------------|------------------------------|
| 1       | 0.062             | $\frac{0.062}{0.063} = 0.98$ |
| 2       | 0.060             | $\frac{0.060}{0.063} = 0.95$ |
| 3       | 0.075             | $\frac{0.075}{0.063} = 1.19$ |
| 4       | 0.055             | $\frac{0.055}{0.063} = 0.87$ |

(b)

| Quarter | Seasonal Factor | Act. Unemploy. Rate | Seasonally Adj. Unemploy. Rate |
|---------|-----------------|---------------------|--------------------------------|
| 1       | 0.98            | 0.078               | $\frac{0.078}{0.98} = 0.080$   |
| 2       | 0.95            | 0.074               | $\frac{0.074}{0.95} = 0.078$   |
| 3       | 1.19            | 0.087               | $\frac{0.087}{1.19} = 0.073$   |
| 4       | 0.87            | 0.061               | $\frac{0.061}{0.87} = 0.070$   |

This progression indicates that the state's economy is improving with the unemployment rate decreasing from 8% to 7% (seasonally adjusted) over the four quarters.

#### 27.5-3.

(a)

| Quarter | Three-year Average | Seasonal Factor        |
|---------|--------------------|------------------------|
| 1       | 21                 | $\frac{21}{25} = 0.84$ |
| 2       | 23                 | $\frac{23}{25} = 0.92$ |
| 3       | 30                 | $\frac{30}{25} = 1.2$  |
| 4       | 26                 | $\frac{26}{25} = 1.04$ |

(b) Seasonally adjusted value:  $\frac{28}{1.04} = 27 \Rightarrow \text{forecast:}(27)(0.84) = 23$ 

(c) Quarter 1: seasonally adjusted value:  $23/0.84 = 27 \Rightarrow \text{forecast:}(27)(0.84) = 23$ Quarter 2: seasonally adjusted value:  $25/0.92 = 27 \Rightarrow \text{forecast:}(27)(1.20) = 33$ Quarter 3: seasonally adjusted value:  $33/1.20 = 27 \Rightarrow \text{forecast:}(27)(1.04) = 28$ 

(d)

| Quarter | Seasonal Factor | Avg. House Sales | Seasonally Adjusted Forecast |
|---------|-----------------|------------------|------------------------------|
| 1       | 0.84            | 25               | (25)(0.84) = 21              |
| 2       | 0.92            | 25               | (25)(0.92) = 23              |
| 3       | 1.20            | 25               | (25)(1.20) = 30              |
| 4       | 1.04            | 25               | (25)(1.04) = 26              |

#### 27.5-4.

(a) - (b) - (c) - (d) 
$$\alpha = 0.1, \gamma = 0.2$$

| Year | Quarter | Sales | I     | F    | S    |
|------|---------|-------|-------|------|------|
| 2000 | 1       | 6900  | 0.965 |      |      |
|      | 2       | 6700  | 0.937 |      |      |
|      | 3       | 7900  | 1.105 |      |      |
|      | 4       | 7100  | 0.993 |      | 7150 |
| 2001 | 1       | 8200  | 0.997 | 6900 | 7285 |
|      | 2       | 7000  | 0.941 | 6826 | 7303 |
|      | 3       | 7300  | 1.086 | 8069 | 7234 |
|      | 4       | 7500  | 1.001 | 7183 | 7266 |
| 2002 | 1       | 9400  | 1.049 | 7245 | 7482 |
|      | 2       | 9200  | 0.992 | 7043 | 7711 |
|      | 3       | 9800  | 1.119 | 8372 | 7842 |
|      | 4       | 9900  | 1.047 | 7849 | 8047 |
| 2003 | 1       | 11400 | 1.113 | 8442 | 8329 |
|      | 2       | 10000 | 1.029 | 8260 | 8505 |
|      | 3       | 9400  | 1.116 | 9513 | 8495 |
|      | 4       | 8400  | 1.036 | 8892 | 8448 |
| 2004 | 1       | 8800  |       | 9402 | 8394 |
|      | 2       | 7600  |       | 8633 | 8293 |
|      | 3       | 7500  |       | 9256 | 8136 |
|      | 4       |       |       | 8431 |      |

- (e) There is a seasonal effect:  $1 \rightarrow 2$ , and it is incorporated by the parameter I.
- (f) There is a substantial error in these estimates, the constant level assumption is not good enough with  $\alpha = 0.1$  and  $\gamma = 0.2$ .

#### 27.6-1.

$$F_{t+1} = \alpha x_t + (1 - \alpha)F_t + \beta[\alpha(x_t - x_{t-1}) + (1 - \alpha)(F_t - F_{t-1})] + (1 - \beta)T_{t+1}$$

$$F_1 = x_0 + T_1 = 3900 + 700 = 4600$$

$$F_2 = (0.25)(4600) + (0.75)(4600) + (0.25)[(0.25)(700) + (0.75)(700)] + (0.75)(700)$$

$$= 5300$$

$$F_3 = (0.25)(5300) + (0.75)(5300) + (0.25)[(0.25)(700) + (0.75)(700)] + (0.75)(700)$$

$$= 6000$$

## 27.6-2.

$$F_{t+1} = \alpha x_t + (1 - \alpha)F_t + \beta[\alpha(x_t - x_{t-1}) + (1 - \alpha)(F_t - F_{t-1})] + (1 - \beta)T_{t+1}$$

$$F_{t+1} = (0.2)(550) + (0.8)(540) + (0.3)[(0.2)(15) + (0.8)(10)] + (0.7)(10) = 552$$
**27.6-3.**

$$F_{t+1} = \alpha x_t + (1 - \alpha)F_t + \beta[\alpha(x_t - x_{t-1}) + (1 - \alpha)(F_t - F_{t-1})] + (1 - \beta)T_{t+1}$$

$$F_{t+1} = (0.1)(4395) + (0.9)(4975) + (0.2)[(0.1)(280) + (0.9)(255)] + (0.8)(240)$$

$$= 5215$$

#### 27.6-4.

|        |       |        |           | Exponential |             |               |                |
|--------|-------|--------|-----------|-------------|-------------|---------------|----------------|
| Time   | True  | Latest | Estimated | Smoothing   | Forecasting |               |                |
| Period | Value | Trend  | Trend     | Forecast    | Error       | Smoothing     | Constants      |
| 1      | 15    |        | 5.00      | 15          | 0           | α=            | 0.2            |
| 2      | 21    | 5.00   | 5.00      | 20          | 1           | β =           | 0.2            |
| 3      | 24    | 5.20   | 5.04      | 25          | 1           |               |                |
| 4      | 32    | 4.79   | 4.99      | 30          | 2           | Initial Estin |                |
| 5      | 37    | 5.39   | 5.07      | 35          | 2           | Av erage =    | 10             |
| 6      | 41    | 5.38   | 5.13      | 41          | 0           | Trend =       | 5              |
| 7      | 40    | 5.15   | 5.14      | 46          | 6           |               |                |
| 8      | 47    | 3.93   | 4.89      | 50          | 3           | Mean Abso     | lute Deviation |
| 9      | 51    | 4.35   | 4.79      | 54          | 3           | MAD =         | 2.3            |
| 10     | 53    | 4.19   | 4.67      | 58          | 5           |               |                |
| 11     |       | 3.66   | 4.46      | 62          |             | Mean Squa     |                |
|        |       |        |           |             |             | MSE=          | 8.8            |

Forecast for next production yield: 62%

#### 27.7-1.

(a) Best  $\alpha = 0.25$ , forecast 50

| Time   | True  |        |
|--------|-------|--------|
| Period | Value |        |
| 1      | 51    |        |
| 2      | 48    |        |
| 3      | 52    |        |
| 4      | 49    |        |
| 5      | 53    |        |
| 6      | 49    |        |
| 7      | 48    | Best α |
| 8      | 51    | 0.25   |
| 9      | 50    |        |
| 10     | 49    |        |
| 11     | 50    |        |

(b) Best  $\alpha = 0.114$ , forecast 51

| Time   | True  |        |
|--------|-------|--------|
| Period | Value |        |
| 1      | 52    |        |
| 2      | 50    |        |
| 3      | 53    |        |
| 4      | 51    |        |
| 5      | 52    |        |
| 6      | 48    |        |
| 7      | 52    | Best α |
| 8      | 53    | 0.114  |
| 9      | 49    |        |
| 10     | 52    |        |
| 11     | 51    |        |

(c) Best  $\alpha = 0.268$ , forecast 54

| Time   | True  |        |
|--------|-------|--------|
| Period | Value |        |
| 1      | 50    |        |
| 2      | 52    |        |
| 3      | 51    |        |
| 4      | 55    |        |
| 5      | 53    |        |
| 6      | 56    |        |
| 7      | 52    | Best α |
| 8      | 55    | 0.268  |
| 9      | 54    |        |
| 10     | 53    |        |
| 11     | 54    |        |

27.7-2.

(a) Best  $\alpha = 0.637$ , best  $\beta = 0.488$ , forecast 77

| Time   | True  |        |
|--------|-------|--------|
| Period | Value |        |
| 1      | 52    |        |
| 2<br>3 | 55    |        |
| 3      | 55    |        |
| 4      | 58    |        |
| 5<br>6 | 59    |        |
|        | 63    |        |
| 7      | 64    | Best α |
| 8      | 66    | 0.637  |
| 9      | 67    |        |
| 10     | 72    | Best β |
| 11     | 73    | 0.488  |
| 12     | 74    |        |
| 13     | 77    |        |

(b) Best  $\alpha = 0.84$ , best  $\beta = 0.582$ , forecast 74

| Time   | True  |        |
|--------|-------|--------|
| Period | Value |        |
| 1      | 52    |        |
| 2      | 55    |        |
| 3      | 59    |        |
| 4      | 61    |        |
| 5      | 66    |        |
| 6      | 69    |        |
| 7      | 71    | Best α |
| 8      | 72    | 0.84   |
| 9      | 73    |        |
| 10     | 74    | Best β |
| 11     | 73    | 0.582  |
| 12     | 74    |        |
| 13     | 74    |        |

(c) Best  $\alpha = 0.904$ , best  $\beta = 0.999$ , forecast 79

| Time   | True  |        |
|--------|-------|--------|
| Period | Value |        |
| 1      | 52    |        |
| 2      | 53    |        |
| 3      | 51    |        |
| 4      | 50    |        |
| 5      | 48    |        |
| 6      | 47    |        |
| 7      | 49    | Best α |
| 8      | 52    | 0.904  |
| 9      | 57    |        |
| 10     | 62    | Best β |
| 11     | 69    | 0.999  |
| 12     | 74    |        |
| 13     | 79    |        |

#### 27.7-3.

The best method is exponential smoothing with trend, using  $\alpha = 0.317$  and  $\beta = 0.999$ .

| Time   | True  |                |  |
|--------|-------|----------------|--|
| Period | Value |                |  |
| 1      | 382   |                |  |
| 2      | 405   |                |  |
| 3      | 398   | Best Method    |  |
| 4      | 421   | Exp. Smoothing |  |
| 5      | 426   | with Trend     |  |
| 6      | 415   |                |  |
| 7      | 443   | Best α         |  |
| 8      | 451   | 0.317          |  |
| 9      | 446   |                |  |
| 10     | 464   | Best β         |  |
| 11     | 473   | 0.999          |  |

#### 27.8-1.

| Quarter | Forecast | True Value | Error |
|---------|----------|------------|-------|
| 1       | 327      | 345        | 18    |
| 2       | 332      | 317        | 15    |
| 3       | 328      | 336        | 8     |
| 4       | 330      | 311        | 19    |

$${
m MAD}={{
m sum \ of \ forecasting \ errors}\over {
m number \ of \ forecasts}}={{18+15+8+19}\over 4}=15$$

$$\text{MSE} = \frac{\text{sum of squares of forecasting errors}}{\text{number of forecasts}} = 243.5$$

#### 27.8-2.

(a) Method 1: MAD = 
$$\frac{258+499+560+809+609}{5} = 547$$
  
Method 2: MAD =  $\frac{374+471+293+906+396}{5} = 488$ 

(b) Method 1: 
$$MSE = 330,905$$
  
Method 2:  $MSE = 285,044$ 

(c) She can use the older data to calculate more forecasting errors and compare MSE and MAD for a longer time span. This may make her feel more comfortable with her decision.

#### 27.8-3.

(a) 
$$F_{t+1} = \alpha x_t + (1 - \alpha) F_t$$
  
 $F_1 = x_0 = 5000$   
 $F_2 = (0.25)(4600) + (1 - 0.25)(5000) = 4900$   
 $F_3 = (0.25)(5300) + (1 - 0.25)(4900) = 5000$   
(b) MAD =  $\frac{400 + 400 + 1000}{3} = 600$   
(c) MSE =  $\frac{400^2 + 400^2 + 1000^2}{3} = 440,000$   
(d)  $F_{t+1} = = (0.25)(6000) + (1 - 0.25)(5000) = 5250$   
27.8-4.

(a) Since sales are relatively stable, the averaging method would be appropriate for forecasting future sales. This method uses a larger sample size than the last-value method, which should make it more accurate and since the older data is still relevant, it should not be excluded, as would be the case in the moving-average method.

#### (b) Last-Value Method

| Time   | True  | Last-Value | Forecasting |
|--------|-------|------------|-------------|
| Period | Value | Forecast   | Error       |
| 1 1    | 23    |            |             |
| 2      | 24    | 23         | 1           |
| 3      | 22    | 24         | 2           |
| 4      | 28    | 22         | 6           |
| 5      | 22    | 28         | 6           |
| 6      | 27    | 22         | 5           |
| 7      | 20    | 27         | 7           |
| 8      | 26    | 20         | 6           |
| 9      | 21    | 26         | 5           |
| 10     | 29    | 21         | 8           |
| 11     | 23    | 29         | 6           |
| 12     | 28    | 23         | 5           |
| 13     |       | 28         |             |

| Mean Absolute Deviation |      |   |  |
|-------------------------|------|---|--|
| MAD =                   | 5.2  | ľ |  |
|                         |      |   |  |
| Mean Square Error       |      |   |  |
| MSE =                   | 30.6 | ĺ |  |
|                         |      | ľ |  |

## (c) Averaging Method

|   | Time   | True  | Averaging | Forecasting |
|---|--------|-------|-----------|-------------|
| 1 | Period | Value | Forecast  | Error       |
| 1 | 1      | 23    |           |             |
|   | 2      | 24    | 23        | 1           |
|   | 3      | 22    | 24        | 2           |
|   | 4      | 28    | 23        | 5           |
| 1 | 5      | 22    | 24        | 2           |
| 1 | 6      | 27    | 24        | 3           |
| 1 | 7      | 20    | 24        | 4           |
|   | 8      | 26    | 24        | 2           |
|   | 9      | 21    | 24        | 3           |
|   | 10     | 29    | 24        | 5           |
|   | 11     | 23    | 24        | 1           |
| 1 | 12     | 28    | 24        | 4           |
| 1 | 13     |       | 24        |             |

| Mean Absolute Deviation |     |  |
|-------------------------|-----|--|
| MAD =                   | 3.0 |  |
|                         |     |  |
| Mean Square Error       |     |  |
| MSE = 11.1              |     |  |

(d) Moving-Average Method (n = 3)

| Ĭ      |       | Moving   |             |
|--------|-------|----------|-------------|
| Time   | True  | Average  | Forecasting |
| Period | Value | Forecast | Error       |
| 1      | 23    |          |             |
| 2      | 24    |          |             |
| 3      | 22    |          |             |
| 4      | 28    | 23       | 5           |
| 5      | 22    | 25       | 3           |
| 6      | 27    | 24       | 3           |
| 7      | 20    | 26       | 6           |
| 8      | 26    | 23       | 3           |
| 9      | 21    | 24       | 3           |
| 10     | 29    | 22       | 7           |
| 11     | 23    | 25       | 2           |
| 12     | 28    | 24       | 4           |
| 13     |       | 27       |             |

| ,                       | ·                  |  |  |
|-------------------------|--------------------|--|--|
|                         | Number of previous |  |  |
| perio ds                | to consider        |  |  |
| n=                      | 3                  |  |  |
|                         |                    |  |  |
| Mean Absolute Deviation |                    |  |  |
| MAD =                   | 3.9                |  |  |
|                         |                    |  |  |
| Mean Square Error       |                    |  |  |
| MSE=                    | 17.4               |  |  |
| ·····                   |                    |  |  |

- (e) Considering the MAD values (5.2, 3.0, 3.9), the averaging method is the best.
- (f) Considering the MSE values (30.6, 11.1, 17.4), the averaging method is the best.
- (g) Unless there is a reason to believe that sales will not continue to be relatively stable, the averaging method should be the most accurate in the future as well.

**27.8-5.** Ben Swanson should choose 0.1 for the smoothing constant.

| Smoothing Constant | MAD  | MSE   |
|--------------------|------|-------|
| 0.1                | 2.70 | 9.44  |
| 0.2                | 2.82 | 10.24 |
| 0.3                | 2.97 | 11.20 |
| 0.4                | 3.13 | 12.35 |
| 0.5                | 3.32 | 13.75 |

#### 27.8-6.

- (a) Answers will vary. The averaging or the moving-average methods seem to do a better job than the last-value method.
- (b) For the last-value method, a change in April affects only the forecast of May. For the averaging method, it affects all forecasts after April and for the moving-average method, it affects the forecasts for May, June and July.
- (c) Answers will vary. The averaging and the moving-average methods seem to do slightly better than the last-value method.
- (d) Answers will vary. The averaging and the moving-average methods seem to do slightly better than the last-value method.

#### 27.8-7.

(a) Since the sales level is shifting significantly from month to month and there is no consistent trend, the last-value method seems to be appropriate. The averaging method will not do as well because it places too much weight on the old data. The moving-average method will be better than the averaging method, but it will lag any short-term trends. The exponential smoothing method will also lag trends by placing too much weight on the old data. Exponential smoothing with trend will likely not to do well because the trend is not consistent.

#### (b) Last-Value Method

|   | Time   | True  | Last-Value | Forecasting |
|---|--------|-------|------------|-------------|
|   | Period | Value | Forecast   | Error       |
| 1 | 1      | 126   |            |             |
|   | 2      | 137   | 126        | 11          |
|   | 3      | 142   | 137        | 5           |
|   | 4      | 150   | 142        | 8           |
| 1 | 5      | 153   | 150        | 3           |
|   | 6      | 154   | 153        | 1           |
|   | 7      | 148   | 154        | 6           |
|   | 8      | 145   | 148        | 3           |
|   | 9      | 147   | 145        | 2           |
|   | 10     | 151   | 147        | 4           |
|   | 11     | 159   | 151        | 8           |
|   | 12     | 166   | 159        | 7           |
|   | 13     |       | 166        |             |

| Mean Absolute Deviation |             |
|-------------------------|-------------|
| MAD =                   | 5.3         |
|                         |             |
|                         | quare Error |
| MSE =                   | 36.2        |

#### Averaging Method

| Time   | True  | Averaging | Forecasting |
|--------|-------|-----------|-------------|
| Period | Value | Forecast  | Error       |
| 1      | 126   |           |             |
| 2      | 137   | 126       | 11          |
| 3      | 142   | 132       | 11          |
| 4      | 150   | 135       | 15          |
| 5      | 153   | 139       | 14          |
| 6      | 154   | 142       | 12          |
| 7      | 148   | 144       | 4           |
| 8      | 145   | 144       | 1           |
| 9      | 147   | 144       | 3           |
| 10     | 151   | 145       | 6           |
| 11     | 159   | 145       | 14          |
| 12     | 166   | 147       | 19          |
| 13     |       | 148       |             |

| Mean Absolute Deviation |       |  |
|-------------------------|-------|--|
| MAD =                   | 10.0  |  |
|                         |       |  |
| Mean Square Error       |       |  |
| MSE =                   | 131.4 |  |

### Moving-Average Method

|        | ,     | Mo∨ing   |             |
|--------|-------|----------|-------------|
| Time   | True  | A∨erage  | Forecasting |
| Period | Value | Forecast | Error       |
| 1      | 126   |          |             |
| 2      | 137   |          |             |
| 3      | 142   |          |             |
| 4      | 150   | 135      | 15          |
| 5      | 153   | 143      | 10          |
| 6      | 154   | 148      | 6           |
| 7      | 148   | 152      | 4           |
| 8      | 145   | 152      | 7           |
| 9      | 147   | 149      | 2           |
| 10     | 151   | 147      | 4           |
| 11     | 159   | 148      | 11          |
| 12     | 166   | 152      | 14          |
| 13     |       | 159      |             |

| Number of previous |                    |  |  |
|--------------------|--------------------|--|--|
| perio ds           | to consider        |  |  |
| n=                 | 3                  |  |  |
|                    |                    |  |  |
| Mean A             | bs olute Deviation |  |  |
| MAD =              | 8.1                |  |  |
|                    |                    |  |  |
| Mean Square Error  |                    |  |  |
| MSE=               | 84.3               |  |  |
|                    |                    |  |  |

Comparing MAD values (5.3, 10.0, 8.1) and MSE values (36.2, 131.4, 84.3), the last-value method is the best.

(c) Using the template for exponential smoothing with an initial estimate of 120, the following forecast errors are obtained for various values of the smoothing constant  $\alpha$ .

| $\alpha$ | MAD  | MSE   |
|----------|------|-------|
| 0.1      | 18.5 | 382.7 |
| 0.2      | 13.0 | 210.2 |
| 0.3      | 10.1 | 139.7 |
| 0.4      | 8.7  | 104.2 |
| 0.5      | 8.0  | 82.9  |

Considering both MAD and MSE, a high value of the smoothing constant seems to be appropriate.

(d) Using the template for exponential smoothing with trend using an initial estimate of 120 for the average value and 10 for the trend, the following forecast errors are obtained for various values of the smoothing constants  $\alpha$  and  $\beta$ .

| $\alpha$ | $\beta$ | MAD  | MSE   |
|----------|---------|------|-------|
| 0.1      | 0.1     | 25.4 | 919.6 |
| 0.1      | 0.3     | 21.2 | 634.1 |
| 0.1      | 0.5     | 17.7 | 450.6 |
| 0.3      | 0.1     | 13.5 | 261.9 |
| 0.3      | 0.3     | 9.8  | 144.1 |
| 0.3      | 0.5     | 8.8  | 111.5 |
| 0.5      | 0.1     | 8.4  | 116.1 |
| 0.5      | 0.3     | 7.0  | 72.2  |
| 0.5      | 0.5     | 6.5  | 61.1  |

Considering both MAD and MSE, high values of the smoothing constants seem to be appropriate.

(e) The management should use the last-value method to forecast sales. Using this method, the forecast for January of the new year is 166. Exponential smoothing with trend using high smoothing constants, e.g.,  $\alpha = \beta = 0.5$ , also works well. With this method, the forecast for January of the new year is 165.

#### 27.8-8.

- (a) Answers will vary. The last-value method seems to be the best. Exponential smoothing with trend is a close second.
- (b) For the last-value method, a change in April affects only the forecast for May. For the averaging method, exponential smoothing with or without trend, it affects all forecasts after April. For the moving-average method, it affects the forecasts for May, June, and July.
- (c) Answers will vary. The last-value method and exponential smoothing seem to do better than the others.
- (d) Answers will vary. The last-value method and exponential smoothing seem to do better than the others.

27.8-9.

| (a) | $\alpha$ | MAD  |
|-----|----------|------|
|     | 0.1      | 1.51 |
|     | 0.2      | 1.62 |
|     | 0.3      | 1.73 |
|     | 0.4      | 1.84 |
|     | 0.5      | 1.95 |

Choose  $\alpha = 0.1$ .

| b) | $\alpha$ | MAD  |
|----|----------|------|
|    | 0.1      | 1.84 |
|    | 0.2      | 1.88 |
|    | 0.3      | 1.92 |
|    | 0.4      | 2.00 |
|    | 0.5      | 2.10 |

Choose  $\alpha = 0.1$ 

| $\alpha$ | MAD  |
|----------|------|
| 0.1      | 2.82 |
| 0.2      | 2.54 |
| 0.3      | 2.26 |
| 0.4      | 2.06 |
| 0.5      | 1.90 |

Choose  $\alpha = 0.5$ .

#### 27.8-10.

(a)  $\begin{array}{c|cccc} \beta & \text{MAD} \\ \hline 0.1 & 0.740 \\ \hline 0.2 & 0.749 \\ \hline 0.3 & 0.759 \\ \hline 0.4 & 0.770 \\ \hline 0.5 & 0.782 \\ \end{array}$ 

Choose  $\beta = 0.1$ .

| (b) | $\beta$ | MAD  |
|-----|---------|------|
|     | 0.1     | 2.61 |
|     | 0.2     | 2.76 |
|     | 0.3     | 2.87 |
|     | 0.4     | 2.99 |
|     | 0.5     | 3.05 |

Choose  $\beta = 0.1$ .

| ) | $\beta$ | MAD  |
|---|---------|------|
|   | 0.1     | 5.66 |
|   | 0.2     | 6.02 |
|   | 0.3     | 6.23 |
|   | 0.4     | 6.36 |
|   | 0.5     | 6.54 |

Choose  $\beta = 0.1$ 

# 27.8-11.

(a) The time series is not stable enough for the moving-average method.

(b)

| Ĭ      |       | Mo∨ing   |             |                         |
|--------|-------|----------|-------------|-------------------------|
| Time   | True  | Average  | Forecasting |                         |
| Period | Value | Forecast | Error       |                         |
| 1      | 382   |          |             |                         |
| 2      | 405   |          |             | N                       |
| 3      | 398   |          |             | Number of previous      |
| 4      | 421   | 395      | 26          | periods to consider     |
| 5      | 426   | 408      | 18          | n= 3                    |
| 6      | 415   | 415      | 0           |                         |
| 7      | 443   | 421      | 77          | Mean Absolute Deviation |
| 8      | 451   | 428      | 23          | MAD = 16.6              |
| 9      | 446   | 436      | I           |                         |
| 10     | 464   | 447      | 17          | Mean Square Error       |
| 11     | 704   | 454      |             | MSE = 346.0             |

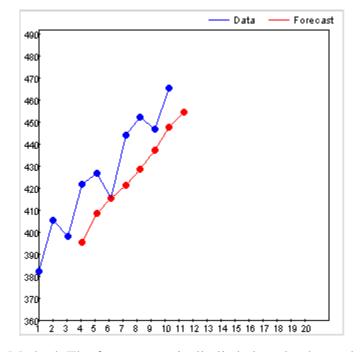
(c)

|        |       | Exponential |             |
|--------|-------|-------------|-------------|
| Time   | True  | Smoothing   | Forecasting |
| Period | Value | Forecast    | Error       |
| 1      | 382   | 380         | 2           |
| 2      | 405   | 381         | 24          |
| 3      | 398   | 393         | 5           |
| 4      | 421   | 396         | 26          |
| 5      | 426   | 408         | 18          |
| 6      | 415   | 417         | 2           |
| 7      | 443   | 416         | 27          |
| 8      | 451   | 430         | 21          |
| 9      | 446   | 440         | 6           |
| 10     | 464   | 443         | 21          |
| 11     |       | 454         |             |

| Smoothing Constant |               |  |  |  |  |
|--------------------|---------------|--|--|--|--|
| α=                 | 0.5           |  |  |  |  |
|                    |               |  |  |  |  |
| Initial Estima     | nte           |  |  |  |  |
| Average =          | 380           |  |  |  |  |
|                    |               |  |  |  |  |
| Mean Absolu        | ıte Deviation |  |  |  |  |
| MAD =              | 15            |  |  |  |  |
|                    |               |  |  |  |  |
| Mean Square        | e Error       |  |  |  |  |
| MSE =              | 323           |  |  |  |  |
|                    |               |  |  |  |  |

(d)

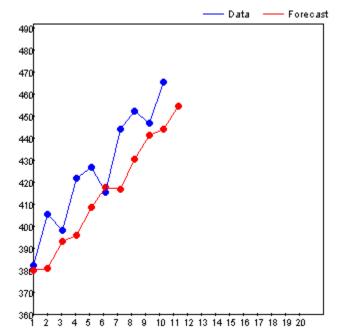
|        |      |        |           | Exponential |             |
|--------|------|--------|-----------|-------------|-------------|
| Time   | True | Latest | Estimated | Smoothing   | Forecasting |
| Period |      | Trend  | Trend     | Forecast    | Error       |
| 1      | 382  |        | 10.00     | 380         | 2           |
| 2      | 405  | 10.50  | 10.13     | 391         | 14          |
| 3      | 398  | 13.72  | 11.02     | 405         | 7           |
| 4      | 421  | 9.21   | 10.57     | 414         | 7           |
| 5      | 426  | 12.32  | 11.01     | 427         | 1           |
| 6      | 415  | 10.82  | 10.96     | 438         | 23          |
| 7      | 443  | 5.33   | 9.55      | 441         | 2           |
| 8      | 451  | 9.94   | 9.65      | 451         | 0           |
| 9      | 446  | 9.53   | 9.62      | 461         | 15          |
| 10     | 464  | 5.87   | 8.68      | 466         | 2           |
| 11     |      | 8.20   | 8.56      | 47.4        |             |


| Smoothing     | Constants      |
|---------------|----------------|
| α=            | 0.25           |
| β=            | 0.25           |
| ^             |                |
| Initial Estir | nates          |
| Av erage =    | 370            |
| Trend =       | 10             |
|               |                |
| Mean Abso     | lute Deviation |
| MAD =         | 7.3            |
|               |                |
| Mean Squa     | re Error       |
| MSE=          | 105.1          |

(e) Exponential smoothing with a trend is recommended, since it offers the smallest MAD.

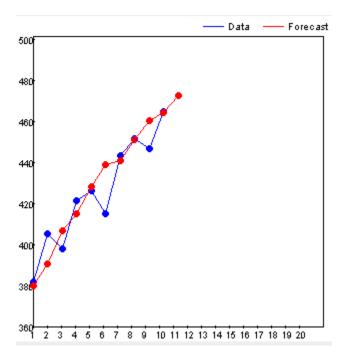
## 27.8-12.

Forecasting -- Moving-Average Method MAD = 16.62 MSE = 345.95 Fetch average of last 3 values


| Period | I | Data | ı | Forecast | - 1 | Error | 1   |
|--------|---|------|---|----------|-----|-------|-----|
| 1      |   | 382  | 1 |          | - 1 |       | - 1 |
| 2      |   | 405  | 1 |          | - 1 |       | - 1 |
| 3      |   | 398  | 1 |          | - 1 |       | - 1 |
| 4      |   | 421  | 1 | 395      | - 1 | 26    | - 1 |
| 5      |   | 426  | 1 | 408      | - 1 | 18    | - 1 |
| 6      |   | 415  | 1 | 415      | - 1 | 0     | - 1 |
| 7      |   | 443  | 1 | 420.67   | - 1 | 22.33 | - 1 |
| 8      |   | 451  | 1 | 428      | - 1 | 23    | - 1 |
| 9      |   | 446  | 1 | 436.33   | - 1 | 9.67  | - 1 |
| 10     |   | 464  | 1 | 446.67   | - 1 | 17.33 | - 1 |
| 11     |   | 0    | 1 | 453.67   | - 1 |       | - 1 |



Moving-Average Method: The forecasts typically lie below the demands.


Forecasting -- Exponential Smoothing Method MAD = 15.14 MSE = 322.97 alpha = 0.5

| Period | - 1 | Data | 1   | Forecast | - 1 | Error |
|--------|-----|------|-----|----------|-----|-------|
| 1      | - 1 | 382  | 1   | 380      | - 1 | 2     |
| 2      | - 1 | 405  | 1   | 381      | - 1 | 24    |
| 3      | - 1 | 398  | 1   | 393      | - 1 | 5     |
| 4      |     | 421  | 1   | 395.5    | - 1 | 25.5  |
| 5      |     | 426  | 1   | 408.25   | - 1 | 17.75 |
| 6      |     | 415  | 1   | 417.12   | - 1 | 2.12  |
| 7      |     | 443  | - 1 | 416.06   | - 1 | 26.94 |
| 8      |     | 451  | - 1 | 429.53   | - 1 | 21.47 |
| 9      |     | 446  | - 1 | 440.27   | - 1 | 5.73  |
| 10     |     | 464  | - 1 | 443.13   | - 1 | 20.87 |
| 11     | - 1 | 0    | 1   | 453.57   | - 1 |       |



Exponential Smoothing: The forecasts typically lie below the demands.

| Period | ı   | Data |     | Forecast |     | Error |
|--------|-----|------|-----|----------|-----|-------|
| 1      | - 1 | 382  | - 1 | 380      | - 1 | 2     |
| 2      | - 1 | 405  | - 1 | 390.78   | - 1 | 14.22 |
| 3      |     | 398  | - 1 | 406.51   | - 1 | 8.51  |
| 4      | - 1 | 421  | - 1 | 414.65   | - 1 | 6.35  |
| 5      | - 1 | 426  | - 1 | 427.82   | - 1 | 1.82  |
| 6      |     | 415  | - 1 | 438.38   | - 1 | 23.38 |
| 7      |     | 443  | - 1 | 440.36   | - 1 | 2.64  |
| 8      |     | 451  | - 1 | 450.39   | - 1 | 0.61  |
| 9      |     | 446  | - 1 | 459.86   | - 1 | 13.86 |
| 10     | - 1 | 464  | - 1 | 463.75   | - 1 | 0.25  |
| 11     | - 1 | 0    | - 1 | 471.89   | - 1 |       |



Exponential Smoothing with Trend: The forecasts are at about the same level as demands (perhaps slightly above). This indicates that exponential smoothing with trend is the best method to use hereafter.

## 27.8-13.

(a)

|      |         | True  |
|------|---------|-------|
| Year | Quarter | Value |
| 1    | 1       | 25    |
| 1    | 2       | 47    |
| 1    | 3       | 68    |
| 1    | 4       | 42    |
| 2    | 1       | 27    |
| 2    | 2       | 46    |
| 2    | 3       | 72    |
| 2    | 4       | 39    |
| 3    | 1       | 24    |
| 3    | 2       | 49    |
| 3    | 3       | 70    |
| 3    | 4       | 44    |

| Type of Seasonality |                           |  |  |
|---------------------|---------------------------|--|--|
| Quarterly           |                           |  |  |
|                     |                           |  |  |
|                     |                           |  |  |
|                     | Estimate for              |  |  |
|                     |                           |  |  |
| Quarter             | Seasonal Factor           |  |  |
| Quarter<br>1        | Seasonal Factor<br>0.5497 |  |  |
| Quarter<br>1<br>2   |                           |  |  |
| 11                  | 0.5497                    |  |  |

(b) Forecast: 27 acre-feet

|         | Type of Seasonality |  |  |  |
|---------|---------------------|--|--|--|
|         | Quarterly           |  |  |  |
|         |                     |  |  |  |
| Quarter | Seasonal Factor     |  |  |  |
| 1       | 0.550               |  |  |  |
| 2       | 1.027               |  |  |  |
| 3       | 1.519               |  |  |  |
| 4       | 0.904               |  |  |  |

| Mea       | Mean Absolute Deviation |   |  |  |
|-----------|-------------------------|---|--|--|
| MAD = 2.4 |                         |   |  |  |
|           |                         |   |  |  |
|           | Mean Square Error       |   |  |  |
| N         | 1SE =                   | 8 |  |  |

|      |         |       | Seasonally | Seasonally |          |             |
|------|---------|-------|------------|------------|----------|-------------|
|      |         | True  | Adjusted   | Adjusted   | Actual   | Forecasting |
| Year | Quarter | Value | Value      | Forecast   | Forecast | Error       |
| 1    | 1       | 25    | 45         |            |          |             |
| 1    | 2       | 47    | 46         | 45         | 47       | 0           |
| 1    | 3       | 68    | 45         | 46         | 70       | 2           |
| 1    | 4       | 42    | 46         | 45         | 40       | 2           |
| 2    | 1       | 27    | 49         | 46         | 26       | 1           |
| 2    | 2       | 46    | 45         | 49         | 50       | 4           |
| 2    | 3       | 72    | 47         | 45         | 68       | 4           |
| 2    | 4       | 39    | 43         | 47         | 43       | 4           |
| 3    | 1       | 24    | 44         | 43         | 24       | 0           |
| 3    | 2       | 49    | 48         | 44         | 45       | 4           |
| 3    | 3       | 70    | 46         | 48         | 72       | 2           |
| 3    | 4       | 44    | 49         | 46         | 42       | 2           |
| 4    | 1       |       |            | 49         | 27       |             |

(c) Winter: (49)(0.55) = 27, Spring: (49)(1.03) = 50,

Summer: (49)(1.52) = 74, Fall: (49)(0.9) = 44

(d) Forecast: 25 acre-feet

|      |         |       | Seasonally | Seasonally |          |             |
|------|---------|-------|------------|------------|----------|-------------|
|      |         | True  | Adjusted   | Adjusted   | Actual   | Forecasting |
| Year | Quarter | Value | Value      | Forecast   | Forecast | Error       |
| 1    | 1       | 25    | 45         |            |          |             |
| 1    | 2       | 47    | 46         | 45         | 47       | 0           |
| 1    | 3       | 68    | 45         | 46         | 69       | 1           |
| 1    | 4       | 42    | 46         | 45         | 41       | 1           |
| 2    | 1       | 27    | 49         | 46         | 25       | 2           |
| 2    | 2       | 46    | 45         | 46         | 48       | 2           |
| 2    | 3       | 72    | 47         | 46         | 70       | 2           |
| 2    | 4       | 39    | 43         | 46         | 42       | 3           |
| 3    | 1       | 24    | 44         | 46         | 25       | 1           |
| 3    | 2       | 49    | 48         | 46         | 47       | 2           |
| 3    | 3       | 70    | 46         | 46         | 70       | 0           |
| 3    | 4       | 44    | 49         | 46         | 41       | 3           |
| 4    | 1       |       |            | 46         | 25       |             |

|             | Type of Seasonality |  |  |  |
|-------------|---------------------|--|--|--|
|             | Quarterly           |  |  |  |
|             | _                   |  |  |  |
| Quarter     | Seasonal Factor     |  |  |  |
|             |                     |  |  |  |
| 1           | 0.550               |  |  |  |
| 1 2         | 0.550<br>1.027      |  |  |  |
| 1<br>2<br>3 |                     |  |  |  |

| Mean Absolute Deviation |            |  |  |
|-------------------------|------------|--|--|
| MAD =                   | 1.57       |  |  |
|                         |            |  |  |
| Mean Squ                | rare Error |  |  |
| MSE =                   | 3.07       |  |  |

# (e) Forecast: 26 acre-feet

|   |      |         |       | Seasonally | Seasonally |          | Forecasting |
|---|------|---------|-------|------------|------------|----------|-------------|
| Ì | Year | Quarter | Value | Value      | Forecast   | Forecast | Еггог       |
| Ì | 1    | 1       | 25    | 45         |            |          |             |
| ì | 1    | 2       | 47    | 46         |            |          |             |
| Ï | 1    | 3       | 68    | 45         |            |          |             |
|   | 1    | 4       | 42    | 46         |            |          |             |
| Ï | 2    | 1       | 27    | 49         | 46         | 25       | 2           |
| ì | 2    | 2       | 46    | 45         | 47         | 48       | 2           |
|   | 2    | 3       | 72    | 47         | 46         | 70       | 2           |
|   | 2    | 4       | 39    | 43         | 47         | 42       | 3           |
|   | 3    | 1       | 24    | 44         | 46         | 25       | 1           |
|   | 3    | 2       | 49    | 48         | 45         | 46       | 3           |
|   | 3    | 3       | 70    | 46         | 45         | 69       | 1           |
|   | 3    | 4       | 44    | 49         | 45         | 41       | 3           |
| Ï | 4    | 1       |       |            | 47         | 26       |             |

| Number of previous  |                     |  |  |  |
|---------------------|---------------------|--|--|--|
| periods to consider |                     |  |  |  |
| n =                 | n = 4               |  |  |  |
|                     |                     |  |  |  |
|                     | Type of Seasonality |  |  |  |
|                     | Quarterly           |  |  |  |
|                     |                     |  |  |  |
| Quarter             | Seasonal Factor     |  |  |  |
| 1                   | 0.550               |  |  |  |
| 2                   | 1.027               |  |  |  |
| 3                   | 1.519               |  |  |  |
| 4                   | 0.904               |  |  |  |

| Mean Absolute Deviation |     |  |  |
|-------------------------|-----|--|--|
| MAD = 2.2               |     |  |  |
|                         |     |  |  |
| Mean Square Error       |     |  |  |
| MSE =                   | 5.5 |  |  |

# (f) Forecast: 25 acre-feet

|      |         |       | Seasonally | Seasonally |          |             |
|------|---------|-------|------------|------------|----------|-------------|
|      |         | True  | Adjusted   | Adjusted   | Actual   | Forecasting |
| Year | Quarter | Value | Value      | Forecast   | Forecast | Error       |
| 1    | 1       | 25    | 45         | 46         | 25       | 0           |
| 1    | 2       | 47    | 46         | 46         | 47       | 0           |
| 1    | 3       | 68    | 45         | 46         | 70       | 2           |
| 1    | 4       | 42    | 46         | 46         | 41       | 1           |
| 2    | 1       | 27    | 49         | 46         | 25       | 2           |
| 2    | 2       | 46    | 45         | 46         | 47       | 1           |
| 2    | 3       | 72    | 47         | 46         | 70       | 2           |
| 2    | 4       | 39    | 43         | 46         | 42       | 3           |
| 3    | 1       | 24    | 44         | 46         | 25       | 1           |
| 3    | 2       | 49    | 48         | 46         | 47       | 2           |
| 3    | 3       | 70    | 46         | 46         | 70       | 0           |
| 3    | 4       | 44    | 49         | 46         | 41       | 3           |
| 4    | 1       |       |            | 46         | 25       |             |

|                    | ······              |  |  |  |  |
|--------------------|---------------------|--|--|--|--|
| Smoothing Constant |                     |  |  |  |  |
| α =                | 0.1                 |  |  |  |  |
|                    |                     |  |  |  |  |
| Initial Estim      | ıate                |  |  |  |  |
| Average =          | 46                  |  |  |  |  |
|                    |                     |  |  |  |  |
|                    | Type of Seasonality |  |  |  |  |
|                    | Quarterly           |  |  |  |  |
|                    |                     |  |  |  |  |
| Quarter            | Seasonal Factor     |  |  |  |  |
| 1                  | 0.550               |  |  |  |  |
| 2                  | 1.027               |  |  |  |  |
| 3                  | 1.519               |  |  |  |  |
| Λ                  | 0.904               |  |  |  |  |

| Mean Absolute Deviation   |     |  |  |  |
|---------------------------|-----|--|--|--|
| MAD =                     | 1.4 |  |  |  |
|                           |     |  |  |  |
| Mean Squa <u>re Error</u> |     |  |  |  |
| MSE =                     | 2.7 |  |  |  |

- (g) Exponential smoothing results in the lowest MAD value, 1.4.
- (h) Exponential smoothing gives the lowest MSE value, 2.7.

## 27.8-14.

(a)

|      |         | True  |
|------|---------|-------|
| Year | Quarter | Value |
| 1    | 1       | 23    |
| 1    | 2       | 22    |
| 1    | 3       | 31    |
| 1    | 4       | 26    |
| 2    | 1       | 19    |
| 2    | 2       | 21    |
| 2    | 3       | 27    |
| 2    | 4       | 24    |
| 3    | 1       | 21    |
| 3    | 2       | 26    |
| 3    | 3       | 32    |
| 3    | 4       | 28    |

| Type of Seasonality |                           |  |  |  |
|---------------------|---------------------------|--|--|--|
| Quarterly           |                           |  |  |  |
|                     |                           |  |  |  |
|                     |                           |  |  |  |
|                     | Estimate for              |  |  |  |
|                     |                           |  |  |  |
| Quarter             | Seasonal Factor           |  |  |  |
| Quarter<br>1        | Seasonal Factor<br>0.8400 |  |  |  |
| Quarter<br>1<br>2   |                           |  |  |  |
| 1                   | 0.8400                    |  |  |  |

(b)

|   |         |      |          | Seasonally           |          |             |
|---|---------|------|----------|----------------------|----------|-------------|
|   |         | True | Adjusted | Adjusted<br>Forecast | Actual   | Forecasting |
| : | Quarter |      |          |                      | Forecast | Error       |
| 1 | 1       | 23   | 27       |                      |          |             |
| 1 | 2       | 22   | 24       | 27                   | 25       | 3           |
| 1 | 3       | 31   | 26       | 24                   | 29       | 2           |
| 1 | 4       | 26   | 25       | 26                   | 27       | 1           |
| 2 | 1       | 19   | 23       | 25                   | 21       | 2           |
| 2 | 2       | 21   | 23       | 23                   | 21       | 0           |
| 2 | 3       | 27   | 23       | 23                   | 27       | 0           |
| 2 | 4       | 24   | 23       | 23                   | 23       | 1           |
| 3 | 1       | 21   | 25       | 23                   | 19       | 2           |
| 3 | 2       | 26   | 28       | 25                   | 23       | 3           |
| 3 | 3       | 32   | 27       | 28                   | 34       | 2           |
| 3 | 4       | 28   | 27       | 27                   | 28       | 0           |
| 4 | 1       |      |          | 27                   | 23       |             |

|             | Type of Seasonality |  |  |
|-------------|---------------------|--|--|
|             | Quarterly           |  |  |
|             |                     |  |  |
| Quarter     | Seasonal Factor     |  |  |
|             |                     |  |  |
| 1           | 0.840               |  |  |
| 1<br>2      | 0.840<br>0.920      |  |  |
| 1<br>2<br>3 |                     |  |  |

| Mean Absolute Deviation |   |  |  |  |
|-------------------------|---|--|--|--|
| MAD = 1.5               |   |  |  |  |
|                         |   |  |  |  |
| Mean Square Error       |   |  |  |  |
| MSE =                   | 3 |  |  |  |

(c)

|      |         |       | i          |            |          |             |
|------|---------|-------|------------|------------|----------|-------------|
|      |         |       | Seasonally | Seasonally |          |             |
|      |         | True  | Adjusted   | Adjusted   | Actual   | Forecasting |
| Year | Quarter | Value | Value      | Forecast   | Forecast | Еггог       |
| 1    | 1       | 23    | 27         |            |          |             |
| 1    | 2       | 22    | 24         | 27         | 25       | 3           |
| 1    | 3       | 31    | 26         | 26         | 31       | 0           |
| 1    | 4       | 26    | 25         | 26         | 27       | 1           |
| 2    | 1       | 19    | 23         | 26         | 21       | 2           |
| 2    | 2       | 21    | 23         | 25         | 23       | 2           |
| 2    | 3       | 27    | 23         | 25         | 30       | 3           |
| 2    | 4       | 24    | 23         | 24         | 25       | 1           |
| 3    | 1       | 21    | 25         | 24         | 20       | 1           |
| 3    | 2       | 26    | 28         | 24         | 22       | 4           |
| 3    | 3       | 32    | 27         | 25         | 30       | 2           |
| 3    | 4       | 28    | 27         | 25         | 26       | 2           |
| 4    | 1       |       |            | 25         | 21       |             |

|         | Type of Seasonality |
|---------|---------------------|
|         | Quarterly           |
|         |                     |
| Quarter | Seasonal Factor     |
| 1       | 0.840               |
| 2       | 0.920               |
| 3       | 1.200               |
| 4       | 1.040               |

| solute Deviation |
|------------------|
| 1.94             |
|                  |
| rare Error       |
| 4.85             |
|                  |

(d)

|      |         |       | Seasonally | Seasonally |          | Forecasting          |
|------|---------|-------|------------|------------|----------|----------------------|
| Year | Quarter | Value | Value      | Forecast   | Forecast | Forecasting<br>Error |
| 1    | 1       | 23    | 27         |            |          |                      |
| 1    | 2       | 22    | 24         |            |          |                      |
| 1    | 3       | 31    | 26         |            |          |                      |
| 1    | 4       | 26    | 25         |            |          |                      |
| 2    | 1       | 19    | 23         | 26         | 21       | 2                    |
| 2    | 2       | 21    | 23         | 24         | 22       | 1                    |
| 2    | 3       | 27    | 23         | 24         | 29       | 2                    |
| 2    | 4       | 24    | 23         | 23         | 24       | 0                    |
| 3    | 1       | 21    | 25         | 23         | 19       | 2                    |
| 3    | 2       | 26    | 28         | 23         | 21       | 5                    |
| 3    | 3       | 32    | 27         | 25         | 30       | 2                    |
| 3    | 4       | 28    | 27         | 26         | 27       | 1                    |
| 4    | 1       |       |            | 27         | 22       |                      |

| Number of previous<br>periods to consider |                     |  |
|-------------------------------------------|---------------------|--|
| n =                                       | 4                   |  |
|                                           |                     |  |
|                                           | Type of Seasonality |  |
|                                           | Quarterly           |  |
|                                           |                     |  |
| Quarter                                   | Seasonal Factor     |  |
| 1                                         | 0.840               |  |
| 2                                         | 0.920               |  |
| 3                                         | 1.200               |  |
| 4                                         | 1.040               |  |

| Mean Absolute Deviation   |     |  |  |  |
|---------------------------|-----|--|--|--|
| MAD = 2.0                 |     |  |  |  |
|                           |     |  |  |  |
| Mean Sq <u>uare Error</u> |     |  |  |  |
| MSE =                     | 5.3 |  |  |  |
|                           |     |  |  |  |

(e)

|      |         |       | Seasonally | Seasonally |          |             |
|------|---------|-------|------------|------------|----------|-------------|
|      |         | True  | Adjusted   | Adjusted   | Actual   | Forecasting |
| Year | Quarter | Value | Value      | Forecast   | Forecast | Error       |
| 1    | 1       | 23    | 27         | 25         | 21       | 2           |
| 1    | 2       | 22    | 24         | 26         | 24       | 2           |
| 1    | 3       | 31    | 26         | 25         | 30       | 1           |
| 1    | 4       | 26    | 25         | 25         | 26       | 0           |
| 2    | 1       | 19    | 23         | 25         | 21       | 2           |
| 2    | 2       | 21    | 23         | 25         | 23       | 2           |
| 2    | 3       | 27    | 23         | 24         | 29       | 2           |
| 2    | 4       | 24    | 23         | 24         | 25       | 1           |
| 3    | 1       | 21    | 25         | 24         | 20       | 1           |
| 3    | 2       | 26    | 28         | 24         | 22       | 4           |
| 3    | 3       | 32    | 27         | 25         | 30       | 2           |
| 3    | 4       | 28    | 27         | 25         | 26       | 2           |
| 4    | 1       |       |            | 26         | 22       |             |

| Smoothing     | Smoothing Constant  |  |  |  |  |  |  |
|---------------|---------------------|--|--|--|--|--|--|
| α=            | 0.25                |  |  |  |  |  |  |
|               |                     |  |  |  |  |  |  |
| Initial Estin | rate                |  |  |  |  |  |  |
| Average =     | 25                  |  |  |  |  |  |  |
|               |                     |  |  |  |  |  |  |
|               | Type of Seasonality |  |  |  |  |  |  |
|               | Quarterly           |  |  |  |  |  |  |
|               |                     |  |  |  |  |  |  |
| Quarter       | Seasonal Factor     |  |  |  |  |  |  |
| 1             | 0.840               |  |  |  |  |  |  |
| 2             | 0.920               |  |  |  |  |  |  |
| 3             | 1.200               |  |  |  |  |  |  |
| 4             | 1.040               |  |  |  |  |  |  |

| Mean Absolute Deviation |     |  |  |  |  |  |
|-------------------------|-----|--|--|--|--|--|
| MAD =                   | 1.7 |  |  |  |  |  |
|                         |     |  |  |  |  |  |
| Mean Square Error       |     |  |  |  |  |  |
| MSE =                   | 3.6 |  |  |  |  |  |

(f)

|   |         |      | Seasonally |        |           | Seasonally |          |                      |
|---|---------|------|------------|--------|-----------|------------|----------|----------------------|
|   |         | True | Adjusted   | Latest | Estimated | Adjusted   | Actual   | Forecasting<br>Error |
|   | Quarter |      | Value      |        |           |            | Forecast | Error                |
| 1 | 1       | 23   | 27         |        | 0         | 25         | 21       | 2                    |
| 1 | 2       | 22   | 24         | 1      | 0         | 26         | 24       | 2                    |
| 1 | 3       | 31   | 26         | 0      | 0         | 25         | 30       | 1                    |
| 1 | 4       | 26   | 25         | 0      | 0         | 26         | 27       | 1                    |
| 2 | 1       | 19   | 23         | 0      | 0         | 25         | 21       | 2                    |
| 2 | 2       | 21   | 23         | -1     | 0         | 25         | 23       | 2                    |
| 2 | 3       | 27   | 23         | -1     | 0         | 24         | 29       | 2                    |
| 2 | 4       | 24   | 23         | -1     | 0         | 23         | 24       | 0                    |
| 3 | 1       | 21   | 25         | 0      | 0         | 23         | 19       | 2                    |
| 3 | 2       | 26   | 28         | 0      | 0         | 23         | 21       | 5                    |
| 3 | 3       | 32   | 27         | 1      | 0         | 25         | 29       | 3                    |
| 3 | 4       | 28   | 27         | 1      | 0         | 25         | 26       | 2                    |
| 4 | 1       |      |            | 1      | 0         | 26         | 22       |                      |

| Smoothing Constant |                                      |  |  |  |  |  |
|--------------------|--------------------------------------|--|--|--|--|--|
| a =                | 0.25                                 |  |  |  |  |  |
| β =                | 0.25                                 |  |  |  |  |  |
|                    |                                      |  |  |  |  |  |
| Initial Estim      | ate                                  |  |  |  |  |  |
| Average =          | 25                                   |  |  |  |  |  |
| Trend =            | 0                                    |  |  |  |  |  |
|                    |                                      |  |  |  |  |  |
|                    |                                      |  |  |  |  |  |
|                    | Type of Seasonality                  |  |  |  |  |  |
|                    | Type of Seasonality<br>Quarterly     |  |  |  |  |  |
|                    |                                      |  |  |  |  |  |
| Quarter            |                                      |  |  |  |  |  |
|                    | Quarterly                            |  |  |  |  |  |
|                    | Quarterly<br>Seasonal Factor         |  |  |  |  |  |
| Quarter<br>1       | Quarterly<br>Seasonal Factor<br>0.84 |  |  |  |  |  |
| Quarter<br>1<br>2  | Quarterly Seasonal Factor 0.84 0.92  |  |  |  |  |  |

| Mean Absol | ute Deviation |
|------------|---------------|
| MAD =      | 2             |
| Mean Squar |               |
| MSE =      | 4             |

- (g) Using the last-value method with seasonality (MAD = 1.5), the forecast for first quarter is 23 houses.
- (h) Quarter 2: (27)(0.92) = 25, Quarter 3: (27)(1.2) = 32, Quarter 4: (27)(1.04) = 28

27.8-15.

# (a) Last-Value Method with Seasonality

|      |       |       | Seasonally | Seasonally |          |             |
|------|-------|-------|------------|------------|----------|-------------|
|      |       | True  | Adjusted   | Adiusted   | Actual   | Forecasting |
| Year | Month | Value | Value      | Forecast   | Forecast | Error       |
| 1    | Jan   | 68    | 76         |            |          |             |
| 1    | Feb   | 71    | 81         | 76         | 66       | 5           |
| 1    | Mar   | 66    | 73         | 81         | 73       | 7           |
| 1    | Apr   | 72    | 77         | 73         | 67       | 5           |
| 1    | May   | 77    | 80         | 77         | 74       | 3           |
| 1    | June  | 85    | 78         | 80         | 87       | 2           |
| 1    | July  | 94    | 80         | 78         | 91       | 3           |
| 1    | Aug   | 96    | 83         | 80         | 92       | 4           |
| 1    | Sep   | 80    | 82         | 83         | 81       | 1           |
| 1    | Oct   | 73    | 80         | 82         | 75       | 2           |
| 1    | Nov   | 84    | 80         | 80         | 84       | 0           |
| 1    | Dec   | 89    | 82         | 80         | 86       | 3           |
| 2    | Jan   |       |            | 82         | 74       |             |

| Mean Absolute Deviation |       |  |  |  |  |  |
|-------------------------|-------|--|--|--|--|--|
| MAD = 3.07              |       |  |  |  |  |  |
|                         |       |  |  |  |  |  |
| Mean Square Error       |       |  |  |  |  |  |
| MSE =                   | 12.89 |  |  |  |  |  |

# Averaging Method with Seasonality

|   |       | True<br>Value | Adjusted | Seasonally<br>Adjusted<br>Forecast | Actual   | Forecasting |
|---|-------|---------------|----------|------------------------------------|----------|-------------|
|   | Month |               |          | Forecast                           | Forecast | CIIOI       |
| 1 | Jan   | 68            | /6       |                                    |          |             |
| 1 | Feb   | 71            | 81       | 76                                 | 66       | 5           |
| 1 | Mar   | 66            | 73       | 78                                 | 71       | 5           |
| 1 | Apr   | 72            | 77       | 76                                 | 71       | 1           |
| 1 | May   | 77            | 80       | 77                                 | 73       | 4           |
| 1 | June  | 85            | 78       | 77                                 | 84       | 1           |
| 1 | July  | 94            | 80       | 77                                 | 91       | 3           |
| 1 | Aug   | 96            | 83       | 78                                 | 89       | 7           |
| 1 | Sep   | 80            | 82       | 79                                 | 76       | 4           |
| 1 | Oct   | 73            | 80       | 79                                 | 72       | 1           |
| 1 | Nov   | 84            | 80       | 79                                 | 83       | 1           |
| 1 | Dec   | 89            | 82       | 79                                 | 86       | 3           |
| 2 | Jan   |               |          | 79                                 | 71       |             |

| Mean Absolute Deviation |  |  |  |  |  |
|-------------------------|--|--|--|--|--|
| 3.12                    |  |  |  |  |  |
|                         |  |  |  |  |  |
| Mean Square Error       |  |  |  |  |  |
| 13.07                   |  |  |  |  |  |
|                         |  |  |  |  |  |

# Moving-Average Method with Seasonality

|      |       |       | Seasonally | Seasonally |          |                      |
|------|-------|-------|------------|------------|----------|----------------------|
|      |       | True  | Adjusted   | Adjusted   | Actual   | Forecasting<br>Error |
| Year | Month | Value |            |            | Forecast |                      |
| 1    | Jan   | 68    | 76         |            |          |                      |
| 1    | Feb   | 71    | 81         |            |          |                      |
| 1    | Mar   | 66    | 73         |            |          |                      |
| 1    | Apr   | 72    | 77         | 76         | 71       | 1                    |
| 1    | May   | 77    | 80         | 77         | 74       | 3                    |
| 1    | June  | 85    | 78         | 77         | 84       | 1                    |
| 1    | July  | 94    | 80         | 79         | 92       | 2                    |
| 1    | Aug   | 96    | 83         | 80         | 91       | 5                    |
| 1    | Sep   | 80    | 82         | 81         | 78       | 2                    |
| 1    | Oct   | 73    | 80         | 82         | 75       | 2                    |
| 1    | Nov   | 84    | 80         | 82         | 86       | 2                    |
| 1    | Dec   | 89    | 82         | 81         | 87       | 2                    |
| 2    | Jan   |       |            | 81         | 73       |                      |

| Mean Absolute Deviation |      |  |  |  |  |  |
|-------------------------|------|--|--|--|--|--|
| MAD = 2.18              |      |  |  |  |  |  |
|                         |      |  |  |  |  |  |
| Mean Square Error       |      |  |  |  |  |  |
| MSE =                   | 5.79 |  |  |  |  |  |

# Exponential Smoothing Method with Seasonality

|      |       |       | Seasonally | Seasonally |          |             |
|------|-------|-------|------------|------------|----------|-------------|
|      |       | True  | Adjusted   | Adjusted   | Actual   | Forecasting |
| Year | Month | Value | Value      | Forecast   | Forecast | Error       |
| 1    | Jan   | 68    | 76         | 80         | 72       | 4           |
| 1    | Feb   | 71    | 81         | 79         | 70       | 1           |
| 1    | Mar   | 66    | 73         | 79         | 72       | 6           |
| 1    | Apr   | 72    | 77         | 78         | 73       | 1           |
| 1    | May   | 77    | 80         | 78         | 75       | 2           |
| 1    | June  | 85    | 78         | 78         | 85       | 0           |
| 1    | July  | 94    | 80         | 78         | 92       | 2           |
| 1    | Aug   | 96    | 83         | 79         | 91       | 5           |
| 1    | Sep   | 80    | 82         | 80         | 77       | 3           |
| 1    | Oct   | 73    | 80         | 80         | 73       | 0           |
| 1    | Nov   | 84    | 80         | 80         | 84       | 0           |
| 1    | Dec   | 89    | 82         | 80         | 87       | 2           |
| 2    | Jan   |       |            | 81         | 73       |             |

| Mean Absolute Deviation |      |  |  |  |  |
|-------------------------|------|--|--|--|--|
| MAD = 2.34              |      |  |  |  |  |
|                         |      |  |  |  |  |
| Mean Square Error       |      |  |  |  |  |
| MSE =                   | 9.31 |  |  |  |  |
|                         |      |  |  |  |  |

| Method                | MAD  | MSE   |
|-----------------------|------|-------|
| Last-Value            | 3.07 | 12.89 |
| Averaging             | 3.12 | 13.07 |
| Moving-Average        | 2.18 | 5.79  |
| Exponential Smoothing | 2.34 | 9.31  |

(b) The moving-average method with seasonality has the lowest MAD value. With this method, the forecast for January is 73 passengers.

#### 27.8-16.

(a)

| Method         | MAD  | MSE   |
|----------------|------|-------|
| Last-Value     | 2.46 | 8.34  |
| Averaging      | 7.06 | 74.73 |
| Moving-Average | 2.79 | 9.68  |
| Exp. Smoothing | 4.28 | 25.87 |

(b) Forecast: 94

|   |      |       | Seasonally |        |           | Seasonally |          |                      |
|---|------|-------|------------|--------|-----------|------------|----------|----------------------|
|   |      | True  | Adjusted   | Latest | Estimated | Adjusted   | Actual   | Forecasting<br>Error |
|   |      | Value |            | Trend  |           |            | Forecast | Error                |
| 1 | Jan  | 75    | 83         |        | 2         | 82         | 74       | 1                    |
| 1 | Feb  | 76    | 86         | 2      | 2         | 84         | 74       | 2                    |
| 1 | Mar  | 81    | 89         | 2      | 2         | 87         | 79       | 2                    |
| 1 | Apr  | 84    | 90         | 3      | 2         | 90         | 83       | 1                    |
| 1 | May  | 85    | 89         | 2      | 2         | 92         | 88       | 3                    |
| 1 | June | 99    | 91         | 2      | 2         | 93         | 102      | 3                    |
| 1 | July | 107   | 91         | 2      | 2         | 95         | 111      | 4                    |
| 1 | Аид  | 108   | 94         | 1      | 2         | 96         | 110      | 2                    |
| 1 | Sep  | 94    | 97         | 1      | 2         | 97         | 95       | 1                    |
| 1 | Oct  | 90    | 99         | 2      | 2         | 99         | 90       | 0                    |
| 1 | Nov  | 106   | 101        | 2      | 2         | 101        | 106      | 0                    |
| 1 | Dec  | 110   | 102        | 2      | 2         | 103        | 111      | 1                    |
| 2 | Jan  |       |            | 2      | 2         | 104        | 94       |                      |

| Mean Absolute Deviation |                   |  |  |  |  |  |
|-------------------------|-------------------|--|--|--|--|--|
| MAD =                   | 1.66              |  |  |  |  |  |
|                         |                   |  |  |  |  |  |
| Mean Squar              | Mean Square Error |  |  |  |  |  |
| MSE =                   | 4.21              |  |  |  |  |  |
| •                       |                   |  |  |  |  |  |

MAD and MSE values are lower than those in (a).

(c)

|   | Mean Absol | ute Deviation |  |
|---|------------|---------------|--|
| - | MAD =      | 2.74          |  |
|   |            |               |  |
|   | Mean Squar |               |  |
| 1 | MSE =      | 10.44         |  |

MAD and MSE values obtained are higher than the ones in (b).

|      |       |       | Seasonally |        |           | Seasonally |          |             |
|------|-------|-------|------------|--------|-----------|------------|----------|-------------|
|      |       | True  | Adjusted   | Latest | Estimated | Adjusted   |          | Forecasting |
| Year | Month | Value | Value      | Trend  | Trend     | Forecast   | Forecast | Error       |
| 1    | Jan   | 68    | 76         |        | 0         | 80         | 72       | 4           |
| 1    | Feb   | 71    | 81         | -1     | 0         | 79         | 69       | 2           |
| 1    | Mar   | 66    | 73         | 0      | 0         | 79         | 72       | 6           |
| 1    | Apr   | 72    | 77         | -1     | 0         | 77         | 72       | 0           |
| 1    | May   | 77    | 80         | 0      | 0         | 77         | 74       | 3           |
| 1    | June  | 85    | 78         | 0      | 0         | 77         | 84       | 1           |
| 1    | July  | 94    | 80         | 0      | 0         | 77         | 90       | 4           |
| 1    | Аид   | 96    | 83         | 0      | 0         | 78         | 89       | 7           |
| 1    | Sep   | 80    | 82         | 1      | 0         | 79         | 77       | 3           |
| 1    | Oct   | 73    | 80         | 1      | 0         | 80         | 73       | 0           |
| 1    | Nov   | 84    | 80         | 0      | 0         | 80         | 84       | 0           |
| 1    | Dec   | 89    | 82         | 0      | 0         | 80         | 87       | 2           |
| 2    | Jan   | 75    | 83         | 1      | 0         | 81         | 73       | 2           |
| 2    | Feb   | 76    | 86         | 1      | 0         | 82         | 72       | 4           |
| 2    | Mar   | 81    | 89         | 1      | 1         | 83         | 76       | 5           |
| 2    | Apr   | 84    | 90         | 2      | 1         | 85         | 79       | 5           |
| 2    | May   | 85    | 89         | 2      | 1         | 87         | 84       | 1           |
| 2    | June  | 99    | 91         | 1      | 1         | 89         | 97       | 2           |
| 2    | July  | 107   | 91         | 1      | 1         | 90         | 106      | 1           |
| 2    | Aug   | 108   | 94         | 1      | 1         | 92         | 105      | 3           |
| 2    | Sep   | 94    | 97         | 2      | 1         | 93         | 91       | 3           |
| 2    | Oct   | 90    | 99         | 2      | 1         | 96         | 87       | 3           |
| 2    | Nov   | 106   | 101        | 2      | 2         | 98         | 103      | 3           |
| 2    | Dec   | 110   | 102        | 2      | 2         | 100        | 108      | 2           |
| 3    | Jan   |       |            | 2      | 2         | 102        | 92       |             |

- (d) Exponential smoothing with seasonality and trend (with parameters as in (b) should be used.
- (e) The best values for the smoothing constants are  $\alpha=\beta=0.3$  and  $\gamma=0.001$ . The forecasts for the coming year are given in the table below.

| Month | Forecast |
|-------|----------|
| Feb   | 98.4     |
| Mar   | 98.5     |
| Apr   | 105.3    |
| May   | 110.3    |
| Jun   | 125.7    |
| Jul   | 138.1    |
| Aug   | 141      |
| Sep   | 120.7    |
| Oct   | 113.4    |
| Nov   | 132.6    |
| Dec   | 139.7    |

# 27.8-17.

# (a) Based on past sales:

|       | Estimate for    |
|-------|-----------------|
| Month | Seasonal Factor |
| Jan   | 0.808186196     |
| Feb   | 0.807383628     |
| Mar   | 0.876404494     |
| Apr   | 0.921348315     |
| Мау   | 1.016051364     |
| Jun   | 1.105136437     |
| Jul   | 1.017656501     |
| Aug   | 1.188603531     |
| Sep   | 0.805778491     |
| Oct   | 0.760834671     |
| Nov   | 1.436597111     |
| Dec   | 1.256019262     |

# (b) Moving Average with Seasonality

|      |       |       | Seasonally | Seasonally |          |             |
|------|-------|-------|------------|------------|----------|-------------|
|      |       | True  | Adjusted   | Adjusted   | Actual   | Forecasting |
| Year | Month | Value | Value      | Forecast   | Forecast | Error       |
| 1    | Jan   |       |            |            |          |             |
| 1    | Feb   |       |            |            |          |             |
| 1    | Mar   |       |            |            |          |             |
| 1    | Apr   |       |            |            |          |             |
| 1    | May   |       |            |            |          |             |
| 1    | June  |       |            |            |          |             |
| 1    | July  |       |            |            |          |             |
| 1    | Aug   |       |            |            |          |             |
| 1    | Sep   |       |            |            |          |             |
| 1    | Oct   | 335   | 440        |            |          |             |
| 1    | Nov   | 594   | 413        |            |          |             |
| 1    | Dec   | 527   | 420        |            |          |             |
| 2    | Jan   | 364   | 450        | 424        | 343      | 21          |
| 2    | Feb   | 343   | 425        | 428        | 345      | 2           |
| 2    | Mar   | 391   | 446        | 432        | 378      | 13          |
| 2    | Apr   | 437   | 474        | 440        | 406      | 31          |
| 2    | May   | 458   | 451        | 448        | 456      | 2           |
| 2    | June  | 494   | 447        | 457        | 505      | 11          |
| 2    | July  | 468   | 460        | 457        | 465      | 3           |
| 2    | Aug   | 555   | 467        | 453        | 538      | 17          |
| 2    | Sep   | 387   | 480        | 458        | 369      | 18          |
| 2    | Oct   | 364   | 478        | 469        | 357      | 7           |
| 2    | Nov   | 662   | 461        | 475        | 683      | 21          |
| 2    | Dec   | 581   | 463        | 473        | 594      | 13          |
| 3    | Jan   |       |            | 467        | 378      |             |

| Mean Absolute Deviation |  |  |  |  |  |
|-------------------------|--|--|--|--|--|
| MAD = 13.30             |  |  |  |  |  |
|                         |  |  |  |  |  |
| Mean Square Error       |  |  |  |  |  |
| MSE = 249.09            |  |  |  |  |  |

# (c) Exponential Smoothing with Seasonality

|      |      |       | Seasonally | Seasonally |          |             |
|------|------|-------|------------|------------|----------|-------------|
|      |      | True  |            | Adjusted   | Actual   | Forecasting |
| Year |      | Value | Value      | Forecast   | Forecast | Error       |
| 1    | Jan  | 364   | 450        | 420        | 339      | 25          |
| 1    | Feb  | 343   | 425        | 426        | 344      | 1           |
| 1    | Mar  | 391   | 446        | 426        | 373      | 18          |
| 1    | Apr  | 437   | 474        | 430        | 396      | 41          |
| 1    | May  | 458   | 451        | 439        | 446      | 12          |
| 1    | June | 494   | 447        | 441        | 488      | 6           |
| 1    | July | 468   | 460        | 442        | 450      | 18          |
| 1    | Aug  | 555   | 467        | 446        | 530      | 25          |
| 1    | Sep  | 387   | 480        | 450        | 363      | 24          |
| 1    | Oct  | 364   | 478        | 456        | 347      | 17          |
| 1    | Nov  | 662   | 461        | 461        | 662      | 0           |
| 1    | Dec  | 581   | 463        | 461        | 579      | 2           |
| 2    | Jan  |       |            | 461        | 373      |             |

| Mean Absolute Deviation |          |  |  |  |  |  |
|-------------------------|----------|--|--|--|--|--|
| MAD =                   | 15.83    |  |  |  |  |  |
| Mean Squa               | ге Еггог |  |  |  |  |  |
| MSE =                   | 384.99   |  |  |  |  |  |

## (d) Exponential Smoothing with Seasonality and Trend

|   |       | •    | Seasonally |        | •         | Seasonally |          |             |
|---|-------|------|------------|--------|-----------|------------|----------|-------------|
|   |       | True | Adjusted   | Latest | Estimated | Adjusted   |          | Forecasting |
|   | Month |      | Value      | Trend  |           | Forecast   | Forecast | Error       |
| 1 | Jan   | 364  | 450        |        | 0         | 420        | 339      | 25          |
| 1 | Feb   | 343  | 425        | 6      | 1         | 427        | 345      | 2           |
| 1 | Mar   | 391  | 446        | 1      | 1         | 428        | 375      | 16          |
| 1 | Apr   | 437  | 474        | 5      | 2         | 433        | 399      | 38          |
| 1 | May   | 458  | 451        | 10     | 3         | 445        | 452      | 6           |
| 1 | June  | 494  | 447        | 5      | 4         | 450        | 497      | 3           |
| 1 | July  | 468  | 460        | 3      | 4         | 453        | 461      | 7           |
| 1 | Aug   | 555  | 467        | 5      | 4         | 458        | 545      | 10          |
| 1 | Sep   | 387  | 480        | 6      | 4         | 464        | 374      | 13          |
| 1 | Oct   | 364  | 478        | 7      | 5         | 472        | 359      | 5           |
| 1 | Nov   | 662  | 461        | 6      | 5         | 479        | 688      | 26          |
| 1 | Dec   | 581  | 463        | 2      | 4         | 479        | 602      | 21          |
| 2 | Jan   |      |            | 1      | 4         | 480        | 388      |             |

| Mean Absolute Deviation |        |  |  |  |  |
|-------------------------|--------|--|--|--|--|
| MAD =                   | 14.26  |  |  |  |  |
|                         |        |  |  |  |  |
| Mean Square Error       |        |  |  |  |  |
| MSE =                   | 314.71 |  |  |  |  |
|                         |        |  |  |  |  |

(e) The moving-average method results in the best MAD value (13.30) and the best MSE value (249.09).

(f)

| Month     | Avg. Forecast | Forecasting Error |
|-----------|---------------|-------------------|
| January   | 341           | 23                |
| February  | 345           | 2                 |
| March     | 375           | 16                |
| April     | 400           | 37                |
| May       | 451           | 7                 |
| June      | 497           | 3                 |
| July      | 459           | 9                 |
| August    | 537           | 18                |
| September | 369           | 18                |
| October   | 354           | 10                |
| November  | 677           | 15                |
| December  | 592           | 12                |

MAD = 14.17

(g) The moving-average method performed better than the average of all three, so it should be used next year.

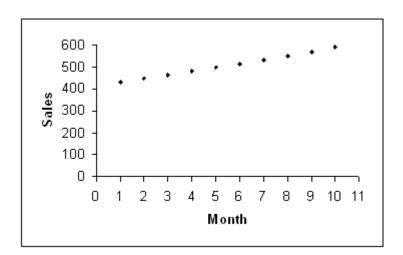
(h) The best method is exponential smoothing with seasonality and trend, using  $\alpha=\beta=0.3$  and  $\gamma=0.001$ .

| Month | Forecast |
|-------|----------|
| Jan   | 389      |
| Feb   | 394      |
| Mar   | 430      |
| Apr   | 453      |
| May   | 502      |
| Jun   | 548      |
| Jul   | 507      |
| Aug   | 594      |
| Sep   | 405      |
| Oct   | 383      |
| Nov   | 726      |
| Dec   | 637      |

27.8-18.

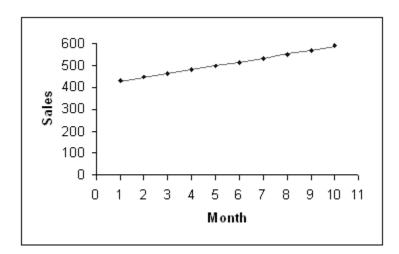
| Quarter | Sales | Forecast a) | Squared Error a) | Forecast b) | Squared Error b) | Forecast c) | Squared Error c) | Forecast d) | Squared Error d) |
|---------|-------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|
| 1       | 6900  |             |                  |             |                  |             |                  |             |                  |
| 2       | 6700  | i           |                  |             |                  |             |                  |             | 1                |
| 3       | 7900  | 4           |                  | 6880        | 1040400          | 6840        | 1123600          | 6500        | 1960000          |
| 4       | 7100  |             |                  | 6982        | 13924            | 7158        | 3364             | 6846        | 64516            |
| 5       | 8200  | 7150        | 1102500          | 6994        | 1454918          | 7141        | 1122328          | 6871        | 1766082          |
| 6       | 7000  | 7475        | 225625           | 7114        | 13092            | 7458        | 210149           | 7338        | 114384           |
| 7       | 7300  | 7550        | 62500            | 7103        | 38818            | 7321        | 437              | 7275        | 637              |
| 8       | 7500  | 7400        | 10000            | 7123        | 142370           | 7315        | 34364            | 7323        | 31458            |
| 9       | 9400  | 7500        | 3610000          | 7160        | 5015754          | 7370        | 4119934          | 7432        | 3872612          |
| 10      | 9200  | 7800        | 1960000          | 7384        | 3296509          | 7979        | 1490434          | 8256        | 891432           |
| 11      | 9800  | 8350        | 2102500          | 7566        | 4991051          | 8345        | 2115813          | 8857        | 888430           |
| 12      | 9900  | 8975        | 855625           | 7789        | 4454884          | 8782        | 1250390          | 9543        | 127179           |
| 13      | 11400 | 9575        | 3330625          | 8000        | 11557236         | 9117        | 5210929          | 10086       | 1727552          |
| 14      | 10000 | 10075       | 5625             | 8340        | 2754386          | 9802        | 39173            | 11034       | 1068141          |
| 15      | 9400  | 10275       | 765625           | 8506        | 798647           | 9861        | 212940           | 11184       | 3182671          |
| 16      | 8400  | 10175       | 3150625          | 8596        | 38297            | 9723        | 1750377          | 10949       | 6496332          |
| 17      | 8800  | 9800        | 1000000          | 8576        | 50119            | 9326        | 276795           | 10255       | 2116296          |
| 18      | 7600  | 9150        | 2402500          | 8599        | 997030           | 9168        | 2459499          | 9758        | 4656936          |
| 19      | 7500  | 8550        | 1102500          | 8499        | 997327           | 8698        | 1434713          | 8856        | 1838858          |
|         | MSE   |             | 1445750          |             | 2214986          |             | 1344426          |             | 1811971          |

**SMALLEST** 


27.8-19.

| Quarter Sales | Forecast a) | Squared Error a) | Forecast b) | Squared Error b) | Forecast c) | Squared Error c) | Forecast d) | Squared Error d) |
|---------------|-------------|------------------|-------------|------------------|-------------|------------------|-------------|------------------|
| 1 546         |             |                  |             |                  |             |                  | -           | ,                |
| 2 528         |             |                  |             |                  |             |                  |             |                  |
| 3 530         |             |                  | 544         | 202              | 541         | 112              | 510         | 400              |
| 4 508         |             |                  | 543         | 1210             | 537         | 866              | 500         | 67               |
| 5 647         | 528         | 14161            | 539         | 11599            | 523         | 15277            | 487         | 25665            |
| 6 594         | 553         | 1661             | 550         | 1930             | 560         | 1124             | 534         | 3622             |
| 7 665         | 570         | 9073             | 554         | 12218            | 631         | 1149             | 556         | 11828            |
| 8 630         | 604         | 702              | 566         | 4158             | 641         | 127              | 603         | 727              |
| 9 736         | 634         | 10404            | 572         | 26907            | 655         | 6642             | 628         | 11727            |
| 10 724        | 656         | 4590             | 588         | 18396            | 679         | 2030             | 687         | 1404             |
| 11 813        | 689         | 15438            | 602         | 44549            | 732         | 6496             | 727         | 7314             |
| MSE           |             | 8004             |             | 13463            |             | 3758             |             | 6973             |

smallest


### 27.10-1.

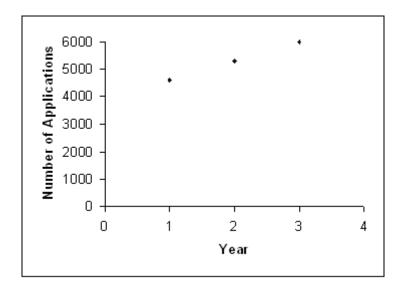
(a)



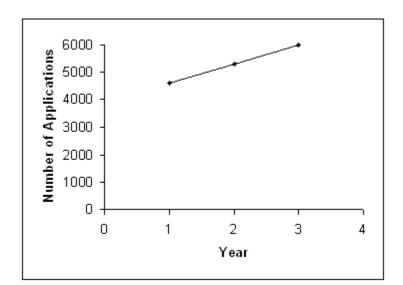
(b) 
$$y = 410 + 17.6x$$

(c)



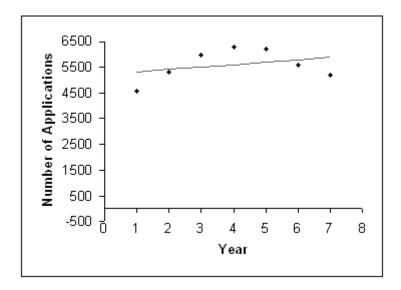

(d) 
$$y = 410 + (17.6)(11) = 604$$

(e) 
$$y = 410 + (17.6)(20) = 762$$


(f) The average growth in monthly sales is 17.6.

### 27.10-2.

(a)




(b)



- (c) y = 3900 + 700x
- (d) y(Year 4) = 3900 + (700)(4) = 6700 y(Year 5) = 3900 + (700)(5) = 7400 y(Year 6) = 3900 + (700)(6) = 8100 y(Year 7) = 3900 + (700)(7) = 8800y(Year 8) = 3900 + (700)(8) = 9500
- (e) It does not make sense to use the forecast obtained earlier, 9500. The relationship between the variables has changed and thus the linear regression that was used is no longer appropriate.

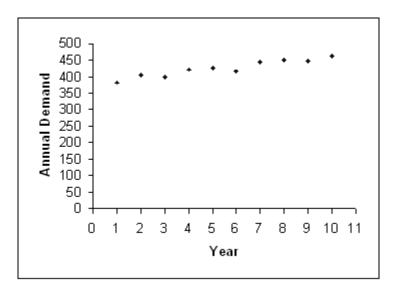
(f)



$$y = 5228 + 92.9x$$
  
 $y = 5228 + (92.9)(8) = 5971$ 

The linear regression line does not provide a close fit to the data. Consequently, the forecast that it provides for year 8 is not likely to be accurate. It does not make sense to continue to use a linear regression line when changing conditions cause a large shift in the underlying trend in the data.

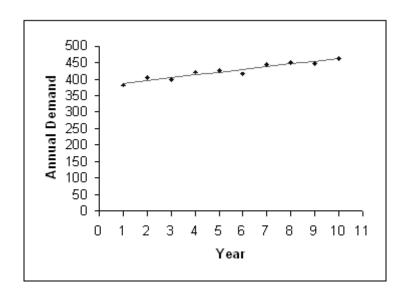
(g)


|        |       |         |           | Exponential |             |
|--------|-------|---------|-----------|-------------|-------------|
| Time   | True  | Latest  | Estimated | Smoothing   | Forecasting |
| Period | Value | Trend   | Trend     | Forecast    | Error       |
| 1      | 4,600 |         | 700.00    | 4,600       | 0           |
| 2      | 5,300 | 700.00  | 700.00    | 5,300       | 0           |
| 3      | 6,000 | 700.00  | 700.00    | 6,000       | 0           |
| 4      | 6,300 | 700.00  | 700.00    | 6,700       | 400         |
| 5      | 6,200 | 500.00  | 600.00    | 7,100       | 900         |
| 6      | 5,600 | 150.00  | 375.00    | 7,025       | 1,425       |
| 7      | 5,200 | -337.50 | 18.75     | 6,331       | 1,131       |
| 8      |       | -546.88 | -264.06   | 5,502       |             |

| Mean Absolute Deviation |           |  |  |  |  |
|-------------------------|-----------|--|--|--|--|
| MAD =                   | 550.9     |  |  |  |  |
|                         |           |  |  |  |  |
| Mean Square Error       |           |  |  |  |  |
| MSE =                   | 611,478.8 |  |  |  |  |
|                         |           |  |  |  |  |

Casual forecasting takes all the data into account, even the data from before changing conditions cause a shift. Exponential smoothing with trend adjusts to shifts in the underlying trend.

27.10-3.


(a)

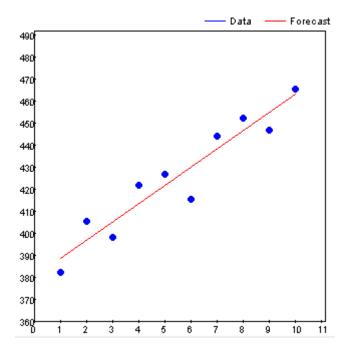


(b) y = 380.27 + 8.15x

| Time | Independent | Dependent |     | Estimation | Square   |
|------|-------------|-----------|-----|------------|----------|
|      | Variable    |           |     | : ;        | of Error |
| 1    | 1           | 382       | 388 | 6.42       | 41       |
| 2    | 2           | 405       | 397 | 8.43       | 71       |
| 3    | 3           | 398       | 405 | 6.72       | 45       |
| 4    | 4           | 421       | 413 | 8.13       | 66       |
| 5    | 5           | 426       | 421 | 4.98       | 25       |
| 6    | 6           | 415       | 429 | 14.18      | 201      |
| 7    | 7           | 443       | 437 | 5.67       | 32       |
| 8    | 8           | 451       | 445 | 5.52       | 30       |
| 9    | 9           | 446       | 454 | 7.63       | 58       |
| 10   | 10          | 464       | 462 | 2.22       | 5        |

(c)

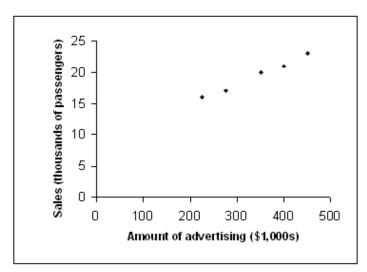



(d) 
$$y = 380 + (8.15)(11) = 470$$

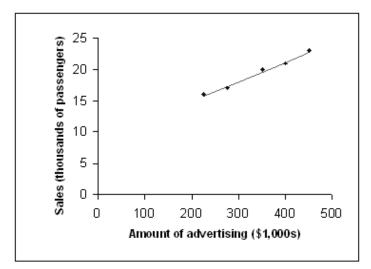
(e) 
$$y = 380 + (8.15)(15) = 503$$

(f) The average growth per year is 8.15 tons.

(g)


| Forecasting<br>MAD = 6.99 |     |        | Regressi<br>= 57.5 | on Method |      |       |
|---------------------------|-----|--------|--------------------|-----------|------|-------|
| a = 380.27                |     | b = 8. | 15                 | y = 380.  | 27 + | 8.15x |
| ×                         | I   | У      | 1                  | Forecast  | I    | Error |
| 1                         | - 1 | 382    | 1                  | 388.42    | - 1  | 6.42  |
| 2                         | - 1 | 405    | 1                  | 396.57    | - 1  | 8.43  |
| 3                         | - 1 | 398    | I                  | 404.72    | - 1  | 6.72  |
| 4                         | - 1 | 421    | 1                  | 412.87    | - 1  | 8.13  |
| 5                         | - 1 | 426    | 1                  | 421.02    | - 1  | 4.98  |
| 6                         | - 1 | 415    | 1                  | 429.18    | - 1  | 14.18 |
| 7                         | - 1 | 443    | 1                  | 437.33    | - 1  | 5.67  |
| 8                         | - 1 | 451    | 1                  | 445.48    | - 1  | 5.52  |
| 9                         | - 1 | 446    | 1                  | 453.63    |      | 7.63  |
| 10                        | - 1 | 464    | 1                  | 461.78    | 1    | 2.22  |




#### 27.10-4.

(a) The amount of advertising is the independent variable and sales is the dependent variable.

(b)



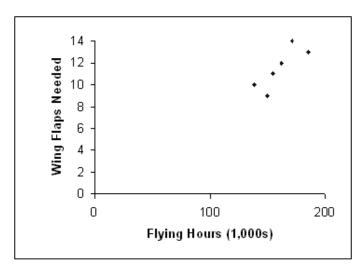
(c) y = 8.71 + 0.031x



(d) 
$$y = 8.71 + (0.031)(300) = 18,000$$
 passengers

(e) 
$$22 = 8.71 + (0.031)(x) \Rightarrow x = $429,000$$

(f) An increase of 31 passengers can be attained.

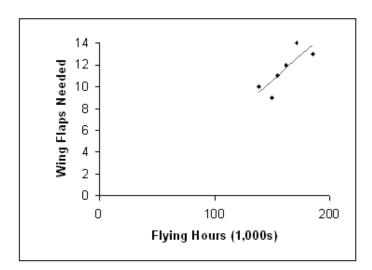

#### 27.10-5.

- (a) If the sales increase from 16 to 19 when the amount of advertising is 225, then the linear regression line shifts below this point. The line actually shifts up, but not as much as the data point has shifted up.
- (b) If the sales increase from 23 to 26 when the amount of advertising is 450, then the linear regression line shifts below this point. The line actually shifts up, but not as much as the data point has shifted up.
- (c) If the sales increase from 20 to 23 when the amount of advertising is 350, then the linear regression line shifts below this point. The line actually shifts up, but not as much as the data point has shifted up.

## 27.10-6.

(a) The number of flying hours is the independent variable and the number of wing flaps needed is the dependent variable.

(b)




(c) y = -3.382 + 0.093x

|        | Independent |          |          | Estimation | •        |
|--------|-------------|----------|----------|------------|----------|
| Period | Variable    | Variable | Estimate | Error      | of Error |
| 1      | 162         | 12       | 12       | 0.30       | 0        |
| 2      | 149         | 9        | 10       | 1.49       | 2        |
| 3      | 185         | 13       | 14       | 0.84       | 1        |
| 4      | 171         | 14       | 13       | 1.46       | 2        |
| 5      | 138         | 10       | 9        | 0.53       | 0        |
| 6      | 154         | 11       | 11       | 0.04       | 0        |

| Linear     | Regression Li | Estimator |         |        |
|------------|---------------|-----------|---------|--------|
| y = a + bx |               |           | If x =  | 150    |
| a=         | -3.382        | T         |         |        |
| b =        | 0.093         |           | then y= | 10.584 |

(d)



(e) 
$$y = -3.382 + (0.093)(150) = 11$$

(f) 
$$y = -3.382 + (0.093)(200) = 15$$

### 27.10-7.

|      |             |           |    |            | ·      |
|------|-------------|-----------|----|------------|--------|
| Time | Independent | Dependent |    | Estimation | Square |
|      | Variable    |           |    |            |        |
| 1    | 323         | 24        | 22 | 2.48       | 6      |
| 2    | 359         | 23        | 25 | 2.02       | 4      |
| 3    | 396         | 28        | 29 | 0.63       | 0      |
| 4    | 421         | 32        | 31 | 0.93       | 1      |
| 5    | 457         | 34        | 35 | 0.57       | 0      |
| 6    | 472         | 37        | 36 | 0.97       | 1      |
| 7    | 446         | 33        | 34 | 0.50       | 0      |
| 8    | 407         | 30        | 30 | 0.30       | 0      |
| 9    | 374         | 27        | 26 | 0.51       | 0      |
| 10   | 343         | 22        | 23 | 1.47       | 2      |

| Linear  | Regression Lin | e |
|---------|----------------|---|
| y = a + | bx             |   |
| a=      | -9.954         | l |
| b =     | 0.097          |   |
|         |                | Ī |

Joe should use the linear regression line y = -9.95 + 0.097x to develop a forecast for jobs in the future.

### 27.10-8.

(a) 
$$\hat{y}(x) = 121.04 - 1.0346x \Rightarrow \hat{y}(55) = 64.137$$

(b) 
$$t_{0.025:5} = 2.571, s_{y|x} = 6.34$$
 
$$\sqrt{1 + \frac{1}{7} + \frac{(x_t - \overline{x})^2}{\sum (x_i - \overline{x})^2}} = 1.0735$$

The 95% prediction interval is [46.64, 81.64].

(c) By interpolation:

$$t_{0.0125:5} = 3.365 - \frac{0.0025}{0.015}(3.365 - 2.571) = 3.233$$

The simultaneous 95% prediction interval is [42.13, 86.14].

(d) By interpolation:

$$c^{**} = 10.722 + \frac{1}{2}(11.150 - 10.722) = 10.936$$

The simultaneous tolerance interval is [37.1, 91.2].

# 27.10-9.

(a) 
$$\sum_{i=1}^{5} x = 20, \sum_{i=1}^{5} y = 40, \sum_{i=1}^{5} xy = 242, \sum_{i=1}^{5} x^2 = 120$$
$$\Rightarrow \widehat{y}(x) = -0.2 + 2.05x \Rightarrow \widehat{y}(10) = 20.3$$
(b) 
$$s_{y|x}^2 = 0.6333, t_{0.025:3} = 3.182$$
$$\sqrt{\frac{1}{5} + \frac{(x_t - \overline{x})^2}{\sum (x_i - \overline{x})^2}} = \sqrt{1.1}$$

The 95% prediction interval is [17.64, 22.9].

(c)

$$\sqrt{1 + \frac{1}{5} + \frac{(x_t - \overline{x})^2}{\sum (x_i - \overline{x})^2}} = \sqrt{2.1}$$

The 95% prediction interval is [16.630, 23.970].

(d) By interpolation:

$$c^{**} = 11.150 + \frac{1}{2}(14.953 - 11.150) = 13.0515$$

The simultaneous tolerance interval is [9.406, 31.194].

# 27.10-10.

(a)

$$k = \frac{\sum_{i=1}^{5} x_i y_i - \left(\sum_{i=1}^{5} x_i \sum_{i=1}^{5} y_i\right) / 5}{\sum_{i=1}^{5} x_i^2 - \left(\sum_{i=1}^{5} x_i\right)^2 / 5} = \frac{19.96 - 0}{10 - 0} = 1.996$$

$$\log g = \frac{\sum_{i=1}^{5} (y_i - kx_i)}{5} = \frac{0.08}{5} = 0.016$$

$$\Rightarrow \log r = 0.016 + 1.996 \log t$$

$$\log t = 3 \Rightarrow \log r = 0.016 + 1.996 \times 3 = 6.004$$

The forecast for the distance traveled when  $\log t = 3$  is then  $10^{6.004}$ , which is approximately one million.

(b)

| $\log t$ | $\log r$ | $\widehat{E}(\log r)$ |
|----------|----------|-----------------------|
| -2.0     | -3.95    | _                     |
| -1.0     | -2.12    | _                     |
| 0.0      | 0.08     | -3.767                |
| 1.0      | 2.20     | -3.382                |
| 2.0      | 3.87     | -2.824                |
| 3.0      | _        | -2.155                |

(c)

| $\log t$ | $\log r$ | $\alpha x + (1 - \alpha)F$ | Trend | $\widehat{E}(\log r)$ |
|----------|----------|----------------------------|-------|-----------------------|
| -2.0     | -3.95    | -3.950                     | 1.996 | _                     |
| -1.0     | -2.12    | -1.971                     | 1.994 | _                     |
| 0.0      | 0.08     | 0.029                      | 1.995 | 0.024                 |
| 1.0      | 2.20     | 2.042                      | 1.997 | 2.024                 |
| 2.0      | 3.87     | 4.022                      | 1.995 | 4.039                 |
| 3.0      | _        | _                          | _     | 6.017                 |

# 27.10-11.

$$Q = \sum_{i=1}^{n} (y_i - bx_i)^2 \Rightarrow \frac{dQ}{db} = \sum_{i=1}^{n} -2x_i(y_i - bx_i) = 0 \Rightarrow B = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

# **Cases**

- 27 1 a) We need to forecast the call volume for each day separately.
  - 1) To obtain the seasonally adjusted call volume for the past 13 weeks, we first have to determine the seasonal factors. Because call volumes follow seasonal patterns within the week, we have to calculate a seasonal factor for Monday, Tuesday, Wednesday, Thursday, and Friday. We calculate the seasonal factors using the following formula:

Average for the Day
Overall Average

The spreadsheet used to calculate the seasonal factors follows.

|                  | Monday             | Tuesday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Wednesday                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Thursday | Friday            | Total        |
|------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|--------------|
| Week 44          | 1130               | 851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                   |              |
| Week 45          | 1085               | 1042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 840      |                   | NEC .        |
| Week 46          | 1303               | 1121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1113     |                   | A CONTRACTOR |
| Week 47          | 2652               | SAUDINE SERVICE SERVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the |          |                   | 5545         |
| Week 48          | 1949               | 1507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .×i*.    |                   | 7318         |
| Week 49          | 1260               | 1134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | # 10 Page 1988 1989 1989 1989 1989 1989 1989 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 990      | 2.9 2.2 2.2       | - 6519       |
| Week 50          | 1002               | Committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the commit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 847      |                   | 4896         |
| Week 51          | 823                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 842      | 784               | 4397         |
| Week 52/1        | 1209               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 401      | 429               | 1653         |
| Week 2           |                    | 830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1082   | ™ : <u> </u> 841. | - 3962       |
| Week 3           | 1362               | 1174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 930      | ≟ ≟853.           | <b>5286</b>  |
| Week 4           | 924                | 954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 904      | 758               | ±# 4886      |
|                  | <b>.</b>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 945      | 610               | 4121         |
| Week 5           | ∄ ∷ ∯ 910 <i>ಕ</i> | 754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 729      | 772               | 3870         |
| Average          | 1268.846           | 1070.538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 866.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 803.923  | 721.154           | 946.231      |
| Seasonal Factors | 1.341              | 1.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.850    | 0.762             |              |

Now that we have found the seasonal factors, we can obtain the seasonally adjusted series. For each day within each of the 13 weeks, we need to calculate the seasonally adjusted daily call volumes using the following formula:

Actual Daily Call Volume
Seasonal Factor for the Corresponding Day of the Week

The spreadsheet for the seasonally adjusted call volumes follows.

|           | Monday  | Tuesday | Wednesday | Thursday  | Friday  |
|-----------|---------|---------|-----------|-----------|---------|
| Week 44   | 842.69  | 752.18  | 937.83    | 974.57    | 952.59  |
| Week 45   | 809.13  | 921.01  | 973.86    | 988.69    | 1048.37 |
| Week 46   | 971.70  | 990,83  | 1095.05   | - 1310.02 | 1318.67 |
| Week 47   | 1977.71 | 2496.97 | 2009.95   | 0,00      | 0.00    |
| Week 48   | 1453.45 | 1332.01 | 1079.76   | 1165.25   | 1422.32 |
| Week 49   | 939.63  | 1002.32 | 1027.36   | 996.93    | 936.84  |
| Week 50   | 747.23  | 748.65  | 1006.61   | 991.05    | 1028.69 |
| Week 51   | 613.74  | 0.00    | - 0.00    | 471.98    | 562.89  |
| Week 52/1 | 901.60  | 733.62  | 0.00      | 1273.53   | 1103.48 |
| Week 2    | 1015.70 | 1037.68 | 1055.74   | 1094.63   | 1119.23 |
| Week 3    | 689.06  | 843.22  | 1469.53   | 1064.02   | 994.58  |
| Week 4    | 660.73  | 776.05  | 875.60    | 1112.28   | 800.39  |
| Week 5    | 678.62  | 666.45  | 769.70    | 858.05    | 1012.95 |

<sup>2)</sup> To forecast the call volume for the next week using the last-value forecasting method, we need to use the Last Value with Seasonality template. However, we need to modify this template because it does not provide the option for daily seasonality. The modified spreadsheet follows.

| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Week Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | True<br>Value | Seasonally<br>Adjusted<br>Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Seasonally<br>Adjusted<br>Forecast | Actual<br>Forecast | Forecasting<br>Error                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------|-----------------------------------------|
| 44 Wed 859 938 753 890 169  44 Thure 828 974 938 797 31  45 Mon 1085 809 955 1281 198  45 Tues 1042 922 809 914 128  45 Tues 1042 922 809 914 128  45 Thure 840 988 974 922 845 47  45 Fri 799 1051 988 751 48  46 Mon 1303 972  46 Thure 1113 1309  46 Fri 1005 1322  47 Wed 1841 2010  47 Thure 2825 2500  47 Wed 1841 2010  47 Fri 0 0 0 0 48 Mon 149 1453  48 Thure 990 1185  48 Fri 1084 1426  49 Tues 1134 1004  49 Tues 1134 1004  49 Wed 941 1027  49 Thure 847 998  50 Thure 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 847 998  51 Tues 848 997  51 Tues 849 997  52 Tues 844 107  51 Tues 840 987 1058  52 Tues 844 1107  52 Tues 844 1107  53 Tues 844 1107  54 Tues 845 847  55 Tues 904 1084  55 Tues 904 1084  56 Tues 830 736  57 Tues 904 1084  57 Tues 904 1084  57 Tues 904 1084  57 Tues 904 1084  57 Tues 904 1084  57 Tues 904 1084  57 Tues 904 1084  57 Tues 904 1084  57 Tues 904 1084  57 Tues 904 1084  57 Tues 904 1084  57 Tues 909 1084  57 Tues 904 1084  57 Tues 909 1086                                                                                                                                                                                                                                                                                                                                                                                                                       | 44 Mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |                                         |
| 4.4 Thurs   4.4 Fri   726   955   974   740   14   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |                                         |
| 45 Mon 1085 809 955 1281 198 45 Tues 1042 922 809 914 128 45 Thurs 840 988 974 828 12 45 Fri 799 1051 988 751 48 46 Mon 1303 972 46 Mon 1303 1095 712 48 46 Wed 1003 1095 72 48 46 Wed 1003 1095 72 48 46 Wed 1003 1095 72 47 47 Mon 2652 1978 72 47 47 Tues 2055 2500 72 47 47 Thurs 0 0 0 72 47 48 Mon 1949 1453 72 48 48 Thurs 1113 1309 72 74 49 Wed 1841 2010 72 74 49 Mon 1260 940 74 49 Tues 1084 1426 74 49 Tues 4847 750 750 750 750 750 750 Thurs 847 998 750 750 750 750 Thurs 847 999 1550 750 Thurs 847 999 1551 Mon 823 614 751 Mon 823 614 751 Mon 823 614 751 Mon 823 614 751 Mon 823 614 751 Mon 823 614 750 750 750 750 750 750 750 750 750 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Section 19 To Section 19 To Section 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 938                                | 707                |                                         |
| 45 Tues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 974                                | 740                |                                         |
| 45 Thus 840 988 974 822 845 47 45 Fri 799 1061 988 751 48 46 Mon 1303 972 46 Mon 1121 992 46 Wed 1003 1095 46 Thus 1113 1300 46 Fri 1005 1322 47 Mon 2652 1978 47 Tues 2825 2500 47 Wed 1841 2010 47 Fri 0 0 0 48 Mon 1949 1453 48 Thus 990 1165 48 Fri 1084 426 49 Mon 1260 940 49 Tues 1134 1004 49 Wed 941 1027 49 Thus 847 996 49 Thus 847 996 50 Mon 1002 747 50 Tues 847 750 50 Wed 92 1007 50 Thus 842 991 50 Fri 784 1032 51 Thus 401 472 51 Thus 401 472 51 Thus 80 0 0 51 Thus 80 0 0 51 Thus 80 0 0 51 Thus 810 0 0 51 Thus 810 0 0 51 Thus 823 614 51 Thus 830 735 52/1 Wed 0 0 0 51 Thus 830 735 52/1 Thus 830 735 52/1 Thus 830 735 52/1 Thus 830 735 52/1 Thus 830 735 52/1 Thus 830 735 52/1 Thus 830 735 52/1 Thus 830 1082 52/1 Thus 830 735 52/1 Thus 830 735 52/1 Thus 830 735 52/1 Thus 830 735 52/1 Thus 830 1082 52/1 Thus 830 1082 52/1 Thus 830 1082 52/1 Thus 830 1084 53 Fri 853 1122 54 Mon 1362 1016 55 Thus 841 1007 56 Thus 841 1008 57 Thus 844 58 Wed 987 1088 58 787 58 P97 58 P97 58 P97 58 P97 58 P97 58 P97 58 P97 58 P97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 955<br>4809                        |                    |                                         |
| 46 Mon 1303 972 46 Tues 1121 992 46 Wed 1003 1095 47 Wed 1841 2010 48 Fri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .45 Wed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 892           | 974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 922                                | 845                |                                         |
| 46 Mon 1303 972 46 Wed 1003 1095 46 Thurs 1113 1309 46 Fri 1005 1322 47 Mon 2652 1978 47 Tues 2825 2500 47 Wed 1841 2010 47 Fri 0 0 0 48 Mon 1949 1453 49 Tues 1507 1334 48 Fri 1084 1426 49 Mon 1260 940 49 Tues 1134 1004 49 Tues 1134 1004 49 Thurs 847 996 49 Fri 714 939 50 Mon 1002 747 50 Tues 847 750 50 Wed 922 1007 50 Fri 784 1032 51 Thurs 401 472 51 Thurs 409 60 51 Thurs 401 472 51 Thurs 830 735 52/1 Wed 0 0 0 52/1 Thurs 830 735 52/1 Wed 0 0 0 52/1 Thurs 1082 1273 52/1 Mon 1362 1016 52 Thurs 930 1094 52 Thurs 930 1094 52 Thurs 930 1094 53 Fri 853 1122 54 Mon 1362 1016 55 Thurs 930 1094 56 Thurs 930 1094 57 Thurs 941 1039 58 Thurs 954 844 59 Wed 947 1088 59 Thurs 930 1094 59 Thurs 930 1094 50 Thurs 930 1094 50 Thurs 930 1094 51 Thurs 930 1094 52 Thurs 930 1094 53 Fri 758 997 54 Mon 1888 861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 974                                |                    |                                         |
| 46 - Wed 1003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46 Mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |                                         |
| ## Thurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |                                         |
| 47 Mon 2652 1978 47 Tues 2825 2500 47 Wed 1841 2010 47 Fil 0 0 0 48 Mon 1949 1453 48 Tues 1507 1334 48 Wed 989 1080 48 Fil 1084 426 49 Mon 1260 940 49 Tues 1134 1004 49 Tues 1134 1004 49 Thes 847 996 49 Fil 714 939 50 Mon 1002 747 50 Wed 922 1007 50 Tues 847 750 50 Wed 922 1007 50 Fil 784 1032 51 Tues 0 0 0 51 Thes 842 991 51 Tues 0 0 0 51 Thes 843 401 472 51 Fil 429 564 52/1 Tues 830 735 52/1 Wed 0 0 0 52/1 Thes 1082 1273 52/1 Tues 1082 1273 52/1 Tues 0 0 0 52/1 Thes 841 1039 52/1 Wed 0 0 0 52/1 Thes 841 107 52 Mon 1209 902 52/1 Thes 830 735 52/1 Wed 0 0 0 52/1 Thes 1082 1273 52/1 Tues 1082 1273 52/1 Tues 1082 1273 52/1 Tues 1082 1273 52/1 Tues 1082 1273 52/1 Tues 1082 1273 52/1 Tues 1082 1273 52/1 Thes 930 1094 53 Thes 954 844 53 Wed 1346 1489 53 Thes 954 844 53 Fil 758 997 54 Mon 888 661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                    |                                         |
| 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46 Fri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1005          | 1322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | endere et e                        |                    |                                         |
| 47 Wed 1841 2010 47 Fri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14-7-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o diga di                          |                    |                                         |
| 48 Mon 1949 1453 49 Tues 1507 1334 48 Wed 989 1080 48 Thure 990 1165 48 Fri 1084 1426 49 Mon 1260 940 49 Tues 1134 1004 49 Wed 941 1027 49 Thure 847 996 49 Fri 714 939 50 Mon 1002 747 50 Tues 847 750 50 Wed 922 1007 50 Thure 842 991 50 Fri 784 1032 51 Tues 0 0 0 51 Thure 401 472 51 Thure 401 472 51 Thure 401 472 51 Thure 401 472 52/1 Wed 0 0 0 52/1 Thure 1082 1273 52/1 Wed 0 0 0 52/1 Thure 1082 1273 52/1 Wed 967 1058 2 Thure 930 1094 2 Thure 930 1094 2 Thure 930 1094 2 Thure 930 1094 3 Trues 930 1094 3 Trues 930 1094 3 Trues 930 1094 3 Trues 934 886 861 3 Wed 1366 878 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | F - 441976         | Archicae I                              |
| 48 Mon 1949 1453 49 Tues 1507 1334 48 Wed 989 1080 48 Thure 990 1165 48 Fri 1084 1426 49 Mon 1260 940 49 Tues 1134 1004 49 Wed 941 1027 49 Thure 847 996 49 Fri 714 939 50 Mon 1002 747 50 Tues 847 750 50 Wed 922 1007 50 Thure 842 991 50 Fri 784 1032 51 Tues 0 0 0 51 Thure 401 472 51 Thure 401 472 51 Thure 401 472 51 Thure 401 472 52/1 Wed 0 0 0 52/1 Thure 1082 1273 52/1 Wed 0 0 0 52/1 Thure 1082 1273 52/1 Wed 967 1058 2 Thure 930 1094 2 Thure 930 1094 2 Thure 930 1094 2 Thure 930 1094 3 Trues 930 1094 3 Trues 930 1094 3 Trues 930 1094 3 Trues 934 886 861 3 Wed 1366 878 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <u>o</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                    |                                         |
| 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |                                         |
| 48 Thurs 990 1165 48 Fri 1084 1426 49 Mon 1260 940 49 Tues 1134 1004 49 Wed 941 1027 49 Fri 714 939 50 Mon 1002 747 50 Wed 922 1007 50 Fri 784 1032 51 Mon 823 614 51 Thurs 401 472 51 Thurs 401 472 51 Thurs 401 472 51 Thurs 401 472 52/1 Mon 1209 902 52/1 Thurs 1082 1273 52/1 Wed 0 0 52/1 Thurs 1082 1273 52/1 Fri 841 1107 2 Mon 1362 1016 2 Tues 1174 1039 2 Fri 853 1122 3 Mon 924 689 3 Tues 904 1084 3 Fri 758 997 4 Mon 1346 1664 3 Thurs 904 1084 3 Fri 758 997 4 Mon 1346 1661 3 Thurs 904 1084 3 Fri 758 997 4 Mon 886 661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48 PIUOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1507          | 1334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | J.                 |                                         |
| 48 Fri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                    |                                         |
| 49 Tues 49 Wed 49 Wed 941 1027 49 Thurs 847 996 49 Fri 714 939 50 Mon- 1002 747 50 Wed 922 1007 50 Wed 922 1007 50 Fri 784 1032 51 Tues 0 0 0 51 Thurs 401 4729 51- Thurs 401 4729 51- Thurs 401 4729 51- Tri 429 564- 51- Tri 429 564- 52/1 Mon 1209 902 52/1 Thurs 1082 1273 52/1 Wed 0 0 0 52/1 Thurs 1082 1273 52/1 Fri 841 1072 2 Mon 1362 1016 2 Tues 1174 1039 2 Tri 2 Wed 967 1056 2 Thurs 930 1094 2 Wed 967 1056 3 Thurs 930 1094 3 Mon 924 689 3 Tues 954 844 3 Wed 3 Thurs 904 1064 3 Thurs 904 1064 3 Thurs 908 661 878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 7840/44                          |                    |                                         |
| 49 Wed 49 Thirs 847 998 49 Fri 714 939 50 Mon 1002 747 50 Tues 847 750 50 Wed 922 1007 50 Thirs 842 993 50 Fri 784 1032 51 Mon 51 Tues 0 0 0 51 Thirs 401 472 51 Thirs 401 472 51 Thirs 51 Fri 429 902 52/1 Mon 1209 902 52/1 Tues 830 735 52/1 Wed 0 0 0 52/1 Thirs 1082 1273 52/1 Fri 841 107 2 Mon 1362 1016 2 Tues 1174 1039 2 Thirs 1174 1039 2 Thirs 1174 1039 2 Thirs 1174 1039 2 Thirs 1174 1039 2 Thirs 1174 1039 2 Thirs 1174 1039 2 Thirs 1174 1039 2 Thirs 1174 1039 3 Mon 11366 1488 3 Mon 11366 1488 3 Wed 13 Thirs 1346 1488 3 Wed 13 Thirs 1346 1488 3 Thirs 1346 1488 3 Thirs 1346 1488 3 Thirs 1346 1488 3 Thirs 1346 1488 3 Thirs 1346 1488 3 Thirs 1346 1488 3 Thirs 1346 1488 3 Thirs 1346 1488 3 Thirs 1346 1488 3 Thirs 1346 1488 3 Thirs 1346 1488 3 Thirs 1346 1488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |                                         |
| 49 Thurs 847 996 49 Fri 714 939 50 Mon 1002 747 50 Tues 847 750 50 Wed 922 1007 50 Fri 842 993 50 Fri 784 1032 51 Wed 0 0 0 51 Thurs 0 0 0 51 Thurs 401 472 51 Fri 429 564 52/1 Mon 1209 902 52/1 Thurs 830 735 52/1 Wed 0 0 0 52/1 Thurs 830 735 52/1 Wed 0 0 52/1 Thurs 1082 1273 52/1 Wed 0 0 51 Thurs 1082 1273 52/1 Wed 0 0 51 Thurs 1082 1273 52/1 Fri 841 107 52 Mon 1362 1016 52 Tues 1174 1039 52 Wed 967 1056 53 Thurs 930 1094 53 Thurs 930 1094 53 Thurs 94 689 53 Thurs 954 844 53 Wed 1346 1469 5777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Section 1 Sectio |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    | 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 |
| 49 FrI 714 939 747 750 750 747 750 750 747 750 750 747 750 750 750 750 750 750 750 750 750 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49 Thurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                    |                                         |
| 50 Tues 847 750 50 50 Wed 922 1007 50 Fil 784 1032 50 Fil 784 1032 51 50 Fil 784 1032 51 Mon 823 614 51 Mon 823 614 51 Mon 823 614 51 Tues 0 0 0 0 51 Thurs 401 472 51 Fil 429 564 52/1 Mon 1209 902 52/1 Tues 830 735 52/1 Thurs 830 735 52/1 Thurs 830 735 52/1 Thurs 1082 1273 52/1 Thurs 1082 1273 52/1 Fil 841 1107 52/1 Thurs 1082 1016 52/1 Thurs 930 1094 52 Tues 1174 1039 52 52/1 Thurs 930 1094 52 Thurs 930 1094 52 Fif 853 1122 53 53 Mon 924 689 53 Tues 954 844 53 Wed 1346 1469 53 Fil 758 997 54 Mon 888 661 5777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                    |                                         |
| 50 - Thurs 842 991   1032   150 - Fri 784 1032   151 Mon 823 614   1032   151 Mon 823 614   151 Mon 823 614   151 Mon 823 614   151 Mon 824   151 Mon 829 902   151 Mon 829 902   151 Mon 829 902   152/1 Mon 829 902   152/1 Mon 829 1273   152/1 Mon 841 1072   152/1 Mon 841 1072   152/1 Mon 841 1072   152/1 Mon 851 1055   155 Mon 82 1273   152/1 Mon 851 1055   155 Mon 82 1273   152/1 Mon 851 1072   155 Mon 82 1273   157 Mon 851 1072   157 Mon 851 1072   157 Mon 851 1072   157 Mon 851 1072   157 Mon 851 1072   157 Mon 851 1072   157 Mon 851 1072   157 Mon 851 1054   157 Mon 851 1054   157 Mon 851 1054   157 Mon 851 1054   157 Mon 851 1054   157 Mon 851 1054   157 Mon 851 1055   157 Mon 851 1054   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 1055   157 Mon 851 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    | - 100 m                                 |
| 50 Fil 784 1032- 51 Mon 823 814- 51 Tues 0 0 0 51 Wed 0 0 0 51 Thurs 401 472- 51- Fit 429 564- 52/1 Mon 1209 902- 52/1 Tues 830 735- 52/1 Wed 0 0 0 52/1 Thurs 1082 1273- 52/1 Fit 841 1107- 2 Mon 1362 1016- 2 Tues 1174 1039- 2 Wed 967 1058 2 2 Thurs 930 1094 2 Wed 967 1058 3 3 Mon 924 689 3 Tues 954 844- 3 Wed 1346 1469 3 Thurs 904 1084 3 Thurs 904 1084 3 Thurs 904 1084 3 Thurs 904 1084 3 Thurs 904 1084 3 Fit 758 997 4 Mon 886 661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 Wed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 922           | 1007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                    |                                         |
| 51 Mon 823 614 51 51 Tues 0 0 0 0 51 Thurs 401 472 51 51 Fri 429 564 52/1 Mon 1209 902 52/1 Tues 830 735 52/1 Wed 0 0 0 52/1 Thurs 1082 1273 52/1 Fri 841 107 52 Mon 1362 1016 52/1 Fri 851 174 1039 52 52/1 Fri 851 174 1039 52 52/1 Fri 853 1122 53 Mon 924 689 53 Tues 954 844 3 Wed 1346 1469 53 Thurs 904 1084 53 Fri 758 997 54 Mon 886 661 577 577 577 577 577 577 577 577 577 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |                                         |
| 51 Wed 0 0 0 0 51 Thurs 401 472 55 51 Fit. 429 564 52/1 Mon 1209 902 52/1 Tues 830 735 52/1 Wed 0 0 0 52/1 Thurs 1082 1273 52/1 Fit. 841 1107 2 Mon 1362 1016 2 Tues 1174 1039 5 2 Wed 987 1056 5 2 Thurs 930 1094 5 2 Thurs 930 1094 5 2 Fit 853 1122 5 3 Mon 924 689 5 3 Tues 954 844 5 3 Wed 34 1346 168 5 3 1125 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148 5 3 1148  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | to entransación    |                                         |
| 51 Thurs 401 472 564 551 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |                                         |
| 52/1 Mon 1209 902  52/1 Tues 830 735: 52/1 Wed 0 0 0  52/1 Thurs 1082 1273  52/1 Fri. 841 1107: 2 Mon 1362 1016 2 Tues 1174 1039 2 Wed 967 1056 2 Thurs 930 1094 2 Wed 967 1056 3 Tues 1174 1039 3 Mon 924 689 3 Tues 1346 1469 3 Tues 934 844 3 Wed 1346 1469 3 Thurs 904 1084 3 Fri 758 997 4 Mon 886 661 4 Tues 878 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 118-31             |                                         |
| \$2/1 Tues 830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 564=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                    |                                         |
| 2/1 Wed 0 0 0-3 52/1 Thurs 1082 1273 52/1 Frt. 841 1107: 2 Mon 1362 1016: 2 Tues 1174 1039 52 52/1 Frt. 841 107: 2 Wed. 967 1056: 2 Thurs 930 1094: 2 Frt 853 1122: 3 Mon 924 6881: 3 Tues 954 844: 3 Wed. 1346 14692: 3 Thurs 904 1084: 3 Frt. 758 997: 4 Mon: 886 661- 44 Tues 878 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Andrea - State of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | Service Community  |                                         |
| 52/1 Frt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52/1- Wed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0             | 0*1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                    |                                         |
| 2 Mon 1362 1016<br>2 Tues 1174 1039 2<br>2 Wed 967 1056 2<br>2 Thurs 930 1094 2<br>2 Frf 853 1122 3<br>3 Mon 924 688 3<br>3 Tues 954 844 3<br>3 Wed 1346 1469 3<br>3 Frh 758 997 4<br>4 Mon 886 661 4<br>5777 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | ber 1864           |                                         |
| 2 Wed 967 1056<br>2 Thurs 930 1094<br>2 Frf 853 1122<br>3 Mon 924 6893<br>3 Tues 954 844<br>3 Wed 1346 1469<br>3 Thurs 904 1064<br>3 Fri 758 997<br>4 Mon 886 661<br>4 Tues 878 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |                                         |
| 2 Thurs 930 1094<br>2 Frf 853 11224<br>3 Mon- 924 6891<br>3 Tues 954 8444<br>3 Wed 1346 14692<br>3 Thurs 904 1064<br>3 Fri 758 997<br>4 Mons 886 6614<br>4 Tues 878 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Radiza,                            |                    | 725.7                                   |
| 2 Frf 853 1122<br>3 Mon 924 689<br>3 Tues 954 844<br>3 Wed 1346 1469<br>3 Thus 904 1084<br>3 Frf 758 997<br>4 Mon 886 661<br>4 Tues 878 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the  |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |                                         |
| 3 Tues 954 844<br>3 Wed 1346 1469<br>3 Thus 904 1064<br>3 Fri 758 997<br>4 Mon 886 6613<br>4 Tues 878 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 - Frh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 853           | 1122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Esta                               |                    |                                         |
| 3. Wed 1346 1469<br>3. Thurs 904 1.0845<br>3. Fri 758 997<br>4. Mon 886 66134<br>4. Tues 878 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ar Miller of Aug                   |                    |                                         |
| 3 Fri 758 997<br>4 Mon 886 661<br>4 Tues 878 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                    |                                         |
| 4 Mon 886 661<br>4 Tues 878 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TO SHEET WAS A STATE OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHEET OF THE SHE |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ar essential de la                 |                    |                                         |
| 4 Tues 878 777-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA |               | Who the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |                                    |                    |                                         |
| 18 4 Wadaii 802 18 876 18 18 18 18 18 18 18 18 18 18 18 18 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 Tues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 878           | 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | 30.00              |                                         |
| 4 * Three 945 11122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 Wed-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 802<br>945    | 876₩<br>1112 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | E la laboration    |                                         |
| 4 Fri 610 803∰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4-11 Fri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 610           | - 8 <b>03</b> #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 7 1.45             |                                         |
| 4 Frt 610 803 5 5 Mon 910 679 5 754 667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 Mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                    |                                         |
| 705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 Wed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 770*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                    |                                         |
| 858 Thurs 729 8 858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 Thurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 729           | 85 <b>81</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | leit, taga                         | 1 (75)             |                                         |
| 5 → Fil. 772 10161<br>6 → Fil. 772 10161<br>6 → Mont. 1362 1016 1362 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b Fri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 1016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | y law are                          | .1 SH 2            | ا تعین (۱۳                              |
| 0 7 1000 1140 1040 1070 1140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TO THE LUNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :             | , IV10:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ישפוטו                             | · 140-             | J. J                                    |
| บ พ.ศ. 251 (บาง 1015) ช่วง บ<br>ช่องสามารถ 864 (1036) 101652 884 บ <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1 V 40 #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | 100 mg/            |                                         |
| 6 Frit 773 10474 1016= 7734 + 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 Fria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 1017#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1016                               | 7.73               | 40.04                                   |

| Type of Seasonali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Daily           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |
| Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Seasonal Factor |  |  |  |  |  |
| Mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.34            |  |  |  |  |  |
| Tues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.13            |  |  |  |  |  |
| Wed :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.92            |  |  |  |  |  |
| Thurs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.85            |  |  |  |  |  |
| Fri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.76            |  |  |  |  |  |
| THE COMPANY OF THE COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |  |  |  |
| in the same of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1               |  |  |  |  |  |
| Hartest State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of t | I               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |  |  |  |
| 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |  |  |  |  |
| Applications :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |  |  |  |  |  |

Weekly Demiand for the Next We 5077

The forecasted call volume for the next week is 5077 calls: 1362 calls are received on Monday, 1148 calls are received on Tuesday, 931 calls are received on Wednesday, 864 calls are received on Thursday, and 773 calls are received on Friday.

3) To forecast the call volume for the next week using the averaging forecasting method, we need to use the Averaging with Seasonality template. However, we need to modify this template because it does not provide the option for daily seasonality. The modified spreadsheet follows.

| Week Day                              | True<br>Value | Seasonally<br>Adjusted<br>Value | Seasonally<br>Adjusted<br>Forecast | Actual F<br>Forecast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | orecasting<br>Error                            | Type of Seasonalit    |
|---------------------------------------|---------------|---------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|
| 44 Mon<br>44 Tues                     | 1130<br>851   | 753                             | Bijanski, r                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | Daily                 |
| 44 Wed                                |               | 938                             |                                    | valen k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70 0 0 0 02 E                                  | Day Seasonal Factor   |
| 44 Thurs                              | 828           | 974                             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the                                        | Mon 1.34              |
| 44 . Fri<br>45 Mon                    | 726<br>1085   | 955<br>809                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | Tues 1.13<br>Wed 0.92 |
| 45 Tues                               | 1042          | 922                             |                                    | Project Cold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                | Thurs 0.85            |
| 45 Wed .<br>45 Thurs                  | 892<br>840    | 974<br>988                      | KANGSE.                            | J. Jac.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                | Fri 0.76              |
| 45 5 Fri                              | 799           | 1061                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 46 Mon<br>46 Tues                     | 1303<br>1121  | 972<br>992                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 752, 751                                       |                       |
| 46 Wed                                | 1003          | 1095                            |                                    | History.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                       |
| 46 Thurs                              | 1113<br>1005  | 1309<br>1322                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - In terms                                     |                       |
|                                       | 2652          | 1978 -<br>2500 -                |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44, 100<br>100 (100 (100 (100 (100 (100 (100 ( | (2) 即用的影响的            |
| 47 Tues                               | 2825          | 2500                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 47 Wed<br>47 Thurs                    | 1841<br>0     | 2010                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 1147 Fri                              | 0             | - O-                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 48 Mon⊸<br>48 Tues                    | 1949<br>1507  | 1453                            |                                    | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |                                                |                       |
| 48 Wed                                | 989           | 1453<br>1334<br>1080            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 48 - Thurs.<br>48 - Fri               | 990<br>1084   | 1165<br>1428                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 48 Mon                                | 1260          | 1426<br>940<br>1004             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 49 Tues<br>49 Wed                     | 1134<br>941   | 1004<br>1027                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
|                                       | 847           | 996                             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 49 Fri<br>50 Mon                      | 714<br>1002   | 939                             |                                    | April                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                       |
| 50 Tues                               | 847           | 747<br>2750                     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.05.7.2007                                   |                       |
| 50 Wed                                | 922           | 1007                            |                                    | James P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | belief-ie                                      |                       |
|                                       | 842<br>784    | 1007<br>991*<br>1032<br>614*    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
|                                       | 823           | 614*                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 51 Tues                               | 0             | 0=                              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 51— Thurs                             | 401           | -0-<br>472                      |                                    | Mariate parametering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |                       |
|                                       | 429<br>1209   | 564<br>902                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 52/17 Mon-<br>52/17 Tues<br>52/13 Wed | 830           | 735                             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 52/1. Wed                             | 0<br>1082     | 0=<br>1273 <sup>1</sup>         |                                    | 42,1.4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                       |
| 52/4 Fri                              | 841           | 1/1107                          | 7.00                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 2 Mon.<br>2 Tues                      | 1362<br>1174  | 1016<br>1039                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 2. Wed                                | 967           | 1056                            | 100                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 2 Thurs                               | 930<br>853    | 1094<br>1122                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 3 ∴ Mon                               | 924           | 689                             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 3 ⊹ Tues<br>3 * Wed ₩                 | 954<br>1346   | 844+                            | 100                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 3 Thurs                               | 904           | 1469<br>1064                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 37 ja Fri 📆                           | 758           | 997.                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rakel.                                         |                       |
| 4 Mon⊲i<br>4 Tues                     | 886<br>878    | 6612<br>777                     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 4 ≟⊹. Wed 🖫                           | 802           | 876                             |                                    | G 1 3 1 7 1 7 1 4 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1  | S                                              |                       |
| 4 Thurs                               | 945<br>610    | 1112<br>803*                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 5 Mon                                 | 910           | 679                             |                                    | S. Kup. 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                |                       |
| 5⊸ Tues -<br>5 Wed⊪                   | 754<br>705    | 667#*<br>770 <b>=</b>           | a dia                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                       |
| 5 Thurs                               | 729           | 858                             |                                    | 4772 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |                       |
| 5⊯ Fri<br>6⊯ Mon⊋⊨                    | 772<br>1270   | 1016<br>947                     | 947                                | 1270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0* <sup>*</sup>                               |                       |
| 6 Tues                                | 1070          | 9474                            | 947                                | 10704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·0 -= #                                        |                       |
| 6 Wed                                 | 867<br>805    | 847 <u>4</u>                    | 947                                | 8 67g<br>8 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0= 4                                           |                       |
| R FA                                  | 720           | 947                             | 947                                | 7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |                       |

Weekly Demand for the Next Week 4732

The forecasted call volume for the next week is 4732 calls: 1270 calls are received on Monday, 1070 calls are received on Tuesday, 867 calls are received on Wednesday, 805 calls are received on Thursday, and 720 calls are received on Friday.

4) To forecast the call volume for the next week using the moving-average forecasting method, we need to use the Moving Averaging with Seasonality template. However, we need to modify this template because it does not provide the option for daily seasonality. The modified spreadsheet follows.

|                            |               | _             | Seasonally                 | Seasonally           |                                         |                      |                                          |        |
|----------------------------|---------------|---------------|----------------------------|----------------------|-----------------------------------------|----------------------|------------------------------------------|--------|
| Neek                       | Day           | True<br>Value | Adjusted<br>Value          | Adjusted<br>Forecast | A c tual<br>Forecast                    | Forecasting<br>Error | Number of previou<br>periods to consider | 8      |
| 44                         |               | 1130          | 843                        | TOTOCAS.             | ruiecast                                | mu mail or           | n = 5                                    | _      |
| 44                         | Tues          | 851           | 753                        | THE RESERVE          | MA TOTAL                                |                      | W-337 14                                 |        |
| 44                         | Wed           | 859           | 938                        |                      | aria mad                                |                      | Type of Sea                              | eonali |
| 44                         | Thurs         | 828           | 974                        |                      | I I                                     |                      | Daily                                    | 30.10. |
| 44                         | Fri           | 726           | 955                        |                      |                                         | 49.4                 | L                                        |        |
| 45                         | Mon :         | 1085          | 809                        |                      |                                         |                      | Day Seasonai F                           | act or |
| 45                         | Tues          | 1042          | 922                        |                      |                                         | 10-10-1              | Mon 1.34                                 |        |
| 45                         | Wed           | 892           | 974                        | 14 E 2015A           | Mar. 25 1                               | 1912                 | Tues 1.13                                | - 1    |
| 45                         | Thurs         | 840           | 988                        |                      | :: 17                                   |                      | Wed 0.92                                 | - 1    |
| 45 .                       | Fri           | 799           | 1051                       |                      | (1 1 5 to 1                             |                      | Thurs 0.85                               |        |
| 46<br>46                   | Mon           | 1303          | 972                        |                      | 13500                                   |                      | # Fri 0.76                               |        |
| 46                         | Tues<br>Wed   | 1121          | 992<br>1095 =              | •                    | Distriction of the second               |                      | 1 334                                    |        |
| <b>4</b> 6                 | Thure         | 1113          | 1.309                      |                      |                                         |                      |                                          |        |
| 46                         | FO.           | 1005          | 1322                       |                      |                                         |                      | E THE                                    |        |
| 47                         | Mon           | 2652          | 1978                       |                      |                                         | 3, 7,                |                                          |        |
| 47                         | Tues          | 2825          | 2500                       |                      | 800 (111)                               |                      |                                          |        |
| 4.7.cm                     | Wed           | 1841          | 2010                       | Barring org          |                                         | F. 1810              |                                          |        |
|                            | Thurs         | 0             | 0                          |                      |                                         |                      |                                          |        |
| <b>47</b>                  | - Fri         | . 0           | 0                          |                      |                                         |                      |                                          |        |
| 48                         | Mon           | 1949          | 1 453                      | en in de V           | Zjerw,                                  |                      |                                          |        |
|                            | Tues          | 1507          | - 1.334                    |                      |                                         | 1.0                  |                                          |        |
| 18 sag                     |               | 989           | 1080                       |                      | - 170                                   |                      |                                          |        |
| 0.7509<br>0.7509           | Thure<br>Fri  | 990<br>1084   | 1 165<br>1 426             |                      |                                         |                      |                                          |        |
|                            | Mon           | 1260          | 940                        | 42-7                 | Ly Service                              |                      |                                          |        |
| 10                         | Titas         | 1134          | 1004                       | <b>36 13</b> -       | # 41 × 2                                |                      |                                          |        |
| 19/4                       | Tues,<br>Wed  | 941           | 1027                       |                      |                                         | State (              |                                          |        |
| 49                         | Thurs         | 847           | 996                        |                      |                                         | and the second       |                                          |        |
| 9                          | FrL           | 714           | 939 🛶                      |                      |                                         | 1.75                 |                                          |        |
| 50 🛶                       | Mon           | 1002          | 747                        |                      | <b>6</b> - Nagara Pata 38               |                      |                                          |        |
|                            | Tues          | 847           | 760                        | ,                    |                                         | 110.43               |                                          |        |
| 50≆,.                      |               | 922           | 1007-                      |                      |                                         | 158                  |                                          |        |
|                            | Thurs         | 842           | 991                        |                      | 10.                                     | Total Control        |                                          |        |
|                            | Fri           | 784           | 1032<br>614                |                      |                                         |                      |                                          |        |
|                            | Mon Tues      | 823<br>0      | 0                          | 75                   |                                         |                      |                                          |        |
|                            | Wed           | ŏ             | 0                          |                      |                                         |                      |                                          |        |
|                            | Thurs         | 401           | 472                        |                      |                                         |                      |                                          |        |
| 51                         | Fri           | 429           | 564                        | - 144                |                                         |                      |                                          |        |
| 2/1/                       | Mon           | 1209          | 902                        |                      |                                         |                      |                                          |        |
| 2/1=.                      |               | 830           | 735                        |                      | All S                                   | THE PARTY            |                                          |        |
| 2/1                        |               | 0             | 0                          |                      | , America                               |                      |                                          |        |
| 2/1=<br>2/1=               |               | 1082          | 12/3                       | The: 10.144          |                                         | 177                  |                                          |        |
|                            | Mon           | 841<br>1362   | 1 107                      |                      | all and                                 |                      |                                          |        |
|                            | Tues          | 1174          | 101.6<br>1039              | Maria da             |                                         | APRIL CONTRA         |                                          |        |
|                            | Wed           | 967           | sometimes and the property |                      | 1000                                    |                      |                                          |        |
|                            | Thurs         | 930           |                            | 1 7 7 7 7 7          |                                         |                      |                                          |        |
| 2 😹                        | Fri           | 853           | j 122 🛶                    |                      |                                         |                      |                                          |        |
| 3 🐘                        | Mon .         | 924           | 689                        |                      |                                         |                      |                                          |        |
|                            | Tues-         | 954           |                            |                      | tra es                                  | i i i jero selek     |                                          |        |
|                            | Wed           | 1346          | 1469<br>1064               | Mary to divers       |                                         |                      |                                          |        |
|                            | Thurs         | 904           | 1064                       | No. of the second    |                                         |                      |                                          |        |
| The same Card              | Fri           | 758           | 997                        |                      | 1 1 1 W                                 | 1/27                 |                                          |        |
|                            | Mon -         | 886           | 661                        | Maria di ka          |                                         | 145477               |                                          |        |
|                            | Tues  <br>Wed | 878<br>802    | 777<br>876                 |                      | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |                      |                                          |        |
|                            | hurs          | 945           | 1.112-                     |                      | 201163                                  | 17.44                |                                          |        |
|                            | Fri           | 610           | 803                        |                      |                                         |                      |                                          |        |
| 5 1                        | Mon           | 910           | 679                        | . 1, 1946. T.        |                                         |                      |                                          |        |
| 5                          | Tues          | 754           | 667                        | 100                  | AMBA.                                   | 11.25.55             |                                          |        |
|                            | Wed           | 705           |                            | reit bli             |                                         | 7 <b>1</b> 7 1       |                                          |        |
|                            | hurs          | 729           | 858=                       |                      |                                         | 4.00                 |                                          |        |
|                            | Fri           | 772           | 1016                       |                      |                                         | .74% <b></b>         |                                          |        |
|                            | Mon           | 1070          | 798                        | 798                  | 1070-                                   | · ** 0.#= _          |                                          |        |
|                            | wed           | 928           | 822                        | 822                  | 928                                     | 034                  |                                          |        |
| CONTRACTOR OF THE PARTY OF | Net I         | /81           | . 853<br>889-4             | 853<br>869-3         | /81                                     | . U = 1              |                                          |        |
| 1 - Mary 171               | rri al        | 662           | 873                        | 8/12                 | /39                                     | U                    |                                          |        |

Seasonally Seasonally

Weekly Demand for the Next Week 4 180

The forecasted call volume for the next week is 4189 calls: 1070 calls are received on Monday, 928 calls are received on Tuesday, 781 calls are received on Wednesday, 739 calls are received on Thursday, and 662 calls are received on Friday.

5) To forecast the call volume for the next week using the exponential smoothing forecasting method, we need to use the Exponential with Seasonality template. However, we need to modify this template because it does not provide the option for daily seasonality. The modified spreadsheet follows.

| Neek         | Day           | True<br>Value | Seasonaily<br>Adjusted<br>Value              | Seasonally<br>Adjusted<br>Forecast                                                                             | Actual<br>Forecast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Forecasting<br>Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Smoothing Constant     |
|--------------|---------------|---------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 44           | Moh⊪          | 1130          | 843                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sillouthing Constant   |
| 44           | Tues          | 851           | 753                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 44<br>44     | Wed-<br>Thurs | 859           | 938                                          | delaki S                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | arta (7 <b>6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Initial Estimate       |
| 4 4<br>4 4   | Fri           | 828<br>726    | 938<br>974<br>955                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average = $946.23076$  |
| 45           | Mon           | 1085          | 809                                          | e din din din din din din din din din din                                                                      | Beauty in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Type of Season         |
| 45           | Tues          | 1042          | 922                                          |                                                                                                                | AND THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Daily                  |
| 45           | Wed           | 892           | 974                                          | U-11 (1) (4)                                                                                                   | Supply of London                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |
| 45           | Thurs         | 840           |                                              | e e maioris de la companya de la companya de la companya de la companya de la companya de la companya de la co |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Day Seasonal Fac       |
| 45           | - F1 -1       | 799           | 988<br>1051<br>⊪972                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mon 1.34               |
| 46<br>46     | Mon<br>Tues   | 1303<br>1121  | 992                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tarribet!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tues 1.13              |
| 46           | Wed           | 1003          | 1095                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wed 0.92<br>Thurs 0.85 |
| 46           | Thurs         | 1113          | 1309                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 Frl 0.76             |
| 46           | Frie          | 1005          | 1990                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | * * <b>AG</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |
| 47           | Mon.          | 2652          | 1978                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | * 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A Shur                 |
| 47           | Tues<br>Wed   | 2825          | 2000                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CALL HOLD CO. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C |                        |
| 47<br>47     | Thurs         | 1841<br>0     |                                              | T                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
| 47           | Fri           | o k           | 0 0                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 48           | Mon           | 1949          | 1453                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second  |
| 48           | Tues          | 1507          | 1453<br>1934                                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 48           | Wed           | 989           |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 48           | Thurs         | 990           | 1165.                                        | T # 100                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 48<br>49     | Fri Mon       | 1084<br>1260  | 1426                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 49           | Tues          | 1134          | 940<br>1004                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 49           | Wed⊸          | 941           |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              | Thurs         | 847           | 996                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 49           | Fri           | 714           | 939                                          |                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 Sept 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
| 50°<br>50≁   | Man<br>Tues   | 1002<br>847   | 747                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              | Wed           | 922           | 750<br>1007                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 50 -         | Thurs         | 842           | COLUMN COLUMN                                |                                                                                                                | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 50 ⋅         | Fri           | 784           |                                              | Tana.                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 51           | Mon           | 823           | 614                                          |                                                                                                                | Maria de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la Composición de la |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 51<br>51     | Tues          | 0             |                                              | licagi i a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 51           | Wed -         | 401           | - 0<br>472                                   | ide i i më                                                                                                     | Service and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 51           | Fri           | 429           | 564                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 52/1         | Mon           | 1209          | 472<br>564<br>902<br>735≢-                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              | Tues          | 630           | 735⊪.;                                       |                                                                                                                | a figura de Salos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              | Wed-          | 0             | . 0                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| 52/1<br>52/1 | Thurs         | 1082<br>841   | 12/3                                         |                                                                                                                | Received in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rankan (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
| 2            | 'Mon.⊪        | 1362          | 1016                                         | je si primarija.                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 2-           | Tues          | 1174          | 1039                                         |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 2            | Wed           | 967           | 1273<br>1107<br>1016<br>1039<br>1056<br>1094 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              | Thurs         | 930           |                                              |                                                                                                                | r tak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 2<br>3       | Frl           | 853<br>924    | 1094<br>1122<br>6891<br>844<br>1469          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 3 *          | Tues          | 924<br>954    | 844                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ing - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |
| з .          | Wed           | 1346          | 1469                                         | بالغياد الما                                                                                                   | Marie II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 3            | Thurs         | 904           | 1064                                         | PARTY OF THE RESERVE                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the later                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |
| 3.           | *Frl-         | 758           |                                              |                                                                                                                | w (3 (2.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5-15- <b>4</b> 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |
| 4            | Mon-          | 886           | 1 CO 1 1 CO 1                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 2            | Tues Wed.     | 878<br>802    | 777<br>876 ≈                                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|              | Thurs         | 945           | 1112                                         | Land the state                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 4111         | Fri           | 610           | 803                                          | 100                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 5            | Monei         | 910           | 679                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |
|              | Tues          | 754           | -667 · · · · · · · · · · · · · · · · · ·     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
| 5            | Wed≝          | 705           |                                              |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mary Mary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |
| 5 (<br>5     | Thurs.        | 729<br>772    | 858.<br>1016                                 | 946                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| 6 ·          | Mon-          | 1278          | 953                                          | 953                                                                                                            | 1278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
| .6≫          | Tues          | 1077          | 953                                          | 9464<br>953<br>953<br>953                                                                                      | 1077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
| 6            | Wed!          | 873           | 953≅.<br>953≅!                               | 953                                                                                                            | A731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |
| 6            | Thurs<br>Fri  | 810           | 95351                                        | 953<br>953                                                                                                     | <b>810</b> €                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |
| COD SECURITY | **            | <u>724 難</u>  | 953                                          | y D3 Will                                                                                                      | 724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |

Weekly Demand for the Next Week 4763

The forecasted call volume for the next week is 4763 calls: 1278 calls are received on Monday, 1077 calls are received on Tuesday, 873 calls are received on Wednesday, 810 calls are received on Thursday, and 724 calls are received on Friday.

b) To obtain the mean absolute deviation for each forecasting method, we simply need to subtract the true call volume from the forecasted call volume for each day in the sixth week. We then need to take the absolute value of the five differences. Finally, we need to take the average of these five absolute values to obtain the mean absolute deviation.

The spreadsheet for the calculation of the mean absolute deviation for the last-value forecasting method follows.

#### LAST VALUE

|                                       |                             | True                                 | Actual F                   | orecast inç                       |
|---------------------------------------|-----------------------------|--------------------------------------|----------------------------|-----------------------------------|
| Week                                  | Day                         | Value                                | Forecast                   | Error                             |
| 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | Mon<br>Tues<br>Wed<br>Thurs | 7 23<br>6 77<br>5 21<br>5 71<br>4 98 | 1362<br>1148<br>931<br>864 | 639<br>471<br>410<br>+ 293<br>275 |

# Mean Absolute Deviation MAD = 417

This method is the least effective of the four methods because this method depends heavily upon the <u>average</u> seasonality factors. If the average seasonality factors are not the true seasonality factors for week 6, a large error will appear because the average seasonality factors are used to transform the Friday call volume in week 5 to forecasts for <u>all</u> call volumes in week 6. We calculated in part (a) that the call volume for Friday is 0.76 times lower than the overall average call volume. In week 6, however, the call volume for Friday is only 0.83 times lower than the average call volume over the week. Also, we calculated that the call volume for Monday is 1.34 times higher than the overall average call volume. In Week 6, however, the call volume for Monday is only 1.21 times higher than the average call volume over the week. These differences introduce a large error.

The spreadsheet for the calculation of the mean absolute deviation for the averaging forecasting method appears below.

#### **Averaging**

|                      |                                       | True                                 | Actual F                   | Forecasting                |  |
|----------------------|---------------------------------------|--------------------------------------|----------------------------|----------------------------|--|
| Week                 | Day                                   | Value                                | Forecast                   | Error                      |  |
| 64<br>64<br>64<br>64 | Mon≠<br>Tues<br>Wed≠<br>Thurs<br>Fri⇒ | 7 23<br>6 77<br>5 21<br>5 71<br>4 98 | 1270<br>1070<br>867<br>805 | 5474<br>3934<br>346<br>234 |  |

Mean Absolute Deviation
MAD = 348 ■

This method is the second-most effective of the four methods. Again, the reason lies in the average seasonality factors. Applying the average seasonality factors to an average call volume yields a much more accurate result than applying average seasonality factors to only one call volume. This method is not the most effective method, however, because the centralized call center experiences not only daily seasonality, but also weekly seasonality. For example, the call volumes in weeks 45 and 46 are much greater than the call volumes in week 6. Therefore, these larger call volumes inflate the average call volume, which in turn inflates the forecasts for Week 6.

The spreadsheet for the calculation of the mean absolute deviation for the moving-average forecasting method appears below.

#### **MOVING A VERAGE**

|      |                              | True                                 | Actual Forecasting           |                          |  |  |
|------|------------------------------|--------------------------------------|------------------------------|--------------------------|--|--|
| Week | Day                          | Value                                | Forecast                     | Error                    |  |  |
| 6    | Mon<br>Tues<br>Wed#<br>Thurs | 7 23<br>6 77<br>5 21<br>5 71<br>4 98 | 10.70<br>928i<br>781<br>739: | 347<br>251<br>260<br>168 |  |  |

# Mean Absolute Deviation MAD = 238

This method is the most effective of the four methods because this method only uses the average week 5 call volume to forecast the call volumes for week 6. Again, applying the average seasonality factors to an average call volume yields a much more accurate result than applying average seasonality factors to only one call volume. Also, the average call volume used in this method is not overly inflated since it is an average of the week 5 call volumes, which are closer to the week 6 call volumes than any other of the 13 weeks.

The spreadsheet for the calculation of the mean absolute deviation for exponential forecasting method follows.

### EXPONENTIAL SMOOTHING

|                          |                                | True                                 | Actual F                           | orecasting                          |
|--------------------------|--------------------------------|--------------------------------------|------------------------------------|-------------------------------------|
| <u>Week</u>              | Day                            | Value                                | Forecast                           | Error                               |
| 6 ±<br>6 ±<br>6 ±<br>6 ± | Mon=<br>Tues=<br>Wed=<br>Thurs | 7 23<br>6 77<br>5 21<br>5 71<br>4 98 | 1278<br>1077<br>873<br>8104<br>724 | 55.5<br>40.0<br>352<br>23.9<br>22.6 |

# Mean Absolute Deviation MAD ≅ 355 ■

This method is almost as effective as the averaging forecasting method because the smoothing constant used is 0.1. Therefore, the call volumes from earlier weeks are still weighted in calculating the call volume average. This method is a little less effective than the averaging forecasting method because the smoothing constant causes less weight to be placed on the call volumes in weeks 44 and 45. These call volumes are lower than volumes in weeks 46, 48, and 49, however, and they help lower the already inflated average call volume.

- c) This problem is simply a linear regression problem.
  - 1) To find a mathematical relationship, we use the Linear Regression template. The decentralized case volumes are the independent variables, and the centralized case volumes are the dependent variables. Substituting the case volume data, we obtain the following spreadsheet:

| 1            | Independen | Dependent |          | Estimation Square |          | Linear Regression Line |  |  |
|--------------|------------|-----------|----------|-------------------|----------|------------------------|--|--|
| Week         | Variable   | Variable  | Estimate | Error             | of Error | y = a + bx             |  |  |
| 44:          | 612        | 2052      | 2038     | 13.84             | 192 -    | a = 1575.516778        |  |  |
| , 45         | 721        | 2170      | 2121     | 49.45             | 2445     | b = 0.755947559        |  |  |
| 46           | 693        | 2779      | 2099     | 679.61            | 461872   |                        |  |  |
| 47           | 540        | 2334      | 1984     | 350.27            | 122690   |                        |  |  |
| <b>48</b>    | 1386       | 2514      | 2623     | 109.26            | 11938    | Estimator              |  |  |
| 49           | 577        | 1713      | 2012     | 298.70            | 89221    | If x = 3 613           |  |  |
| <b>350</b> 🗂 | 405        | 1927      | 1882     | . 45.32           | 2054     | then'y= 2038.912632    |  |  |
| 51           | 441        | 1167      | 1909     | 741.89            | 550400   |                        |  |  |
| 52/1         | 655        | 1549      | 2071     | 521.66            | 272132   |                        |  |  |
| 2=           | 572        | 2126      | 2008     | 118.08            | 13943    |                        |  |  |
| 3 3          | 475        | 2337      | 1935     | 402.41            | 161932   |                        |  |  |
| 4            | 530        | 1916      | 1- 1976  | 60:17             | 3620-    |                        |  |  |
| 5            | 595        | 2098      | 2025     | 72,69             | 5284     |                        |  |  |

2) To forecast the week 6 call volume for the centralized call center, we simply input the week 6 decentralized case volume for the value of x in the Estimator section of the Linear Regression Spreadsheet. The value of y then represents the week 6 centralized case volume. We multiply this value of y by 1.5 to obtain the week 6 centralized call volume. The calculations in Excel appear below.

#### Estimator

We then break this weekly call volume into daily call volume. We do this conversion by dividing the weekly call volume by the sum of the seasonal factors calculated in part (a) and then multiplying this weekly call volume by the appropriate seasonal factor to find the call volume for each of the five days of the week. The spreadsheet showing these calculations follows:

| Seasonal Factors             | 1.341    | 1.131 | 0.916 | 0.850 | 0.762 |
|------------------------------|----------|-------|-------|-------|-------|
| Week 6 Call Volume           | 3058     |       |       |       |       |
| Sum of Seasonal Factors      | 5.000    |       |       |       |       |
| Converted Week 6 Call Volume | 611.6    |       |       |       |       |
| Call Volume for:             |          |       |       |       |       |
| Monday                       | 820.1237 |       |       |       |       |
| Tuesday                      | 691.9468 |       |       |       |       |
| Wednesday                    | 560.19   |       |       |       |       |
| Thursday                     | 519.6189 |       |       |       |       |
| Friday                       | 466.1206 |       |       |       |       |
| Week 6 Call Volume           | 3058     |       |       |       |       |

The forecasted call volume for week 6 is 3058 calls: 820 calls are received on Monday, 692 calls are received on Tuesday, 560 calls are received on Wednesday, 520 calls are received on Thursday, and 466 calls are received on Friday.

3) To calculate the mean absolute deviation, we need to subtract the true call volume from the forecasted call volume for each day in the sixth week. We then need to take the absolute value of the five differences. Finally, we need to take the average of these five absolute values to obtain the mean absolute deviation.

The spreadsheet for the calculation of the mean absolute deviation follows.

#### CAUSAL FORECASTING

|            |        | True         | Actual F | orecast inç |
|------------|--------|--------------|----------|-------------|
| Week       | Day    | Value        | Forecast | Error       |
| <b>1</b> 6 | Mon    | 7 23         | 820      | 97:         |
| 6/4.5      | Tues   | 6 <i>7</i> 7 | 692選     | 15          |
| 4 4 62 €   | - Wed- | 5 21         | 560階     | 39          |
| 6 × 6      | Thurs- | 5 71         | 520₩     | 51#         |
| <b>6</b>   | Frl:-  | 4 98         | 466≇     | 32=         |

# Mean Absolute Deviation

This forecasting method is by far the most effective method. The centralized center performs the same services and serves the same population as the decentralized center. Therefore, the call volume trends are the same. Once we have a factor to scale the decentralized call volumes to the centralized call volumes, we have a very effective forecasting method.

d) We would definitely recommend using the causal forecasting method implemented in part (c) because it yields the lowest error. The causal method shows us that the call volume trends remain relatively the same year after year. We had to convert between case volumes and call volumes in part (c), however, and such a conversion introduces error. For example, what if a case generates a higher or lower number of calls? We therefore recommend that call volume data be meticulously recorded as the centralized center continues its operation. Once one year's worth of call volumes have been collected, the causal forecasting model should be updated. The model should be updated to use the historical centralized call volume data instead of the historical decentralized case volume data.

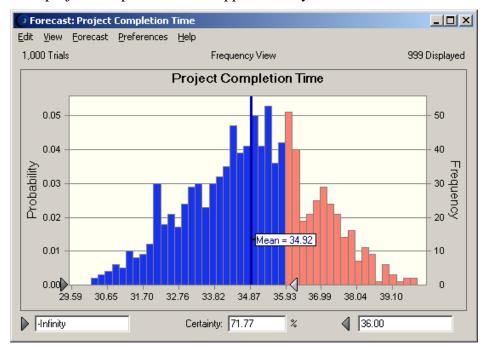
# CHAPTER 28: EXAMPLES OF PERFORMING SIMULATIONS ON SPREADSHEETS WITH CRYSTAL BALL

# 28.1.

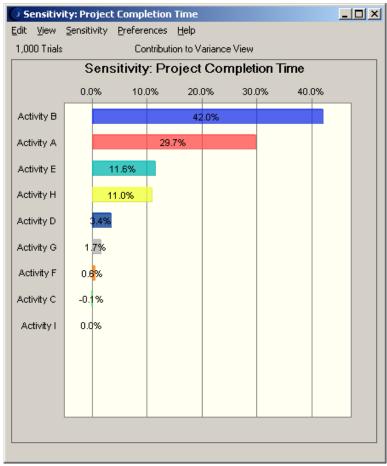
- (a) Answers will vary. A typical set of 5 runs: 46.49, 45.98, 45.76, 45.99, and 46.74.
- (b) Answers will vary. A typical set of 5 runs: 46.13, 46.15, 46.42, 46.14, and 46.27.
- (c) The mean completion times in (b) should be more consistent.

### 28.2.

- (a) Triangular Distribution (Min = 293.51, Likeliest = 503.00, Max = 599.50)
- (b) Min Extreme Distribution (Likeliest = 492.26, Scale = 56.34)

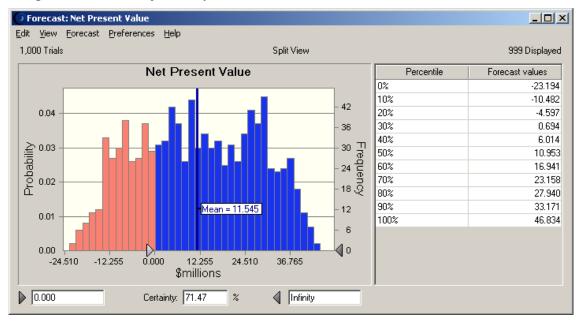

# 28.3.

- (a) Uniform Distribution (Min = 299.27, Max = 498.73)
- (b) Lognormal Distribution (Mean = 390.84, Standard Deviation = 59.91)

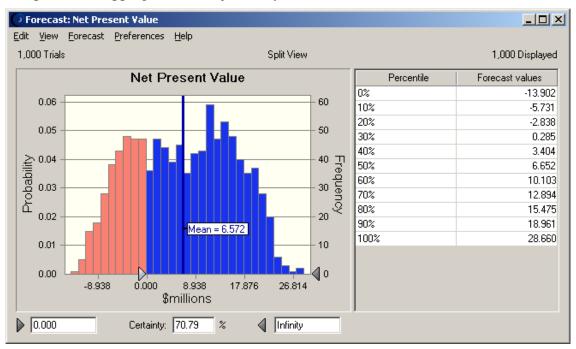

# 28.4.

|    | А                  | В           | С                             | D     | Е      | F      | G     | Н            | I      |
|----|--------------------|-------------|-------------------------------|-------|--------|--------|-------|--------------|--------|
| 1  |                    |             |                               |       |        |        | (all  | times in mor | iths)  |
| 2  |                    |             |                               |       |        |        | Start | Activity     | Finish |
| 3  | Activity           | Predecessor | Distribution                  | Parar | neters | 5      | Time  | Time         | Time   |
| 4  | A Secure funding   | _           | Normal (mean, st. dev.)       | 6     | 1      |        | 0.0   | 6            | 6.0    |
| 5  | B Design Building  | Α           | Uniform (min, max)            | 6     | 10     |        | 6.0   | 8            | 14.0   |
| 6  | C Site Preparation | Α           | Triangular (min, most likely, | 1.5   | 2      | 2.5    | 6.0   | 2            | 8.0    |
| 7  | D Foundation       | B, C        | Triangular (min, most likely, | 1.5   | 2      | 3      | 14.0  | 2.1666667    | 16.2   |
| 8  | E Framing          | D           | Triangular (min, most likely, | 3     | 4      | 6      | 16.2  | 4.3333333    | 20.5   |
| 9  | F Electrical       | E           | Triangular (min, most likely, | 2     | 3      | 5      | 20.5  | 3.3333333    | 23.8   |
| 10 | G Plumbing         | E           | Triangular (min, most likely, | 3     | 4      | 5      | 20.5  | 4            | 24.5   |
| 11 | H Walls and Roof   | F, G        | Triangular (min, most likely, | 4     | 5      | 7      | 24.5  | 5.3333333    | 29.8   |
| 12 | I Finish Work      | Н           | Triangular (min, most likely, | 5     | 6      | 7      | 29.8  | 6            | 35.8   |
| 13 | J Landscaping      | Н           | Fixed (5)                     |       |        |        | 29.8  | 5            | 34.8   |
| 14 |                    |             |                               |       |        |        |       |              |        |
| 15 |                    |             |                               |       | F      | roject | Com   | oletion Time | 34.8   |

(a) The mean project completion time is approximately 35 months.



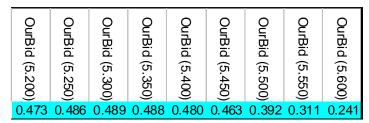

- (b) The probability that the project completion time will be less than 36 months is approximately 71.8%.
- (c) Activity A and Activity B have the largest impact on the variability of the project completion time.



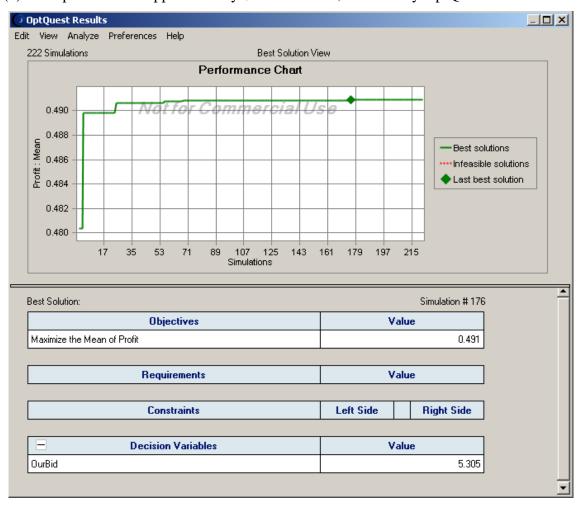

# 28.5.

# (a) Option 2: Hotel Project Only




# (b) Option 3: Shopping Center Project Only




(c) Option 1 appears to be the best. It has the highest expected NPV, \$18 million whereas Option 2 has an expected NPV less than \$12 million and Option 3 has an expected NPV less than \$7 million. Moreover, there is less chance of losing money if one chooses Option 1. This probability is less than 20% for Option 1 while for the other options, it exceeds 25%.

# 28.6.

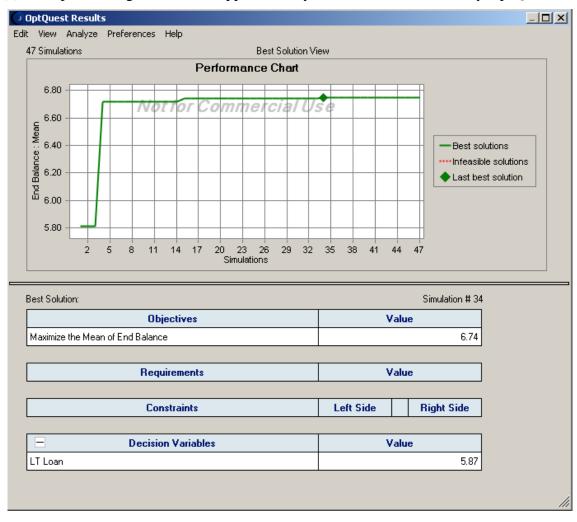
(a) A bid of approximately \$5.3 million maximizes the mean profit.



(b) The optimal bid is approximately \$5.305 million, as found by OptQuest.



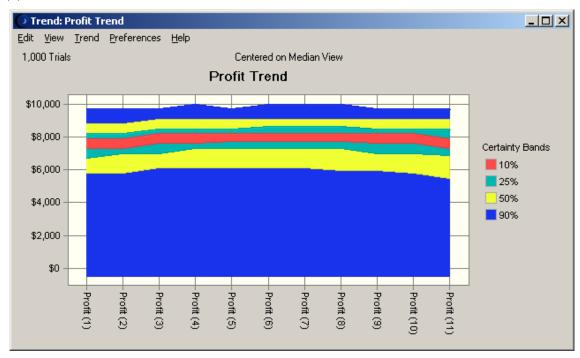
# 28.7.


(a) A long-term loan of approximately \$5 million maximizes Everglade's mean ending balance.

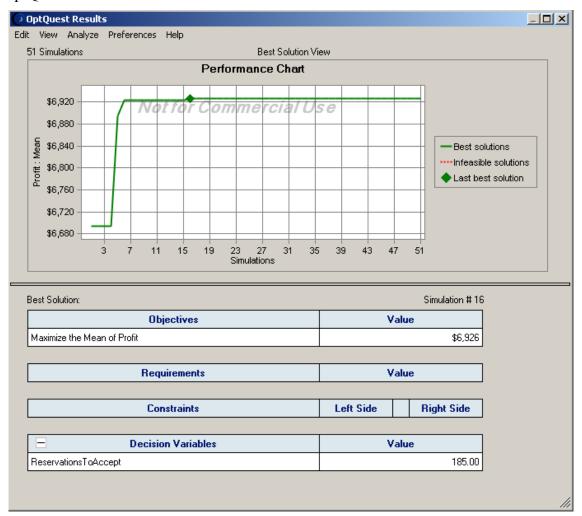
| LT Loan (0.00) | LT Loan (5.00) <mark>6.72</mark> | LT Loan (10.00) | LT Loan (15.00) | LT Loan (20.00) |
|----------------|----------------------------------|-----------------|-----------------|-----------------|
| 5.73           | 6.72                             | 5.82            | 3.07            | -0.33           |

(b)




(c) The optimal long-term loan is approximately \$5.87 million, as found by OptQuest.




28.8.

(a) Accepting approximately 185 reservations maximizes the mean profit.

(b)



(c) The optimal number of reservations to accept is approximately 185, as found by OptQuest.

