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CHAPTER 1: INTRODUCTION

1.3-1.

Answers will vary.

1.3-2.

Answers will vary.

1.3-3.

By using operations research (OR), FedEx managed to survive crises that could drive it
out of business. The new planning system provided more flexibility in choosing the
destinations that it serves, the routes and the schedules. Improved schedules yielded into
faster and more reliable service. OR applied to this complex system with a lot of
interdependencies resulted in an efficient use of the assets. With the new system, FedEx
maintained a high load factor while being able to service in a reliable, flexible and
profitable manner. The model also enabled the company to foresee future risks and to
take measures against undesirable outcomes. The systematic approach has been effective
in convincing investors and employees about the benefits of the changes. Consequently,
"today FedEx is one of the nation's largest integrated, multi-conveyance freight carriers"
[p. 32].
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CHAPTER 2: OVERVIEW OF THE OPERATIONS RESEARCH
MODELING APPROACH

2.1-1.

(a) The rise of electronic brokerage firms in the late 90s was a threat against full-service
financial service firms like Merrill Lynch. Electronic trading offered very low costs,
which were hard to compete with for full-service firms. With banks, discount brokers and
electronic trading firms involved, the competition was fierce. Merrill Lynch needed an
urgent response to these changes in order to survive.

(b) "The group's mission is to aid strategic decision making in complex business
situations through quantitative modeling and analysis" [p.8].

(c) The data obtained for each client consisted of "data for six categories of revenue, four
categories of account type, nine asset allocation categories, along with data on number of
trades, mutual fund exchanges and redemptions, sales of zero coupon bonds, and
purchases of new issues" [p. 10].

(d) As a result of this study, two main pricing options, viz., an asset-based pricing option
and a direct online pricing option were offered to the clients. The first targeted the clients
who want advice from a financial advisor. The clients who would choose this option
would be charged at a fixed rate of the value of their assets and would not pay for each
trade. The latter pricing option was for the clients who want to invest online and who do
not want advice. These self-directed investors would be charged for every trade.

(e) "The benefits were significant and fell into four areas: seizing the marketplace
initiative, finding the pricing sweet spot, improving financial performance, and adopting
the approach in other strategic initiatives" [p.15].

2.1-2.

(a) This study arose from GM's efforts to survive the competition of the late 80s. Various
factors, including the rise of foreign imports, the increase in customer expectations and
the pricing constraints, forced GM to close plants and to incur large financial losses.
While trying to copy Japanese production methods directly, GM was suffering from
"missing production targets, working unscheduled overtime, experiencing high scrap
costs, and executing throughput-improvement initiatives with disappointing results" [p.
7]. The real problems were not understood and the company was continuously losing
money while the managers kept disagreeing about solutions.

(b) The goal of this study was "to improve the throughput performance of existing and
new manufacturing systems through coordinated efforts in three areas: modeling and
algorithms, data collection, and throughput-improvement processes" [p. 7].

(c) The data collection was automated by using programmable logic controllers (PLCs).
The software kept track of the production events including "machine faults and blocking
and starving events" [p. 13] and recorded their duration. The summary of this data was
then transferred to a centralized database, which converted this to workstation-
performance characteristics and used in validating the models, determining the bottleneck
processes and enhancing throughput.

(d) The improved production throughput resulted in more than $2.1 billion in
documented savings and increased revenue.
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2.1-3.



2-3

2.1-4.
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2.2-1.

The financial benefits that resulted from this study include savings of $40 million in 2001
and of $5 million in 2002. The savings for any major disruption have been between $1
and $5 million. The new system enabled Continental Airlines to operate in an efficient
and cost-effective manner in case of disruptions. The time to recover and the costs
associated with disruptions are reduced. What-if analysis allowed the company to
evaluate various scenarios in short periods of time. Since the complete reliable data can
be generated quickly, the company reacts to facts rather than forecasts. These
improvements in handling irregularities resulted in better and more reliable service and
hence happier customers.
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2.2-2.

(a) Swift & Company operates in an industry that involves highly skilled labor, many
production pathways and perishable products. To generate profit, the company needs to
make an efficient use of every single animal procured. Before this study, Swift was not
able to meet the shipping deadlines and as a result of this, it was forced to offer
discounts. The consequences of this practice included highly reduced profits, inaccurate
forecasts and very low reliability. The company had to find a way to come up with the
best product mix and to survive in this business defined by volatility and velocity.

(b) The purpose of the scheduling models is "to fix the production schedule for the next
shift and to create a projection of short order" [p. 74]. They generate shift-level and daily
schedule for 28 days. The capable-to-promise (CTP) models "determine whether a plant
can ship a requested order-line-item quantity on the requested date and time given the
availability of cattle and constraints on the plants' capacity during the 90-day model
horizon" [p. 75]. The starting inventory, committed orders, and production schedule
generated by the CTP models are inputs to the available-to-promise (ATP) models. Every
15 minutes, the ATP models determine the unsold production of each shift and alert the
salespeople to undesirable inventory levels.

(c) The company now uses 45 optimization models.

(d) As a result of this study, the key performance measure, namely the weekly percent-
sold position has increased by 22%. The company can now allocate resources to the
production of required products rather than wasting them. The inventory resulting from
this approach is much lower than what it used to be before. Since the resources are used
effectively to satisfy the demand, the production is sold out. The company does not need
to offer discounts as often as before. The customers order earlier to make sure that they
can get what they want by the time they want. This in turn allows Swift to operate even
more efficiently. The temporary storage costs are reduced by 90%. The customers are
now more satisfied with Swift. With this study, Swift gained a considerable competitive
advantage. The monetary benefits in the first years was $12.74 million, including the
increase in the profit from optimizing the product mix, the decrease in the cost of lost
sales, in the frequency of discount offers and in the number of lost customers. The main
nonfinancial benefits are the increased reliability and a good reputation in the business.

2.2-3.
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2.2-4.
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2.3-1.

(a) Towards the end of 90s, Philips Electronics faced challenges in coordinating its
supply chains. Decentralized short-term planning was no longer very reliable. The spread
of the information to various branches of the global supply chains was taking a lot of
time and the information was distorted while it was being transferred. To deal with the
uncertainty, the companies had to keep high inventory levels.

(b) The ultimate purpose of this study was "to improve competitiveness by improving
customer service, increasing sales and margins, and reducing obsolescence and
inventories" [p. 38]. To achieve this, the project team aimed at designing a collaborative-
planning (CP) process that would improve trust and collaboration between partners and
accelerate decision making.

(c) "The algorithm can generate feasible plans within seconds. In fact, the calculation of
the plan is hardly noticeable to the people participating in the weekly CP meeting. The
speed of the algorithm also allows planners to compute multiple plans during the
meeting, creating an interactive planning environment. The software environment also
provides strong problem-solving support, used extensively during the CP meetings. One
such capability is called backward pegging. It exploits the one-to-one relationship
between the storage of an end item in some future period and a constraining stock on
hand or scheduled receipt of one or more upstream items. Thus, the backward-pegging
mechanism makes the actual material bottlenecks in the network visible" [p. 41-42].

(d) The four steps of the collaborative-planning process are gathering data, deciding,
escalating and deploying.

(e) This study allowed the companies to solve complex problems quickly, to exploit
profitable opportunities and to enhance trust within the supply chain. The information is
now conveyed to other parties in a shorter time and more accurately. As a result of this,
the companies can have accurate information about the availability of material at
different stages. This results in the reduction of inventory and obsolescence as well as the
ability to respond promptly to the changes in market conditions. The benefit from
decreasing inventory and obsolescence is around $5 million per year in total.
Nonfinancial benefits include enhanced flexibility and reliability throughout the chain.
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CHAPTER 3: INTRODUCTION TO LINEAR PROGRAMMING

3.1-1.

Swift & Com pany solved a series of LP problems to identify an optim al production
schedule. The f irst in this series is the sc heduling model, which generates a shift-level
schedule for a 28-day horizon. The objective is to minimize the difference of the total
cost and the revenue. The total cost incl udes the operating costs and the penalties f or
shortage and capacity violation. The constr aints include carcass availability, production,
inventory and demand balance equations, and limits on the production and inventory. The
second LP problem  solved is that of capable -to-promise m odels. This is basically the
same LP as the first one, but excludes c oproduct and inventory. The third type of LP
problem arises from  the available-to-prom ise models. The objective is to m aximize the
total available production subject to production and inventory balance equations.

As a result of this study, the key perform ance measure, namely the weekly percent-sold
position has increased by 22%. The com pany can now allocate resources to the
production of required products rather than wasting them. The inventory resulting from
this approach is m uch lower than what it us ed to be before. Since the resources are used
effectively to satisfy the dem and, the production is sold out. The com pany does not need
to offer discounts as often as before. The cu stomers order earlier to m ake sure that they
can get what they want by the tim e they want. This in turn allows Swif t to operate even
more efficiently. The tem porary storage co sts are reduced by 90%. The custom ers are
now more satisfied with Swift. W ith this study, Swift gained a considerable com petitive
advantage. The m onetary benefits in the first years was $12.74 m illion, including the
increase in the profit from  optimizing the pr oduct mix, the decrease in the cost of lost
sales, in the frequency of discount offers a nd in the num ber of lost custom ers. The main
nonfinancial benefits are the increased reliability and a good reputation in the business.

3.1-2.

(a)      (b)
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(c)      (d)

   

3.1-3.

(a)

(b)
Slope-Intercept Form Slope Intercept
        
        
        

^ œ ' B œ  B  #  #

^ œ "# B œ  B  %  %

^ œ ") B œ  B  '  '

# "
# #
$ $

# "
# #
$ $

# "
# #
$ $
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3.1-4.

(a) B œ  B  "&# "
$
#

(b) The slope is , the intercept is .$Î# "&

(c)
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3.1-5.
Optimal Solution:  and ÐB ß B Ñ œ Ð"$ß &Ñ ^ œ $"‡ ‡ ‡

" #
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3.1-6.

Optimal Solution:  and ÐB ß B Ñ œ Ð$ß *Ñ ^ œ #"!‡ ‡ ‡
" #

 

3.1-7.

(a) As in the W yndor Glass Co. problem , we want to find the optim al levels of two
activities that com pete for lim ited resour ces. Let  be the num ber of wood-fram ed[
windows to produce and  be the number of aluminum-framed windows to produce. TheE
data of the problem is summarized in the table below.

Resource Usage per Unit of Activity
Resource Wood-framed Aluminum-framed Available Amount
Glass                                     ' ) %)

! " %
" ! '

")!

Aluminum                                       
Wood                                       

      $           $Unit Profit *!

(b) m aximize  T œ ")![  *!E
 subject to         '[  )E Ÿ %)
            [ Ÿ '
              E Ÿ %
           [ßE   !
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(c) Optimal Solution: ,  and Ð[ ßEÑ œ ÐB B Ñ œ Ð'ß "Þ&Ñ T œ "#"&‡ ‡ ‡
" #

 

(d) From  Sensitivity Analysis in IOR Tutorial, the allowable range f or the prof it per
wood-framed window is between  and infin ity. As long as all the other param eters'(Þ&
are fixed and the profit per wood-fram ed window is larger than $ , the solution found'(Þ&
in (c) stays optimal. Hence, when it is $  instead of $ , it is still optim al to produce"#! ")!
' "Þ& wood-fram ed and  alum inum-framed window s and this results in a total profit of
$ . However, when it is decreased to $ , the optimal solution is to m ake  wood-)&& '! #Þ'(
framed and  aluminum-framed windows. The total profit in this case is $ .% &#!

(e) m aximize  T œ ")![  *!E
 subject to         '[  )E Ÿ %)
            [ Ÿ &
              E Ÿ %
           [ßE   !
The optimal production schedule consists of   wood-framed and  aluminum-framed& #Þ#&
windows, with a total profit of $ .""!#Þ&

3.1-8.

(a) Let  be the num ber of units of produc t  to produce and  be the num ber of unitsB " B" #

of product  to produce. Then the problem can be formulated as follows:#

 ma ximize T œ B  #B" #

 subject to      B  $B Ÿ #!!" #

           #B  #B Ÿ $!!" #

                      B Ÿ '!#

        B ß B   !" #
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(b) Optimal Solution: ,  and ÐB B Ñ œ Ð"#&ß #&Ñ T œ "(&‡ ‡ ‡
" #

 
3.1-9.

(a) Let  be the number of units on special risk insurance and  be the number of unitsB B" #

on mortgages.

 maximize    D œ &B  #B" #

 subject to            $B  #B Ÿ #%!!" #

                   B Ÿ )!!#

                 #B Ÿ "#!!"

    , B   ! B   !" #

(b) Optimal Solution: ,  and ÐB B Ñ œ Ð'!!ß $!!Ñ ^ œ $'!!‡ ‡ ‡
" #

 
(c) The relevant two equations are  and   , so  and$B  #B œ #%!! #B œ "#!! B œ '!!" # " "

B œ Ð#%!!  $B Ñ œ $!! D œ &B  #B œ $'!!# " " #
"
# , .

3.1-10.

(a) m aximize  T œ !Þ)L  !Þ$F

 subject to !Þ"F Ÿ #!!
   !Þ#&L Ÿ )!!
   $L  #F Ÿ "#ß !!!
     LßF   !
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(b) Optimal Solution: ,  and ÐB B Ñ œ Ð$#!!ß "#!!Ñ T œ #*#!‡ ‡ ‡
" #

 
3.1-11.

(a) Let  be the number of units of product  produced for .B 3 3 œ "ß #ß $3

 maximize    0 0^ œ & B  # B  #&B" # $

 subject to               *B  $B  &B Ÿ &!!" # $

                    &B  %B Ÿ $&!" #

                    $B  #B Ÿ "&!" $

            B Ÿ #!$

           , , B B B   !" # $

(b)
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3.1-12.
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3.1-13.

First note that  satisfies the three constrai nts, i.e.,  is always f easible for anyÐ#ß $Ñ Ð#ß $Ñ
value of . Moreover, the third constraint is always binding at , .5 Ð#ß $Ñ 5B  B œ #5  $" #

To check if  is optimal, observe that ch anging  simply rotates the line that alwaysÐ#ß $Ñ 5
passes through . Rewriting this e quation as , we see that theÐ#ß $Ñ B œ 5B  Ð#5  $Ñ# "

slope of the line is , and therefore, the slope ranges from  to .5 ! _

As we can see,  is optimal as long as the slope of the third constraint is less than theÐ#ß $Ñ
slope of the objective line, which is . If , then we can increase the objective by 5 " "

# #

traveling along the third constraint to the point , which has an objective valueÐ#  ß !Ñ$
5

of  when . For ,  is optimal.#   ) 5  5   Ð#ß $Ñ$ " "
5 # #
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3.1-14.

 

Case 1:  (vertical objective line)- œ !#

If , the objective value increases as  increases, so -  ! B B œ Ð ß !Ñ" "
‡ ""

# , point .G

If , the opposite is true so that all the points on the line from   to , line-  ! Ð!ß !Ñ Ð!ß "Ñ"

SE, are optimal.

If , the objective function is  and every feasible point is optimal.- œ ! !B  !B œ !" " #

Case 2:  (objective line with slope )-  ! #
-
-
"

#

If , , point .  B œ Ð!ß "Ñ E-
- #

" ‡"

#

If , , point .  # B œ Ð ß !Ñ G-
- #

‡ """

#

If , , point ."
# -

- ‡   # B œ Ð%ß $Ñ F"

#

If , any point on the line  is op timal. Similarly, if , any point on œ EF  œ #- -
- # -

"" "

# #

the line  is optimal.FG

Case 3:   (objective line with slope , objec tive value increases as the line is-  ! #
-
-
"

#

shifted down)

If , i.e., , , point .  ! -  ! B œ Ð ß !Ñ G-
- #"

‡ """

#

If , i.e., , , point .  ! -  ! B œ Ð!ß !Ñ S-
- "

‡"

#

If , i.e., ,  is any point on the line . œ ! - œ ! B SG-
- "

‡"

#

3.2-1.

(a) m aximize T œ $E  #F

 subject to          #E  F Ÿ #
               E #F Ÿ #
             $E  $F Ÿ %
                    EßF   !
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(b) Optimal Solution:  and ÐEßFÑ œ ÐB ß B Ñ œ Ð#Î$ß #Î$Ñ T œ $Þ$$‡ ‡ ‡
" #

 

(c) We have to solve  and . By subtracting the second equation#E  F œ # E  #F œ #
from the first one, we obtain , so . Plugging this in the first equation,EF œ ! E œ F
we get , hence .# œ #E  F œ $E E œ F œ #Î$

3.2-2.

(a) TRUE (e.g., maximize )D œ B  %B" #

(b) TRUE (e.g., maximize )D œ B  $B" #

(c) FALSE (e.g., maximize )D œ B  B" #

3.2-3.

(a) As in the W yndor Glass Co. problem , we want to find the optim al levels of two
activities that com pete for limited resources. Let  and  be the f raction purchased ofB B" #

the partnership in the first and second friends venture respectively.
Resource Usage per Unit of Activity

Resource 1 2 Available Amount                
Fraction of partnership in 1st                    " !            
Fraction of partnership in 2nd                               
Money    $    $          $
Summer work hours  

"
! " "

&!!! %!!! '!!!
                          

   $    $
%!! &!! '!!

%&!! %&!!Unit Profit

(b) maximize    0 0T œ %& !B  %&! B" #

 subject to                                      B Ÿ ""

           B Ÿ "#

       &!!!B  %!!!B Ÿ '!!!" #

           %!!B  &!!B Ÿ '!!" #

              ,   B B   !" #
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(c) Optimal Solution: (  and B ß B Ñ œ Ð#Î$ß #Î$Ñ T œ '!!!‡ ‡ ‡
" #

 

3.2-4.

Optimal Solutions: ( ,  and all points lying on the lineB ß B Ñ œ Ð"&ß "&Ñ Ð#Þ&ß $&Þ)$$Ñ‡ ‡
" #

connecting these two points, ^ œ "#ß !!!‡

 

3.2-5.
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3.2-6.

(a)

 

(b) Yes. Optimal solution: (  and B ß B Ñ œ Ð!ß #&Ñ ^ œ #&‡ ‡ ‡
" #

 

(c) No. The objective function value rises as the objective line is slid to the right and
since this can be done forever, there is no optimal solution.

(d) No, if there is no optim al solution even  though there are feasible solutions, it m eans
that the objective value can be made arbitrarily large. Such a case may arise if the data of
the problem  are not accurately determ ined. The objective coefficients m ay be chosen
incorrectly or one or more constraints might have been ignored.
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3.3-1.

Proportionality: It is fair to assum e that the am ount of work and m oney spent and the
profit earned are directly proportional to the fraction of partnership purchased in either
venture.

Additivity: The profit as well as time and money requirements for one venture should not
affect neither the profit nor tim e and m oney requirem ents of the other venture. This
assumption is reasonably satisfied.

Divisibility: Because both friends will allow purchase of any fraction of a full
partnership, divisibility is a reasonable assumption.

Certainty: Because we do not know how accurate the profit estimates are, this is a m ore
doubtful assumption. Sensitivity analysis should be done to take this into account.

3.3-2.

Proportionality: If either variable is fixed, the objective value grows proportionally to the
increase in the other variable, so proportionality is reasonable.

Additivity: It is not a reasonable assum ption, since the activities interact with each other.
For example, the objective value at  is not equal to the sum  of the objective valuesÐ"ß "Ñ
at  and .Ð!ß "Ñ Ð"ß !Ñ

Divisibility: It is not justified, since activity levels are not allowed to be fractional.

Certainty: It is reasonable, since the data provided is accurate.

3.4-1.

In this study, linear program ming is used to  im prove prostate cancer treatm ents. The
treatment planning problem  is form ulated as  an MIP problem . The variables consist of
binary variables that represent whether seed s were placed in a location or not and the
continuous variables that denote the deviati on of received dose from  desired dose. The
constraints involve the bounds on the dose to  each anatom ical structure and various
physical constraints. Two m odels were st udied. The first m odel aim s at finding the
maximum feasible subsystem with the binary variables while the second one minimizes a
weighted sum of the dose deviations with the continuous variables.

With the new system , hundreds of m illions of dollars are saved and treatm ent outcomes
have been m ore reliable. The side effects of  the treatm ent are considerably reduced and
as a result of this, postoperation costs d ecreased. Since planning can now be done just
before the operation, pretreatment costs decreased as well. The num ber of seeds required
is reduced, so is the cost of  procuring th em. Both the quality of  care and the quality of
life after the operation are im proved. The au tomated computerized system significantly
eliminates the variability in quality. Moreove r, the speed of  the system  allows the
clinicians to efficiently handle disruptions.

3.4-2.

United Airlines used linear program ming approach for scheduling. The purpose of this
study was "to determine the needs for incr eased manpower, to identify excess m anpower
for reallocation, to reduce the tim e required for preparing schedules, to m ake manpower
allocation m ore day- and tim e-sensitive, and to quantif y the costs associated with
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scheduling" [p. 42]. The new system  consis ted of a m ixed integer linear program ming
model, a continuous linear program ming model, a heuristic rounding routine and report
writer, and a network assignm ent model.  Th e mixed integer LP m odel determines the
times at which shifts can start. These are inputs to the continuous LP m odel, which, in
turn, returns m onthly schedules that m inimize the labor costs. The constraints include
employee and operating preferences. The soluti on is then rounded heuristically to obtain
the final schedule.

"Benefits it has provided include significan t labor cost savings, im proved custom er
service, im proved em ployee schedules, and quantified m anpower planning and
evaluation" [p. 48]. As a consequence of th is, the revenues increased. The yearly savings
in direct salary and benefit costs tota l to $6 m illion. "Unquantified capital benefits
include additional revenue generated by improved service, benefits from the use of SMPS
in contract negotiations, savings from  reduced support staff requirem ents, savings from
reduced manual scheduling efforts, cost reduc tions from additional smaller work groups,
and reduced training requirements" [p. 48].

3.4-3.

(a)  OK, since beam  effects on ti ssue types are proportional to beamProportionality:
strength.

      OK, since effects from multiple beams are additive.Additivity:

      OK, since beam strength can be fractional.Divisibility:

    Due to the complicated analysis required to estimate the data about radiationCertainty:
absorption in different tissue types, sensitivity analysis should be employed.

(b)  OK, provided there is no setup cost associated with planting a crop.Proportionality:

      OK, as long as crops do not interact.Additivity:

      OK, since acres are divisible.Divisibility:

      OK, since the data can be accurately obtained.Certainty:

(c)  OK, setup costs were considered.Proportionality:

      OK, since there is no interaction.Additivity:

      OK, since methods can be assigned fractional levels.Divisibility:

    Data is hard to estimate, it could easily be uncertain, so sensitivity analysis isCertainty:
useful.

3.4-4.

(a) Reclaiming solid wastes

Proportionality: The am algamation and treatm ent co sts are unlikely to be proportional.
They are more likely to involve setup costs, e.g., treating 1,000 lbs. of m aterial does not
cost the same as treating 10 lbs. of material 100 times.

Additivity: OK, although it is possible to have so me interaction between treatm ents of
materials, e.g., if A is treated after B, the machines do not need to be cleaned out.

Divisibility: OK, unless materials can only be bought or sold in batches, say, of 100 lbs.
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Certainty: The selling/buying prices m ay change. The treatment and amalgamation costs
are, most likely, crude estimates and may change.

(b) Personnel scheduling

Proportionality: OK, although som e costs need not be proportional to the num ber of
agents hired, e.g., benefits and working space.

Additivity: OK, although some costs may not be additive.

Divisibility: One cannot hire a fraction of an agent.

Certainty: The m inimum num ber of agents needed m ay be uncertain. For exam ple, 45
agents may be sufficient rather than 48 for a nominal fee. Another uncertainty is whether
an agent does the same amount of work in every shift.

(c) Distributing goods through a distribution network

Proportionality: There is probably a setup cost fo r delivery, e.g., delivering 50 units one
by one does probably cost much more than delivering all together at once.

Additivity: OK, although it is possible to have two routes that can be com bined to
provide lower costs, e.g., 50, but the truck may be able to deliver 50B œ B œF2-DC DC-W2
units directly from  F2 to W 2 without stopping at DC and hence saving som e m oney.
Another question is whether F1 and F2 produce equivalent units.

Divisibility: One cannot deliver a fraction of a unit.

Certainty: The shipping costs are probably approximations and are subject to change. The
amounts produced m ay change as well.. Ev en the capacities m ay depend on available
daily trucking force, weather and various ot her factors. Sensitivity analysis should be
done to see the effects of uncertainty.

3.4-5.

Optimal Solution: (  and B ß B Ñ œ Ð#ß %Ñ ^ œ ""!‡ ‡ ‡
" #
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3.4-6.

Optimal Solution: (  and B ß B Ñ œ Ð$ß #Ñ ^ œ "$‡ ‡ ‡
" #

 

3.4-7.

The feasible region can be represented as follows:
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Given , various cases that may arise are summarized in the following table:- œ #  !#

          slope optimal solution 
                

                       , 

- œ  ÐB ß B Ñ

-  # "   Ð#ß !Ñ

- œ #  œ " Ð#ß !Ñ

"
-
-

‡ ‡
" #

"
-
-

"
-
- &

"%

"

#

"

#

"

#
Š ß

#  -  #% "#    " ß

- œ #%  œ "# ß Ð$ß

%
&

"
-
- & &

"% %

"
-
- & &

"% %

‹
Š ‹
Š ‹

 and all points on the line connecting these two

                      , 

"

#

"

#
!Ñ

#%  -   "# Ð$ß !Ñ

 and all points on the line connecting these two
             "

-
-
"

#

3.4-8.

(a) Optimal Solution: (  and B ß B Ñ œ ( ß & G œ &&!‡ ‡ ‡
" #

"
#Š ‹

 

(b)  Optimal Solution: (  and B ß B Ñ œ Ð"&ß !Ñ G œ '!!‡ ‡ ‡
" #
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(c) Optimal Solution: (  and B ß B Ñ œ Ð'ß 'Ñ G œ &%!‡ ‡ ‡
" #

 

3.4-9.

(a) m inimize   G œ %W  #T

 subject to       &W  "&T   &!
                 #!W  &T   %!
                 "&W  #T Ÿ '!
           Wß T   !

(b) Optimal Solution: ÐWß T Ñ œ (  and B ß B Ñ œ Ð"Þ$ß #Þ*Ñ G œ "!Þ*"‡ ‡ ‡
" #

 

(c)
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3.4-10.

(a) Let  be the amount of space leased for  months in monthB 4 œ "ßá ß '  334

3 œ "ßá ß &.

 mi nimize G œ '&!ÐB  B  B  B  B Ñ"" #" $" %" &"

        "!!!ÐB  B  B  B Ñ  "$&!ÐB  B  B Ñ"# ## $# %# "$ #$ $$

      "'!!ÐB  B Ñ  "*!!B"% #% "&

 subject to B  B  B  B  B   $!ß !!!"" "# "$ "% "&

   B  B  B  B  B  B  B  B   #!ß !!!"# "$ "% "& #" ## #$ #%

   B  B  B  B  B  B  B  B  B   %!ß !!!"$ "% "& ## #$ #% $" $# $$

   B  B  B  B  B  B  B  B   "!ß !!!"% "& #$ #% $# $$ %" %#

   B  B  B  B  B   &!ß !!!"& #% $$ %# &"

   ,  and B   ! 4 œ "ßá ß '  3 3 œ "ßá ß &34

(b)
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3.4-11.

(a) Let number of full-time consultants working the morning shift (8 a.m.-4 p.m.),0 œ"

           number of full-time consultants working the afternoon shift (Noon-8 p.m.),0 œ#

           number of full-time consultants working the evening shift (4 p.m.-midnight),0 œ$

           number of part-time consultants working the first shift (8 a.m.-noon),: œ"

           number of part-time consultants working the second shift (Noon-4 p.m.),: œ#

           number of part-time consultants working the third shift (4 p.m.-8 p.m.),: œ$

           number of part-time consultants working the fourth shift (8 p.m.-midnight).: œ%

 mi nimize G œ Ð%! ‚ )ÑÐ0  0  0 Ñ  Ð$! ‚ %ÑÐ:  :  :  : Ñ" # $ " # $ %

 subject to  0  :   %" "

   0  0  :   )" # #

   0  0  :   "!# $ $

   0  :   '$ %

   0   #:" "

   0  0   #:" # #

   0  0   #:# $ $

   0   #:$ %

         0 ß 0 ß 0 ß : ß : ß : ß :   !" # $ " # $ %

(b)

Note that the optim al solution has fractional com ponents. If the num ber of consultants
have to be integer, then the problem  is an integer programming problem and the solution
is  with cost $ .Ð$ß $ß %ß "ß #ß $ß #Ñ %ß "'!

3.4-12.

(a) Let  be the number of units shipped from factory  to customer .B 3 œ "ß # 4 œ "ß #ß $34

minimize G œ '!!B  )!!B  (!!B  %!!B  *!!B  '!!B"" "# "$ #" ## #$

subject to B  B  B œ %!!"" "# "$

  B  B  B œ &!!#" ## #$

  B  B œ $!!"" #"

  B  B œ #!!"# ##

  B  B œ %!!"$ #$

and  ,  and B   ! 3 œ "ß # 4 œ "ß #ß $34
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(b)

3.4-13.

(a)  E F V œ '!ß !!!" " "

 E F G V œ V# # # # "

 E F V œ V  "Þ%!E$ $ $ # "

 E V œ V  "Þ%!E  "Þ(!F% % $ # "

 H V œ V  "Þ%!E  "Þ(!F& & % $ #

(b)  maximize T œ "Þ%!E  "Þ(!F  "Þ*!G  "Þ$!H  V% $ # & &

 subject to  E F V œ '!ß !!!" " "

   E F G V V œ !# # # " #

   "Þ%!E  E F V V œ !" $ $ # $

   "Þ%!E  E  "Þ(!F  V V œ !# % " $ %

   "Þ%!E  "Þ(!F H V V œ !$ # & % &

 and  A > > > > >ß F ß G ßH ßV   !

(c)

3.4-14.

(a) Let  be the amount of Alloy  used for .B 3 3 œ "ß #ß $ß %ß &3

 mi nimize  G œ ((B  (!B  ))B  )%B  *%B" # $ % &

 subject to  '!B  #&B  %&B  #!B  &!B œ %!" # $ % &

    "!B  "&B  %&B  &!B  %!B œ $&" # $ % &

    $!B  '!B  "!B  $!B  "!B œ #&" # $ % &

                        B  B  B  B  B œ "" # $ % &

 and       B ß B ß B ß B ß B   !" # $ % &
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(b)

3.4-15.

(a) Let  be the num ber of tons of cargo type  stowed in com partmentB 3 œ "ß #ß $ß %34

4 œ F (front), C (center), B (back).

 ma ximize T œ $#!ÐB  B  B Ñ  %!!ÐB  B  B Ñ"J "G "F #J #G #F

          $'!ÐB  B  B Ñ  #*!ÐB  B  B Ñ$J $G $F %J %G %F

 subject to B  B  B  B Ÿ "#"J #J $J %J

   B  B  B  B Ÿ ")"G #G $G %G

   B  B  B  B Ÿ "!"F #F $F %F

   B  B  B Ÿ #!"J "G "F

   B  B  B Ÿ "'#J #G #F

   B  B  B Ÿ #&$J $G $F

   B  B  B Ÿ "$%J %G %F

   &!!B  (!!B  '!!B  %!!B Ÿ (ß !!!"J #J $J %J

   &!!B  (!!B  '!!B  %!!B Ÿ *ß !!!"G #G $G %G

   &!!B  (!!B  '!!B  %!!B Ÿ &ß !!!"F #F $F %F

   " "
"# ")"J #J $J %J "G #G $G %GÐB  B  B  B Ñ  ÐB  B  B  B Ñ œ !

   " "
"# "!"J #J $J %J "F #F $F %FÐB  B  B  B Ñ  ÐB  B  B  B Ñ œ !

 and  B ß B ß B ß B ß B ß B ß B ß B ß B ß B ß B ß B   !"J #J $J %J "G #G $G %G "F #F $F %F

(b)



3-24

3.4-16.

(a) Let  be the num ber of hours operator  is assigned to work on day  for ,B 3 4 3 œ OG34

HL LF WG OW RO 4 œ Q X? [ X2 J, , , ,  and , , , , .

minimize  ^ œ #&ÐB  B  B Ñ  #'ÐB  B Ñ OGßQ OGß[ OGßJ HLßX? HLßX2

   #%ÐB  B  B  B Ñ LFßQ LFßX? LFß[ LFßJ

              #$ÐB  B  B  B Ñ WGßQ WGßX? WGß[ WGßJ

              #)ÐB  B  B Ñ  $!ÐB  B ÑOWßQ OWß[ OWßX2 ROßX2 ROßJ

subject to  , , B Ÿ ' B Ÿ ' B Ÿ 'OGßQ OGß[ OGßJ

  , B Ÿ ' B Ÿ 'HLßX? HLßX2

  , , , B Ÿ % B Ÿ ) B Ÿ % B Ÿ %LFßQ LFßX? LFß[ LFßJ

  , , , B Ÿ & B Ÿ & B Ÿ & B Ÿ &WGßQ WGßX? WGß[ WGßJ

  , , B Ÿ $ B Ÿ $ B Ÿ )OWßQ OWß[ OWßX2

  , B Ÿ ' B Ÿ #ROßX2 ROßJ

  B  B  B   )OGßQ OGß[ OGßJ

  B  B   )HLßX? HLßX2

  B  B  B  B   )LFßQ LFßX? LFß[ LFßJ

  B  B  B  B   )WGßQ WGßX? WGß[ WGßJ

  B  B  B   (OWßQ OWß[ OWßX2

  B  B   (ROßX2 ROßJ

  B  B  B  B œ "%OGßQ LFßQ WGßQ OWßQ

  B  B  B œ "%HLßX? LFßX? WGßX?

  B  B  B  B œ "%OGß[ LFß[ WGß[ OWß[

  B  B  B œ "%HLßX2 LFßX2 ROßX2

  B  B  B  B œ "%OGßJ LFßJ WGßJ ROßJ

   for all , .B   ! 3 434
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(b)

3.4-17.

(a) Let slices of bread, tablespoons of peanut butter, tablespoons of straw-F œ T œ W œ
berry jelly, graham crackers, cups of milk, and cups of juice.K œ Q œ N œ

minimize G œ &F  %T  (W  )K  "&Q  $&N

subject to (!F  "!!T  &!W  '!K  "&!Q  "!!N   %!!
  (!F  "!!T  &!W  '!K  "&!Q  "!!N Ÿ '!!
  "!F  (&T  #!K  (!Q Ÿ !Þ$Ð(!F  "!!T  &!W  '!K  "&!Q  "!!N Ñ
  $W  #Q  "#!N   '!
  $F  %T K  )Q  N   "#
  F œ #
  T   #W
  Q  N   "

and  FßT ß WßKßQß N   !

(b)
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3.5-1.

Upon facing problems about juice logistics, W elch's formulated the juice logistics m odel
(JLM), which is "an application of LP to a single-com modity network problem . The
decision variables deal with the cost of transfers between plants, the cost of recipes, and
carrying cost- all cost that are key to the common planning unit of tons" [p. 20]. The goal
is to find the optimal grape juice quantities shipped to customers and transferred between
plants over a 12-m onth horizon. The optim al quantities minimize the total cost, i.e., the
sum of transportation, recipe and storage costs. They satisfy balance equations, bounds
on the ratio of grape juice sold, and  limits on total grape juice sold.

The JLM resulted in significant savings by preventing unprofitable decisions of the
management. The savings in the first y ear of its im plementation were over $130,000.
Since the model can be run quickly, revising the decisions after observing the changes in
the conditions is m ade easier. Thus, the f lexibility of the system is improved. Moreover,
the output helps the communication within the committee that is responsible for deciding
on crop usage.

3.5-2.

(a)  maximize T œ #!B  $!B" #

 subject to              #B  B Ÿ "!" #

      $B  $B Ÿ #!" #

      #B  %B Ÿ #!" #

              B ß B   !" #

(b) Optimal Solution:  and ÐB ß B Ñ œ $ ß $ T œ "''Þ'(‡ ‡ ‡
" #

" "
$ $Š ‹

 

(c) - (e)
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(d)

 Feasible?    
     Yes $
     Yes $
     Yes $  Best
     Yes $
     No
     No

ÐB ß B Ñ T
Ð#ß #Ñ "!!
Ð$ß $Ñ "&!
Ð#ß %Ñ "'!
Ð%ß #Ñ "%!
Ð$ß %Ñ
Ð%ß $Ñ

" #

3.5-3.

(a) m aximize T œ $!!E  #&!F  #!!G

 subject to !Þ!#E  !Þ!$F  !Þ!&G Ÿ %!
   !Þ!&E  !Þ!#F  !Þ!%G Ÿ %!
 and  EßFßG   !

(b)

(c) Many answers are possible. 

     Feasible?        
   No
   Yes $
   Yes $  Best

ÐEßFßGÑ T
Ð&!!ß &!!ß $!!Ñ
Ð$&!ß "!!!ß !Ñ $&&ß !!!
Ð%!!ß "!!!ß !Ñ $(!ß !!!

(d)

3.5-4.

(a) m inimize G œ '!B  &!B" #

 subject to &B  $B   '!" #

   #B  #B   $!" #

   (B  *B   "#'" #

 and  B ß B   !" #
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(b) Optimal Solution:  and ÐB ß B Ñ œ Ð'Þ(&ß )Þ(&Ñ G œ )%#Þ&!‡ ‡ ‡
" #

 

(c) - (e)

(d)

 Feasible?    
     No
     No
     No
     Yes $  Best
     Yes $
     Yes $

ÐB ß B Ñ G
Ð(ß (Ñ
Ð(ß )Ñ
Ð)ß (Ñ
Ð)ß )Ñ ))!
Ð)ß *Ñ *$!
Ð*ß )Ñ *%!

" #

3.5-5.

(a) m inimize G œ )%G  (#X  '!E

 subject to *!G  #!X  %!E   #!!
   $!G  )!X  '!E   ")!
   "!G  #!X  '!E   "&!
 and  Gß X ßE   !

(b) - (e)
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(c)  is a feasible solution with a daily cost of $348. This diet willÐB ß B ß B Ñ œ Ð"ß #ß #Ñ" # $

provide 210 kg of carbohydrates, 310 kg of protein, and 170 kg of vitamins daily.

(d) Answers will vary.

3.5-6.

(a) m inimize G œ B  B  B" # $

 subject to #B  B  !Þ&B   %!!" # $

   !Þ&B  !Þ&B  B   "!!" # $

   "Þ&B  #B   $!!# $

 and  B ß B ß B   !" # $

(b) - (e)

(c)  is a feasible solution. This would generate $400 millionÐB ß B ß B Ñ œ Ð"!!ß "!!ß #!!Ñ" # $

in 5 years, $300 m illion in 10 years, and $550 million in 20 years. The total investm ent
will be $400 million.

(d) Answers will vary.
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3.6-1.

(a) In the following, the indices  and  refer to products, m onths, plants,3ß 4ß 5ß 6ß 7
processes and regions respectively. The decision variables are:

  amount of product  produced in month  in plant  using process  andB œ 3 4 5 634567

       to be sold in region , and7

  amount of product  stored to be sold in March in region .= œ 3 737

The parameters of the problem are:

  demand for product   in month  in region ,H œ 3 4 7347

  unit production cost of product  in plant  using process ,- œ 3 5 6356

  production rate of product  in plant  using process ,V œ 3 5 6356

  selling price of product ,: œ 33

  transportation cost of product  product in plant  to be sold in regionX œ 3 5357

7,

  days available for production in month ,E œ 44

  storage limit,P œ

  storage cost per unit of product .Q œ 33

The objective is to m aximize the total prof it, which is the dif ference of the total revenue
and the total cost. The total cost is the sum of the costs of production, inventory and
transportation. Using the notation introduced, the objective is to maximize

! ! ! ! ! ! ! !Œ  Œ  Œ  Œ 
3 4ß7 3

3 34567 356 34567 3 37 357 34567
4ß5ß6ß7 3ß5ß6 3ß5ß7 4ß67

: B  - B  Q =  X B

subject to the constraints

!
5ß6

34567 37 347B  = Ÿ H 4 œ 3 œ "ß # 7 œ "ß #     for February; ; 

!
5ß6

34567 37 347B  = Ÿ H 4 œ 3 œ "ß # 7 œ "ß #     for March; ; 

!
3

37= Ÿ P 7 œ "ß #         for 

! !Œ 
3ß6

"
V

7
34567 4

356
B Ÿ E 4 œ 5 œ "ß #    for February, March; 

B   ! 3ß 5ß 6ß 7 œ "ß # 4 œ34567       for   and February, March
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(b)
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(c)
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(d)
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3.6-2.

(a)

(b)

3.6-3.

(a)
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(b)

 

 

3.6-4.

(a)
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3-39

(b)
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3.6-5.

(a)

(b)
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3.6-6.

(a)

(b)
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3.6-7.

(a) The problem is to choose the amount of paper type  to be produced on machine type5
6 5 4 B at paper m ill  and to be shipped to custom er , which we can represent as  for3456

3 œ "ßá ß "! 4 œ "ßá ß "!!! 5 œ "ßá ß & 6 œ "ß #ß $; ;  and . The objective is to minimize

! ! ! !Œ  Œ 
3ß5ß6 3ß4ß5 6

356 3456 345 3456
4

T B  X B

subject to

!
3ß6

3456 45B Ÿ H 4 œ "ßá ß "!!! 5 œ "ßá ß &     for ;  DEMAND

! !Œ 
5ß6

567 3456 37
4

< B Ÿ V 3 œ "ßá ß "! 7 œ "ß #ß $ß %    for ;  RAW MATERIAL

! !Œ 
5

56 3456 36
4

- B Ÿ G 3 œ "ßá ß "! 6 œ "ß #ß $     for ;   CAPACITY

B   ! 3 œ "ßá ß "! 4 œ "ßá ß "!!! 5 œ "ßá ß &3456       f or ; ; ;
6 œ "ß #ß $

Note that  is the total am ount of paper type  shipped to custom er  from paper!
6 3456B 5 4

mill  and  is the total am ount of paper type  made on m achine type  at paper3 B 5 6!
4 3456

mill .3

(b)  functional constraints"!!!‡&  "!‡%  "!‡$ œ &ß !(!

  decision variables"!‡"!!!‡&‡$ œ "&!ß !!!

(c)



3-43

(d)

3.7-1.

Answers will vary.

3.7-2.

Answers will vary.
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3-45



3-46



3-47



3-48



3-49



3-50



3-51



3-52



3-53



3-54



3-55



3-56



3-57



3-58



3-59



3-60



3-61



3-62



3-63



3-64
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CHAPTER 4: SOLVING LINEAR PROGRAMMING PROBLEMS:

THE SIMPLEX METHOD

4.1-1.

(a) Label the corner points as A, B, C, D, and E in the clockwise direction starting from
Ð!ß 'Ñ.

 

(b) A:  and B œ ! B œ '" #

 B:  and B œ ' B  B œ )# " #

 C:  and B  B œ ) B œ &" # "

 D:  and B œ & B œ !" #

 E:  and B œ ! B œ !# "

(c) A:  ÐB ß B Ñ œ Ð!ß 'Ñ" #

 B:  ÐB ß B Ñ œ Ð'ß #Ñ" #

 C:  ÐB ß B Ñ œ Ð&ß $Ñ" #

 D:  ÐB ß B Ñ œ Ð&ß !Ñ" #

 E:  ÐB ß B Ñ œ Ð!ß !Ñ" #

(d) Corner Point Adjacent Points
        A          E, B
        B          A, C
        C          B, D
        D          C, E
        E          D, A

(e) A and B: B œ '#

 B and C: B  B œ )" #

 C and D: B œ &"

 D and E: B œ !#

 E and A: B œ !"
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4.1-2.

(a) Optimal solution:  with ÐB ß B Ñ œ Ð#ß #Ñ ^ œ "!" #
‡ ‡ ‡

Label the corner points as A, B, C, and D in the clockwise direction starting from .Ð!ß $Ñ

(b)
Corner Point Corresponding Constraint Boundary Eq.s
                 and               and 
     
EÐ!ß $Ñ B œ ! B  #B œ ' ! œ ! !  # ‚ $ œ '
FÐ#ß #Ñ

" " #

B  #B œ ' #B  B œ ' #  # ‚ # œ ' # ‚ #  # œ '
GÐ$ß !Ñ #B  B œ ' B œ ! # ‚ $  ! œ ' ! œ !
HÐ!ß !Ñ B

" # " #

" # #

"

 and  and 
      and             and              
                 and                          and              œ ! B œ ! ! œ ! ! œ !#

(c) Corner Point Adjacent Corner Points
      and 
      and 
      and 
   

EÐ!ß $Ñ HÐ!ß !Ñ FÐ#ß #Ñ
FÐ#ß #Ñ EÐ!ß $Ñ GÐ$ß !Ñ
GÐ$ß !Ñ FÐ#ß #Ñ HÐ!ß !Ñ
HÐ!ß !Ñ GÐ$ß !Ñ EÐ!ß $Ñ   and 

(d) Optimal Solution:  with ÐB ß B Ñ œ Ð#ß #Ñ ^ œ "!" #
‡ ‡ ‡

 Corner Point Profit
       
     
       
       

ÐB ß B Ñ œ $B  #B
EÐ!ß $Ñ '
FÐ#ß #Ñ "!
GÐ$ß !Ñ *
HÐ!ß !Ñ !

" # " #

(e)
 Corner Point Profit Next Step

       Check  and .
       Move to .
       Check .
     Stop,  is op

HÐ!ß !Ñ ! E G
EÐ!ß $Ñ ' G
GÐ$ß !Ñ * F
FÐ#ß #Ñ "! F timal.‡

‡ The next corner point is A, which has already been checked.
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4.1-3.

(a)

 Corner Point Profit
                
        
      
      
      

ÐE ßE Ñ œ "ß !!!E  #ß !!!E
Ð!ß !Ñ !
Ð)ß !Ñ )ß !!!
Ð'ß %Ñ "%ß !!!
Ð&ß &Ñ "&ß !!!
Ð!ß 'Þ

" # " #

''(Ñ "$ß $$$

Optimal Solution:  with $ÐE ßE Ñ œ Ð&ß &Ñ ^ œ "&ß !!!" #
‡ ‡ ‡

(b) Initiated at the origin, the simplex method can follow one of the two paths:

  or .Ð!ß !Ñ Ä Ð)ß !Ñ Ä Ð'ß %Ñ Ä Ð&ß &Ñ Ð!ß !Ñ Ä Ð!ß 'Þ(Ñ Ä Ð&ß &Ñ

Consider the first path. The origin  is not optimal, since  and  areÐ!ß !Ñ Ð!ß 'Þ(Ñ Ð)ß !Ñ
adjacent to , both are feasible and they have better objective values.  is notÐ!ß !Ñ Ð)ß !Ñ
optimal because , which is adjacent to it, is feasible and better.  is optimalÐ'ß %Ñ Ð&ß &Ñ
since both corner points that are adjacent to it are worse.

4.1-4.

(a)
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(b)
 CP Solution Feasibility Objective

A    Infeasible    6750
B    Infeasible    5400
C    Feasible    4500
D    Feasible

ˆ ‰ˆ ‰ˆ ‰ˆ ‰

!ß

!ß

!ß "

ß "

$
#
'
&

"
%    5625

E    Infeasible    6300
F    Infeasible    9000
G    Feasible    6000 
H    Infeasible    6300
I    Fea

ˆ ‰
ˆ ‰ˆ ‰ˆ ‰

#
&

# #
$ $

‡

#
&
"
%

ß "

Ð"ß "Ñ

ß

"ß

"ß sible    5625
J    Feasible    4500
K    Infeasible    5400
L    Infeasible    6750
M    Feasible       0

ˆ ‰ˆ ‰ˆ ‰
"ß !

ß !

ß !

Ð!ß !Ñ

'
&
$
#

The point G is optimal.

(c) Start at the origin M . Both adjacent points C  and J  areœ Ð!ß !Ñ œ Ð"ß !Ñ œ Ð!ß "Ñ
feasible and have better objective values,so one can choose to move to either one of
them. Suppose we choose C, which is not optimal since its adjacent CPF solution D is
better. The other corner point that is adjacent to C is B, but it is infeasible, so move to D.
Its adjacent G is feasible and better. The CPF solutions that are adjacent to G, namely D
and I both have lower objective values. Hence, G is optimal. If one chooses to proceed to
J instead of C after the starting point, then the simplex path follows the points M, J, I, G
and using similar arguments, one obtains the optimality of G.

4.1-5.

(a)
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(b)

 CP Solution Feasibility Objective
A    Infeasible       
B    Feasible      
C    Feasible        
D    Feasible  

ˆ ‰ˆ ‰ˆ ‰ˆ ‰

!ß % )

!ß &

#ß # '

%ß !

) "
$ $

‡

     
E    Infeasible       
F    Feasible       

%

)ß ! )

!ß ! !

ˆ ‰ˆ ‰
The point C is optimal.

(c) The starting point F is not optimal, since B and D have better objective values. The
objective value  increases faster along the edge FB ( ) than along the edge FDD & Î œ #" )

$ $

( ), so we choose to move to point B. B is not optimal because the adjacent point%Î% œ "
C does better. Note that A is adjacent to B as well, but it is infeasible. C is optimal since
the two CPF solutions adjacent to C, namely B and D have lower objective values.

4.1-6.

 

 Corner Point Profit Next Step
    Check  and .
    Move to .
    Check 

œ #B  $B
Ð!ß !Ñ ! Ð#Þ&ß !Ñ Ð!ß "Ñ
Ð#Þ&ß !Ñ & Ð#Þ&ß !Ñ
Ð!ß "Ñ $ Ð$Þ$$$$ß $Þ$$$Ñ

" #

.
  Move to . Check .
  Move to . Check .
    Stop,  is optimal

Ð$Þ$$$$ß $Þ$$$Ñ "'Þ''( Ð$ß %Ñ Ð$ß %Ñ
Ð$ß %Ñ ") Ð$ß %Ñ Ð!Þ'ß #Þ)Ñ
Ð!Þ'ß #Þ)Ñ *Þ' Ð$ß %Ñ .
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4.1-7.

 

 Corner Point Cost Next Step
          Check  and .
          Stop,  is optimal.

œ &B  (B
Ð%#ß #"Ñ $&( Ð($Þ&ß !Ñ Ð!ß '$Ñ
Ð($Þ&ß !Ñ $'(Þ& Ð%#ß #"Ñ

" #

          Ð!ß '$Ñ %%"

4.1-8.

(a) TRUE. Use optimality test. In minimization problems, "better" means smaller. To see
this, note that  .min max^ œ  Ð^Ñ

(b) FALSE. CPF solutions are not the only possible optimal solutions, there can be
infinitely many optimal solutions. This is indeed the case when there are more than one
optimal solution. For example, consider the problem

  maximize  ^ œ B  B" #

  subject to    B  B Ÿ "!" #

           B ß B   !" #

where ,  and  with  are all optimal solutions.^ œ "! B œ 5 B œ "!  5 5 − Ò!ß "!Ó‡ ‡ ‡
" #

(c) TRUE. However, this is not always true. It is possible to have an unbounded feasible
region where an entire ray with only one CPF solution is optimal.

4.1-9.

(a) The problem may not have an optimal solution.

(b) The optimality test checks whether the current corner point is optimal. The iterative
step only moves to a new corner point.
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(c) The simplex method can choose the origin as the initial corner point only when it is
feasible.

(d) One of the adjacent points is likely to be better, not necessarily optimal.

(e) The simplex method only identifies the rate of improvement, not all the adjacent
corner points.

4.2-1.

(a) Augmented form:

 maximize %&!!B  %&!!B" #

 subject to                                  B  B œ "" $

                          B  B œ "# %

                                   &!!!B  %!!!B  B œ '!!!" # &

                                                  %!!B  &!!B  B œ '!!" # '

                B ß B ß B ß B ß B ß B   !" # $ % & '

(b)

CPF Solution BF Solution Nonbasic Variables Basic Variables
A              
B     

ˆ ‰ ˆ ‰ˆ ‰ ˆ!ß " !ß "ß "ß !ß #!!!ß "!! B ß B B ß B ß B ß B

ß " ß "ß

" % # $ & '

" " $
% % % ß !ß (&!ß ! B ß B B ß B ß B ß B

ß ß ß ß ß !ß ! B ß B B ß B ß B ß B

"ß "ß ß !ß ß !ß (& B ß B

‰ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰
         

C              
D              

% ' " # $ &

# # # # " "
$ $ $ $ $ $ & ' " # $ %

" " $
% % % $ & " # % '

# $ " % & '

" # $ % & '

B ß B ß B ß B

"ß ! "ß !ß !ß "ß "!!!ß #!! B ß B B ß B ß B ß B

!ß ! !ß !ß "ß "ß '!!!ß '!! B ß B B ß B ß B ß B

E              
F              

ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰
(c)  Set  and solveBF Solution A: B œ B œ !" %

  B œ "$

  B œ "#

    %!!!B  B œ '!!! Ê B œ #!!!# & &

    &!!B  B œ '!! Ê B œ "!!# ' '

  and solveBF Solution B: Set B œ B œ !% '

    B  B œ " Ê B œ $Î%" $ $

  B œ "#

      &!!!B  %!!!B  B œ '!!! Ê B œ (&!" # & &

     %!!B  &!!B œ '!! Ê B œ "Î%" # "

  and solveBF Solution C: Set B œ B œ !& '

  B  B œ "" $

  B  B œ "# %

    &!!!B  %!!!B œ '!!!" #

   %!!B  &!!B œ '!!" #

 From the last two equations,  and from the first two,B œ B œ #Î$" #

B œ B œ "Î$$ % .
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  and solveBF Solution D: Set B œ B œ !$ &

  B œ ""

    B  B œ " Ê B œ $Î%# % %

      &!!!B  %!!!B œ '!!! Ê B œ "Î%" # #

    %!!B  &!!B  B œ '!! Ê B œ (&" # ' '

  and solveBF Solution E: Set B œ B œ !# $

  B œ ""

  B œ "%

      &!!!B  B œ '!!! Ê B œ "!!!" & &

    %!!B  B œ '!! Ê B œ #!!" ' '

  and solveBF Solution F: Set B œ B œ !" #

  B œ "$

  B œ "%

    B œ '!!!&

  B œ '!!'

4.2-2.

(a) Augmented form:

 maximize B  #B" #

 subject to    B  $B  B œ )" # $

                          B  B  B œ %" # %

               B ß B ß B ß B   !" # $ %

(b)

CPF Solution BF Solution Nonbasic Variables Basic Variables
A                     
B          

ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰!ß ! !ß !ß )ß % B ß B B ß B

!ß !ß ß !ß

" # $ %

) ) %
$ $ $            

C                     
D                     

B ß B B ß B

#ß # #ß #ß !ß ! B ß B B ß B

%ß ! %ß !ß %ß ! B ß B B ß B

" $ # %

$ % " #

# % " $

ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰
(c)  Set  and solveBF Solution A: B œ B œ !" #

  B œ )$

  B œ %%

  Set BF Solution B: B œ B œ !" $  and solve

    $B œ ) Ê B œ )Î$# #

      B  B œ % Ê B œ %Î$# % %

  Set BF Solution C: B œ B œ !$ %  and solve

  B  $B œ )" #

  B  B œ %" #

   From these two equations, .B œ B œ #" #
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  Set BF Solution D: B œ B œ !# %  and solve

    B  B œ ) Ê B œ %" $ $

  B œ %"

(d)
CP Infeasible Sol.'n Basic Infeasible Sol.'n Nonbasic Var.'s Basic Var.'s

E                            
F     

Ð!ß %Ñ Ð!ß %ß %ß !Ñ B ß B B ß B" % # $

                       Ð)ß !Ñ Ð)ß !ß !ß %Ñ B ß B B ß B# $ " %

(e)  and solveBasic Infeasible Solution E: Set B œ B œ !" %

    $B  B œ ) Ê B œ %# $ $

    B œ %#

  Set Basic Infeasible Solution F: B œ B œ !# $  and solve

  B œ )"

      B  B œ % Ê B œ %" % %

4.3-1.

After the sudden decline of prices at the end of 1995, Samsung Electronics faced the
urgent need to improve its noncompetitive cycle times. The project called SLIM (short
cycle time and low inventory in manufacturing) was initiated to address this problem. As
part of this project, floor-scheduling problem is formulated as a linear programming
model. The goal is to identify the optimal values "for the release of new lots into the fab
and for the release of initial WIP from every major manufacturing step in discrete
periods, such as work days, out to a horizon defined by the user" [p. 71]. Additional
variables are included to determine the route of these through alternative machines. The
optimal values "minimize back-orders and finished-goods inventory" [p. 71] and satisfy
capacity constraints and material flow equations. CPLEX was used to solved the linear
programs.

With the implementation of SLIM, Samsung significantly reduced its cycle times and as
a result of this increased its revenue by $1 billion (in five years) despite the decrease in
selling prices. The market share increased from 18 to 22 percent. The utilization of
machines was improved. The reduction in lead times enabled Samsung to forecast sales
more accurately and so to carry less inventory. Shorter lead times also meant happier
customers and a more efficient feedback mechanism, which allowed Samsung to respond
to customer needs. Hence, SLIM did not only help Samsung to survive a crisis that drove
many out of the business, but it did also provide a competitive advantage in the business.
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4.3-2.

Optimal Solution: , ˆ ‰ ˆ ‰B ß B œ ß ^ œ '!!!‡ ‡ ‡
" #

# #
$ $
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4.3-3.

(a) maximize  ^ œ B  #B" #

 subject to     B  $B  B œ )" # $

                               B  B  B œ %" # %

                      B ß B ß B ß B   !" # $ %

Initialization:  , , , is not optimal sinceB œ B œ ! Ê B œ ) B œ % D œ B  #B œ !" # $ % " #

the improvement rates are positive. Since it offers a rate of improvement of 2, choose to
increase , which becomes the entering basic variable for Iteration 1. Given , theB B œ !# "

highest possible increase in  is found by looking at:B#

      B œ )  $B   ! Ê B Ÿ )Î$$ # #

    B œ %  B   ! Ê B Ÿ %% # #

The minimum of these two bounds is , so  can be raised to  and  leaves)Î$ B )Î$ B œ !# $

the basis. Using Gaussian elimination, we obtain:

          ^ œ B  B " # "'
$ $ $" $

            " " )
$ $ $" # $B  B  B œ

        # " %
$ $ $" $ %B  B  B œ  

        B ß B ß B ß B   !" # $ %

Again  is not optimal since the rate of improvement for  is  and  canˆ!ß ß !ß Ñ B  ! B) % "
$ $ $" "

be increased to . Consequently,  becomes . By Gaussian elimination:# B !%

        ^ œ  B  B  '" "
# #$ %

     B  B  B œ ## $ %
" "
# #

        B  B  B œ #" $ %
" $
# #

             B ß B ß B ß B   !" # $ %

The current solution is optimal, since increasing  or  would decrease the objectiveB B$ %

value. Hence , .B œ Ð#ß #ß !ß !Ñ ^ œ '‡ ‡

(b) Optimal Solution: , ˆ ‰ ˆ ‰B ß B œ #ß # ^ œ '‡ ‡ ‡
" #
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(c) The solution is the same.

4.3-4.

Optimal Solution: , ˆ ‰ ˆ ‰B ß B ß B œ !ß "!ß ' ^ œ (!‡ ‡ ‡ ‡
" # $

#
$
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4.3-5.

Optimal Solution: , ˆ ‰ ˆ ‰B ß B ß B œ !ß #$Þ')ß #&Þ#' ^ œ ##"Þ"‡ ‡ ‡ ‡
" # $

 

 

 

4.3-6.

(a) The simplest adaptation of the simplex method is to force  and  into the basis atB B# $

the earliest opportunity. One can also find the optimal solution directly by using Gaussian
elimination.

(b) ^ œ &B  $B  %B" # $

 #B  B  B  B œ #!" # $ %

 $B  B  #B  B œ $!" # $ &

 B ß B ß B ß B ß B   !" # $ % &

 (i) Increase  setting .B B œ B œ !# " $

 minimumB œ #!  B   ! Ê B Ÿ #! Ã% # #

 B œ $!  B   ! Ê B Ÿ $!& # #

 Let  and .B œ #! B œ !# %

 ^ œ B  B  $B  '!" $ %

 #B  B  B  B œ #!" # $ %

 B  B  B  B œ "!" $ % &

 B ß B ß B ß B ß B   !" # $ % &
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 (ii) Increase  setting .B B œ B œ !$ " %

 B œ #!  B   ! Ê B Ÿ #!# $ $

 minimumB œ "!  B   ! Ê B Ÿ "! Ã& $ #

 Let  and .B œ "! B œ !$ &

 ^ œ #B  #B  B  (!" % &

 B  B  #B  B œ "!" # % &

 B  B  B  B œ "!" $ % &

 B ß B ß B ß B ß B   !" # $ % &

Optimal Solution:  and ÐB ß B ß B Ñ œ Ð!ß "!ß "!Ñ ^ œ (!" # $
‡ ‡ ‡ ‡

4.3-7.

(a) Because  in the optimal solution, the problem can be reduced to:B œ !#

 maximize  ^ œ #B  $B" $

 subject to    B  #B Ÿ $!" $

                      B  B Ÿ #%" $

               $B  $B Ÿ '!" $

                              B ß B   !" $

or equivalently

 maximize  D œ #B  $B" $

 subject to    B  #B Ÿ $!" $

                       B  B Ÿ #!" $

                              B ß B   !" $

Since  and  in the optimal solution, they should be basic variables in theB  ! B  !" $

optimal solution. Choosing these two as the first two entering basic variables will lead to
an optimal solution. The leaving basic variables will be determined by the minimum ratio
test.

(b) Optimal Solution:  and ÐB ß B ß B Ñ œ Ð"!ß !ß "!Ñ ^ œ &!" # $
‡ ‡ ‡ ‡
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4.3-8.

(a) FALSE. The simplex method's rule for choosing the entering basic variable is used
because it gives the best rate of improvement for the objective value at the given corner
point.

(b) TRUE. The simplex method's rule for choosing the leaving basic variable determines
which basic variable drops to zero first as the entering basic variable is increased.
Choosing any other one can cause this variable to become negative, so infeasible.

(c) FALSE. When the simplex method solves for the next BF solution, elementary
algebraic operations are used to eliminate each basic variable from all but one equation
(its equation) and to give it a coefficient of one in that equation.

4.4-1.

Optimal Solution:  and ÐB ß B Ñ œ Ð#Î$ß #Î$Ñ ^ œ 'ß !!!" #
‡ ‡ ‡
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4.4-2.

Optimal Solution:  and ÐB ß B Ñ œ Ð#ß #Ñ ^ œ '" #
‡ ‡ ‡

4.4-3.

(a) Optimal Solution:  and ÐB ß B Ñ œ Ð#!ß #!Ñ ^ œ '!" #
‡ ‡ ‡
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(b) Optimal Solution:  and ÐB ß B Ñ œ Ð#!ß #!Ñ ^ œ '!" #
‡ ‡ ‡

 

  Corner Point
   
     
     
         

^
Ð#!ß #!Ñ '!
Ð !ß %!Ñ %!
Ð#&ß !Ñ &!
Ð !ß !Ñ !

‡

(c) Iteration 1:  and  (slack variables)B œ B œ ! Ê B œ %! B œ "!!" # $ %

   Increase , set .B B œ !" #

   B œ %!  B   ! Ê B Ÿ %!$ " "

   minimumB œ "!!  %B   ! Ê B Ÿ #& Ã% " "

   Let  and .B œ #& B œ !" %

   ^ œ B  B  &!" "
# ## %

   $ "
% %# $ %B  B  B œ "&

   B  B  B œ #&" # %
" "
% %

   B ß B ß B ß B   !" # $ %
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   is not optimal so increase , set .Iteration 2: Ð#&ß !ß "&ß !Ñ B B œ !# %

   minimumB œ "&  B   ! Ê B Ÿ #! Ã$ # #
$
%

   B œ #&  B   ! Ê B Ÿ "!!" # #
"
%

   Let  and .B œ #! B œ !# $

   ^ œ  B  B  '!# "
$ $$ %

   B  B  B œ #!# $ %
% "
$ $

   B  B  B œ #!" $ %
" "
$ $

   B ß B ß B ß B   !" # $ %

Optimal Solution:  and ÐB ß B ß B ß B Ñ œ Ð#!ß #!ß !ß !Ñ œ '!" # $ %
‡ ‡ ‡ ‡ ‡^

(d) Optimal Solution:  and ÐB ß B ß B ß B Ñ œ Ð#!ß #!ß !ß !Ñ œ '!" # $ %
‡ ‡ ‡ ‡ ‡^

(e) - (f)

The coefficients for  and  are negative so this solution is not optimal. Let  enterB B B" # "

the basis, since it offers largest improvement rate, so the column lying under  will beB"

the pivot column. To find out how much  can be increased, use the ratio test:B"

 : B %!Î" œ %!$

 : minimum,B "!!Î% œ #& Ã%

so  leaves the basis and its row is the pivot row.B%
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The coefficient of  is still negative, so this solution is not optimal. Let  enter theB B# #

basis, its column is the pivot column.  To find out how much  can be increased, use theB#

ratio test:

 : minimumB "&Î!Þ(& œ #! Ã$

 : ,B #&Î!Þ#& œ "!!"

so  leaves the basis and its row is the pivot row.B$

All the coefficients in the objective row are nonnegative, so the solution  isÐ#!ß #!ß !ß !Ñ
optimal with an objective value of .'!

(g)
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4.4-4.

(a) Optimal Solution:  and ÐB ß B Ñ œ Ð"!ß "!Ñ œ &!" #
‡ ‡ ‡^

 

(b) Optimal Solution:  and ÐB ß B Ñ œ Ð"!ß "!Ñ œ &!" #
‡ ‡ ‡^

 

  Corner Point
   
     
     
         

^
Ð"!ß "!Ñ &!
Ð !ß "&Ñ %&
Ð#!ß !Ñ %!
Ð !ß !Ñ !

‡
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(c) Iteration 1:  and  (slack variables)B œ B œ ! Ê B œ $! B œ #!" # $ %

   Increase  and set .B B œ !# "

   minimumB œ $!  #B   ! Ê B Ÿ "& Ã$ # #

   B œ #!  B   ! Ê B Ÿ #!% # "

   Let  and .B œ "& B œ !# $

   ^ œ B  B  %&" $
# #" $

   " "
# #" # $B  B  B œ "&

   " "
# #" $ %B  B  B œ &

   B ß B ß B ß B   !" # $ %

   is not optimal so increase , set .Iteration 2: Ð!ß "&ß !ß &Ñ B B œ !" $

   B œ "&  B   ! Ê B Ÿ $!# " "
"
#

   minimumB œ &  B   ! Ê B Ÿ "! Ã% " "
"
#

   Let  and .B œ "! B œ !" $

   ^ œ B  B  &!$ %

   B  B  B œ "!# $ %

   B  B  #B œ "!" $ %

   B ß B ß B ß B   !" # $ %

Optimal Solution:  and ÐB ß B ß B ß B Ñ œ Ð"!ß "!ß !ß !Ñ œ &!" # $ %
‡ ‡ ‡ ‡ ‡^

(d) Optimal Solution:  and ÐB ß B ß B ß B Ñ œ Ð"!ß "!ß !ß !Ñ œ &!" # $ %
‡ ‡ ‡ ‡ ‡^



4-22

(e) - (f)

The coefficients for  and  are negative so this solution is not optimal. Let  enterB B B" # #

the basis, since it offers largest improvement rate, so the column lying under  will beB#

the pivot column. To find out how much  can be increased, use the ratio test:B"

 : minimumB $!Î# œ "& Ã$

 : ,B #!Î" œ #!%

so  leaves the basis and its row is the pivot row.B$

The coefficient of  is still negative, so this solution is not optimal. Let  enter theB B" "

basis, its column is the pivot column.  To find out how much  can be increased, use theB"

ratio test:

 : B "&Î!Þ& œ $!#

 : minimum,B &Î!Þ& œ "! Ã%

so  leaves the basis and its row is the pivot row.B%

All the coefficients in the objective row are nonnegative, so the solution  isÐ"!ß "!ß !ß !Ñ
optimal with an objective value of .&!

(g)
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4.4-5.

(a) Set .B œ B œ B œ !" # $

(0) ^  &B  *B  (B œ !" # $

(1) B  $B  #B  B œ "! Ê B œ "!" # $ % %

(2) $B  %B  #B  B œ "# Ê B œ "#" # $ & &

(3) #B  B  #B  B œ ) Ê B œ )" # $ ' '

Optimality Test: The coefficients of all nonbasic variables are positive, so the solution
Ð!ß !ß !ß "!ß "#ß )Ñ is not optimal.

Choose  as the entering basic variable, since it has the largest coefficient.B#

(1) B  $B  #B  B œ "! Ê B œ "!  $B Ê B Ÿ "!Î$" # $ % % # #

(2) minimum$B  %B  #B  B œ "# Ê B œ "#  %B Ê B Ÿ $ Ã" # $ & & # #

(3) #B  B  #B  B œ ) Ê B œ )  B Ê B Ÿ )" # $ ' ' # #

We choose  as the leaving basic variable. Set .B B œ B œ B œ !& " & $

(0) ^  "Þ(&B  #Þ&B  #Þ#&B œ #(" $ &

(1)  "Þ#&B  !Þ&B  B  !Þ(&B œ " Ê B œ "" $ % & %

(2) !Þ(&B  B  !Þ&B  !Þ#&B œ $ Ê B œ $" # $ & #

(3) "Þ#&B  "Þ&B  !Þ#&B  B œ & Ê B œ &" $ & ' '

Optimality Test: The coefficient of  is positive, so the solution  is notB Ð!ß $ß !ß "ß !ß &Ñ$

optimal.

Let  be the entering basic variable.B$

(1) 
 "Þ#&B  !Þ&B  B  !Þ(&B œ " Ê B œ "  !Þ&B Ê B Ÿ # Ã" $ % & % $ $ minimum

(2) !Þ(&B  B  !Þ&B  !Þ#&B œ $ Ê B œ $  !Þ&B Ê B Ÿ '" # $ & # $ $

(3) "Þ#&B  "Þ&B  !Þ#&B  B œ & Ê B œ &  "Þ&B Ê B Ÿ "!Î$" $ & ' ' $ $

We choose  as the leaving basic variable. Set .B B œ B œ B œ !% " & %

(0) ^  %Þ&B  &B  "Þ&B œ $#" % &

(1)  #Þ&B  B  #B  "Þ&B œ # Ê B œ #" $ % & $

(2) #B  B  B  B œ # Ê B œ #" # % & #

(3) &B  $B  #B  B œ # Ê B œ #" % & ' '

Optimality Test: The coefficient of  is positive, so the solution  is notB Ð!ß #ß #ß !ß !ß #Ñ"

optimal.

Let  be the entering basic variable.B"
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(1)  #Þ&B  B  #B  "Þ&B œ # Ê B œ #  #Þ&B" $ % & $ "

(2) #B  B  B  B œ # Ê B œ #  #B Ê B Ÿ "" # % & # " "

(3) minimum&B  $B  #B  B œ # Ê B œ #  &B Ê B Ÿ !Þ% Ã" % & ' ' " "

We choose  as the leaving basic variable. Set .B B œ B œ B œ !' ' & %

(0) ^  #Þ$B  !Þ$B  !Þ*B œ $$Þ)% & '

(1) B  !Þ&B  !Þ&B  !Þ&B œ $ Ê B œ $$ % & ' $

(2) B  !Þ#B  !Þ#B  !Þ%B œ "Þ# Ê B œ "Þ## % & & #

(3) B  !Þ'B  !Þ%B  !Þ#B œ !Þ% Ê B œ !Þ%" % & ' "

Optimality Test: The coefficients of all nonbasic variables are nonpositive, so the
solution  is optimal.Ð!Þ%ß "Þ#ß $ß !ß !ß !Ñ

(b)  and Optimal solution: ÐB ß B ß B Ñ œ Ð!Þ%ß "Þ#ß $Ñ œ $$Þ)" # $
‡ ‡ ‡ ‡^
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(c) Excel Solver

 

4.4-6.

(a) Optimal Solution:   and ÐB ß B ß B Ñ œ Ð!ß ß Ñ œ "%" # $
‡ ‡ ‡ ‡% % #

$ $ $^

(b) Optimal Solution:   and ÐB ß B ß B Ñ œ Ð!ß ß Ñ œ "%" # $
‡ ‡ ‡ ‡% % #

$ $ $^
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(c)

 

4.4-7.

Optimal Solution: ÐB ß B ß B Ñ œ Ð"Þ&ß !Þ&ß !Ñ œ #Þ&" # $
‡ ‡ ‡ ‡ and ^
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4.4-8.

Optimal Solution: ÐB ß B ß B Ñ œ Ð' ß !ß $' Ñ œ ''" # $
‡ ‡ ‡ ‡# # #

$ $ $ and ^

4.5-1.

(a) TRUE. The ratio test tells how far the entering basic variable can be increased before
one of the current basic variables drops below zero. If there is a tie for which variable
should leave the basis, then both variables drop to zero at the same value of the entering
basic variable. Since only one variable can become nonbasic in any iteration, the other
will remain in the basis even though it will be zero.

(b) FALSE. If there is no leaving basic variable, then the solution is unbounded and the
entering basic variable can be increased indefinitely.

(c) FALSE. All basic variables always have a coefficient of zero in row 0 of the final
tableau.

(d) FALSE.
Example 1: maximize B  B" #

  subject to B  B Ÿ "" #

       B ß B   !" #

Clearly, any solution  for  with  is optimal. TheÐB ß B Ñ œ Ð5  "ß 5Ñ 5 − Ò!ß_Ñ D œ "" #
‡ ‡ ‡

problem has infinitely many optimal solutions and the feasible region is not bounded.
Example 2: maximize B"

  subject to B  B Ÿ "" #

             B ß B   !" #

Any solution  with  is optimal.Ð!ß B Ñ B   !#
‡

#
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4.5-2.

(a)

 

(b) Yes, the optimal solution is  with .ÐB ß B Ñ œ Ð!ß %Ñ ^ œ %" #
‡ ‡ ‡

 

(c) No, the objective function value is maximized by sliding the objective function line to
the right. This can be done forever, so there is no optimal solution.

(d) No, there exist solutions that make the objective value arbitrarily large. This usually
occurs when a constraint is left out of the model.
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(e) Let the objective function be . Then, the initial tableau is:^ œ B  B" #

 Coefficient of
BV Eq. Right Side

      
    
    

^ B B B B
^ Ð!Ñ " " " ! ! !
B Ð"Ñ ! # $ " ! "#
B Ð#Ñ ! $ # ! " "#

" # $ %

$

%

The pivot column, the column of , has all negative elements, so  is unbounded.B ^"

(f) The Solver tells that the Set Cell values do not converge. There is no optimal solution
because a better solution can always be found.

 

4.5-3.

(a)

 
(b) No. the objective function value is maximized by sliding the objective function line
upwards. This can be done forever, so there is no optimal solution.
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(c) Yes, the optimal solution is  with .ÐB ß B Ñ œ Ð"!ß !Ñ ^ œ "!" #
‡ ‡ ‡

 

(d). No, there exist solutions that make  arbitrarily large. This usually occurs when aD
constraint is left out of the model.

(e) Let the objective function be . Then, the initial tableau is:^ œ B  B" #

 Coefficient of
BV Eq. Right Side

      
    
    

^ B B B B
^ Ð!Ñ " " " ! ! !
B Ð"Ñ ! # " " ! #!
B Ð#Ñ ! " # ! " #!

" # $ %

$

%

The pivot column, the column of , has all elements negative, so  is unbounded.B ^#

(f) The Solver tells that the Set Cell values do not converge. There is no optimal solution
because a better solution can always be found.
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4.5-4.

We can see from either the second or third iteration that because all of the constraint
coefficients of  are nonpositive, it can be increased without forcing any basic variableB&

to zero. From the third iteration,  is feasible forÐ""'Þ$'%  $ ß ($Þ'$'%  # ß "#Þ(#($ß !Ñ) )
any  and  is unbounded.) )  ! ^ œ '*$Þ'$'  "(

4.5-5.

(a) The constraints of any LP problem can be expressed in matrix notation as:

   , .EB œ , B   !

If  are feasible solutions and  with  andB ß B ßá ß B B œ B œ "" # R 5
5œ" 5œ"
R R

5 5! !! !
!5   ! 5 œ "ßá ßR for , then

 , ,EB œ E B œ EB œ , œ , B œ B   !! ! ! !
5œ" 5œ" 5œ" 5œ"

R R R R

5 5 5 5
5 5 5! ! ! !

so  is also a feasible solution.B

(b) This follows immediately from (a), since basic feasible solutions are feasible
solutions.
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4.5-6.

(a) Suppose  is the value of the objective function for an optimal solution and^‡

B ß B ßá ß B B œ B" # R 5
5œ"
R

5 are optimal BF solutions. From Problem 4.5-5,  is feasible! !

for any choice of    satisfying . The objective function! !5 55œ"
R  ! Ð5 œ "ßá ßRÑ œ "!

value at  is:B

  ,- B œ - B œ - B œ ^ œ ^X X 5 X 5 ‡ ‡

5œ" 5œ" 5œ"

R R R

5 5 5! ! !! ! !

so  is also an optimal solution.B

(b) Consider any feasible solution  that is not a weighted average of the optimal BFB
solutions. Since  is feasible, it must be a weighted average of the basic feasibleB
solutions, which are not all optimal by assumption. Let  are the basicB ß B ßá ß B" # P

feasible solutions that are not optimal. Then,

  B œ B  B! !
5œ"

R P

5 3
5

3œ"

3! "

where ,  ,   and! !
5œ" 3œ"
R P

5 3 5 3! " ! " œ "   ! Ð5 œ "ßá ßRÑ   ! Ð3 œ "ßá ßPÑ
"3 Á ! 3 B for some . The objective function value at  is:

  .- B œ - B  - B œ - B  - BX X 5 X X 5 X

5œ" 5œ"

R P R P

5 3 5 3
3œ" 3œ"

3 3! ! ! !! " ! "

Since  is not optimal,  for every . Because there is at least one positive B - B  ^ 33 3X ‡
3"

and ,- B œ ^X 5 ‡

    .- B   ^ œ ^X ‡ ‡

5œ"

R P

5 3
3œ"

Œ ! !! "

Hence,  cannot be optimal.B

4.5-7.

(a) B Ÿ '"

 B Ÿ $#

  B  $B Ÿ '" #

(b)

 Unit Profit (Prod.1) Unit Profit (Prod.2)  Objective            Multiple Opt. Solutions
                     line segment" $ B  $B" #  between  & 
                                line segment between  & 
                                

Ð!ß #Ñ Ð$ß $Ñ
! " B Ð$ß $Ñ Ð'ß $Ñ
" ! B

#

" line segment between  & 
                          line segment between  & 
                         

Ð'ß $Ñ Ð'ß !Ñ
! " B Ð!ß !Ñ Ð'ß !Ñ

" !
#

 line segment between  & B Ð!ß !Ñ Ð!ß #Ñ"
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(c)

 Corner Point Profit
        
        
        
        
     

ÐB ß B Ñ œ B  #B
Ð!ß !Ñ !
Ð!ß #Ñ %
Ð$ß $Ñ $
Ð'ß $Ñ !
Ð'ß !Ñ '

" # " #

Optimal Solution:  with ÐB ß B Ñ œ Ð!ß #Ñ ^ œ %" #
‡ ‡ ‡

(d)

 
^ B B B B B Ä ^ B B B B B
" " # ! ! ! ! " "Î$ ! ! ! #Î$ %
! " ! " ! ! ' ! " ! " ! ! '
! ! " ! " ! $ ! "Î$
! " $ ! ! " '

" # $ % & " # $ % &RS       RS
             
             
           

   c d ! ! " "Î$ "
! "Î$ " ! ! "Î$ #

  
     

So the unique optimal solution is  with V .ÐB ß B Ñ œ Ð!ß #Ñ œ %" #
‡ ‡ ‡

4.5-8.

 

 

 

Since the objective coefficients (row ) for  and  are zero, we can pivot to get other^ B B# $

optimal BF solutions.



4-34

 

 

 

Hence, the optimal BF solutions are , , , andÐ"&ß !ß !ß "!Ñ Ð!ß $!ß !ß "!Ñ Ð!ß $!ß #!ß !Ñ
Ð"&ß !ß #!ß !Ñ ""&!, all with objective function value .

4.6-1.

(a) Optimal Solution:  and ÐB ß B Ñ œ Ð#ß "Ñ ^ œ (" #
‡ ‡ ‡
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(b) Initial artificial BF solution: Ð!ß !ß %ß $Ñ

 

(c) Optimal Solution:  and ÐB ß B Ñ œ Ð#ß "Ñ ^ œ (" #
‡ ‡ ‡

 

 

4.6-2.

(a) - (b) Initial artificial BF solution: Ð!ß !ß !ß !ß $!!ß $!!Ñ
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Optimal Solution:  and ÐB ß B ß B ß B Ñ œ Ð!ß !ß &!ß &!Ñ ^ œ %!!" # $ %
‡ ‡ ‡ ‡ ‡

(c) - (d) - (e) - (f) Initial artificial BF solution: Ð!ß !ß !ß !ß $!!ß $!!Ñ
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Optimal Solution:  and ÐB ß B ß B ß B Ñ œ Ð!ß !ß &!ß &!Ñ ^ œ %!!" # $ %
‡ ‡ ‡ ‡ ‡

(g) The basic solutions of the two methods coincide. They are artificial BF solutions for
the revised problem until both artificial variables  and  are driven out of the basis,B B& '

which in the two-phase method is the end of Phase 1.

(h)

4.6-3.

(a) maximize   ^ œ #B  $B  B" # $

 subject to      B  %B  #B Ÿ )" # $

               $B  #B Ÿ '" #

                         B ß B ß B   !" # $

(b) Optimal Solution:  and ÐB ß B ß B Ñ œ Ð!Þ)ß "Þ)ß !Ñ ^ œ (" # $
‡ ‡ ‡ ‡

Pivoting  for  gives an alternate optimal BF solution, .B B Ð#ß !ß $Ñ$ #
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(c) Optimal Solution:  and ÐB ß B ß B Ñ œ Ð!Þ)ß "Þ)ß !Ñ ^ œ (" # $
‡ ‡ ‡ ‡

Pivoting  for  gives an alternate optimal BF solution, .B B Ð#ß !ß $Ñ$ #

(d) The basic solutions of the two methods coincide. They are artificial BF solutions for
the revised problem until both artificial variables  and  are driven out of the basis,B B' (

which in the two-phase method is the end of Phase 1.

(e)
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4.6-4.

Once all artificial variables are driven out of the basis in a maximization (minimization)
problem. Choosing an artificial variable to reenter the basis can only lower (raise) the
objective function value by an arbitrarily large amount depending on .Q

4.6-5.

(a)

 

(b) The Solver could not find a feasible solution.

 

(c)
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In the optimal solution, the artificial variable  is basic and takes a positive value, so\&

the problem has no feasible solutions.

(d)

Since the artificial variable  is not zero in the optimal solution of Phase I Problem, the\&

original model must have no feasible solutions.

4.6-6.

(a)

 

(b) The Solver could not find a feasible solution.
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(c)

(d)
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4.6-7.

(a) Initial artificial BF solution: Ð!ß !ß !ß !ß #!ß &!Ñ

(b) Optimal Solution:  and ÐB ß B ß B Ñ œ Ð!ß !ß &!Ñ ^ œ "&!" # $
‡ ‡ ‡ ‡
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(c) Initial artificial BF solution: Ð!ß !ß !ß !ß #!ß &!Ñ

(d)
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(e) - (f)  Optimal Solution:  and ÐB ß B ß B Ñ œ Ð!ß !ß &!Ñ ^ œ "&!" # $
‡ ‡ ‡ ‡

(g) The basic solutions of the two methods coincide. They are artificial basic feasible
solutions for the revised problem until both artificial variables  and  are driven out ofB B& '

the basis, which in the two-phase method is the end of Phase 1.

(h)

4.6-8.

(a)
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(b)

(c) Optimal Solution:  and ÐB ß B ß B Ñ œ Ð$&ß !ß $&Ñ ^ œ "(&" # $
‡ ‡ ‡ ‡

Pivoting  into the basis for  provides the alternative optimal BF solution .B B Ð(!ß $&ß !Ñ# $

(d)
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4.6-9.

(a) Optimal Solution:  and ÐB ß B ß B Ñ œ Ð!ß "&ß "&Ñ ^ œ *!" # $
‡ ‡ ‡ ‡

(b) Optimal Solution:  and ÐB ß B ß B Ñ œ Ð!ß "&ß "&Ñ ^ œ *!" # $
‡ ‡ ‡ ‡
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(c) In both the Big-M method and the two-phase method, only the final tableau represents
a feasible solution for the original problem.

(d)

4.6-10.

(a) Optimal Solution:  and ÐB ß B ß B Ñ œ Ð#!ß $!ß !Ñ ^ œ "#!" # $
‡ ‡ ‡ ‡
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(b) Optimal Solution:  and ÐB ß B ß B Ñ œ Ð#!ß $!ß !Ñ ^ œ "#!" # $
‡ ‡ ‡ ‡

(c) Only the final tableau for the Big-M method and the two-phase method represent
feasible solutions to the original problem.

(d)

4.6-11.

(a) FALSE. The initial basic solution for the artificial model is not feasible for the
original model.

(b) FALSE. If at least one of the artificial variables is not zero, then the real problem is
infeasible.

(c) FALSE. The two methods are basically equivalent, so they should take the same
number of iterations.
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4.6-12.

(a) Substitute , where both  and  are nonnegative.B œ B  B B B" " "
 

" "
 

 maximize ^ œ $B  $B  (B  &B"


"


# $

 subject to     $B  $B  B  #B Ÿ *"


"


# $

               #B  #B  B  $B Ÿ "#"


"


# $

        B ß B ß B ß B   !"


"


# $

(b) Optimal Solution:  and ÐB ß B ß B Ñ œ Ð!Þ'ß "!Þ)ß !Ñ ^ œ ($Þ)" # $
‡ ‡ ‡ ‡

 

 

 

Note that , , , and  are renamed as , X ,  and  respectively.B B B B \ \ \"


"


# $ " # $ %

(c)
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4.6-13.

(a) Optimal Solution:  and ÐB ß B Ñ œ Ð"Þ"%ß #Þ&(Ñ ^ œ ""Þ%$" #
‡ ‡ ‡

 

(b) Let  and .B œ B  B B  $ œ B"ß " # #ß $OLD OLD

 maximize     ^ œ  B  B  %B  "#" # $

 subject to     $B  $B  B Ÿ *" # $

            B  B  #B Ÿ "!" # $

           B ß B ß B   !" # $

(c) Optimal Solution:  and ÐB ß B Ñ œ Ð"Þ"%ß #Þ&(Ñ ^ œ ""Þ%$" #
‡ ‡ ‡

Optimal solution for the revised problem:  with Ð!ß "Þ"%ß &Þ&(Ñ ^ œ #$Þ%$‡
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4.6-14.

(a) Let , , and .B œ B  B B œ B  B B œ B  B"ß " # #ß $ % $ß & 'OLD OLD OLD

 maximize       ^ œ B  B  #B  #B  B  B" # $ % & '

 subject to                               $B  $B  B  B Ÿ "#!$ % & '

                B  B  B  B  %B  %B Ÿ )!" # $ % & '

                    $B  $B  B  B  #B  #B Ÿ "!!" # $ % & '

            B ß B ß B ß B ß B ß B   !" # $ % & '

(b)

Optimal solution for the revised problem: Ð!ß %&ß &&ß !ß !ß %&Ñ

Optimal solution for the original problem:  and ÐB ß B ß B Ñ œ Ð%&ß &&ß%&Ñ ^ œ ""!" # $
‡ ‡ ‡ ‡

(c)
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4.6-15.

(a) In order to decrease the objective function value in the simplex method, choose the
nonbasic variable that has the (largest) positive coefficient in the objective row, as the
entering basic variable. The ratio test is conducted the same way as in the maximization
problem to determine the leaving basic variable.

(b) Optimal Solution:  and ÐB ß B ß B Ñ œ Ð""Þ'(ß !ß "(Þ&Ñ ^ œ "##" # $
‡ ‡ ‡ ‡
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4.6-16.

(a) maximize   ^ œ #B  #B  B  %B  $B" # $ % &

 subject to               B  B  B  $B  B Ÿ %" # $ % &

                      B  B  B  B Ÿ "" # % &

            #B  #B  B Ÿ #" # $

                   B  B  #B  B  #B œ #" # $ % &

          B ß B ß B ß B ß B   !" # $ % &

(b)

(c)

(d)
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4.6-17.

Reformulation: 

  maximize  ^ œ %B  &B  $B" # $

  subject to B  B  #B  B  B œ #!" # $ % (

    "&B  'B  &B  B œ &!" # $ &

  B  $B  &B  B œ $!" # $ '

          B ß B ß B ß B ß B ß B ß B   !" # $ % & ' (

Since this is the optimal tableau for Phase 1 and the artificial variable , theB œ &  !(

problem is infeasible.
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4.7-1.

The CP solution  remains feasible and optimal if the constraint  is changed toÐ#ß 'Ñ B Ÿ %"

B Ÿ 5 # Ÿ 5  _ 5  #"  with . However, if , then this solution ceases to be feasible and
the optimal solution becomes . This agrees with the allowable range (allowableÐ5ß 'Ñ
increase: E , allowable decrease: ) for this constraint given in Figure 4.10." $! %
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Now, suppose instead that the constraint  is replaced by . Then, the#B Ÿ "# #B Ÿ 5# #

intersection of the lines  and  can be expressed as#B œ 5 $B  #B œ ")# " #

ÐÐ")  5ÑÎ$ß 5Î#Ñ ! Ÿ B Ÿ %. This CP solution is feasible as long as  or equivalently"

' Ÿ 5 Ÿ "). In that case, provided that the objective function is the same, this solution is
optimal. Hence, the right-hand side of this constraint can be increased or decreased by .'

If the third constraint is , then the CP solution determined by this and$B  #B Ÿ 5" #

#B Ÿ "# ÐÐ5  "#ÑÎ$ß 'Ñ#  becomes . This point is feasible and optimal as long as
! Ÿ B Ÿ % "# Ÿ 5 Ÿ #%"  or equivalently , so the allowable change for this constraint is
also , as given in Figure 4.10.„ '

4.7-2.

(a)

 

Constraint (1): :  and B  $B Ÿ ) B  $B œ ) Ê B œ B œ # ^ œ '" # " # " #

    ,  and B  $B œ * Ê B œ $Î# B œ &Î# ^ œ "$Î#" # " #

    ?^ œ "$Î#  ' œ "Î# œ C"
‡

Constraint (2): :  and B  B Ÿ % B  B œ % Ê B œ B œ # ^ œ '" # " # " #

    ,  and B  B œ & Ê B œ (Î# B œ $Î# ^ œ "$Î#" # " #

    ?^ œ "$Î#  ' œ "Î# œ C#
‡

(b) From (a), we see that the right-hand sides  and  are sensitive parameters., œ ) , œ %" #

The graph in part (a) shows that both constraints are active (binding) at the optimal
solution, so all the coefficients , , , and  are sensitive+ œ " + œ $ + œ " + œ """ "# #" ##

parameters, too. As will be seen in (c), the objective coefficients  and  are- œ " - œ #" #

not sensitive parameters.

(c) Observe that the optimal solution remains the same for  (with #Î$ Ÿ - Ÿ # - œ #" #

fixed) and  (with  fixed)" Ÿ - Ÿ $ - œ "# "
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(d) The dashed lines "- - -" in the graph below suggest that the CP solution ranges from
Ð%ß !Ñ Ð!ß %Ñ % Ÿ , Ÿ "# to  when . Outside this range, the CP solution becomes"

infeasible. The dashed lines "- -" represent the second constraint for different right-hand†
side values. They suggest that the CP solution ranges from  to  whenÐ!ß )Î$Ñ Ð!ß )Ñ
)Î$ Ÿ , Ÿ ) % Ÿ , Ÿ "# )Î$ Ÿ , Ÿ )# " #. Hence, the allowable ranges are  and .

(e)
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4.7-3.

(a) Optimal Solution:  and ÐB ß B Ñ œ Ð#!ß ""Þ'(Ñ ^ œ )$Þ$$" #
‡ ‡ ‡

 

  Corner Point

  

^
Ð!ß #!Ñ %!
Ð(Þ&ß #!Ñ '#Þ&
Ð#!ß ""Þ'(Ñ )$Þ$$
Ð#!ß !Ñ '!
Ð!ß !Ñ !

‡
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(b)

 

Increasing resource 1 to  units increases  to , so '" ^ $Ð#!Þ$$Ñ  #Ð""Þ%%Ñ œ )$Þ)* ^ œ?
C œ !Þ&'"
‡ .

Increasing resource 2 to  units increases  to , so(' ^ %Ð#!Ñ  #Ð"#Ñ œ )%
?^ œ C œ !Þ'(#

‡ .
The third constraint is not binding, so .C œ !$

‡

(c) To increase  by , resource 1 should be increased by . Solving the^ "& œ ¸ #("& "&
C !Þ&'"
‡

LP problem with resource 1 set to  returns the result .'!  #( œ )( ^ œ *)Þ$$

4.7-4.

(a) Optimal Solution:  and ÐB ß B ß B Ñ œ Ð!Þ&ß !ß %Þ&Ñ ^ œ "%" # $
‡ ‡ ‡ ‡
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(b) The shadow prices for the three resources are given by the reduced costs (in the
objective function) for the corresponding slack variables. These values are circled in the
table above. The shadow prices for resources 1, 2 and 3 are ,  and  respectively.! #Þ& $
They represent the rate at which the objective function value  increases as theD
corresponding resource is increased. For instance, increasing resource 3 by one unit
increases  by , provided that no other constraints cause any trouble.^ $

(c)
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4.7-5.

(a) Optimal Solution:  and ÐB ß B ß B Ñ œ Ð!ß "ß $Ñ ^ œ (" # $
‡ ‡ ‡ ‡

(b) The shadow prices are ,  and . They are the marginal valuesC œ !Þ& C œ #Þ& C œ !" # $
‡ ‡ ‡

of resources 1, 2 and 3 respectively.

(c)
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4.7-6.

(a) Optimal Solution:  and ÐB ß B ß B ß B Ñ œ Ð""ß !ß $ß !Ñ ^ œ &#" # $ %
‡ ‡ ‡ ‡ ‡

(b) The shadow prices are  and . They are the marginal values ofC œ !Þ'''( C œ "" #
‡ ‡

resources 1 and 2 respectively.

(c)



4-63

4.9-1.
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4.9-2.
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CHAPTER 5: THE THEORY OF THE SIMPLEX METHOD

5.1-1.

(a) Optimal Solution:  and ÐB ß B Ñ œ Ð#ß #Ñ ^ œ "!" #
‡ ‡ ‡

 

(c) maximize  ^ œ $B  #B" #

 subject to             #B  B  B œ '" # $

                B  #B  B œ '" # %

        B ß B ß B ß B   !" # $ %

(b) - (d)

 
(e)

Step CPF Sol.'n Deleted Defining Eq. Added Defining Eq. Deleted Ind.Var. Added Ind.Var.
                          " Ð!ß !Ñ B œ ! #B  B œ ' B" " # "         
                                  
      OPTIMAL

B
# Ð$ß !Ñ B œ ! B  #B œ ' B B
$ Ð#ß #Ñ

$

# " # # %
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5.1-2.

(a) Optimal Solution:  and ÐB ß B Ñ œ Ð$ß *Ñ ^ œ #"!" #
‡ ‡ ‡

 

(c) maximize  ^ œ "!B  #!B" #

 subject to        B  #B  B œ "&" # $

                        B  B  B œ "#" # %

                   &B  $B  B œ %&" # &

          B ß B ß B ß B ß B   !" # $ % &
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(b) - (d)

 

(e)
Step CPF Sol.'n Deleted Defining Eq. Added Defining Eq. Deleted Ind.Var. Added Ind.Var.
                         " Ð!ß !Ñ B œ ! B  #B œ "& B# " # # $

" " # " %

         
                                  
      OPTIMAL

B
# Ð!ß (Þ&Ñ B œ ! B  B œ "# B B
$ Ð$ß *Ñ
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5.1-3.

(a) Optimal Solution:  and ÐB ß B Ñ œ Ð"#ß "'Ñ ^ œ "))" #
‡ ‡ ‡

 

(b) The corner point  has the best objective value , so is optimal.Ð"#ß "'Ñ "))

CPF Sol.'n Defining Equations BF Solution NB Var.'s
   
   

D
Ð!ß !Ñ B œ !ß B œ ! Ð!ß !ß )!ß %ß #!ß %!Ñ B ß B !
Ð!ß %Ñ B œ !ß$B  B œ % Ð!ß %ß (#ß !ß "#ß %%Ñ B

" # " #

" " # "ß B $#
Ð#Þ%ß ""Þ#Ñ $B  B œ %ßB  #B œ #! Ð#Þ%ß ""Þ#ß %)ß !ß !ß %"Þ'Ñ B ß B "!"Þ'
Ð"#ß "'Ñ B  #B œ #!ß %B  #B œ )! Ð"#ß "'ß !ß #%ß !ß )Ñ B ß B "))
Ð"$

%

" # " # % &

" # " # $ &

   
   

Þ$ß "$Þ$Ñ %B  #B œ )!ß %B  B œ %! Ð"$Þ$ß "$Þ$ß !ß "'Þ(ß 'Þ(ß !Ñ B ß B "($Þ$
Ð"!ß !Ñ %B  B œ %!ß B œ ! Ð"!ß !ß %!ß $%ß $!ß !Ñ B ß B &!

" # " # $ '

" # # # '

   
   

(c) All sets yield a solution.
CP Infeas. Sol.'n Defining Equations Basic Infeas. Solutions NB Var.'s

   Ð ß !Ñ $B  B œ %ß B œ ! Ð ß !ß )& ß !ß ") ß %& Ñ B ß B

Ð#!ß !Ñ 

% % " # "
$ $ $ $ $" # # # %

B  #B œ #!ß B œ ! Ð#!ß !ß "'!ß&'ß !ß "#!Ñ B ß B
Ð!ß %!Ñ %B  #B œ )!ß B œ ! Ð!ß %!ß !ß$'ß'!ß )!Ñ B ß B
Ð!ß "!Ñ B  #B œ #!ß B œ ! Ð!ß "!ß '!ß'ß !ß &!

" # # # &

" # " " $

" # "

   
   

Ñ B ß B
Ð(Þ#ß #&Þ'Ñ %B  #B œ )!ß$B  B œ % Ð(Þ#ß #&Þ'ß !ß !ß#%ß $'Þ)Ñ B ß B
Ð%%ß "$'Ñ $B  B œ %ß %B  B œ %! Ð%%ß "$'ß$')ß !ß#!)ß !Ñ B ß B

Ð

   
   
   

" &

" # " # $ %

" # " # % '
"!! "#! "!! "#! )! #!)
( ( ( ( ( (" # " # & '

" # # # $

" #

ß Ñ %B  B œ %!ßB  #B œ #! Ð ß ß ß ß !ß !Ñ B ß B

Ð#!ß !Ñ %B  #B œ )!ß B œ ! Ð#!ß !ß !ß '%ß %!ß%!Ñ B ß B
Ð!ß%!Ñ %B  B œ %!ß B

   
   

" " 'œ ! Ð!ß%!ß "'!ß %%ß "!!ß !Ñ B ß B   

5.1-4.

(a) ÐB ß B ß B Ñ œ Ð"!ß !ß !Ñ" # $

(b) B œ !ß B œ !ß B  B  #B œ "!# $ " # $
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5.1-5.

(a) CPF Sol.'n Defining Equations
Ð!ß !ß !Ñ B œ !ß B œ !ß B œ !
Ð%ß !ß !Ñ B œ %ß B œ !ß B œ !
Ð%ß #ß !Ñ B œ %ß B  B œ 'ß B œ !
Ð#ß %ß !Ñ B œ %ß B  B œ 'ß B œ !
Ð!ß %ß !

" # $

" # $

" " # $

# " # $

Ñ B œ !ß B œ %ß B œ !
Ð!ß %ß #Ñ B œ !ß B œ %ßB  #B œ %
Ð#ß %ß $Ñ B  B œ 'ß B œ %ßB  #B œ %
Ð%ß #ß %Ñ B  B œ 'ß B œ %ßB  #B œ %
Ð%ß !ß %Ñ B œ !ß B œ %ßB  #B œ %
Ð!ß

" # $

" # " $

" # # " $

" # " " $

# " " $

!ß #Ñ B œ !ß B œ !ßB  #B œ %# " " $

(b) B  B œ 'ß B œ %ßB  #B œ %" # # " $

(c) inconsistent systemB œ %ß B œ !ß B œ ! Ê" " #

5.1-6.

(a) - (b)
Defining Equations CP Feas.? Basic Solution NB Var.'s

No   
No

B œ !ß B œ ! Ð!ß !Ñ Ð!ß !ß $!ß&!ß$!Ñ B ß B
B œ !ß$B  #B œ $! Ð!ß "&Ñ Ð!ß "&ß !ß$&ß"&Ñ
" # " #

" " #   
No   
No   
No

B ß B
B œ !ß #B  B œ &! Ð!ß &!Ñ Ð!ß &!ß(!ß !ß #!Ñ B ß B
B œ !ß B  B œ $! Ð!ß $!Ñ Ð!ß $!ß$!ß#!ß !Ñ B ß B
B œ !ß$B  #B œ $! Ð"!ß !Ñ Ð"!ß !ß !

" $

" " # " %

" " # " &

# " # ß (!ß%!Ñ B ß B
B œ !ß #B  B œ &! Ð#&ß !Ñ Ð#&ß !ß "!&ß !ß&Ñ B ß B
B œ !ß B  B œ $! Ð$!ß !Ñ Ð$!ß !ß "#!ß "!ß !Ñ B ß B
$B  #B œ $!ß #B  B œ &! Ð"!

  
No   
Yes   

# $

# " # # %

# " # # &

" # " # ß $!Ñ Ð"!ß $!ß !ß !ß "!Ñ B ß B
$B  #B œ $!ß B  B œ $! Ð'ß #%Ñ Ð'ß #%ß !ß"%ß !Ñ B ß B
#B  B œ &!ß B  B œ $! Ð#!ß "!Ñ Ð#!ß "!ß (!ß !ß !Ñ B ß B

Yes   
No   
Yes   

$ %

" # " # $ &

" # " # % &

5.1-7.

(a) - (b)
Defining Equations CP Feas.? Basic Solution NB Var.'s

Yes    
Yes   

B œ !ß B œ ! Ð!ß !Ñ Ð!ß !ß "!ß '!ß ")ß %%Ñ B ß B
B œ !ß B œ "! Ð!ß "!Ñ Ð!ß "!ß !ß "!ß )ß $%Ñ
" # " #

" #  
No    
No    
No

B ß B
B œ !ß #B  &B œ '! Ð!ß "#Ñ Ð!ß "#ß#ß !ß 'ß $#Ñ B ß B
B œ !ß B  B œ ") Ð!ß ")Ñ Ð!ß ")ß)ß$!ß !ß #'Ñ B ß B
B œ !ß $B  B œ %% Ð!ß %%Ñ Ð!ß %%ß

" $

" " # " %

" " # " &

" " # $%ß"'!ß#'ß !Ñ B ß B
B œ !ß B œ "! B ß B
B œ !ß #B  &B œ '! Ð$!ß !Ñ Ð$!ß !ß "!ß !ß"#ß%'Ñ B ß B
B œ !ß B  B œ ") Ð")ß !Ñ Ð")ß !

   
No Solution    

No    
No

" '

# # # $

# " # # %

# " # ß "!ß #%ß !ß"!Ñ B ß B
B œ !ß $B  B œ %% Ð"%Þ'(ß !Ñ Ð"%Þ'(ß !ß "!ß $!Þ'(ß $Þ$$ß !Ñ B ß B
B œ "!ß #B  &B œ '! Ð&ß "!Ñ Ð&ß "!ß !ß !ß $ß "*Ñ B ß B

   
Yes    
Yes    

# &

# " # # '

# " # $ %

B œ "!ß B  B œ ") Ð)ß "!Ñ Ð)ß "!ß !ß'ß !ß "!Ñ B ß B
B œ "!ß $B  B œ %% Ð""Þ$$ß "!Ñ Ð""Þ$$ß "!ß !ß"#Þ'(ß$Þ$$ß !Ñ B ß B
#B  &B œ '!ß B  B œ ") Ð

# " # $ &

# " # $ '

" # " #

No    
No    

"!ß )Ñ Ð"!ß )ß #ß !ß !ß 'Ñ B ß B
#B  &B œ '!ß $B  B œ %% Ð"#Þ$ ß (Þ!)Ñ Ð"#Þ$"ß (Þ!)ß #Þ*#ß !ß"Þ$)ß !Ñ B ß B
B  B œ ")ß $B  B œ %% Ð"$ß &Ñ Ð"

Yes    
1 No    

Yes

% &

" # " # % '

" # " # $ß &ß &ß *ß !ß !Ñ B ß B   & '
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5.1-8.

(a) If the feasible region is unbounded, then there may be no optimal solution.

(b) There may be multiple optimal solutions, in which case the weighted average of any
optimal CPF solutions is optimal, too.

(c) An adjacent CPF solution may have an equal objective function value, then all the
points that lie on the line segment between these two corner points are optimal.

5.1-9.

(a) FALSE. (p.5-10) Property 1: (a) If there is exactly one optimal solution, then it must
be a CPF solution. (b) If there are multiple optimal solutions, then at least two of them
must be adjacent CPF solutions. An optimal solution that is not a CPF solution can be
obtained by taking a convex combination of two optimal CPF solutions.

(b) FALSE. (p.5-12) The number of CPF solutions is at most .Œ 7 8
8

œ Ð78Ñx
7x8x

(c) FALSE. (p.5-13) The adjacent CPF solution that has a better objective function value
than the initial CPF solution may be adjacent to another CPF solution that has an even
better objective function value.

5.1-10.

(a) TRUE. By Property 1(a), there must be multiple solutions, since this optimal solution
is not a CPF solution. But then, there must be infinitely many optimal solutions, namely
any convex combination of optimal solutions.

(b) TRUE. Any point  on the line segment connecting  and  can be expressed asB B B‡ ‡‡

B œ B  Ð"  ÑB − Ò!ß "Ó B B! ! !‡ ‡‡ ‡ ‡‡ with . Both  and  have the optimal objective value
^ B‡. The objective function value at  is

 ,^ œ - Ð B  Ð"  ÑB Ñ œ ^  Ð"  Ñ^ œ ^X ‡ ‡‡ ‡ ‡ ‡! ! ! !

so  is optimal. Since the feasible region is convex, any such point is feasible.B

(c) FALSE. The simultaneous solution of any set of  constraint boundary equations may8
be infeasible or may not even exist.

5.1-11.

(a) TRUE. If there are no optimal solutions, then either the problem is infeasible or the
objective value is unbounded (Chapter 3). The former is not the case by assumption of
the problem. Also by assumption again, the feasible region is bounded, so the objective
value is bounded, so the latter cannot be the case. Hence, there must be at least one
optimal solution.

(b) FALSE. If a solution is optimal, it need not be a BF solution. A convex combination
of two optimal BF solutions is optimal even though it is not a BF solution. This follows
from Property 1, since BF solutions are CPF solutions.

(c) TRUE. Since BF solutions correspond to CPF solutions, this follows directly from
Property 2.
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5.1-12.

B œ !ß #B  B  $B œ '!ß $B  $B  &B œ "#! Ê ÐB ß B ß B Ñ œ Ð!ß "&ß "&Ñ" " # $ " # $ " # $

5.1-13.

Since  and ,  and  cannot be part of the three boundary equa-B  ! B  ! B œ ! B œ !# $ # $

tions, so the boundary equations are .B œ !ß #B  B  B œ #!ß $B  B  #B œ $!" " # $ " # $

Then, the optimal solutions is .ÐB ß B ß B Ñ œ Ð!ß "!ß "!Ñ" # $

5.1-14.

(a)

(b) The simplex method follows this path because moving along the chosen edges
provides the greatest increase in the objective value for a unit move in the chosen
direction among all possible edges at each vertex/decision point.

(c)
Edge Constraint Boundary Equations End Points Additional Constraints
  
  
" B œ !ß B œ ! Ð!ß !ß !Ñß Ð!ß !ß #Ñ B œ !ß #B  B  #B œ %
# #B  B  #B œ %ß B œ

# " $ " # $

" # $ " ! Ð!ß !ß #Ñß Ð!ß #ß "Ñ B œ !ß B  B  B œ $# " # $

(d) - (e)
CP Defining Equations BF Solution NB Var.'s
Ð!ß !ß !Ñ B œ !ß B œ !ß B œ ! Ð!ß !ß !ß %ß $Ñ B ß B ß B
Ð!ß !ß #Ñ B œ !ß B œ !ß #B  B  #B œ % Ð!ß !ß #ß !ß "Ñ B ß B ß B

" # $ " # $

" # " # $ " # %

Ð!ß #ß "Ñ B œ !ß #B  B  #B œ %ß B  B  B œ $ Ð!ß !ß #ß !ß "Ñ B ß B ß B" " # $ " # $ " % &

The nonbasic variables having value zero are equivalent to indicating variables. They
indicate that their associated inequality constraints are actually equalities. The associated
equalities are the defining equations.
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5.1-15.

(a)

(b) The simplex method follows this path because moving along the chosen edges
provides the greatest increase in the objective value for a unit move in the chosen
direction among all possible edges at each vertex/decision point.

(c)
Edge Constraint Boundary Equations End Points Additional Constraints
  
  
" B œ !ß B œ ! Ð!ß !ß !Ñß Ð!ß "&ß !Ñ B œ !ß B  #B  B œ $!
# B œ !ß B  #B  B œ

" $ # " # $

$ " # $ $! Ð!ß "&ß !Ñß Ð"!ß "!ß !Ñ B œ !ß B  B  B œ #!" " # $

(d) - (e)
CP Defining Equations BF Solution NB Var.'s
Ð!ß !ß !Ñ B œ !ß B œ !ß B œ ! Ð!ß !ß !ß #!ß $!Ñ B ß B ß B
Ð!ß "&ß !Ñ B œ !ß B œ !ß B  #B  B œ $! Ð!ß "&ß !ß &ß !Ñ B ß B

" # $ " # $

" $ " # $ " $ &

$ " # $ " # $ $ % &

ß B
Ð"!ß "!ß !Ñ B œ !ß B  #B  B œ $!ß B  B  B œ #! Ð"!ß "!ß !ß !ß !Ñ B ß B ß B

The nonbasic variables having value zero are equivalent to indicating variables. They
indicate that their associated inequality constraints are actually equalities. The associated
equalities are the defining equations.

5.1-16.

(a) When the objective is to maximize , both corner points  and ^ œ B Ð%ß #ß %Ñ Ð%ß !ß %Ñ$

are optimal, with .^ œ %‡

(b) When the objective is to maximize , all the corner points ,^ œ B  #B Ð!ß !ß #Ñ" $

Ð%ß !ß %Ñ Ð%ß #ß %Ñ Ð#ß %ß $Ñ Ð!ß %ß #Ñ ^ œ %, ,  and  are optimal, with .‡
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5.1-17.

(a) Geometrically, each constraint is a plane and the points that are feasible for a given
(inequality) constraint form a half-space. The line segment defined by any two feasible
points must lie entirely on the feasible side of the plane and therefore, all the points on
the line segment are feasible, implying that the set of solutions for any one constraint is a
convex set.

(b) Because the points in the feasible region of the LP problem satisfy all the constraints
simultaneously, it must be the case that for any two feasible points, the points on the line
segment joining them must also satisfy each constraint (from (a)). Hence, the set of
solutions that satisfy all the constraints simultaneously is a convex set.

5.1-18.

To maximize , starting at the origin , one first chooses to^ œ $B  %B  $B Ð!ß !ß !Ñ" # $

move to  because this edge offers the best rate of improvement among all edges atÐ!ß %ß !Ñ
the origin. From , the edge that increases the objective function fastest is the oneÐ!ß %ß !Ñ
that connects to either  or . From either one these, the edge that gives theÐ!ß %ß #Ñ Ð#ß %ß !Ñ
best rate of increase connects to . Then, the only edge that provides anÐ#ß %ß $Ñ
improvement in  connects to the optimal solution .^ Ð%ß #ß %Ñ

5.1-19.

(a)

 Original Constraint Boundary Equation Indicating Variable
             
             
             

B   ! B œ ! B
B   ! B œ ! B
B   ! B œ ! B
B 

" " "

# # #

$ $ $

" B œ % B œ % B
B  B œ % B œ % B
B  B  B œ ' B  B œ ' B
B  #B  B œ % B  #B œ % B

% " %

# & # &

" # ' " # '

" $ ( " $ (

             
             
             
             

(b)
CPF Sol.'n Defining Equations BF Solution NB Var.'s
 
 
Ð#ß %ß $Ñ B  B œ 'ß B œ %ßB  #B œ % Ð#ß %ß $ß #ß !ß !ß !Ñ B ß B ß B
Ð%ß #ß %Ñ B  B œ 'ßB  #B œ %ß B

" # # " $ & ' (

" # " $ " % ' (

" # " $ " & (

$ " # # $ & '

œ % Ð%ß #ß %ß !ß #ß !ß !Ñ B ß B ß B
Ð!ß %ß #Ñ B œ !ß B œ %ßB  #B œ % Ð!ß %ß #ß %ß !ß #ß !Ñ B ß B ß B
Ð#ß %ß !Ñ B œ !ß B  B œ 'ß B œ % Ð#ß %ß !ß #ß !ß !ß 'Ñ B ß B ß B

 
 

(c) Because the sets of defining equations of ,  and  differ fromÐ%ß #ß %Ñ Ð!ß %ß #Ñ Ð#ß %ß !Ñ
the set of defining equations of  by only one equation, they are adjacent toÐ#ß %ß $Ñ
Ð#ß %ß $Ñ Ð%ß #ß %Ñ Ð!ß %ß #Ñ. On the other hand, the sets of defining equations of ,  and
Ð#ß %ß !Ñ differ by more than one equation, they are not adjacent to each other. The same
statement is true if we substitute "nonbasic variables" for "defining equations" and
"variable" for "equation."
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5.1-20.

(a)  enters.B&

(b)  leaves.B%

(c) Ð%ß #ß %ß !ß #ß !ß !Ñ

5.1-21.

  

5.2-1.

(a) Optimal Solution: 
Î Ñ Î ÑÎ Ñ Î Ñ
Ï Ò Ï ÒÏ Ò Ï Ò

B "" $ " ")! &!
B ' * $ #(! $!
B # $ "! ")! &!

œ F , œ œ
$

"

&

" "
#(

^ œ -B œ œ **!) % ' $ * &!

$!
!

!
&!

a b
Î ÑÐ ÓÐ ÓÐ ÓÐ Ó
Ï Ò

(b) Shadow prices: - F œ œ' ) * ' * $ "
"" $ " "Þ$$

# $ "! #Þ'(
F

" "
#( a bÎ Ñ Î Ñ

Ï Ò Ï Ò
5.2-2.

- œ E œ , œ& ) ( % ' ! !
# $ $ # # " ! #!
$ & % # % ! " $!

a b Œ  Œ , , 

Iteration 0: , F œ F œ B œ œ œ
" ! B " ! #! #!
! " B ! " $! $!

"
F

'

(
Œ  Œ  Œ Œ  Œ 

- œ - œ B! ! & ) ( % ' ! !F #a b a b, , so  enters.

Revised  coefficients: , so  leaves.B œ B
" ! $ $
! " & &# (Œ Œ  Œ 
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Iteration 1: ,   F œ œ
" $ " $Î&
! & ! "Î&new

"
"Œ  Œ 

B œ œ œ - œ
B " $Î& #! #
B ! "Î& $! '

! )F F
'

#
Œ  Œ Œ  Œ  a b   , 

Revised row 0: a b a bŒ ! )Î& & ) ( % ' ! !
# $ $ # # " !
$ & % # % ! "

-

       œ a b"Î& ! $Î& %Î& #Î& ! )Î& B, so  enters.%

Revised  coefficients: , so  leaves.   B œ B
" $Î& # %Î&
! "Î& # #Î&% 'Œ Œ  Œ 

Iteration 2:    
   F œ œ

# $ &Î% $Î%
# & "Î# "Î#new

"
"Œ  Œ 

B œ œ œ - œ
B &Î% $Î% #! &Î#
B "Î# "Î# $! &

% )F F
%

#
Œ  Œ Œ  Œ  a b   

   , 

Revised row 0: a b a bŒ " " & ) ( % ' ! !
# $ $ # # " !
$ & % # % ! "

-

       œ a b! ! ! ! ! " " , so the current solution is optimal.
Optimal Solution:  and ÐB ß B ß B ß B ß B Ñ œ Ð!ß &ß !ß &Î#ß !Ñ ^ œ &!" # $ % &

‡ ‡ ‡ ‡ ‡ ‡

5.2-3.

- œ E œ , œ$ # ! !
# " " ! '
" # ! " '

a b Œ  Œ , , 

CP : , Ð!ß !Ñ F œ F œ B œ œ œ
" ! B " ! ' '
! " B ! " ' '

"
F

$

%
Œ  Œ  Œ Œ  Œ 

Row 0: a b$ # ! !

CP : ,    
Ð$ß !Ñ F œ F œ

# ! "Î# !
" " "Î# "Œ  Œ "

B œ œ œ - œ
B "Î# ! ' $
B "Î# " ' $

$ !F F
"

%
Œ  Œ Œ  Œ  a b   , 

Row 0: a b a b a bŒ $Î# ! $ # ! ! ! "Î# $Î# !
# " " !
" # ! "

 œ

CP : ,    
   Ð#ß #Ñ F œ F œ

# " #Î$ "Î$
" # "Î$ #Î$Œ  Œ "

B œ œ œ - œ
B #Î$ "Î$ ' #
B "Î$ #Î$ ' #

$ #F F
"

#
Œ  Œ Œ  Œ  a b   

   , 

Row 0: a b a b a bŒ $ # $ # ! ! ! ! "Î$ "Î$
# " " !
" # ! "

 œ

Optimal Solution:  and ÐB ß B Ñ œ Ð#ß #Ñ ^ œ "!" #
‡ ‡ ‡
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5.2-4.

- œ E œ , œ" # ! !
" $ " ! )
" " ! " %

a b Œ  Œ , , 

Iteration 0: , F œ F œ B œ œ œ
" ! B " ! ) )
! " B ! " % %

"
F

$

%
Œ  Œ  Œ Œ  Œ 

- œ B! ! " # ! !F #a b a b, Row 0: , so  enters the basis.

Revised  coefficients: , so  leaves the basis.B œ B
" ! $ $
! " " "# $Œ Œ  Œ 

Iteration 1:    
F œ œ

$ ! "Î$ !
" " "Î$ "new

"
"Œ  Œ 

B œ œ œ - œ
B "Î$ ! ) )Î$
B "Î$ " % %Î$

# !F F
#

%
Œ  Œ Œ  Œ  a b   , 

Revised row 0: a b a bŒ #Î$ ! " # ! !
" $ " !
" " ! "



      , so  enters the basis.œ B"Î$ ! #Î$ !a b "

Revised  coefficients: , so  leaves.   
B œ B

"Î$ ! " "Î$
"Î$ " " #Î$" %Œ Œ  Œ 

Iteration 2:    
   F œ œ

$ " "Î# "Î#
" " "Î# $Î#new

"
"Œ  Œ 

B œ œ œ - œ
B "Î# "Î# ) #
B "Î# $Î# % #

# "F F
#

"
Œ  Œ Œ  Œ  a b   

   , 

Revised row 0: a b a bŒ "Î# "Î# " # ! !
" $ " !
" " ! "



      , so the current solution is optimal.œ ! ! "Î# "Î#a b
Optimal Solution:  and ÐB ß B Ñ œ Ð#ß #Ñ ^ œ '" #

‡ ‡ ‡

5.2-5.

- œ E œ , œ& % " $ ! !
$ # $ " " ! #%
$ $ " $ ! " $'

a b Œ  Œ , ,    

Iteration 0: , F œ F œ B œ œ œ
" ! B " ! #% #%
! " B ! " $' $'

"
F

&

'
Œ  Œ  Œ Œ  Œ 

- œ B! ! & % " $ ! !F "a b a b, Row 0: , so  enters the basis.

Revised  coefficients: , so  leaves the basis.B œ B
" ! $ $
! " $ $" &Œ Œ  Œ 
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Iteration 1: F œ œ
$ ! "Î$ !
$ " " "new

"
"Œ  Œ 

B œ œ œ - œ
B "Î$ ! #% )
B " " $' "#

& !F F
"

'
Œ  Œ Œ  Œ  a b, 

Revised row 0: a b a bŒ &Î$ ! & % " $ ! !
$ # $ " " !
$ $ " $ ! "

   

      , so  enters the basis.œ Ba b! #Î$ % %Î$ &Î$ ! $

Revised  coefficients: , so  leaves.      B B
"Î$ ! $ "
" " " %$ 'Œ Œ  Œ œ

Iteration 2:    F œ œ
$ $ "Î"# "Î%
$ " "Î% "Î%new

"
"Œ  Œ 

B œ œ œ - œ
B "Î"# "Î% #% ""
B "Î% "Î% $' *

& "F F
"

$
Œ  Œ Œ  Œ  a b, 

Revised row 0: a b a bŒ #Î$ " & % " $ ! !
$ # $ " " !
$ $ " $ ! "

   

      , so current solution is optimal.œ a b! "Î$ ! #Î$ #Î$ "

Optimal Solution:  and ÐB ß B ß B ß B Ñ œ Ð""ß !ß $ß !Ñ ^ œ &#" # $ %
‡ ‡ ‡ ‡ ‡

5.3-1.

(a) F œ
" $ !
! " "
" # !

"
Î Ñ
Ï Ò

Final constraint columns for :ÐB ß B ß B Ñ" # $

F E œ œ
" $ ! # # $ & " !
! " " " " " # ! !
" # ! " " " % ! "

"
Î ÑÎ Ñ Î Ñ
Ï ÒÏ Ò Ï Ò

   
   

   

- œ " ! #F a b
Final objective coefficients for :ÐB ß B ß B Ñ" # $

- F E  - œ  œ" ! # # ! ! " " # # ! !
& " !

% ! "
F

" a b a b a bÎ Ñ
Ï Ò

Right-hand side:

F , œ œ D œ œ )
" $ ! & "% "%
! " " $ & " ! # &
" # ! # "" ""

"
Î ÑÎ Ñ Î Ñ Î Ñ
Ï ÒÏ Ò Ï Ò Ï Òa b and 
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Final tableau:

(b) Defining equations: #B  #B  $B œ &ß B  B  B œ $ß B œ !" # $ " # $ "

5.3-2.

(a)    
   F œ

" "
" #

" Œ 
Final constraint columns for :ÐB ß B ß B ß B Ñ" # $ %

F E œ œ
" " % # " " " " " !

" # $ " # " # ! $ "
" Œ Œ  Œ    

      

- œ $ #F a b
Final objective coefficients for :ÐB ß B ß B ß B Ñ" # $ %

-  - œ  œ$ # % $ " # $ ! # !
" " " !
# ! $ "FF E" a b a b a bŒ    

Right-hand side:

F , œ œ ^ œ œ *
" " & " "

" # % $ $
$ #" Œ Œ  Œ  Œ a b   

    and 

Final tableau:

(b) Defining equations: %B  #B  B  B œ &ß $B  B  #B  B œ %ß B œ !ß" # $ % " # $ % "

B œ !$
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5.3-3.

F œ
" " #

# ! %
" ! "

"
Î Ñ
Ï Ò

      
   

   

Final constraint columns for :ÐB ß B ß B Ñ" # $

F E œ œ
" " # # # "Î# ! % !

# ! % % # $Î# ! % "
" ! " " # "Î# " ! !

"
Î ÑÎ Ñ Î Ñ
Ï ÒÏ Ò Ï Ò

               
   

            

- œ ! # 'F a b
Final objective coefficients for :ÐB ß B ß B Ñ" # $

-  - œ  œ! # ' ' " # ! ( !FF E
! % !
! % "
" ! !

" a b a b a bÎ Ñ
Ï Ò

Right-hand side:

F , œ œ ^ œ œ '
" " # # ( (

# ! % $ ! ! # ' !
" ! " " " "

"
Î ÑÎ Ñ Î Ñ Î Ñ
Ï ÒÏ Ò Ï Ò Ï Òa b      

   
   

 and 

Final tableau:

5.3-4.

(a) 

 
   
   F œ

$Î"' "Î) ! !
"Î% "Î# ! !
$Î) "Î% " !
! ! ! "

"

Î ÑÐ ÓÐ Ó
Ï Ò

Current constraint columns for :ÐB ß B ß B Ñ" # $

F E œ œ

$Î"' "Î) ! ! ) # $ " ! *Î"'
"Î% "Î# ! ! % $ ! ! " $Î%
$Î) "Î% " ! # ! " ! ! "Î)
! ! ! " ! ! " ! ! "

"

Î ÑÎ Ñ Î ÑÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÐ Ó
Ï ÒÏ Ò Ï Ò
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- œ #! ' ! !F a b
Current objective coefficients for :ÐB ß B ß B Ñ" # $

- F E  - œ  œ#! ' ! ! #! ' ) ! ! &Î%

" ! *Î"'
! " $Î%
! ! "Î)
! ! "

F
" a b a b a b

Î ÑÐ ÓÐ Ó
Ï Ò

 

Right-hand side:

F , œ œ œ œ &!!

$Î"' "Î) ! ! #!! #& #&
"Î% "Î# ! ! "!! ! !
$Î) "Î% " ! &! ! !
! ! ! " #! #! #!

#! ' ! !"

Î ÑÎ Ñ Î Ñ Î ÑÐ ÓÐ ÓÐ Ó Ð ÓÐ ÓÐ ÓÐ Ó Ð Ó
Ï ÒÏ Ò Ï Ò Ï Ò

a b
 

   
    and ^

Current tableau:

(b) The revised simplex method would generate the reduced costs for row 0 and then the
revised column for .B$

(c) Defining equations: , )B  #B  $B œ #!!ß %B  $B œ "!! B œ !" # $ " # $

Note that  is also binding at the current solution.#B  B œ &!" $

5.3-5.

(a)

a b ˆ ‰ ˆ ‰Œ - - - ã ! ! ã !  œ
" # " " ! ã ,
# " $ ! " ã #,

! ! D" # $
$ % ( $ %
& & "' & &

‡

-  œ Ê - œ -  # œ ! Ê - œ # -  $ œ ! Ê - œ $" " # # $ $
"" ( $
& "' # , , 

(b) ,       
      F œ F , œ , Í œ Í , œ &

$Î& "Î& $Î& "Î& , "
"Î& #Î& "Î& #Î& #, $

" " ‡Œ  Œ Œ  Œ 
(c) Using (a): ^ œ - , œ œ œ ""- - # $

" "
$ $

‡ ‡
F # $a b a bŒ  Œ 

Using (b): ^ œ - , œ œ œ ""$Î& %Î& $Î& %Î&
, &
#, "!

‡
F a b a bŒ  Œ 
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5.3-6.

Iteration 1: Multiply row 2 by  and add to row 0, i.e., premultiply  by&Î# E!a b! &Î# !  and add to row 0, where

 .E œ
" ! ã " ! ! ã %
! # ã ! " ! ã "#
$ # ã ! ! " ã ")

!

Î Ñ
Ï Ò

Iteration 2: Add row 3 to row 0, i.e., premultiply  by  and add to row 0,E ! ! "" a b
where

 .
   

E œ œ E
" ! ã " ! ! ã % " ! !
! " ã ! "Î# ! ã ' ! "Î# !
$ ! ã ! " " ã ' ! " "

" !

Î Ñ Î Ñ
Ï Ò Ï Ò

Therefore, the final row 0 is: initial row 0 , E  E! &Î# ! ! ! "a b a b! "

œ   E$ & ã ! ! ! ã ! ! ! " ! "Î# !! !
" ! !

! " "
a b a b” •ˆ ‰ Î Ñ

Ï Ò&
# !

   

œ  E$ & ã ! ! ! ã ! ! "a b ˆ ‰$
# !

5.3-7.

(a) Use the columns corresponding to artificial variables in exactly the same way as a
slack variable would have been used. Note that the shadow price of this column may be
positive or negative.

(b) For the reversed inequalities, use the negative of the column corresponding to the
slack variable in exactly the same formulae. The artificial column may be discarded.

(c) Same as (b).

(d) No change, use slack and artificial variables as above.

5.3-8.

 maximize                    ^ œ &B  %B QB" # &

 subject to    $B  #B  B œ '" # $

                    #B  B  B  B œ '" # % &

      B ß B ß B ß B ß B   !" # $ % &

Initial Tableau:

 Coefficient of
BV Eq                 RS

     
                         
              

^ B B B B B
^ ! " &  #Q % Q ! Q ! 'Q
B " ! $ # " ! ! '
B # ! # " !

" # $ % &

$

& " " '     
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The columns that will contain  for applying the fundamental insight in the final tableauW‡

are those associated with  and , since those columns form the  identity matrixB B # ‚ #$ &

in the initial tableau.

Final Tableau:

 Coefficient of
BV Eq                       RS

      
                         
  

^ B B B B B

^ ! " !   Q  Q Q ! "!#Q

B " ! " ! ! #

B # ! !

" # $ % &
# ( & #
$ $ $ $

"
# "
$ $

&                 " " #( #
$ $

5.3-9.

(a)    
 F œ

$Î"! "Î"!
#Î"! #Î&

" Œ 
Final constraint columns for :ÐB ß B ß B ß B ß B Ñ" # $ % '

F E œ œ
$Î"! "Î"! " % # " ! ! " $Î& $Î"! "Î"!

#Î"! #Î& $ # ! ! " " ! #Î& #Î"! #Î&
" Œ Œ  Œ             

       

- œ 'Q  $ %Q  #F a b
Final objective coefficients for :ÐB ß B ß B ß B ß B Ñ" # $ % '

- F E  - œ  'Q  $ %Q  #
! " $Î& $Î"! "Î"!
" ! #Î& #Î"! #Î&F

" a bŒ       
   

   œ%Q# 'Q$ #Q# Q Q ! ! " "Î# "Î#a b a b
Right-hand side:

F , œ œ
) *Î&
' %Î&

" Œ    
 

$Î"! "Î"!
#Î"! #Î& Œ  Œ 

D œ "%Q  - B œ "%Q  œ (
*Î&
%Î&F F a b'Q  $ %Q  # Œ 

Final tableau:

(b) The constraints in the original tableau can be expressed as a bE ã M ã M ã ,
with the second identity matrix corresponding to the artificial variables. Premultiply this
matrix by M to get:

a b a b a bE ã W ã P ã , E ã M ã M ã , E ã ã ã ,œ œ‡ ‡ ‡ ‡ M ,M M M M
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where M . 
 œ W œ P œ

$Î"! "Î"!
"Î& #Î&

‡ ‡ Œ 
Original row 0: > œ a b-/ E ã / ã ! ã  / ,X X XM M M

Final tableau: > œ >  @‡ X a bE ã M ã M ã ,

œ a b^ - ã C ã / C ã ^‡ ‡ X ‡ ‡M

œ a b a b-/ E ã / ã ! ã  / ,  @ E ã M ã M ã ,X X X XM M M

œ a b-/ E @ E ã / @ ã @ ã  / ,  @ ,X X X X XM M M

Hence, M .M M@ œ C  / œ    ‡ X " "
# #

ˆ ‰
(c) M M M M> œ œ# $ # ! ! ! - ã ! ã / ã / ,a b a bX X

> œ >  @‡ X a bE ã M ã M ã ,

œ a b^ - ã C ã / C ã ^‡ ‡ X ‡ ‡M

œ a b a b- ã ! ã / ã / ,  @ E ã M ã M ã ,M MX X X

œ a b-@ E ã @ ã / @ ã / ,  @ ,X X X XM M

Hence, .@ œ C œ  ‡ " "
# #

ˆ ‰
(d) Defining equations: M MB œ , Í B œ ,"

   B  %B  #B œ )ß $B  #B œ 'ß B œ !" # $ " # $

5.3-10.

(a)          (i)#B  #B  B  B œ "!" # $ %

          (ii)$B  B  B  B œ #!" # $ &

Multiply (i) by  and add to (ii)."Þ&

     (iii)%B  B  B  B œ $&# $ % &
" $
# #

Divide (*) by  and add to (iii).#

     (iv)B  $B  B  B œ $!" # % &

Multiply (iii) by .#

     (v))B  B  $B  #B œ (!# $ % &

Optimal Solution:  and ÐB ß B ß B Ñ œ Ð$!ß !ß (!Ñ ^ œ #$!" # $
‡ ‡ ‡ ‡

(b) (original objective) (iv) (v)$  #

    $B  (B  #B" # $

             $B  *B  $B  $B" # $ &

           "'B  #B  'B  %B# $ % &

Ê ")B  $B  'B  (B           # $ % &

Hence, the shadow prices are  and .* (
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(c) Defining equations: #B  #B  B œ "!ß $B  B  B œ #!ß B œ !" # $ " # $ #

(d) , ,    
   F œ F œ B œ œ
# " " " " " "! $!
$ " $ # $ # #! (!Œ  Œ  Œ Œ  Œ "

F

C œ œ$ # * (
" "
$ #

‡ a b a bŒ 
Revised row 0: a b a b a bŒ * ( $ ( # ! ! ! ") ! * (

# # " " !
$ " " ! "

 œ
   

   ,

so the current solution is optimal.

(e) Final tableau:

 

5.4-1.

Iteration 0: F œ F œ
" !
! "

" Œ 
 Revised  coefficients: B œ

" ! $ $
! " & &# Œ Œ  Œ 

  enters and  leaves.B B# (

Iteration 1:       
( œ œ

    
+
+
"
+

$
&
"
&

"#

##

##

  
      

F œ œ
"  " 

! !

" !
! "new

"
$ $
& &
" "
& &

   Œ 
 Revised  coefficients: 

   
B œ

" 

!

#
#%

$
&
"
&

%
&
#
&

   Œ 
  enters andB%   leaves.B'

Iteration 2: 
      

( œ œ
 

Î Ñ
Ï Ò  

"
+

+

+

&
%
"
#

""
w

#%
w

""
w

  
      

      
F œ œ

! 

 " ! 

" 
new
"

& & $
% % %
" " " "
# & # #

$
&    
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5.4-2.

- œ E œ , œ" # % ! ! ! " % " ! " ! )
$ " & " ! ! "!

# ! # ! ! " (
a b Î Ñ Î Ñ

Ï Ò Ï Ò, , 

Iteration 0: F œ F œ
" ! !
! " !
! ! "

"
Î Ñ
Ï Ò

  B œ œ œ
B " ! ! "! "!
B ! " ! ) )
B ! ! " ( (

F

%

&

'

Î Ñ Î ÑÎ Ñ Î Ñ
Ï Ò Ï ÒÏ Ò Ï Ò

 , Row 0: - œ ! ! ! " # % ! ! !F a b a b
  enters the basis.B$

 Revised  coefficients: B œ
" ! ! & &
! " ! " "
! ! " # #

$

Î ÑÎ Ñ Î Ñ
Ï ÒÏ Ò Ï Ò

  leaves the basis.B%

Iteration 1: 
   

( œ 



Î ÑÐ Ó
Ï Ò

"
&
"
&
#
&

  
        

F œ œ

! ! ! !

 " ! ! " !  " !

 ! "  ! "

" ! !

! ! "
new
"

" "
& &
" "
& &
# #
& &

Î Ñ Î ÑÐ Ó Ð Ó
Ï Ò Ï Ò

Î Ñ
Ï Ò

 
    

B œ œ œ
B "! #
B  " ! ) '
B ( $

! !

 ! "

F

$

&

'

"
&
"
&
#
&

Î Ñ Î Ñ Î Ñ
Ï Ò Ï Ò Ï Ò

Î ÑÐ Ó
Ï Ò

 - œ % ! !F a b
 Revised row 0:

 ˆ ‰Î Ñ
Ï Ò a b%

& ! !
$ " & " ! !
" % " ! " ! " # % ! ! !
# ! # ! ! "



 œ  ! ! !ˆ ‰( ' %
& & &

  enters the basis.B#

 Revised  coefficients: 
       

   B œ

! !

 " ! %

 ! " 

"

!
#

" "
& &
" "*
& &
# #
& &

Î Ñ Î ÑÐ Ó Ð Ó
Ï Ò Ï Ò

Î Ñ
Ï Ò

  leaves.B&
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Iteration 2:    
   

( œ

Î ÑÐ Ó
Ï Ò

"
"*
&
"*
#
"*

     
     

   
   

   

   
F œ œ  !

"  ! ! !

! !  " !

! "  ! "

 !

 "
new
"

" "
"* &
& "
"* &
# #
"* &

% "
"* "*
" &
"* "*
) #
"* "*

Î ÑÎ Ñ Î ÑÐ ÓÐ ÓÐ Ó
Ï ÒÏ Ò Ï Ò

     
   

   
B œ œ  ! œ

B "!
B )
B (

 !

 "

F

$

#

'

% "
"* "*
" &
"* "*
) #
"* "*

$#
"*
$!
"*
'*
"*

Î Ñ Î Ñ
Ï Ò Ï Ò

Î Ñ Î ÑÐ Ó Ð Ó
Ï Ò Ï Ò

 - œ % # !F a b
 Revised row 0:

  ˆ ‰"% '
"* "* !

Î Ñ
Ï Ò a b$ " & " ! !

" % " ! " ! " # % ! ! !
# ! # ! ! "



 œ ! ! !ˆ ‰#* "% '
"* "* "*

 The current solution is optimal.

Optimal Solution:  and ÐB ß B ß B Ñ œ !ß ß ^ œ" # $
‡ ‡ ‡ ‡$! $# "))

"* "* "*Š ‹
5.4-3.

- œ E œ , œ# # $ ! ! ! # " " ! " ! #
" " " " ! ! %

" " $ ! ! " "#
a b Î Ñ Î Ñ

Ï Ò Ï Ò, , 
    

   
      

Iteration 0: F œ F œ
" ! !
! " !
! ! "

"
Î Ñ
Ï Ò

  B œ œ œ
B " ! ! % %
B ! " ! # #
B ! ! " "# "#

F

%

&

'

Î Ñ Î ÑÎ Ñ Î Ñ
Ï Ò Ï ÒÏ Ò Ï Ò

 , Row 0: - œ ! ! ! # # $ ! ! !F a b a b
  enters the basis.B$

 Revised  coefficients: B œ
" ! ! " "
! " ! " "
! ! " $ $

$

Î ÑÎ Ñ Î Ñ
Ï ÒÏ Ò Ï Ò

  leaves the basis.B&
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Iteration 1: ,       ( œ F œ
" " " !
" ! " !

$ ! $ "

Î Ñ Î Ñ
Ï Ò Ï Ònew

"

    B œ œ œ
B " " ! % #
B ! " ! # #
B ! $ " "# '

F

%

$

'

Î Ñ Î ÑÎ Ñ Î Ñ
Ï Ò Ï ÒÏ Ò Ï Ò

 - œ ! $ !F a b
 Revised row 0:

 a b a bÎ Ñ
Ï Ò! $ ! # " " ! " ! # # $ ! ! !

" " " " ! !

" " $ ! ! "


    
   
      

 œ % " ! ! $ !a b
  enters the basis.B#

 Revised  coefficients:    
      

      
B œ

" " ! " #
! " ! " "
! $ " " %

#

Î ÑÎ Ñ Î Ñ
Ï ÒÏ Ò Ï Ò

  leaves.B%

Iteration 2: ,    ( œ F œ
"Î# "Î# "Î# !
"Î# "Î# "Î# !
# # " "

Î Ñ Î Ñ
Ï Ò Ï Ònew

"

     B œ œ œ
B "Î# "Î# ! % "
B "Î# "Î# ! # $
B # " " "# #

F

#

$

'

Î Ñ Î ÑÎ Ñ Î Ñ
Ï Ò Ï ÒÏ Ò Ï Ò

 - œ # $ !F a b
 Revised row 0:

  a b a bÎ Ñ
Ï Ò"Î# &Î# ! # " " ! " ! # # $ ! ! !

" " " " ! !

" " $ ! ! "


    
   
      

 œ &Î# ! ! "Î# &Î# !a b
 The current solution is optimal.

Optimal Solution:  and ÐB ß B ß B Ñ œ Ð!ß "ß $Ñ ^ œ (" # $
‡ ‡ ‡ ‡
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5.4-4.

- œ E œ , œ"! #! ! ! ! " " ! " ! "#
" # " ! ! "&

& $ ! ! " %&
a b Î Ñ Î Ñ

Ï Ò Ï Ò, ,    
    

Iteration 0: ,F œ F œ
" ! !
! " !
! ! "

"
Î Ñ
Ï Ò

  B œ œ œ
B " ! ! "& "&
B ! " ! "# "#
B ! ! " %& %&

F

$

%

&

Î Ñ Î ÑÎ Ñ Î Ñ
Ï Ò Ï ÒÏ Ò Ï Ò

 , Row 0: - œ ! ! ! "! #! ! ! ! !F a b a b
  enters the basis.B#

 Revised  coefficients: B œ
" ! ! # #
! " ! " "
! ! " $ $

#

Î ÑÎ Ñ Î Ñ
Ï ÒÏ Ò Ï Ò

  leaves the basis.B$

Iteration 1: , 
      

( œ F œ
"Î# "Î# ! !

"Î# "Î# " !
$Î# $Î# ! "

Î Ñ Î Ñ
Ï Ò Ï Ònew

"

 
   

B œ œ œ
B "Î# ! ! "& (Þ&
B "Î# " ! "# %Þ&
B $Î# ! " %& ##Þ&

F

#

%

&

Î Ñ Î ÑÎ Ñ Î Ñ
Ï Ò Ï ÒÏ Ò Ï Ò

 - œ #! ! !F a b
 Revised row 0:

 a bÎ Ñ
Ï Ò"! ! ! " " ! " !

" # " ! !

& $ ! ! "
   

    
a b"! #! ! ! !

 œ #! ! "! ! !a b
  enters the basis.B"

 Revised  coefficients: B"

Î ÑÎ Ñ Î Ñ
Ï ÒÏ Ò Ï Ò

   
      
    

"Î# ! ! " "Î#
"Î# " ! " $Î#
$Î# ! " & "$Î#

œ

 B% leaves.
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Iteration 2: , 
             
          

   
( œ F œ

"Î$ "Î$ "Î$ !
#Î$ "Î$ #Î$ !

"$Î$ #Î$ "$Î$ "

Î Ñ Î Ñ
Ï Ò Ï Ònew

"

 
        

     
   

B œ œ œ
B "Î$ "Î$ ! "& *
B "Î$ #Î$ ! "# $
B #Î$ "$Î$ " %& $

F

#

"

&

Î Ñ Î ÑÎ Ñ Î Ñ
Ï Ò Ï ÒÏ Ò Ï Ò

 - œ #! "! !F a b
 Revised row 0:   

 a bÎ Ñ
Ï Ò"!Î$ %!Î$ ! " " ! " !

" # " ! !

& $ ! ! "
   

    
a b"! #! ! ! !

 œ ! ! "!Î$ %!Î$ !a b
 The current solution is optimal.

Optimal Solution:  and ÐB ß B Ñ œ Ð$ß *Ñ ^ œ #"!" #
‡ ‡ ‡
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CHAPTER 6: DUALITY THEORY AND SENSITIVITY ANALYSIS

6.1-1.

(a) minimize "&C  "#C  %&C" # $

 subject to        C  C  &C   "!" # $

           #C  C  $C   #!" # $

       C ß C ß C   !" # $

(b) minimize  %C  #C  "#C" # $

 subject to        C  #C  C   #" # $

            C  C  C   #" # $

             C  C  $C   $" # $

      C ß C ß C   !" # $

6.1-2.

(a)    
       

    
       

B B B B
C " # % $ Ÿ #!
C % ' & % Ÿ %!
C # $ $ ) Ÿ &!

& Ÿ " Ÿ $ Ÿ % Ÿ

" # $ %

"

#

$

 minimize  #!C  %!C  &!C" # $

 subject to          C  %C  #C   &" # $

       #C  'C  $C   "" # $

          %C  &C  $C   $" # $

          $C  %C  )C   %" # $

        C ß C ß C   !" # $

(b) The dual problem has no feasible solution.

6.1-3.

(a) Apply the simplex method to the dual of the problem, since the dual has fewer
constraints (not including nonnegativity constraints). We expect that the simplex method
will go through fewer basic feasible solutions.

(b) Apply the simplex method to the primal problem, since it has fewer  constraints (not
including nonnegativity constraints). We expect that the simplex method will go through
fewer basic feasible solutions.

6.1-4.

(a) minimize    "#C  C" #

 subject to        C  C   "" #

          C  C   #" #

        #C  C   "" #

        C ß C   !" #

(b) It is clear from the dual problem that  is the optimal dual solution. ByÐC ß C Ñ œ Ð!ß !Ñ" #

strong duality, .^ œ ! Ÿ !
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6.1-5.

(a) minimize "&C  #&C" #

 subject to       C   &"

                     C   %#

          C  #C   $" #

        C ß C   !" #

(b) Optimal Solution: , so shadow prices for resources 1 and 2 are  andÐC ß C Ñ œ Ð&ß %Ñ &" #
‡ ‡

% respectively.

 

(c)
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6.1-6.

(a) minimize    'C  %C" #

 subject to                  #C   ""

        #C  C   $" #

      #C  #C   #" #

        C ß C   !" #

(b) Optimal Solution: , so shadow prices for resources 1 and 2 areÐC ß C Ñ œ Ð"Î#ß $Î#Ñ" #
‡ ‡

"Î# $Î# and  respectively.

 

(c)



6-4

6.1-7.

(a) The feasible region is empty.

 

(b) minimize #!C  "!C" #

 subject to   %C  C   #" #

       C  C   $" #

       C ß C   !" #

(c) Note that the dual objective function can be expressed as . If for&Ð%C  C Ñ  &C" # #

any ,  is chosen such that , then the objective function equals .C C %C  C œ # "!  &C# " " # #

Hence, by choosing  properly, the dual objective can be made arbitrarily small.C#
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6.1-8.

Primal: maximize    B  B" #

 subject to B  B Ÿ "" #

      B  B Ÿ !" #

      B ß B   !" #

Let ,  is unbounded.B œ B œ - Ä _ ^ œ #-" #

Dual: minimize    C"
 subject to C  C   "" #

      C  C   "" #

      C ß C   !" #

The dual problem is infeasible.
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6.1-9.

Primal: maximize    B"

 subject to       B  B Ÿ !" #

   B  B Ÿ "" #

      B ß B   !" #

Dual: minimize         C#

 subject to    C  C   "" #

   C  C   !" #

      C ß C   !" #

Neither the primal nor the dual is feasible. They have the same two constraints, which
contradict each other, so their feasible region is empty.

 

6.1-10.

Primal: maximize B  B" #

 subject to          B Ÿ ""

      B  B Ÿ !" #

   B ß B   !" #

The primal problem is clearly infeasible.

Dual: minimize C"

 subject to    C  C   "" #

               C   "#

      C ß C   !" #

Let  in the feasible solution , so the objective function value is unbounded.- Ä _ Ð-ß "Ñ
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6.1-11.

Let  and  be a primal and a dual feasible point respectively. By weak duality,B C! !

 ._  -B Ÿ C ,  _! !

Furthermore, for any primal feasible point  and any dual feasible point ,B C

  and .-B Ÿ C , -B Ÿ C,! !

This means that the primal problem cannot be unbounded, as it is bounded above by C ,!

and similarly, the dual problem cannot be bounded as it is bounded below by .-B!

Therefore, since the primal problem (and the dual problem) has a feasible solution and
the objective function value is bounded, it must have an optimal solution.

6.1-12.

(a) From the primal, ,  and from the dual, , , soEB Ÿ , B   ! C E   - C   !X X

 , C E  -   ! B   ! Ê ÐC E  - ÑB   !X X X X

 , .,  EB   ! C   ! Ê C Ð,  EBÑ   !X

In other words,  and , so , which is weakC EB   - B C ,   C EB C ,   C EB   - BX X X X X X X

duality.

(b) There are many ways to prove this. The simplest is by contradiction. Assume the
primal objective  can be increased indefinitely and the dual does have a feasible^
solution. By weak duality,  for all primal feasible , given  is a dual feasible- B Ÿ C , B CX X

solution. This means that  is bounded above, which contradicts the assumption. Hence,^
if  is unbounded, then the dual must be infeasible.^

6.1-13.

Primal: maximize   Dual: minimize ^ œ -B [ œ C,

 subject to    subject to EB Ÿ , CE   -
         B   ! C   !

Since changing  to  keeps the dual feasible region unchanged,  must be feasible for, , C‡

the new problem. Let  be the optimal solution for the new dual, then clearly ,C C, Ÿ C ,‡

since  is optimal. Furthermore, by strong duality, .C -B œ C, Ÿ C ,‡

6.1-14.

(a) TRUE. If  is an  matrix, then in standard form, the number of functionalE 8 ‚7
constraints is  for the primal and  for the dual. The number of variables is  in the8 7 7
primal and  in the dual. Hence, for both, the sum of the number of constraints and8
variables is .7 8

(b) FALSE. This cannot be true since the weak and strong duality theorems imply that
the primal and the dual objective function values are the same only at optimality.

(c) FALSE. If the primal problem has an unbounded objective function value, the dual
problem must be infeasible, since by weak duality, if the dual has a feasible solution ,C
the primal objective value is .^ œ -B Ÿ C,
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6.2-1.

(a) Iteration 0: Since all coefficients are zero, at the current solution , the threeÐ!ß !Ñ
resources (production time per week at plant 1, 2 and 3) are free goods. This means
increasing them does not improve the objective value.

 Iteration 1: . Now resource 2 has been entirely used up and contributesÐ!ß &Î#ß !Ñ
&Î# to profit per unit of resource. Since this is positive, it is worthwhile to continue fully
using this resource.

 Iteration 2: . Resources 2 and 3 are used up and contribute a positiveÐ!ß $Î#ß "Ñ
amount to profit. Resource 1 is a free good while resources 2 and 3 contribute  and $Î# "
per unit of resource respectively.

(b) Iteration 0: . Both activities 1 and 2 (number of batches of product 1 andÐ$ß&Ñ
2 produced per week) can be initiated to give a more profitable allocation of the
resources. The current contribution of the resources required to produce one batch of
product 1 or 2 to the profit is smaller than the unit profit per batch of product 1 or 2
respectively.

 Iteration 1: . Again activity 1 can be initiated to give a more profitable useÐ$ß !Ñ
of resources, but activity 2 is already being produced (or the resources are being used just
as well in other activities).

 Iteration 2: . Both activities are being produced (or the resources are beingÐ!ß !Ñ
used just as profitably elsewhere).

(c) Iteration 1: Since activities 1 and 2 can be initiated to increase the profit (give the
same amount of resources), we choose to increase one of these. We choose activity 2 as
the entering activity (basic variable), since it increases the profit by  for every unit of&
product 2 produced (as opposed to  for product 1).$

 Iteration 2: Only activity 1 can be initiated for more profit, so we do so.

 Iteration 3: Both activity 1 and 2 are being used. Furthermore, since the
coefficients for ,  and  are nonnegative, it is not worthwhile to cut back on the useB B B$ % &

of any of the resources. Thus, we must be at the optimal solution.

6.3-1.

(a) minimize [ œ #!C  "!C" #

 subject to &C  C   '" #

   #C  #C   )" #

     C ß C   !" #
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(b) Primal:

 

ÐB ß B Ñ œ Ð&Î#ß "&Î%Ñ ^ œ %&" #  is optimal with . Infeasible corner point solutions are
Ð!ß "!Ñ Ð"!ß !Ñ and .

 Dual:

 

ÐC ß C Ñ œ Ð"Î#ß (Î#Ñ [ œ %&" #  is optimal with . Infeasible corner point solutions are
Ð!ß %Ñ Ð!ß !Ñ Ð'Î&ß !Ñ,  and .
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(c)

  Primal BS Feasible?   Dual BS Feasible?
   Yes    No
   Yes      No
   Yes

^
Ð!ß &ß "!ß !Ñ %! Ð!ß %ß#ß !Ñ
Ð!ß !ß #!ß "!Ñ ! Ð!ß !ß'ß)Ñ
Ð%ß !ß !ß 'Ñ #% Ð'Î&ß !ß !ß#)Î&Ñ
Ð&Î#ß "&Î%ß !ß !Ñ %& Ð"Î#ß (Î#ß !ß !Ñ
Ð!ß "!ß !ß"!Ñ )! Ð%ß !ß "%ß !Ñ
Ð"!ß !ß$!ß !Ñ '! Ð!ß 'ß !ß %Ñ

   No
   Yes    Yes
   No    Yes
   No    Yes

(d)

  
Primal: Ð!ß !ß #!ß "!Ñ
Dual: Ð!ß !ß'ß)Ñ

  
Primal: Ð!ß &ß "!ß !Ñ
Dual: Ð!ß %ß#ß !Ñ

  
Primal: Ð&Î#ß "&Î%ß !ß !Ñ
Dual: Ð"Î#ß (Î#ß !ß !Ñ

6.3-2.

(a) minimize [ œ )C  %C" #

 subject to   C  C   "" #

   $C  C   #" #

     C ß C   !" #
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(b) Primal:

 

ÐB ß B Ñ œ Ð#ß #Ñ ^ œ ' Ð)ß !Ñ" #  is optimal with . Infeasible corner point solutions are  and
Ð!ß %Ñ.

 Dual:

 

ÐC ß C Ñ œ Ð"Î#ß "Î#Ñ [ œ '" #  is optimal with .
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(c)

 Primal BS Feasible?     Dual BS Feasible?
   Yes       No
   Yes       No
   Yes

^
Ð%ß !ß %ß !Ñ % Ð!ß "ß !ß"Ñ
Ð!ß !ß )ß %Ñ ! Ð!ß !ß"ß#Ñ
Ð!ß )Î$ß !ß %Î$Ñ "'Î$ Ð#Î$ß !ß"Î$ß !Ñ
Ð#ß #ß !ß !Ñ ' Ð"Î#ß "Î#ß !ß !Ñ
Ð!ß %ß%ß !Ñ ) Ð!ß #ß "ß !Ñ
Ð)ß !ß !ß%Ñ ) Ð"ß !ß !ß "Ñ

   No
   Yes       Yes
   No       Yes
   No       Yes

(d)

  

Primal: Ð!ß !ß )ß %Ñ

Dual: Ð!ß !ß"ß#Ñ

  

Primal: Ð!ß )Î$ß !ß %Î$Ñ

Dual: Ð#Î$ß !ß"Î$ß !Ñ

  

Primal: Ð#ß #ß !ß !Ñ

Dual: Ð"Î#ß "Î#ß !ß !Ñ
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6.3-3.

 NB Primal Var. Assoc. Dual Var. NB Dual Var.
                
                
            

B ß B C ß C C ß C ß C
B ß B C ß C C ß C ß C
B ß B

" # % & " # $

" % % # " $ &

% &     
                
                
                
      

C ß C C ß C ß C
B ß B C ß C C ß C ß C
B ß B C ß C C ß C ß C
B ß B C ß C C ß C ß C
B ß

# $ " % &

$ & " $ # % &

# $ & " # $ %

" & % $ " # &

$ B C ß C C ß C ß C
B ß B C ß C C ß C ß C

% " # $ % &

# & & $ " # %

          
                

In all cases, complementary slackness holds: .B C œ B C œ B C œ B C œ B C œ !" % # & $ " % # & $

6.3-4.

If either the primal or the dual has a degenerate optimal basic feasible solution, then the
other may have multiple solutions. For example, consider the problem:

 maximize     $B"

 subject to + B  B œ !"" " #

    #B  B œ "" $

   B ß B ß B   !" # $

If , we can pivot and get an alternative optimal solution to the dual problem. If+  !""

+ Ÿ !"" , we cannot.

The converse is true, however. If a problem has multiple optimal solutions, then two of
them must be adjacent corner points. To move from the tableau of one solution to that of
the other requires exactly one pivot. Suppose  enters and  leaves. A partial tableau is:B B4 5

   RSB

-

B + ,

4

4

5 54 5

+ ,   ! ,  ! - ^54 5 5 4 must be positive and . If , then  or  would change with the pivot. If
, œ ! B5 4, then  pivots in at value zero and the resulting tableau represents the same
corner point, contradicting the assumption that the two optimal solutions are distinct.

6.3-5.

(a) minimize [ œ "!C"

 subject to C   $"

   #C   )"

   C   !"

The optimal solution is  and .C œ $ [ œ $!"
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(b)  is the optimal basic feasible solution for the dual. ByÐC ß C ß C Ñ œ Ð$ß !ß #Ñ" # $

complementary slackness, , so . SinceC B œ C B œ C B œ ! B œ B œ !" $ # " $ # # $

B  #B  B œ "! ÐB ß B ß B Ñ œ Ð"!ß !ß !Ñ" # $ " # $,  is optimal for the primal.

(c) The constraints for the dual problem can be expressed as:

- Ÿ C Ÿ œ %" "
-
#
# ,

so if , the dual is infeasible and the primal objective function is unbounded.-  %"

6.3-6.

(a) minimize [ œ "!C  "!C" #

 subject to C  $C   #" #

   #C  $C   (" #

   C  #C   %" #

   C ß C   !" #

(b)  is feasible for the dual problem. By weak duality,Ð!ß &Î#Ñ

 ,[ œ "! † !  "! † &Î# œ #&   D

so the optimal primal objective function value is less than .#&

(c)

 

 

 

The primal basic solution is , which is not feasible.ÐB ß B ß B ß B ß B Ñ œ Ð!ß "!ß"!ß !ß !Ñ" # $ % &

The dual basic solution is .ÐC ß C ß D - ß D - ß D - Ñ œ Ð#ß "ß $ß !ß !Ñ" # " " # # $ $
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(d)

 

ÐC ß C Ñ œ Ð!ß (Î$Ñ [ œ (!Î$ C C C" # # $ & is optimal with . From the dual solution, ,  and  are
basic; therefore, ,  and  are nonbasic primal variables,  and  are basic.B B B B B$ & " # %

 

 

ÐB ß B ß B ß B ß B Ñ œ Ð!ß "!Î$ß !ß "!Î$ß !Ñ" # $ % &  is the primal optimal basic solution with
^ œ (!Î$.

6.3-7.

(a) minimize [ œ 'C  "&C" #

 subject to C  %C   #" #

   $C  'C   &" #

   #C  &C   $" #

   $C  (C   %" #

   C  C   "" #

   C ß C   !" #
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(b)  is optimal with .ÐC ß C Ñ œ Ð%Î$ß "Î'Ñ [ œ #"Î#" #

 

(c)  and  are nonbasic in the dual, so  and  must be basic in theÐD - Ñ ÐD - Ñ B B" " # # " #

optimal primal solution.

(d)

 

 

 

ÐB ß B Ñ œ Ð$Î#ß $Î#Ñ ^ œ #"Î#" #  is optimal with .



6-17

(e) The defining equations are:

    B  $B  #B  $B  B œ '" # $ % &

  %B  'B  &B  (B  B œ "&" # $ % &

     B œ !$

     B œ !%

            ,B œ !&

which have the solution .ÐB ß B ß B ß B ß B Ñ œ Ð$Î#ß $Î#ß !ß !ß !Ñ" # $ % &

6.3-8.

(a) minimize [ œ "!C  #!C" #

 subject to       #C  $C   $" #

              #C  C   (" #

                C  C   #" #

              C ß C   !" #

(b) Because ,  and  are nonbasic in the optimal primal solution, ,  and  willB B B C C C# % & " # %

be basic in the optimal dual solution.

(c) The defining equations are:

   #C  $C  C œ $" # $

                #C  C  C œ (" # %

           C  C  C œ #" # &

     C œ !$

          ,C œ !&

which have the solution .ÐC ß C ß C ß C ß C Ñ œ Ð*ß (ß !ß ")ß !Ñ" # $ % &

(d)  is optimal with .ÐC ß C Ñ œ Ð*ß (Ñ [ œ #$!" #

 

6.3-9.

(a) minimize [ œ "!C  '!C  ")C  %%C" # $ %

 subject to                    #C  C  $C   ## $ %

                         C  &C  C  C   "" # $ %

               C ß C ß C ß C   !" # $ %
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(b) The defining equations for  are:ÐB ß B Ñ œ Ð"$ß &Ñ" #

  and .B  B œ ") $B  B œ %%" # " #

Then  and  must be basic in the optimal dual solution whereas ,  and  are non-C C C C C$ % " # $

basic.

(c) The basic variables in the primal optimal solution are , ,  and . Introduce B B B B B" # $ % "

and  into the basis.B#

 

 

 

ÐB ß B ß B ß B ß B ß B Ñ œ Ð"$ß &ß &ß *ß !ß !Ñ ^ œ $"" # $ % & '  is optimal with . The dual solution is
ÐC ß C ß C ß C ß C ß C Ñ œ Ð!ß !ß "Î#ß "Î#ß !ß !Ñ" # $ % & ' .

(d) The defining equations are:

                   #C  C  $C œ ## $ %

            C  &C  C  C œ "" # $ %

     C œ !"

     ,C œ !#

which are satisfied by .Ð!ß !ß "Î#ß "Î#ß !ß !Ñ
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6.3-10.

(a) The optimal dual solution corresponds to row 0 computed by the simplex method to
determine optimality.

(b) The complementary basic solution corresponds to row 0 as well.

6.4-1.

(a) minimize [ œ "!C  #!C" #

 subject to   #C  C œ &" #

   $C  #C   %" #

    (  unconstrained in sign)C Ÿ ! C" #

(b) Standard form: maximize ^ œ &B  &B  %B"


"


#

    subject to #B  #B  $B Ÿ "!"


"


#

                B  B  #B Ÿ #!"


"


#

           B  B  #B Ÿ #!"


"


#

           B ß B ß B   !"


"


#

 Dual: minimize [ œ "!C  #!C  #!C" # $

  subject to     #C  C  C   &" # $

           #C  C  C   &" # $

     $C  #C  #C   %" # $

         C ß C ß C   !" # $

Let  and . Then the dual is:C œ C  C C œ C# "
w w

# $ "

 minimize [ œ "!C  #!Cw w w
" #

 subject to   #C  C œ &" #
w w

   $C  #C   %" #
w w

    (  unconstrained in sign)C Ÿ ! C" #
w w

as given in part (a).

6.4-2.

(a) Since  is equivalent toÖEB œ ,×

 ,      œŒ  Œ E ,
E ,

B Ÿ

changing the primal functional constraints from  to  changes the dual to:EB Ÿ , EB œ ,

 minimize    
[ œ C ?

,
,

a bŒ X X

 subject to    a bŒ C ?
E

E
  -X X

   .Cß ?   !

Let .C œ C  ?
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 minimize [ œ C,

 subject to CE   -

    unrestricted in signC

Hence, the only change is the deletion of the nonnegativity constraints.

(b)  is equivalent to , so the dual ofÖEB   ,× ÖEB Ÿ ,×

 maximize ^ œ -B

 subject to EB   ,

   B   !

is

 minimize [ œ CÐ,Ñ

 subject to CÐEÑ   -

   .C   !

Let .C œ C

 minimize [ œ C,

 subject to CE   -

   C Ÿ !

Hence,  is replaced by  in the dual.C   ! C Ÿ !

(c)

Primal: maximize   maximize ^ œ -B Í ^ œ -B  -B 

 subject to   subject to EB Ÿ , EB  EB Ÿ , 

    unrestricted in sign   B B ß B   ! 

Dual: minimize   minimize [ œ C, Í [ œ C,

 subject to    subject to CE   - CE œ -
       CÐEÑ   - C   !
   C   !
Hence,  is replaced by .CE   - CE œ -

6.4-3.

 maximize [ œ )C  'C" #

 subject to            C  $C Ÿ #" #

            %C  #C Ÿ $" #

             #C Ÿ ""

              C ß C   !" #
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6.4-4.

(a) maximize [ œ %C  "!C" #

 subject to         %C  &C Ÿ &" #

            #C  "!C Ÿ "!" #

              C ß C   !" #

(b)

 

Since  can be increased indefinitely, the primal problem is infeasible, by weak duality.@

6.4-5.

minimize       [ œ #Þ(C  'C  'C" # $
w

subject to          !Þ$C  !Þ&C  !Þ'C   !Þ%" # $
w

           !Þ"C  !Þ&C  !Þ%C   !Þ&" # $
w

                 unrestricted in signC   !ß C Ÿ !ß C" #$
w

Í [ œ #Þ(C  'C  'C maximize       " # $
w

 subject to        !Þ$C  !Þ&C  !Þ'C   !Þ%" # $
w

                !Þ"C  !Þ&C  !Þ%C   !Þ&" # $
w

                          unrestricted in signC   !ß C Ÿ !ß C" #$
w

Í [ œ #Þ(C  'C  'C maximize       w w w
" # $

 subject to         !Þ$C  !Þ&C  !Þ'C   !Þ%" #
w w

$

                      !Þ"C  !Þ&C  !Þ%C   !Þ&" #
w w

$

                      unrestricted in signC Ÿ !ß C   !ß C" #
w w

$

Í [ œ #Þ(C  'C  'C maximize       w w w
" # $

 subject to            !Þ$C  !Þ&C  !Þ'C Ÿ !Þ%" #
w w

$

                         !Þ"C  !Þ&C  !Þ%C Ÿ !Þ&" #
w w

$

                      unrestricted in signC Ÿ !ß C   !ß C" #
w w

$
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6.4-6.

(a) maximize ^ œ #B  &B  $B" # $

 subject to             B  #B  B   #!" # $

             #B  %B  B œ &!" # $

             B ß B ß B   !" # $

Dual: minimize [ œ #!C  &!C" #

 subject to      C  #C   #" #

             #C  %C   &" #

         C  C   $" #

      unconstrained in signC Ÿ !ß C" #

(b) maximize   ^ œ #B  B  %B  $B" # $ %

 subject to                   B  B  $B  #B Ÿ %" # $ %

                       B  B  B   "" $ %

                        #B  B Ÿ #" #

                     B  #B  B  #B œ #" # $ %

                unconstrained in signB ß B ß B ß B   !" # $ %

Dual: minimize [ œ %C  C  #C  #C" # $ %

 subject to              C  C  #C  C œ #" # $ %

                            C  C  #C   "" $ %

                         $C  C  C   %" # %

                          #C  C  #C   $" # %

               unconstrained in signC ß C   !ß C Ÿ !ß C" $ # %

6.4-7.

(a) minimize [ œ $!!C  $!!C" #

 subject to                  #C  )C   %" #

                      $C  C   #" #

                      %C  C   $" #

                    #C  &C   &" #

                   unconstrained in signC ß C" #

(b) maximize ^ œ %B  #B  $B  &B" # $ %

 subject to         #B  $B  %B  #B œ $!!" # $ %

               )B  B  B  &B œ $!!" # $ %

             B ß B ß B ß B   !" # $ %

Standard form: maximize    ^ œ %B  #B  $B  &B" # $ %

   subject to               #B  $B  %B  #B Ÿ $!!" # $ %

             #B  $B  %B  #B Ÿ $!!" # $ %

                       )B  B  B  &B Ÿ $!!" # $ %

                 )B  B  B  &B Ÿ $!!" # $ %

                  B ß B ß B ß B   !" # $ %
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Dual: minimize [ œ $!!C  $!!C  $!!C  $!!C" # $ %

 subject to                           #C  #C  )C  )C   %" # $ %

                                 $C  $C  C  C   #" # $ %

                                 %C  %C  C  C   $" # $ %

                             #C  #C  &C  &C   &" # $ %

                   C ß C ß C ß C   !" # $ %

Let  and .C œ C  C C œ C  C" #
w w

" # $ %

 minimize [ œ $!!C  $!!C" #
w w

 subject to                  #C  )C   %" #
w w

                      $C  C   #" #
w w

                      %C  C   $" #
w w

                    #C  &C   &" #
w w

                    unconstrained in signC ß C" #
w w

6.4-8.

(a) minimize [ œ "#!C  )!C  "!!C" # $

 subject to          C  $C œ "# $

                             $C  C  C œ #" # $

                           C  %C  #C œ "" # $

                 C ß C ß C   !" # $

(b)Standard form:

 maximize       ^ œ B  B  #B  #B  B  B" " # # $ $
w ww w ww w ww

 subject to                                 $B  $B  B  B Ÿ "#!# # $ $
w ww w ww

                    B  B  B  B  %B  %B Ÿ )!" " # # $ $
w ww w ww w ww

             $B  $B  B  B  #B  #B Ÿ "!!" " # # $ $
w ww w ww w ww

              B ß B ß B ß B ß B ß B   !" " # # $ $
w ww w ww w ww

Dual: minimize [ œ "#!C  )!C  "!!C" # $

 subject to           C  $C   "# $

             C  $C   "# $

                             $C  C  C   #" # $

                       $C  C  C   #" # $

                           C  %C  #C   "" # $

                     C  %C  #C   "" # $

                 C ß C ß C   !" # $

 minimize [ œ "#!C  )!C  "!!C" # $

 subject to           C  $C œ "# $

                             $C  C  C œ #" # $

                           C  %C  #C œ "" # $

                 C ß C ß C   !" # $
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6.4-9.

The dual problem for the Wyndor Glass Co. example: 

 maximize [ œ %C  "#C  ")C" # $

 subject to                         C  $C Ÿ $" $

                             #C  #C Ÿ &# $

                   C ß C ß C   !" # $

The dual of the dual:

 minimize ^ œ $B  &B" #

 subject to              B   %"

              #B   "##

              $B  #B   ")" #

        B ß B   !" #

Í ^ œ $B  &B maximize " #

 subject to                      B Ÿ %"

             B Ÿ "##

           $B  #B Ÿ ")" #

             B ß B   !" #

6.4-10.

(a) The objective is unbounded below.

 

(b) maximize )C  #%C" #

 subject to   #C  $C Ÿ &" #

             %C  $C Ÿ "&" #

                C ß C Ÿ !" #
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Equivalently:

 minimize )C  #%C" #

 subject to   #C  $C   &" #

             %C  $C   "&" #

                2C ß C   !" #

(c) The dual has no feasible solution.

 

6.5-1.

(a) Since  was nonbasic, changing its coefficients does not affect feasibility. To checkB"

optimality, we need to check dual feasibility. The first dual constraint becomes

  ,!C  &C   #" #

which is always true, since . Hence the current basic solution remains optimal.C   !#

(b) Adding a new variable does not affect primal feasibility, simply let . To checkB œ !'

optimality, check dual feasibility. The constraint that corresponds to  in the dual isB'

  ,$C  &C   "!" #

assuming .  satisfies this constraint, so the current basic solutionB   ! ÐC ß C Ñ œ Ð&ß !Ñ' " #

with  is optimal.B œ !'

6.5-2.

(a) Since  is nonbasic, the primal solution is still feasible. The dual constraintB$

associated with ,  is violated by , so the current basicB $C  #C   # ÐC ß C Ñ œ Ð!ß #Ñ$ " # " #

solution is not optimal.

(b) Letting , primal feasibility still holds. The dual constraint associated with thisB œ !'

variable,  is satisfied by , so the current basic solutionC  #C   $ ÐC ß C Ñ œ Ð!ß #Ñ" # " #

remains optimal.
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6.5-3.

Since  was nonbasic, changing its coefficients does not affect primal feasibility. To seeB$

whether the solution remains optimal, check if the complementary basic solution remains
feasible for the dual problem. The third dual constraint becomes

  ,$C  #C  C   %" # $

which is satisfied by , so the current basic solution remainsÐC ß C ß C Ñ œ Ð"ß "ß !Ñ" # $

optimal.

6.6-1.

(a) , ÐB ß B ß B Ñ œ Ð&Î$ß !ß $Ñ ^ œ "(" # $

(b) minimize [ œ #&C  #!C" #

 subject to             'C  $C   $" #

               $C  %C   "" #

               &C  &C   %" #

    C ß C   !" #

(c) Optimal Solution: , ÐC ß C Ñ œ Ð"Î&ß $Î&Ñ [ œ "(" #

 

(d) Since the new dual constraint  is violated by , the#C  $C   $ ÐC ß C Ñ œ Ð"Î&ß $Î&Ñ" # " #

current solution is no longer optimal.

(e) New  column:B#

 
   

         Œ " "
$ $
" #
& &

"
$
%
&





#
$

œ


(f) The new primal variable adds a constraint to the dual, , which is not$C  #C   #" #

satisfied by , so the current solution is no longer optimal.ÐC ß C Ñ œ Ð"Î&ß $Î&Ñ" #

(g) , new column: 
   

   
- œ  # œ  œ

$ $
# #




new ˆ ‰Œ  Œ    " $

& &
"
&

" " "
$ $ $
" # "
& & &
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6.6-2.

(a) , ? ?, œ "& , œ !" #

    Ê ^ œ œ $
"&

!
? ‡ " $

& &
ˆ ‰Œ 

    ?, œ œ &
"&

!"
‡ " "

$ $
ˆ ‰Œ 

    ?, œ œ $
"&

!#
‡ " #

& &
ˆ ‰Œ 

New Tableau:

  

The current basic solution  is infeasible and superoptimal.Ð"!Î$ß !ß 'ß !ß !Ñ

(b) , ? ?, œ ! , œ "!" #

    
Ê ^ œ œ '

!
"!

? ‡ " $
& &

ˆ ‰Œ 
    

?, œ œ "!Î$
!

"!"
‡ " "

$ $
ˆ ‰Œ 

    
?, œ œ %

!
"!#

‡ " #
& &

ˆ ‰Œ 
New Tableau:

 

The current basic solution  is infeasible and superoptimal.Ð&ß !ß"ß !ß !Ñ
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(c) ? ?- œ # Ê ÐD  - Ñ œ ## ##
‡

New Tableau:

 

The current basic solution  stays optimal.Ð&Î$ß !ß $ß !ß !Ñ

(d) ? ?- œ # Ê ÐD  - Ñ œ #$ $$
‡

New Tableau:

  

Proper Form:

 

The current basic solution  stays optimal.Ð&Î$ß !ß $ß !ß !Ñ

(e) , ? ?+ œ ! + œ #"# ##

    
Ê ÐD  - Ñ œ œ 

!
#

? #
‡

#
" $
& &

'
&

ˆ ‰Œ 
    

?+ œ œ
!

#"#
‡ " "

$ $
#
$

ˆ ‰Œ 
    

?+ œ œ 
!

###
‡ " #

& &
%
&

ˆ ‰Œ 
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New Tableau:

 

The current basic solution  is feasible and optimal.Ð&Î$ß !ß $ß !ß !Ñ

(f) , ? ?+ œ # + œ !"" #"

 Ê ÐD  - Ñ œ œ
#
!

? "
‡

"
" $
& &

#
&

ˆ ‰Œ 
 ?+ œ œ

#
!""

‡ " "
$ $

#
$

ˆ ‰Œ 
 ?+ œ œ 

#
!#"

‡ " #
& &

#
&

ˆ ‰Œ 
New Tableau:

  

Proper Form:

 

The current basic solution  is feasible and optimal.Ð!Þ("ß !ß $Þ&(ß !ß !Ñ

6.6-3.

(a) , ? ?, œ # , œ "" #

    Ê ^ œ œ "" "
#
"

? ‡ a bŒ 
    ?, œ œ $" "

#
""

‡ a bŒ 
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    ?, œ œ %" #
#
"#

‡ a bŒ 
New Tableau:

 

From the tableau, we see that the primal basic solution is feasible, but not optimal.

 

From the graph, we can see the current basic solution is feasible, but not optimal.

(b) ? ?- œ " Ê ÐD  - Ñ œ "" ""
‡

 ? ?- œ # Ê ÐD  - Ñ œ ## ##
‡

 ? ?- œ " Ê ÐD  - Ñ œ "$ $$
‡

 ? ?- œ " Ê ÐD  - Ñ œ "% %%
‡

New Tableau:

 



6-31

Proper Form:

 

The primal basic solution is both feasible and optimal.

 

From the graph, we see that the current basic solution is feasible and optimal.

(c) , ? ?+ œ # + œ """ #"

    ? ?- œ $ Ê ÐD  - Ñ œ $  œ %" "
#
"" ""

‡ a bŒ 
    ?+ œ œ $" "

#
"""

‡ a bŒ 
    ?+ œ œ %" #

#
"#"

‡ a bŒ 
New Tableau:

 

The primal basic solution is infeasible, but satisfies the optimality criterion.
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From the graph, the current basic solution is infeasible and superoptimal.

(d) , ? ?+ œ $ + œ ""# ##

 ? ?- œ ( Ê ÐD  - Ñ œ (  œ $" "
$
"# ##

‡ a bŒ 
 ?+ œ œ #" "

$
""#

‡ a bŒ 
 ?+ œ œ "" #

$
"##

‡ a bŒ 
New Tableau:

 

Proper Form:

 

The primal basic solution is feasible and optimal.
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From the graph, the current basic solution is feasible and optimal.

6.7-1.

The model Ep(x) is developed to identify a long-term management plan that satisfies the
legal requirements and optimizes PALCO's operations and profitability. The model
consists of a linear program with the objective of maximizing present net worth subject to
harvest-flow constraints, political and environmental constraints. Detailed sensitivity
analysis is performed to "determine the optimal mix of habitat types within each of
individual watersheds" [p. 93]. Many instances of the LP problem are run with varying
parameters.

The financial benefits of this study include an increase of over $398 million in present
net worth and of over $29 million in average yearly net revenues. Sustained-yield annual-
harvest levels have increased. The habitat mix is improved in accordance with political
and environmental regulations. A more profitable long-term plan paved the way for
improved short- and mid-term plans. Sensitivity analysis enabled PALCO to improve its
knowledge base of the ecosystem and to adjust its plans quickly when a change in costs
or in regulations occurs. Since its decisions are now justified through a systematic
approach, PALCO is able to obtain better terms from banks. The study did not only affect
PALCO and the habitat controlled by PALCO. It has also "shown that the forest product
industries can coexist with wildlife and contribute to their habitats" [p. 104] and
"increased quality of life for future generations" [p. 105].
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6.7-2.

(a) , ? ?, œ "! , œ !" #

 Ê ^ œ œ &!& !
"!
!

? ‡ a bŒ 
 ?, œ œ "!" !

"!
!"

‡ a bŒ 
 ?, œ œ %!% "

"!
!#

‡ a bŒ 
New Tableau:

 

The current basic solution is infeasible and superoptimal.

(b) , ? ?, œ ! , œ #!" #

    
Ê ^ œ œ !& !

!
#!

? ‡ a bŒ 
    

?, œ œ !" !
!

#!"
‡ a bŒ 

    
?, œ œ #!% "

!
#!#

‡ a bŒ 
New Tableau:

 

The current basic solution is infeasible and superoptimal.

(c) , ? ?, œ "! , œ "!" #

    Ê ^ œ œ &!& !
"!
"!

? ‡ a bŒ 
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    ?, œ œ "!" !
"!
"!"

‡ a bŒ 
    ?, œ œ &!% "

"!
"!#

‡ a bŒ 
New Tableau:

 

The current basic solution is feasible and optimal.

(d) ? ?- œ & Ê ÐD  - Ñ œ &$ $$
‡

New Tableau:

 

The current basic solution is feasible and optimal.

(e) , ? ?+ œ " + œ ("" #"

    
? ?- œ $ Ê ÐD  - Ñ œ $  œ #& !

"
(" ""

‡ a bŒ 
    

?+ œ œ "" !
"

(""
‡ a bŒ 

    
?+ œ œ ""% "

"
(#"

‡ a bŒ 
New Tableau:

 

The current basic solution is feasible and optimal.
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(f) , ? ?+ œ " + œ ""# ##

 ? ?- œ " Ê ÐD  - Ñ œ "  œ %& !
"
"# ##

‡ a bŒ 
 ?+ œ œ "" !

"
""#

‡ a bŒ 
 ?+ œ œ $% "

"
"##

‡ a bŒ 
New Tableau:

 

Proper Form:

 

The current basic solution is feasible, but not optimal.

(g) , ? ?+ œ $ + œ &"' #'

 ? ?- œ "! Ê ÐD  - Ñ œ "!  œ && !
$
&' ''

‡ a bŒ 
 ?+ œ œ $" !

$
&"'

‡ a bŒ 
 ?+ œ œ (% "

$
&#'

‡ a bŒ 
New Tableau:

 

The current basic solution is feasible and optimal.
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(h) New Tableau and Proper Form:

 

 

The current basic solution is infeasible and superoptimal.

(i) , ? ?+ œ ! + œ #"" #"

    
? ?- œ ! Ê ÐD  - Ñ œ !  œ !& !

!
#" ""

‡ a bŒ 
    

?+ œ œ !" !
!

#""
‡ a bŒ 

    
?+ œ œ #% "

!
##"

‡ a bŒ 
 , ? ?+ œ ! + œ ""# ##

 ? ?- œ ! Ê ÐD  - Ñ œ !  œ !& !
!
"# ##

‡ a bŒ 
 ?+ œ œ !" !

!
""#

‡ a bŒ 
 ?+ œ œ "% "

!
"##

‡ a bŒ 
 , ? ?, œ ! , œ "!" #

 Ê ^ œ œ !& !
!
"!

? ‡ a bŒ 
 ?, œ œ !" !

!
"!"

‡ a bŒ 
 ?, œ œ "!% "

!
"!#

‡ a bŒ 
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New Tableau:

 

Proper Form:

 

6.7-3.

 , ? ) ? ), œ # , œ " #

  
Ê ^ œ œ "!& !

#


? )
)
)

‡ a bŒ 
  

? )
)
)

, œ œ #" !
#
"

‡ a bŒ 
  

? )
)
)

, œ œ *% "
#
#

‡ a bŒ 
 Ê ^ œ "!!  "!)

 ,   ! Í #!  #   !"
‡ )

 ,   ! Í "!  *   !#
‡ )

 Í "! Ÿ Ÿ "!Î*)

6.7-4.
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(a) , ? ?, œ "! , œ #!" #

    Ê ^ œ œ %!! #
"!
#!

? ‡ a bŒ 
    ?, œ œ $!" "

"!
#!"

‡ a bŒ 
    ?, œ œ #!! "

"!
#!#

‡ a bŒ 

 

The current basic solution is superoptimal, but infeasible.

 

(b) , ? ?+ œ " + œ ""$ #$

 ? ?- œ " Ê ÐD  - Ñ œ "  œ $! #
"
"$ $$

‡ a bŒ 
 ?+ œ œ !" "

"
""$

‡ a bŒ 
 ?+ œ œ "! "

"
"#$

‡ a bŒ 
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The current basic solution is feasible, but not optimal.

 

(c) , ? ?+ œ # + œ """ #"

 ? ?- œ # Ê ÐD  - Ñ œ #  œ !! #
#
"" ##

‡ a bŒ 
 ?+ œ œ "" "

#
"""

‡ a bŒ 
 ?+ œ œ "! "

#
"#"

‡ a bŒ 

 

 

The current basic solution is feasible and optimal.

(d) , ? ?+ œ " + œ #"' #'

 ? ?- œ $ Ê ÐD  - Ñ œ $  œ (! #
"
#' ''

‡ a bŒ 
 ?+ œ œ "" "

"
#"'

‡ a bŒ 
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 ?+ œ œ #! "
"
##'

‡ a bŒ 

 

The current basic solution is feasible and optimal.

(e) ? ?- œ " Ê ÐD  - Ñ œ "" ""
‡

 ? ?- œ # Ê ÐD  - Ñ œ ## ##
‡

 ? ?- œ " Ê ÐD  - Ñ œ "$ $$
‡

 

 

The current basic solution is feasible, but not optimal.
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(f) New Tableau:

 

 Proper Form:

 

The current basic solution is infeasible and superoptimal.

 Tableau After Reoptimization:

 

(g) , ? ?+ œ # + œ $## #$

    
Ê ÐD  - Ñ œ œ %! #

!
#

? #
‡

# a bŒ 
    

?+ œ œ #" "
!

#"#
‡ a bŒ 

    
?+ œ œ #! "

!
###

‡ a bŒ 
 Ê ÐD  - Ñ œ œ '! #

!
$

? $
‡

$ a bŒ 
 ?+ œ œ $" "

!
$"$

‡ a bŒ 
 ?+ œ œ $! "

!
$#$

‡ a bŒ 
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 , ? ?, œ ! , œ #&" #

  
Ê ^ œ œ &!! #

!
#&

? ‡ a bŒ 
  

?, œ œ #&" "
!
#&"

‡ a bŒ 
  

?, œ œ #&! "
!
#&#

‡ a bŒ 

 

The current basic solution is neither feasible nor optimal.

 

6.7-5.

 , ? ) ? ), œ $ , œ " #

  
Ê ^ œ œ #! #

$


? )
)
)

‡ a bŒ 
  

? )
)
)

, œ œ %" "
$
"

‡ a bŒ 
  

? )
)
)

, œ œ ! "
$
#

‡ a bŒ 
 ^ Ð Ñ œ #!  #‡ ) )

ÐB ß B ß B ß B ß B Ñ œ Ð"!  ß !ß !ß #!  % ß !Ñ & Ÿ Ÿ "!" # $ % & ) ) ) is feasible if .
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6.7-6.

 

(a) , , ? ? ?, œ & , œ " , œ #" # $

    Ê ^ œ œ %" " ! "
&

#
? ‡ a bÎ Ñ

Ï Ò
    ?, œ œ #" $ ! "

&

#
"
‡ a bÎ Ñ

Ï Ò
    ?, œ œ "! " " "

&

#
#
‡ a bÎ Ñ

Ï Ò
    ?, œ œ $" # ! "

&

#
$
‡ a bÎ Ñ

Ï Ò

 

The current basic solution is feasible and optimal.
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(b) ? ?- œ " Ê ÐD  - Ñ œ "$ $$
‡

 

The current basic solution remains feasible and optimal.

(c) ? ?- œ $ Ê ÐD  - Ñ œ $" ""
‡

 

 

The current basic solution is feasible and optimal.

(d) ? ? ?+ œ "ß + œ "ß + œ !"$ #$ $$

 ? ?- œ $ Ê ÐD  - Ñ œ $  œ "" " ! "
"

!
$ $$

‡ a bÎ Ñ
Ï Ò

 ?+ œ œ %" $ ! "
"

!
"$
‡ a bÎ Ñ

Ï Ò
 ?+ œ œ "! " " "

"

!
#$
‡ a bÎ Ñ

Ï Ò
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 ?+ œ œ $" # ! "
"

!
$$
‡ a bÎ Ñ

Ï Ò

 

The current basic solution remains feasible and optimal.

(e) ? ? ?+ œ #ß + œ "ß + œ #"" #" $"

 
   

? ?- œ " Ê ÐD  - Ñ œ "  œ #" " ! "
#

#
" ""

‡ a bÎ Ñ
Ï Ò

 
   

?+ œ œ &" $ ! "
#

#
""
‡ a bÎ Ñ

Ï Ò
 

   
?+ œ œ "! " " "

#

#
#"
‡ a bÎ Ñ

Ï Ò
 

   
?+ œ œ %" # ! "

#

#
$"
‡ a bÎ Ñ

Ï Ò
 ? ? ?+ œ !ß + œ #ß + œ $"# ## $#

 ? ?- œ " Ê ÐD  - Ñ œ "  œ $" " ! #
!

$
# ##

‡ a bÎ Ñ
Ï Ò

 ?+ œ œ '" $ ! #
!

$
"#
‡ a bÎ Ñ

Ï Ò
 ?+ œ œ &! " " #

!

$
##
‡ a bÎ Ñ

Ï Ò
 ?+ œ œ %" # ! #

!

$
$#
‡ a bÎ Ñ

Ï Ò
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The current basic solution is superoptimal, but infeasible.

(f) ? ?- œ $ Ê ÐD  - Ñ œ $" ""
‡

 ? ?- œ # Ê ÐD  - Ñ œ ## ##
‡

 ? ?- œ # Ê ÐD  - Ñ œ #$ $$
‡
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The current basic solution is feasible and optimal.

(g) ? ? ?+ œ "ß + œ !ß + œ !"" #" $"

    
   

Ê ÐD  - Ñ œ œ "" " ! !
"

!
? "

‡
" a bÎ Ñ

Ï Ò
    

   
?+ œ œ "" $ ! !

"

!
""
‡ a bÎ Ñ

Ï Ò
    

   
?+ œ œ !! " " !

"

!
#"
‡ a bÎ Ñ

Ï Ò
    

   
?+ œ œ "" # ! !

"

!
$"
‡ a bÎ Ñ

Ï Ò
 ? ? ?+ œ "ß + œ !ß + œ !"# ## $#

 Ê ÐD  - Ñ œ œ "" " ! !
"

!
? #

‡
# a bÎ Ñ

Ï Ò
 ?+ œ œ "" $ ! !

"

!
"#
‡ a bÎ Ñ

Ï Ò
 ?+ œ œ !! " " !

"

!
##
‡ a bÎ Ñ

Ï Ò
 ?+ œ œ "" # ! !

"

!
$#
‡ a bÎ Ñ

Ï Ò
 ? ? ?+ œ #ß + œ !ß + œ !"$ #$ $$
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 Ê ÐD  - Ñ œ œ #" " ! !
#

!
? $

‡
$ a bÎ Ñ

Ï Ò
 ?+ œ œ #" $ ! !

#

!
"$
‡ a bÎ Ñ

Ï Ò
 ?+ œ œ !! " " !

#

!
#$
‡ a bÎ Ñ

Ï Ò
 ?+ œ œ #" # ! !

#

!
$$
‡ a bÎ Ñ

Ï Ò
 , , ? ? ?, œ $ , œ ! , œ !" # $

    
   

Ê ^ œ œ $" " ! !
$

!
? ‡ a bÎ Ñ

Ï Ò
    

   
?, œ œ $" $ ! !

$

!
"
‡ a bÎ Ñ

Ï Ò
    

   
?, œ œ !! " " !

$

!
#
‡ a bÎ Ñ

Ï Ò
    

   
?, œ œ $" # ! !

$

!
$
‡ a bÎ Ñ

Ï Ò
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The current basic solution is feasible and optimal.

(h)

 

 

The current basic solution is infeasible and superoptimal.

 Tableau After Reoptimization:
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6.7-7.

(a) F2-DC, F2-W1 and DC-W2 have the smallest margins for error (100). The greatest
effort in estimating the unit shipping costs should be placed on these lanes.

(b) Cost Allowable Range
     
     
     
     
     
     

G Ÿ &!!
G Ÿ &!!
G   &!!
G   )!!
G Ÿ %!!
G Ÿ &!!

F1-DC

F2-DC

F1-W1

F2-W1

DC-W1

DC-W2

(c) The range of optimality for each unit shipping cost indicates how much that shipping
cost can change before the optimal shipping quantities change.

(d) Use the 100% rule for simultaneous changes in the objective function coefficients. If
the sum of the percentage changes does not exceed 100%, the optimal solution will
remain optimal. If it exceeds 100%, then it may or may not be optimal for the new
problem.

6.7-8.

(a)
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The allowable range for  is  and the one for  is .- # Ÿ - Ÿ % - $ Ÿ - Ÿ $Î#" " # #

(b) Increasing  by  ( )causes the coefficient of  in row 0 of the final- - - œ $  - B" " " " "? ?
tableau to become . To make it , add  times row 2 to row 0: - ! -? ?" "

a b a b a b - ! " " " ! " " ! ! "  - "  - - œ? ? ??" " "" .

For optimality, we need  and , so . Hence, the"  -   ! "  -   ! " Ÿ - Ÿ "? ? ?" " "

allowable range for  is . Similarly, increasing  by - $  " œ # Ÿ - Ÿ $  " œ % - -" " # #?
( )causes the coefficient of  in row 0 of the final tableau to become- œ #  - B# # #?
 - ! -? ?# #. To make it , add  times row 1 to row 0:

a b a b a b!  - " " ! " " # ! ! "  - "  # - - œ? ? ??# # ## .

For optimality, we need  and , so . Hence,"  -   ! "  # -   ! " Ÿ - Ÿ "Î#? ? ?# # #

the allowable range for  is .- #  " œ $ Ÿ - Ÿ #  "Î# œ $Î## #

(c)

 

The allowable range for  is ., ,   #!" "

 

The allowable range for  is ., , Ÿ "&# #
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(d) If we increase  by , the final right-hand side becomes:, ," "?

W , œ œ  ,
" # $!  , "! "
" " "! #! "

‡ "
"Œ Œ  Œ  Œ ?

? .

In order to preserve feasibility, , so the allowable range for  is .?,   "! , ,   #!" " "

Similarly, if  is increased by , the final right-hand side becomes:, ,# #?

W , œ œ  ,
" # $! "! #
" " "!  , #! "

‡

#
#Œ Œ  Œ  Œ ?

? .

In order to preserve feasibility, , so the allowable range for  is .?, Ÿ & , , Ÿ "&# # #

(e) (in MPL)

6.7-9.

If we increase  by , the final right-hand side becomes:, ,3 3?

 
      

   
   

, œ W , œ

" ! !

 !

" 

%  ,
#%  ,
")  ,

‡ ‡ $ "
% %
* $
% %

"

#

$

Î ÑÐ Ó
Ï Ò

Î Ñ
Ï Ò

?
?
?

    .
      

   
   œ  ,  ,  ,

% " !


!
!
" 

Î Ñ Î Ñ Î ÑÐ ÓÐ Ó Ð Ó
Ï Ò Ï Ò Ï Ò

Î Ñ
Ï Ò$ $ "

# % %
$* * $
# % %

" # $? ? ?

Assuming ,  must satisfy:? ? ?, œ , œ ! ,# $ "

 %  ,   ! Í ,   %? ?" "

 $ $
# % " " ,   ! Í , Ÿ #? ?
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 $* * ()
# % *" " ,   ! Í ,   ? ?

  .Í % Ÿ , Ÿ # Í ! Ÿ , Ÿ '? " "

Assuming ,  must satisfy:? ? ?, œ , œ ! ," $ #

 .$* $* *
# # ## # # ,   ! Í ,    Í ,  ? ?

Assuming ,  must satisfy:? ? ?, œ , œ ! ," # $

 $ "
# % $ $ ,   ! Í ,   '? ?

 $* $
# % $ $ ,   ! Í , Ÿ #'? ?

 .Í "# Ÿ , Ÿ %%$

 

The allowable range for  is ., ! Ÿ , Ÿ '" "
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The allowable range for  is ., *Î# Ÿ ,# #

 

The allowable range for  is ., "# Ÿ , Ÿ %%$ $

6.7-10.

If we increment  by  ( ), the coefficient of  in row 0 of the final- - - œ $  - B" " " " "? ?
tableau becomes . Add  times row 1 to row 0 to get: - -? ?" "ˆ ‰ ˆ ‰a b - ! ! ! !  - ! - œ" ! " ! !? ??" "

$ $ $ $
% % % %" .

For optimality, we need , so . Hence, the allowable rangeÐ$Î%Ñ  -   ! -   $Î%? ?" "

for  is .- -   *Î%" "

 

The allowable range for  is . No matter how large  gets,  stays- -   *Î% - Ð%ß $Î#Ñ" " "

optimal as long as .-   *Î%"
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6.7-11.

If we increment  by  ( ), the coefficient of  in row 0 of the final- - - œ &  - B# # # # #? ?
tableau becomes . Add  times row 2 to row 0 to get: - -? ?# #

ˆ ‰ ˆ ‰ ˆ ‰* &
# ## # # #

$ " * $ & "
# # # # # #

 - ! !  - " ! ! œ  - ! ! !  -? ? ? ? .

For optimality, we need  and , soÐ*Î#Ñ  Ð$Î#Ñ -   ! Ð&Î#Ñ  Ð"Î#Ñ -   !? ?# #

?-   $ - -   ## # #, so the allowable range for  is . Looking at Figure 6.3, we see that if
- œ # ^ œ $B  #B œ ") -# " # #,  lies exactly on the constraint boundary. Thus, if  is
decreased any more,  does not remain optimal and the optimal solution becomesÐ!ß *Ñ
Ð%ß $Ñ -. On the other hand, as  increases, the objective function gets closer to the#

horizontal line , so for any ,  stays optimal.^ œ B œ * -   # Ð!ß *Ñ# #

6.7-12.

(a) 
   
      

   
, œ   ! Í  ,   !

" 

! !

! 

, # "
! ' !
! # !

‡

" "
$ $
"
#
" "
$ $

"

"

Î ÑÐ Ó
Ï Ò

Î Ñ Î Ñ Î Ñ
Ï Ò Ï Ò Ï Ò
?

?

 Í ,   # Í ,   #? " "

 
      
         

   
, œ   ! Í  ,   !

" 

! !

!  

! #
, '
! #

‡

" " "
$ $ $
" "
# #
" " "
$ $ $

# #

Î Ñ Î ÑÐ Ó Ð Ó
Ï Ò Ï Ò

Î Ñ Î Ñ
Ï Ò Ï Ò? ?

 Í ' Ÿ , Ÿ ' Í ' Ÿ , Ÿ ")? # #

 
   
      

   
   
   

, œ   ! Í  ,   !

" 

! !

! 

! #
! ' !
, #


‡

" "
$ $
"
#
" "
$ $

$

"
$

"
$

$

Î Ñ Î ÑÐ Ó Ð Ó
Ï Ò Ï Ò

Î Ñ Î Ñ
Ï Ò Ï Ò?

?

 Í ' Ÿ , Ÿ ' Í "# Ÿ , Ÿ #%? $ $

(b) Row Row  and Ð !Ñ  - Ð $Ñ   ! Í  -   ! "  -   !? ? ?" " "
$ " "
# $ $

 Í $ Ÿ - Ÿ Í ! Ÿ - Ÿ? " "
* "&
# #

 Row Row Ð !Ñ  - Ð #Ñ   ! Í  -   !? ?# #
$ "
# #

 Í $ Ÿ - Í # Ÿ -? # #

(c) (in MPL)
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6.7-13.

(a) 

   
   

, œ   ! Í  ,   !

" ! ! !

! ! !

! " ! 

! ! " 

%  , % "
#% ) !
") ) !
#% # !

‡
"
$
#
$
#
$

"

"

Î ÑÐ ÓÐ ÓÐ Ó
Ï Ò

Î Ñ Î Ñ Î ÑÐ Ó Ð ÓÐ ÓÐ Ó Ð ÓÐ Ó
Ï Ò Ï Ò Ï Ò

?

?

 Í ,   % Í ,   !? " "

 

   
   

, œ   ! Í  ,   !

" ! ! !

! ! !

! " ! 

! ! " 

% % !
#%  , ) !

") ) "
#% # !

‡
"
$
#
$
#
$

#
#

Î ÑÐ ÓÐ ÓÐ Ó
Ï Ò

Î Ñ Î Ñ Î ÑÐ Ó Ð ÓÐ ÓÐ Ó Ð ÓÐ Ó
Ï Ò Ï Ò Ï Ò

?
?

 Í ,   ) Í ,   "'? # #

 

   
   

, œ   ! Í  ,   !

" ! ! !

! ! !

! " ! 

! ! " 

% % !
#% ) !

")  , ) !
#% # "

‡
"
$
#
$
#
$

$
$

Î ÑÐ ÓÐ ÓÐ Ó
Ï Ò

Î Ñ Î Ñ Î ÑÐ Ó Ð ÓÐ ÓÐ Ó Ð ÓÐ Ó
Ï Ò Ï Ò Ï Ò?

?

 Í ,   # Í ,   "'? $ $

 

      
      

, œ   ! Í  ,   !

" ! ! ! !

! ! !

! " !  

! ! "  

% %
#% )
") )

#%  , #

‡
" "
$ $
# #
$ $
# #
$ $

%

%

Î Ñ Î ÑÐ Ó Ð ÓÐ Ó Ð ÓÐ Ó Ð Ó
Ï Ò Ï Ò

Î Ñ Î ÑÐ Ó Ð ÓÐ Ó Ð Ó
Ï Ò Ï Ò?

?

 , , Í ,   #% , Ÿ "# , Ÿ $ Í ! Ÿ , Ÿ #(? ? ?% % % %

(b) Incrementing  by , the coefficient of  in row 0 of the final tableau becomes- - B" " "?
Ð"Î$Ñ  - Ð"Î$Ñ  -   !? ?" ". In order for the solution to remain optimal, , so

- Ÿ $  œ"
" "!
$ $ .

 Incrementing  by , the coefficient of  in row 0 of the final tableau becomes- - B# # #?
 -? #. Using row 2 to eliminate this coefficient, we get:
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 ˆ ‰ ˆ ‰" & # "
$ $ $ $# # - ! ! ! " ! ! ! -? ?

 .œ  - ! ! ! !  -ˆ ‰" # & "
$ $ $ $# #? ?

To keep optimality, we need:

  and ." # & " " *
$ $ $ $ # ## # # # -   !  -   ! Í -    Í -  ? ? ?

(c) (in MPL)

6.7-14.

? ) ? )- œ Ê ÐD  - Ñ œ " ""
‡

? ) ? )- œ # Ê ÐD  - Ñ œ ## ##
‡

New Tableau:

 
Proper Form:

 

The current basic solution is optimal if  and , so .$ $ $ $
% # % # # #   !    !  Ÿ Ÿ) ) )
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6.7-15.

? ) ? )- œ Ê ÐD  - Ñ œ " ""
‡

? ) ? )- œ  Ê ÐD  - Ñ œ# ##
‡

New Tableau:

 

Proper Form:

 

The current basic solution is optimal if  and , so . Clearly,#    ! "    ! Ÿ ") ) )
^Ð Ñ œ ")  $) ) ) ) is maximized when  is as small as possible. Since  is restricted to be
nonnegative,  is optimal.) œ !

6.7-16.

(a) Row 0 of the final tableau is: . Use row 1 and 2 to elimi-a b% $  # # #%) ) )
nate  and . We get:B B" #

 a b a b a b% $  # # #% " !  " " " # ! " & # $ " % ) ) ) ) )

 .œ ! ! $  # #  # #  #%  *a b) ) ) )

To preserve optimality, we need: $  #   ! Í Ÿ) ) $
#

     #  #   ! Í Ÿ ") )

     ,#    ! Í   #) )

so the range of values over which the solution stays optimal is . Since# Ÿ Ÿ ")
^  * # ^ œ %#) ) ) is decreasing in , the best choice of  is , then .

(b)       
   W , œ œ  ,

" " (  , # "
# $ & " #

‡ "
"Œ Œ  Œ  Œ ?

?

  and #  ,   ! "  # ,   ! Í # Ÿ , Ÿ Í & Ÿ , Ÿ? ? ?" " " "
" "&
# #

    
      W , œ œ  ,

" " ( # "
# $ &  , " $

‡

#
#Œ Œ  Œ  Œ ?

?

  and #  ,   ! "  $ ,   ! Í  Ÿ , Ÿ # Í Ÿ , Ÿ (? ? ?# # # #
" "%
$ $
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(c) From the final row 0 in part (a), we get  and . Decreasing theC œ #  # C œ # " #
‡ ‡) )

first resource  by one and increasing the second one  by one gives us a newÐ, Ñ Ð, Ñ" #

objective function value , so the objective function^ œ ^  Ð#  # Ñ  Ð#  Ñ œ ^ ) ) )
value increases by .)

(d) Dual: minimize [Ð Ñ œ (C  &C) " #

  subject to $C  #C   "!  %" # )
            C  C   % " # )
        #C  $C   ( " # )
      C ß C   !" #

Starting Tableau:

        

    
    

( & ! ! ! !
$ # " ! ! "!  %
" " ! " !  % 
# $ ! ! "  ( 

)
)
)

Force  and  into the basis and  and  out of the basis.C C C C" # $ %

   
       

     
     

! ! # " ! #%  *
! " " $ ! # 
" ! " # ! #  #
! ! " & " $  #

)
)
)
)

The shadow prices are  as found in part (c).ÐC ß C Ñ œ Ð#  # ß #  Ñ" #
‡ ‡ ) )

Graphically:  when ÐC ß C Ñ œ Ð#ß #Ñ œ !" #
‡ ‡ )
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6.7-17.

(a)    
      W , œ œ 

$ # &  $ "
" " '  # " "

‡ Œ Œ  Œ  Œ )
)

)

Ð$  ß !ß "  ß !ß !Ñ $    ! "    ! " Ÿ Ÿ $) ) ) ) ) is feasible if  and , so . The new
objective function value is then:

 ,^Ð Ñ œ œ ""  $" "
& 
'  #

) )
)
)

a bŒ 
which is increasing in , so the best choice of  is  and .) ) $ ^ œ #!

(b) Incrementing  by  and adding  times row 1 to row 0, we get:- - -" " "? ?

 a b a b - " ! " " ""  $ " & ! $ # $  -? ) )?" "

 .œ ! "  & - ! "  $ - "  # - ""  $ -  Ð$  - Ña b? ? ? ? ? )" " " " "

To preserve optimality, we need:

 "  & -   ! Í -   ? ?" "
"
&

 "  $ -   ! Í -   ? ?" "
"
$

 ,"  # -   ! Í - Ÿ? ?" "
"
#

so  and . Ÿ - Ÿ Ÿ - Ÿ" " * &
& # & #" "?

6.7-18.

(a) , ? ) ? ? ) )- œ # + œ " Ê ÐD  - Ñ œ #  œ #  ## #
"
!" "" ""

‡ a bŒ 
 ?+ œ œ ## $

"
!""

‡ a bŒ 
 ?+ œ œ "" "

"
!#"

‡ a bŒ 
 ? ) ? )- œ Ê ÐD  - Ñ œ # ##

‡

 ? ?, œ "! Ê ^ œ œ #!# #
"!
!"

‡ a bŒ 
 ?, œ œ #!# $

"!
!"

‡ a bŒ 
 ?, œ œ "!" "

"!
!#

‡ a bŒ 
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New Tableau:

 

Proper Form:

 

For  near , the optimal solution is  with ) ! ÐB ß B ß B ß B Ñ œ Ð"&Î#ß "!ß !ß !Ñ ^ œ" # $ %

#!  ""&) .

(b) The solution in (a) remains optimal if  and , so the allowable$  "   ! %  $   !) )
range for  is .) )$Î% Ÿ Ÿ "Î$

(c)  attains its largest value when  is smallest, so .^Ð Ñ œ #!  ""& œ !) ) ) )

6.7-19.

(a) , , ? ? ? ?- œ * + œ " + œ " Ê ÐD  - Ñ œ *  œ '# "
"
"" "" #" ""

‡ a bŒ 
 ?+ œ œ #$ "

"
"""

‡ a bŒ 
 ?+ œ œ $& #

"
"#"

‡ a bŒ 
New Tableau:

 

Proper Form:
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Optimal Tableau:

 

With the new technology,  is optimal with .ÐB ß B ß B ß B ß B Ñ œ Ð%Î$ß !ß !ß !ß $Ñ ^ œ #%" # $ % &

(b) The changes in ,  and  are  times the values in part (a).D  - + +" "" #"
‡ ‡ ‡

" )

New Tableau:

 

Proper Form:

 

Since  for all choices of , the right-hand side always remains#  "  ! − Ò!ß "Ó) )
positive, so the current solution is always feasible for . For optimality, we need) − Ò!ß "Ó

  ,  and ,$%  #   ! ##  #   ! %  "   !) ) )

so . Hence, the current basis is optimal for .) )Ÿ "Î% − Ò!ß "Î%Ó

6.7-20.

 ? ) ? )- œ # Ê ÐD  - Ñ œ #" ""
‡

 ? ) ? )- œ Ê ÐD  - Ñ œ # ##
‡

 ? ) ? )- œ  Ê ÐD  - Ñ œ$ $$
‡

 ,    
? ) ? ) ? )

)
)

, œ ' , œ ) Ê ^ œ œ #* (
'

)" #
‡ a bŒ 

    
? )

)
)

, œ œ #" "
'

)"
‡ a bŒ 

    
? )

)
)

, œ œ #$ #
'

)#
‡ a bŒ 
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New Tableau:

 

Proper Form:

 

For , the current basic solution is feasible if  and , so) ) )  ! "&  #   ! $&  #   !
) ) ) )Ÿ "&Î# #!  $   ! *    ! Ÿ #!Î$. It is also optimal if  and , so . Hence, for the
current solution to be optimal, we need . For ,) )Ÿ #!Î$ ! Ÿ Ÿ #!Î$

  ,^Ð Ñ œ "&  (  )) ) )#

which is maximized when .) œ !

6.7-21.

(a)

 
   
      

   
F œ

" 

! !

! 

"

" "
$ $
"
#
" "
$ $

Î ÑÐ Ó
Ï Ò

    
   
      

   

   
Ê , œ œ  #

" 

! !

! 

%  #
"#  % '
")  $ # 

Î Ñ Î ÑÐ Ó Ð Ó
Ï Ò Ï Ò

Î Ñ Î Ñ
Ï Ò Ï Ò

" "
$ $
"
#
" "
$ $

%
$

"
$

)
)
)

)

 ^Ð Ñ œ $ #   &Ð'  # Ñ œ $'  *) ) ) )Š ‹"
$

To keep feasibility: #    ! Í Ÿ% $
$ #) )

   '  #   ! Í Ÿ $) )

   #    ! Í   '"
$) )

Hence, if ,  and .' Ÿ Ÿ $Î# ÐB ß B Ñ œ Ð#  Î$ß '  # Ñ ^ Ð Ñ œ $'  *) ) ) ) )" #
‡ ‡ ‡

(b) Since , every unit of change (increase) in the production of the old^ Ð Ñ œ $'  *‡ ) )
product results in a change (decrease) in the profit (of the optimal production of the two
new products) of  ($9,000 per batch). Thus,  should be positive if the unit profit of the* )
old product is more than this and negative if less. The break-even point is $9,000 per
batch of the old product.
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(c) As shown in part (a),  is needed to keep feasibility, so the production rate of) Ÿ $Î#
the old product cannot be increased by more than  units without changing the final"Þ&
basic feasible solution.

(d) From part (a), , so the production rate of the old product cannot be decreased)   '
by more than  units without changing the final basic feasible solution.'

6.7-22.

 ? ?- œ % Ê ÐD  - Ñ œ %# ##
‡

 ? ?- œ " Ê ÐD  - Ñ œ "$ $$
‡

 
   
   ? ?, œ " Ê ^ œ œ "# ! " !
!

"
$

‡ a bÎ Ñ
Ï Ò

 
   
   ?, œ œ "" ! " !
!

"
"
‡ a bÎ Ñ

Ï Ò
 

   
   ?, œ œ !" " ! !
!

"
#
‡ a bÎ Ñ

Ï Ò
 

   
   ?, œ œ "! ! " !
!

"
$
‡ a bÎ Ñ

Ï Ò
New Tableau:

 

Proper Form:

 

The current basic solution is feasible and optimal.
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6.8-1.

(a)

(b) The optimal solution is  if the unit profit for Activity 1 is $1.Ð!ß %Ñ

The optimal solution is  if the unit profit for Activity 1 is $3.Ð"!ß !Ñ
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(c) The optimal solution is  if the unit profit for Activity 2 is $2.50.Ð"!ß !Ñ

The optimal solution is  if the unit profit for Activity 2 is $7.50.Ð!ß %Ñ

(d)
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The allowable range for the unit profit of Activity 1 is approximately between $1.60 and
$1.80 up to between $2.40 and $2.60. The allowable range for the unit profit of Activity
2 is between $3.50 and $4 up to between $5.50 and $6.

(e) The allowable range for the unit profit of Activity 1 is approximately between $1.67
and $2.50. The allowable range for the unit profit of Activity 2 is between $4 and $6.

(f) The allowable range for the unit profit of Activity 1 is approximately between $1.67
and $2.50. The allowable range for the unit profit of Activity 2 is between $4 and $6.

(g)
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(h) Keeping the unit profit of Activity 2 fixed, the unit profit of Activity 1 cannot be
changed to less than 1.67 or more than 2.5 without changing the optimal solution.
Similarly if the unit profit of Activity 1 is fixed at 1, the unit profit of Activity 2 needs to
stay between 4 and 6 so that the optimal solution remains the same. Otherwise, the
objective function line becomes either too flat or too steep and the optimal solution
becomes  or .Ð!ß %Ñ Ð"!ß !Ñ

 

6.8-2.

(a) The original model:

With one additional unit of resource 1:

The shadow price (the increase in total profit) is $1.
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(b) The shadow price of $1 is valid in the range of  to .) "#

(c) With one additional unit of resource 2:

The shadow price (the increase in total profit) is $1.

(d) The shadow price of $1 is valid in the range of  to ."! "&
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(e) From the sensitivity report, the shadow prices for both constraints are $1. According
to the allowable increase and decrease, the allowable range for the right-hand side of the
first constraint is  to . Similarly, the allowable range for the right-hand side of the) "#
second constraint is  to ."! "&

6.8-3.

(a) Optimal Solution: , with profit $6ÐB ß B Ñ œ Ð#ß #Ñ" #

 

(b)
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(c) The original model:

The shadow price for resource 1 is $0.50.

The shadow price for resource 2 is $0.50.

(d) The allowable range for the right-hand side of the resource 1 constraint is
approximately between  (or less) and .% "#
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The allowable range for the right-hand side of the resource 2 constraint is approximately
between  and .$ )

(e) The shadow price for both resources is $0.50. The allowable range for the right-hand
side of the first resource is between  and  and that of the second resource is between% "#
#Þ''( ) and .

(f) These shadow prices tell management that for each additional unit of resource, the
profit increases by $0.50 (for small changes). Management is then able to evaluate
whether or not to change the available amount of resources.

6.8-4.

(a)
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(b)

 

The estimate of the unit profit for toys can be off by something between  and ! !Þ&!
before the optimal solution changes. There is no change in the solution for an increase in
the unit profit for toys, at least for an increase up to $1.

(c)

 

The estimate of the unit profit for subassemblies can be off by something between  and!
!Þ&! before the optimal solution changes. There is no change in the solution for an
increase in the unit profit for subassemblies, at least for an increase up to $1.

(d) Solver Table for change in unit profit for toys as in (b):
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Solver Table for change in unit profit for subassemblies as in (c):

(e) The unit profit for toys can vary between $2.50 and $5 before the solution changes.
For subassemblies, the unit profit can change between -$3 and -1.50 before the solution
changes.

(f) The allowable range of the unit profit for toys is $2.50 to $5 whereas that for
subassemblies is -$3 to -$1.50.

(g)

(h) As long as the sum of the percentage change of the unit profit for subassemblies does
not exceed 100% (where the allowable range is given in part (f)), the solution does not
change.
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6.8-5.

(a)

(b)

The shadow price for subassembly A is $0.50, which is the maximum premium that the
company should be willing to pay.

(c)

The shadow price for subassembly B is $2, which is the maximum premium that the
company should be willing to pay.
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(d)

The shadow price is still valid until the maximum supply of subassembly A is at least
3,500.

(e)

The shadow price is still valid until the maximum supply of subassembly A is at least
1,500.

(f)
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As shown in the sensitivity report, the shadow price is $0.50 for subassembly A and $2
for subassembly B. According to the allowable increase and decrease, the allowable
range for the right-hand side of the subassembly A constraint is 2,000 to 3,500. The
allowable range for the right-hand side of the subassembly B constraint is 500 to 1,500.

6.8-6.

(a) The optimal solution does not change.

(b) The optimal solution changes.

(c) The optimal solution changes.

(d) The optimal solution does not change.

(e) The optimal solution does not change.
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(f)

Part (a): The optimal solution does not change (within the allowable increase of $10).

Part (b): The optimal solution does change (outside the allowable decrease of $5).

Part (c): Percentage of allowable increase for shift 2: %Ð"'&  "'!ÑÎ"! œ &!

  Percentage of allowable decrease for shift 4: %Ð")!  "(!ÑÎ& œ #!!

  Sum: %#&!

The optimal solution may or may not change.

Part (d): Percentage of allowable decrease for shift 1: %Ð"(!  "''ÑÎ"! œ %!

  Percentage of allowable increase for shift 2: %Ð"'%  "'!ÑÎ"! œ %!

  Percentage of allowable decrease for shift 3: %Ð"(&  "("ÑÎ"(& œ #

  Percentage of allowable increase for shift 4: %Ð")%  ")!ÑÎ_ œ !

  Percentage of allowable increase for shift 5: %Ð"**  "*%ÑÎ_ œ !

  Sum: %)#

The optimal solution does not change.

Part (e): Percentage of allowable increase for shift 1: %Ð"($Þ%!  "(!ÑÎ_ œ !

  Percentage of allowable increase for shift 2: %Ð"'$Þ#!  "'!ÑÎ"! œ $#

  Percentage of allowable increase for shift 3: %Ð"()Þ&!  "(&ÑÎ& œ (!

  Percentage of allowable increase for shift 4: %Ð")$Þ'!  ")!ÑÎ_ œ !

  Percentage of allowable increase for shift 5: %Ð"*)Þ*!  "*&ÑÎ_ œ !

  Sum: %"!#

The optimal solution may or may not change.
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(g)
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6.8-7.

(a) The following shifts can be increased by the indicated amounts without increasing the
total cost: Serve 10-12 a.m. Ä "%
  Serve 12-2 p.m. Ä $"
  Serve 2-4 p.m. Ä '
  Serve 4-6 p.m. Ä *
  Serve 10-12 p.m. .Ä '
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(b) For each of the following shifts, the total cost increases by the amount indicated per
unit increase. These costs hold for the indicated increases.

Shift Increased Cost Valid for Increase
Serve 6-8 a.m.         $10             6
Serve 8-10 a.m.       $160             8
Serve 6-8 p.m.       $175             8
Serve 8-10 p.m.           $5             6
Serve 12-6 a.m.       $195             8

(c) Percentage of allowable increase for 6-8 a.m.: %Ð%*  %)ÑÎ' œ "'Þ(
 Percentage of allowable increase for 8-10 a.m.: %Ð)!  (*ÑÎ_ œ !
 Percentage of allowable increase for 6-8 p.m.: %Ð)$  )#ÑÎ_ œ !
 Percentage of allowable increase for 8-10 p.m.: %Ð%%  %$ÑÎ' œ "'Þ(
 Percentage of allowable increase for 12-6 a.m.: %Ð"'  "&ÑÎ_ œ !
 Sum: %$$Þ%
The shadow prices are still valid.

(d) Percentage of allowable increase for 6-8 a.m.: %Ð%*  %)ÑÎ' œ "'Þ(
 Percentage of allowable increase for 8-10 a.m.: %Ð)!  (*ÑÎ_ œ !
 Percentage of allowable increase for 10-12 a.m.: %Ð''  '&ÑÎ"% œ (Þ"
 Percentage of allowable increase for 12-2 p.m.: %Ð))  )(ÑÎ$" œ $Þ#
 Percentage of allowable increase for 2-4 p.m.: %Ð'&  '%ÑÎ' œ "'Þ(
 Percentage of allowable increase for 4-6 p.m.: %Ð(%  ($ÑÎ* œ ""Þ"
 Percentage of allowable increase for 6-8 p.m.: %Ð)$  )#ÑÎ_ œ !
 Percentage of allowable increase for 8-10 p.m.: %Ð%%  %$ÑÎ' œ "'Þ(
 Percentage of allowable increase for 10-12 p.m.: %Ð&$  &#ÑÎ' œ "'Þ(
 Percentage of allowable increase for 12-6 a.m.: %Ð"'  "&ÑÎ_ œ !
 Sum: %))Þ#
The shadow prices are still valid.

(e) All numbers can be increased by  hours before it is no longer definite"!!Î))Þ# ¸ "Þ"$
that the shadow prices remain valid.

6.8-8.

(a) Let  and  be the number of grandfather and wall clocks produced respectively.B BK [

 maximize $!!B  #!!BK [

 subject to         'B  %B Ÿ %!K [

           )B  %B Ÿ %!K [

           $B  $B Ÿ #!K [

 and        B ß B   !K [
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(b) Optimal Solution: , ÐB ß B Ñ œ Ð$Þ$$ß $Þ$$Ñ ^ œ "'''Þ'(K [
‡

 

 

The unit profit for grandfather clocks is allowed to vary between $200 and $400, so if it
changed from $300 to $375, the optimal solution would remain the same, provided that
there are no other changes in the model. However, if in addition to this, the unit profit for
wall clocks is changed to $175, the optimal solution becomes .Ð&ß !Ñ

(c) Using Excel Solver:
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(d)

Changing the unit profit of grandfather clocks to $375 does not change the optimal
solution.

If we also change the unit profit of wall clocks to $175, then the optimal solution changes
to reflect the fact that it is now more profitable to produce only grandfather clocks.
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(e)

From the Solver Table, the allowable range to stay optimal for the unit profit of
grandfather clocks is the interval , where  andÒ#"!  ß $*!  Ó  #!? ? ?" # "

! Ÿ  #!?# .

From the Solver Table, the allowable range to stay optimal for the unit profit of wall
clocks is the interval , where  and .Ò"(!  ß #*!  Ó  #! ! Ÿ  #!? ? ? ?$ % $ %
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(f)

(g) If David is available to work a maximum of 45 hours, the optimal solution and the
total profit do not change. Even when he is available for 40 hours, he is required to use
less.

If LaDeana is available for 5 more hours every week, the optimal number of grandfather
clocks to be produced increases whereas the optimal number of wall clocks to be
produced decreases. The total profit increases by $125.
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Finally, if Lydia increases her availability by 5 hours,  the optimal number of grandfather
clocks to be produced decreases whereas the optimal number of wall clocks to be
produced increases. The optimal total profit increases by $166, which is more than the
increase caused by increasing LaDeana's working hours by the same amount.

Note that in each case, the binding constraints remain the same.

(h)
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(i)

The unit profit for grandfather clocks should stay in the interval  and that forÒ#!!ß %!!Ó
wall clocks should stay in  for the optimal solution to remain unchanged.Ò"&!ß $!!Ó

Provided that the maximum number of hours David is available is more than 33.334, the
binding constraints stay the same. LaDeana's number of available hours can differ from
40 only by 13.333. Lydia's maximum number of hours is allowed to vary between 15 and
30.

(j) The constraint associated with Lydia has the highest shadow price, so Lydia should be
the one to increase the maximum number of hours available to work per week.

(k) The constraint associated with David is not binding in the optimal solution. In other
words, David is required to work less than the maximum number of hours he is available.
Hence increasing his availability does not improve the profit unless the other partners
offer more time as well, so the shadow price of his constraint is equal to zero.

(l) The allowable increase for Lydia's hours is 10, so this shadow price can be used for an
increase of 5. If Lydia increases her available hours from 20 to 25, the total profit is
improved by approximately $ , which is pretty close to what was& ‚ $$Þ$$$ œ "''Þ''&
found in part (g). The difference is due to rounding.

(m) When David changes his maximum of hours to 35 and Lydia changes hers to 25, the
constraints that are binding in the optimal solution change to that of David and LaDeana.
The constraint of Lydia becomes unbinding. The total profit increases by $83, which is
half of the change resulting from Lydia alone. The change suggested by the shadow
prices would be $ . The individual changes fall in the& ‚ $$Þ$$$  & ‚ ! œ "''Þ''&
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allowable range; however, they change simultaneously, so we cannot use the shadow
prices in this case.

(n)
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CHAPTER 7: OTHER ALGORITHMS FOR LINEAR PROGRAMMING

7.1-1.

(a)

 

(b) Optimal Solution: , ÐB ß B Ñ œ Ð#Þ&ß "&Ñ ^ œ $#Þ&" #

Iteration BV Eq. #    RS
                          

                   
             
  

^ B B B B B
! ^ ! " " # ! ! ! !

B " ! # " " ! ! %!
B # ! ! " ! " ! "&
B

" # $ % &

$

%

&               
                     

                   
                
      

$ ! # " ! ! " "!
" ^ ! " ! ! ! # ! $!

B " ! # ! " " ! #&
B # ! ! " ! " ! "&
B $ ! # !

$

#

&        
                     

                   
                
          

! " " &
# ^ ! " ! ! ! #Þ& !Þ& $#Þ&

B " ! ! ! " # " #!
B # ! ! " ! " ! "&
B $ ! " ! ! !

$

#

" Þ& !Þ& #Þ&   
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(c) The path taken by the dual simplex method is .Ð!ß !Ñ Ä Ð!ß "&Ñ Ä Ð#Þ&ß "&Ñ

 

7.1-2.

Iteration BV Eq. #     RS
                          

            
            

     

^ B B B B B
! ^ ! " & # % ! ! !

B " ! $ " # " ! %
B # ! ' $ & ! " "!

" # $ % &

%

&

" ^ ! " " ! ! 

B " ! " !  "  

B # ! # " ! 

# ^ ! " ! !

                  
            
                     

                    

# # #!
$ $ $

%
" " #
$ $ $

#
& " "!
$ $ $
"
$ " 

B " ! " ! "

B # ! ! " " # " #

   
                     
                     

" ##
$ $

"
" " #
$ $ $

#

Optimal Solution: , ÐB ß B ß B Ñ œ Ð#Î$ß #ß !Ñ ^ œ ##Î$" # $

7.1-3.

Iteration BV Eq. #    RS
                            

           
           

^ B B B B B B B
! ^ ! " ( # & % ! ! ! !

B " ! # % ( " " ! ! &
B # ! ) % ' % !

" # $ % & ' (

&

'    
           

                         
                    
             

" ! )
B $ ! $ ) " % ! ! " %

" ^ ! " $ ! # # ! ! %

B " ! ' ! " $ " " ! $

B # ! # "

(
"
#

&

#           
                 

$ "
# %

(

" !  ! #

B $ ! "$ ! "" % ! # " "#

Optimal Solution: , ÐB ß B ß B ß B Ñ œ Ð!ß #ß !ß !Ñ ^ œ %" # $ %
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7.1-4.

(a) Optimal Solution: , ÐB ß B Ñ œ Ð"!ß "!Ñ ^ œ #&!" #

Iter. BV Eq. #  RS Primal Solution Dual Solution
                 

         

^ B B B B B
! ^ ! " "& "! ! ! ! ! Ð!ß !ß %!Þ#!ß *!Ñ Ð!ß !ß !ß"&ß"!Ñ

B " ! $

" # $ % &

$ " " ! ! %!
B # ! " " ! " ! #!
B $ ! & $ ! ! " *!

" ^ ! " ! & & ! ! #!! Ð ß !ß !ß ß Ñ Ð&ß !ß

          
                   
                   

                 

%

&
%! #! (!
$ $ $ !ß !ß&Ñ

B " ! " ! !

B # ! !  " !

B $ ! !  ! "

# ^ ! " ! !

"
" " %!
$ $ $

%
# " #!
$ $ $

&
% & (!
$ $ $

& "&
#

                   
                
                

                # # #
& "&

"
" "
# #

#
" $
# #

&

   
                
                
             

! #&! Ð"!ß "!ß !ß !ß "!Ñ Ð ß ß !ß !ß !Ñ

B " ! " !  ! "!

B # ! ! "  ! "!

B $ ! ! ! " # " "!

(b) The dual problem is:

 minimize %!C  #!C  *!C" # $

 subject to          $C  C  &C   "&" # $

              C  C  $C   "!" # $

         .C ß C ß C   !" # $

Iter. BV Eq. #          RS Primal Solution Dual Solution
                

    

^ C C C C C
! ^ ! " %! #! *! ! ! ! Ð!ß !ß %!ß #!ß *!Ñ Ð!ß !ß !ß"&ß"!Ñ

C "

" # $ % &

%         
            

             
            

! $ " & " ! "&
C # ! " " $ ! " "!

" ^ ! " ! ! #!! Ð ß !ß !ß ß Ñ Ð&ß !ß !ß !ß&Ñ

C " ! "

&
#! (! %! %! #! (!
$ $ $ $ $ $

"
"
$          

            
              

               

& "
$ $

&
# % "
$ $ $

& "&
# #

"
"

 ! &

C # ! !    " &

# ^ ! " ! ! "! "! "! #&! Ð"!ß "!ß !ß !ß "!Ñ Ð ß ß !ß !ß !Ñ

C " ! " ! " # # #
" &

#
" $ "&
# # #

      
                     C # ! ! " # 

Optimal Solution: , ÐC ß C ß C Ñ œ Ð&Î#ß "&Î#ß !Ñ ^ œ #&!" # $

The sequence of basic and complementary basic solutions is identical to that in part (a).
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7.1-5.

Iteration BV Eq. # RS
                    

              
               
       

^ B B B B B

! ^ ! " ! ! ! " &%

B " ! ! ! "  '

B # ! ! " ! ! "#

B $ ! " !

" # $ % &
$
#

$
" "
$ $

#
"
#

"     
                    

                 
                 
           

!  #

" ^ ! " ! ! ! %&

B " ! " ! " ! ! %

B # ! " ! ! *

B $ ! $ ! ! " " '

" "
$ $

$ &
# #

$

#
$ "
# #

%

Optimal Solution: , ÐB ß B ß B ß B ß B Ñ œ Ð!ß *ß %ß 'ß !Ñ ^ œ %&" # $ % &

7.1-6.

Iteration BV Eq. #  RS
                        

                  
          

     

^ B B B B B
! ^ ! " ! ! # & ! "&!

B " ! " " $ " ! $!
B # ! "' ! # % " $!

" ^

" # $ % &

#

&

                 
             
               

                       

! " "' ! ! " " "#!

B " ! #$ " ! & "&

B # ! ) ! " #  "&

# ^ ! " ! ! ""(

B

#
$
#

$
"
#

"!$ " "$
& & "!

%
#$ " $
& & "!

$
' # "
& & "!

              
                        
" !   ! "  $

B # ! " ! *

Optimal Solution: , ÐB ß B ß B ß B ß B Ñ œ Ð!ß !ß *ß $ß !Ñ ^ œ ""(" # $ % &
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7.2-1.

(a)

 

The solution  is optimal with . It remains optimal as long asÐ!ß &Ñ ^ œ "#!

  , Ÿ  Í Ÿ #) "
#%# #

)
) )

at which point  becomes optimal. In turn, this solution remains optimal untilÐ"!Î$ß "!Î$Ñ

  , Ÿ # Í Ÿ ))
#%#

)
) )

at which point  becomes optimal.Ð&ß !Ñ

               
      

      

) )
) )
) )
) )

ÐB ß B Ñ ^ Ð Ñ
! Ÿ Ÿ # Ð!ß &Ñ "#!  "!
# Ÿ Ÿ ) Ð"!Î$ß "!Î$Ñ Ð$#!  "! ÑÎ$
) Ÿ Ÿ "! Ð&ß !Ñ %!  &

" #
‡ ‡ ‡
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(b)

Iteration BV Eq. #                         RS
                       

                             

^ B B B B
! ^ ! " )  #%  # ! ! !

B " ! " # " !

" # $ %

$

) )
"!

B # ! # " ! " "!
" ^ ! " %  # ! "#  ! "#!  "!

B " ! " ! &

B

%

#
" "
# #

%

                             
                   

                               
   

) ) )

# ! !  " &

# ^ ! " ! !

B " ! ! " 

B #

                         
                      

                          
   

$ "
# #

%!& )% $#!"!
$ $ $

#
# " "!
$ $ $

"

) ) )

! " ! 

$ ^ ! " ! ! %!  &

B " ! ! "  &

B # !

                       
                    

                            
        

" # "!
$ $ $

%!& )
# #

$
$ "
# #

"

) ) )

                       " ! &" "
# #

The solutions found in iterations ,  and  are optimal for ,  and" # $ ! Ÿ Ÿ # # Ÿ Ÿ )) )
) Ÿ Ÿ "!)  respectively.

 

(c) The graph in part (b) suggests that  is optimal. Since  is convex in , the) ) )œ ! ^Ð Ñ
maximum is attained at  or . Thus, only the linear programming problems) )œ ! œ "!
corresponding to  and  need to be solved.) )œ ! œ "!
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7.2-2.
Iteration BV Eq. #                              RS
                            

             

^ B B B B B B
! ^ ! " #!  % $!  $ & ! ! ! !

B " ! $

" # $ % & '

%

) )
                        

                                     
                                     

$ " " ! ! "!
B # ! ) ' % ! " ! #&
B $ ! ' " " ! ! " "
&

' &
" ^ ! " "!  ( ! &  "!  ! ! "!!  "!

B " ! " " ! !

B # ! # !

                      
                                     
                     

) ) ) )

#
" " "!
$ $ $

& # # " ! &

B $ ! & !  ! "

# ^ ! " ! ! !

              
                                  

                       
'

# " $&
$ $ $

&& "'!## "!( #$!"*
"& "& &
) ) ) )

$

#
" # "
& & &

&
#' #) # "
"& "& & $

"

B " ! ! " !  "

B # ! ! !  " 

B $ ! " !

                                    
                               
                                  

                    
                                

# " " (
"& "& & $

)!"" &# "!#
$ $ $

%
& " "
# # #

 !

$ ^ ! " ! ! ! &!  "!

B " ! ! " ! 

) ) ) )

   
                                  
                                      

&
#

&
"% ) %
$ $ $

"
" " " &
' ' ' #

B # ! ! ! "  &

B $ ! " ! !

                       
              

        
     

) )
) )

)

)

ÐB ß B ß B Ñ ^ Ð Ñ
! Ÿ Ÿ "!Î( Ð!ß ß !Ñ "!!  "!

"!Î( Ÿ Ÿ )!Î"" Ð ß "ß !Ñ

)!Î"" Ÿ

" # $
‡ ‡ ‡ ‡

#$!"*
$

"!
$

(
$

)

 Ð ß !ß !Ñ &!  "!&
# )

7.2-3.

(a) Starting with the optimal tableau for , after two iterations, we get:) œ !

Iter. BV Eq. #                       RS
                   

                            

^ B B B B B
! ^ ! " ! ! &  #  # )  $ ##!

B " ! ! " " " " "!
B

" # $ % &

#

"

) ) )

                            
                

                               
 

# ! " ! ! " # "!

" ^ ! " ! &  ! ")!  "&

B " ! " " ! "&

B
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#

) ) )"#
#

#
" "
# #

&

)

                             
                    

                         

# ! ! !  " &

# ^ ! " ! ! ! "!&  $!

B " ! &  " ! "&

B

" "
# #

(#
#

$
" "
# #

"$%
#

) ) )

)

&
" "
# #                              # ! ! !  " &

              
     

  
      

) )
)
) )
) )

ÐB ß B ß B Ñ ^ Ð Ñ
! Ÿ Ÿ )Î$ Ð"!ß "!ß !Ñ ##!
)Î$ Ÿ Ÿ & Ð!ß "&ß !Ñ ")!  "&
& Ÿ Ð!ß !ß "&Ñ "!&  $!

" # $
‡ ‡ ‡ ‡
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(b) The dual problem is:

 minimize $!C  #!C" #

 subject to          C  C   "! " # )
          #C  C   "# " # )
          #C  C   (  #" # )
        .C ß C   !" #

Starting with the optimal tableau for , after two iterations, we get:) œ !

Iter. BV Eq. #              RS
                

                  
                

^ C C C C C
! ^ ! " ! ! "! "! ! ##!

C " ! ! " # " ! )  $
C # ! " ! " " !

" # $ % &

#

"

)
  

                  
               

            
              

#  #
C $ ! ! ! ! " " & 

" ^ ! " & ! "& ! ")!  "&

C " ! !  "  ! %  "Þ&

C # ! " ! 

)
)

)

)

&

$
" "
# #

"
" "
# #

!

    
                  

               
            
            

! '  !Þ&

C $ ! ! ! ! " " & 
# ^ ! " & ! ! "& "!&  $!

C " ! !  " !  'Þ&  #

C # ! " !

)

)
)

)

&

$
" "
# #

"
"
#

!

      
               

!  $Þ& 

C $ ! ! ! ! " " & 

"
#

%

)

)

                     
     

 
     

) )
) ) )
) ) )
) ) )

ÐC ß C Ñ ^ Ð Ñ
! Ÿ Ÿ )Î$ Ð#  # ß )  $ Ñ ##!
)Î$ Ÿ Ÿ & Ð'  !Þ& ß !Ñ ")!  "&
& Ÿ Ð$Þ&  ß !Ñ "!&  $!

" #
‡ ‡ ‡

The basic solutions are the same as those in part (a).



7-9

  :  from  to ! Ÿ Ÿ )Î$ C Ð#ß )Ñ Ð##Î$ß !Ñ) ‡

  :  from  to )Î$ Ÿ Ÿ & C Ð##Î$ß !Ñ Ð"(Î#ß !Ñ) ‡

   : & Ÿ C œ Ð$Þ&  ß !Ñ) )‡
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7.2-4.

 
             ) )

) ) ) )
) ) ) )
) ) )

ÐB ß B Ñ ^ Ð Ñ
! Ÿ Ÿ " Ð"!  # ß "!  # Ñ $!  '
" Ÿ Ÿ & Ð"!  # ß "&  $ Ñ $& 
& Ÿ Ÿ #& Ð#&  ß !Ñ &!  #

" #
‡ ‡ ‡
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7.2-5.

Starting with the optimal tableau for , after two iterations, we get:) œ !

           
  
  

) )
) ) )
) ) )
) ) )

ÐB ß B ß B ß B Ñ ^ Ð Ñ
! Ÿ Ÿ ' Ð$!  ß !ß !ß !Ñ "!&!  $&
' Ÿ Ÿ "" Ð$'ß !ß'  ß !Ñ "!*#  #)
"" Ÿ Ÿ $& Ð&#Þ&  "Þ& ß !ß##Þ&  #Þ& ß !Ñ "#!(Þ

" # $ %
‡ ‡ ‡ ‡ ‡

&  "(Þ&)

) œ $! B Ð$!Ñ œ Ð(Þ&ß !ß &#Þ&ß !Ñ provides the largest value of the objective function: ,‡

^ Ð$!Ñ œ "($#Þ&‡ .
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7.2-6.

 

                
        

  

) )
) ) )
) ) ) )
)

ÐB ß B ß B Ñ ^ Ð Ñ
! Ÿ Ÿ "!Î* Ð!ß #!  # ß !Ñ "!!  "!
"!Î* Ÿ Ÿ (!Î#$ Ð!ß $&  ""Þ& ß&  %Þ& Ñ ""! 
(!Î#$ Ÿ Ÿ *! Ð!ß !ß *  !Þ"

" # $
‡ ‡ ‡ ‡

) )Ñ ""(  "Þ$

7.2-7.

(a) Let  be the th optimal solution obtained as  is increased from . Each  isB 5 ! BÐ5Ñ Ð5Ñ)
optimal for some -interval, say , and the objective function value) ) ) )5 5"Ÿ Ÿ
^Ð Ñ œ  ^Ð Ñ) ! " ) ! " )5 5 5 5 for some  and , so  is linear in this interval. As the interval
changes,  and  change so that a different linear function is obtained for each interval.! "5 5

(b) The problem is:

 maximize ^Ð Ñ œ Ð-  ÑB) ! )!
4œ"

8

4 4 4

 subject to , !
4œ"

8

34 4 3+ B Ÿ , 3 œ "ß #ßá ß7

   , .B   ! 4 œ "ß #ßá ß 84

Note that the feasible region does not depend on . Consider  and let ) ) ) ) -)" # $ " œ 

Ð"  Ñ ! Ÿ Ÿ " B B B B- ) -# 44 4 4
Ð"Ñ Ð#Ñ Ð$Ñ for some . Let ,  and  be the optimal values of 

Ð4 œ "ß #ßá ß 8Ñ ^Ð ß BÑ œ Ð-  ÑB for ,  and  respectively. Let .) ) ) ) ! )" # $ 4 4 44œ"
8!

^ Ð Ñ œ ^Ð ß B Ñ   ^Ð ß B Ñ Ê ^ Ð Ñ   ^Ð ß B Ñ‡ Ð"Ñ Ð$Ñ ‡ Ð$Ñ
" " " " ") ) ) - ) - )

^ Ð Ñ œ ^Ð ß B Ñ   ^Ð ß B Ñ Ê Ð"  Ñ^ Ð Ñ   Ð"  Ñ^Ð ß B Ñ‡ Ð#Ñ Ð$Ñ ‡ Ð$Ñ
# # # # #) ) ) - ) - )
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Ê ^ Ð Ñ  Ð"  Ñ^ Ð Ñ   ^Ð ß B Ñ  Ð"  Ñ^Ð ß B Ñ- ) - ) - ) - )‡ ‡ Ð$Ñ Ð$Ñ
" # " #

      œ Ð-  ÑB  Ð"  Ñ Ð-  ÑB- ! ) - ! )! !
4œ" 4œ"

8 8

4 4 " 4 4 #4 4
Ð$Ñ Ð$Ñ

      œ -  Ð  Ð"  Ñ Ñ B! ‘
4œ"

8

4 4 " # 4
Ð$Ñ

! -) - )

      œ Ð-  ÑB œ ^Ð ß B Ñ œ ^ Ð Ñ!
4œ"

8

4 4 $ $ $4
Ð$Ñ Ð$Ñ ‡! ) ) )

Hence,  is convex in .^ Ð Ñ‡ ) )

7.2-8.

(a) The same argument as in part (a) of problem 7.2-7 holds.

(b) The problem is:

 maximize ^Ð Ñ œ - B) !
4œ"

8

4 4

 subject to , !
4œ"

8

34 4 3 3+ B Ÿ ,  3 œ "ß #ßá ß7! )

   , .B   ! 4 œ "ß #ßá ß 84

Consider  and let  for some . Let ,  and) ) ) -) - ) -" # $ " # 4 4
Ð"Ñ Ð#Ñ

 œ  Ð"  Ñ ! Ÿ Ÿ " B B

B B Ð4 œ "ß #ßá ß 8Ñ4
Ð$Ñ

4 " # $ be the optimal values of   for ,  and  respectively.) ) )

- ) - ) - -^ Ð Ñ  Ð"  Ñ^ Ð Ñ œ - B  Ð"  Ñ - B‡ ‡
" # 4 4

4œ" 4œ"

8 8

4 4
Ð"Ñ Ð#Ñ! !

           œ - Ð B  Ð"  ÑB Ñ!
4œ"

8

4 4 4
Ð"Ñ Ð#Ñ

- -

If  , then  is feasible for , sinceB œ B  Ð"  ÑB Ð4 œ "ß #ßá ß 8Ñ B œ4
w w

4 4
Ð"Ñ Ð#Ñ

$- - ) )

! ! !
4œ" 4œ" 4œ"

8 8 8

34 34 34 3 3 3 34
w

4 4
Ð"Ñ Ð#Ñ

+ B œ + B  Ð"  Ñ + B œ Ð,  Ñ  Ð"  ÑÐ,  Ñ- - - ! ) - ! )

  , .œ ,  3 œ "ß #ßá ß73 3! )

Since  is optimal for ,BÐ$Ñ
$)

 .! !
4œ" 4œ"

8 8

4 4 $4 4 4
Ð"Ñ Ð#Ñ Ð$Ñ ‡- Ð B  Ð"  ÑB Ñ Ÿ - B œ ^ Ð Ñ- - )

Hence,  is concave in .^ Ð Ñ‡ ) )
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7.2-9.

From duality theory,

 minimum ^ œ Ð,  5 ÑC‡‡

3œ"

7

3 3 3!
  subject to , !

3œ"

7

34 3 4+ C   - 4 œ "ß #ßá ß 8

    , .C   ! 3 œ "ß #ßá ß73

ÐC ß C ßá ß C Ñ" # 7
‡ ‡ ‡  is feasible for this problem, so

 .^ Ÿ Ð,  5 ÑC œ ^  5 C‡‡ ‡ ‡ ‡

3œ" 3œ"

7 7

3 3 33 3
! !

7.3-1.

(a) Optimal Solution:   and ÐB ß B Ñ œ Ð"$Þ$$ß %Þ%%Ñ ^ œ %!" #
* * *

 

(b) ? œ ß ? œ ß C œ  B ß C œ  B" # " " # #
%! %! %! %!
$ * $ *

Start with the initial solution  and .B œ B œ ! B œ #!" # $
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Since  has the smallest coefficient in row 0, let it be the entering basic variable. It hasB#

no upper bound from Equation (1), so  reaches its upper bound and we replace it by .B C# #

 

Because it has a negative coefficient,  enters the basis. From Equation (1), , butB B Ÿ #!" "

this is greater than , so  reaches its upper bound and we replace it by .? B C" " "

 

There are no variables with negative coefficients, hence, the optimal solution is
B œ %!Î$ B œ %!Î* ^ œ %!" #,  and 

(c)
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7.3-2.

 BV Eq.    RS
        
           
              

^ B B B B B
^ ! " " $ # ! ! ! B Ÿ $
B " ! ! " # " ! " B Ÿ "
B # ! # " # ! " ) B Ÿ )

" # $ % &

#

% #

& #

 BV Eq.    RS
        
           
           

^ B B B B B
^ ! " " ! % $ ! $ B Ÿ #
B " ! ! " # " ! " B Ÿ "

B # ! # ! % " " ( B Ÿ "

" # $ % &

$

# $

& $
$
%

 BV Eq.    RS
        
           
           

^ B C B B B
^ ! " " ! % $ ! $ B Ÿ #
C " ! ! " # " ! # B Ÿ "

B # ! # ! % " " ( B Ÿ "

" # $ % &

$

# $

& $
$
%

 BV Eq.    RS
           
           
           

^ B C B B B
^ ! " " # ! " ! (

B " ! ! "  ! " B Ÿ "

B # ! # # ! " " $ B Ÿ "

" # $ % &

$ "
" "
# #

& "
"
#

 BV Eq.    RS
           
           
           

^ C C B B B
^ ! " " # ! " ! )

B " ! ! "  ! "

B # ! # # ! " " "

" # $ % &

$
" "
# #

&

ÐB ß B ß B Ñ œ Ð"ß $ß "Ñ ^ œ )" # $  is optimal with .

7.3-3.

Initial Tableau

 BV Eq.     RS
        
                 
              

^ B B B B B B
^ ! " # $ # & ! ! !
B " ! # # " # " ! &
B # ! " # $ % ! " &

" # $ % & '

&

'

Final Tableau (after five iterations)

 BV Eq.      RS
             
        
           

^ B C B C B B

^ ! " ! !

B " ! "  ! 

B # ! ! " 

" # $ % & '
" $ % ' &%
( ( ( ( (

"
) "! $ " #
( ( ( ( (

$
# ' " # $
( ( ( ( (

ÐB ß B ß B ß B Ñ œ Ð#Î(ß "ß $Î(ß "Ñ ^ œ &%Î(" # $ %  is optimal with .



7-17

7.3-4.

Initial Tableau

 BV Eq.      RS
      
                     
                   

^ B B B B B B B
^ ! " # & $ % " ! ! !
B " ! " $ # $ " " ! '
B # ! % ' & ( " ! " "&

" # $ % & ' (

'

(

Final Tableau (after seven iterations)

 BV Eq.    RS
                 
             
       

^ C C C C B B B

^ ! " " ! ! "!

C " ! " "   ! "

B # !  "  !   " !

" # $ % & ' (
# " " %
$ $ $ $

%
" # " "
$ $ $ $

(
& " % (
$ $ $ $

ÐB ß B ß B ß B ß B Ñ œ Ð"ß "ß "ß !ß !Ñ ^ œ "!" # $ % &  is optimal with .

7.3-5.

 

 

 

 

ÐB ß B ß B Ñ œ Ð"!ß &ß &Ñ ^ œ '!" # $  is optimal with .
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7.4-1.

 It. X X X
0 1 3 7
1 1.04605 4.95395 10.9539
2 0.93406 6.06594 13.0659

1 2 3

7.4-2.

(a)

 

The feasible corner point solutions are ,  and . The last one is optimalÐ!ß !Ñ Ð!ß %Ñ Ð%ß !Ñ
with .^ œ "#

(b) Iter.   
    
    
    
  
  

B B ^
! " " %
" "Þ)(& "Þ"#& 'Þ(&
# #Þ'*)" !Þ)!"* )Þ)*'#"
$ $Þ$%$*' !Þ%!!*& "!Þ%$#)
% $Þ''(" !Þ#!!%( ""Þ#!")

" #

(c)
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7.4-3.

(a)

 Iter.   
  
  
  
  
  
  
  
  

B B ^
! % % "#
" # ' "%
# " ( "&
$ !Þ& (Þ& "&Þ&
% !Þ#& (Þ(& "&Þ(&
& !Þ"#& (Þ)(& "&Þ)(&
' !Þ!'#& (Þ*$(& "&Þ*$(&
( !Þ!$"#& (Þ*')(& "&Þ*'))

" #

  
  
) !Þ!"&'# (Þ*)%$) "&Þ*)%%
* !Þ!!()" (Þ**#"* "&Þ**##

(b) The value of  is halved at each step so subsequent trial solutions should be of theB"

form  for .ÐB ß B Ñ œ Ð# ß )  # Ñ 3 œ "ß #ßá" #
3 3

(c) The smallest integer  such that  is , so 3 #  # œ # Ÿ !Þ!" ' ÐB ß B Ñ œ3 Ð3"Ñ Ð3"Ñ
" #

Ð# ß )  # Ñ œ Ð!Þ!!()ß (Þ**##Ñ *( (  in iteration .

7.4-4.

(a) Optimal Solution: , ÐB ß B Ñ œ Ð&ß "&Ñ ^ œ $!" #

 

(b) The gradient is . Moving from the origin in the direction , the firstÐ$ß "Ñ Ð$ß "Ñ
boundary point encountered is the optimal solution .Ð&ß "&Ñ
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(c) ! œ !Þ&

  

(d) ! œ !Þ*

 

7.4-5.

(a)
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(b) Gradient: a b# & (

 Projected Gradient: T œ M 
# " " #
& # " # $ # " # $ &
( $ $ (

Î Ñ Î Ñ Î Ñ Î Ñ
Ï Ò Ï Ò Ï Ò Ï Ò” Œ  •a b a b"

            œ
Î Ñ Î Ñ Î Ñ
Ï Ò Ï Ò Ï Ò

# $$ &
& '' %
( ** "

 œ" "
"% "%    

(c) - (d)

 Iter.
  
  
  
  
  
  

B B B ^
! " " " "%
" !Þ& "Þ% !Þ* "%Þ$
# !Þ#&*'* #Þ"*&"' !Þ%& "%Þ'%&#
$ !Þ"(*%( #Þ&(#(' !Þ##& "%Þ(*()
% !Þ"!'* #Þ((() !Þ""#& "%Þ)*!$
& !Þ!

" # $

&&*& #Þ))('& !Þ!&'#& "%Þ*%$*
' !Þ!#)" #Þ*%$(' !Þ!#)"# "%Þ*("*
( !Þ!"%!' #Þ*(")) !Þ!"%!' "%Þ*)&*
) !Þ!!(!$ #Þ*)&*% !Þ!!(!$ "%Þ**$
* !Þ!!$&# #Þ

  
  
  
  **#*( !Þ!!$&# "%Þ**'&
"! !Þ!!"(' #Þ**'%) !Þ!!"(' "%Þ**)#

7.4-6.

 Iter.
  
  
  
  
  
  

B B ^
! # # "'
" #Þ$$' $Þ%*' #%Þ%))
# #Þ#$!'( %Þ'&$** #*Þ*'#
$ #Þ!$&*( &Þ$#'** $#Þ(%#*
% "Þ*&#"" &Þ''$& $%Þ"($)
& "Þ*&!&% &Þ)$"(& $&Þ!

" #

"!%
' "Þ*("'* &Þ*"&)( $&Þ%*%%
( "Þ*)&)) &Þ*&()) $&Þ(%("
) "Þ**#*' &Þ*()*" $&Þ)($%
* "Þ**'%) &Þ*)*%& $&Þ*$'(

"! "Þ**)#% &Þ**%($ $&Þ*')%
"" "Þ**

  
  
  
  

*"# &Þ**($' $&Þ*)%#
"# "Þ***&' &Þ**)') $&Þ**#"
"$ "Þ***() &Þ***$% $&Þ**'
"% "Þ***)* &Þ***'( $&Þ**)
"& "Þ****& &Þ***)% $&Þ***
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7S-1

SUPPLEMENT TO CHAPTER 7

LINEAR GOAL PROGRAMMING AND ITS SOLUTION PROCEDURES

7S-1.

(a) $B  %B  #B  C  C œ '!" # $
 

(b) Let  be the coefficient of  and  be the one for , so .- C - C - œ #-     

7S-2.

(a)

 minimize sum of amounts under market share for product 1 and 2

 subject to B  B  B Ÿ &&" # $

   B   "!$

   B ß B   !" #

(b) C œ !Þ&B  !Þ#B  "&ß C œ C  C ß C œ !Þ$B  !Þ#B  "!ß C œ C  C" " $ " # # $ #" #
 

" #
 

 minimize C  C" #
 

 subject to !Þ&B  !Þ#B  C  C œ "&" $ "


"


   !Þ$B  !Þ#B  C  C œ "!# $ #


#


   B  B  B Ÿ &&" # $

   B   "!$

   B ß B ß C ß C ß C ß C   !" # " #
 

" #
 

(c)

7S-3.

(a) 'B  %B  &B  C  C œ &!" # $ "


"


 )B  (B  &B  C  C œ (&" # $ #


#


 T œ #!B  "&B  #&B" # $

(b) ^ œ #!B  "&B  #&B  'C  'C  $C" # $ "


" #
 

(c)

 maximize #!B  "&B  #&B  'C  'C  $C" # $ "


" #
 

 subject to 'B  %B  &B  C  C œ &!" # $ "


"


   )B  (B  &B  C  C œ (&" # $ #


#


   B ß B ß B ß C ß C ß C ß C   !" # $ " #
 

" #
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(d)

7S-4.

(a) No, we would not expect the optimal solution to change. Goal 1 is already met, so
increasing the weight on that goal would not change anything. Goal 2 is already
exceeded, so decreasing the penalty weight for this goal would only decrease our desire
to avoid exceeding this goal.

(b)

(c)

7S-5.

(a)

 minimize (amount under foreign capital goal)!Þ!"
   (amount under citizens fed goal)
   (amount under goal for citizens employed)
   (amount over goal for citizens employed)

(b)

 minimize !Þ!"C  C  C  C" # $
  

$


 subject to M"!!!B  "!!!B  "!!!B  B œ "&" # $ %

   M$!!!B  &!!!B  %!!!B  C  C œ (!" # $ "


"


   M"&!B  (&B  "!!B  C  C œ "Þ(&" # $ #


#


   M"!B  "&B  "#B  C  C œ !Þ#" # $ $


$


   B ß B ß B ß B ß C ß C ß C ß C ß C ß C   !" # $ % " # $
  

" # $
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(c)

(d) minimize Q C Q C  C  C# "" # $
  

$


 subject to M"!!!B  "!!!B  "!!!B  B œ "&" # $ %

   M$!!!B  &!!!B  %!!!B  C  C œ (!" # $ "


"


   M"&!B  (&B  "!!B  C  C œ "Þ(&" # $ #


#


   M"!B  "&B  "#B  C  C œ !Þ#" # $ $


$


   B ß B ß B ß B ß C ß C ß C ß C ß C ß C   !" # $ % " # $
  

" # $
  

(e) Optimal Solution:  thousand acresÐB ß B ß B Ñ œ Ð&!!!!Î'ß #!!!!Î'ß !Ñ" # $

   .^ œ Ð$& † "! Î$ÑQ  &!!!!Î$'
#

(f) With only  in the objective function, we get , so fix  andQ C C œ ^ œ ! C œ !" # # #
  

bring  into the objective function. Now . Fix  at this valueQ C C œ ""ß '''ß ''' C# " " "
  #

$

(remembering subtract from RHS) and optimize for the third priority. Then the solution
in part (c) is obtained: .ÐB ß B ß C ß C Ñ œ )$$$ ß '''' ß ""'''''' ß "''''" # " $

  " # # #
$ $ $ $Š ‹

7S-6.

(a) minimize Q C Q C Q C  C" # #" #
 

# $
 

 subject to B  #B  C  C œ #!" # "


"


   B  B  C  C œ "&" # #


#


   #B  B  C  C œ %!" # $


$


   B ß B ß C ß C ß C ß C ß C ß C   !" # " # $
  

" # $
  



7S-4

(b) - (c)

Optimal Solution: , ÐB ß B Ñ œ Ð"&ß !Ñ ^ œ "!" #

BV E                                  RHS
              

              

^ B B C C C C C C

! ^ ! " Q  # Q  " Q ! #Q ! " ! "&Q  %!
C " ! "

" # " $
  

" # $
  

#

# # " # #

"
                           

                                        
                          

# " " ! ! ! ! #!
C # ! " " ! ! " " ! ! "&
C $ ! # " ! ! !
#


$
               

                         
                                       
  

! " " %!

" ^ ! " ! " Q ! Q  # Q  # " ! "!
C " ! ! " " " " " ! ! &
B #

" # #

"


"                                       
                                  
! " " ! ! " " ! ! "&

C $ ! ! " ! ! # # " " "!$


(d)

(e) minimize ^ œ Q C" " "


 subject to B  #B  C  C œ #!" # "


"


   ÒB  B  C  C œ "&Ó" # #


#


   Ò#B  B  C  C œ %!Ó" # $


$


   B ß B   !" #

The feasible  region is a shown  in figure (i) of part (d). Fix .C œ !"


 minimize ^ œ Q C Q C# # ##


#


 subject to B  #B  C  C œ #!" # "


"


   B  B  C  C œ "&" # #


#


   Ò#B  B  C  C œ %!Ó" # $


$


   B ß B   !" #

The feasible  region is a shown  in figure (ii) of part (d). Fix .C œ C œ C œ !" #
 

#


 minimize ^ œ C$ $


 subject to B  #B  C  C œ #!" # "


"


   B  B  C  C œ "&" # #


#


   #B  B  C  C œ %!" # $


$


   B ß B   !" #

The solution is  with .Ð"&ß !Ñ ^ œ "!$
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7S-7.

(a) minimize Q C Q C  C" #"


# $
 

 subject to B  B  C  C œ #!" # "


"


   B  B  C  C œ $!" # #


#


   B  #B  C  C œ &!" # $


$


   B ß B ß C ß C ß C ß C ß C ß C   !" # " # $
  

" # $
  

(b) - (c)

Optimal Solution: , ÐB ß B Ñ œ Ð!ß #!Ñ ^ œ "!Q  "!" # #

BV E                                             RHS
                        

^ B B C C C C C C

! ^ ! " Q  " Q  # Q ! Q ! " ! $!Q  &!
" # " $

  
" # $
  

#

# # " # #

C " ! " " " " ! ! ! ! #!
C # ! " " ! ! " " ! !
"


#


                                                   
                                                   
                                                   

                       

$!
C $ ! " # ! ! ! ! " " &!

" ^ ! " " ! Q Q  # Q  # Q ! " ! "!Q  "!
B

$


" # # # #

#

#


" ! " " " " ! ! ! ! #!
C # ! ! ! " " " " ! !

                                                   
                                                "!

C $ ! " ! # # ! ! " " "!$
                                               

(d)

7S-8.

If , where , then .D œ D  D D ß D   ! lD l œ D  D3 33 3 3
  

3 3 3
  

(a) minimize !
3œ"

8

3


3
ÐD  D Ñ

 subject to , D  D œ C  Ð+  ,B Ñ 3 œ "ß #ßá ß 83


3


3 3

   , D ß D   ! 3 œ "ß #ßá ß 83


3


(b) minimize D

 subject to , D  D œ C  Ð+  ,B Ñ 3 œ "ß #ßá ß 83


3


3 3

   , ! Ÿ D Ÿ D 3 œ "ß #ßá ß 83


   , ! Ÿ D Ÿ D 3 œ "ß #ßá ß 83
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7S-9



7S-10



7S-11



7S-12



7S-13



7S-14
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CHAPTER 8: THE TRANSPORTATION AND ASSIGNMENT PROBLEMS

8.1-1.

While growing continuously as a global company, Procter & Gamble faced the need to
restructure for enhanced effectiveness. The goal was to optimize work processes and to
minimize expenses while maintaining customer satisfaction. Lowered transportation costs
due to changes in the trucking industry and reduced product packages suggested that the
total transportation costs could be decreased. In the meantime, shorter product life cycles
justified smaller number of plants. Consequently, P&G had to decide on where to locate
the plants, what and how much to produce in each. This would be impossible without
reviewing the distribution system. Hence, two problems for each product category needed
to be solved: a distribution-location problem and a product-sourcing problem.

First, optimal distribution center (DC) locations and optimal customer assignments are
found by solving an uncapacitated facility-location model. The objective in this problem
is to minimize the total cost of transportation and supply while the primary restriction is
to satisfy customer demand. Fixed costs involved in locating DCs are ignored. The total
number of DCs is determined beforehand subjectively. The solution of this problem is an
input to the product sourcing problem.

With fixed DC locations and their capacities, product sourcing is modeled as a
transportation problem. Sources are plants, destinations are DCs and customers. The
location and capacity of the plants are specified by the product-strategy teams. Decision
variables are the amounts of demand at each destination to be met from each source. The
objective is to minimize the total cost while satisfying the demand at each destination
without exceeding the capacity of each source. The costs consist of manufacturing,
warehousing and transportation costs. An out-of-kilter algorithm is used to solve this
problem for each product category.

The benefits of this study included a reduction in the number of plants in North America
by 20% and savings of over $200 million per year. The reduction in manufacturing costs,
due to lowered number of plants and personnel coupled with improved efficiency of the
supply chain, outweighs the increase in delivery costs. The gains from this study led
P&G to making OR/MS a part of its decision-making process.

8.1-2.

(a)
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(b)

(c)

8.1-3.

(a) Let  and  be the number of pints purchased from Dick today and tomorrowB B" #

respectively,  and  be the number of pints purchased from Harry today and tomorrowB B$ %

respectively.
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(b)

 

(c)

 

8.1-4.

(a)
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(b)

8.1-5.

These ranges tell the management how much each individual cost can be changed
without changing the optimal solution.
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8.1-6.

(a) Introduce a dummy customer 5 to represent the excess amount sent to customer 3 and
a dummy plant 4 to represent the units that are sold to, but not received by customers 4
and 5.

(a) - (c) - (d)

(b) - (e)

The profit is $ .*!ß !!!
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8.1-7.

(a) - (b)

(c)

8.1-8.

(a) - (b) Let destination  represent the demand of  at center  and destination #3  " "! 3 #3
represent the extra demand up to  shipped to center .#! 3 œ "ß #ß $

(c)

8.1-9.

(a) Let source  be regular time production and  be overtime production in month#3  " #3
3 œ "ß #ß $ #3  " #3. Let destination  represent the contracted sales for product 1 and 
represent the contracted sales for product 2 in month . Destination 7 is dummy.3 œ "ß #ß $
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(b)

Hence, the total cost is $  and no overtime is necessary.$)*ß !!!

8.2-1.

(a) Vogel's approximation method would choose  as the first basic variable.B#"

(b) Russell's approximation method would choose  as the first basic variable.B"#

?34                   " # $

" "& "Q  ' "*
# "Q  % "Q "Q
$ "( "Q "*
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(c) Initial BF solution using northwest corner rule:

 

8.2-2.

(a) Northwest Corner Rule

 

Cost: &$
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(b) Vogel's Approximation Method

 

Cost: %&

(c) Russell's Approximation Method

 

Cost: %&

Note that Vogel's and Russell's approximation methods return an optimal solution.
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8.2-3.

(a) Northwest Corner Rule

Cost: Q  #(*

(b) Vogel's Approximation Method

Cost: #)'

Arbitrarily breaking the tie differently returns the solution below with cost .Q  #'!
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(c) Russell's Approximation Method

Cost: $!"

8.2-4.

(a) All the supply and demand values are integers. By the integer solutions property, the
resulting basic feasible solutions will be integral. All the supplies and demands are one,
so the only possible values of the variables in a basic feasible solution are  and . The! "
"'s indicate the assignment of a source to a destination.

(b) There are  basic variables in every basic feasible solution and  of them are( $
degenerate.

(d) The variables are chosen in the order .B ß B ß B ß B ß B ß B ß B"$ #% %% $# %" %$ %#
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(c) - (e)

 

 

Optimal assignment (source,destination): , cost: Ð"ß $Ñß Ð#ß "Ñß Ð$ß #Ñß Ð%ß %Ñ "$
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8.2-5.

 

Cost: $ ,  for all  and , so the solution is optimal."&#ß &$& -  ?  @   ! 3 434 3 4

8.2-6.
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The current solution is optimal:  andB œ #!ß B œ #!ß B œ "!ß B œ &ß B œ #&"$ #" #% $" $#

B œ #! $!& -  ?  @   ! 3 4%& 34 3 4, with cost . The optimality condition  for all  and  is met.
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8.2-7.

(a) Northwest Corner Rule

3 iterations are required to reach optimality.
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(b) Vogel's Approximation Method

The solution is optimal, no iteration of network simplex is needed.

(c) Russell's Approximation Method

The solution is optimal, no iteration of network simplex is needed.

8.2-8.

(a)
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(b)

(c)
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Optimal Solution: , cost: $B œ "!ß B œ #!ß B œ "!ß B œ "!ß B œ "! ""ß !!!"% #" $$ $% %#
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8.2-9.

(a) Since there is no limit on the electricity and natural gas available, let the supply of
electricity be the sum of demands for electricity, water and space heating and the supply
of natural gas be the sum of demands for water and space heating.

(b) Northwest Corner Rule

(c)
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The optimal solution is to meet  units of electricity,  units of water heating and $! #! %!
units of space heating with electricity,  units of space heating with natural gas and "! %!
units of space heating with solar heater. This costs $ .(ß "!!
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(d) Vogel's Approximation Method

(e)
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(f) Russell's Approximation Method

Note that different solutions may be obtained, since ties are broken arbitrarily.

(g) Russell's approximation method returns the same initial solution as the northwest
corner rule, so the solution is the same as in (c). The initial BF solution using Vogel's and
Russell's methods provides the same optimal solution as in (c). The optimal solution
obtained starting from each of the three rules is the same. Also, in each case, the number
of iterations required by the transportation simplex method is two.
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8.2-10.

Vogel's Approximation Method

Optimal Solution:

   Quantity Production Month Installation Month
                           
                           
                   

"! " "
"& " #
& #           

                           
                             
                           

%
#& $ $
& $ %

"! % %

This schedule incurs a cost of  million dollars.((Þ$
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8.2-11.

(a)

(b)
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The optimal solution is to send  shipments from plant 1 to center 3,  to center 4, # "! *
from plant 2 to center 2,  to center 3,  from plant 3 to center 1 and  to center 2. This) "! "
has a total cost of $ .#!ß #!!

8.2-12.

 

The optimal solution is to purchase  pints from Dick tomorrow and  pints from Harry% $
today, with a cost $ ."*Þ&!
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8.2-13.



8-30



8-31
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Optimal Solution:
 B œ B œ %!!ß B œ "!!ß B œ &!!ß B œ '!!ß B œ (!!ß B œ $!!ß"$ $% ## #$ %# &" &#

Cost: $"#"ß #!!
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8.2-14.

Using Russell's approximation method:
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The optimal solution is to ship  units from plant 1 to customer 2,  from plant 2 to'! %!
customer 1,  from plant 2 to customer 4,  from plant 3 to customer 3 and 4. This%! #!
offers a profit of $ .*!ß !!!
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8.2-15.

(a) - (b) - (c)

Using northwest corner rule:

With northwest corner rule, it took  seconds to find the initial BF solution and its##
objective value is % above the optimal cost. The two iterations took  seconds."& %)
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Using Vogel's approximation method:

With Vogel's approximation method, it took  seconds to find the initial BF solution and%%
its objective value is % above the optimal cost. One iteration took  seconds.' #)

Using Russell's approximation method:
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With Russell's approximation method, it took  seconds to find the initial BF solution#&
and its objective value is % above the optimal cost. The two iterations took  seconds.* %&

Let  denote the initial BF solution. The results are summarized in the following table.B!

Method Time to Get Opt. Gap of No. Iter.'ns Time Iter.'ns Total Time
NW Corner    seconds        %          seconds  second

B B
## "& # %) (!

! !

s
Vogel's    seconds          %          seconds  seconds
Russell's    seconds          %          seconds  seconds

%% ' " #) (#
#& * # %& (!

8.2-16.

(a) - (b) - (c)

Using northwest corner rule:
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With northwest corner rule, it took  seconds to find the initial BF solution and its%!
objective value is % above the optimal cost. The seven iterations took  minutes.Q %

Using Vogel's approximation method:

With Vogel's approximation method, it took  seconds to find the initial BF solution and&&
its objective value is % above the optimal cost. The two iterations took  minute.' "

Using Russell's approximation method:

With Russell's approximation method, it took  seconds to find the initial BF solution'$
and its objective value is % above the optimal cost. The five iterations took  minutes.#' #

Optimal Solution: cost $"ß !!!

Let  denote the initial BF solution. The results are summarized in the following table.B!

Method Time to Get Opt. Gap of No. Iter.'ns Time Iter.'ns Total Time
NW Corner    seconds         %           minutes  secon

B B
%! Q ( % #)!

! !

ds
Vogel's    seconds          %           minute  seconds
Russell's    seconds        %           minutes  seconds

&& ' # " ""&
'$ #' & # ")$
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8.2-17.

(a) Initial solution using northwest corner rule:

 

Final tableau: cost $&

 

(b) minimize )B  &B  'B  %B"" "# #" ##

 subject to                   B  B œ %"" "#

            B  B œ ##" ##

                              B  B œ $"" #"

                     B  B œ $"# ##

       B ß B ß B ß B   !"" "# #" ##

Hence, the transportation simplex method takes one iteration while the general simplex
method takes four iterations. The computation times vary.
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8.2-18.

Let D œ B  "!ß" "

D œ B  B  #&ß# " #

D œ B  B  B  &!ß$ " # $

D œ B  B  B  B  (!% " # $ % .

minimize      "Þ!)B  "Þ""B  "Þ"!B  "Þ"$B  !Þ"&ÐD  D  D  D Ñ" # $ % " # $ %

subject to                          B  D œ "!" "

                              B  B  D œ #&" # #

                                   B  B  B  D œ &!" # $ $

                                  B  B  B  B  D œ (!" # $ % %

    ! Ÿ B Ÿ #&"

    ! Ÿ B Ÿ $&#

    ! Ÿ B Ÿ $!$

    ! Ÿ B Ÿ "!%

    D ß D ß D ß D   !" # $ %

Initial simplex tableau:

Simplex tableau:  variables and  constraints"' )

Transportation tableau:  variables and  constraints#! *

Even though the transportation tableau is larger, it requires less work than the simplex
tableau.

8.2-19.

If we multiply the demand constraints by , each constraint column will have exactly"
two nonzero entries, one  and one . Summing all these constraints gives the" "
equality:

 supplies demands ,!B œ  œ !! !
since the total supply equals the total demand. Hence, there is a redundant constraint.
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8.2-20.

In the initialization step, after selecting the next basic variable, the allocation made is
equal to either the (remaining) supply or demand for that row or column. Since these
quantities are known to be integer, the allocation will be integer.

Given a current BF solution that is integer, step 3 of an iteration adds and subtracts,
around the chain-reaction cycle, the current value of the leaving basic variable. Since we
know this is an integer, and all the other basic variables on the cycle began with integer
values, the new BF solution must be all integer.

During the initialization step, we can select the next basic variable for allocation
arbitrarily from among the rows and columns not already eliminated. Thus, by altering
our selections, we can construct any BF solution as our initial one. Because we have
shown that the initialization step gives integer solutions, all BF solutions must be integer.

8.2-21.

(a) Let  be the number of tons hauled from pit  (North, South) to site .B 3 œ "ß # 4 œ "ß #ß $34

minimize %!!B  %*!B  %'!B  '!!B  &$!B  &'!B"" "# "$ #" ## #$

subject to B  B  B Ÿ ")"" "# "$

   B  B  B Ÿ "%#" ## #$

  B  B œ "!"" #"

  B  B œ &"# ##

  B  B œ "!"$ #$

  B ß B ß B ß B ß B ß B   !"" "# "$ #" ## #$

Initial tableau:

(b) This table is much smaller than the simplex tableau and it stores the same information.
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(c) The solution is not optimal, since .-  ?  @ œ "!!"$ " $

(d)
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The optimal solution is to haul  tons from the north pit to site 1 and  tons to site 3, "! ) &
tons from the south pit to site 2 and  tons from the south pit to site 3. This incurs a cost#
of $ .""ß %&!

(e) From the reduced costs  in the final tableau, we see thatÐ-  ?  @ Ñ34 3 4

  ?-   '! Ê -   %$!"# "#

  .?-   "!! Ê -   &!!#" #"

If the contractor can negotiate a hauling cost per ton of  or less from the north pit to"$!
site 2, or of  or less from the south pit to site 1, a new solution using these options)!
would give a cost at least as small as the current optimal cost $ .""ß %&!
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8.2-22.

(a) The optimal solution would change because the decrease of $  million is outside the$!
allowable decrease of $  million.#!

(b) The optimal solution would remain the same, since the allowable increase is ._

(c) By the % rule for simultaneous changes, the optimal solution must remain the"!!
same.

 : $ $  % of allowable decrease %G #$! Ä #"& œ "!! œ (&GW
#$!#"&

#!Š ‹
 : $ $  % of allowable decrease %G "$! Ä "%& œ "!! œ !WP

"$!"%&
_Š ‹

These sum up to %.(&

(d) By the % rule for simultaneous changes, the shadow prices may or may not"!!
remain valid.

 : $ $  % of allowable decrease %G ' Ä &Þ& œ "!! œ #!W
'&Þ&
#Þ&Š ‹

 : $ $  % of allowable decrease %G "Þ& Ä " œ "!! œ _L
"Þ&"

!Š ‹
These sum up to %._
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8.2-23.

(a) , ? ?- œ $ Ê Ð-  ?  @ Ñ œ $ Ð-  ?  @ Ñ œ #$% $% $ % $% $ %
‡ ‡

The current feasible solution is feasible, but not optimal.

(b) ? ?- œ $ Ê Ð-  ?  @ Ñ œ $#$ #$ # $
‡

We can revise the tableau by changing  from  to . This causes  to? ( (  $ œ % @# &

change to ,  to , and  to .##  $ œ "* ? ##  $ œ "* @ ##  $ œ "*% %

? ? ? ?(reduced cost (reduced cost (reduced cost B Ñ œ B Ñ œ B Ñ œ  ? œ $%" %# %$ %

? ? ?(reduced cost (reduced cost B Ñ œ B Ñ œ  @ œ $$% "% %

? ? ?(reduced cost (reduced cost B Ñ œ B Ñ œ  @ œ $$& "& &
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The basic solution remains feasible and optimal.

(c) ? ? ?= œ "!ß . œ "! Ê B œ "!# & #&

The basic solution remains feasible and optimal.
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(d)  and ? ? ? ? ?= œ . œ #! Ê B œ B œ #! B œ #!# # #$ $# $$

This solution satisfies the optimality criterion, but it is infeasible.

8.3-1.

(a)
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(b) - (c)

(d)

8.3-2.

(a) Ships are assignees and ports are assignments.

(b)

Optimal Solution:

  

This incurs a cost of $ .#ß "!!
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(c)

(d) - (e)
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One optimal assignment is: , where the first entry is ship andÐ"ß "Ñß Ð#ß %Ñß Ð$ß #Ñß Ð%ß $Ñ
the second port.
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(f) Continuing to pivot where reduced costs are zero:

Alternative optimal matching: Ð"ß "Ñß Ð#ß %Ñß Ð$ß $Ñß Ð%ß #Ñ

Alternative optimal matching: Ð"ß #Ñß Ð#ß %Ñß Ð$ß $Ñß Ð%ß "Ñ
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Alternative optimal matching: Ð"ß $Ñß Ð#ß %Ñß Ð$ß #Ñß Ð%ß "Ñ

8.3-3.

(a) Costs are expressed in thousands of dollars.

 
(b) The optimal cost is  thousand dollars.%(Þ%(
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(c)

(d)

The initial solution from Vogel's approximation method is optimal. Plant 2 produces
product 3, plant 4 produces product 2, plant 5 produces product 1. This incurs a cost of
$ .%(ß %(!
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8.3-4.

(a) After adding a dummy stroke, which everyone can swim in zero seconds, the problem
becomes that of assigning  swimmers to  strokes. The optimal solution turns out to be& &
the following: David swims the backstroke, Tony swims the breaststroke, Chris swims
the butterfly, and Carl swims the freestyle.

(b) Cost: "#'Þ#

  
8.3-5.

(a)

(b) - (c)

Since all the reduced costs are nonnegative, this solution is optimal.
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(d)

This is identical to the table in (a) except that plants 1 and 2 have been split into two
plants each.

(e)

The basic feasible solution for the transformed problem above corresponds to that given
in part (c).
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8.3-6.
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This solution corresponds to that given in Section 8.3; although the set of basic variables
is different, the values of the variables are the same.
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8.3-7.

(a) Let assignees 1 and 2 represent plant A, assignees 3 and 4 represent plant B, and the
tasks be the distribution centers.

(b) Cost: $#ß !!!

(c)

(d)

(e)
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(f)

8.3-8.

(a)

(b)

(c)

(d) A transportation problem of size  has  basic variables. Since 7‚ 8 78" 7 œ 8
for the assignment problem, there are  basic variables, but only #Ð$Ñ  " œ & $
assignments. Thus,  basic variables are degenerate, they equal zero. Assignment#
problems are always highly degenerate. This can be seen using the interactive routine in
the OR Courseware.

(e)  and one of  are nonbasic, too.  and one of  areB ß B ß B ÐB ß B Ñ B ÐB ß B ÑE" E# F# F$ G$ G" F$ G$

basic and equal zero.
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Dual variables:

Looking at , we see that the allowable ranges for this solution to stay optimal-  ?  @34 3 4

are: .-   #ß -   $ß -   %ß -   &E" E# F" F#

8.3-9.

 minimize !!
3œ"4œ"

8 8

34 34- B

 subject to  for !
4œ"

8

34B œ " 3 œ "ß #ßá ß 8

    for !
3œ"

8

34B œ " 4 œ "ß #ßá ß 8

     for B   ! 3ß 4 œ "ß #ßá ß 834

The table of constraint coefficients is identical to that for the transportation problem
(Table 8.6). The assignment problem has a more special structure because  and7 œ 8
= œ . œ " 33 3  for every .

8.4-1.

Start with:
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Subtract the minimum element from each element in the column and continue the
algorithm.

One optimal solution is to assign ships  to ports , with cost .Ð"ß #ß $ß %Ñ Ð$ß %ß #ß "Ñ #"

8.4-2.

Subtract the minimum element in each row from each element in the row and continue
the algorithm.

One optimal solution is that David swims the backstroke, Tony the breaststroke, Chris
the butterfly and Carl the freestyle. The total time is ."#'Þ#

kathryn_neubauer
Text Box
     Note: This application of the Hungarian algorithm uses the table in Problem 8.3-4 just as shown, where the strokes (including a dummy stroke) are the rows (assignees) and the swimmers are the columns (tasks). It would be more natural to first take the extra step of rewriting the table in the form shown in the back of the book for the solution for Problem 8.3-4, where the swimmers are the rows (assignees) and the strokes (including a dummy stroke) are the columns (tasks). However, the Hungarian algorithm leads to an optimal solution with either formulation.



8-63

8.4-3.

Cost: $ß #'!

8.4-4.

Subtract the minimum element in each row from every element in the row and continue
the algorithm. This gives an optimal solution with cost ."#

8.4-5.

Subtract the minimum element in each column from every element in the column and
continue the algorithm.

An optimal assignment is , with cost .ÐEß $Ñß ÐFß "Ñß ÐGß #Ñß ÐHß %Ñ $
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8.4-6.

Subtract the smallest number in each row from every number in the row.

Subtract the smallest number in each column of the new table from every number in the
column

Determine the minimum number of lines needed to cross out all zeros.

Select the smallest number from all the uncovered numbers.
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Subtract this number from every uncovered number and add it to every number at the
intersection of covering lines.

Determine the minimum number of lines needed to cross out all zeros.
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CASES

CASE 8.1 Shipping Wood to Market

Option 1:

Option 2:
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Option 3:

The combination plan, i.e., shipping by either rail or water offers the best cost whereas
shipping by rail is the most expensive. If the costs of shipping by water are expected to
rise considerably more than those of shipping by rail, it is best to use option 1 and ship by
rail. If the reverse is true, then it is better to use option 2. If the cost comparisons will
remain roughly the same, then using option 3 is best. This option is clearly the most
feasible, but it may not be chosen if it is logistically too cumbersome. Further
information is needed to determine this.
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CHAPTER 9: NETWORK OPTIMIZATION MODELS

9.2-1.
(a) Directed path:  AD-DC-CE-EF (A D C E F)Ä Ä Ä Ä
 Undirected paths: AD-FD (A D F)Ä Ä
    CA-CE-EF (A C E F)Ä Ä Ä
    AD-ED-EF (A D E F)Ä Ä Ä

(b) Directed cycles: AD-DC-CA
    DC-CE-ED
    DC-CE-EF-FD
 Undirected cycle that includes every node: CA-CE-EF-FD-DB-AB

(c) {CA, CE, DC, FD, DB} is a spanning tree.

(d)

9.3-1.
Prior to this study, Canadian Pacific Railway (CPR) used to run trains only after a
sufficient level of freight was attained. This policy resulted in unreliable delivery times,
so poor customer service. In order to improve customer service and utilization of
available resources, CPR designed the railway operating plan called Integrated Operating
Plan (IOP). "The problem of designing a railway operating plan is to satisfy a set of
customer requirements expressed in terms of origin-destination traffic movements, using
a blocking plan and a train plan. Thus, the primary variables are the blocks and trains.
The constraints are the capacities of the lines and yards, the customer-service
requirements, and the availability of various assets, such as crews and locomotives. The
objective function in an abstract sense is to maximize profits" [p. 8].

Developing the blocking plan, i.e., determining the group of railcars to move together at
some point during their trips, involves solving a series of shortest-path problems over a
directed graph. The train plan is based on the blocking plan. It includes departure and
arrival times for the trains, blocks they pick up  and crew schedules. This problem is
solved for each train using heuristics. Following this, simulation models and locomotive
cycle plans are developed.

This study enabled CPR to save $170 million in half a year. "Total documented cost
savings through the end of 2002 have exceeded half a billion dollars" [p. 12]. More
savings are expected in following years. The improvements in CPR's profitability and
operations can be attributed to the decrease in transit and dwelling times, lowered fuel
consumption, reduction of the workforce and of the number of railcars, and balanced
workloads. CPR can now schedule the trains and the crew more efficiently and provide a
more reliable customer service. By allowing variability in the parameters of its plans,
CPR gained flexibility and agility. It can now respond to disruptions more effectively by
shifting resources quickly. These improvements earned CPR many awards and more
importantly a significant competitive advantage.
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9.3-2.
(a)

(b)

The shortest path from the origin to the destination is O A B E D T, withÄ Ä Ä Ä Ä
a total distance of 160 miles.

(c)

(d) Yes.

(e) Yes.
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9.3-3.
(a) The nodes represent the years. Let  be the cost (in thousand dollars) of using the.34
same tractor from the end of year  to the end of year .3 4

(b)

The minimum-cost strategy is to replace the tractor at the end of the first year and keep
the new one until the end of the third year. This incurs a total cost of  thousand dollars.%'

(c)
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9.3-4.
(a) Length of the shortest path: 16

(b) Length of the shortest path: 17

9.3-5.
The shortest-path problem is a minimum cost flow problem with a unit supply at the
origin and a unit demand at the destination. Label the origin as node  and the destination"
as node . Then, the LP formulation is as follows:8

 minimize  D œ - B! !
3œ" 4œ"

8 8

34 34

 subject to ! !
4œ" 4œ"

8 8

"4 4"B  B œ "

   , for ! !
4œ" 4œ"

8 8

34 43B  B œ ! # Ÿ 3 Ÿ 8"

   ! !
4œ" 4œ"

8 8

84 48B  B œ "

   , for .! Ÿ B Ÿ " " Ÿ 3ß 4 Ÿ 834
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9.3-6.
(a) The flying times play the role of "distances."

(b) Shortest path: SE C E LN, with total flight time 11.3Ä Ä Ä

(c)
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9.3-7.
(a) Let node  denote phase  being completed with  million dollars left to spent andÐ3ß 4Ñ 3 4
> 3" Ð45ÑÐ3ß4ÑßÐ3"ß5Ñ be the time to complete phase  if a cost of  million dollars is spent.
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(b)

Shortest path: , T, with a total time of 10Ð!ß &!Ñ Ä Ð"ß $'Ñ Ä Ð#ß #'Ñ Ä Ð$ß (Ñ Ä Ð% "Ñ Ä
# #3 3 0

months.

 Phase Level Cost Time
Research Crash    2
Development Priority    3
Design Crash  1   3
Production Priority     2

"%
"!
*
'
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9.4-1.
(a) Length: 18

  
(b) Length: 26

 
9.4-2.
(a) The nodes represent the groves and the branches represent the roads.

(b) Length: 5.2

9.4-3.
(a) The nodes are Main Office, Branch 1, Branch 2, Branch 3, Branch 4, and Branch 5.
The branches are the phones lines.

(b)

9.5-1.
Maximum flow: 9
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9.5-2.
Let node  be the source and node  be the sink." R

 maximize D œ B!
4œ#

R

"4

 subject to , for ! !
4œ"ß4Á3 4œ"ß4Á3

R R

34 43B  B œ ! 3 œ #ß $ßá ßR"

   , where  if  is not a branch.! Ÿ B Ÿ - - œ ! Ð3ß 4Ñ34 34 34

9.5-3.
(a)
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(b) Maximum flow: ("&

(c)  Maximum flow: ("&
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9.5-4.
(a)

 
(b)

 
(c)
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(d)

 

(e)
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9.5-5.
For convenience, call the Faireparc station siding  and the Portstown station siding .! ="
Let node  represent siding  at time  for  andÐ3ß 4Ñ 3 4 3 œ !ß "ßá ß =ß ="
4 œ !Þ!ß !Þ"ß !Þ#ßá ß #$Þ* Ð!ß !Ñ Ð="ß #$Þ*Ñ. Node  is the source and node  is the sink.
Arcs with unit capacity exist between nodes  and  if and only if a freightÐ3ß 4Ñ Ð3"ß 4> Ñ3
train leaving siding  at time  could not be overtaken by a scheduled passenger train3 4
before it reached siding . Arcs with capacity  exist between nodes  and3" 8 Ð3ß 4Ñ3

Ð3ß 4"Ñ 4 œ !Þ!ß !Þ"ß !Þ#ßá ß #$Þ) > œ "Þ$ for . There are no other arcs. For example, if 3

and a scheduled passenger train could overtake a freight train leaving siding  at time 3 &Þ(
before it reached siding , the following is part of the network:3"

 

The maximum flow problem in this case maximizes the number of sent freight trains.

9.5-6.
(a)

(b)
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9.6-1.
In this study, flight delay and cancellation problems faced by United Airlines (UA) are
modeled as minimum-cost-flow network models. The overall objective is to minimize a
weighted sum of various measures related to delay. These include the total number of
delay minutes for every passenger, the number of passengers affected by delays and the
number of aircraft swaps. Nodes represent "arriving and departing aircraft, spare aircraft,
and recovered aircraft" on a two-dimensional network, with time and airport being the
two dimensions. Arcs represent "scheduled flights, connections, and aircraft
substitutions" [p. 56]. Costs include the revenue loss, the costs from swapping aircraft
and from delaying aircraft.

The delay problem is solved for each airport separately as a minimum-cost-flow network
problem. The flow on each arc can be at most one. The solution is a set of arcs starting at
a supply node and ending at a demand node, which determines flight delays due to
shortage in aircraft. The cancellation model is a minimum-cost-flow network problem on
the entire network. Again, the flow on each arc cannot exceed one. The solution
determines which flight is canceled and what flight its aircraft is assigned to.

This study has saved UA over half a billion dollars in delay costs alone in less than a
year. Many potential delays were prevented and hence the number of flight delays was
reduced by 50%. Customer inconveniences due to delays and cancellations were reduced.
Additionally, developing an efficient way of addressing these problems helped UA
respond to changes in the conditions quickly.

9.6-2.

9.6-3.
(a)
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(b) minimize (B  $B  #B  %B  %B  *BJ [ J H H[ J H H[ J [" " " " # # # #

 subject to  B  B œ )!J [ J H" " "

   B  B œ (!J H J [# # #

   B  B œ '!J [ H[" " "

   B  B œ *!H[ J [# # #

   B  B  B  B œ !J H H[ J H H[" " # #

   ! Ÿ B ß B ß B ß B Ÿ &!J H H[ J H H[" " # #

9.6-4. Please see paperclip attachment for solution: 

9.6-5.
(a)

(b)


[image: image1.png]

SS

kathryn_neubauer
File Attachment
IM prob 9 6-4.doc
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(c) Total cost: $%ß #"(ß '#&

9.6-6.
(a)

(b)
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(c)

9.7-1.
(a)

(b) Compute  for nonbasic arcs: ?

    ?BD œ &  %  $  Ð'Ñ  # œ #

  ?AD œ &  %  $  Ð'Ñ œ !

  ?CB œ Ð$Ñ  #  Ð'Ñ œ "

All of them are nonnegative, so this solution is optimal. Since , multiple optima?AD œ !
exist. Network simplex:

Optimal nonbasic solutions have , , , , andB œ "& B œ B œ &  B œ #& AB AC AD CE) ) )
B œ &  ! Ÿ Ÿ & Ä ÄDE ) ), where  and C B and B D are nonbasic arcs.
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(c) Start with:

Network simplex: ?AC œ '  $  %  & œ !
   entering arc?AB œ #  $  $  %  & œ "  ! Ã
   ?BD œ &  %  $  $ œ $

) œ "& and BC is leaving arc (reverses). The next BF solution is:

From (b), we recognize this solution as optimal.

9.7-2.
(a)

(b) The final feasible spanning tree is:

The flow to which it corresponds is the same as in Prob. 9.5-6.
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9.7-3.
(a) There are no reverse arcs in this solution.

(b) The optimal BF spanning tree is:

which corresponds to a real flow of:

with cost ."ß "!!

9.7-4.
Initial BF spanning tree:

Optimal BF spanning tree:

which has a real flow of:

with cost .46
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9.7-5.
Initial BF spanning tree:

 

Optimal BF spanning tree:

which corresponds to the optimal solution given in Sec. 8.1.
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9.7-6.
(a)       (b) Initial BF spanning tree:

 

(c) Optimal BF spanning tree:

The sequence of basic feasible solutions is identical with the transportation simplex
method.
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9.7-7.

Optimal BF spanning tree:

which correspond to the real flow of:

with a total cost of .#*#&
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9.8-1.

  Length of Path
Activity to Crash Crash Cost

      
             $       
             $       
         

E G F H
"% "'

F &ß !!! "% "&
F &ß !!! "% "&

    $       
             $       
             $       
             $       
             $

H 'ß !!! "% "%
G %ß !!! "$ "%
H 'ß !!! "$ "$
G %ß !!! "# "$
H 'ß !!! "# "#      

9.8-2.
(a) Let  and  be the reduction in  and  respectively, due to crashing.B B E GE G

 minimize G œ &!!!B  %!!!BE G

 subject to B Ÿ $E

   B Ÿ #G

   B  B   #E G

 and  B ß B   !E G

 

Optimal Solution:  and .ÐB ß B Ñ œ Ð!ß #Ñ G œ )ß !!!E G
‡

(b) Let  and  be the reduction in  and  respectively, due to crashing.B B F HF H

 minimize G œ &!!!B  '!!!BF H

 subject to B Ÿ #F

   B Ÿ $H

   B  B   %F H

 and  B ß B   !F H
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Optimal Solution:  and .ÐB ß B Ñ œ Ð#ß #Ñ G œ ##ß !!!F H
‡

(c) Let , , , and  be the reduction in the duration of , , , and B B B B E F G HE F G H

respectively, due to crashing.

 minimize G œ &!!!B  &!!!B  %!!!B  '!!!BE F G H

 subject to B Ÿ $E

   B Ÿ #F

   B Ÿ #G

   B Ÿ $H

   B  B   #E G

   B  B   %F H

 and  B ß B ß B ß B   !E F G H

Optimal Solution:  and .ÐB ß B ß B ß B Ñ œ Ð!ß #ß #ß #Ñ G œ $!ß !!!E F G H
‡

(d) Let  be the reduction in the duration of activity  due to crashing forB 44

4 œ EßFßGßH C 4 4 œ GßH C. Also let  denote the start time of activity  for  and 4 FINISH
the project duration.

 minimize G œ &!!!B  &!!!B  %!!!B  '!!!BE F G H

 subject to B Ÿ $ß B Ÿ #ß B Ÿ #ß B Ÿ $E F G H

   C   !  )  BG E

   C   !  *  BH F

   C   C  '  BFINISH G G

   C   C  (  BFINISH H H

   C Ÿ "#FINISH
 and  B ß B ß B ß B ß C ß C ß C   !E F G H G H FINISH

(e)
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(f) The solution found using LINGO agrees with the solution in (e), i.e., it is optimal to
reduce the duration of activities , , and  by two months. Then the entire projectF G H
takes 12 months and costs  thousand dollars.#&  $!  #%  Ð#(  "#Ñ œ "")

 

 

(g) Deadline of  months""

 Deadline of  months"$
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9.8-3.
(a) $7,834 is saved by the new plan given below.

                       Length of Path
Activity to Crash Crash Cost

                     
            $    

EF H EF I E G I
"! "" "#

G "ß $$$                   
            $                      
      &   $                            
      & 

"! "" ""
I #ß &!! "! "! "!

H I %ß !!! * * *
F G   $                            %ß $$$ ) ) )

 Activity Duration    Cost
     weeks $
     weeks $
     weeks $
     weeks $
     weeks $

E $ &%ß !!!
F $ '&ß !!!
G $ &)ß '''
H # %"ß &!!
I # )!ß !!!

(b)
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Crash to  weeks.)

9.8-4.
(a) Let  be the reduction in the duration of activity  and  be the start time of activityB 4 C4 4

4.

minimize G œ 'B  "#B  %B  'Þ'(B  "!B  (Þ$$B  &Þ(&B  )BE F G H I J K L

subject to    ! Ÿ B Ÿ # ! Ÿ B Ÿ " ! Ÿ B Ÿ # ! Ÿ B Ÿ $E F G H

     ! Ÿ B Ÿ " ! Ÿ B Ÿ $ ! Ÿ B Ÿ % ! Ÿ B Ÿ #I J K L

    C  &  B Ÿ C C  &  B Ÿ CE E E EG H

    C  $  B Ÿ C C  $  B Ÿ CF F I F F J

    C  %  B Ÿ C C  '  B Ÿ CG G K H H L

    C  &  B Ÿ C C  (  B Ÿ CI I K J J L

    C  *  B Ÿ C C  )  B Ÿ CK K L LFINISH FINISH
  ! Ÿ C Ÿ "&FINISH
  C   !4
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(b) Finish Time:  weeks, total crashing cost: $  million, total cost: $   million."& %&Þ(& #&*Þ(&

9.8-5.
(a) Let  be the reduction in the duration of activity  and  be the start time of activityB 4 C4 4

4.

minimize G œ &B  (B  )B  %B  &B  'B  $B  %B  *B  #BE F G H I J K L M N

subject to     ! Ÿ B Ÿ % ! Ÿ B Ÿ $ ! Ÿ B Ÿ & ! Ÿ B Ÿ $ ! Ÿ B Ÿ &E F G H I

      ! Ÿ B Ÿ ( ! Ÿ B Ÿ # ! Ÿ B Ÿ $ ! Ÿ B Ÿ % ! Ÿ B Ÿ #J K L M N

    C  $#  B Ÿ C C  #)  B Ÿ CE E G F F H

    C  #)  B Ÿ C C  #)  B Ÿ CF F I F F J

    C  $'  B Ÿ C C  "'  B Ÿ CG G N H H K

    C  $#  B Ÿ C C  $#  B Ÿ CI I L I I M

    C  &%  B Ÿ C C  "(  B Ÿ CJ J N K K L

     C  "(  B Ÿ C C  #!  B Ÿ CK K M L L FINISH
   C  $%  B Ÿ C C  ")  B Ÿ CM M N NFINISH FINISH
  ! Ÿ C Ÿ *#FINISH
  C   !4

(b) Finish Time:  weeks, total crashing cost: $  million, total cost: $  billion.*# %$ "Þ$))

9.9-1.
Answers will vary.

9.9-2.
Answers will vary.
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CHAPTER 10: DYNAMIC PROGRAMMING

10.2-1.

(a) The nodes of the network can be divided into "layers" such that the nodes in the th8
layer are accessible from the origin only through the nodes in the st layer. TheseÐ8  "Ñ
layers define the stages of the problem, which can be labeled as . The nodes8 œ "ß #ß $ß %
constitute the states.

Let  denote the set of the nodes in the th layer of the network, i.e., , W 8 W œ ÖS× W œ8 " #

ÖEßFßG× W œ ÖHßI× W œ ÖX× B,  and . The decision variable  is the immediate$ % 8

destination at stage . Then the problem can be formulated as follows:8

0 Ð=Ñ œ Ò-  0 ÐB ÑÓ ´ 0 Ð=ß B Ñ = − W 8 œ "ß #ß $‡ ‡
8 8"

B −W B −W
=B 8 8 8 8          for  and min min

8 8" 8 8"
8

0 ÐX Ñ œ !‡
%

(b) The shortest path is .S F H X

(c) Number of stages: 3

 
   6
   

= 0 Ð=Ñ B
H X
I ( X

$
‡ ‡
$ $

   
           
           
           

= 0 Ð=ßHÑ 0 Ð=ß IÑ 0 Ð=Ñ B
E ""  "" H
F "$ "& "$ H
G  "$ "$ I

# # #
‡ ‡
# #

 
              

= 0 Ð=ßEÑ 0 Ð=ßFÑ 0 Ð=ß GÑ 0 Ð=Ñ B
S #! "* #! "* F
" " " "

‡ ‡
" "

Optimal Solution: ,  and .B œ F B œ H B œ H‡ ‡ ‡
" # $
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(d) Shortest-Path Algorithm:

   Solved nodes      Closest    th Distance to
directly connected    connected      total nearest th nearest     Last
to unsolved nodes

8
8

8 unsolved node   distance   node     node connection
1                                         

                             
S F ' F ' SF

# S G ( G ( SG
F H '  ( œ "$

$ S E * E * SE
F H '  ( œ "$

           
                     
                                        
                     
                     
                                  
                        
                     

G I (  ' œ "$
% E H *  & œ "% H "$ FH

F H '  ( œ "$
G I (  ' œ "$ I GI

& H X "$  ' œ "* X "* HX
I X "$  ( œ #!

       
                                 
                    

The shortest-path algorithm required  additions and  comparisons whereas dynamic) '
programming required  additions and  comparisons. Hence, the latter seems to be more( $
efficient for shortest-path problems with "layered" network graphs.

10.2-2.

(a)

The optimal routes are  and , the associated salesS E J  X S  G L  X
income is . The route  corresponds to assigning , , and "&( S  E J  X " # $
salespeople to regions , , and  respectively. The route  corresponds" # $ S  G L  X
to assigning , , and  salespeople to regions , , and  respectively.$ # " " # $
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(b) The regions are the stages and the number of salespeople remaining to be allocated at
stage  are possible states at stage , say . Let  be the number of salespeople8 8 = B8 8

assigned to region  and  be the increase in sales in region  if  salespeople are8 - ÐB Ñ 8 B8 8 8

assigned to it. Number of stages: 3.

            
    
    
    
    

       
     1
      
   

= 0 Ð= Ñ B 0 Ð= ß B Ñ
" $# "
# %' #
$ (! $
% )% %

= " # $ % 0 Ð= Ñ B
# &'    &'
$ (! (*   (* #
% *% *$ *&

$ $ # # #
‡ ‡
$ $

# #
‡ ‡
# #

 *& $
& "!) ""( "!* ""! ""( #

    
   

  

        
     

  

0 Ð= ß B Ñ
= " # $ % 0 Ð= Ñ B
' "&( "%* "&( "&& "&( "ß $

" " "

" "
‡ ‡
" "

The optimal solutions are , ,  and , , .ÐB œ " B œ # B œ $Ñ ÐB œ $ B œ # B œ "Ñ‡ ‡ ‡ ‡ ‡ ‡
" # $ " # $

10.2-3.

(a) The five stages of the problem correspond to the five columns of the network graph.
The states are the nodes of the graph. Given the activity times , the problem can be>34
formulated as follows:

  0 Ð=Ñ œ Ò>  0 ÐB ÑÓ‡ ‡
8 8"

B
=B 8max

8
8

 0 Ð*Ñ œ !‡
'

(b) The critical paths are  and ." Ä # Ä % Ä ( Ä * " Ä # Ä & Ä ( Ä *
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(c) Interactive Deterministic Dynamic Programming Algorithm: Number of stages: 4

10.2-4.

(a) FALSE. It uses a recursive relationship that enables solving for the optimal policy for
stage  given the optimal policy for stage  [Feature 7, Section 10.2, p.446].8 Ð8"Ñ

(b) FALSE. Given the current state, an optimal policy for remaining stages is
independent of the policy decisions adopted in previous stages. Therefore, the optimal
immediate decision depends on only the current state and not on how you got there. This
is the Principle of Optimality for dynamic programming [Feature 5, Section 10.2, p.446].

(c) FALSE. The optimal decision at any stage depends on only the state at that stage and
not on the past. This is again the Principle of Optimality [Feature 5, Section 10.2, p.446].

10.3-1.

The Military Airlift Command (MAC) employed dynamic programming in scheduling its
aircraft, crew and mission support resources during Operation Desert Storm. The primary
goal was to deliver cargo and passengers on time in an environment with time and space
constraints. The missions are scheduled sequentially. The schedule of a mission imposes
resource constraints on the schedules of following missions. A balance among various
objectives is sought. In addition to maximizing timely deliveries, MAC aimed at reducing
late deliveries, total flying time of each mission, ground time and frequency of crew
changes. Maximizing on-time deliveries is included in the model as a lower bound on the
load of the mission. The problem for any given mission is then to determine a feasible
schedule that minimizes a weighted sum of the remaining objectives. The constraints are
the lower bound constraints, crew and ground-support availability constraints. Stages are
the airfields in the network and states are defined as airfield, departure time, and
remaining duty day. The solution of the problem is made more efficient by exploiting the
special structure of the objective function.

The software developed to solve the problems cost around $2 million while the airlift
operation cost over $3 billion. Hence, even a small improvement in efficiency meant a
considerable return on investment. A systematic approach to scheduling yielded better
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coordination, improved efficiency, and error-proof schedules. It enabled MAC not only
to respond quickly to changes in the conditions, but also to be proactive by evaluating
different scenarios in short periods of time.

10.3-2.

Let  be the number of crates allocated to store ,  be the expected profit fromB 8 : ÐB Ñ8 8 8

allocating  to store  and  be the number of crates remaining to be allocated to storesB 8 =8 8

5   8 0 Ð= Ñ œ Ò: ÐB Ñ  0 Ð= B ÑÓ. Then      . Number of stages: 3‡ ‡
8 8"8 8 8 8 8

!ŸB Ÿ=
max

8 8
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10.3-3.

Let  be the number of study days allocated to course ,  be the number of gradeB 8 : ÐB Ñ8 8 8

points expected when  days are allocated to course  and  be the number of studyB 8 =8 8

days remaining to be allocated to courses . Then5   8

          .0 Ð= Ñ œ Ò: ÐB Ñ  0 Ð= B ÑÓ‡ ‡
8 8"8 8 8 8 8

"ŸB Ÿ Ð= ß%Ñ
max

8 8min

Number of stages: 4

 
     
     
     
     

= 0 Ð= Ñ B
" % "
# % #
$ & $
% ) %

% %
‡ ‡
% %

         
    
      1
     
     

    

0 Ð= ß B Ñ
= " # $ % 0 Ð= Ñ B
# )    )
$ ) "!   "! #
% * "! ""  "" $
& "# "" "" "$ "$ %

$ $ $

$ $
‡ ‡
$ $

           
       

       1
       
    
     

0 Ð= ß B Ñ
= " # $ % 0 Ð= Ñ B
$ "$    "$
% "& "%   "& "
& "' "' "'  "' "ß #ß $
' ") "( ") "' ") "ß $

# # #

# #
‡ ‡
# #

        
     

   

0 Ð= ß B Ñ
= " # $ % 0 Ð= Ñ B
( "* "* #" #" #" $ß %

" " "

" "
‡ ‡
" "

 Optimal Solution
               
               

B B B B
" $ " # "
# % " " "

" # $ %
‡ ‡ ‡ ‡
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10.3-4.

Let  be the number of commercials run in area ,  be the number of votes wonB 8 : ÐB Ñ8 8 8

when  commercials are run in area  and  be the number of commercials remainingB 8 =8 8

to be allocated to areas . Then5   8

     .0 Ð= Ñ œ Ò: ÐB Ñ  0 Ð= B ÑÓ‡ ‡
8 8"8 8 8 8 8

!ŸB Ÿ=
max

8 8

Number of stages: 4
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10.3-5.

Let  be the number of workers allocated to precinct ,  be the increase in theB 8 : ÐB Ñ8 8 8

number of votes if  workers are assigned to precinct  and  be the number ofB 8 =8 8

workers remaining at stage . Then8

       .0 Ð= Ñ œ Ò: ÐB Ñ  0 Ð= B ÑÓ‡ ‡
8 8"8 8 8 8 8

!ŸB Ÿ=
max

8 8

Number of stages: 4
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10.3-6.

Let  be the number of jet engines produced in month  and  be the inventory at the&B 8 =8 8

beginning of month . Then  is:8 0 Ð= Ñ‡
8 8

min max max
maxÐ< = ß!ÑŸB Ÿ7

8 8 8 8 8 8 8 8 8
‡
8"

8 8 8 8

Ò- B  . Ð=  B  < ß !Ñ  0 Ð Ð=  B  < ß !ÑÑÓ

and .0 Ð= Ñ œ - Ð=  < ß !Ñ‡
% % % % %max

Using the following data adjusted to reflect that  is one fifth of the actual production,B8

 Month     
     
     
     
     

< 7 - .
" # & &Þ%! !Þ!(&
# $ ( &Þ&& !Þ!(&
$ & ' &Þ&! !Þ!(&
% % # &Þ'& !Þ!(&

8 8 8 8

the following tables are produced:

= 0 Ð= Ñ B
# ""Þ$! #
$ &Þ'& "
% !Þ!! !

% %
‡ ‡
% %

  
    
    

                                           
                           

             

0 Ð= ß B Ñ
= ! " # $ % & ' 0 Ð= Ñ B
"       %%Þ%& %%Þ%&

$ $ $

$ $
‡ ‡
$ $

'
#      $)Þ*& $)Þ)(& $)Þ)(& '
$     $$Þ%& $$Þ$(& $$Þ$! $$Þ$! '
%    #(Þ*& #(Þ)(& #(Þ)!  #(Þ)! &
&   ##Þ%& ##Þ$(& ##

           
         
         
    Þ$!   ##Þ$! %
'  "'Þ*& "'Þ)(& "'Þ)!    "'Þ)! $
( ""Þ%& ""Þ$(& ""Þ$!     ""Þ$! #

     
         
          

                                 
                               

        

0 Ð= ß B Ñ
= ! " # $ % & ' ( 0 Ð= Ñ B
!     ''Þ(#& ''Þ((& ''Þ)#& ''Þ*

# # #

# #
‡ ‡
# #

& ''Þ(#& %
"    '"Þ"(& '"Þ##& '"Þ#(& '"Þ%! '"Þ&#& '"Þ"(& $
#   &&Þ'#& &&Þ'(& &&Þ(#& &&Þ)& &&Þ*(& &'Þ"! &&Þ'#& #
$  &!Þ!(& &!Þ"#& &!Þ"(

 
         
     
  & &!Þ$! &!Þ%#& &!Þ&& &!Þ'(& &!Þ!(& " 

                            
                

   

0 Ð= ß B Ñ
= ! " # $ % & 0 Ð= Ñ B
!   ((Þ&#& ((Þ%& ((Þ$(& ((Þ$! ((Þ$! &

" " "

" "
‡ ‡
" "

Hence, the optimal production schedule is to produce  units in the first month,& † & œ #&
" † & œ & ' † & œ $! # † & œ "! in the second,  in the third and  in the last month.
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10.3-7.

(a) Let  be the amount in million dollars spent in phase ,  be the amount in millionB 8 =8 8

dollars remaining,  be the initial share of the market attained in phase 1 when  is: ÐB Ñ B" " "

spent in phase 1, and  be the fraction of this market share retained in phase  if : ÐB Ñ 8 B8 8 8

is spent in phase , for . Number of stages: 38 8 œ #ß $

 
     
     
     
     

= 0 Ð= Ñ B
! !Þ$ !
" !Þ& "
# !Þ' #
$ !Þ( $

$ $
‡ ‡
$ $

            
        

    
    
    
    

0 Ð= ß B Ñ
= ! " # $ 0 Ð= Ñ B
! !Þ!'    !Þ!' !
" !Þ" !Þ"#   !Þ"# "
# !Þ"# !Þ# !Þ"&  !Þ# "
$ !Þ"% !Þ#% !Þ#& !Þ") !Þ#& #

# # #

# #
‡ ‡
# #

    
 

      

0 Ð= ß B Ñ
= " # $ % 0 Ð= Ñ B
% & ' %Þ) $ ' #

" " "

" "
‡ ‡
" "

The optimal solution is , , and . Hence, it is optimal to spend twoB œ # B œ " B œ "‡ ‡ ‡
" # $

million dollars in phase 1 and one million dollar in each one the phases 2 and 3. This will
result in a final market share of 6%.

(b)             
 

Phase 3: = 0 Ð=Ñ B
! Ÿ = Ÿ % !Þ'  !Þ!(= =

‡ ‡
$ $

         Phase 2: 0 Ð=ß B Ñ œ Ð!Þ%  !Þ"B ÑÒ!Þ'  !Þ!(Ð=  B ÑÓ# # # #

                                     œ !Þ!(B  Ð!Þ!(=  !Þ!$#ÑB  Ð!Þ#%  !Þ!#)=Ñ#
# #

   `0 Ð=ßB Ñ
`B # (# #

‡ = "'# #

#
œ !Þ!"%B  !Þ!!(=  !Þ!$# œ ! Ê B œ   

  

If :  because  is strictly increasing on the interval ,= Ÿ  B œ = 0 Ð=ß B Ñ Ò!ß  Ó= "' = "'
# ( # (#

‡
# #  

so on .Ò!ß =Ó
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If :  because then the global maximizer is feasible.=   B œ = "' = "'
# ( # (#

‡
  

We can summarize this result as:

  .B Ð=Ñ œ  ß =#
‡ = "'

# (minŠ ‹ 

Now since , , so  and .! Ÿ = Ÿ % Ÿ = Ÿ  B Ð=Ñ œ = 0 Ð=Ñ œ !Þ!'=  !Þ#%$# = "'
( # ( # #

‡ ‡
  

       Phase 1:   0 Ð%ß B Ñ œ Ð"!B  B ÑÒ!Þ!'Ð%  B Ñ  !Þ#%Ó" " " ""
#

     œ !Þ!'B  "Þ!)B  %Þ)B"
$ #

" "

      `0 Ð%ßB Ñ
`B "

#
"

" "

"
œ !Þ")B #Þ"'B  %Þ) œ !

   or .Ê B œ œ #Þ*%& *Þ!&&"
‡ #Þ"'„ #Þ"' %Ð!Þ")ÑÐ%Þ)Ñ

#Ð!Þ")Ñ

È #

  

The derivative of  is nonnegative for  and  and0 Ð%ß B Ñ B Ÿ #Þ*%& B   *Þ!&&" " " "

nonpositive otherwise, so  is nonincreasing on the interval , and0 Ð%ß B Ñ Ò#Þ*%&ß *Þ!&&Ó" "

nondecreasing else. Thus,  attains its maximum over the interval  at0 Ð%ß B Ñ Ò!ß %Ó" "

B œ #Þ*%& 0 Ð%Ñ œ 'Þ$!# #Þ*%&" "
‡ ‡ with . Accordingly, it is optimal to spend  million dollars

in Phase 1,  in Phase 2 and Phase 3. This returns a market share of 6.302%."Þ!&&

10.3-8.

Let  be the number of parallel units of component  that are installed,  be theB 8 : ÐB Ñ8 8 8

probability that the component will function if it contains  parallel units,  be theB - ÐB Ñ8 8 8

cost of installing  units of component ,   be the amount of money remaining inB 8 =8 8

hundreds of dollars. Then

        0 Ð= Ñ œ Ò: ÐB Ñ0 Ð= - ÐB ÑÑÓ‡ ‡
8 8"8 8 8 8 8 8

B œ!ßáß Ð$ß Ñ
max

8 =8min !

where  integer .! ! ! != 8 88
´ Ö À - Ð Ñ Ÿ = ß ×max

         
            
             
             

    

= 0 Ð= Ñ B
!ß " ! !
# !Þ& "
$ !Þ( #

% Ÿ = Ÿ "! !Þ* $

% %
‡ ‡
% %

%

0 Ð= ß B Ñ œ ÐB Ñ0 Ð= - ÐB ÑÑ$ $ $ $ $ $ $ $
‡
%P
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0 Ð= ß B Ñ
= ! " # $ 0 Ð= Ñ B
! !    ! !

"ß # ! !   ! !ß "
$ ! !Þ$& !  !Þ$& "
%

$ $ $

$ $
‡ ‡
$ $

! !Þ%* ! ! !Þ%* "
& ! !Þ'$ !Þ%! ! !Þ'$ "
' ! !Þ'$ !Þ&' !Þ%& !Þ'$ "
( ! !Þ'$ !Þ(# !Þ'$ !Þ(# #

) Ÿ = Ÿ "! ! !Þ'$ !Þ(# !Þ)" !

       
            
          
          

  $ Þ)" $ 

0 Ð= ß B Ñ œ ÐB Ñ0 Ð= - ÐB ÑÑ# # # # # # # #
‡
$P

          
            

             
            

              
    

0 Ð= ß B Ñ
= ! " # $ 0 Ð= Ñ B
!ß " !    ! !
#ß $ ! !   ! !ß "
% ! ! !  ! !ß "ß #
& ! !Þ#"!

# # #

# #
‡ ‡
# #

        
            
         
      
      

! ! !Þ#"! "
' ! !Þ#*% ! ! !Þ#*% "
( ! !Þ$() !Þ#%& ! !Þ$() "
) ! !Þ$() !Þ$%$ !Þ#)! !Þ$() "
* ! !Þ%$# !Þ%%" !Þ$*# !Þ%%" #
"! ! !Þ%)' !Þ%%" !Þ&!% !Þ&!% $    

0 Ð= ß B Ñ œ ÐB Ñ0 Ð= - ÐB ÑÑ" " " " " " " "
‡
#P

          
         

 

0 Ð= ß B Ñ
= ! " # $ 0 Ð= Ñ B
"! ! !Þ## !Þ##( !Þ$!# !Þ$!# $

" " "

" "
‡ ‡
" "

The optimal solution is , ,  and , yielding a system reliabilityB œ $ B œ " B œ " B œ $‡ ‡ ‡ ‡
" # $ %

of 0.3024.

10.3-9.

The stages are  and the state is the amount of slack remaining in the constraint,8 œ "ß #
the goal is to find .0 Ð%Ñ‡

"

             
          
           
      
      
    

= 0 Ð= Ñ B 0 Ð= ß B Ñ
! ! ! = ! " # $ % 0 Ð= Ñ B
" ! ! % "# ' ) ! "' "# !
# % "
$ % "
% "# #

# # " " "
‡ ‡
# #

" "
‡ ‡
" "

The optimal solution is  and .B œ ! B œ #" #
‡ ‡



10-13

10.3-10.

The stages are  and the state is the slack remaining in the constraint, the goal is8 œ "ß #ß $
to find .0 Ð#!Ñ‡

"

       
      
     

    
    
    

      
       
  

= 0 Ð= Ñ B 0 Ð= ß B Ñ
!  % ! !
&  * #! "
"!  "% %! #
"&  "* '! $
#! )! %

= ! " # 0 Ð= Ñ B
!  % !   ! !
&  ' #!  

$ $ # # #
‡ ‡
$ $

# #
‡ ‡
# #

   
     

    
    
    
   
    
    

#! !
(  * #! $!  $! "
"!  "" %! $!  %! !
"#  "$ %! &!  &! "
"% %! &! '! '! #
"&  "' '! &! '! '! !ß #
"(  ") '! (! '! (! "
"* '! (! )! )! #
#! )! (! )! )! !ß #   

                 
             

   

0 Ð= ß B Ñ
= ! " # $ % & ' 0 Ð= Ñ B
#! )! "!! ""' "") "#' "$! "#! "$! &

" " "

" "
‡ ‡
" "

The optimal solution is , ,  with an objective value .B œ & B œ ! B œ " D œ "$!‡ ‡ ‡ ‡
" # $

10.3-11.

Let  denote the slack remaining in the constraint.=8

0 Ð= Ñ œ $'B  $B‡ $
# # #

!ŸB Ÿ=
#  max

# #

ˆ ‰
`0 Ð=ßB Ñ

`B #
# ‡

#

#

#

#
# #

#

# #

#
œ $'  *B Ê B œ

 ! ! Ÿ B  #
œ ! B œ #
 ! B  #

= ! Ÿ =  #
# # Ÿ = Ÿ $

Ú
ÛÜ œfor 

for 
for 

   for 
for 

0 Ð$Ñ œ Ò$'B  *B  'B  0 Ð$B ÑÓ‡ # $ ‡
" #

!ŸB Ÿ$
" "" "  max

"

           
   

   
œ

Ò$'B  *B  'B  %)Ó

Ò$'B  *B  'B  $'Ð$B Ñ  $Ð$B Ñ Ó
max

max

max

Ú
ÛÜ

!ŸB Ÿ"
" "

# $
"

"ŸB Ÿ$
" " ""

# $ $
"

"

"

`0 Ð$ßB Ñ
`B

"
#

" " "

" "
#

"

"

"

" "

"
œ

")ÐB  B  #Ñ  ! ! Ÿ B Ÿ " Ê B œ "

*ÐB  %B  *Ñ

 ! " Ÿ B  #  "$

œ ! B œ #  "$

 ! B  #  "

ÚÝÝÝÛÝÝÝ ÝÜ Ü
ÚÝÛ

ÈÈÈ

        for  
for 
for 
for 

max

$

Ê B œ #  "$ Ÿ È
"
max

Since ,  and 0 Ð$ß "Ñ  0 Ð$ß#  "$Ñ B œ #  "$ ¶ "Þ'" B œ &  "$ ¶ "Þ$*" " " #
‡ ‡È È È

with the optimal objective value being .0 Ð$Ñ ¶ *)Þ#$‡
"
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10.3-12.

0 Ð= Ñ œ Ò"!!ÐB  = Ñ  #!!!ÐB  < Ñ  0 ÐB ÑÓ‡ # ‡
8 8"8 8 8 8 8 8

< ŸB Ÿ#&&
     min
8 8

8 œ %:

                    = 0 Ð= Ñ B

#!! Ÿ = Ÿ #&& "!!Ð#&&  = Ñ #&&
% %

‡ ‡
% %

% %
#

8 œ $: 0 Ð= ß B Ñ œ "!!$ $ $ ÐB  = Ñ  #!!!ÐB  #!!Ñ  "!!Ð#&&  B Ñ$ $ $ $
# #

 `
`B $ $ $

0 Ð= ßB Ñ$ $ $

$
œ #!!ÐB  = Ñ  #!!!  #!!Ð#&&  B Ñ

        œ #!!Ò#B  Ð=  #%&ÑÓ œ ! Ê B œ$ $ $
= #%&

#
$

If , so  is feasible for "&& Ÿ #!! Ÿ Ÿ #&& B œ #%! Ÿ= Ÿ #'& = Ÿ #&&$ $, = #%& = #%&
# #$

$ $

and .0 Ð= Ñ œ #&Ð#%&  = Ñ  #&Ð#'&  = Ñ  "!!!Ð=  "&&Ñ‡ # #
$ $ $ $ $

                                                  = 0 Ð= Ñ B

#%! Ÿ #&Ð#%&  = Ñ  #&Ð#'&  = Ñ  "!!!Ð=  "&&Ñ

$ $
‡ ‡
$ $

$ $ $
# # = #%&

#= Ÿ #&&$
$

8 œ #: 0 Ð= ß B Ñ œ "!!# # # ÐB  = Ñ  #!!!ÐB  #%!Ñ  0 ÐB Ñ# # # #
# ‡

$

 `
`B # # # #

0 Ð= ßB Ñ# # #

#
œ #!!ÐB  = Ñ  #!!!  &!Ð#%&  B Ñ  &!Ð#'&  B Ñ  "!!!

        œ "!!Ò$B  Ð#=  ##&ÑÓ œ ! Ê B œ# # #
#= ##&

$
#

If , so  and#%(Þ& Ÿ #%! Ÿ Ÿ #&& B œ= Ÿ #&&# , #= ##& #= ##&
$ $#

‡# #

0 Ð= Ñ œ "!!  =  #!!!  #%!  0‡ ‡
# $# #

#= ##& #= ##& #= ##&
$ $ $

#Š ‹ Š ‹ Š ‹# # #

            .œ ÒÐ##&  = Ñ  Ð#&&  = Ñ  Ð#)&  = Ñ  '!Ð$=  '"&ÑÓ"!!
* # # # #

# # #

If , so  and hence  and##! Ÿ Ÿ #%! Ÿ B   ! B œ #%!= Ÿ #%(Þ&#
0 Ð= ßB Ñ, #= ##&

$ `B#
`

#
‡#

#

# # #

0 Ð= Ñ œ "!!Ð#%!  = Ñ  #!!!Ð#%!  #%!Ñ  0 Ð#%!Ñ œ "!!Ð#%!  = Ñ  "!"ß #&!‡ # ‡ #
# $# # # .

                                                             
                          

= 0 Ð= Ñ B

##! Ÿ "!!Ð#%!  = Ñ  "!"ß
# #

‡ ‡
# #

#
#= Ÿ #%(Þ&# #&! #%!

#%(Þ& Ÿ ÒÐ##&  = Ñ  Ð#&&  = Ñ  Ð#)&  = Ñ  '!Ð$=  '"&ÑÓ

   
= Ÿ #&&#

"!!
* $# # # #

# # # #= ##&#

8 œ ": 0 Ð#&&ß B Ñ œ "!!" " ÐB  #&&Ñ  #!!!ÐB  ##!Ñ  0 ÐB Ñ" " "
# ‡

#

If :##! Ÿ B Ÿ #%(Þ&"

   .`
`B " "

‡0 Ð#&&ßB Ñ# "

"
œ #!!ÐB  %)&Ñ œ ! Ê B œ #%#Þ&

If :#%(Þ& Ÿ B Ÿ #&&"

   .`
`B $

)!!
" "

‡0 Ð#&&ßB Ñ# "

"
œ ÐB  #%!Ñ  ! Ê B œ #%(Þ&

The optimal solution is  andB œ #%#Þ&"
‡

0 Ð#&&Ñ œ Ð#%#Þ&  #&&Ñ  #!!!Ð#%#Þ&  ##!Ñ  0 Ð#%#Þ&Ñ œ "'#ß &!!" #
‡ # ‡"!! .
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     = 0 Ð= Ñ B
#&& "'#ß &!! #%#Þ&

" "" "
‡ ‡

 Summer Autumn Winter Spring
       #%#Þ& #%! #%#Þ& #&&

10.3-13.

Let  be the amount of the resource remaining at beginning of stage .= 88

8 œ $:  max
!ŸB Ÿ=

$ $
#

$ $

Ð%B  B Ñ

  `
`B $ $

‡
$
Ð%B  B Ñ$ $

# œ %  #B œ ! Ê B œ #

   is a maximum.`
`B $

‡#

$
# Ð%B  B Ñ$ $

# œ #  ! Ê B œ #

           

     

= 0 Ð= Ñ B

! Ÿ = Ÿ # =

# Ÿ = Ÿ % % #

$ $$ $

$ $

$

* *

%=  =$ $
#

8 œ #:  max
!ŸB Ÿ=

#
# #

Ò#B  0 Ð=  B ÑÓ$ # #
*

If max! Ÿ =  B Ÿ # %Ð=  B Ñ  Ð=  B Ñ Ó# # # # # #
#: 

!ŸB Ÿ=
#

# #

Ò#B 

 `
`B # # # # # # #

# ‡
##

Ò#B # %Ð=  B Ñ  Ð=  B Ñ Ó œ #  #=  #B œ ! Ê B œ =  "

  is a maximum.`
`B # # # # #

# ‡
#

#

#
# Ò#B # %Ð=  B Ñ  Ð=  B Ñ Ó œ #  ! Ê B œ =  "

 .0 Ð= Ñ œ #=  "# # #
*

If max# Ÿ =  B Ÿ % %Ñ B œ =  # 0 Ð= Ñ œ #=  #=  "# # # # # ## #
‡: ,  and .

!ŸB Ÿ=
#

# #

Ð#B  *

             
    

= 0 Ð= Ñ B

! Ÿ = Ÿ " %=  = !
" Ÿ = Ÿ % #=  " =  "

# ## #

# # #
#

# # #

* *

8 œ ":  max
!ŸB Ÿ=

"
#

" "

Ò#B  0 Ð%  #B ÑÓ# "
*

If max! Ÿ %  #B Ÿ " %Ð%  #B Ñ  Ð%  #B Ñ Ó œ Ð#B  )B Ñ" " " "
# #

": 
!ŸB Ÿ=

"
#

" "

Ò#B 

 `
`B "

# ‡
" " ""

Ð#B  )B Ñ œ %B  ) œ ! Ê B œ #

  is a maximum.`
`B "

# ‡
" "

#

"
# Ð#B  )B Ñ œ %  ! Ê B œ #

 .0 Ð%ß #Ñ œ )"

If max" Ÿ %  #B Ÿ % #Ð%  #B Ñ  "Ó œ Ð#B  %B  *Ñ" " ""
#: 

!ŸB Ÿ=
"
#

" "

Ò#B 

 `
`B "

#
" " "

"
Ð#B  %B  *Ñ œ %B  % œ ! Ê B œ "
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  is a minimum.`
`B "

#
" "

#

"
# Ð#B  %B  *Ñ œ %  ! Ê B œ "

 Corner points: , " œ %  #B Ê B œ $Î# 0 Ð%ß $Î#Ñ œ (Þ&" " "

   ,  is maximum.% œ %  #B Ê B œ ! 0 Ð%ß !Ñ œ *" " "

Hence, , ,  and .B œ ! B œ $ B œ " 0 Ð%Ñ œ *" # $ "
‡ ‡ ‡ ‡

10.3-14.

8 œ #:  min  and ,
B  =

#
# ‡ ‡

# ## # #
#
#

#

#B Ê B œ = 0 Ð= Ñ œ #=È
where  represents the amount of  used by .= # B# #

#

8 œ ":  min ,
B " " " "

% ‡ #  % # 
#

"

ÒB  0 ÐÐ#  B Ñ ÑÓ œ ÒB  #Ð#  B Ñ Ó

where max .Ð#  B Ñ œ Ö!ß #  B ×" "
#  #

If : .B Ÿ # ÐB  %  #B Ñ œ %B  %B œ ! Ê B œ !ß "ß"" " "
# % # $

" " "
`

`B"

  `
`B

#

"
# ÐB  %  #B Ñ œ "#B  %" " "

% # #

  , , so  is a local maximum.B œ ! ÐB  %  #B Ñ œ %  ! B œ !" "" "
% #`

`B

#

"
#

  , , so  are local minimaB œ "ß" ÐB  %  #B Ñ œ )  ! B œ "ß"" "" "
% #`

`B

#

"
#

with .D œ $

If :  and .B   # B œ ! D œ %  $"
#

"

Hence, , all  with .ÐB ß B Ñ − ÖÐ"ß "Ñß Ð"ß"Ñß Ð"ß "Ñß Ð"ß"Ñ× D œ $" #
‡ ‡ ‡

10.3-15.

(a) Let  be the remaining factor  entering stage .= − Ö"ß #ß %× % 88

8 œ $ 8 œ #: :    

   
     
     
     

= 0 Ð= Ñ B

" "' "
# $# #
% '% $

$ $$ $
‡*   

   
     
     
     

0 Ð= ß B Ñ
= " # % 0 Ð= Ñ B

" #!   #! "
# $' $#  $' "
% ') %) )! )! %

# # #

# ## #
‡ ‡

8 œ ":

   
   

     

0 Ð= ß B Ñ
= " # % 0 Ð= Ñ B
% )" %% )% )% %

" " "

" "" "
‡ ‡

The optimal solution is  with .ÐB ß B ß B Ñ œ Ð%ß "ß "Ñ D œ )%" # $
‡ ‡ ‡ ‡

(b) As in part (a), let  be the remaining factor (not necessarily integer) at stage .= 88

0 Ð= Ñ œ "'= B œ =$ $
‡ ‡

$ $ $ and 
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0 Ð= Ñ œ Ö%B  0 Ð= ÎB Ñ× œ Ö%B  "'= ÎB ×# $
‡ # ‡ #

# # # # #
"ŸB Ÿ= "ŸB Ÿ=

# # max   max
# # # #

 ` `
`B # `B

0 Ð= ßB Ñ 0 Ð= ßB Ñ
# ##

# $
#

# # # # # #

#

#

#
#œ %B  "' œ %  $#= ÎB = ÎB  ! and 

when , . Thus  is convex in  when , . The maximum should= B   ! 0 Ð= ß B Ñ B = B   !# # # # # # # #

occur at one of the endpoints.

B œ " 0 Ð= ß "Ñ œ %  "'=# # # #, 

B œ = 0 Ð= ß = Ñ œ %=  "'# # # # # #
#, 

%  "'=   %=  "' Í Ð=  $ÑÐ=  "Ñ Ÿ ! Í " Ÿ = Ÿ $# # # ##
#  

B œ 0 Ð= Ñ œ
" " Ÿ = Ÿ $
= $ Ÿ = Ÿ %

" Ÿ = Ÿ $

$ Ÿ = Ÿ %# #
‡ ‡#

# #
#

#

#
œ œif 

if  and if 
if 

%  "'=

%=  "'
#

#
#

0 Ð= Ñ œ ÖB  0 Ð%ÎB Ñ×" #
‡ $ ‡

" "
"ŸB Ÿ%

" max
"

  max   max      maxœ B  %  "' ß B  %  "'œ š Š ‹ › š Š ‹›
"ŸB Ÿ%Î$ %Î$ŸB Ÿ%

" "
$ $"' %

B B
" "

#
" "

 `
`B "

#

"
#š Š ‹ ›B  %  "' ÎB  ! B   !"

$ %"'
B " "#
"

œ 'B  #!%  when 

  when `
`B "

#

"
#š Š ‹›B  %  "' œ ÎB  ! B   !"

$ #%
B " "
"

'B  "#)

Hence, the maximum occurs at an endpoint.

B œ " 0 Ð= ß "Ñ œ )"" " ", 

B œ %Î$ 0 Ð= ß %Î$Ñ ¸ &%Þ$(" " ", 

B œ % 0 Ð= ß %Ñ œ )%" " ", 

0 Ð= Ñ œ Ö)"ß &%Þ$(ß )%× œ )%"
‡

" max  and ÐB ß B ß B Ñ œ Ð%ß "ß "Ñ" # $
‡ ‡ ‡ , just as when the

variables are restricted to be integers.

10.3-16.

Let  be the slack remaining in the constraint , entering the th stage.= B  B  B Ÿ " 88 " # $

0 Ð= Ñ œ B œ = B œ =$ $
‡ ‡

$ $ $ $
!ŸB Ÿ=

 max  and 
$ $

0 Ð= Ñ œ ÖÐ"  B Ñ0 Ð=  B Ñ× œ ÖÐ"  B ÑÐ=  B Ñ×# $
‡ ‡

# # # # # # #
= ŸB = ŸB

 max  max
# #
 

# #

where max .= œ Ö= ß !×#


#

`
`B # # # #

0 Ð= ßB Ñ# # #

#
œ #B  Ð=  "Ñ œ ! Ê B œ Ð"  = ÑÎ#

`
`B

#

#
#

0 Ð= ßB Ñ
# # # #

# # # œ #  !, so 0 Ð= ß B Ñ B is concave in .

B œ Ð=  "ÑÎ# Ð"  = ÑÎ## # #, 0 Ð= ß Ñ œ Ð"  = Ñ Î%# # #
#

B œ# = 0 Ð= ß = Ñ œ
! = Ÿ !
= =   !# #

 
# #

#

# #
, œ if 

if 
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Ð"  = Ñ Î#   Ö!ß = ×# #
# max

B œ Ð"  = ÑÎ# Ð"  = ÑÎ# =   "# # # # is feasible if and only if , equivalently when .= Ÿ#


0 Ð= Ñ œ B œ
!

Ð"  = Ñ Î%
= œ =
Ð"  = ÑÎ## #

‡ ‡ #
#

#
#


#

#
œ œif 

if  and if 
if 

= Ÿ "

=   "
= Ÿ "
=   "

#

#

#

#

0 Ð= Ñ œ"
‡

"
B  !

 max
"

ÖB 0 Ð"  B Ñ× œ B  Ð"  B Ñ ß !" " " "#
‡

!ŸB Ÿ#

B
% max  maxœ š Š ‹›

"

"
#

  maxœ  B  B
!ŸB Ÿ#

B
% "

#
"

"

"
$š ›

`
`B"

š ›B
% % $Î# $ $"

#
" " "

$B #„ %$ % #" "
$ #

 B  B œ  #B  " œ ! Ê B œ œ „
È

 

Hence, ÐB ß B ß B Ñ œ Ð#Î$ß "Î$ß #Î$Ñ D œ )Î#(" # $
‡ ‡ ‡ ‡ and .

10.3-17.

Let , where  is the slack in the th constraint.= œ ÐV ßV Ñ V 3" # 3

8 œ #: 0 ÐV ßV ß B Ñ œ #B ! Ÿ B Ÿ ÖV Î#ßV ×# " # # # # " #, min

                          

min min

= 0 Ð=Ñ B

V
V

"! ÖV Î#ßV × ÖV Î#ßV ×

# #
‡ ‡

"

#
" # " #Œ 

8 œ ": 0 Ð'ß )ß B Ñ œ "&B  0 Ð'  B ß )  $B Ñ" " " " "#
‡

         min , for œ "&B  "! ÖÐ'  B ÑÎ#ß )  $B × ! Ÿ B Ÿ )Î$" " " "

         if 
if œ

"!B  $! ! Ÿ B Ÿ #
)!  "&B # Ÿ B Ÿ )Î$œ " "

" "

     max max    max     max   
!ŸB Ÿ)Î$ #ŸB Ÿ)Î$

" " " " " "
!ŸB Ÿ#" ""

0 Ð'ß )ß B Ñ œ 0 Ð'ß )ß B Ñß 0 Ð'ß )ß B Ñ œ &!œ 
and .B œ #"

‡

The optimal solution is  and .ÐB ß B Ñ œ Ð#ß #Ñ D œ &!" #
‡ ‡ ‡
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10.3-18.

Let , where  is the slack in the th constraint.= œ ÐV ßV Ñ V 3" # 3

0 ÐV ßV ß B Ñ œ
! B œ !
"  B B  !$ " # $

$

$ $
œ if 

if 

0 ÐV ßV Ñ œ !ß Ð"  B Ñ œ Ö!ß"  ÐV Î#Ñ×$
‡

" # $ "
!ŸB ŸV Î#

max  max maxœ 
$ "

         if 
if œ

"  ÐV Î#Ñ ! Ÿ V Ÿ #
! V   #œ " "

"

B œ
V Î# ! Ÿ V Ÿ #
! V   #$

‡ " "

"
œ if 

if 

0 ÐV ßV ß B Ñ œ (B  0 ÐV  $B ßV Ñ# " # # # " # #$
‡

   if 
if œ

(B  "  ÐV  $B ÑÎ# ! Ÿ V  $B Ÿ #
(B V  $B   #œ # " # " #

# " #

0 ÐV ßV Ñ œ !ß Ð"  B Ñ œ Ö!ß"  ÐV Î#Ñ×#
‡

" # $ "
!ŸB Ÿ ÖV Î$ßV × !ŸB ŸV Î#

 max  max max
# " # $ "min

œ 

         
if 
if 
if 

œ

Ÿ V

(V Ÿ V Ÿ

 "  V Ÿ

ÚÝÛÝÜ
(V V
$ $ #

# #
V # V

$ $
"(V V V #
# # $#

" "

" "

# " "

B œ

Ÿ V

V Ÿ V Ÿ

V V Ÿ
#
‡

V V
$ $ #

# #
V # V

$ $

# #
V #

$

ÚÝÛÝÜ
" "

" "

"

if 
if 
if 

0 Ð'ß &Ñ œ Ò$B  0 Ð'  B ß &  B ÑÓ" #
‡ ‡

!ŸB Ÿ&
" " " max

"

  max  max  maxœ $B  ß Ò$B  (Ð&  B ÑÓœ ’ “
!ŸB Ÿ*Î# *Î#ŸB Ÿ&

" " "
(Ð'B Ñ

$
" "

"

  max  max  maxœ  "% ß Ò$&  #B Ó œ "(œ ’ “
!ŸB Ÿ*Î# *Î#ŸB Ÿ&

#B
$ "

" "

"

The optimal solution is  and .ÐB ß B ß B Ñ œ ß ß ! D œ "(" # $
‡ ‡ ‡ ‡* "

# #Š ‹
10.4-1.

Let  be the current fortune of the player,  be the event to have $100 at the end and = E \8 8

be the amount bet at the th match.8

0 Ð= Ñ œ Ö ÖEl= ××$
‡

$ $
!ŸB Ÿ=

 max P
$ $

! Ÿ =  &! 0 Ð= Ñ œ !$ $$
‡, .
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&! Ÿ =  "!! 0 Ð= Ñ œ
! B Á "!!  =
"Î# B œ "!!  =$ $$

‡ $
‡

$

$
‡

$
, if 

if œ
= œ "!! 0 Ð= Ñ œ

! B  !
" B œ !$ $$

‡ $
‡

$
‡, if 

if œ
=  "!! 0 Ð= Ñ œ

! B Á =  "!!
"Î# B œ =  "!!$ $$

‡ $
‡

$

$
‡

$
, if 

if œ
                  

      
     
                     

    

= 0 Ð= Ñ B
! Ÿ =  &! ! ! Ÿ B Ÿ &!

&! Ÿ =  "!! "Î# "!!  =
= œ "!! " !

"!!  = "Î# =  "!!

$ $$ $
‡ ‡

$ $
‡

$ $

$

$ $

0 Ð= Ñ œ 0 Ð=  B Ñ  0 Ð=  B Ñ# $ $
‡ ‡ ‡

# # # # #
!ŸB Ÿ=

" "
# # max

# #

’ “
                  

      
    

  
            

        

= 0 Ð= Ñ B
! Ÿ =  #& ! Ÿ B Ÿ =

#& Ÿ =  &! ! ! Ÿ B Ÿ &!  =
&!  = Ÿ B Ÿ =

= œ &! "Î% ! Ÿ B  &!

# ## #
‡ ‡

# # #

# # #

# # #

# #

!

"Î%

"Î#  
   

  
                    
  

            
  

B œ &!
&!  =  (& ! Ÿ B  =  &!

"Î% =  &!  B  "!!  =
B œ "!!  =

"Î% "!!  =  B Ÿ =
= œ (& "Î# ! Ÿ B  #&

#

# # #

# # #

# #

# # #

# #

"Î#

"Î#

$Î%

$Î%

       
  

   
         
  
    

          

B œ #&
"Î% #& Ÿ B Ÿ (&

(&  =  "!! "Î# ! Ÿ B  "!!  =
B œ "!!  =

"Î# "!!  =  B Ÿ =  &!
"Î% =  &!  B Ÿ =

= œ "!

#

#

# # #

# #

# # #

# # #

# ! B œ !
"Î# !  B Ÿ &!
"Î% &! Ÿ B Ÿ "!!

"!!  = "Î# ! Ÿ B Ÿ =  "!!
B œ =  "

                       
               
             
      
             

"

$Î%

#

#

#

# # #

# # !!
"Î# =  "!!  B Ÿ =  &!
"Î% =  &!  B Ÿ =

  
    

# # #

# # #

The entries in bold represent the maximum value in each case.

0 Ð(&Ñ œ 0 Ð(&  B Ñ  0 Ð(&  B Ñ" # #
‡ ‡ ‡

!ŸB Ÿ(&

" "
# #" " max

"

’ “
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0 Ð(&ß B Ñ œ

$Î% B œ !
&Î) !  B  #&
$Î% B œ #&
"Î# #&  B Ÿ &!
$Î) &!  B Ÿ (&

" "

"

"

"

"

"

ÚÝÝÝÝÛÝÝÝÝÜ

if 
if 
if 
if 
if 

    
    or 

= 0 Ð= Ñ B
(& $Î% ! #&
" "" "

‡ ‡

Policy won st bet lost st bet won nd bet lost nd bet
                              
                            

B " " # #
" ! #& #& ! &!
# #& ! &! !

"

   !

10.4-2.

(a) Let  be the investment made in year ,  be the amount of money onB − Ö!ßEßF× 8 =8 8

hand at the beginning of year  and  be the maximum expected amount of8 0 Ð= ß B Ñ8 8 8

money by the end of the third year given  and .= B8 8

For , since one cannot invest less than $ , ! Ÿ =  "!ß !!! "!ß !!! 0 Ð= ß B Ñ œ 0 Ð= Ñ8 8 8 8 88"
‡

and .B œ !8
‡

For ,=   "!ß !!!8

0 Ð= ß B Ñ œ

0 Ð= Ñ B œ !
!Þ#&0 Ð=  "!ß !!!Ñ  !Þ(&0 Ð=  "!ß !!!Ñ B œ E
!Þ*0 Ð= Ñ  !Þ"0 Ð=  "!ß !!!Ñ B œ F

8 8 8

8"
‡

8 8

8" 8"
‡ ‡

8 8 8

8" 8"
‡ ‡

8 8 8

Ú
ÛÜ

if 
if 
if 

          

       

= 0 Ð= Ñ B
! Ÿ =  "!ß !!! = !

=   "!ß !!! =  &ß !!! E

$ $$ $
‡ ‡

$ $

$ $

                        
                                    
                 

0 Ð= ß B Ñ
= ! E F 0 Ð= Ñ B

! Ÿ =  "!ß !!! =   = !
"!ß !!! Ÿ =

# # #

# ## #
‡ ‡

# # #

#  #!ß !!! =  &ß !!! =  )ß (&! =  'ß !!! =  )ß (&! E
=   #!ß !!! =  &ß !!! =  "!ß !!! =  'ß !!! =  "!ß !!! E

# # # #

# # # # #                 

           
               

0 Ð= ß B Ñ
= ! E F 0 Ð= Ñ B

"!ß !!! ")ß (&! ##ß &!! "*ß )(& ##ß &!! F

" " "

" "" "
‡ ‡

The optimal policy is to invest in  as long as  there is enough money. The expectedE
fortune after three years using this strategy is $ , .## &!!

(b) Let  and  be defined as in (a). Let  be the maximum probability ofB = 0 Ð= ß B Ñ8 8 8 8 8

having at least $ 0,000 after 3 years given  and .# = B8 8
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0 Ð= ß B Ñ
= ! E F 0 Ð= Ñ B

! Ÿ =  "!ß !!! !   ! !
"!ß !!! Ÿ =  #!ß !!! ! !Þ(& !Þ" !Þ(& E
#!ß !!! Ÿ =  $!ß !

$ $ $

$ $$ $
‡ ‡

$

$

$ !! " !Þ(& " " !ßF
=   $!ß !!! " " " " !ßEßF

    
                        $

       
                     
             

            

0 Ð= ß B Ñ
= ! E F 0 Ð= Ñ B

! Ÿ =  "!ß !!! !   ! !
"!ß !!! Ÿ =  #!ß !!! !Þ(& !Þ(& !Þ((& !Þ((& F

# # #

# ## #
‡ ‡

#

#

    =   #!ß !!! " !Þ(& " " !ßF#

           
            

0 Ð= ß B Ñ
= ! E F 0 Ð= Ñ B

"!ß !!! !Þ((& !Þ(& !Þ(*(& !Þ(*(& F

" " "

" "" "
‡ ‡

With this objective, there is a number of optimal policies. The optimal action in the first
period is to invest in . If the return from it is only $ , one is indifferent betweenF "!ß !!!
investing in  or not investing at all in the second year. Depending on the second year'sF
investment choice and its return, third year's starting budget can be either $ ,"!ß !!!
$  or $ . If it is $ , then it is best to invest it in . If it is $ ,#!ß !!! $!ß !!! "!ß !!! E #!ß !!!
investing in  or not investing are best. Finally if it is $ , anything is optimal,F $!ß !!!
since $  is guaranteed. Using this policy, the probability of having at least $#!ß !!! #!ß !!!
by the end of the third year is .!Þ(*(&

10.4-3.

0 Ð"ß B Ñ œ OÐB Ñ  B  0 Ð"Ñ  "  0 Ð!Ñ8 8 8 8
" "
$ $

B B

8" 8"
‡ ‡Š ‹ ’ Š ‹ “8 8

    œ OÐB Ñ  B  0 Ð"Ñ8 8
"
$

B

8"
‡Š ‹ 8

since  for every . ,  and  if ,0 Ð!Ñ œ ! 8 0 Ð"Ñ œ "' 0 Ð!Ñ œ ! OÐB Ñ œ ! B œ !8 $ $
‡ ‡ ‡

8 8

OÐB Ñ œ $ B  !8 8 if .

               
               

          
     

0 Ð= ß B Ñ
= ! " # $ % 0 Ð= Ñ B
! !     ! !
" "' *Þ$$ 'Þ() 'Þ&* (Þ#! 'Þ&* $

# # #

# ## #
‡ ‡

                  
               

   

0 Ð= ß B Ñ
= ! " # $ % 0 Ð= Ñ B
" 'Þ&* 'Þ#! &Þ($ 'Þ#% (Þ!) &Þ($ #

" " "

" "" "
‡ ‡

The optimal policy is to produce two in the first run and to produce three in the second
run if none of the items produced in the first run is acceptable. The minimum expected
cost is $ 3.&(
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10.4-4.

0 Ð= Ñ œ 0 Ð=  B Ñ  0 Ð=  B Ñ8 8" 8"
‡ ‡ ‡

8 8 8 8 8
B  !

" #
$ $max ,

8

š ›
with  for  and  for .0 Ð= Ñ œ ! =  & 0 Ð= Ñ œ " =   &' '

‡ ‡
' ' ' '

= 0 Ð= Ñ B
! ! !
" ! !
# ! !
$ #Î$ B   #
% #Î$ B   "
=   & " B Ÿ =  &

& && &
‡ ‡

&
‡

&
‡

& &&
‡

     
     
     
   
   

    

               
          

         
          
      
   

0 Ð= ß B Ñ
= ! " # $ % 0 Ð= Ñ B
! !     ! !
" ! !    ! !
# ! %Î* %Î*   %Î* "ß #
$ #Î$ %Î* #Î$ #Î$  #Î$

% % %

% %% %
‡ ‡

!Þ#ß $
% #Î$ )Î* #Î$ #Î$ #Î$ )Î* "
=   & "     " B Ÿ =  &
  

        % %%
‡

               
          

         
       
   
 

0 Ð= ß B Ñ
= ! " # $ % 0 Ð= Ñ B
! !     ! !
" ! )Î#(    )Î#( "
# %Î* %Î* "'Î#(   "'Î#( #
$ #Î$ #!Î#( #Î$ #Î$

$ $ $

$ $$ $
‡ ‡

 
 

         

 #!Î#( "
% )Î* )Î* ##Î#( #Î$ #Î$ ##Î#( !ß "
=   & "     " B Ÿ =  &$ $$

‡

               
          

         
      
   
 

0 Ð= ß B Ñ
= ! " # $ % 0 Ð= Ñ B
! !     ! !
" )Î#( $#Î)"    $#Î)" "
# "'Î#( %)Î)" %)Î)"   %)Î)" !ß "ß #
$ #!

# # #

# ## #
‡ ‡

Î#( '%Î)" '#Î)" #Î$  '%Î)" "
% #%Î#( (%Î)" (!Î)" '#Î)" #Î$ (%Î)" "
=   & "     " B Ÿ =  &

 
 

         # ##
‡

               
                 

 

0 Ð= ß B Ñ
= ! " # 0 Ð= Ñ B
# %)Î)" "'!Î#%$ "#%Î#%$ "'!Î#%$ "

" " "

" "" "
‡ ‡

The probability of winning the bet using the policy given above is ."'!Î#%$ œ !Þ'&)
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10.4-5.

Let  denote the decision variable of quarter , where  and B − ÖEßH× 8 œ "ß #ß $ E H8

represent advertising or discontinuing the product respectively. Let  be the level of=8
sales (in millions) above ( ) or below ( ) the break-even point for quarter=   ! = Ÿ !8 8

Ð8  "Ñ 0 Ð= ß B Ñ. Let  represent the maximum expected discounted profit (in millions)8 8 8

from the beginning of quarter  onwards given the state  and decision .8 = B8 8

0 Ð= ß B Ñ œ $!  & =  >.>  0 Ð=  >Ñ>.>8 8 8 8 8
" "

, + , ++ +
, ,

8"
‡’ “' '

8 8 8 88 8

8 8 ,

where  and  are given in the table that follows.+ ,8 8

   
   
   

8 + ,
" " &
# ! %
$ " $

8 8

For ," Ÿ 8 Ÿ $

0 Ð= ßEÑ œ $!  & =   0 Ð=  >Ñ.>8 8 8 8
+ ,

# , +
"

+
,

8"
‡’ “ '8 8

8 8 8

8 ,

0 Ð= ßHÑ œ #!8 8 .

Note that once discontinuing is chosen the process stops.

0 Ð= Ñ œ Ö0 Ð= ßEÑß 0 Ð= ßHÑ×8
‡

8 8 8 8 8max

8 œ %:

0 Ð= Ñ œ
#! =  !
%!= =   !%

‡
%

%

% %
œ if 

if 

8 œ $:

0 Ð= ßHÑ œ #!$ $

0 Ð= ß EÑ œ $!  &Ð=  "Ñ  0 Ð=  >Ñ.>$ $ $ $
"
% "

$
%
‡' ,

For ,$ Ÿ = Ÿ "$

0 Ð= ßEÑ œ $!  &Ð=  "Ñ  #!.>  %!Ð=  >Ñ.> œ &Ð=  %Ñ  '&$ $ $ $ $
"
% " =

= $ #’ “' '$

$

0 Ð= Ñ œ Ö&Ð=  %Ñ  '&ß#!× œ
#! $ Ÿ = Ÿ " B œ H

&Ð=  %Ñ  '& " Ÿ = Ÿ " B œ E$
‡ #

$ $
$ $

‡

$ $
# ‡

$

max if , and ,
if , and .œ

For ," Ÿ = Ÿ &$

0 Ð= ß EÑ œ $!  &Ð=  "Ñ  %!Ð=  >Ñ.> œ "&  %&=$ $ $ $ $
"
% "

$'
0 Ð= Ñ œ Ö"&  %&= ß#!× œ "&  %&= B œ E$ $
‡ ‡

$ $ $max  and .
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= 0 Ð= Ñ B
$ Ÿ = Ÿ " #! H

" Ÿ = Ÿ " &Ð=  %Ñ  '& E
" Ÿ = Ÿ & "&  %&= E

$ $$ $
‡ ‡

$

$ $
#

$ $

8 œ #:

0 Ð= ßHÑ œ #!# #

0 Ð= ß EÑ œ $!  &Ð=  "Ñ  0 Ð=  >Ñ.># # # #
"
% "

$
$
‡' ,

For ,$ Ÿ = Ÿ "#

'
"
$

$
‡

#0 Ð=  >Ñ.> œ ' ' '
" = " "=
= " "= %

# #
## #

# #
#!.>  Ò&Ð=  >  %Ñ  '&Ó.>  Ò"&  %&Ð=  >ÑÓ.>

0 Ð= ß EÑ œ Ð =  %(=  Ñ# # #
& * %#(
% # '#

#

Observe that , so we0 Ð$ßEÑ œ ""!Î$  0 Ð= ßHÑ œ #!  0 Ð"ßEÑ œ #"&Î'# # # #

need to find  such that .$ Ÿ = Ÿ " 0 Ð= ßEÑ œ 0 Ð= ßHÑ# # # # #

& * %#(
% # ' *#

# ‡
# # #

%() "!Ð =  %(=  Ñ œ #! $ Ÿ = Ÿ " Ê = œ œ #Þ%"" & È
For ," Ÿ = Ÿ "#

' ' '
" ! "=
$ "= %

$
‡ #

# # #0 Ð=  >Ñ.> œ Ò&Ð=  >  %Ñ  '&Ó.>  Ò"&  %&Ð=  >ÑÓ.>#

#

0 Ð= ß EÑ œ  Ð=  %Ñ  Ð=  %Ñ  #!= # # # # #
& " * "!$
% $ # '

$ #’ “
Since  and  is increasing in ,  is the0 Ð"ßEÑ œ #"&Î' 0 Ð= ßEÑ " Ÿ = Ÿ " B œ E# # # # #

‡

optimal decision in this interval.

          

 

= 0 Ð= Ñ B
$ Ÿ = Ÿ = #! H

=  = Ÿ " Ð =  %(=  Ñ E

" Ÿ = Ÿ "  Ð=  %Ñ  Ð=  %Ñ  #!=  E

# ## #
‡ ‡

# #
‡

#
‡ #

# #
& * %#(
% # '#

# # # #
& " * "!$
% $ # '

$ #’ “
8 œ ":

0 Ð%ßHÑ œ #!"

0 Ð%ßEÑ œ $!  &Ð%  $Ñ  0 Ð%  >Ñ.>"
"
% "

&
#
‡'

œ $&  #!.>  Ð Ð%  >Ñ  %(Ð%  >Ñ  Ñ.>" & * %#(
% % # '" = %

= % $ #’' '#
‡

#
‡

    >  >  #!Ð%  >Ñ  .>& " * "!$
% $ # '$

& $ #' ’ “ “ œ %Þ((

  
 

= 0 Ð= Ñ B
% %Þ(( E

" "" "
‡ ‡

1st Quarter 2nd Quarter 3rd Quarter
Advertise. If , discontinue. If , discontinue.

If , advertise. If , adv
= Ÿ #Þ%"" = Ÿ "
=  #Þ%"" =  "
# $

# $ ertise.
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CHAPTER 11: INTEGER PROGRAMMING

11.1-1.

(a)   if the decision is to build a factory in city ,
otherwiseB œ

" 4
!4 œ

 if the decision is to build a factory in city ,
otherwiseC œ

" 4
!4 œ

for LA, SF, SD.4 œ

 maximize NPV œ *B  &B  (B  'C  %C  &CLA SF SD LA SF SD

 subject to 'B  $B  %B  &C  #C  $C Ÿ "!LA SF SD LA SF SD
   C  C  C Ÿ "LA SF SD
   B  C Ÿ !LA LA
   B  C Ÿ !SF SF
   B  C Ÿ !SD SD
    binaryB ß B ß B ß C ß C ß CLA SF SD LA SF SD

(b) - (c)

11.1-2.

(a)   if  does marketing, if  does cooking,
otherwise otherwiseQ œ G œ

" 4 " 4
! !4 4œ œ

  if  does dishwashing, if  does laundry,
otherwise otherwiseH œ P œ

" 4 " 4
! !4 4œ œ

for E Eve S Steven .4 œ Ð Ñß Ð Ñ

min T œ %Þ&Q  (Þ)G  $Þ'H  #Þ*P  %Þ*Q  (Þ#G  %Þ$H  $Þ"PE E E E S S S S

st Q G H  P œ #E E E E
 Q G H  P œ #S S S S
 Q Q œ "E S
 G  G œ "E S
 H H œ "E S
 P  P œ "E S
  binaryQ ßQ ßG ßG ßH ßH ßP ß PE S E S E S E S
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(b) - (c)

11.1-3.

(a)   if the decision is to invest in project ,
otherwiseB œ

" 4
!4 œ

for .4 œ "ß #ß $ß %ß &

 maximize NPV œ B  "Þ)B  "Þ'B  !Þ)B  "Þ%B" # $ % &

 subject to 'B  "#B  "!B  %B  )B Ÿ #!" # $ % &

    binaryB ß B ß B ß B ß B" # $ % &

(b) - (c)

11.1-4.

(a)   if the decision is to invest in opportunity ,
otherwiseB œ

" 4
!4 œ

for .4 œ "ß #ß $ß %ß &ß '

Let  denote the estimated profit of opportunity  and  the capital required for: 4 -4 4

opportunity  in millions of dollars.4

 maximize !
4œ"

'

4 4B :

 subject to !
4œ"

'

4 4B - Ÿ "!!

   B  B Ÿ "" #

   B  B Ÿ "$ %

   B Ÿ B  B$ " #

   B Ÿ B  B% " #

    binary, for B 4 œ "ßá ß '4
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(b) Solution: Invest in opportunities 1, 3 and 5.

11.1-5.

Each swimmer can swim only one stroke and each stroke can be assigned to only one
swimmer.

11.1-6.

(a) Let  be the number of tow bars produced and  be the number of stabilizer barsX W
produced.

 maximize T œ "$!X  "&!W

 subject to $Þ#X  #Þ%W Ÿ "'
   #X  $W Ÿ "&
    integersX ß W   !
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(b) Optimal Solution: $ÐX ß WÑ œ Ð!ß &Ñß T œ (&!

 

(c)

 

11.1-7.

(a) Let  be the number of trucks hauling from pit  to site  and  be the number ofB 3 4 C34 34

tons of gravel hauled from pit  to site , for  and .3 4 3 œ Rß W 4 œ "ß #ß $

minimize G œ %!!C  %*!C  %'!C  '!!C  &$!C  &'!CR" R# R$ W" W# W$

            "&!ÐB  B  B  B  B  B ÑR" R# R$ W" W# W$

subject to C  C  C Ÿ ")R" R# R$

  C  C  C Ÿ "%W" W# W$

  , for  and C Ÿ &B 3 œ Rß W 4 œ "ß #ß $34 34

  C  C   "!R" W"

  C  C   &R# W#

  C  C   "!R$ W$

   integers, for  and C   !ß B   ! 3 œ Rß W 4 œ "ß #ß $34 34

(b)
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11.2-1.

Air New Zealand used integer programming to solve its aircrew-scheduling problem that
consists of two subproblems: the tours-of-duty (ToD) planning and rostering. A ToD is a
sequence of duty and rest periods for a single crew member. The ToD planning problem
is to construct minimum-cost ToDs to crew all scheduled flights. The last duty period in a
ToD should end at the crew base where the first duty period started. A ToD has to satisfy
a number of rules and regulations pertaining to the length of duty and rest periods, the
latest possible starting time for a flight, maximum allowable flight time, the number of
crew members needed to operate a flight, etc. The second subproblem, rostering assigns
planned ToDs to individual crew members. Just like ToDs, rosters should meet some
rules such as minimum number of days off, total duty time, flight time limits, minimum
rest time between ToDs and qualifications needed to perform a ToD. Both subproblems
are instances of generalized set-partitioning problem. A set partitioning problem is of the
form:

 minimize - BX

 subject to EB œ /

   ,B − Ö!ß "×8

where  is a column-vector of ones and the elements of  are zeros and ones. The/ E
generalized set-partitioning problem also includes constraints with right-hand-sides that
are not one. To solve these problems, revised simplex method is used together with
various pricing and constraint branching techniques.

The new scheduling approach has saved Air New Zealand over NZ$15 million annually
whereas it cost only NZ$2 million. Direct savings resulted from reduced crew size and
eliminated expenses of the crew that had to stay overseas because of inefficient
scheduling practices. Additionally, the cost of scheduling has decreased. While the airline
has expanded, the number of people needed to solve the scheduling problem has
decreased. This study allowed Air New Zealand to obtain high-quality schedules that
respect individual preferences and meet regulations. Furthermore, robust schedules are
obtained quickly, so responding to changes promptly is now possible. The airline's
dependence on a small number of highly skilled schedulers is eliminated. Schedulers can
now concentrate their efforts on analyzing and evaluating solutions. Managers can review
strategic decisions in the light of the information provided by optimizers. As a
consequence of these improvements, Air New Zealand provides a better customer
service.

11.2-2.

Answers will vary.

11.2-3.

Answers will vary.
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11.3-1.

(a) Let  be a very large number, say  million.Q "!!

max (!B  &!ß !!!C  '!B  %!ß !!!C  *!B  (!ß !!!C  )!B  '!ß !!!C" " # # $ $ % %

st C  C  C  C Ÿ #" # $ %

 C Ÿ C  C$ " #

 C Ÿ C  C% " #

 &B  $B  'B  %B Ÿ '!!! QC" # $ % &

 %B  'B  $B  &B Ÿ '!!! QÐ"  C Ñ" # $ % &

 , for ! Ÿ B3 Ÿ QC 3 œ "ß #ß $ß %3

 , for C 3 œ "ß #ß $ß %3 binary
(b)

11.3-2.

B  B œ !C  $C  $C  'C  'C C − Ö!ß "× 3 œ "ßá ß &" # " # $ % & 3, , for .

11.3-3.

1. $B  B  B  B Ÿ "# QC" # $ % "

 B  B  B  B Ÿ "& QÐ"  C Ñ" # $ % "

 C" binary

2. #B  &B  B  B Ÿ $! QC" # $ % #

 B  $B  &B  B Ÿ %! QC" # $ % $

 $B  B  $B  B Ÿ '! QC" # $ % %

 C  C  C Ÿ "# $ %

 , for C 3 œ #ß $ß %3 binary
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11.3-4.

(a) Let  and  be binary variables that indicate whether or not toys 1 and 2 areC C" #

produced. Let  and  be the number of toys 1 and 2 that are produced. Also, let  be B B D !" #

if factory 1 is used and  if factory 2 is used."

 maximize "!B  "&B  &!ß !!!C  )!ß !!!C" # " #

 subject to B Ÿ QC" "

   B Ÿ QC# #

   " "
&! %!" #B  B Ÿ &!! QD

   " "
%! #&" #B  B Ÿ (!! QÐ"  DÑ

    integersB ß B   !" #

   C ß C ß D" #  binary
(b)

11.3-5.

(a) Let , , and  be the number of long-, medium-, and short-range jets to buyP Q W
respectively.

 maximize T œ %Þ#P  $Q  #Þ$W

 subject to '(P  &!Q  $&W Ÿ "&!!

   P Q  W Ÿ $!

   & %
$ $P  Q  W Ÿ %!

    integersPßQßW   !
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(b)

(c) minP Ÿ ß ß œ #%š ›"&!! $! %!
'( " &Î$

 minQ Ÿ ß ß œ $!š ›"&!! $! %!
&! " %Î$

 minW Ÿ ß ß œ $!š ›"&!! $! %!
$& " "

P œ # 6  # 6  # 6  # 6  # 6! " # $ %
! " # $ %

Q œ # 7  # 7  # 7  # 7  # 7! " # $ %
! " # $ %

W œ # =  # =  # =  # =  # =! " # $ %
! " # $ %

 maximize T œ %Þ# # 6  $ # 7  #Þ$ # =! ! !
3œ! 3œ! 3œ!

% % %
3 3 3
3 3 3

 subject to '( # 6  &! # 7  $& # = Ÿ "&!!! ! !
3œ! 3œ! 3œ!

% % %
3 3 3
3 3 3

   ! ! !
3œ! 3œ! 3œ!

% % %
3 3 3
3 3 3# 6  # 7  # = Ÿ $!

   & %
$ $
3œ! 3œ! 3œ!

% % %
3 3 3
3 3 3! ! !# 6  # 7  # = Ÿ %!

   , for 6 ß7 ß = 3 œ !ß "ß #ß $ß %3 3 3 binary

(d) Solution: 6 œ 6 œ !ß 6 œ 6 œ 6 œ "ß # 6 œ "%! % " # $ 33œ!
% 3!

  7 œ 7 œ 7 œ 7 œ 7 œ !ß # 7 œ !! " # $ % 33œ!
% 3!

  = œ = œ = œ = œ !ß = œ "ß # = œ "'! " # $ % 33œ!
% 3!

  $  (same as in (b))T œ *&Þ'

11.3-6.

(a) B œ C  #C ß B œ C  #C" "" "# # #" ##

 maximize ^ œ C  #C  &C  "!C"" "# #" ##

 subject to C  #C  "!C  #!C Ÿ #!"" "# #" ##

   C  #C Ÿ #"" "#

   , for C 3ß 4 œ "ß #34 binary

(b) Solution: , , , C œ C œ ! Ê B œ ! C œ ! C œ " Ê B œ # œ "!"" "# " #" ## # ^
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11.3-7.

(a) Let  be the number of units to produce of product .B 3 œ "ß #ß $3

 if product  is produced,
otherwiseC œ

" 3
!3 œ

 maximize #B  $B  !Þ)B  $C  #C" # $ " #

 subject to !Þ#B  !Þ%B  !Þ#B Ÿ "" # $

   B Ÿ QC" "

   B Ÿ QC# #

    integer! Ÿ B Ÿ $"

    integer! Ÿ B Ÿ ##

    integer! Ÿ B Ÿ &$

   C ß C" # binary
(b)

11.4-1.

(a) if  (i.e., produce  units of ),
otherwiseC œ

" B œ 4 4 3
!34

3œ
for  and .3 œ "ß #ß $ 4 œ "ß #ß $ß %ß &

max C  #C  %C  C  &C  C  $C  &C  'C  (C"" "# "$ #" ## $" $# $$ $% $&

st C  C  C Ÿ """ "# "$

 C  C Ÿ "#" ##

 C  C  C  C  C Ÿ "$" $# $$ $% $&

 C  #C  $C  #C  %C  C  #C  $C  %C  &C Ÿ &"" "# "$ #" ## $" $# $$ $% $&

  binaryC34

(b) Solution:  except for , , C œ ! Ð3ß 4Ñ œ Ð$ß &Ñ C œ " Ê B œ & ^ œ (34 $& $

(c) if ,
otherwiseC œ

" B   4
!34

3œ
for  and .3 œ "ß #ß $ 4 œ "ß #ß $ß %ß &
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max C  $C  #C  C  %C  C  #C  #C  C  C"" "# "$ #" ## $" $# $$ $% $&

st C Ÿ C Ÿ C"$ "# ""

 C Ÿ C## #"

 C Ÿ C Ÿ C Ÿ C Ÿ C$& $% $$ $# $"

 C  C  C  #C  #C  C  C  C  C  C Ÿ &"" "# "$ #" ## $" $# $$ $% $&

  binaryC34

(d) Solution:  for ,  for , C œ ! 3 œ "ß # C œ " 4 œ "ßá ß & Ê B œ & ^ œ (34 $4 $

11.4-2.

Introduce the binary variables  and  and add constraints , ,C C B Ÿ QC B Ÿ QC" # " " # #

C  C œ "" # .

11.4-3.

(a) Introduce the binary variables , , and  to represent positive (nonzero)C C C" # $

production levels.

 maximize ^ œ &!B  #!B  #&B" # $

 subject to *B  $B  &B Ÿ &!!" # $

         &B  %B Ÿ $&!" #

          $B  #B Ÿ "&!" $

      B Ÿ #!$

   , , B Ÿ QC B Ÿ QC B Ÿ QC" " # # $ $

   C  C  C Ÿ #" # $

   B ß B ß B   !" # $

    binaryC ß C ß C" # $

(b)

11.4-4.

(a) if ,
otherwiseC œ

" B œ 4
!34

3œ
for  and .3 œ "ß # 4 œ "ß #ß $

Work out by hand the objective function contribution for .B ß B œ !ß "ß #ß $" #
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maximize $C  )C  *C  *C  #%C  *C"" "# "$ #" ## #$

subject to C  C  C Ÿ """ "# "$

  C  C  C Ÿ "#" ## #$

  C  C Ÿ """ #$

  C  C Ÿ ""$ #$

  C  C Ÿ ""# #$

  C  C Ÿ ""# ##

  C  C Ÿ ""$ ##

  C  C Ÿ ""$ #"

   binaryC34

(b) Solution:  except , , C œ ! C œ C œ " Ê B œ " B œ # ^ œ #(34 "" ## " #

(c) if ,
otherwiseC œ

" B   4
!34

3œ
for  and .3 œ "ß # 4 œ "ß #ß $

Work out by hand the objective function contribution for .B ß B œ !ß "ß #ß $" #

maximize $C  &C  C  *C  "&C  "&C"" "# "$ #" ## #$

subject to C Ÿ C Ÿ C"$ "# ""

  C Ÿ C Ÿ C#$ ## #"

  C  C Ÿ """ #$

  C  C Ÿ ""# ##

  C  C Ÿ ""$ #"

   binaryC34

(d) Solution:  except , , C œ ! C œ C œ C œ " Ê B œ " B œ # ^ œ #(34 "" #" ## " #

11.4-5.

(a) if arc from node  to node  is in the shortest path,
otherwiseB œ

" 3 4
!34 œ

min $B  'B  'B  &B  %B  $B  $B  #B"# "$ #% #& $% $& %' &'

st    (1)B  B œ ""# "$

   (2)B  B  B  B œ "#% #& $% $&

    (3)B  B œ "%' &'

    (4)B  B Ÿ B#% #& "#

    (5)B  B Ÿ B$% $& "$

    (6)B Ÿ B  B%' #% $%

    (7)B Ÿ B  B&' #& $&

  binaryB34

(1), (2), (3) ensure that exactly one arc is used at each stage and they represent mutually
exclusive alternatives. (4), (5), (6) ensure that node  is left only if it is entered and they3
represent contingent decisions.

(b) Solution:  except , B œ ! B œ B œ B œ " ^ œ "!34 "# #& &'

     Shortest path: 1 2 5 6Ä Ä Ä
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11.4-6.

(a) if route  is chosen,
otherwiseC œ

" 4
!4 œ

Let  be the th element of the location/route matrix, for  andB 34 3 œ Eßá ß M34

4 œ "ßá ß "! - 4 4 œ "ßá ß "!. Let  denote the cost of route , for .4

 minimize !
4œ"

"!

4 4- C

 subject to , for !
4œ"

"!

34 4B C   " 3 œ Eßá ß M

   !
4œ"

"!

4C œ $

    binary, for C 4 œ "ßá ß "!4

(b)



11-13

11.4-7.

 if tract  is assigned to station located in tract ,
otherwiseB œ

" 4 3
!34 œ

Let  be the response time to a fire in tract  if that tract is served by a station located in+ 434

tract .3

min # + B  + B  $ + B  + B  $ + B! ! ! ! !
3œ" 3œ" 3œ" 3œ" 3œ"

& & & & &

3" 3" 3# 3# 3$ 3$ 3% 3% 3& 3&

st      (1) !
3œ"

&

33B œ # Two fire stations have to be located.

 , for    (2) !
3œ"

&

34B œ " 4 œ "ßá ß & Each tract needs to be assigned to a

station.

 , for  and  (3) B Ÿ B 3 œ "ßá ß & 4 œ "ßá ß &34 33 Tract  can be assigned to the station4

tract  only if there is a station located in tract .3 3

  binaryB34

(1) and (2) correspond to mutually exclusive alternatives and (3) represent contingent
decisions.

11.4-8.

(a) if a station is located in tract ,
otherwiseB œ

" 3
!3 œ

 minimize $!!B  $&!B  '!!B  %&!B  (!!B" # $ % &

 subject to B  B   "" &

   B  B   "" #

      B   "$

   B  B  B   "# % &

   B  B  B   "$ % &

    binaryB3

(b) Yes, this is a set covering problem. The activities are locating stations and the
characteristics are the fires.  is the set of all locations that could cover a fire in tract ,W 33

e.g., . There has to be at least one station, so  for all .W œ Ö"ß &× B   " 3" 44−W
!

3

(c) Solution: , $  thousandB œ B œ B œ " ^ œ "ß #&!" # $
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11.4-9.

 if district  is chosen,
otherwiseB œ

" 4
!4 œ

Let  be auxiliary variables that are zero for all , except for the index of the district withC 44

largest  that is chosen,  is .- C "4 4

 minimize !
4œ"

R

4 4- C

 subject to !
4œ"

R

4C œ "

   , for !
4œ"

R

4 4 3 3- C   - B 3 œ "ßá ßR

   !
4œ"

R

4B œ V

   , for !
4œ"

R

34 4+ B œ " 3 œ "ßá ßH

    binaryB ß C4 4

This is a set partitioning problem with additional constraints.

11.5-1.

This study uses integer programming to model employee scheduling problem of Taco
Bell restaurants. In this integer program, the decision variables correspond to the number
of employees scheduled to start working at time  and to work for  time units. The> =
objective is to minimize the total payroll for the scheduling horizon. At any point in time,
the labor requirements in each store have to be met. The total number of employees is
bounded above. Without the upper bound, the problem could be solved efficiently as a
network flow problem using out-of-kilter algorithms, so the upper bound is eliminated
from the constraint set by using generalized Lagrange multipliers.

The new scheduling approach increased labor cost savings significantly. Additional
benefits include enhanced flexibility, elimination of variability among stores, improved
customer service and quality. Mathematical modeling served as a rational basis for the
evaluation of new ideas, buildings, equipment and menu items. It also allowed Taco Bell
to eliminate redundant tasks and to schedule balanced workloads. Consequently,
productivity is improved and Taco Bell saved $13 million each year in labor costs.
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11.5-2.

(a) The dots represent the feasible solutions in the graph below.

 
Optimal Solution: ÐB ß B Ñ œ Ð#ß $Ñß ^ œ &B  B œ "$" # " #

(b) The optimal solution of the LP relaxation is . TheÐB ß B Ñ œ Ð#Þ'ß "Þ'Ñß ^ œ "%Þ'" #

nearest integer point is , which is not feasible, since .ÐB ß B Ñ œ Ð$ß #Ñ % † $  #  "#" #

 Rounded Solutions Violated Constraints  
                    3rd
             2nd and 3rd
                   none

^
Ð$ß #Ñ 
Ð$ß "Ñ 
Ð#ß #Ñ "#
Ð#ß "Ñ ""                   none

Hence, none of the feasible rounded solutions is optimal for the IP problem.

11.5-3.

(a) The dots represent the feasible solutions in the graph below.

 
Optimal Solution: ÐB ß B Ñ œ Ð#ß $Ñß ^ œ ##!B  )!B œ ')!" # " #
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(b) The optimal solution of the LP relaxation is . TheÐB ß B Ñ œ Ð)Î$ß %Î$Ñß ^ œ #!)!Î$" #

nearest integer point is , which is not feasible, since .ÐB ß B Ñ œ Ð$ß "Ñ & † $  # † "  "'" #

 Rounded Solutions Violated Constraints  
                    2nd
             2nd and 3rd
                   none

^
Ð$ß #Ñ 
Ð$ß "Ñ 
Ð#ß #Ñ '!!
Ð#ß "Ñ &#!                   none

Hence, none of the feasible rounded solutions is optimal for the IP problem.

11.5-4.

(a)

 Solution Feasible? Optimal?
     Yes                  No
     No     
     Yes                Yes
    

T œ "!B  #&B
Ð!ß !Ñ !
Ð"ß !Ñ
Ð!ß "Ñ #&
Ð"ß "Ñ

" #

 No

  

Optimal Solution: ÐB ß B Ñ œ Ð!ß "Ñ" #
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(b) The optimal solution of the LP relaxation is . The nearest integerÐB ß B Ñ œ Ð"ß !Þ''(Ñ" #

point is , which is not feasible. The other rounded solution is ,ÐB ß B Ñ œ Ð"ß "Ñ Ð"ß !Ñ" #

which is not feasible either.

 

11.5-5.

(a)

 Solution Feasible? Optimal?
     Yes                No
     Yes             No    
     No
     Yes   

T œ &B  #&B
Ð!ß !Ñ !
Ð"ß !Ñ &
Ð!ß "Ñ
Ð"ß "Ñ

" #

            Yes#!

 

Optimal Solution: ÐB ß B Ñ œ Ð"ß "Ñ" #
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(b) The optimal solution of the LP relaxation is . The nearest integerÐB ß B Ñ œ Ð!ß !Þ*Ñ" #

point is , which is not feasible. The other rounded solution is ,ÐB ß B Ñ œ Ð!ß "Ñ Ð!ß !Ñ" #

which is feasible, but not optimal.

 

11.5-6.

(a) TRUE, Sec. 11.5, 4th paragraph, p. 501.

(b) TRUE, Sec. 11.5, 9th paragraph, p. 502.

(c) FALSE, the result need not be feasible, see Fig. 11.2 for a counterexample, p. 503.
Sec. 11.5, 11th paragraph explains this pitfall.



11-19

11.6-1.

Optimal Solution: , Ð!ß !ß "ß "ß "Ñ ^ œ '

11.6-2.

Optimal Solution: , Ð"ß !ß "ß !ß !Ñ ^ œ "#
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11.6-3.

Optimal Solution: , Ð"ß "ß "ß "ß "Ñ ^ œ )

11.6-4.

Optimal Solution: , Ð!ß !ß !ß "Ñ ^ œ "!
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11.6-5.

11.6-6.

(a) FALSE. The feasible region for the IP problem is a subset of the feasible region for
the LP relaxation. It is called a relaxation because it relaxes the feasible region.

(b) TRUE. If the optimal solution for the LP relaxation is integer, then it is feasible for
the IP problem and since the solution for the latter cannot be better than the solution for
the former, it has to be optimal.

(c) FALSE. Figure 11.2 is a counterexample for this statement.

11.6-7.

(a)  Set . Apply the bounding and fathoming steps and the opti-Initialization: ^ œ _‡

mality test as described below for the whole problem. If the whole problem is not
fathomed, then it becomes the initial subproblem for the first iteration below.

Iteration:

1. Branching: Choose the most recently created unfathomed subproblem (in case of a tie,
select the one with the smallest bound). Among the assignees not yet assigned for the
current subproblem, choose the first one in the natural ordering to be the branching
variable. Subproblems correspond to each of the possible remaining assignments for the
branching assignee. Form a subproblem for each remaining assignment by deleting the
constraint that each of the unassigned assignees must perform exactly one assignment.

2. Bounding: For each new subproblem, obtain its bound by choosing the cheapest
assignee for each remaining assignment and totaling the costs.

3. Fathoming: For each new subproblem, apply the two fathoming tests:

 Test 1. bound   ^‡

 Test 2. The optimal solution for its relaxation is a feasible assignment (If this
solution is better than the incumbent, it becomes the new incumbent and Test 1 is
reapplied to all unfathomed subproblems with the new smaller ).^‡

Optimality Test: Identical to the one given in the text.
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(b) Matchings are indicated with the notation (assignee, assignment).

Optimal matching: , with total cost .Ð"ß "Ñß Ð#ß $Ñß Ð$ß #Ñß Ð%ß %Ñß Ð&ß &Ñ "&%
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11.6-8.

(a) Branch Step: Use the best bound rule.

  Given a partial sequencing  of the first  jobs, a lowerBound Step: N ßá ß N 5" 5

bound on the time for the setup of the remaining  jobs is found by adding the&  5
minimum elements of the columns corresponding to the remaining jobs, excluding those
elements in rows "None", .N ß N ßá ß N" # 5"

 Fathoming Step: see the summary of the Branch-and-Bound technique in Sec. 11.6.

(b) The optimal sequence is , with a total setup time of .#  "  %  &  $ $'

 

11.6-9.

Optimal Solution: , ÐB ß B ß B ß B Ñ œ Ð!ß "ß "ß !Ñ ^ œ $'" # $ %
‡

11.6-10.

(a) The only constraints of the Lagrangian relaxation are nonnegativity and integrality.
Since  is feasible for an MIP problem, it already satisfies these constraints, so it isx
feasible for the corresponding Lagrangian relaxation.

(b)  is feasible for an MIP problem, so from (a), it has to be feasible for its Lagrangianx‡
relaxation. Also,  and , so .E Ÿ ,   ! ^   -  ÐE  ,Ñ   - œ ^x x x x‡ ‡ ‡ ‡- -‡

V
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11.7-1.

Prior to this study, Waste Management, Inc. (WM) encountered several operational
inefficiencies concerning the routing of its trucks. The routes served by different trucks
had overlaps and route planners or drivers determined in what order they were going to
visit the stops. The result was inefficient sequences and communication gaps between
customers and customer-service personnel. The problem is formulated as a mixed integer
program, or more specifically as a vehicle routing problem with time windows. The goal
is to obtain routes with minimum number of vehicles and travel time, maximum visual
attractiveness and a balanced workload. First, a network with nodes that represent actual
stops, landfills, lunch break and the depot is constructed. The binary variables  referB345

to whether arc  is included in the route of vehicle  or not. The integer variables Ð3ß 4Ñ 5 R5

denote the number of disposal trips and the continuous variables  correspond to theA35

beginning time of service for node  by vehicle . The objective function to be minimized3 5
is the total travel time. The constraints make sure that each stop is served by exactly one
truck, each truck starts at the depot, the amount of garbage at the stops does not exceed
the vehicle capacity and each route includes a lunch break. An iterative two-phase
algorithm enhanced with metaheuristics is employed to solve the problem.

Financial benefits of this study include savings of approximately $18 million in 2003 and
estimated savings of $44 million in 2004. WM expects to save more and to increase its
cash flow by $648 million over a five-year interval. The savings in operational costs over
five years is expected to be $498 million. By using mathematical modeling, WM now
generates more efficient routes with minimal overlaps, a reduced number of vehicles and
cost-effective sequences. All these contribute to the decrease in operational costs. At the
same time, centralized routing made communication in the organization and with the
customers easier. Customer-service personnel can now address customer problems more
quickly, since they know the routes of the vehicles. As a result, WM provides a more
reliable customer service. Operational efficiency also affected the environment and the
employees positively. Emissions and noise are reduced. Finally, the benefits from this
study led WM to exploit operations research techniques in other operational areas, too.

11.7-2.

(a)

 Corner Points ^
Ð$ß "Þ("%$Ñ !Þ%#*
Ð!Þ'ß !Ñ "Þ)
Ð$ß !Ñ *
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Optimal solution for the LP relaxation:  with Ð$ß "Þ("%$Ñ ^ œ !Þ%#*‡

Optimal integer solution:  with Ð#ß "Ñ ^ œ "‡

(b) LP relaxation of the entire problem:

 

Optimal Solution: , ÐB ß B Ñ œ Ð$ß "#Î(Ñ ^ œ $Î(" #

Branch :B   ##

 

This subproblem is infeasible, so the branch is fathomed.
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Branch :B Ÿ "#

 

Optimal Solution: , , feasible for the original problemÐB ß B Ñ œ Ð#ß "Ñ ^ œ "" #

Hence, the optimal solution for the original problem is  with .ÐB ß B Ñ œ Ð#ß "Ñ ^ œ "" #

(c) Let  and .B œ C  #C B œ C  #C" "" "# # #" ##

 maximize ^ œ $C  'C  &C  "!C"" "# #" ##

 subject to &C  "!C  (C  "%C   $"" "# #" ##

    binaryC ß C ß C ß C"" "# #" ##

(d) Optimal Solution: , , so  and  asÐC ß C ß C ß C Ñ œ Ð!ß "ß "ß !Ñ ^ œ " B œ # B œ """ "# #" ## " #

in (a).
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11.7-3.

(a) Corner Points ^
Ð"Þ&ß "Þ&Ñ $(Þ&
Ð!ß 'Ñ '!
Ð$ß !Ñ %&

 

Optimal solution for the LP relaxation:  with Ð"Þ&ß "Þ&Ñ ^ œ $(Þ&‡

Optimal integer solution:  with Ð#ß "Ñ ^ œ %!‡

(b) LP relaxation of the entire problem:

 

Optimal Solution: , ÐB ß B Ñ œ Ð"Þ&ß "Þ&Ñ ^ œ $(Þ&" #
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Branch :B Ÿ ""

 

Optimal Solution: , , feasible for the original problemÐB ß B Ñ œ Ð"ß #Ñ ^ œ %&" #

Branch :B   #"

 

Optimal Solution: , ÐB ß B Ñ œ Ð#ß "Ñ ^ œ %!" #

Hence, the optimal solution for the original problem is  with .ÐB ß B Ñ œ Ð#ß "Ñ ^ œ %!" #
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(c) Let  and .B œ C  #C B œ C  #C" "" "# # #" ##

 minimize ^ œ "&C  $!C  "!C  #!C"" "# #" ##

 subject to "&C  $!C  &C  "!C   $!"" "# #" ##

   "!C  #!C  "!C  #!C   $!"" "# #" ##

    binaryC ß C ß C ß C"" "# #" ##

(d) Optimal Solution: , , so  and  asÐC ß C ß C ß C Ñ œ Ð!ß "ß "ß !Ñ ^ œ %! B œ # B œ """ "# #" ## " #

in part (a).



11-30

11.7-4.

(a)

 

Optimal Solution: , ÐB ß B Ñ œ Ð#Þ'ß "Þ'Ñ ^ œ "%Þ'" #

Branch :B   $"  Infeasible

Branch :B Ÿ #"

 

Optimal Solution: , , feasible for the original problemÐB ß B Ñ œ Ð#ß $Ñ ^ œ "$" #

Hence, the optimal solution for the original problem is  with .ÐB ß B Ñ œ Ð#ß $Ñ ^ œ "$" #
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(b) Optimal Solution: , ÐB ß B Ñ œ Ð#ß $Ñ ^ œ "$" #

(c) Solution: , ÐB ß B Ñ œ Ð#ß $Ñ ^ œ "$" #

11.7-5.
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11.7-6.

Optimal Solution: , .x œ Ð"%ß !ß "'Ñ ^ œ *&Þ'

11.7-7.

(a) Let  be the number of ¼ units of product  to be produced, for .B 3 3 œ "ß #3

 maximize %B  #Þ&B" #

 subject to $ "
% #" #B  B Ÿ )

   " $
# %" #B  B Ÿ (

    integersB ß B   !" #

(b)

 

Optimal Solution: , ÐB ß B Ñ œ Ð"!Þ''(ß !Ñ ^ œ %#Þ''(" #
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(c)  InfeasibleBranch :B   """

 Branch :B Ÿ "!"

 

Optimal Solution: , , feasible for the original problemÐB ß B Ñ œ Ð"!ß "Ñ ^ œ %#Þ&" #

Hence, the optimal solution for the original problem is  with .ÐB ß B Ñ œ Ð"!ß "Ñ ^ œ %#Þ&" #

(d) Optimal Solution: , ÐB ß B Ñ œ Ð"!ß "Ñ ^ œ %#Þ&" #

 

(e) Solution: , ÐB ß B Ñ œ Ð"!ß "Ñ ^ œ %#Þ&" #
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11.7-8.

Optimal Solution: , x œ Ð$ß "ß &ß !Ñ ^ œ "*&

11.7-9.

Optimal Solution: , x œ Ð"ß !ß "ß !ß !Ñ ^ œ &
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11.7-10.

Optimal Solution:  and , x xœ Ð"ß !ß "ß !ß #Ñ œ Ð#ß #ß !ß !ß !Ñ ^ œ "#

11.8-1.

(a) B œ !ß B œ !" $

(b) B œ !"

(c) B œ "ß B œ "" $

11.8-2.

(a) B œ !"

(b) B œ "ß B œ !" #

(c) B œ !ß B œ "" #

11.8-3.

From the first equation, . Then, this equation becomes redundant. From the thirdß B œ !$

equation,  and . Now, this equation is redundant, too. Since , fromB œ ! B œ " B œ "& ' '

the second equation,  and this equation becomes redundant. Finally, theB œ B œ !# %

fourth equation reduces to . Consequently, all equations become redundant. TheB œ !"

solution is then fixed to .Ð!ß !ß !ß !ß !ß "ß B Ñ(
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11.8-4.

(a) Redundant. Even if all the variables are set to their upper bounds, , .B œ " #  "  # Ÿ &3

(b) Not redundant. For example,  violates this constraint.Ð"ß !ß "Ñ

(c) Not redundant. For example  violates this constraint.Ð!Þ!Þ!Ñ

(d) Redundant. The least value of  is attained by  and it is , so$B  B  #B Ð!ß "ß "Ñ $" # $

the constraint is still satisfied.

11.8-5.

 %B  $B  B  #B Ÿ &" # $ %

, œ &ß W œ (ß W  ,  l+ l Ê + œ W  , œ #ß , œ W  + œ $" " "

Ê #B  $B  B  #B Ÿ $ " # $ %

, œ $ß W œ &ß W  ,  l+ l Ê + œ ,  W œ ## #

Ê #B  #B  B  #B Ÿ $ " # $ %

, œ $ß W œ &ß W   ,  l+ l 4 œ "ß #ß $ß %4  for 

11.8-6.

 &B  "!B  "&B Ÿ "&" # $

, œ "&ß W œ #!ß W  ,  l+ l Ê + œ ,  W œ &# #

Ê &B  &B  "&B Ÿ "& " # $

, œ "&ß W œ #!ß W  ,  l+ l Ê + œ W  , œ &ß , œ W  + œ &$ $ $

Ê &B  &B  &B Ÿ & " # $

, œ &ß W œ "!ß W   ,  l+ l 4 œ "ß #ß $4  for 

11.8-7.

 B  B  $B  %B   "" # $ %

Í B  B  $B  %B Ÿ " " # $ %

, œ "ß W œ "ß W  ,  l+ l Ê + œ ,  W œ #$ $

Ê B  B  #B  %B Ÿ " " # $ %

, œ "ß W œ "ß W  ,  l+ l Ê + œ ,  W œ #% %

Ê B  B  #B  #B Ÿ " " # $ %

, œ "ß W œ "ß W   ,  l+ l 4 œ "ß #ß $ß %4  for 

11.8-8.

(a) B  $B  %B Ÿ #" # $

, œ #ß W œ %ß W  ,  l+ l Ê + œ W  , œ #ß , œ W  + œ "# # #

Ê B  #B  %B Ÿ " " # $

, œ "ß W œ $ß W  ,  l+ l Ê + œ ,  W œ #$ $

Ê B  #B  #B Ÿ " " # $

, œ "ß W œ $ß W   ,  l+ l 4 œ "ß #ß $4  for 

(b) $B  B  %B   "" # $

Í $B  B  %B Ÿ " " # $

, œ "ß W œ "ß W  ,  l+ l Ê + œ ,  W œ #" "

Ê #B  B  %B Ÿ " " # $
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, œ "ß W œ "ß W  ,  l+ l Ê + œ ,  W œ #$ $

Ê #B  B  #B Ÿ " " # $

, œ "ß W œ "ß W   ,  l+ l 4 œ "ß #ß $4  for 

11.8-9.

The minimum cover for the constraint  is , so the resulting cutting#B  $B Ÿ % ÖB ß B ×" # " #

plane is , which is the same constraint obtained using the tighteningB  B Ÿ "" #

procedure.

11.8-10.

ÖB ß B × Ä B  B Ÿ "# % # %

ÖB ß B × Ä B  B Ÿ "$ % $ %

ÖB ß B ß B × Ä B  B  B Ÿ #" # $ " # $

11.8-11.

ÖB ß B × Ä B  B Ÿ "" # " #

ÖB ß B × Ä B  B Ÿ "" $ " $

ÖB ß B ß B × Ä B  B  B Ÿ ## $ % # $ %

11.8-12.

ÖB ß B × Ä B  B Ÿ "" % " %

ÖB ß B × Ä B  B Ÿ "# % # %

ÖB ß B × Ä B  B Ÿ "$ % $ %

ÖB ß B ß B × Ä B  B  B Ÿ #" # $ " # $

11.8-13.

ÖB ß B × Ä B  B Ÿ "" $ " $

ÖB ß B × Ä B  B Ÿ "" & " &

ÖB ß B × Ä B  B Ÿ "# $ # $

ÖB ß B × Ä B  B Ÿ "$ % $ %

ÖB ß B × Ä B  B Ÿ "$ & $ &

ÖB ß B × Ä B  B Ÿ "% & % &

ÖB ß B ß B × Ä B  B  B Ÿ #" # % " # %

11.8-14.

(1) $B  B  B   $ Ê B œ "# % & #

(2)  and B  B Ÿ " B œ " Ê B œ !" # # "

(3)  and B  B  B  B Ÿ " B œ " Ê B œ !ß B œ B œ "# % & ' # % & '

(4)  and B  #B  $B  B  #B   % B œ B œ "# ' ( ) * # '
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Ê $B  B  #B   " Ê B  B  B   "( ) * ( ) *

(5)  and B  #B  B  #B  #B  B Ÿ & B œ B œ "$ & ' ( ) * & '

Ê B  #B  #B  B Ÿ # Ê B  B  B  B Ÿ "$ ( ) * $ ( ) *

Hence, the problem is reduced to finding binary variables  thatB ß B ß B ß B$ ( ) *

 maximize  B  #B  B  $B$ ( ) *

 subject to               B  B  B   "( ) *

     .B  B  B  B Ÿ "$ ( ) *

The objective is maximized when all variables with positive coefficients are set to their
upper bounds, so when . This solution also satisfies theB œ B œ B œ B œ "$ ( ) *

constraints, so it is optimal.
Optimal Solution: , x œ Ð!ß "ß "ß !ß "ß "ß "ß "ß "Ñ ^ œ "&

11.9-1.

Since the variables  take values from the set  and all the variables mustB ß B ß B Ö#ß $ß %×" # $

have different values, . There are two feasible solutions,  and .B œ " Ð#ß %ß $ß "Ñ Ð$ß #ß %ß "Ñ%

Their objective function values are  and  respectively, so  is^ œ #*! ^ œ #)! Ð#ß %ß $ß "Ñ
optimal.

11.9-2.

B œ "#" : , , and , but , so this is not feasible.B œ ' B œ $ B œ * "#  *  '  #&% # $

B œ '" : B œ $ B œ "# B œ * '  *  "#  #&# % $, , and , , so this is not feasible.

B œ $" : B œ ' B œ "# B œ * $  *  "# Ÿ #&# % $, , and , , so this is feasible. There are two
feasible solutions,  with  and  with .Ð$ß 'ß *ß "#ß "&Ñ ^ œ "$) Ð$ß 'ß *ß "#ß ")Ñ ^ œ **
Hence,  is optimal.Ð$ß 'ß *ß "#ß "&Ñ

11.9-3.

B œ #&" :  and , but , so this is not feasible.B œ #! B œ $! #&  $!  &&% $

B œ $!" : , but , so  and . There are twoB − Ö#!ß #&× $!  #&  && B œ #! B œ #&$ $ %

feasible solutions,  with  and  with ,Ð$!ß $&ß #!ß #&Ñ ^ œ "")#& Ð$!ß %!ß #!ß #&Ñ ^ œ ""*&!
so  is optimal.Ð$!ß %!ß #!ß #&Ñ

11.9-4.

Let  denote the task to which the assignee  is assigned.C 33

 minimize D  D  D  D" # $ %

 subject to elementÐC ß Ò"$ß "'ß "#ß ""Óß D Ñ" "

   element MÐC ß Ò"&ß ß "$ß #!Óß D Ñ# #

   elementÐC ß Ò&ß (ß "!ß 'Óß D Ñ$ $

   elementÐC ß Ò!ß !ß !ß !Óß D Ñ% %

   all-differentÐC ß C ß C ß C Ñ" # $ %

   , for C − Ö"ß #ß $ß %× 3 œ "ß #ß $ß %3
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11.9-5.

Relabel Carl, Chris, David, Tony and Ken as assignee  respectively. Relabel"ß #ß $ß %ß &
Backstroke, Breaststroke, Butterfly, Freestyle and Dummy as tasks "ß #ß $ß %ß &
respectively. Let  be the task to which assignee  is assigned.C 33

 minimize D  D  D  D  D" # $ % &

 subject to elementÐC ß Ò$(Þ(ß %$Þ%ß $$Þ$ß #*Þ#ß !Óß D Ñ" "

   elementÐC ß Ò$#Þ*ß $$Þ"ß #)Þ&ß #'Þ%ß !Óß D Ñ# #

   elementÐC ß Ò$$Þ)ß %#Þ#ß $)Þ*ß #*Þ'ß !Óß D Ñ$ $

   elementÐC ß Ò$(Þ!ß $%Þ(ß $!Þ%ß #)Þ&ß !Óß D Ñ% %

   elementÐC ß Ò$&Þ%ß %"Þ)ß $$Þ'ß $"Þ"ß !Óß D Ñ& &

   all-differentÐC ß C ß C ß C ß C Ñ" # $ % &

   , for C − Ö"ß #ß $ß %ß &× 3 œ "ß #ß $ß %ß &3

11.9-6.

Let  be the number of study days allocated to course  for .C 3 3 œ "ß #ß $ß %3

 minimize D  D  D  D" # $ %

 subject to elementÐC ß Ò"ß $ß 'ß )Óß D Ñ" "

   elementÐC ß Ò&ß 'ß )ß )Óß D Ñ# #

   elementÐC ß Ò%ß 'ß (ß *Óß D Ñ$ $

   elementÐC ß Ò%ß %ß &ß )Óß D Ñ% %

   C  C  C  C Ÿ (" # $ %

   , for C − Ö"ß #ß $ß %× 3 œ "ß #ß $ß %3

11.9-7.

Let  be the number of crates allocated to store  for .C 3 3 œ "ß #ß $3

 minimize D  D  D" # $

 subject to elementÐC  "ß Ò!ß &ß *ß "%ß "(ß #"Óß D Ñ" "

   elementÐC  "ß Ò!ß 'ß ""ß "&ß "*ß ##Óß D Ñ# #

   elementÐC  "ß Ò!ß %ß *ß "$ß ")ß #!Óß D Ñ$ $

   C  C  C Ÿ &" # $

   , for C − Ö!ß "ß #ß $ß %ß &× 3 œ "ß #ß $3

11.9-8.

 minimize ^ œ -!
4œ"

8

B B4 4"

 subject to , for B − Ö#ß $ßá ß 8× 4 œ #ß $ßá ß 84

   B œ ""

   B œ "8"

   all-differentÐB ßá ß B Ñ# 8

11.10-1.

Answers will vary.

11.10-2.

Answers will vary.
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CHAPTER 12: NONLINEAR PROGRAMMING

12.1-1.

In 1995, a number of factors including increased competition, the lack of quantitative
tools to support financial advices and the introduction of new regulations compelled
Bank Hapoalim to review its investment advisory process. Consequently, the Opti-
Money system was developed as a tool to offer systematic financial advice. The
underlying mathematical model is a constrained nonlinear program with continuous or
discontinuous derivatives depending on the selected risk measure. The variables B3

denote the fraction of asset . The goal is to choose a portfolio that minimizes "risk"3
among all portfolios with a fixed expected return. Opti-Money allows the investor to
choose among four risk measures, viz., symmetric return variability, asymmetric
downside risk, asymmetric return variability around more than one benchmark, and
classical Markowitz risk of a portfolio. Once the risk measure and the benchmark(s) are
specified, the objective function is formulated as a weighted sum of this risk measure and
a market-portfolio tracking term. Then the efficient frontier is constructed.

The Opti-Money system increased average monthly profit of Bank Hapoalim
significantly. The average annual return for customers has also increased. The excess
earnings using Opti-Money exceeds $200 million per year. The subsidiaries of the bank
like Continental Mutual Fund benefit from Opti-Money, too. The new system resulted in
"an organizational revolution in the investment advisory process at Bank Hapoalim" [p.
46]. As a result of this study, additional consultation-support systems are developed to
help the customer relations managers.

12.1-2.

maximize 0Ð Ñ œ "!!B  "!B  %!B  &B  &!B  &BB " # $
#Î$ $Î% "Î#

" # $

subject to *B  $B  &B Ÿ &!!" # $

       &B  %B Ÿ $&!" #

        $B  #B Ÿ "&!" $

               B Ÿ #!$

         B ß B ß B   !" # $

12.1-3.
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Each term in the objective function changes (as above) from  to+ B34 34

 + B  !Þ"+ ÐB  %!ÑWÐB  %!Ñ34 34 34 34 34

where  is the shipping cost from cannery  to warehouse  and+ 3 434

 if 
if .WÐBÑ œ

! B  !
" B   !œ

The rest of the formulation is the same.

12.1-4.

Let  and  be the number of blocks of stock  and  to purchase respectively.W W " #" #

 minimize 0ÐW ß W Ñ œ %W  "!!W  &W W" # " #" #
# #

 subject to #!W  $!W Ÿ &!" #

     minimum acceptable expected return&W  "!W  " #

              W ß W   !" #

12.2-1.

0Ð Ñ œ 0 ÐB Ñ  0 ÐB Ñ  0 ÐB ÑB " " # # $ $

with .0 ÐB Ñ œ "!!B  "!B ß 0 ÐB Ñ œ %!B  &B ß 0 ÐB Ñ œ &!B  &B" " " # # # $ $ $" # $
#Î$ $Î% "Î#

. 0 ÐB Ñ
.B

#!!
* "

%Î$
"

#
" "

"
# œ  B Ÿ ! B   ! for 

. 0 ÐB Ñ
.B

"#!
"' #

&Î%
#

#
# #

#
# œ  B Ÿ ! B   ! for 

. 0 ÐB Ñ
.B

&!
% $

$Î#
$

#
$ $

$
# œ  B Ÿ ! B   ! for 

0 0 0 0" # $,  and  are concave on the nonnegative orthant so  is concave in the same region.
The constraints are linear. Hence, the problem is a convex programming problem.

12.2-2.
. 0ÐW ßW Ñ . 0ÐW ßW Ñ . 0ÐW ßW Ñ

.W .W .W .W

# # #
" # " # " #

" #
# #

" #
œ )   !ß œ #!!   !ß œ &   !

. 0ÐW ßW Ñ . 0ÐW ßW Ñ . 0ÐW ßW Ñ
.W .W .W .W

## # #
" # " # " #

" #
# #

" #
 œ "&(&   !’ “

Hence,  is convex everywhere.0

12.2-3.

Objective function: slope: ^ œ $B  &B Ê B œ Ð$Î&ÑB  Ð"Î&Ñ^ Ê Ð$Î&Ñ" # # "

Constraint boundary: *B  &B œ #"' Ê B œ Ð"Î&ÑÐ#"'  *B Ñ" #
# #

# "
#È

Ê œ  œ  B œ #`B *B
`B & &

" $

Ð"Î&ÑÐ#"'*B Ñ
"

# "

"
"
#É  for 

Hence, the objective function is tangent to this constraint at .ÐB ß B Ñ œ Ð#ß 'Ñ" #
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12.2-4.

Constraint boundary: $B  #B œ ") Ê 1ÐB Ñ œ B œ  B  * Ê œ " # " # "
$ $
# .B #

.1ÐB Ñ"
"

Objective function at : Ð)Î$ß &Ñ Ð*B  "#'B  )&(Ñ  ")#B  "$B œ !" #
# #

" #

Ê 0ÐB Ñ œ B œ Ê œ " #

")## #)'!"'$)B ""(B

#' .B #
.0ÐB Ñ $

É " "
#

"

"

0Ð)Î$Ñ œ 1Ð)Î$Ñ œ &

Hence, the objective function is tangent to this constraint at .ÐB ß B Ñ œ Ð)Î$ß &Ñ" #

12.2-5.

(a) .0ÐBÑ
.B

#œ #%!  '!!B  $!B œ !

  or Ê B œ œ !Þ%!) "*Þ&*#‡ '!!„ '!! %†$!†#%!
'!

È #

 . 0ÐBÑ
.B

#

# œ '!!  '!B

  is a local maximum.. 0Ð!Þ%!)Ñ
.B

#

# œ &(&Þ& Ê 0Ð!Þ%!)Ñ œ %)Þ''

  is a local minimum.. 0Ð"*Þ&*#Ñ
.B

#

# œ &(&Þ& Ê 0Ð"*Þ&*#Ñ œ $&ß #%)Þ(

(b) For ,  and  is unbounded above.B  "*Þ&*#  ! œ '!B  '!!  ! Ê 0.0ÐBÑ . 0ÐBÑ
.B .B

#

#

      For ,  and  is unbounded below.B  !Þ%!)  ! œ '!B  '!!  ! Ê 0.0ÐBÑ . 0ÐBÑ
.B .B

#

#

12.2-6.

(a)  for all  is concave.. 0ÐBÑ
.B

#

# œ #  ! B Ê 0

(b)  for all  is convex.. 0ÐBÑ
.B

#
#

# œ "#B  "#  ! B Ê 0

(c)  is neither convex nor concave.for 
for 

. 0ÐBÑ
.B

#

# œ "#B' Ê 0
 ! B  "Î#
 ! B  "Î#œ

(d)  for all  is convex.. 0ÐBÑ
.B

#
#

# œ "#B  #  ! B Ê 0

(e)  is neither convex norfor  or 
for 

. 0ÐBÑ
.B

#
#

# œ 'B  "#B Ê 0
 ! B  "Î# B  !
 ! "Î#  B  !œ

concave.

12.2-7.

(a)  for all ` 0ÐB ßB Ñ ` 0ÐB ßB Ñ
`B `B " #

# #
" # " #

" #
# #œ œ #  ! ÐB ß B Ñ

` 0ÐB ßB Ñ ` 0ÐB ßB Ñ ` 0ÐB ßB Ñ
`B `B `B `B

#
#

" #

# # #
" # " # " #

" #
# #

" #
 œ %  " œ $  ! ÐB ß B Ñ’ “  for all 

Ê 0  is concave.
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(b)  for all ` 0ÐB ßB Ñ ` 0ÐB ßB Ñ
`B `B " #

# #
" # " #

" #
# #œ %  !ß œ #  ! ÐB ß B Ñ

` 0ÐB ßB Ñ ` 0ÐB ßB Ñ ` 0ÐB ßB Ñ
`B `B `B `B

#
#

" #

# # #
" # " # " #

" #
# #

" #
 œ )  # œ %  ! ÐB ß B Ñ’ “  for all 

Ê 0  is convex.

(c)  for all ` 0ÐB ßB Ñ ` 0ÐB ßB Ñ
`B `B " #

# #
" # " #

" #
# #œ #  !ß œ %  ! ÐB ß B Ñ

` 0ÐB ßB Ñ ` 0ÐB ßB Ñ ` 0ÐB ßB Ñ
`B `B `B `B

#
#

" #

# # #
" # " # " #

" #
# #

" #
 œ )  $ œ "  ! ÐB ß B Ñ’ “  for all 

Ê 0  is neither convex nor concave.

(d) ` 0ÐB ßB Ñ ` 0ÐB ßB Ñ ` 0ÐB ßB Ñ
`B `B `B `B

# # #
" # " # " #

" #
# #

" #
œ œ œ !

` 0ÐB ßB Ñ ` 0ÐB ßB Ñ ` 0ÐB ßB Ñ
`B `B `B `B

## # #
" # " # " #

" #
# #

" #
 œ !’ “

Ê 0  is both convex and concave.

(e)  for all ` 0ÐB ßB Ñ ` 0ÐB ßB Ñ
`B `B " #

# #
" # " #

" #
# #œ œ ! ÐB ß B Ñ

` 0ÐB ßB Ñ ` 0ÐB ßB Ñ ` 0ÐB ßB Ñ
`B `B `B `B

#
#

" #

# # #
" # " # " #

" #
# #

" #
 œ !  " œ "  ! ÐB ß B Ñ’ “  for all 

Ê 0  is neither convex nor concave.

12.2-8.

0ÐBÑ œ 0 ÐB Ñ  0 ÐB Ñ  0 ÐB ß B Ñ  0 ÐB ß B Ñ  0 ÐB ß B Ñ" " # # $% $ % &' & ' '( ' (

with 0 ÐB Ñ œ &B ß 0 ÐB Ñ œ #B ß 0 ÐB ß B Ñ œ B  $B B  %B ß" " " # # $% $ % $ %# $
# # #

%

0 ÐB ß B Ñ œ B  $B B  $B ß 0 ÐB ß B Ñ œ $B  $B B  B&' & ' & ' '( ' ( ' (& ' '
# # # #

(.
. 0 ÐB Ñ

.B " "

#
" "

"
# œ ! B Ê 0 for all  is convex (and concave).

. 0 ÐB Ñ
.B # #

#
# #

#
# œ %  ! B Ê 0 for all  is convex.

. 0 ÐB ßB Ñ . 0 ÐB ßB Ñ
.B .B $ %

# #
$% $ % $% $ %

$
# #

%
œ #  !ß œ )  ! ÐB ß B Ñ for all 

. 0 ÐB ßB Ñ . 0 ÐB ßB Ñ . 0 ÐB ßB Ñ
.B .B .B .B

#
#

$ %

# # #
$% $ % $% $ % $% $ %

$
# #

% $ %
 œ "'  $ œ (  ! ÐB ß B Ñ’ “  for all 

Ê 0$% is convex.
. 0 ÐB ßB Ñ . 0 ÐB ßB Ñ

.B .B & '

# #
&' & ' &' & '

& '
# #œ #  !ß œ '  ! ÐB ß B Ñ for all 

. 0 ÐB ßB Ñ . 0 ÐB ßB Ñ . 0 ÐB ßB Ñ
.B .B .B .B

#
#

& '

# # #
&' & ' &' & ' &' & '

& '
# #

& '
 œ "#  $ œ $  ! ÐB ß B Ñ’ “  for all 

Ê 0&' is convex.

0 ÐB ß B Ñ œ 0 ÐB ß B Ñ Ê 0'( ' ( &' ( ' '( is convex.

Hence,  is convex.0
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12.2-9.

(a) maximize 0Ð Ñ œ B  BB " #

 subject to 1Ð Ñ œ B  B Ÿ "ß   !B B" #
# #

` 0Ð Ñ ` 0Ð Ñ ` 0Ð Ñ ` 0Ð Ñ ` 0Ð Ñ ` 0Ð Ñ
`B `B `B `B`B `B `B `B

## # # # # #

" # " #
# # # #

" # " #

B B B B B Bœ œ œ !ß  œ ! Ê 0’ “  is concave (convex).

` 1Ð Ñ ` 1Ð Ñ ` 1Ð Ñ ` 1Ð Ñ ` 1Ð Ñ
`B `B `B `B `B `B

#
#

# # # # #

" # " #
# # # #

" #

B B B B Bœ œ #  !ß  œ %  ! œ %  ! Ê 1’ “  is convex.

The problem is a convex programming problem.

(b)

 

12.2-10.

(a)

 

Clearly, this is not a convex feasible region. For example, take the points  andÐ!ß #ÑÈ
Ð!ß #Ñ Ð!ß !Ñ œ Ð!ß #Ñ  Ð!ß #ÑÈ È È,  is not feasible." "

# #

(b) Feasible region: B  B Ÿ #" #
# #

Both  and  are concave functions, so the feasible region need1 ÐB Ñ œ B 1 ÐB Ñ œ B" " # #" #
# #

not be convex.

 . 1 ÐB Ñ . 1 ÐB Ñ
.B .B

# #
" " # #

" #
# #œ œ "  !

To prove that the feasible region is not convex, one needs to find two feasible points C
and , a scalar  such that  is not feasible. Such points are given inD − Ò!ß "Ó C  Ð"  ÑD! ! !
part (a).
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12.3-1.

Since the objective is to minimize a concave function, as shown in Problem 12.1-3, this is
a nonconvex programming problem.

12.3-2.
.0ÐBÑ
.B '!

# $!„ $! %†$!†"#!œ "#!  $!B  $!B œ ! Ê B œ
È #  no real solution

. 0ÐBÑ
.B

#

# œ $!'!B
 ! B  "Î#
 ! B  "Î#œ for 

for 

The slope of  increases from  at  to  at  and decreases for all0 "#! B œ ! ""#Þ& B œ "Î#
B B œ ! thereafter. It is always negative, so  is optimal.‡

12.3-3.

(a) Linearly Constrained Convex Programming:

1 ÐB ß B Ñ œ #B  B 1 ÐB ß B Ñ œ B  #B" " # " # # " # " # and  are linear.
` 0ÐB ßB Ñ ` 0ÐB ßB Ñ

`B `B"
#

" #

# #
" # " #

" #
# #œ "#B  %  !ß œ )  ! ÐB ß B Ñ for all 

` 0ÐB ßB Ñ ` 0ÐB ßB Ñ ` 0ÐB ßB Ñ
`B `B `B `B

#

"
# #

" #

# # #
" # " # " #

" #
# #

" #
 œ *'B  $#  #  ! ÐB ß B Ñ’ “  for all 

Ê 0  is concave.

 Geometric Programming:

0Ð Ñ œ - B B  - B B  - B B  - B BB " # $ %" # " # " # " #
+ + + + + ++ +"" "# #" ## %" %#$" $#

where - œ "ß + œ %ß + œ !" "" "#

 - œ #ß + œ #ß + œ !# #" ##

 - œ #ß + œ "ß + œ "$ $" $#

 - œ %ß + œ !ß + œ #% %" %#

1 Ð Ñ œ - B B  - B B" " #" # " #
+ + + +B "" "# #" ##

where - œ #ß + œ "ß + œ !" "" "#

 - œ "ß + œ !ß + œ "# #" ##

1 Ð Ñ œ - B B  - B B# " #" # " #
+ + + +B "" "# #" ##

where - œ "ß + œ "ß + œ !" "" "#

 - œ #ß + œ !ß + œ "# #" ##

 Fractional Programming:

0 œ 0 Î0 0 œ 0 0 œ "w
" # " # where  and 

(b) Let  and .C œ B  " C œ B  "" " # #

minimize C  %C  )C  "!C  #C C  %C  "!C" " #
% $ # #

" " " # #

subject to   #C  C   (" #

    C  #C   (" #

    C ß C   !" #
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12.3-4.

(a) Let  and .B œ / B œ /" #
C C" #

minimize 0Ð Ñ œ #/  /C #C C C #C" # " #

subject to 1Ð Ñ œ %/  /  "# Ÿ !C C C #C #C" # " #

      (true for any )/ ß /   ! ÐC ß C ÑC C
" #

" #

(b)  for all ` 0Ð Ñ
`C

#C C C #C
" #

#

"
#

" # " #C œ )/  /   ! ÐC ß C Ñ

  for all ` 0Ð Ñ
`C

#C C C #C
" #

#

#
#

" # " #C œ #/  %/   ! ÐC ß C Ñ

  for all ` 0Ð Ñ ` 0Ð Ñ ` 0Ð Ñ
`C `C `C `C

#
$C $C

" #

# # #

" #
# #

" #

" #C C C œ ")/   ! ÐC ß C Ñ’ “
  is convex.Ê 0

  for all ` 1Ð Ñ ` 1Ð Ñ ` 1Ð Ñ
`C `C `C `C

C C #C #C
" #

# # #

" #
# #

" #

" # " #C C Cœ œ œ %/  %/   ! ÐC ß C Ñ

  for all ` 1Ð Ñ ` 1Ð Ñ ` 1Ð Ñ
`C `C `C `C

#

" #

# # #

" #
# #

" #

C C C œ ! ÐC ß C Ñ’ “
  is convex.Ê 1

Hence, this is a convex programming problem.

12.3-5.

(a) maximize "!C  #!C  "!>" #

 subject to       C  $C  &!> Ÿ !" #

       $C  %C  )!> Ÿ !" #

       $C  %C  #!> œ "" #

       C ß C ß >   !" #

(b)

The variables  in this courseware solution correspond to the variablesÐ\"ß\#ß\$Ñ
ÐC ß C ß >Ñ ÐC ß C ß >Ñ œ Ð!ß !Þ"*#ß !Þ!"#Ñ" # " # in (a), so the optimal solution is  with the
objective function value . Then, the optimal solution of the original problem is^ œ $Þ*'#
ÐB ß B Ñ œ Ð!ß "'Þ'(Ñ 0Ð Ñ œ $Þ*'#" #  with the optimal objective function value .B
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12.3-6.

KKT conditions: UB E ?  - œ CX

   EB  , œ @
   Bß ?ß Cß @   !
   B ÐUB  E ?  -Ñ  ? ÐEB  ,Ñ œ !X X X

This is the linear complementarity problem with:

 .  
  ^ œ ßQ œ ß ; œ ßA œ

B -
? ,

U E UB  E ?  -
E ! EB  ,Œ  Œ  Œ  Œ X X

12.4-1.

(a)

(b)
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12.4-2.

(a)

 
(b)

 

12.4-3.

(a)

 
(b)
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12.4-4.

(a)  0ÐBÑ œ "!B  '!B  #B  $B  "#B$ ' % #

  œ BÒ#B ÐB  &Ñ  $ÐB  %B  #!ÑÓ# $ $

  œ BÒ#B ÐB  )Ñ  $ÐB  'B  %B  #!ÑÓ# $ $ #

The expression in brackets is positive for all  and negative for all , so  isB   # B Ÿ ! 0ÐBÑ
negative for  and . Hence, choose  and .B   # B  ! B œ ! B œ #

(b)  0ÐBÑ œ "!B  '!B  #B  $B  "#B$ ' % #

  0 ÐBÑ œ $!B  '!  "#B  "#B  #%Bw # & $

  0 ÐBÑ œ '!B  '!B  $'B  #%ww % #

 Iteration 
           
      
      

3 B 0ÐB Ñ 0 ÐB Ñ 0 ÐB Ñ B lB  B l
" " &$ %# '! "Þ( !Þ(
# "Þ( %$Þ""* "#$Þ%% &#(Þ"( "Þ%'&)% !Þ#$%"'
$ "Þ%'&)

3 3 3 3 3" 3 3"
w ww

% &*Þ*(" #*Þ($ #*!Þ%" "Þ$'$%) !Þ"!#$'
% "Þ$'$%) '"Þ'#* $Þ*"* #"'Þ%* "Þ$%&$) !Þ!")"
& "Þ$%&$) '"Þ''& !Þ"!& #!&Þ!# "Þ$%%)( !Þ!!!&"
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12.4-5.

(a) 0 ÐBÑ œ %B  #B  % Ê 0 Ð!Ñ œ %ß 0 Ð"Ñ œ #ß 0 Ð#Ñ œ $#w $ w w w

Since  is continuous, there must be a point  such that  and0 ÐBÑ ! Ÿ B Ÿ " 0 ÐB Ñ œ !w ‡ w ‡

since  is a convex function (given that this is a convex programming problem),  must0 B‡

be the optimal solution. Hence, the optimal solution lies in the interval .! Ÿ B Ÿ "

(b)

 

(c)
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12.4-6.

(a) Consider the two cases:

Case 1:  and B œ B B œ B8" 8 8" 8
w

 Ê B  B œ B  B œ B  ÐB  B Ñ œ ÐB  B Ñ8" 8 8 8 88" 8 8 8
w " "

# #

Case 2:  and B œ B B œ B8" 8 8" 8
w

 Ê B  B œ B  B œ ÐB  B Ñ  B œ ÐB  B Ñ8" 8 88" 8 8 8 8 8
w " "

# #

In both cases: B  B œ ÐB  B Ñ œ â œ ÐB  B Ñ8" 8 !8" 8 !
" "
# #8"

  lim limÊ ÐB  B Ñ œ ÐB  B Ñ œ !
8Ä_ 8Ä_

8" !8" !
"

#8"

If the sequence of trial solutions selected by the midpoint rule did not converge to a
limiting solution, then there must be an  such that regardless of what  is, there are%  ! R
8   R 7   R lB  B l  R and  with . In that case, choose  that satisfies8 7

w w %
lB  B l œ # ÐB  B Ñ  8   R B − ÒB ß B ÓR ! RR ! 8 R

R w%. Then for every , since :

 ,lB  B l Ÿ lB  B l œ # ÐB  B Ñ 8 7 R !
w w R

R ! %

which contradicts that . Hence, the sequence must converge.lB  B l 8 7
w w %

(b) Let  be the limiting solution. Then,  for  and  for .B 0 ÐBÑ   ! B  B 0 ÐBÑ Ÿ ! B  Bw w

Suppose now that there exists an  with  so that  is not a global maximum.B 0ÐBÑ  0ÐBÑ Bs s

Case 1: . By the Mean Value Theorem, there exists a  such that  andB  B D B  D  Bs s
0ÐBÑ  0ÐBÑ œ ÐB  BÑ0 ÐDÑ Ÿ ! 0ÐBÑ Ÿ 0ÐBÑs s sw , so .

Case : . By the Mean Value Theorem, there exists a  such that  and# B  B D B  D  Bs s
0ÐBÑ  0ÐBÑ œ ÐB  BÑ0 ÐDÑ   ! 0ÐBÑ Ÿ 0ÐBÑs s sw , so .

Both cases give rise to a contradiction, so  must be a global maximum.B

(c) The argument is the same as the one in part (b). Observe that  that is chosen betweenD
B B 0 B Bs and  remains in the region where  is concave and the values  and  are given as! !

lower and upper bounds on the same global maximum.

(d) In the example illustrated in the graph below, the bisection method converges to B
rather than to , which is the global maximum.B‡
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(e) Suppose  for all  and  is a global maximum. Then, by the Mean Value0 ÐBÑ  ! B Bsw

Theorem, there exists a  such that  and , soD B  D  B 0ÐBÑ  0ÐBÑ œ ÐB  BÑ0 ÐDÑ  !s s s w

0ÐBÑ œ 0ÐBÑ  ÐB  BÑ0 ÐDÑ  0ÐBÑs s sw . The objective function value can be strictly
increased by choosing smaller  values at any given point, so there exists no lower boundB
B! on the global maximum, there is no global maximum indeed.

Suppose  for all  and  is a global maximum. Then, by the Mean Value0 ÐBÑ  ! B Bsw

Theorem, there exists a  such that  and , soD B  D  B 0ÐBÑ  0ÐBÑ œ ÐB  BÑ0 ÐDÑ  !s s s w

0ÐBÑ œ 0ÐBÑ  ÐB  BÑ0 ÐDÑ  0ÐBÑs s sw . The objective function value can be strictly
increased by choosing larger  values at any given point, so there exists no upper boundB
B! on the global maximum, there is no global maximum indeed.

(f) Suppose  is concave and there exists a lower bound  on the global maximum.0ÐBÑ B!

In this case, , but  is monotone decreasing, so for , .0 ÐB Ñ   ! 0 ÐBÑ B  B 0 ÐBÑ   !w w w
! !

Hence, lim , so if lim , there cannot be an .BÄ_ BÄ_
w w

!0 ÐBÑ   ! 0 ÐBÑ  ! B

Suppose  is concave and there exists an upper bound  on the global maximum.0ÐBÑ B!

In this case, , but  is monotone decreasing, so for , .0 ÐB Ñ Ÿ ! 0 ÐBÑ B  B 0 ÐBÑ Ÿ !w w w
! !

Hence, lim , so if lim , there cannot be an .BÄ_ BÄ_ !
w w0 ÐBÑ Ÿ ! 0 ÐBÑ  ! B

In either case, there is no global maximum, since one of the bounds does not exist.

12.4-7.

0Ð Ñ œ 0 ÐB Ñ  0 ÐB ÑB " " # #

where  and .0 ÐB Ñ œ $#B  B 0 ÐB Ñ œ &!B  "!B  B  B" " " # # #" # #
% # $ %

#

.0 ÐB Ñ
.B "

$
" "

" "

"
œ $#  %B œ ! Í B œ #ß 0 Ð#Ñ œ %)

Bisection method with  and initial bounds  and  applied to  gives% œ !Þ!!" ! % 0 ÐB Ñ# #

B œ "Þ)!(' 0 Ð"Þ)!('Ñ œ &#Þ*$' 0Ð#ß "Þ)!('Ñ œ "!!Þ*$'# # and , so .

$B  B œ (Þ)!('  "" #B  &B œ "$Þ!$)  "'" # " # and 

Since the optimal solution for the unconstrained problem is in the interior of the feasible
region for the constrained problem, it is also optimal for the constrained problem.

12.5-1.

(a)

(b)  and  is optimal.#B  #B œ ! #B  %B œ " Ê B œ B œ !Þ&" # " # " #
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(c)

 

(d) Solution: , grad ÐB ß B Ñ œ Ð!Þ&!)ß !Þ&!%Ñ 0ÐB ß B Ñ œ Ð)/$ß '/)Ñ" # " #

12.5-2.

Solution: , grad  ÐB ß B Ñ œ Ð!Þ!!&ß !Þ!!$Ñ 0ÐB ß B Ñ œ Ð(/$ß $/)Ñ" # " #

f0 œ Ð$!B  '!B ß '!B  "'!B Ñ œ ! Í ÐB ß B Ñ œ Ð!ß !Ñ" # " # " #  is optimal.

12.5-3.

Solution: , grad ÐB ß B Ñ œ Ð"Þ**(ß#Ñ 0ÐB ß B Ñ œ Ð!Þ!!#ß !Þ!!"Ñ" # " #

f0 œ Ð#B  #B  )ß #B  %B  "#Ñ œ ! Í ÐB ß B Ñ œ Ð#ß#Ñ" # " # " #  is optimal.
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12.5-4.

Solution: , grad ÐB ß B Ñ œ Ð"Þ**%ß !Þ*)*Ñ 0ÐB ß B Ñ œ Ð!Þ!!$ß !Þ!"Ñ" # " #

f0 œ Ð%B  #B  'ß #B  #B  #Ñ œ ! Í ÐB ß B Ñ œ Ð#ß "Ñ" # " # " #  is optimal.

12.5-5.

 Iter.   Iter.   
      

  
  

 is the

B f0ÐB Ñ 0ÐB  f0ÐB ÑÑ > 0Ð>Ñ

" Ð!ß !Ñ Ð%ß #Ñ #!>  #'>  #&'> " !Þ& "%%
# !Þ#& "%
> œ !Þ"#&

Ê B  > f0ÐBÑ œ Ð!Þ&ß !Þ#&Ñ

8 8 8 8
w

# %

‡

‡  approximate solution.

12.5-6.

(a) 0Ð Ñ œ 0 ÐB ß B Ñ  0 ÐB ß B ÑB " " # # # $

where  and .0 ÐB ß B Ñ œ $B B  B  $B 0 ÐB ß B Ñ œ $B B  B  $B" " # " # # # $ # $" # $ #
# # # #

Note that , so for any given , the maximizers of  and  are0 ÐB ß B Ñ œ 0 ÐB ß B Ñ B 0 0" $ # # # $ # " #

the same, i.e., . Hence, first maximize  (or ) and obtain . Then, setB œ B 0 0 ÐB ß B Ñ" $ " # " #

B œ B 0Ð Ñ œ #0 ÐB ß B Ñ$ " " " # and .B

(b)

Final Solution:  is anÐB ß B Ñ œ Ð!Þ!'*ß !Þ!$'Ñ Ê ÐB ß B ß B Ñ œ Ð!Þ!'*ß !Þ!$'ß !Þ!'*Ñ" # " # $

approximate solution.

(c) Solution: , grad ÐB ß B Ñ œ Ð!Þ!!%ß !Þ!!#Ñ 0ÐB ß B Ñ œ Ð#/$ß '/%Ñ" # " #

12.5-7.

Solution: , grad ÐB ß B Ñ œ Ð!Þ**'ß "Þ**)Ñ 0ÐB ß B Ñ œ œ Ð!Þ!!'ß#/)Ñ" # " #
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12.6-1.

KKT conditions: (1) %B  #B  %  ? Ÿ !$

   (2) BÐ%B  #B  %  ?Ñ œ !$

   (3) B  # Ÿ !
   (4) ?ÐB  #Ñ œ !
   (5) B   !
   (6) ?   !

If , from (2), , so , which violates (6). Hence,B œ # %B  #B  %  ? œ ! ? œ $#$

B Á # ? œ ! B œ ! %B  #B  % œ !, then from (4), . From (2), either  or . In the former$

case, (1) is violated, so the latter equality must hold. This gives

 .B œ    œ !Þ)$&"#Ê ÊÉ É$ $" && " &&
# #"' # #"'

12.6-2.

KKT conditions: (1a)   ( b) "  #?B Ÿ ! " "  #?B Ÿ !" #

   (2a)  ( b) B Ð"  #?B Ñ œ ! # B Ð"  #?B Ñ œ !" " # #

   (3) B  B  " Ÿ !" #
# #

   (4) ?ÐB  B  "Ñ œ !" #
# #

   (5) B   !ß B   !" #

   (6) ?   !

If , from (2a), . This solution satisfies all KKT conditions,B œ Ð"Î #ß "Î #Ñ ? œ "Î #È È È
so it is optimal.

12.6-3.

KKT conditions: (1a) %B  %B  #B  #?  ? Ÿ !"
$

" # " #

   (2a) B Ð%B  %B  #B  #?  ? Ñ œ !" " # " #"
$

   (1b)  #B  )B  ?  #? Ÿ !" # " #

   (2b) B Ð  #B  )B  ?  #? Ñ œ !# " # " #

   (3a) #B  B   "!" #

   (4a) ? Ð#B  B  "!Ñ œ !" " #

   (3b) B  #B   "!" #

   (4b) ? ÐB  #B  "!Ñ œ !# " #

   (5) B   !ß B   !" #

   (6) ?   !ß ?   !" #

If , from (2b),  and from (4b), , so . ThisB œ Ð!ß "!Ñ ?  #? œ )! ? œ ! ? œ )!" # # "

solution violates (1a), so it is not optimal.

12.6-4.

(a) KKT conditions: (1a)   (1b) "#  #B  ? Ÿ ! &!  #B  ? Ÿ !" " # #

   (2a)   (2b) B Ð"#  #B  ? Ñ œ ! B Ð&!  #B  ? Ñ œ !" " " # # #

   (3a)     (3b) B Ÿ "! B Ÿ "&" #

   (4a)    (4b) ? ÐB  "!Ñ œ ! ? ÐB  "&Ñ œ !" " # #

   (5) B   !ß B   !" #

   (6) ?   !ß ?   !" #
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Consider . From (2a), , which violates (6). Hence, . TheB œ "! ? œ ) ? œ !" " "

constraint (1a) together with (2a) implies . Also, let . From (2b), .B œ ' B œ "& ? œ #!" # #

This solution satisfies all the conditions and since this is a convex programming problem,
ÐB ß B Ñ œ Ð'ß "&Ñ" #  is optimal.

(b) Subproblem 1: maximize  subject to 0 ÐB Ñ œ "#B  B ! Ÿ B Ÿ "!" " " ""
#

 Subproblem 2: maximize  subject to 0 ÐB Ñ œ &!B  B ! Ÿ B Ÿ "&# # # "#
#

`0 Ð Ñ ` 0 Ð Ñ
`B " " "`B
" "

"

#

"
#

B B" "œ "#  #B œ ! B œ ' œ #  ! Ê B œ ' at  and  is a global
maximizer.
`0 Ð Ñ
`B # # #
#

#

B# œ &!  #B  ! ! Ÿ B Ÿ "& Ê B œ "& for all  is the maximizer over the
feasible region.

12.6-5.

(a)  for all  such that ` 0Ð Ñ
`B

"
ÐB "Ñ " # "

#

"
#

"
#

B œ  Ÿ ! ÐB ß B Ñ B Á "

` 0Ð Ñ
`B " #

#

#
#
B œ # Ÿ ! ÐB ß B Ñ for all 

` 0Ð Ñ ` 0Ð Ñ ` 0Ð Ñ
`B `B `B `B ÐB "Ñ

#
#

" # "

# # #

" #
# #

" # "
#

B B B œ   ! ÐB ß B Ñ B Á "’ “  for all  such that 

Ê 0  is concave.

Since also  is linear, this is a convex programming problem.1Ð Ñ œ B  #B  $B " #

(b) KKT conditions: (1a)   (1b) "
ÐB "Ñ #

"
 ? Ÿ ! #B  #? Ÿ !

   (2a)  (2b) B  ? œ ! B Ð#B  #?Ñ œ !" # #
"

ÐB "ÑŠ ‹
"

   (3) B  #B Ÿ $" #

   (4) ?ÐB  #B  $Ñ œ !" #

   (5) B   !ß B   !" #

   (6) ?   !

Consider . From (4), . Let . Then,  and from (2a),? Á ! B  #B œ $ B œ ! B œ $" # # "

? œ !Þ#& ÐB ß B Ñ œ Ð$ß !Ñ. This satisfies all the conditions, so  is optimal." #

(c) Since  is monotonically strictly decreasing in  and ln  is monotoni-B B   ! ÐB  "Ñ#
#

# "

cally strictly increasing in , it is intuitively clear that one would like to increase B   ! B" "



12-18

and decrease  towards  as much as possible, in order to maximize the objectiveB !#

function. Let  denote the set of feasible points. Then,Y

 max min min max .
B BB B" "# #

’ “ ’ “Y Yœ œ ÖÐ$ß !Ñ×

Hence, the solution  makes intuitive sense.Ð$ß !Ñ

12.6-6.

KKT conditions: (1a)  (1b) $'  ")B  ")B  ? Ÿ ! $'  *B  ? Ÿ !" " #
# #

   (2a)  (2b) B Ð$'  ")B  ")B  ?Ñ œ ! B Ð$'  *B  ?Ñ œ !" " #" #
# #

   (3) B  B Ÿ $" #

   (4) ?ÐB  B  $Ñ œ !" #

   (5) B   !ß B   !" #

   (6) ?   !

For , from (2b),  and this violates (2a), so  is not optimal.ÐB ß B Ñ œ Ð"ß #Ñ ? œ ! Ð"ß #Ñ" #

12.6-7.

(a) KKT conditions: (1a)   (1b) "
ÐB "Ñ ÐB "Ñ

B

# #

"
# ? Ÿ !   ? Ÿ !

   (2a)  (2b) B  ? œ ! B   ? œ !" #
"

ÐB "Ñ ÐB "Ñ
BŠ ‹ Š ‹

# #

"
#

   (3) B  B Ÿ #" #

   (4) ?ÐB  B  #Ñ œ !" #

   (5) B   !ß B   !" #

   (6) ?   !

For , from (2a),  and this violates (2b), so  is not optimal.ÐB ß B Ñ œ Ð%ß #Ñ ? œ "Î$ Ð%ß #Ñ" #

(b) Try  and . From (4),  and from (2a), . This solution satisfiesB œ ! ? Á ! B œ # ? œ "# "

all the conditions, so  is optimal.ÐB ß B Ñ œ Ð#ß !Ñ" #

(c)  for all ` 0Ð Ñ ` 0Ð Ñ ` 0Ð Ñ
`B `B

#B
ÐB "Ñ `B `B ÐB "Ñ

"
" #

# # #

" #
# #

"

# " # #
# #

B B Bœ !ß œ   !ß œ  Ÿ ! B   !ß B   !

Thus,  is not concave and this is not a convex programming problem.0

(d) The function  is monotonically strictly increasing in  and monotonically0Ð Ñ BB "

strictly decreasing in  if . Any optimal solution in a bounded feasible regionB B  "# #

with  will have  increased as much as possible and  decreased toward  asB  " B B "# " #

much as possible. The feasible region of the problem allows  to be increased withoutB"

bound. However, then  can only be decreased to the line .B B  B œ ## " #

  as  and  at 0ÐB  #ß B Ñ œ Ä " B Ä _ 0ÐB  #ß B Ñ œ # B œ !# # # # # #
B #
B "
#

#

Conversely, if  is decreased to ,  can be increased to . Hence, the optimalB ! B B œ ## " "

solution is .ÐB ß B Ñ œ Ð#ß !Ñ" #

(e) maximize     maximize    B Í B" "

subject to   subject to B  B  #> Ÿ ! B  B Ÿ #" # " #

                          B  > œ " B Ÿ "# #

       B ß B ß >   ! B ß B   !" # " #
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ÐB ß B Ñ œ Ð#ß !Ñ" #  is optimal.

12.6-8.

(a) KKT conditions: (1a)   (1b) "  ? Ÿ ! #  $B  ? Ÿ !#
#

   (2a)  (2b) B Ð"  ?Ñ œ ! B Ð#  $B  ?Ñ œ !" # #
#

   (3) B  B Ÿ "" #

   (4) ?ÐB  B  "Ñ œ !" #

   (5) B   !ß B   !" #

   (6) ?   !

The solution  satisfies all the conditions. Since this isÐB ß B ß ?Ñ œ Ð"  "Î $ß "Î $ß "Ñ" #
È È

a convex programming problem,  is optimal.Ð"  "Î $ß "Î $ÑÈ È
(a) KKT conditions: (1a)       (1b) #!  #? B  ? Ÿ ! "!  #? B  #? Ÿ !" " # " " #

   (2a)     (2b) B Ð#!  #? B  ? Ñ œ ! B Ð"!  #? B  #? Ñ œ !" " " # # " " #

   (3a)        (3b) B  B Ÿ " B  #B Ÿ #" #
# #

" #

   (4a)       (4b) ? ÐB  B  "Ñ œ ! ? ÐB  #B  #Ñ œ !" # " #" #
# #

   (5) B   !ß B   !" #

   (6) ?   !ß ?   !" #

The solution  satisfies all the conditions. Since thisÐB ß B ß ?Ñ œ Ð#Î &ß "Î &ß & &ß !Ñ" #
È È È

is a convex programming problem,  is optimal.Ð#Î &ß "Î &ÑÈ È
12.6-9.

 minimize 0Ð ÑB
 subject to  for 1 Ð Ñ   , 3 œ "ß #ßá ß73 3B
   B ! 

Í 0Ð Ñ maximize B
 subject to  for 1 Ð Ñ Ÿ , 3 œ "ß #ßá ß73 3B
   B ! 

KKT conditions: (1)  for !
3œ"

7

3
`1 Ð Ñ `0Ð Ñ
`B `B?  Ÿ ! 4 œ "ß #ßá ß 83

4 4

B B

   (2)   for B ?  œ ! 4 œ "ß #ßá ß 84 3
3œ"

7
`1 Ð Ñ `0Ð Ñ
`B `BŒ ! 3

4 4

B B

   (3)  for 1 Ð Ñ   , 3 œ "ß #ßá ß73 3B
   (4)  for ? Ð,  1 Ð ÑÑ œ ! 3 œ "ß #ßá ß73 3 3 B
   (5)  for B   ! 4 œ "ß #ßá ß 84

   (6)  for ?   ! 3 œ "ß #ßá ß73
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12.6-10.

(a) An equivalent nonlinear programming problem is:

 maximize ^ œ #B  B" #
# #

 subject to       B  B Ÿ "!" #

   B  B Ÿ "!" #

         .B ß B   !" #

This problem can be fitted to the following problems.

- Linearly Constrained Optimization Problem: All constraints are linear.

- Quadratic Programming Problem: All constraints are linear and the objective function
involves only the squares of the variables.

- Convex Programming Problem: The objective function is concave and all constraints
are linear.

  is concave.` 0Ð Ñ ` 0Ð Ñ ` 0Ð Ñ
`B `B `B `B

## # #

" #
# #

" #

B B B œ Ð%ÑÐ#Ñ  ! œ )   ! Ê 0’ “
- Geometric Programming Problem:

 0ÐB ß B Ñ œ - T ÐB ß B Ñ  - T ÐB ß B Ñ" # " " " # # # " #

with , ,  and - œ # - œ " T ÐB ß B Ñ œ B T ÐB ß B Ñ œ B" # " " # # " #" #
# #

 1 ÐB ß B Ñ œ - T ÐB ß B Ñ  - T ÐB ß B Ñ" " # " " " # # # " #

with ,  and - œ - œ " T ÐB ß B Ñ œ B T ÐB ß B Ñ œ B" # " " # " # " # #

 1 ÐB ß B Ñ œ - T ÐB ß B Ñ  - T ÐB ß B Ñ# " # " " " # # # " #

with ,  and - œ - œ " T ÐB ß B Ñ œ B T ÐB ß B Ñ œ B" # " " # " # " # #

- Fractional Programming Problem:

  with  and 0ÐB ß B Ñ œ 0 ÐB ß B Ñ œ #B  B 0 ÐB ß B Ñ œ "" # " " # # " #
0 ÐB ßB Ñ
0 ÐB ßB Ñ " #

# #" " #

# " #

(b) KKT conditions: (1a) %B  ?  ? Ÿ !" " #

   (2a) B Ð%B  ?  ? Ñ œ !" " " #

   (1b) #B  ?  ? Ÿ !# " #

   (2b) B Ð#B  ?  ? Ñ œ !# # " #

   (3a) B  B  "! Ÿ !" #

   (4a) ? ÐB  B  "!Ñ œ !" " #

   (3b) B  B  "! Ÿ !" #

   (4b) ? ÐB  B  "!Ñ œ !# " #

   (5) B   !ß B   !" #

   (6) ?   !ß ?   !" #

(c) From (3a) and (3b), , so (4a) and (4b) are automatically satisfied. TryB  B œ "!" #

B ß B Á ! %B  ?  ? œ #B  ?  ? œ !" # " " # # " #. Then, (2a) and (2b) give , so
B œ #B B  B œ "! B œ "!Î$ B œ #!Î$# " " # " #. Since ,  and . From (2a),
 ?  ? œ %!Î$ ? œ ! ? œ %!Î$ Ð? ß ? Ñ œ Ð-ß -  %!Î$Ñ" # " # " #. Let  and . Indeed, any 
with  works. This solution satisfies all the conditions, so  is-   ! ÐB ß B Ñ œ Ð"!Î$ß #!Î$Ñ" #

optimal.
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12.6-11.

(a) An equivalent nonlinear programming problem is:

 maximize 0Ð Ñ œ ÐC  "Ñ  %ÐC  "Ñ  "'ÐC  "ÑC " # $
$ #

 subject to       C  C  C Ÿ #" # $

   C  C  C Ÿ #" # $

        .C ß C ß C   !" # $

(b) KKT conditions: (1a) $ÐC  "Ñ  ?  ? Ÿ !" " #
#

   (2a) C Ð$ÐC  "Ñ  ?  ? Ñ œ !" " " #
#

   (1b) )ÐC  "Ñ  ?  ? Ÿ !# " #

   (2b) C Ð)ÐC  "Ñ  ?  ? Ñ œ !# # " #

   (1c) "'  ?  ? Ÿ !" #

   (2c) C Ð"'  ?  ? Ñ œ !$ " #

   (3a) C  C  C Ÿ #" # $

   (4a) ? ÐC  C  C  #Ñ œ !" " # $

   (3b) C  C  C Ÿ #" # $

   (4b) ? ÐC  C  C  #Ñ œ !# " # $

   (5) C   !ß C   !ß C   !" # $

   (6) ?   !ß ?   !" #

(c) If , . From (2a), , which contradicts (2c), soB Cœ Ð#ß "ß #Ñ œ Ð"ß !ß "Ñ ?  ? œ "#" #

B œ Ð#ß "ß #Ñ is not optimal.

12.6-12.

(a) KKT conditions: (1a)   (1b) '  #B  ? Ÿ ! $  $B  ? Ÿ !" #
#

   (2a)  (2b) B Ð'  #B  ?Ñ œ ! B Ð$  $B  ?Ñ œ !" " # #
#

   (3) B  B Ÿ "" #

   (4) ?ÐB  B  "Ñ œ !" #

   (5) B   !ß B   !" #

   (6) ?   !

(b) For , (2a) gives , which violates (2b), so this point is notB œ Ð"Î#ß "Î#Ñ ? œ &
optimal.

(c)  satisfies all the conditions and since this is a convexÐB ß B ß ?Ñ œ Ð"ß !ß %Ñ" #

programming problem,  is optimal.Ð"ß !Ñ

12.6-13.

(a) KKT conditions: 

 (1a)   (1b)  (1c) )  #B  ? Ÿ ! #  $? Ÿ ! "  #? Ÿ !"

 (2a)  (2b)  (2c) B Ð)  #B  ?Ñ œ ! B Ð#  $?Ñ œ ! B Ð"  #?Ñ œ !" " # $

 (3) B  $B  #B Ÿ "#" # $

 (4) ?ÐB  $B  #B  "#Ñ œ !" # $

 (5) B   !ß B   !ß B   !" # $

 (6) ?   !

For , (2a) gives , which violates (2b) and (2c), so it is not optimal.B œ Ð#ß #ß #Ñ ? œ %

(b)  satisfies all the conditions and since this is aÐB ß B ß B ß ?Ñ œ Ð""Î$ß #&Î*ß !ß #Î$Ñ" # $

convex programming problem,  is optimal.Ð""Î$ß #&Î*ß !Ñ
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12.6-14.

KKT conditions: 

(1a)   (1b)  (1c) #  #B ? Ÿ ! $B  %B ? Ÿ !  #B  #B ? Ÿ !" # $ $#
#

(2a)  (2b)  (2c) B Ð#  #B ?Ñ œ ! B Ð$B  %B ?Ñ œ ! B Ð  #B  #B ?Ñ œ !" " # # $ $ $#
#

(3) B  #B  B   %" # $
# # #

(4) ?Ð%  B  #B  B Ñ œ !" # $
# # #

(5) B   !ß B   !ß B   !" # $

(6) ?   !

For , (2a) gives , which violates (2b), so it is not optimal.B œ Ð"ß "ß "Ñ ? œ "

12.6-15.

KKT conditions: (1a)  (1b) %B  #B ? Ÿ ! %B  #B ? Ÿ !"
$

" # #

   (2a)  (2b) B Ð%B  #B ?Ñ œ ! B Ð%B  #B ?Ñ œ !" " # # #"
$

   (3) B  B  # Ÿ !" #
# #

   (4) ?ÐB  B  #Ñ œ !" #
# #

   (5) B   !ß B   !" #

   (6) ?   !

For , (2a) gives , and this satisfies all the conditions, so  is optimal.B œ Ð"ß "Ñ ? œ # Ð"ß "Ñ

12.6-16.

KKT conditions: (1a) $#  %B  $?  #? Ÿ !"
$

" #

   (2a) B Ð$#  %B  $?  #? Ñ œ !" " #"
$

   (1b) &!  #!B  $B  %B  ?  &? Ÿ !# " ##
# $

#

   (2b) B Ð&!  #!B  $B  %B  ?  &? Ñ œ !# # " ##
# $

#

   (3a) $B  B Ÿ """ #

   (4a) ? Ð$B  B  ""Ñ œ !" " #

   (3b) #B  &B Ÿ "'" #

   (4b)   ? Ð#B  &B  "'Ñ œ !# " #

   (5) B   !ß B   !" #

   (6) ?   !ß ?   !" #

For , (4a) and (4b) give , and this violates (2b), so  is notB œ Ð#ß #Ñ ? œ ? œ ! Ð#ß #Ñ" #

optimal.

12.7-1.

(a) ` 0Ð Ñ ` 0Ð Ñ ` 0Ð Ñ ` 0Ð Ñ ` 0Ð Ñ
`B `B `B `B `B `B

## # # # #

" # " #
# # # #

" #

B B B B Bœ %  !ß œ )  !ß  œ "'  !’ “
Ê 0  is strictly concave.

(b)  for all B UB œ %B  )B B  )B œ %ÐB  B Ñ  %B  ! ÐB ß B Ñ Á Ð!ß !ÑX # # # #
" # #" # " # " #

Ê U is positive definite.

(c) KKT conditions: 

 (1a)   (1b) "&  %B  %B  ? Ÿ ! $!  %B  )B  #? Ÿ !# " " #

 (2a)  (2b) B Ð"&  %B  %B  ?Ñ œ ! B Ð$!  %B  )B  #?Ñ œ !" # " # " #

 (3) B  #B Ÿ $!" #
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 (4) ?ÐB  #B  $!Ñ œ !" #

 (5) B   !ß B   !" #

 (6) ?   !

B œ Ð"#ß *Ñ ? œ $ with  satisfies all these conditions.

12.7-2.

(a) KKT conditions: (1a)   (1b) )  #B  ? Ÿ ! %  #B  ? Ÿ !" #

   (2a)  (2b) B Ð)  #B  ?Ñ œ ! B Ð%  #B  ?Ñ œ !" " # #

   (3) B  B Ÿ #" #

   (4) ?ÐB  B  #Ñ œ !" #

   (5) B   !ß B   !" #

   (6) ?   !

B œ Ð#ß !Ñ ? œ % with  satisfies all these conditions. Since this is a convex programming
problem,  is optimal.Ð#ß !Ñ

(b) Objective function in vector notation:

 maximize   a b a bŒ  Œ Œ ) % B B
B # ! B
B ! # B

" "

# #

"
# " #

Equivalent problem:  minimize D  D" #

     subject to #B  ?  C  D œ )" " "

      #B  ?  C  D œ %# # #

      B  B  @ œ #" #

      B   !ß B   !" #

      C   !ß C   !" #

      ?   !ß @   !
      D   !ß D   !" #

Complementarity constraint: B C  B C  ?@ œ !" " # #

(c)



12-24

Optimal Solution:  with ÐB ß B Ñ œ Ð#ß !Ñ ? œ %" #

(d) Excel Solver Solution: ÐB ß B Ñ œ Ð#ß !Ñ" #

12.7-3.

(a) Objective function in vector notation:

 maximize      
   a b a bŒ  Œ Œ #&! "!! B B

B &! *! B
B *! #!! B

" "

# #

"
# " #

Equivalent problem:

 minimize D  D" #

 subject to &!B  *!B  #!?  "!?  C  D œ #&!" # " # " "

   *!B  #!!B  &?  "!?  C  D œ "!!" # " # # #

   #!B  &B  @ œ *!" # "

   "!B  "!B  @ œ '!" # #

   B   !ß B   !" #

   ?   !ß ?   !" #

   C   !ß C   !" #

   D   !ß D   !" #

Enforced complementarity constraint: B C  B C  ? @  ? @ œ !" " # # " " # #
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(b)
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Optimal Solution:  with ÐB ß B Ñ œ Ð%ß #Ñ Ð? ß ? Ñ œ Ð""Þ$$ß !Þ$$Ñ" # " #

12.7-4.

(a) KKT conditions: (1a)    (1b) #  #B  ? Ÿ ! $  #B  ? Ÿ !" #

   (2a)   (2b) B Ð#  #B  ?Ñ œ ! B Ð$  #B  ?Ñ œ !" " # #

   (3) B  B Ÿ #" #

   (4) ?ÐB  B  #Ñ œ !" #

   (5) B   !ß B   !" #

   (6) ?   !

By plotting the points obtained, one observes that one optimal solution is on the
boundary , so ,  and . The point  with B Á ! B Á ! ? Á ! ÐB ß B Ñ œ Ð!Þ(&ß "Þ#&Ñ ? œ !Þ&" # " #

satisfies all the conditions, so it is optimal.

(b) minimize D  D" #

     subject to #B  ?  C  D œ #" " "

   #B  ?  C  D œ $# # #

   B  B  @ œ #" #

   B   !ß B   !" #

   ?   !ß @   !
   C   !ß C   !" #

   D   !ß D   !" #

Enforced complementarity constraint: B C  B C  ?@ œ !" " # #

(c) Substitute  and  in the constraints.ÐB ß B Ñ œ Ð!Þ(&ß "Þ#&Ñ ? œ !Þ&" #

   C  D œ !" "

   C  D œ !# #

      @ œ !

Enforced complementarity constraint: !Þ(&C  "Þ#&C œ !" #

Since  and , the unique solution of the complementarity constraint is C   ! C   ! C œ" # "

C œ ! D œ D œ ! ÐB ß B Ñ œ Ð!Þ(&ß "Þ#&Ñ# " # " #, so . Hence,  is optimal.
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(d)

Optimal Solution:  with ÐB ß B Ñ œ Ð!Þ(&ß "Þ#&Ñ ? œ !Þ&" #

(e) Excel Solver Solution: ÐB ß B Ñ œ Ð!Þ(&ß "Þ#&Ñ" #
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12.7-5.

(a) KKT conditions: (1a) "#'  ")B  ?  $? Ÿ !" " $

   (2a) B Ð"#'  ")B  ?  $? Ñ œ !" " " $

   (1b) ")#  #'B  #?  #? Ÿ !# # $

   (2b) B Ð")#  #'B  #?  #? Ñ œ !# # # $

   (3a) B Ÿ %"

   (4a) ? ÐB  %Ñ œ !" "

   (3b) #B Ÿ "##

   (4b) ? Ð#B  "#Ñ œ !# #

   (3c) $B  #B Ÿ ")" #

   (4c) ? Ð$B  #B  ")Ñ œ !$ " #

   (5) B   !ß B   !" #

   (6) ?   !ß ?   !ß ?   !" # $

ÐB ß B Ñ œ Ð)Î$ß &Ñ œ Ð!ß !ß #'Ñ" #  with  satisfies these conditions, so it is optimal.?

(b) minimize D  D" #

      subject to ")B  C  C  $C  D œ "#'" " $ & "

   #'B  C  #C  #C  D œ ")## # % & #

   B  B œ %" $

   #B  B œ "## %

   $B  #B  B œ ")" # &

   B ß B ß B ß B ß B   !" # $ % &

   C ß C ß C ß C ß C   !" # $ % &

   D   !ß D   !" #

Enforced complementarity constraint: B C  B C  B C  B C  B C œ !" " # # $ $ % % & &

(c) Substitute  and  in the constraints.ÐB ß B Ñ œ Ð)Î$ß &Ñ ? œ C œ #'" # $ &

     C  C  D œ !" $ "

   C  #C  D œ !# % #

     B œ %Î$$

     B œ #%

     B œ !&

Enforced complementarity constraint: Ð)Î$ÑC  &C  Ð%Î$ÑC  #C œ !" # $ %

Since  for , the complementarity constraint has the unique solutionsC   ! 3 œ "ß #ßá ß &3

C œ C œ C œ C œ ! D œ D œ ! ÐB ß B Ñ œ Ð)Î$ß &Ñ" # $ % " # " #, so . Hence,  is optimal.
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12.7-6.

(a) - (b)
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(c)    
     
     

 
 

. 5 . 5 . 5  $
"$ &Þ!' (Þ*%  #Þ")
"% (Þ"% 'Þ)'  (Þ%#
"& "!Þ%% %Þ&' "'Þ$#
"' "%Þ"# "Þ)) #'Þ$'

12.8-1.

(a)
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(b) maximize &!!B  '!B  %!!B  #!!B  "!!B  '!!B  %!!B  #!!B"" "# #" ## #$ $" $# $$

 subject to #B  #B  $B  $B  $B  %B  %B  %B Ÿ ")!"" "# #" ## #$ $" $# $$

  $B  $B  B  B  B Ÿ "&!"" "# #" ## #$

    B  B  $B  $B  $B Ÿ "!!"" "# $" $# $$

  ! Ÿ B Ÿ "&ß ! Ÿ B"" "#

  ! Ÿ B Ÿ #!ß ! Ÿ B Ÿ #!ß ! Ÿ B#" ## #$

  ! Ÿ B Ÿ #!ß ! Ÿ B Ÿ "!ß ! Ÿ B$" $# $$

where .B œ B  B ß B œ B  B  B ß B œ B  B  B" "" "# # #" ## #$ $ $" $# $$

(c) Optimal solution with the simplex method:

Original variables: B œ "&ß B œ #!ß B œ ##Þ&" # $

(d) The restriction on profit from products 1 and 2 can be modeled by introducing the
constraint: &!!B  '!B  %!!B  #!!B  "!!B   #!ß !!!"" "# #" ## #$ .
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(e) Optimal solution with the simplex method:

Original variables: B œ "&ß B œ %!ß B œ )Þ(&" # $

12.8-2.

(a) KKT conditions: (1a) %  $B  ?  &? Ÿ !"
#

" #

   (2a) B Ð%  $B  ?  &? Ñ œ !" " #"
#

   (1b) '  %B  $?  #? Ÿ !# " #

   (2b) B Ð'  %B  $?  #? Ñ œ !# # " #

   (3a) B  $B Ÿ )" #

   (4a) ? ÐB  $B  )Ñ œ !" " #

   (3b) &B  #B Ÿ "%" #

   (4b) ? Ð&B  #B  "%Ñ œ !# " #

   (5) B   !ß B   !" #

   (6) ?   !ß ?   !" #

ÐB ß B Ñ œ Ð#Î &ß $Î#Ñ œ Ð!ß !Ñ" #
È  with  satisfies these conditions, so it is optimal with?

^ œ (Þ&).

(b)
Profit data for doors when marketing costs are considered:
Production Rate Gross Profit Marketing Cost Net Profit Incremental Net Profit
              $       $    $              
              $       $    $            $
              $       $  

! ! ! ! 
" %!! "!! $!! $!!
# )!! )!!   $         $

              $       $ $         $
             $       $    $

!  $!!
$ "#!! #(!!  "*!!  "*!!

H %H H %H H$ $

Profit data for windows when marketing costs are considered:
Production Rate Gross Profit Marketing Cost Net Profit Incremental Net Profit
              $       $    $              
              $       $    $            $
              $       $

! ! ! ! 
" '!! #!! %!! %!!
# "#!! )!! %!! !
$ ")!! ")!! !  %!!

[ '[ #[ '[  #[

   $            $
              $       $    $         $
             $       $    $# #
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(c)

(d) Let B œ B  B  B ß B œ B  B  B ß 0 ÐB Ñ œ %B  B 0 ÐB Ñ œ" "" "# "$ # #" ## #$ " " " # #"
$ and 

'B  #B# #
#.

 0 Ð!Ñ œ !ß 0 Ð"Ñ œ $ß 0 Ð#Ñ œ !ß 0 Ð$Ñ œ "&" " " "

 0 Ð!Ñ œ !ß 0 Ð"Ñ œ %ß 0 Ð#Ñ œ %ß 0 Ð$Ñ œ !# # # #

 = œ œ $ß = œ œ $ß = œ œ "&"" "# "$
$! !$ "&!
"! #" $#

 = œ œ %ß = œ œ !ß = œ œ %#" "# "$
%! %% !%
"! #" $#

Approximate linear programming model:

 maximize $B  $B  "&B  %B  %B"" "# "$ #" #$

 subject to       B  B  B  $B  $B  $B Ÿ )"" "# "$ #" ## #$

   &B  &B  &B  #B  #B  #B Ÿ "%"" "# "$ #" ## #$

        for  and ! Ÿ B Ÿ " 3 œ "ß # 4 œ "ß #ß $34

(e) Optimal solution with the simplex method:

 

Original variables:  (or )B œ "ß B œ " B œ #" # #

  and B œ ! Ê B œ ! Ê B œ ! B œ ! Ê B œ ! Ê B œ !"" "# "$ #" ## #$

Hence, the special restriction for the model is satisfied. The approximate solutios Ð"ß "Ñ
and  are pretty close to the optimal solution .Ð"ß #Ñ Ð"Þ"&&ß "Þ&Ñ
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12.8-3.

(a)

 

 

(b) maximize #%!B  )!B  "'!B  "#!B"" "# #" ##

     subject to     B  B  B  B Ÿ %!ß !!!"" "# #" ##

  #B  #B  B  B Ÿ '!ß !!!"" "# #" ##

    ! Ÿ B Ÿ "#!!!ß ! Ÿ B Ÿ )!!!"" "#

  ! Ÿ B Ÿ #!!!!ß ! Ÿ B Ÿ "#!!!#" ##

(c) 12,000 power saws and 28,000 power drills should be produced in November.
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12.8-4.

(a) Let B œ B  B  B ß B œ B  B  B ß 0 ÐB Ñ œ $#B  B 0 ÐB Ñ œ" "" "# "$ # #" ## #$ " " " # #"
% and 

&!B  "!B  B  B# # #
# $ %

# .

 0 Ð!Ñ œ !ß 0 Ð"Ñ œ $"ß 0 Ð#Ñ œ %)ß 0 Ð$Ñ œ "&" " " "

 0 Ð!Ñ œ !ß 0 Ð"Ñ œ %!ß 0 Ð#Ñ œ &#ß 0 Ð$Ñ œ '# # # #

 = œ $"ß = œ "(ß = œ $$"" "# "$

 = œ %!ß = œ "#ß = œ %'#" "# "$

Approximate linear programming model:

 maximize $"B  "(B  $$B  %!B  "#B  %'B"" "# "$ #" ## #$

 subject to       $B  $B  $B  B  B  B Ÿ """" "# "$ #" ## #$

   #B  #B  #B  &B  &B  &B Ÿ "'"" "# "$ #" ## #$

        for  and ! Ÿ B Ÿ " 3 œ "ß # 4 œ "ß #ß $34

(b) Optimal solution with the simplex method:

 

Original variables: B œ #ß B œ #" #

12.8-5.

Let 0 ÐB Ñ œ 0 ÐB Ñ œ
&B ! Ÿ B Ÿ #
#  %B # Ÿ B Ÿ &
"#  #B & Ÿ B

%B ! Ÿ B Ÿ $
*  B $ Ÿ B Ÿ %" " # #

" "

" "

" "

# #

# #

Ú
ÛÜ œif 

if 
if 

 and .if 
if 

 maximize 0 ÐB Ñ  0 ÐB Ñ" " # #

 subject to $B  #B Ÿ #&" #

     #B  B Ÿ "!" #

    B Ÿ %#

             B ß B   !" #

Possibly, the 's are piecewise-linear approximations of the original objective0 ÐB Ñ3 3

function.
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12.8-6.

(a) Assume that in the optimal solution of the linear program, there exists and  suchB34

that  and . Create a new solution with minB  ? B  ! B œ Ö? ß B  B ×34 34 34 343Ð4"Ñ 3Ð4"Ñ34
w

and max . This solution is feasible, since all the 's areB œ Ö!ß B  B  ? × 13Ð4"Ñ
w

34 34 33Ð4"Ñ

linear and , butB  B œ B  B34 3Ð4"Ñ 34
w w

3Ð4"Ñ

= B  = B œ
= ÐB  B Ñ B  B Ÿ ?

= ?  = ÐB  B  ? Ñ34 34
w w

3Ð4"Ñ 3Ð4"Ñ
34 34 34 343Ð4"Ñ 3Ð4"Ñ

34 34 34 343Ð4"Ñ 3Ð4"Ñ
œ if 

else.

Clearly, = ÐB  B Ñ  = B  = B =  =34 34 34 34 343Ð4"Ñ 3Ð4"Ñ 3Ð4"Ñ 3Ð4"Ñ, since .

Furthermore, , since Ð=  = Ñ?  Ð=  = ÑB34 34 34 343Ð4"Ñ 3Ð4"Ñ B  ?34 34.

Ê = ?  = ÐB  ? Ñ  = B34 34 34 34 34 343Ð4"Ñ

Ê = ?  = ÐB  B  ? Ñ  = B  = B34 34 34 34 34 343Ð4"Ñ 3Ð4"Ñ 3Ð4"Ñ 3Ð4"Ñ

Ê =  =  = B  = B34 34 343Ð4"Ñ 3Ð4"Ñ 3Ð4"ÑB B34
w w

3Ð4"Ñ

Thus, the original solution was not optimal.

(b) Make the same assumptions as in (a) and construct  from  in the same way. TheB Bw

linear approximation of  is of the form  with1 â + B  + B â Ÿ ,3 34 34 33Ð4"Ñ 3Ð4"Ñ

+ Ÿ + 134 33Ð4"Ñ, since  is convex. By the same analysis as the one in (a), it can be shown
that if the inequalities are reversed at appropriate places:

 ,+  + + B  + B34 34 343Ð4"Ñ 3Ð4"Ñ 3Ð4"ÑB B 34
w w

3Ð4"Ñ

so  is feasible. Furthermore, , so  wasB =  =  = B  = B Bw
34 34 343Ð4"Ñ 3Ð4"Ñ 3Ð4"ÑB B34

w w
3Ð4"Ñ

not optimal.

12.8-7.

0 ÐB Ñ œ
#$B ! Ÿ B Ÿ '!!!
$)B  *!ß !!! '!!! Ÿ B" "

" "

" "
œ if 

if 

0 ÐB Ñ œ
#%B ! Ÿ B Ÿ $!!!
$'B  $'ß !!! $!!! Ÿ B# #

# #

# #
œ if 

if 

 maximize D œ B  B" #

 subject to 0 ÐB Ñ  0 ÐB Ñ Ÿ #(!ß !!!" " # #

   ! Ÿ B Ÿ *!!!"

   ! Ÿ B Ÿ %&!!#

(a) Let  and  denote the regular and overtime production at plant .B B 33 3
V S

 maximize D œ B  B  B  B" " # #
V S V S

 subject to #$B  $)B  #%B  $'B Ÿ #(!ß !!!" " # #
V S V S

   ! Ÿ B Ÿ '!!!ß ! Ÿ B Ÿ $!!!" "
V S

   ! Ÿ B Ÿ $!!!ß ! Ÿ B Ÿ "&!!# #
V S

(b) Since overtime production is more expensive than regular time production, the
objective of maximizing the total production time will force the regular time to be used
first.
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12.8-8.

(a) The objective function is linear, so concave.

` 1 Ð Ñ ` 1 Ð Ñ ` 1 Ð Ñ
`B `B `B `B

#
#

# # #
" " "

" #
# #

" #

B B B œ % † !  ! œ !’ “
` 1 Ð Ñ ` 1 Ð Ñ ` 1 Ð Ñ
`B `B `B `B

#
#

# # #
# # #

" #
# #

" #

B B B œ # † !  ! œ !’ “
Ê 1 1" # and  are convex.

(b) Let . From the first constraint and ,       B œ B  B  B B   !" "" "# "$ #

  ,B Ÿ "$Î# ¸ #Þ&&" È
so using an integer breakpoint requires  linear pieces.$

 1 ÐB Ñ œ #B ß 1 ÐB Ñ œ B ß 1 ÐB Ñ œ B ß 1 ÐB Ñ œ B"" " "# # # #" " ## # #" "
# #

 1 Ð!Ñ œ !ß 1 Ð"Ñ œ #ß 1 Ð#Ñ œ )ß 1 Ð$Ñ œ ")"" "" "" ""

 1 Ð!Ñ œ !ß 1 Ð"Ñ œ "ß 1 Ð#Ñ œ %ß 1 Ð$Ñ œ *#" #" #" #"

 = œ #ß = œ 'ß = œ "!""ß" ""ß# ""ß$

 = œ "ß = œ $ß = œ &#"ß" #"ß# #"ß$

Approximate linear programming model:

 maximize &B  &B  &B  B"" "# "$ #  

 subject to #B  'B  "!B  B Ÿ "$"" "# "$ #

       B  $B  &B  B Ÿ *"" "# "$ #

       ! Ÿ B Ÿ "ß ! Ÿ B Ÿ "ß ! Ÿ B ß ! Ÿ B"" "# "$ #

We could have  , but the constraints will enforce the upper bound.! Ÿ B Ÿ ""$

(c)

Original variables: B œ "  "  ! œ #ß B œ &" #
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12.8-9.

(a) Let  and .B œ B  B  B B œ B  B  B" "" "# "$ # #" ## #$

  concave0 ÐB Ñ œ $#B  B ß œ "#B Ÿ ! Ê 0" " " "" "
% #. 0 ÐB Ñ

.B

#
" "

"
#

  concave0 ÐB Ñ œ %B  B ß œ #  ! Ê 0# # # ##
# . 0 ÐB Ñ

.B

#
# #

#
#

 0 Ð!Ñ œ !ß 0 Ð"Ñ œ $"ß 0 Ð#Ñ œ %)ß 0 Ð$Ñ œ "&" " " "

 0 Ð!Ñ œ !ß 0 Ð"Ñ œ $ß 0 Ð#Ñ œ %ß 0 Ð$Ñ œ $# # # #

 = œ $"ß = œ "&ß = œ $$"" "# "$

 = œ $ß = œ "ß = œ "#" ## #$

  convex1 ÐB Ñ œ B ß œ #  ! Ê 1"" " """
# . 1 ÐB Ñ

.B

#
"" "

"
#

  convex1 ÐB Ñ œ B ß œ #  ! Ê 1"# # "##
# . 1 ÐB Ñ

.B

#
"# #

#
#

 1 Ð!Ñ œ !ß 1 Ð"Ñ œ "ß 1 Ð#Ñ œ %ß 1 Ð$Ñ œ *"" "" "" ""

 1 Ð!Ñ œ !ß 1 Ð"Ñ œ "ß 1 Ð#Ñ œ %ß 1 Ð$Ñ œ *#" #" #" #"

 > œ "ß > œ $ß > œ &""ß" ""ß# ""ß$

 > œ "ß > œ $ß > œ &#"ß" #"ß# #"ß$

Approximate linear programming model:

 maximize $"B  "(B  $$B  $B  B  B"" "# "$ #" ## #$

 subject to B  $B  &B  B  $B  &B Ÿ *"" "# "$ #" ## #$

       ! Ÿ B Ÿ "ß ! Ÿ B Ÿ "ß ! Ÿ B Ð Ÿ "Ñ"" "# "$

   ! Ÿ B Ÿ "ß ! Ÿ B Ÿ "ß ! Ÿ B Ð Ÿ "Ñ#" ## #$

(b) Solution with the simplex method:

 
Original variables: B œ B œ #" #

(c) KKT conditions: (1a)   (1b) $#  %B  #B ? Ÿ ! %  #B  #B ? Ÿ !"
$

" # #

   (2a)  (2b) B Ð$#  %B  #B ?Ñ œ ! B Ð%  #B  #B ?Ñ œ !" " # # #"
$

   (3) B  B  * Ÿ !" #
# #

   (4) ?ÐB  B  *Ñ œ !" #
# #

   (5) B   !ß B   !" #

   (6) ?   !

For , from (4), . This satisfies all the conditions, so is optimal toÐB ß B Ñ œ Ð#ß #Ñ ? œ !" #

the original problem.
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12.8-10.

(a) 0ÐBÑ œ 0 ÐB Ñ  0 ÐB Ñß 0 ÐB Ñ œ $B  B ß 0 ÐB Ñ œ &B  B" " # # " " # #" #
# $ # $

" #

. 0 ÐB Ñ
.B " "

#
" "

"
# œ '  'B  ! ! Ÿ B  " if 

. 0 ÐB Ñ
.B # #

#
# #

#
# œ "!  'B  ! ! Ÿ B  &Î$ if 

Neither  nor  is concave, so  is not concave. It is indeed enough to show one is not0 0 0" #

concave.

(b) Let B œ B  B  B  B ß B œ B  B" "" "# "$ "% # #" ##.

 0 Ð!Ñ œ !ß 0 Ð"Ñ œ #ß 0 Ð#Ñ œ %ß 0 Ð$Ñ œ !ß 0 Ð%Ñ œ "'" " " " "

 0 Ð!Ñ œ !ß 0 Ð"Ñ œ %ß 0 Ð#Ñ œ "## # #

 = œ #ß = œ #ß = œ %ß = œ "'"" "# "$ "%

 = œ %ß = œ )#" ##

Special restrictions are needed: (i) B œ ! B  ""# "" if 

      if (ii) B œ ! B  ""$ "#

      if (iii) B œ ! B  ""% "$

      if .(iv) B œ ! B  "## #"

Since =  =  ="# "$ "%, (ii) and (iii) are automatically satisfied upon optimization.

Approximate binary integer programming model:

 maximize #B  #B  %B  "'B  %B  )B"" "# "$ "% #" ##

 subject to B  B  B  B  #B  #B Ÿ %"" "# "$ "% #" ##

   B  B Ÿ !"" "#

     B  B Ÿ !#" ##

        for all B − Ö!ß "× 3ß 434

(c) Solution with BIP automatic routine:     

 B œ B œ B œ B œ !ß B œ B œ "ß D œ "#"" "# "$ "% #" ##

Original variables: B œ !ß B œ #ß D œ "#" #

Alternate solution: B œ #ß B œ "ß D œ "#" #

12.9-1.

f0ÐB ß B Ñ œ ß#B" # #
"

B "Š ‹
"

Iteration 1: f0Ð!ß !Ñ œ Ð"ß !Ñ

maximize B"

subject to B  #B Ÿ $" #

  B ß B   !" #

Ê B œ $ß B œ ! Ê B œ Ð!ß !Ñ  >Ð$ß !Ñ" #
Ð"Ñ

> œ " 0Ð Ñ > Ê B œ Ð$ß !Ñ‡ Ð"Ñ (  increases with )  [solution found in Problem 12.6-5]B
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Iteration 2: f0Ð$ß !Ñ œ Ð"Î%ß !Ñ

maximize !Þ#&B"

subject to B  #B Ÿ $" #

  B ß B   !" #

Ê B œ $ß B œ ! Ê B œ Ð$ß !Ñ  >Ð!ß !Ñ" #
Ð"Ñ

Hence  is optimal.B œ Ð$ß !Ñ

12.9-2.

f0ÐB ß B Ñ œ Ð#B  'ß $B  $Ñ" # " #
#

B  B Ÿ "ß B ß B   ! Ê B ß B Ÿ " Ê #B  ' Ÿ %  $ Ÿ $B  $" # " # " # " #
#

Resulting LP: maximize - B  - B" " # #

  subject to B  B Ÿ "" #

    B ß B   !" #

where , so  is always optimal.-  - Ð"ß !Ñ" #

Ê B œ ÐB ß B Ñ  >Ð"  B ßB ÑÐ"Ñ
" # " #
Ð!Ñ Ð!Ñ Ð!Ñ Ð!Ñ

At ,  is optimal.> œ " B œ Ð"ß !Ñ‡ Ð"Ñ

12.9-3.

12.9-4.

 maximize "&B  $!B  %B B  #B  %B" # " # " #
# #

 subject to B  #B Ÿ $!" #

   B ß B   !" #
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12.9-5.

(a)

(b)

12.9-6.

12.9-7.
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12.9-8.

(a)

(b) KKT conditions: (1a)   (1b) $  $B  ? Ÿ ! %  #B  ? Ÿ !"
#

#

   (2a)  (2b) B Ð$  $B  ?Ñ œ ! B Ð%  #B  ?Ñ œ !" # #"
#

   (3) B  B Ÿ "" #

   (4) ?ÐB  B  "Ñ œ !" #

   (5) B   !ß B   !" #

   (6) ?   !

ÐB ß B Ñ œ Ð"Î$ß #Î$Ñ ? œ )Î$" #  with  satisfies these conditions, so the estimated solution
in part (a) is optimal.

12.9-9.

(a)

(b)
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(c) KKT conditions: (1a)   (1b) %  %B  %? Ÿ ! #  #B  #? Ÿ !"
$

#

   (2a)   (2b) B Ð%  %B  %?Ñ œ ! B Ð#  #B  #?Ñ œ !" # #"
$

   (3) %B  #B Ÿ &" #

   (4) ?Ð%B  #B  &Ñ œ !" #

   (5) B   !ß B   !" #

   (6) ?   !

ÐB ß B Ñ œ Ð!Þ)*$%ß !Þ("$"Ñ ? œ !Þ&($(" #  with  satisfies these conditions, so is optimal.

12.9-10.

(a) TÐ à <Ñ œ $B  %B  B  B  <  B " # "
$ #

#
" " "

"B B B B’ “
" # " #

(b)

 fTÐ à <Ñ œ
$  $B  < 

%  #B  < 
B

Î Ñ
Ï Ò

’ “
’ “

"
# " "

Ð"B B Ñ B

#
" "

Ð"B B Ñ B

" #
#

"
#

" #
#

#
#

 Ê fTÐ à "Ñ œ
"%

"&
ˆ ‰  " "

% %

"$
"'
"
#

 ˆ ‰ ˆ ‰ ˆ ‰" " " "
% % % %

" "$ " "
% "' % # >fTÐ à "Ñ œ  "% >  "& >

 > œ !Þ!!''!' Ê B œ !Þ$%(* !Þ$&#%‡ w a b
(c)

(d) True Solution: Ð"Î$ß #Î$Ñ

Percentage error in : %B œ !Þ(!"
l"Î$!Þ$$"l

"Î$

Percentage error in : %B œ !Þ&&#
l#Î$!Þ''$l

#Î$

Percentage error in : %0ÐBÑ œ !Þ&"l)'Î#($Þ"'*l
)'Î#(
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12.9-11.

(a) TÐ à <Ñ œ %B  B  #B  B  <  B " #" #
% # " " "

&%B #B B B’ “
" # " #

(b) fTÐ à <Ñ œ
%  %B  < 

#  #B  < 
B

Î Ñ
Ï Ò

’ “
’ “

"
$ % "

Ð&%B #B Ñ B

#
# "

Ð&%B #B Ñ B

" #
#

"
#

" #
#

#
#

Ê fTÐ à "Ñ œ
'

%
ˆ ‰  " "

# #

"
#
"
#

ˆ ‰ ˆ ‰ ˆ ‰" " " " " " " "
# # # # # # % # >fTÐ à "Ñ œ  ' >  % >

> œ !Þ!$"'( Ê B œ !Þ(!&) !Þ'%#&‡ w a b
(c)

12.9-12.

(a) TÐ à <Ñ œ  B  #B  #B B  %B  <   B " " #
% # #

" #
" " " "

#B B "! B #B "! B B’ “
" # " # " #

(b) fTÐ à <Ñ œ
 %B  %B  #B  <  

 #B  )B  <  
B

Î Ñ
Ï Ò

’ “
’ “

"
$

" #
# " "

Ð#B B "!Ñ ÐB #B "!Ñ B

" #
" # "

Ð#B B "!Ñ ÐB #B "!Ñ B

" # " #
# #

"
#

" # " #
# #

#
#

Ê fTÐ à "!!Ñ œ& &
&"%
$%

a b Œ 
a b a b a b& & & & &  &"%> &  $%> >fTÐ à "Ñ œ

> œ !Þ!!$&#* Ê B œ $Þ")'# %Þ))!#‡ w a b
(c)

minimize maximize 0ÐBÑ Ä 0ÐBÑ

1ÐBÑ   , Ä 1ÐBÑ Ÿ ,
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12.9-13.

(a) KKT conditions: (1a)   (1b) B  %?B Ÿ ! B  ? Ÿ !# " "

   (2a)  (2b) B ÐB  %?B Ñ œ ! B ÐB  ?Ñ œ !" # " # "

   (3) B  B Ÿ $"
#

#

   (4) ?ÐB  B  $Ñ œ !"
#

#

   (5) B   !ß B   !" #

   (6) ?   !

ÐB ß B Ñ œ Ð"ß #Ñ ? œ "" #  with  satisfies these conditions.

(b)

 
12.9-14.

(a) TÐ à <Ñ œ  #B  ÐB  $Ñ  < B " #
# " "

B $ B $’ “
" #

(b) fTÐ à <Ñ œ œ
 #  <

 #B  '  <

!
!

B
Î Ñ
Ï Ò

’ “
’ “ Œ 
"

ÐB $Ñ

#
"

ÐB $Ñ

"
#

#
#

Ê B œ <Î#  $ß B œ <Î#  $" #È È$
         < B B

" $Þ(!(" $Þ(*$(

"! $Þ!(!( $Þ"("!

"! $Þ!!(" $Þ!$')

"! $Þ!!!( $Þ!!(*

" #

#

%

'

Note that  as , so  is optimal.ÐB ß B Ñ Ä Ð$ß $Ñ < Ä ! Ð$ß $Ñ" #

(c)
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12.9-15.

TÐ à <Ñ œ B  B  B  B  B B  <ÎBB " #
# #

" # " # #

12.9-16.

TÐ à <Ñ œ #B  $B  B  B  <  B " # " #
# # " " "

#B B B B’ “
" # " #

12.9-17.

TÐ à <Ñ œ "#'B  *B  ")#B  "$B  <    B " #" #
# # " " " " "

%B "##B ")$B #B B B’ “
" # " # " #

12.9-18.

(a) TÐ à <Ñ œ B  %B  "'B  <   B "
$ #

# $
" " "

B " B " B "
Ð&B B B Ñ

<
’ “

" # $

" # $
#

È
(b)
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(c) Standard Excel Solver

 

(d) Evolutionary Solver

 

(e) LINGO

12.10-1.

(a) Solving for the roots of , one observes that  is feasible in the rangeB  B  &!! œ ! B#

’ “!ß œ Ò!ß #"Þ)''Ó" #!!"
#

È .

 0 ÐBÑ œ "!!!  )!!B  "#!B  %Bw # $

 0 ÐBÑ œ  )!!  #%!B  "#Bww #

 0 ÐBÑ œ #%!  #%Bwww
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A rough sketch of :0ÐBÑ

 

The points that are marked as X correspond to a local minimum or maximum.

(b)

There is a local maximum near  and a global maximum near ."Þ'!"' #"Þ!&"

(c)
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Local maximum: B œ "Þ'#%$

Local maximum: B œ #"Þ!("'

(d)

 

The first four iterations with initial trial solution , return  with B œ $ B œ "Þ'#& 0ÐBÑ œ
($$Þ% B œ "& as maximum. The next four iterations with initial trial solution , return
B œ #"Þ!( 0ÐBÑ œ #!&'# B œ #"Þ!( with  as maximum. The global maximum is .
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(e)

 

(f) B œ #"Þ!("'

(g)
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(h)
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12.10-2.

(a) TÐ à <Ñ œ $B B  #B  B  <    B " # " #
# # " " " "

%B #B B #B B B
Ð#B B B B Ñ

<
’ “

" #
# #

# " " #

" ## "
# # #

È
(b)

 

(c) Evolutionary Solver

 

(d) Use global optimizer feature of LINGO.
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(e)
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12.10-3.

(a) TÐ à <Ñ œ $B  $B  ÐB  B Ñ  <   B sin cos sin " # " #
" " " "

"B "!B "!!"!B B B B’ “
" #
# #

# " " #

(b) SUMT can be used to obtain the global minimum if it is run with "enough" different
starting points. If a lattice of points over the feasible region is chosen so that the adjacent
points do not differ by more than , then this set of points works for . Since sin# Î$ 0ÐBÑ1
and cos have period , choosing lattice points with grid size not exceeding  ensures# # Î$1 1
that the arguments of the sin and cos terms in  do not differ by more than  between0 #1
adjacent lattice points. Since the second constraint ensures  and , at mostB Ÿ "! B Ÿ "!" #

Ò"!ÎÐ# Î$ÑÓ ¸ #$1 #  starting points are required if chosen correctly.

(c)
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(d)
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12.10-4.

(a)

(b)

12.10-5.

(a)

(b)
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12.10-6.

12.10-7.

(a)

(b)

(c) The Standard Solver gives a better solution and finds it much more quickly. It is much
better suited to linear programs than the Evolutionary Solver.
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12.11-1.

(a) Yes, this is a convex programming problem.

0Ð Ñ œ 0 ÐB Ñ  0 ÐB Ñß 0 ÐB Ñ œ %B  B ß 0 ÐB Ñ œ "!B  BB " " # # " " " # # #" #
# #

. 0 ÐB Ñ . 0 ÐB Ñ
.B .B

# #
" " # #

" #
# #œ œ #  ! Ê 0  is concave.

1Ð Ñ œ 1 ÐB Ñ  1 ÐB Ñß 1 ÐB Ñ œ B ß 1 ÐB Ñ œ %BB " " # # " " # #" #
# #

. 1 ÐB Ñ . 1 ÐB Ñ
.B .B

# #
" " # #

" #
# #œ #  !ß œ )  ! Ê 1 is convex.

(b) No, this is not a quadratic programming problem because the constraints are
nonlinear.

(c) No, the Frank-Wolfe algorithm in Section 12.9 requires linear constraints, so it cannot
be applied to this problem.

(d) KKT conditions: 

  (1a)   (1b) %  #B  #B ? Ÿ ! "!  #B  )B ? Ÿ !" " # #

  (2a)   (2b) B Ð%  #B  #B ?Ñ œ ! B Ð"!  #B  )B ?Ñ œ !" " " # # #

  (3) B  %B  "' Ÿ !" #
# #

  (4) ?ÐB  %B  "'Ñ œ !" #
# #

  (5) B   !ß B   !" #

  (6) ?   !

Let . Then from (2a),  and this violates (4), so it cannot be optimal.B œ B œ " ? œ "" #

(e) Let  and .B œ B  B  B  B B œ B  B" "" "# "$ "% # #" ##

 0 ÐB Ñ œ %B  B ß 0 ÐB Ñ œ "!B  B" " " # # #" #
# #

 0 Ð!Ñ œ !ß 0 Ð"Ñ œ $ß 0 Ð#Ñ œ %ß 0 Ð$Ñ œ $ß 0 Ð%Ñ œ !" " " " "

 0 Ð!Ñ œ !ß 0 Ð"Ñ œ *ß 0 Ð#Ñ œ "'# # #

 = œ $ß = œ "ß = œ "ß = œ $"" "# "$ "%

 = œ *ß = œ (#" ##

 1 ÐB Ñ œ B ß 1 ÐB Ñ œ %B" " # #" #
# #

 1 Ð!Ñ œ !ß 1 Ð"Ñ œ "ß 1 Ð#Ñ œ %ß 1 Ð$Ñ œ *ß 1 Ð%Ñ œ "'" " " " "

 1 Ð!Ñ œ !ß 1 Ð"Ñ œ %ß 1 Ð#Ñ œ "'# # #

 > œ "ß > œ $ß > œ &ß > œ ("" "# "$ "%

 > œ %ß > œ "##" ##

Approximate linear programming model:

 maximize $B  B  B  $B  *B  (B"" "# "$ "% #" ##

 subject to B  $B  &B  (B  %B  "#B Ÿ "'"" "# "$ "% #" ##

   &B  &B  &B  #B  #B  #B Ÿ "%"" "# "$ #" ## #$

        for all ! Ÿ B Ÿ " 3ß 434



12-59

(f) Solution with the simplex method:

 

Original variables: B œ "ß B œ "Þ*"''(" #

(g) TÐ à <Ñ œ %B  B  "!B  B  <  B " #" #
# # " " "

"'B %B B B’ “
" #
# #

" #

(h)

 

(i) Standard Solver

 

(j) Evolutionary Solver
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(k) LINGO Solver
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CASES

Case 12.1 Savvy Stock Selection

(a) If Lydia wants to ignore the risk of her investment she should invest all her money
into the stock that promises the highest expected return. According to the predictions of
the investment advisors, the expected returns equal 20% for BB, 42% for LOP, 100% for
ILI, 50% for HEAL, 46% for QUI, and 30% for AUA. Therefore, she should invest 100%
of her money into ILI. The risk (variance) of this portfolio equals 0.333.

(b) Lydia should invest 40% of her money into the stock with the highest expected return,
40% into the stock with the second highest expected return, and 20% into the stock with
the third highest expected return. This intuitive solution can be found also by solving the
linear programming problem to

 maximize MaxExpectedReturn œ SUMPRODUCT(Portfolio, StockExpectedReturn)
 subject to Total OneHundredPercentœ
   Portfolio MaxInSingleStock.Ÿ
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The total expected return of her new portfolio is 69.2% with a total variance of 0.04548.

(c) The risk of Lydia's portfolio is a quadratic function of her decision variables. We
apply quadratic programming to her decision problem.

(d) The expected return of Lydia's portfolio is no longer the objective function. It now
becomes part of a constraint:

 PortfolioExpectedReturn(C21) 35%(MinimumExpectedReturn)  .

The objective is now to minimize the risk.

Lydia's optimal portfolio consists of 31.8% BB, 19.9% LOP, 16.8% HEAL, 20.9% QUI,
and 10.6% AUA. Her expected return equals 35.9% with a risk of 0.00136.



12-63

(e) Since the return constraint is not binding in the solution of part (d), decreasing the
right-hand-side will not affect the optimal solution. The minimum risk for a minimum
expected return of 25% is the same as the minimum risk for a minimum expected return
of 35%, which is 0.00136. However, for a minimum expected return of 40%, a new
portfolio is obtained.

Lydia's new optimal portfolio consists of 22.9% BB, 21% LOP, 3.4% ILI, 22% HEAL,
18.8% QUI, and 11.9% AUA. Her expected return equals 40% with a risk of 0.00233.

(f) Lydia's approach is very risky. She puts a lot of confidence in the advice of the two
investment experts. She cannot expect to find an optimal investment strategy with her
model if the estimates she uses for the input parameters are not accurate.
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Case 12.2 International Investments

(a) When Charles sells a portion of his B-Bonds in a given year, the first DM 6100 of
interest are tax-free, but the interest earnings exceeding DM 6100 are levied a 30% tax.
Therefore, Charles encounters decreasing marginal returns and we can use separable
programming to solve this problem. Let NoTax5 and Tax5 be the base amount of B-
Bonds Charles sells in the fifth year that yield untaxed interest and taxed interest
respectively. The variables NoTax6, Tax6, NoTax7, and Tax7 are defined in the same
way. The sum of the six variables must equal the total of DM 30,000 that Charles
invested at the beginning of the first year. When Charles sells B-Bonds with the base
amount NoTax5, he earns 50.01% of this amount as interest. In order for him not to pay
any taxes on this amount, the interest must not exceed DM 6100. This is included in the
model as a constraint. Any additional base amount of B-Bonds sold in year 5 yields
Charles only 0.7 0.5001 0.35007. A similar reasoning applies to other years. The‚ œ
objective is to maximize Charles' interest income.
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(b) The optimal investment strategy for Charles is to sell a base amount of DM 9604.79
at the end of year 6 and the remaining DM 20395.21 at the end of year 7. His total after-
tax interest income equals DM 19098.62.

(c) When Charles sells all B-Bonds in year 7, he must pay 30% of tax on the amount of
interest income exceeding DM 6100. This amount is earned interest not only from the last
year, but it also includes interest from all the previous years. Hence, Charles does not pay
30% tax on the 9% interest he earned last year, but he effectively pays tax on the total
interest of all the years. This tax payment decreases his after-tax interest so much that it
pays for him to sell some of his bonds in year 6 in order to take advantage of the yearly
tax-free income of DM 6100. Comparing the total amount of interest Charles earns if he
sells tax-free after year 6 and taxed after year 7, we see that in the former case his total
interest equals 63.51% while in the latter case it is only 54.761%. Therefore, it is better to
sell some bonds at the end of year 6 rather than to keep them until the end of the last
year.

(d) The following observation greatly simplifies the analysis of this problem: The interest
rate on the CD is much lower than the yearly interest rates on the B-Bonds. Therefore, it
can never be optimal for Charles to sell B-Bonds in year 5 in order to buy a CD for year 6
if he does not take advantage of the maximal tax-free amount of selling B-Bonds in year
6. In other words, Charles will only buy a CD for year 6 if he already plans to sell B-
Bonds in year 6 to obtain at least the maximal tax-free amount of interest. The same
argument applies to year 7. Consequently, Charles will never earn untaxed interest on a
CD. Therefore, his yearly interest on the CD will always be 0.7 0.04 0.028 2.8%.‚ œ œ

To formulate the problem in Excel, let CD6 and CD7 be the amount invested in a CD in
year 6 and 7 respectively. The amount of money Charles can invest in a CD in year 6
equals the base amount of B-Bonds sold in year 5 plus the total after-tax interest earned
on the base amount. This gives the constraint CD6 1.5001*NoTax5 1.35007*Tax5.œ 
Similarly, for year 7, CD7 1.6351*NoTax6 1.44457*Tax6 1.028*CD6.œ  
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Charles should sell the maximal base amount of B-Bonds in year 5 that yields tax-free
interest and then invest this money (base amount & interest) into a one-year CD for year
6. In year 6, he should sell again the maximal base amount of B-Bonds that yields tax-
free interest and then invest this money (base amount & interest) and the money from his
CD into a one-year CD for year 7. In year 7, he should sell the remainder of the base
amount of B-Bonds. He again takes advantage of the maximum tax-free amount, but he
also sells a base amount of DM 400.13 for which he must pay taxes on the interest
earnings.

(e) The right-hand-side of the selling constraint should be changed.

The optimal investment strategy is similar to the previous one except that Charles must
now pay taxes on the interest earned from selling a base amount of DM 20400.13 in year
7.
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(f) The right-hand-sides of the Untaxed5, Untaxed6, and Untaxed7 constraints should be
changed.

By getting married in year 5, Charles can increase his interest income by

22008.09 19997.86 DM 2010.23. œ

He should sell the maximal base amount of B-Bonds earning tax-free interest in year 7
(DM 15595.04). The remainder of DM 14404.96 should be sold at the end of year 6. His
entire interest income on this base amount will be tax-free. He then should invest the total
amount (base amount & interest) in a CD for year 7.

(g) Instead of maximizing his interest income, Charles now wants to maximize the
expected dollar amount he will have at the end of year 7. He considers exchanging marks
for dollars either at the end of year 5 or 7. Let CD-US be the amount of money in dollars
that Charles invests in a two-year CD at the end of year 5 and US be the amount of
money in dollars that Charles converts at the end of year 7. The total amount of money in
dollars Charles has at the end of year 7 equals (1.036) *CD-US US; this is the new2 
objective function. At the end of year 5, $1 is assumed to be equal to DM 1.50, so
Charles can exchange marks for dollars at this rate in year 5. This is included as a
constraint. Similarly, we include a constraint for the currency conversion at the end of the
last year.
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Charles converts DM (1.5001*12197.56 1.35007*10004.92 to dollars at the end of
year 5. With the exchange rate of DM 1.50 for $1, he is able to invest $21203.27 in the
American CD. At the end year 7, he converts the remaining DM 1.7823*7797.52 to
dollars. The total amount of his investments at the end of year 7 is then $30478.23.
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Case 12.3 Promoting a Breakfast Cereal, Revisited

(a)
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(b) TV Spots (polynomial of order 2)

 TV Spots (polynomial of order 3)

 TV Spots (logarithmic form)
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 Magazine Ads (polynomial of order 2)

 Magazine Ads (polynomial of order 3)

 Magazine Ads (logarithmic form)
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 Ads in Sunday Supplements (polynomial of order 2)

 Ads in Sunday Supplements (polynomial of order 3)

 Ads in Sunday Supplements (logarithmic form)

In all three cases, the quadratic form is a close fit. The polynomial of order 3 is also a
good fit. The logarithmic form is not a bad fit, but not as closes as the polynomial forms.
We will use the quadratic form in the sequel.
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(c) Let TV, M, and SS be the number of TV spots, magazine ads, and ads in Sunday
supplements respectively. Based on the results of part (b), using the quadratic form gives:
Sales 0.1036TV 1.1264TV 0.04 0.002M 0.124M 0.14 0.0321SS 0.706SS 0.09œ         2 2 2

Cost of Ads 0.3TV 0.15M 0.1SSœ  

Planning Cost 0.09TV 0.03M 0.04SSœ  

Ê œ ‚  Profit $0.75 (Sales) Cost of Ads Planning Cost.

(d) The total sales generated are calculated in row 7 using the nonlinear equations from
part (b). Then, the gross profit from sales are calculated in H20. The TotalProfit (H23) is
the gross profit minus the cost of ads and of planning. The objective is to maximize this.

 



12-74

(e) Separable programming formulation

(f) In part (d), 4.075 TV ads, 3.596 magazine ads, and 11.218 ads in Sunday supplements
are placed. In part (e), 3.563 TV ads, 7.25 magazine ads, and 10 ads in Sunday
supplements are placed. In Case 3.4, 3 TV ads, 14 magazine ads, and 7.75 ads in Sunday
supplements are placed. Unlike linear programming, nonlinear and separable
programming take into account the diminishing returns from repeated advertisements.
Since the solution is fairly different, it certainly appears that it was worthwhile to refine
the linear programming model used in Case 3.4.
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CHAPTER 13: METAHEURISTICS

13.1-1.

(a)

      Tours Distance      Tours Distance
1-2-3-4-5-1    34 1-3-2-4-5-1    32
1-2-3-5-4-1    34 1-3-2-5-4-1    26
1-2-4-3-5-1    36 1-3-4-2-5-1    28
1-2-4-5-3-1    31 1-3-5-2-4-1    28
1-2-5-3-4-1    30 1-4-2-3-5-1    37
1-2-5-4-3-1    25 1-4-3-2-5-1    31

Optimal Solution: 1-2-5-4-3-1 (or the reverse 1-3-4-5-2-1)

(b) Start with the initial trial solution 1-2-3-4-5-1. There are three possible sub-tour
reversals that improve upon this solution.

 1-2-3-4-5-1 Distance = 34
Reverse 2-3 1-3-2-4-5-1 Distance = 32
Reverse 2-3-4 1-4-3-2-5-1 Distance = 31
Reverse 3-4-5 1-2-5-4-3-1 Distance = 25

Choose 1-2-5-4-3-1 as the next trial solution. There is no sub-tour reversal that improves
upon this solution. The tour 1-2-5-4-3-1 is optimal.

(c) Start with the initial trial solution 1-2-4-3-5-1. There are four possible sub-tour
reversals that improve upon this solution.

 1-2-4-3-5-1 Distance = 36
Reverse 4-3 1-2-3-4-5-1 Distance = 34
Reverse 3-5 1-2-4-5-3-1 Distance = 31
Reverse 2-4-3 1-3-4-2-5-1 Distance = 28
Reverse 4-3-5 1-2-5-3-4-1 Distance = 30

Choose 1-3-4-2-5-1 as the next trial solution. There is only one possible sub-tour reversal
that improves upon this solution.

 1-3-4-2-5-1 Distance = 28
Reverse 2-5 1-3-4-5-2-1 Distance = 25

Choose 1-3-4-5-2-1 as the next trial solution. There is no sub-tour reversal that improves
upon this. The solution 1-3-4-5-2-1 is optimal.
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(d) Start with the initial trial solution 1-4-2-3-5-1. There are five possible sub-tour
reversals that improve upon this solution.

 1-4-2-3-5-1 Distance = 37
Reverse 2-4 1-2-4-3-5-1 Distance = 36
Reverse 2-3 1-4-3-2-5-1 Distance = 31
Reverse 3-5 1-4-2-5-3-1 Distance = 28
Reverse 4-2-3 1-3-2-4-5-1 Distance = 32
reverse 2-3-5 1-4-5-3-2-1 Distance = 34

Choose 1-4-2-5-3-1 as the next trial solution. There is only one possible sub-tour reversal
that improves upon this solution.

 1-4-2-5-3-1 Distance = 28
Reverse 2-5 1-4-5-2-3-1 Distance = 26

Choose 1-4-5-2-3-1 as the next trial solution. There is one possible sub-tour reversal that
improves upon this.

 1-4-5-2-3-1 Distance = 26
Reverse 4-5-2 1-2-5-4-3-1 Distance = 25

Choose 1-2-5-4-3-1 as the next trial solution. There is no sub-tour reversal that improves
upon this. The solution 1-2-5-4-3-1 is optimal.

13.1-2.

(a) If the second reversal were chosen, the next trial solution would be 1-2-3-5-4-6-7-1
and there is no sub-tour reversal that gives an improvement.

(b) Start with the initial trial solution 1-2-4-5-6-7-3-1. There are two possible sub-tour
reversals that improve upon this solution.

 1-2-4-5-6-7-3-1 Distance = 69
Reverse 5-6 1-2-4-6-5-7-3-1 Distance = 66
Reverse 2-4-5-6-7 1-7-6-5-4-2-3-1 Distance = 68

Choose 1-2-4-6-5-7-3-1 as the next trial solution. There is only one possible sub-tour
reversal that improves upon this.

 1-2-4-6-5-7-3-1 Distance = 66
Reverse 5-7 1-2-4-6-7-5-3-1 Distance = 63

Choose 1-2-4-6-7-5-3-1 as the next trial solution. This is an optimal solution.



13-3

13.1-3.

(a)

        Tours Distance        Tours Distance
1-2-3-4-5-6-1    1-2-6-3-4-5-1    
1-2-3-4-6-5-1    1-5-2-3-4-6-1    
1-2-3-6-4-5-1   

%) &#
%% %#
 1-5-2-4-3-6-1    

1-2-4-3-6-5-1    1-6-2-3-4-5-1    
1-2-5-4-3-6-1    1-6-3-2-4-5-1    

&! %'
%) %)
&! &!

Optimal Solution: 1-5-2-3-4-6-1 (or the reverse 1-6-4-3-5-2-1)

(b) Start with the initial trial solution 1-2-3-4-5-6-1. There are two possible sub-tour
reversals that improve upon this solution.

 1-2-3-4-5-6-1 Distance = 
Reverse 5-6 1-2-3-4-6-5-1 Distance = 
Reverse 2-3-4-5 1-5-4-3-2-6-1 Distance = 

%)
%%
%)

Choose 1-2-3-4-6-5-1 as the next trial solution. There is no sub-tour reversal that
improves upon this solution.

(c) Start with the initial trial solution 1-2-5-4-3-6-1. There are two possible sub-tour
reversals that improve upon this solution.

 1-2-5-4-3-6-1 Distance = 
Reverse 2-5 1-5-2-4-3-6-1 Distance = 
Reverse 5-4-3 1-2-3-4-5-6-1 Distance = 

&!
%'
%)

Choose 1-5-2-4-3-6-1 as the next trial solution. There is no sub-tour reversal that
improves upon this solution.

13.2-1.

Sears logistics services (SLS) provides delivery with its fleet of over 1,000 vehicles.
Sears product services (SPS) offers home service with its fleet of 12,500 vehicles and
technicians. A customer who asks for delivery or home service is given a day and a time
window based on customer preferences and working schedule in the region where the
customer is located. In either case, the goal is to generate efficient routes for the vehicles
and to provide customers with accurate and convenient time windows while minimizing
the operational costs. Both problems are instances of vehicle routing problem with time
windows (VRPTW). A basic VRPTW determines routes for  vehicles, each starting atQ
the depot and returning to the depot after visiting a subset of customers in some order.
Every customer is visited by exactly one vehicle. The capacity constraints of the vehicles
and the time windows imposed by customers should be met. The objective is to minimize
the total cost. The problems faced by SLS and SPS differ from the basic VRPTW in that
they include additional constraints. For instance, in the case of SPS, technicians' skills
need to be considered in assigning service orders to them. In both cases, there may be
restrictions on total route times and travel times between any two locations. Hence, the
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problem is a complex one and necessitates the use of a solution procedure that can
provide good solutions in acceptable time.

To solve the problem, first an initial route is found for each vehicle, then unassigned
stops are inserted into a route. This solution is improved using various local heuristic
techniques. In order not to be stuck at local optima, the procedure is enhanced with tabu
search technique. Once a stop in a route is relocated, the move is included in a tabu list
and remains prohibited for a number of iterations unless the objective function value it
offers exceeds the best value obtained up to that iteration.

Financial benefits of this study include $9 million in one-time savings and over $42
million in annual savings. The savings result from the reduction in travel times, mileage
and routing times. Sears now offers more timely delivery of merchandise and home
service, so more reliable customer service. The utilization of the fleets is improved. The
routing process became faster and the facility, equipment and personnel costs related to
routing decreased. Since the problem can be solved quickly, Sears can respond to
disruptions and adjust its schedules more efficiently.

13.2-2.

Start with the initial trial solution with links AB, AC, AE, CD, which costs 232.

Iteration 1:

  Add Delete Cost
BC AB 138

AC 246
BD AB 56

AC 164
CD 268

DE AC 152
AE 240
CD 256

Adding BD and deleting AB results in the lowest cost, so choose inserting links AC, AE,
BD. CD. In fact, this is the optimal solution.
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13.2-3.

Start with the initial trial solution with links AB, AD, BE, CD, which costs 390.

Iteration 1: Minimum local search

  Add Delete Cost
AC AD 185

CD 275
CE AB 275

AD 180
CD 270
BE 365

Current solution: AB, BE, CD, CE.
Tabu list: CE

Iteration 2: Minimum local search

  Add Delete Cost
DE CD 95

Current solution: AB, BE, CE, DE
Tabu list: CE, DE

Iteration 3: Minimum local search

  Add Delete Cost
AC BE 75

The solution AB, AC, CE, DE is optimal.

13.2-4.

Start with the initial trial solution with links OA, AB, BC, BE, ED, DT, which costs 314.

Iteration 1: Minimum local search

  Add Delete Cost
ET DE 122

Current solution: OA, AB, BC, BE, ET, DT
Tabu list: ET

Iteration 2: Minimum local search

  Add Delete Cost
CE BC 23

The solution OA, AB, CE, BE, ET, DT is optimal.
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13.2-5.

Initial trial solution: 1-5-3-2-4-1 Distance œ $(

Iteration 1: Choose to reverse 3-5.
Deleted links: 1-5 and 3-2
Added links: 1-3 and 5-2
Tabu list: Links 1-3 and 5-2
New trial solution: 1-3-5-2-4-1  Distance œ #)

Iteration 2: Choose to reverse 5-2.
Deleted links: 3-5 and 2-4
Added links: 3-2 and 5-4
Tabu list: Links 1-3, 5-2, 3-2 and 5-4
New trial solution: 1-3-2-5-4-1  Distance œ #'

Iteration 3: Choose to reverse 2-5-4.
Deleted links: 3-2 and 4-1
Added links: 3-4 and 2-1
Tabu list: Links 3-2, 5-4, 3-4 and 2-1
New trial solution: 1-3-4-5-2-1  Distance œ #&

Iteration 4: Choose to reverse 3-4.
Deleted links: 1-3 and 4-5
Added links: 1-4 and 3-5
Tabu list: Links 3-4, 2-1, 1-4 and 3-5
New trial solution: 1-4-3-5-2-1  Distance œ $!

Iteration 5: Choose to reverse 5-3.
Deleted links: 4-3 and 5-2
Added links: 4-5 and 3-2
Tabu list: Links 1-4, 3-5, 4-5 and 3-2
New trial solution: 1-4-5-3-2-1  Distance œ $%

Iteration 6: Choose to reverse 3-2.
Deleted links: 5-3 and 2-1
Added links: 5-2 and 3-1
Tabu list: Links 4-5, 3-2, 5-2 and 3-1
New trial solution: 1-4-5-2-3-1  Distance œ #'

The solution 1-3-4-5-2-1 is optimal.
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13.2-6.



13-8

13.2-7.

(a)

(b)

(c)
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13.3-1.

^ œ $! X œ #- , 

(a) Maximization problem:
 , , P acceptance^ œ #* B œ Ð^  ^ ÑÎX œ !Þ& Ö × œ / œ !Þ'!(8 8 -

B

 , ,   P acceptance^ œ $% ^  ^ Ö × œ "8 8 -

 , ,   P acceptance^ œ $" ^  ^ Ö × œ "8 8 -

 , , P acceptance^ œ #% B œ Ð^  ^ ÑÎX œ $ Ö × œ / œ !Þ!&8 8 -
B

(b) Minimization problem:
 , ,   P acceptance^ œ #* ^  ^ Ö × œ "8 8 -

 , , P acceptance^ œ $% B œ Ð^  ^ ÑÎX œ # Ö × œ / œ !Þ"$&8 - 8
B

 , , P acceptance^ œ $" B œ Ð^  ^ ÑÎX œ !Þ& Ö × œ / œ !Þ'!(8 - 8
B

 , ,   P acceptance^ œ #% ^  ^ Ö × œ "8 8 -

13.3-2.

Because of the randomness in the algorithm, the output will vary.

13.3-3.

(a) Initial trial solution: 1-4-2-3-5-1, , ^ œ $( X œ !Þ#^ œ (Þ%- " -

 0.0000 - 0.3332 Sub-tour begins in slot 2.
 0.3333 - 0.6666 Sub-tour begins in slot 3.
 0.6667 - 0.9999 Sub-tour begins in slot 4.

The random number is 0.09656: choose a sub-tour that begins in slot 2. The sub-tour
needs to end either in slot 3 or slot .&

 0.0000 - 0.4999 Sub-tour ends in slot 3.
 0.5000 - 0.9999 Sub-tour ends in slot .&

The random number is 0.96657: choose a sub-tour that ends in slot .&
Reverse 2-3-  to obtain the new solution 1-4- - - -1, . Since , accept& & $ # ^ œ $% ^  ^8 8 -

this solution as the next trial solution.

(b) Because of the randomness in the algorithm, the output will vary.

13.3-4.

Because of the randomness in the algorithm, the output will vary.

13.3-5.

Because of the randomness in the algorithm, the output will vary.

13.3-6.

Because of the randomness in the algorithm, the output will vary.
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13.3-7.

(a) 0ÐBÑ œ B  '!B  *!!B  "!!$ #

  and 0 ÐBÑ œ $B  "#!B  *!! 0 ÐBÑ œ 'B  "#!w # ww

Stationary Points: is either  or  (stationary points of ).0 ÐB Ñ œ ! Ê B "! $! 0w ‡ ‡

    is a local maximum.0 Ð"!Ñ œ '!  ! Ê B œ "!ww ‡

    is a local minimum.0 Ð$!Ñ œ '!  ! Ê B œ $!ww ‡

End Points: 0 Ð!Ñ œ *!!  ! Ê B œ !w  is a local minimum.
   is a local minimum.0 Ð$"Ñ œ '$  ! Ê B œ $"w

(b)

 

(c) , , B œ "&Þ& 0ÐBÑ œ ^ œ $&&)Þ* X œ !Þ#^ œ '("Þ((&- -

 , , P œ ! Y œ $" œ ÐY  PÑÎ' œ &Þ"'(5

The random number obtained from Table 20.3 is . From Appendix 5,!Þ!*'&'

 P ,Ö] Ÿ "Þ$"&× ¶ !Þ!*'&'

with  a standard Normal random variable, .] RÐ!ß &Þ"'(Ñ œ "Þ$"& † &Þ"'( œ 'Þ(*

 , B œ "&Þ&  RÐ!ß &Þ"'(Ñ œ )Þ(" ^ œ 0ÐBÑ œ %!%(Þ'8

Since , accept  as the next trial solution.^  ^ B œ )Þ("8 -

(d) Because of the randomness in the algorithm, the output will vary.
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13.3-8.

The nonconvex problem is to:

 maximize !Þ&B  'B  #%Þ&B  $*B  #!B& % $ #

 subject to .! Ÿ B Ÿ &

(a) , , B œ #Þ& 0ÐBÑ œ ^ œ $Þ&"&' X œ !Þ#^ œ !Þ(!$"- -

 , , P œ ! Y œ & œ ÐY  PÑÎ' œ !Þ)$$$5

The random number obtained from Table 20.3 is . From Appendix 5,!Þ!*'&'

 P ,Ö] Ÿ "Þ$"&× ¶ !Þ!*'&'

with  a standard Normal random variable,]
RÐ!ß !Þ)$$$Ñ œ "Þ$"& † !Þ)$$$ œ "Þ!*&).

 , B œ #Þ&  RÐ!ß !Þ)$$$Ñ œ "Þ%!%# ^ œ 0ÐBÑ œ "Þ&()#8

Since , the probability of accepting  as the next trialÐ^  ^ ÑÎX œ (Þ#%)) B œ "Þ%!%#8 -

solution is P acceptance . From Table 20.3, the next randomÖ × œ / œ !Þ!!!("(Þ#%))

number is , so we reject  as the next trial solution.!Þ*''&(  !Þ!!!(" B œ "Þ%!%#

(b) Because of the randomness in the algorithm, the output will vary.

13.3-9.

(a) , , B œ #& 0ÐBÑ œ ^ œ "$ß '("ß )(& X œ !Þ#^ œ #ß ($%ß $(&- -

 , , P œ ! Y œ &! œ ÐY  PÑÎ' œ )Þ$$$5

The random number obtained from Table 20.3 is . From Appendix 5,!Þ!*'&'

 P ,Ö] Ÿ "Þ$"&× ¶ !Þ!*'&'

with  a standard Normal random variable, .] RÐ!ß )Þ$$$Ñ œ "Þ$"& † )Þ$$$ œ "!Þ*&)

 , B œ #&  RÐ!ß )Þ$$$Ñ œ "%Þ!%# ^ œ 0ÐBÑ œ &ß '&*ß "*"Þ'%'8

Since , accept the new solution.^  ^8 -

(b) Because of the randomness in the algorithm, the output will vary.

13.3-10.

(a) , , ÐB ß B Ñ œ Ð")ß #&Ñ 0ÐB ß B Ñ œ ^ œ "$$ß &!*Þ& X œ !Þ#^ œ #'ß (!"Þ*" # " # - -

 , P œ Ð!ß !Ñ Y œ Ð$'ß &!Ñ

 5" œ Ð$'  !ÑÎ' œ '

 5# œ Ð&!  !ÑÎ' œ )Þ$$$

The random number obtained from Table 20.3 is . From Appendix 5,!Þ!*'&'

 P ,Ö] Ÿ "Þ$"&× ¶ !Þ!*'&'

with  a standard Normal random variable,]

 RÐ!ß 'Ñ œ "Þ$"& † ' œ (Þ)*
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 B œ ")  RÐ!ß 'Ñ œ "!Þ"""

 RÐ!ß )Þ$$$Ñ œ "Þ$"& † )Þ$$$ œ "!Þ*&)

 B œ #&  RÐ!ß )Þ$$$Ñ œ "%Þ!%##

This solution is feasible.

 ^ œ 0ÐBÑ œ "!(ß %'(8

Since , the probability of accepting this solution as the next trialÐ^  ^ ÑÎX œ *Þ!#%(8 -

solution is P acceptance . From Table 20.3, the next randomÖ × œ / œ !Þ!!!"#*Þ!#%(

number is , so we reject  as the next trial solution.!Þ*''&(  !Þ!!!"# Ð"!Þ""ß "%Þ!%#Ñ

(b) Because of the randomness in the algorithm, the output will vary.

13.4-1.

(a) P1: 010011 and
 P2: 100101

Only the last digits agree, the children then become:

 C1: xxxxx1 and
 C2: xxxxx1,

where x represents the unknown digits. Random numbers are used to identify these
unknown digits and let random numbers:

 0.00000 - 0.49999 correspond to x = 0,
 0.50000 - 0.99999 correspond to x = 1.

Starting from the front of the top row of Table 20.3, the first 10 random numbers are:
0.09656, 0.96657, 0.64842, 0.49222, 0.49506, 0.10145, 0.48455, 0.23505, 0.90430,
0.04180. The corresponding digits are: 0,1,1,0,0,0,0,0,1,0. The children then become:

 C1: 011001 and
 C2: 000101.

Next, we consider the possibility of mutations. The probability of a mutation in any
generation is set at 0.1, and let random numbers

 0.00000 - 0.09999 correspond to a mutation,
 0.10000 - 0.99999 correspond to no mutation.

Starting from the second row of Table 20.3, we obtain the next 12 random numbers.
Accordingly, the 8  and 11  ones correspond to a mutation, so the final conclusion isth th

that the two children are

 C1: 011001 and
 C2: 010111.

(b) P1: 000010 and
 P2: 001101

The first and second digits agree, the children then become:

 C1: 00xxxx and
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 C2: 00xxxx,

where x represents the unknown digits. Random numbers are used to identify these
unknown digits and let random numbers:

 0.00000 - 0.49999 correspond to x = 0,
 0.50000 - 0.99999 correspond to x = 1.

Starting from the front of the top row of Table 20.3, the first 8 random numbers
correspond to digits: 0,1,1,0,0,0,0,0. The children then become:

 C1: 000110 and
 C2: 000000.

Next, we consider the possibility of mutations. The probability of a mutation in any
generation is set at 0.1, and let random numbers

 0.00000 - 0.09999 correspond to a mutation,
 0.10000 - 0.99999 correspond to no mutation.

Use Table 20.3 to obtain the next 12 random numbers. Accordingly, the 2  and 10  onesnd th

correspond to a mutation, so the final conclusion is that the two children are

 C1: 010110 and
 C2: 000100.

(c) P1: 100000 and
 P2: 101000

All but the third digits agree, the children then become:

 C1: 10x000 and
 C2: 10x000,

where x represents the unknown digits. Random numbers are used to identify these
unknown digits and let random numbers:

 0.00000 - 0.49999 correspond to x = 0,
 0.50000 - 0.99999 correspond to x = 1.

Starting from the front of the top row of Table 20.3, the first 2 random numbers
correspond to digits: 0,1. The children then become:

 C1: 100000 and
 C2: 101000.

Next, we consider the possibility of mutations. The probability of a mutation in any
generation is set at 0.1, and let random numbers

 0.00000 - 0.09999 correspond to a mutation,
 0.10000 - 0.99999 correspond to no mutation.

Use Table 20.3 to obtain the next 12 random numbers. Accordingly, only the 8  oneth

corresponds to a mutation, so the final conclusion is that the two children are

 C1: 100000 and
 C2: 111000.
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13.4-2.

(a) P1: 1-2-3-4-7-6-5-8-1 and
 P2: 1-5-3-6-7-8-2-4-1

Start from city 1.
Possible links: 1-2, 1-8, 1-5, 1-4
Random numbers: 0.09656 choose 1-2
   0.96657 no mutation
Start from city 2. Current tour: 1-2
Possible links: 2-3, 2-8, 2-4
Random numbers: 0.64842 choose 2-8
   0.49222 no mutation
Start from city 8. Current tour: 1-2-8
Possible links: 8-5, 8-7
Random numbers: 0.49506 choose 8-5
   0.10145 no mutation
Start from city 5. Current tour: 1-2-8-5
Possible links: 5-6, 5-3
Random numbers: 0.48455 choose 5-6
   0.23505 no mutation
Start from city 6. Current tour: 1-2-8-5-6
Possible links: 6-7, 6-7, 6-3
Random numbers: 0.90430 choose 6-3
   0.04180 mutation
Reject 6-3 and consider all other possible links: 6-4, 6-7
Random numbers: 0.24712 choose 6-4
Start from city 4. Current tour: 1-2-8-5-6-4
Possible links: 4-3, 4-7
Random numbers: 0.55799 choose 4-7
   0.60857 no mutation
The only remaining city is 3. Hence, C1 = 1-2-8-5-6-4-7-3-1.

(b) P1: 1-6-4-7-3-8-2-5-1 and
 P2: 1-2-5-3-6-8-4-7-1

Start from city 1.
Possible links: 1-6, 1-5, 1-2, 1-7
Random numbers: 0.09656 choose 1-6
   0.96657 no mutation
Start from city 6. Current tour: 1-6
Possible links: 6-4, 6-3, 6-8
Random numbers: 0.64842 choose 6-3
   0.49222 no mutation
Start from city 3. Current tour: 1-6-3
Possible links: 3-7, 3-8, 3-5
Random numbers: 0.49506 choose 3-8
   0.10145 no mutation



13-15

Start from city 8. Current tour: 1-6-3-8
Possible links: 8-2, 8-4
Random numbers: 0.48455 choose 8-2
   0.23505 no mutation
Start from city 2. Current tour: 1-6-3-8-2
Possible links: 2-5
Random numbers: 0.04180 mutation
Reject 2-5 and consider all other possible links: 2-4, 2-7
Random numbers: 0.24712 choose 2-4
Start from city 4. Current tour: 1-6-3-8-2-4
Possible links: 4-7
Random numbers: 0.60857 no mutation
The only remaining city is 5. Hence, C1 = 1-6-3-8-2-4-7-5-1.

(c) P1: 1-5-7-4-6-2-3-8-1 and
 P2: 1-3-7-2-5-6-8-4-1

Start from city 1.
Possible links: 1-5, 1-8, 1-3, 1-4
Random numbers: 0.09656 choose 1-5
   0.96657 no mutation
Start from city 5. Current tour: 1-5
Possible links: 5-7, 5-2, 5-6
Random numbers: 0.64842 choose 5-2
   0.49222 no mutation
Start from city 2. Current tour: 1-5-2
Possible links: 2-6, 2-3, 2-7
Random numbers: 0.49506 choose 2-3
   0.10145 no mutation
Start from city 3. Current tour: 1-5-2-3
Possible links: 3-8, 3-7
Random numbers: 0.48455 choose 3-8
   0.23505 no mutation
Start from city 8. Current tour: 1-5-2-3-8
Possible links: 8-6, 8-4
Random numbers: 0.90430 choose 8-4
   0.04189 mutation
Reject 8-4 and consider all other possible links: 8-6, 8-7
Random numbers: 0.24712 choose 8-6
Start from city 6. Current tour: 1-5-2-3-8-6
Possible links: 6-4
Random numbers: 0.55799 choose 6-4
   0.60857 no mutation
The only remaining city is 7. Hence, C1 = 1-5-2-3-8-6-4-7-1.
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13.4-3.

(a) Because of the randomness in the algorithm, the output will vary.

(b) Because of the randomness in the algorithm, the output will vary.

13.4-4.

Integer nonlinear programming: maximize   0ÐBÑ œ B  '!B  *!!$ #

    subject to  ! Ÿ B Ÿ $"

(a)

(b) Because of the randomness in the algorithm, the output will vary.

13.4-5.

Because of the randomness in the algorithm, the output will vary.

13.4-6.

Because of the randomness in the algorithm, the output will vary.

13.4-7.

(a) Because of the randomness in the algorithm, the output will vary.

(b) Because of the randomness in the algorithm, the output will vary.
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13.4-8.

(a) Genetic Algorithm

(b) Because of the randomness in the algorithm, the output will vary.

13.4-9.

Because of the randomness in the algorithm, the output will vary.

13.4-10.

Because of the randomness in the algorithm, the output will vary.

13.5-1.

See the solution for Problem 13.2-6(a) for the output from the basic tabu search
algorithm. Because of the randomness in the basic simulated annealing and genetic
algorithms, their outputs will vary.

13.5-2.

See the solution for Problem 13.2-7(a) for the output from the basic tabu search
algorithm. Because of the randomness in the basic simulated annealing and genetic
algorithms, their outputs will vary.
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CHAPTER 14: GAME THEORY

14.1-1.

Let player 1 be the labor union with strategy  being to decrease the wage demand by3
"!Ð3  "Ñ 3¢ and player 2 be the management with strategy  being to increase the offer by
"!Ð3  "Ñ¢. The payoff matrix is:

            " # $ % & '
" "Þ$& "Þ# "Þ$ "Þ% "Þ& "Þ'
# "Þ& "Þ$& "Þ$ "Þ% "Þ& "Þ'
$ "Þ% "Þ% "Þ$& "Þ% "Þ& "Þ'
% "Þ$ "Þ$ "Þ$ "Þ$& "Þ& "Þ'
& "Þ# "Þ# "Þ# "Þ# "Þ$& "Þ'
' "Þ" "Þ" "Þ" "Þ" "Þ" "Þ$&

where the rows represent the strategy of player 1 and the columns the strategy of player 2.

14.1-2.

Label the products as A and B respectively. The strategies for each manufacturer are:

 1- Normal development of both products
 2- Crash development of product A
 3- Crash development of product B.

Let [: œ34
"
# (% increase to manufacturer 1 from A)  (% increase to manufacturer 1 from B)]  when

manufacturer 1 uses strategy  and manufacturer 2 uses strategy . The payoff matrix is:3 4

      row min
     
  
  

" # $
" ) "! "!
# % % "$ %
$ % "$ % %

)

  col max               ) "$ "$ )

The rows correspond to the strategy of manufacturer 1 and the columns to the strategy of
manufacturer 2. The minimum of the column maxima and the maximum of the row
minima is , so both manufacturers should use strategy 1, namely choose normal ) development
of both products. Consequently, manufacturer 1 will increase its share by %.)

14.1-3.

Each player has the same strategy set. A strategy must specify the first chip chosen, the
second and third chips chosen for every choice first chip by the opponent. Denote the
white, red and blue chips by W, R and B respectively. Then a strategy is of the form:
Choose W, R, B  as first chip, if the opponent chooses W, R, B , then choose3 − Ö × 4 − Ö ×
5 − Ö × Ö3× 6 − Ö × Ö3 5× 34 4W, R, B \ , and let W, R, B \ , . There are three choices of  and for
each , eight choices of second and third chips, so 24 strategies in total. Player 1 can3
either win all three games, or win one and get a draw in another one, or lose all three.
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Hence, the payoff to player 1 can be either 0, 0, or - 0. The payoff to player 1 in each#" #"
possible scenario is given in the table below, where the rows and the columns represent
the order of chips played by player 1 and 2 respectively.

WRB WBR RWB RBW BWR BRW
WRB     0     0     0 - 10   2 0     0
WBR     0     0 - 10     0     0  0
RWB     0  0     0     0     0 - 0
RBW  0     0     

# "
# #"

#" #"
#" 0     0 - 0     0

BWR - 0     0     0  0     0     0
BRW     0 - 0  0     0     0     0

#"
#" #"

#" #"

14.2-1.

(a) Strategies 4, 5, and 6 of each player are dominated by their strategy 3. Then strategy 1
can be eliminated, since it is dominated by strategy 3 for each player. Once these are
eliminated, strategy 2 of each is dominated by strategy 3. Thus, the best strategy of the
labor union is to decrease its demand by ¢ and the best for the management if to#!
increase its offer by ¢. The resulting wage is $ .#! "Þ$&

(b)
              " # $ % & '

" "Þ$& "Þ# "Þ$ "Þ% "Þ& "Þ'
# "Þ& "Þ$& "Þ$ "Þ% "Þ& "Þ'
$ "Þ% "Þ% "Þ$& "Þ% "Þ& "Þ'
% "Þ$ "Þ$ "Þ$ "Þ$& "Þ& "Þ'
& "Þ# "Þ# "Þ# "Þ# "Þ$& "Þ'
' "Þ" "Þ" "Þ" "Þ" "Þ" "Þ$& "Þ"

"Þ#
"Þ$

"Þ$
"Þ#

  row min
   
   
   
   
   
   

"Þ$&

  col max                 "Þ& "Þ% "Þ% "Þ& "Þ' "Þ$&"Þ$&

14.2-2.

 Strategy 3 of player 1 is dominated by strategy 2.
 Strategy 3 of player 2 is dominated by strategy 1.
 Strategy 1 of player 1 is dominated by strategy 2.
 Strategy 2 of player 2 is dominated by strategy 1.

Therefore, the optimal strategy is strategy 2 for player 1 and strategy 1 for player 2 and
the resulting payoff is 1 to player 1.

14.2-3.

 Strategies 1 and 4 of player 2 is dominated by strategy 3.
 Strategies 1 and 2 of player 1 are dominated by strategy 3.
 Strategy 2 of player 2 is dominated by strategy 3.

Therefore, the optimal strategy is strategy 3 for each player and the resulting payoff is 2
to player 2.
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14.2-4.
            row min

         
         

               

" # $
" $ " $ "
# $ " ( $
$ ( $ & $

  col max                      ( ( $$

The best strategy is strategy 3 for player 1 and strategy 2 for player 2, the resulting payoff
is  to player 1. The game is stable with a saddle point , since the minimax value$ Ð$ß #Ñ
equals the maximin value.

14.2-5.
               row min

      
      

            

" # $ %
" $ $ # % %
# % # " " %
$ " " # ! "

   col max                   " # " ""

The best strategy is strategy 3 for player 1 and strategy 2 for player 2, the resulting payoff
is 1 to player 2. The game is stable with a saddle point .Ð$ß #Ñ

14.2-6.

(a)            row min
               
               
      

" # $
" # $ "
# " % ! !
$ $ # " #

"

  col max                      $ % ""

The best strategy is strategy 1 for player 1 and strategy 3 for player 2, the resulting payoff
is 1 to player 1. The game is stable with a saddle point .Ð"ß $Ñ

(b) Strategy 1 of player 2 is dominated by strategy 3.
 Strategy 3 of player 1 is dominated by strategies 1 and 2.
 Strategy 2 of player 2 is dominated by strategy 3.
 Strategy 2 of player 1 is dominated by strategy 1.

The optimal strategy is strategy 1 for player 1 and strategy 3 for player 2, with a payoff of
1 to player 1.

14.2-7.

(a)            row min
         
               

      

" # $
" ( " $ "
# " ! #
$ & $ " &

!

  col max                      ( !! "

The best strategy is to use issue 2 for each politician, with zero payoff to each.
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(b) Let  be the probability that politician 1 wins the election or the election results in a:34
tie when politician 1 chooses issue  and politician 2 issue . Then the new payoff matrix3 4
is:

       
  

  

" # $
" " ! $Î&
# "Î& ! #Î&
$ ! ! "Î&

 Strategies 2 and 3 of politician 1 are dominated by strategy 2.
 Strategies 1 and 3 of politician 2 are dominated by strategy 2.

Hence, by eliminating dominated strategies, one gets issue 1 as the best strategy for
politician 1 and issue 2 for politician 2, the payoff is zero. Thus, politician 2 can prevent
politician 1 from winning or getting a tie.

(c) Let if politician 1 will win or tie
if politician 2 will win: œ

"
!34 œ

Then the payoff matrix becomes:

   " # $
" " ! !
# ! ! !
$ ! ! !

where the minimax of the columns and the maximin of the rows both equal zero, i.e.,
politician 1 cannot win. Politician 1 can use any use, politician 2 can choose issue 2 or 3;
however, since issue 1 offers politician 1 his only chance of winning, he should use that
one and hope that politician 2 chooses issue 1 by mistake.

14.2-8.

Advantages: It provides the best possible guarantee on what the worst outcome can be,
regardless of how skillfully the opponent plays the game and hence, reduces the
possibility of undesirable outcomes to a minimum.

Disadvantages: Since it aims at eliminating worst cases, it is conservative and may yield
payoffs that are far from the best ones.

14.3-1.

(a)         row min
      

      

" #
" " " "
# " " "

   col max       " "

The minimax payoff is not the same as the maximin payoff, so the game does not have a
saddle point.
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(b) Expected payoff for player 1: ÐB C  B C Ñ  ÐB C  B C Ñ" " # # " # # "

 B  B œ C  C œ "" # " #

 (i) : C œ "ß C œ ! B  B œ B  Ð"  B Ñ œ #B  "" # " # " " "

 (ii)  : C œ !ß C œ " B  B œ Ð"  B Ñ  B œ "  #B" # # " " " "

 (ii)  : C œ ß C œ !" #
" "
# #

(c) Expected payoff for player 1: ÐB C  B C Ñ  ÐB C  B C Ñ" # # " " " # #

 B  B œ C  C œ "" # " #

 (i) : C œ "ß C œ ! B  B œ Ð"  B Ñ  B œ "  #B" # # " " " "

 (ii)  : C œ !ß C œ " B  B œ B  Ð"  B Ñ œ #B  "" # " # " " "

 (ii)  : C œ ß C œ !" #
" "
# #

14.3-2.

(a)  1- Pass on heads or tailsStrategies for player1:
    2- Bet on heads or tails
    3- Pass on heads, bet on tails
    4- Bet on heads, pass on tails

 1- If player 1 bets, call.Strategies for player 2:
    2- If player 1 bets, pass.

(b)

        

      
   

      

" #
" & &
# ! &
$ (Þ& !
% #Þ& !

Strategies 1 and 3 of player 1 are dominated bye strategy 2. Upon eliminating them, the
table is reduced to:

  " #
# ! &
% #Þ& !

(c)         row min

           
     

           

  
" #

" & & &
# ! &
$ (Þ& ! (Þ&
% #Þ& !

!

!

  col max       #Þ& &

The minimum of the column maxima is not equal to the maximum of the row minima,
there is no saddle point. If either player chooses a pure strategy, the other one can choose
a strategy to cause the first player to change his strategy. One needs mixed strategies to
find an equilibrium.
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(d) The dominated strategies will not be chosen. Let  and  be the probabilities thatB B# %

player 1 uses strategy 2 and 4 respectively,  and  be the probabilities that player 2C C" #

uses strategy 1 and 2 respectively. Hence,  and  and the expectedB  B œ " C  C œ "# % " #

payoff can be expressed as .: B C  : B C  : B C  : B C#" # " ## # # %" % " %# % #

Case (i):   ,    C œ " C œ ! Ê #Þ&B œ #Þ&Ð"  B Ñ" # % #

Case (ii):  ,    C œ ! C œ " Ê &B œ &Ð"  B Ñ" # # %

Case (iii):     C œ C œ !Þ& Ê &B  #Þ&B œ !Þ#&B  "Þ#&" # # % #
" "
# #Š ‹ Š ‹

14.4-1.

Expected payoff for player 1: (i) : C œ "ß C œ ! #B  "" # "

    (ii) : C œ !ß C œ " "  #B" # "

 
Expected payoff for player 2: (i) : B œ "ß B œ ! "  #C" # "

    (ii) : B œ !ß B œ " #C  "" # "

 
The corresponding value of the game is zero.
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14.4-2.

 Expected PayoffÐC ß C Ñ
Ð"ß !Ñ #Þ&Ð"  B Ñ
Ð!ß "Ñ &B

" #

#

#

    

#Þ&Ð"  B Ñ œ &B Ê ÐB ß B ß B ß B Ñ œ Ð!ß "Î$ß !ß #Î$Ñ @ œ &Î$# # " # $ %
‡ ‡ ‡ ‡   and .

#Þ&C Ð"  B Ñ  &C B œ &Î$ ! Ÿ B Ÿ " Ê #Þ&C œ &Î$ &C œ &Î$" # " #
‡ ‡ ‡ ‡

# # # for    and 
Ê ÐC ß C Ñ œ Ð#Î$ß "Î$Ñ" #

‡ ‡ .

14.4-3.

ÐC ß C Ñ
Ð"ß !Ñ &B  #Ð"  B Ñ œ (B  #
Ð!ß "Ñ %B  $Ð"  B Ñ œ (B  $

" #

" " "

" " "

           Expected Payoff
      

(B  # œ (B  $ Ê ÐB ß B Ñ œ Ð&Î"%ß *Î"%Ñ @ œ (Ð&Î"%Ñ  # œ !Þ&" " " #
‡ ‡   and .

&C  %C œ !Þ& #C  $C œ !Þ& Ê ÐC ß C Ñ œ Ð!Þ&ß !Þ&Ñ" # " # " #
‡ ‡ ‡ ‡ ‡ ‡ and   .

The payoff matrix for player 2 is:       
   

   

" #
" & %
# # $
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ÐB ß B Ñ
Ð"ß !Ñ &C  %Ð"  C Ñ œ *C  %
Ð!ß "Ñ #C  $Ð"  C Ñ œ &C  $

" #

" " "

" " "

           Expected Payoff

      

*C  % œ &C  $ Ê C œ C œ !Þ&" " " #
‡ ‡  

14.4-4.

 Expected PayoffÐC ß C ß C Ñ
Ð"ß !ß !Ñ %B
Ð!ß "ß !Ñ $B  Ð"  B Ñ œ #B  "
Ð!ß !ß "Ñ B  #Ð"  B Ñ œ B  #

" # $

"

" " "

" " "

       

%B œ B  # Ê ÐB ß B Ñ œ Ð#Î&ß $Î&Ñ @ œ )Î&" " " #
‡ ‡   and .

C Ð%B Ñ  C ÐB  #Ñ œ )Î& ! Ÿ B Ÿ " Ê #C œ )Î& %C  C œ $Î&" $ $ " $
‡ ‡ ‡ ‡ ‡

" " " for    and 
Ê ÐC ß C ß C Ñ œ Ð"Î&ß !ß %Î&Ñ" # $

‡ ‡ ‡ .

14.4-5.

(a)  1- John does not swim butterfly.Strategies for A.J. Team:
     2- John does not swim backstroke.
     3- John does not swim breaststroke.

  1- Mark does not swim butterfly.Strategies for G.N. Team:
     2- Mark does not swim backstroke.
     3- Mark does not swim breaststroke.
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Let the payoff entries be the total points earned in all three events by A.J. Team when a
given pair of strategies are chosen by the teams. Then the payoff matrix becomes:

" # $
" "% "$ "#
# "$ "# "#
$ "# "# "$

Strategy 2 of A.J. Team is dominated by strategy 1 and strategy 1 of G.N. Team is domi-
nated by strategy 2. When we eliminate these strategies we obtain the table:

# $ ÐC ß C Ñ
" "$ "# Ð"ß !Ñ "$B  "#Ð"  B Ñ œ B  "#
$ "# "$ Ð!ß "Ñ "#B  "$Ð"  B Ñ œ B  "$

  Expected Payoff" #

" " "

" " "

B  "# œ B  "$ Ê ÐB ß B ß B Ñ œ Ð!Þ&ß !ß !Þ&Ñ @ œ "#Þ&" " " # $
‡ ‡ ‡   and .

C ÐB  "#Ñ  C ÐB  "$Ñ œ "#Þ& ! Ÿ B Ÿ " Ê "#C  "$C œ "#Þ&# $ # $
‡ ‡ ‡ ‡

" " " for    and
"$C  "#C œ "#Þ& Ê ÐC ß C ß C Ñ œ Ð!ß !Þ&ß !Þ&Ñ# $ " # $

‡ ‡ ‡ ‡ ‡ .

Hence, John should always swim backstroke and should swim butterfly and breaststroke
each with probability . Also, Mark should always swim butterfly and should swim"Î#
backstroke and breaststroke each with probability . Consequently, A.J. Team can"Î#
expect to get  points on average in three events."#Þ&

(b) The strategies for the two teams are the same as in (a). If  denotes the total points:34
earned by A.J. Team, let  be the new payoff that is defined as::34

w

: œ
"Î# :   "$

"Î# :  "$34
w 34

34
œ    if , i.e., if A.J. Team wins

if , i.e., if A.J. Team loses .

Then, the new payoff matrix becomes:

         
      
   

   

" # $
" "Î# "Î# "Î#
# "Î# "Î# "Î#
$ "Î# "Î# "Î#

where strategy 2 of A.J. Team is dominated by strategy 1 and strategy 1 of G.N. Team is
dominated by strategy 2. After eliminating these, the reduced payoff matrix is:

      
   

   

# $
" "Î# "Î#
$ "Î# "Î#

Adding the constant  to every entry does not change the optimal strategies."#Þ&
Furthermore, the payoff matrix in (a) is obtained by doing so. Hence, the best strategies
found in (a) are still optimal, the new payoff is .@ œ "#Þ&  "#Þ& œ !w

(c) Since John and Mark are the best swimmers of their teams, they will always swim in
two events. Their teams cannot do better if they do not swim or if they swim in only one
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event. Hence, if either one of them does not swim in the first event, namely butterfly, he
will surely swim the last two events. Accordingly, the strategies for A.J. Team are:

1- John swims butterfly and then backstroke regardless of whether Mark swims butterfly.
2- John swims butterfly and then backstroke if Mark swims butterfly, breaststroke else.
3- John swims butterfly and then breaststroke if Mark swims butterfly, backstroke else.
4- John swims butterfly and then breaststroke regardless of whether Mark swims butterfly.
5- John does not swim butterfly, swims both backstroke and breaststroke.

The strategies for G.N. Team are the same but with the roles of John and Mark are
reversed. The associated payoff matrix is:

               
      
         

   
   

" # $ % &
" "Î# "Î# "Î# "Î# "Î#
# "Î# "Î# "Î# "Î# "Î#
$ "Î# "Î# "Î# "Î# "Î#
% "Î# "Î# "Î# "Î# "Î#
& "Î# "Î# "Î# "Î# "Î# & "Î#

$
" "Î#
# "Î#
$ "Î#
% "Î#

      

      

Strategy 3 of G.N. Team dominates all others, by eliminating them, we obtain the payoff
matrix on the right. It shows that if G.N. Team uses strategy 3, it will win regardless of
what strategy is employed by A.J. Team.

(d) Strategy 2 of A.J. Team dominates strategies 1, 3, and 4. Thus, if the coach of G.N.
Team may choose any of their strategies at random, the coach of A.J. Team should
choose either strategy 2 or 5. After eliminating the dominated strategies, the payoff
matrix becomes:

               
         

         

" # $ % &
# "Î# "Î# "Î# "Î# "Î#
& "Î# "Î# "Î# "Î# "Î#

The two rows are identical except for columns 1 and 4. Thus, if the coach of A.J. team
knows that the other coach has a tendency to enter Mark in butterfly and backstroke more
often than breaststroke, that means column 1 is more likely to be chosen than column 4,
so the coach of A.J. team should choose strategy 2.

14.5-1.

(a) Player 1: maximize    B$

   subject to    B  B  B   !" # $

     B  B  B   !" # $

        B  B œ "" #

        B ß B   !" #

 Player 2: minimize    C$
   subject to    C  C  C Ÿ !" # $

     C  C  C Ÿ !" # $

        C  C œ "" #

        C ß C   !" #

(b) Optimal Solution: B œ B œ C œ C œ !Þ&ß B œ C œ !" # " # $ $
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14.5-2.

After adding 3 to the entries of Table 14.6, the payoff table becomes:

  " # $
" $ " &
# ) ( !

The new linear programming problem for player 1 is:

 maximize B$

 subject to $B  )B  B   !" # $

   B  (B  B   !" # $

   &B  B   !" $

   B  B œ "" #

   B ß B ß B   !" # $

The new linear programming problem for player 2 is:

 maximize C%
 subject to $C  C  &C  C Ÿ !" # $ %

   )C  (C  C Ÿ !" # %

    C  C  C œ "" # $

    C ß C ß C ß C   !" # $ %

Based on the information given in Section 14.5, the optimal solutions for these new
models are:
       ÐB ß B ß B Ñ œ Ð(Î""ß %Î""ß $&Î""Ñ" # $

‡ ‡ ‡

  .ÐC ß C ß C ß C Ñ œ Ð!ß &Î""ß 'Î""ß $&Î""Ñ" # $ %
‡ ‡ ‡ ‡

Note that  where  is the value for the original version of the game.B œ C œ @  $ @$ %
‡ ‡

14.5-3.

(a) maximize B%

     subject to &B  #B  $B  B   !" # $ %

             %B  #B  B   !# $ %

              $B  $B  B   !" # %

    B  #B  %B  B   !" # $ %

        B  B  B œ "" # $

    B ß B ß B ß B   !" # $ %

(b)
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14.5-4.

(a) To insure , add  to each entry of the payoff table.B   ! &%

      maximize B%

 subject to  "#B  %B  )B  B   !" # $ %

              )B  &B  "!B  B   !" # $ %

                          "!B  #B  B   !# $ %

      B  B  B œ "" # $

   B ß B ß B ß B   !" # $ %

(b)

 

14.5-5.

(a) To insure , add 4 to each entry of the payoff table.B   !&

     maximize B&

     subject to &B  'B  %B  B   !" # $ &

  B  (B  )B  %B  B   !" # $ % &

  'B  %B  $B  #B  B   !" # $ % &

  #B  (B  B  'B  B   !" # $ % &

  &B  #B  'B  $B  B   !" # $ % &

  B  B  B  B œ "" # $ %

  B ß B ß B ß B ß B   !" # $ % &

(b)
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14.5-6.

Following Table 6.14, the dual of player 1's problem is:

 minimize      C8"

 subject to          : C  : C  â  : C  C   !"" "# "8 8"" # 8
w w w

                : C  : C  â  : C  C   !#" ## #8 8"" # 8
w w w

                   ã
             : C  : C  â : C  C   !7" 7# 78 8"" # 8

w w w

                                         C  C â  C œ "" # 8
w w w

        , ; (  free).C Ÿ ! 3 œ "ß #ßá ß 8 C3
w

8"

Now, let  for  to get the linear program for player 2.C œ C 3 œ "ß #ßá ß 83 3
w

14.5-7.

Taking the dual of player 1's problem gives:

 minimize                             C%
 subject to              #C  #C  C   !# $

w w
%

           &C  %C  $C  C   !" # $
w w w

%

                          C  C  C œ "" # $
w w w

            ; (  free).C ß C ß C Ÿ ! C" #
w w

$ %

Now, let  for  to get the linear program for player 2.C œ C 3 œ "ß #ß $3 3
w

14.5-8.

 

The feasible region may be algebraically described by:  andB œ "  B# "

$Î& Ÿ B Ÿ #Î$" . The restrictions may be rewritten as:

  B Ÿ &B  & $Î& Ÿ B Ÿ #Î$$ " "

  B Ÿ 'B  % $Î& Ÿ B Ÿ #Î$$ " "

     B Ÿ &B  $ $Î& Ÿ B Ÿ #Î$$ " "
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'B  % œ &B  $ Ê B œ (Î""" " "  .

Therefore, the algebraic expression for the maximizing value of  for any point in theB$

feasible region is:

B œ
&B  $ $Î& Ÿ B Ÿ (Î""

'B  % (Î"" Ÿ B Ÿ #Î$$
" "

" "
œ    for 

for 

Hence, the optimal solution is:

ÐB ß B ß B Ñ œ Ð(Î""ß "  (Î""ß &Ð(Î""Ñ  $Ñ œ Ð(Î""ß %Î""ß #Î""Ñ" # $
‡ ‡ ‡ .

14.5-9.

Optimal primal solution:  with a payoff of ÐB ß B Ñ œ Ð!Þ'$'ß !Þ$'%Ñ !Þ")#" #

Optimal dual solution: ÐC ß C ß C Ñ œ Ð!ß !Þ%&&ß !ß &%&Ñ" # $
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14.5-10.

(a) Since the saddle points can be found by linear programming, (a) follows from (b).

(b) Consider the linear programming formulation of the problem for player 2. The th and3
5th constraints are:

: C  : C  â  : C Ÿ C3" " 3# # 38 8 8"      
: C  : C  â  : C Ÿ C5" " 5# # 58 8 8"    

If row  weakly dominates row , then5 3

: C  : C  â  : C Ÿ : C  : C  â  : C3" " 3# # 38 8 5" " 5# # 58 8      

for every . In that case, the th constraint is redundant, as it is implied by theC ßá ß C 3" 8

5th constraint. Hence, eliminating dominated pure strategies for player 1 corresponds to
eliminating redundant constraints from the linear program for player 2. Similarly,
eliminating dominated strategies of player 2 is equivalent to eliminating redundant
constraints of player 1's linear program. Since this process cannot eliminate any feasible
solutions or create new ones, all optimal strategies are preserved and no new ones are
added.
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CHAPTER 15: DECISION ANALYSIS

15.2-1.

Phillips Petroleum Company developed a decision analysis tool named DISCOVERY to
evaluate available investment opportunities and decide on the participation levels. The
need for a systematic decision analysis tool arose from the uncertainty associated with
various alternatives, the lack of a consistent risk measure across the organization and the
scarcity of capital resources. The notion of risk is incorporated in the model with the use
of risk-averse exponential utility function. The objective is to maximize expected utility
rather than expected return. DISCOVERY provides a decision-tree display of available
alternatives at various participation levels. A simple version of the problem is one where
Phillips needs to decide first on the participation level and second on whether to drill or
not. The exploration of petroleum when drilled is uncertain. The analysis is performed for
different levels of risk-aversion and the sensitivity of the decisions to the risk-aversion
level is observed. When additional seismic information is available at a cost, the value of
information is computed.

This study "has increased management's awareness of risk and risk tolerance, provided
insight into the financial risks associated with its set of investment opportunities, and
provided the company a formalized decision model for allocating scarce capital" [p. 55].
The software package developed has been a valuable aid in decision making. It provided
a systematic treatment of risk and uncertainty. Other petroleum exploration firms started
to use DISCOVERY in analyzing decisions, too.

15.2-2.

(a)           State of Nature
Alternative Sell Sell 
Build Computers                
Sell Rights              

"!ß !!! "!!ß !!!
! &%

"& "&

(b)
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(c) Let  be the prior probability of selling 10,000 computers.:

 Build: EP œ :Ð!Ñ  Ð"  :ÑÐ&%Ñ œ &%:  &%

 Sell: EP œ :Ð"&Ñ  Ð"  :ÑÐ"&Ñ œ "&

The expected profit for Build and Sell is the same when .&%:  &% œ "& Ê : œ !Þ(##
They should build when  and sell if .: Ÿ !Þ(## :   !Þ(##

(d)

 

(e)

Building computers should be chosen, since it has an expected payoff of $27 million.
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15.2-3.

(a) 
                                      State of Nature

Alternative Sell 12 Cases Sell 13 Cases Sell 14 Cases Sell 15 Cases
Buy 12 Cases        1                      
Buy 13 Cases                             
Buy 14 Cases                   

$# "$# "$# "$#
"#& "%$ "%$ "%$
"") "$'           

Buy 15 Cases                             
Prior Probability                             

"&% "&%
""" "#* "%( "'&
!Þ" !Þ$ !Þ% !Þ#

(b) According to the maximin payoff criterion, Jean should purchase 12 cases.
                                      State of Nature

Alternative Sell 12 Cases Sell 13 Cases Sell 14 Cases Sell 15 Cases Min
Buy 12 Cases        1                      
Buy 13 Cases                             
Buy 14 Cases             

$# "$# "$# "$# "$#
"#& "%$ "%$ "%$ "#&
"")                 

Buy 15 Cases                             
Prior Probability                      

"$' "&% "&% "")
""" "#* "%( "'& """
!Þ" !Þ$ !Þ% !Þ#       

(c) She will be able to sell 14 cases with highest probability and the maximum possible
profit from selling 14 cases is earned when she buys 1  cases. Hence, according to the%
maximum likelihood criterion, Jean should purchase 1  cases.%

(d) According to Bayes' decision rule, Jean should purchase 1  cases.%

                                      State of Nature Exp.
Alternative Sell 12 Cases Sell 13 Cases Sell 14 Cases Sell 15 Cases Profit
Buy 12 Cases        1                      
Buy 13 Cases                             
Buy 14 Cases       

$# "$# "$# "$# "$#
"#& "%$ "%$ "%$ "%"Þ#

                      
Buy 15 Cases                             
Prior Probability               

"") "$' "&% "&% "%&
""" "#* "%( "'& "%"Þ'
!Þ" !Þ$ !Þ% !Þ#              

(e) Jean should purchase 1  cases.!Þ# !Þ& and : %

                                      State of Nature Exp.
Alternative Sell 12 Cases Sell 13 Cases Sell 14 Cases Sell 15 Cases Profit
Buy 12 Cases        1                      
Buy 13 Cases                             
Buy 14 Cases       

$# "$# "$# "$# "$#
"#& "%$ "%$ "%$ "%"Þ#

                      
Buy 15 Cases                             
Prior Probability             

"") "$' "&% "&% "%'Þ)
""" "#* "%( "'& "%$Þ%
!Þ"                 !Þ# !Þ& !Þ#

 Jean should purchase 1  cases.!Þ% !Þ$ and : %

                                      State of Nature Exp.
Alternative Sell 12 Cases Sell 13 Cases Sell 14 Cases Sell 15 Cases Profit
Buy 12 Cases        1                      
Buy 13 Cases                             
Buy 14 Cases       

$# "$# "$# "$# "$#
"#& "%$ "%$ "%$ "%"Þ#

                      
Buy 15 Cases                             
Prior Probability             

"") "$' "&% "&% "%$Þ#
""" "#* "%( "'& "$*Þ)
!Þ"                 !Þ% !Þ$ !Þ#
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 Jean should purchase 1  cases.!Þ& !Þ# and : %

                                      State of Nature Exp.
Alternative Sell 12 Cases Sell 13 Cases Sell 14 Cases Sell 15 Cases Profit
Buy 12 Cases        1                      
Buy 13 Cases                             
Buy 14 Cases       

$# "$# "$# "$# "$#
"#& "%$ "%$ "%$ "%"Þ#

                      
Buy 15 Cases                             
Prior Probability               

"") "$' "&% "&% "%"Þ%
""" "#* "%( "'& "$)
!Þ" !Þ& !Þ# !Þ#              

15.2-4.

(a) The optimal (maximin) actions are conservative and countercyclical investments, both
incur a loss of $  million in the worst case."!

(b) The economy is most likely to be stable and the alternative with the highest profit in
this state of nature is to make a speculative investment. According to the maximum
likelihood criterion, Warren should choose speculative investment.

(c) To maximize his expected payoff, Warren should make a countercyclical investment.

                State of Nature Exp.
Alternative Improving Stable Worsening Profit
Conservative                  
Speculative    

$! & "! "Þ&
         

Countercyclical                   
Prior Probability                

%! "! $! $
"! ! "& &
!Þ" !Þ& !Þ%

15.2-5.

(a) Warren should make a countercyclical investment.

                State of Nature Exp.
Alternative Improving Stable Worsening Profit
Conservative               
Speculative      

$! & "! "Þ&
       

Countercyclical                   
Prior Probability                

%! "! $! ""
"! ! "& )
!Þ" !Þ$ !Þ'

(b) Warren should make a speculative investment.

                State of Nature Exp.
Alternative Improving Stable Worsening Profit
Conservative               
Speculative       

$! & "! %Þ&
%! "! $! &

"! ! "& #
!Þ" !Þ( !Þ#

      
Countercyclical                
Prior Probability                
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(c) The expected profit from countercyclical and conservative investments is the same
when . The expected profit lines for conservative and speculative investments: ¸ !Þ'#
cross at . Those for countercyclical and speculative investments cross at: ¸ !Þ')
: ¸ !Þ'&; however, this crossover point does not result in a decision shift.

(d) Let  be the prior probability of stable economy.:

Conservative:  EP œ Ð!Þ"ÑÐ$!Ñ  :Ð&Ñ  Ð"  !Þ"  :ÑÐ"!Ñ œ "&:  '
Speculative:  EP œ Ð!Þ"ÑÐ%!Ñ  :Ð"!Ñ  Ð"  !Þ"  :ÑÐ$!Ñ œ %!:  #$
Countercyclical: EP œ Ð!Þ"ÑÐ"!Ñ  :Ð!Ñ  Ð"  !Þ"  :ÑÐ"&Ñ œ "&:  "#Þ&

Countercyclical and conservative cross when ."&:  "#Þ& œ "&:  ' Ê : œ !Þ'"(
Conservative and speculative cross when ."&:  ' œ %!:  #$ Ê : œ !Þ')

Accordingly, Warren should choose countercyclical investment when ,:  !Þ'"(
conservative investment when  and speculative investment when!Þ'"( Ÿ :  !Þ')
:   !Þ').

(e)

 



15-6

15.2-6.

(a) A  should be chosen.2

   State of Nature
Alternative    Min
A
A
Prior Probability

W W W
##! "(! ""! ""!
#!! ")! "&! "&!
!Þ' !Þ$ !Þ"

" # $

"

2

(b) The most likely state of nature is  and the alternative with highest profit in this stateW"

is .E"

(c) A  should be chosen."

   State of Nature Exp.
Alternative    Payoff
A
A
Prior Probability

W W W
##! "(! ""! "*%
#!! ")! "&! ")*
!Þ' !Þ$ !Þ"

" # $

"

2

(d)

 

Let  be the prior probability of : W".

A : EP1 œ :Ð##!Ñ  Ð"  !Þ"  :ÑÐ"(!Ñ  Ð!Þ"ÑÐ""!Ñ œ &!:  "'%
A : EP2 œ :Ð#!!Ñ  Ð"  !Þ"  :ÑÐ")!Ñ  Ð!Þ"ÑÐ"&!Ñ œ #!:  "((

A  and A  cross when . They should choose A1 2 2&!:  "'% œ #!:  "(( Ê : œ !Þ%$$
when  and A  if .: Ÿ !Þ%$$ :  !Þ%$$1
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(e)

 

Let  be the prior probability of : W".

A : EP1 œ :Ð##!Ñ  Ð!Þ$ÑÐ"(!Ñ  Ð"  !Þ$  :ÑÐ""!Ñ œ ""!:  "#)
A : EP2 œ :Ð#!!Ñ  Ð!Þ$ÑÐ")!Ñ  Ð"  !Þ$  :ÑÐ"&!Ñ œ &!:  "&*

A  and A  cross when . They should choose A1 2 2""!:  "#) œ &!:  "&* Ê : œ !Þ&"(
when  and A  if .: Ÿ !Þ&"( :  !Þ&"(1

(f)

 

Let  be the prior probability of : W#.

A : EP1 œ Ð!Þ'ÑÐ##!Ñ  :Ð"(!Ñ  Ð"  !Þ'  :ÑÐ""!Ñ œ '!:  "('
A : EP2 œ Ð!Þ'ÑÐ#!!Ñ  :Ð")!Ñ  Ð"  !Þ'  :ÑÐ"&!Ñ œ $!:  ")!

A  and A  cross when . They should choose A1 2 2'!:  "(' œ $!:  ")! Ê : œ !Þ"$$
when  and A  if .: Ÿ !Þ"$$ :  !Þ"$$1

(g) A  should be chosen.1
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15.2-7.

(a)

         State of Nature
Alternative Dry Moderate Damp
Crop 1        
Crop 2      
Crop 3      
Crop 4        

*! "&! ")!
""#Þ& "$& ")!
"#! "!& "!&
*!     

Prior Probability         
*! *!

!Þ# !Þ& !Þ$

(b) Grow Crop 1.
         State of Nature Exp.

Alternative Dry Moderate Damp Payoff
Crop 1        
Crop 2      
Crop 3      

*! "&! ")! "%(
""#Þ& "$& ")! "%%
"#! "!& "!& "!)
*! *! *! *!
!Þ# !Þ& !Þ$

Crop 4              
Prior Probability         

(c) Grow Crop 2.Prior probability of moderate weather :œ !Þ#  
         State of Nature Exp.

Alternative Dry Moderate Damp Payoff
Crop 1        
Crop 2      
Crop 3      

*! "&! ")! "&'
""#Þ& "$& ")! "&(Þ&
"#! "!& "!& "!)
*! *! *! *!
!Þ# !Þ# !Þ'

Crop 4              
Prior Probability         

 Grow Crop 1 or 2.Prior probability of moderate weather :œ !Þ$  
         State of Nature Exp.

Alternative Dry Moderate Damp Payoff
Crop 1        
Crop 2      
Crop 3      

*! "&! ")! "&$
""#Þ& "$& ")! "&$
"#! "!& "!& "!)
*! *! *! *!
!Þ# !Þ$ !Þ&

Crop 4              
Prior Probability         

 Grow Crop 1.Prior probability of moderate weather :œ !Þ%  
         State of Nature Exp.

Alternative Dry Moderate Damp Payoff
Crop 1        
Crop 2      
Crop 3      

*! "&! ")! "&!
""#Þ& "$& ")! "%)Þ&
"#! "!& "!& "!)
*! *! *! *!
!Þ# !Þ% !Þ%

Crop 4              
Prior Probability         
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 Grow Crop 1.Prior probability of moderate weather :œ !Þ'  
         State of Nature Exp.

Alternative Dry Moderate Damp Payoff
Crop 1        
Crop 2      
Crop 3      

*! "&! ")! "%%
""#Þ& "$& ")! "$*Þ&
"#! "!& "!& "!)
*! *! *! *!
!Þ# !Þ' !Þ#

Crop 4              
Prior Probability         

15.2-8.

The prior distribution is P , P .Ö œ × œ #Î$ Ö œ × œ "Î$) ) ) )" #

Order 15:   EP œ #Î$Ð"Þ"&& † "! Ñ  "Î$Ð"Þ%"% † "! Ñ œ "Þ#%" † "!( ( (

Order 20:   EP œ #Î$Ð"Þ!"# † "! Ñ  "Î$Ð"Þ#!( † "! Ñ œ "Þ!(( † "!( ( (

Order 25:   EP œ #Î$Ð"Þ!%( † "! Ñ  "Î$Ð"Þ"$& † "! Ñ œ "Þ!(' † "!( ( (

The maximum expected profit, or equivalently the minimum expected cost is that of
ordering 25, so the optimal decision under Bayes' decision rule is to order 25.

15.3-1.

This article describes the use of decision analysis at the Workers' Compensation Board of
British Columbia (WCB), which is "responsible for the occupational health and safety,
rehabilitation, and compensation interests of British Columbia's workers and employers"
[p. 15]. The focus of the study is on the short-term disability claims that can later turn
into long-term disability claims and can be very costly for the WCB. First, logistic
regression is employed to estimate the probability of conversion for each claim. Then
using decision analysis, a threshold is determined to classify the claims as high- and low-
risk claims. For any fixed conversion probability, the problem consists of a simple
decision tree. First the WCB chooses between classifying the claim as high risk or low
risk and then whether the claim converts or not determines the actual cost. If the claim is
identified as a high-risk claim, the WCB intervenes. The early intervention lowers the
costs and ensures faster rehabilitation. The expected total cost is computed for various
cutoff points and the point with minimum expected cost is identified as the optimal
threshold.

The new policy offers accurate predictions of high-risk claims. As a result, future costs
are reduced and injured workers start working sooner. This study is expected to save the
WCB $4.7 per year. The scorecard system developed to implement the new policy
improved the efficiency of claim management and the productivity of staff. Overall, the
benefits accrued from this study paved the way for the WCB's adoption of operations
research in other aspects of the organization.
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15.3-2.

(a)

           State of Nature
Alternative Sell Sell 
Build Computers                
Sell Rights              
Prior P

"!ß !!! "!!ß !!!
! &%

"& "&
robability              

Maximum Payoff              
!Þ& !Þ&
"& &%

Expected Payoff with Perfect Information: !Þ&Ð"&Ñ  !Þ&Ð&%Ñ œ $%Þ&

Expected Payoff without Information: !Þ&Ð!Ñ  !Þ&Ð&%Ñ œ #(

EVPI $  millionœ $%Þ&  #( œ (Þ&

(b) Since the market research will cost $  million, it might be worthwhile to perform it."

(c)
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(d)

 

 

(e) EVE , so performing the market research isœ Ò!Þ&Ð")!!Ñ  !Þ&Ð$'!!ÑÓ  #(!! œ !
not worthwhile.

15.3-3.

(a) Choose A  with expected payoff $ ." #ß &!!

   State of Nature Exp.
Alternative Payoff
A    
A    
A    
Prior Probability

W W W
' " " #Þ&
" $ ! "Þ&
% " # #Þ#
!Þ$ !Þ% !Þ$

" # $

"

$

2

(b)

   State of Nature
Alternative
A    
A    
A    
Prior Probability
Maximum Payoff    

W W W
' " "
" $ !
% " #
!Þ$ !Þ% !Þ$
' $ #

" # $

"

$

2

Expected Payoff with Perfect Information: !Þ$Ð'Ñ  !Þ%Ð$Ñ  !Þ$Ð#Ñ œ $Þ'

Expected Payoff without Information: #Þ&

EVPI $  thousandœ $Þ'  #Þ& œ "Þ"

(c) Since the information will cost $  and the value is $ , it might be worthwhile"ß !! "ß "!!
to spend the money.
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15.3-4.

(a) Choose A  with expected payoff $ .1 $&

   State of Nature Exp.
Alternative    Payoff
A
A      
A    
Prior Probability    

W W W
&! "!! "!! $&
! "! "! "

#! %! %! "%
!Þ& !Þ$ !Þ#

" # $

"

$

2

(b)   State of Nature
Alternative    
A
A      
A    
Prior Probability    
Maximum Payoff  

W W W
&! "!! "!!
! "! "!

#! %! %!
!Þ& !Þ$ !Þ#
&! "!! "

" # $

"

$

2

!

Expected Payoff with Perfect Information: !Þ&Ð&!Ñ  !Þ$Ð"!!Ñ  !Þ#Ð"!Ñ œ &$

Expected Payoff without Information: $&

EVPI $œ &$  $& œ ")

(c) Betsy should consider spending up to $  to obtain more information.")

15.3-5.

(a) Choose A  with expected payoff $ .3 (ß )!!

   State of Nature Exp.
Alternative  Payoff
A  
A    
A       
Prior Probability   

W W W
#! $ #& %Þ*
$ & "! %Þ'
% # "& (Þ)

!Þ$ !Þ$ !Þ%

" # $

"

$

2

(b) If S  occurs for certain, then choose A  with expected payoff $ . If S  does not1 3 1%ß !!!
occur for certain, then the probability that S  will occur is  and the probability that S2 3$Î(
will occur is .%Î(

 A : 1 Ð$Î(ÑÐ$Ñ  Ð%Î(ÑÐ#&Ñ œ "&Þ&(
 A :   2 Ð$Î(ÑÐ&Ñ  Ð%Î(ÑÐ"!Ñ œ (Þ)'
 A :   3 Ð$Î(ÑÐ#Ñ  Ð%Î(ÑÐ"&Ñ œ *Þ%$

Hence, choose A  which offers an expected payoff of $ .1 "&ß &(!

Expected Payoff with Information: !Þ$Ð%Ñ  !Þ(Ð"&Þ&(Ñ œ "#Þ!"

Expected Payoff without Information: (Þ)

EVI $  thousandœ "#Þ!"  (Þ) œ %Þ#"

The maximum amount that should be paid for the information is $ . The decision%ß #"!
with this information will be to choose A  if the state of nature is  and  otherwise.$ " "W E
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(c) If S  occurs for certain, then choose A  with expected payoff $ . If S  does not2 2 2&ß !!!
occur for certain, then the probability that S  will occur is  and the probability that S1 3$Î(
will occur is .%Î(

 A :   1 Ð$Î(ÑÐ#!Ñ  Ð%Î(ÑÐ#&Ñ œ &Þ("
 A :     2 Ð$Î(ÑÐ$Ñ  Ð%Î(ÑÐ"!Ñ œ %Þ%$
 A :      3 Ð$Î(ÑÐ%Ñ  Ð%Î(ÑÐ"&Ñ œ "!Þ#*

Hence, choose A  which offers an expected payoff of $ .$ "!ß #*!

Expected Payoff with Information: !Þ$Ð&Ñ  !Þ(Ð"!Þ#*Ñ œ *Þ*"

Expected Payoff without Information: (Þ)

EVI $  thousandœ *Þ*"  (Þ) œ #Þ""

The maximum amount that should be paid for the information is $ . The decision#ß ""!
with this information will be to choose A  if the state of nature is  and  otherwise.# # $W E

(d) If S  occurs for certain, then choose A  with expected payoff $ . If S  does not3 1 3#&ß !!!
occur for certain, then S  and S  occur with equal probability.1 2

 A : 1 Ð"Î#ÑÐ#!Ñ  Ð"Î#ÑÐ$Ñ œ )Þ&
 A :      2 Ð"Î#ÑÐ$Ñ  Ð"Î#ÑÐ&Ñ œ "
 A :         3 Ð"Î#ÑÐ%Ñ  Ð"Î#ÑÐ#Ñ œ $

Hence, choose A  which offers an expected payoff of $ .$ $ß !!!

Expected Payoff with Information: !Þ'Ð$Ñ  !Þ%Ð#&Ñ œ ""Þ)

Expected Payoff without Information: (Þ)

EVI $  thousandœ ""Þ)  (Þ) œ %

The maximum amount that should be paid for the information is $ . The decision%ß !!!
with this information will be to choose A  if the state of nature is  and  otherwise." $ $W E

(e) Expected Payoff with Perfect Information: !Þ$Ð%Ñ  !Þ$Ð&Ñ  !Þ%Ð#&Ñ œ "#Þ(

 Expected Payoff without Information: (Þ)

 EVPI $  thousandœ "#Þ(  (Þ) œ %Þ*

The maximum amount that should be paid for the information is $ . The decision%ß *!!
with this information will be to choose A  if the state of nature is , A  if the state of$ " #W
nature is  and  otherwise.W E# "

(f) The maximum amount that should be paid for testing is $ , since any additional%ß *!!
information cannot add more value than perfect information.
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15.3-6.

(a)

(b)

 

 
(c) The optimal policy is to do a seismic survey, to drill if favorable seismic surroundings
are obtained, and to sell if unfavorable surroundings are obtained.

15.3-7.

(a) Choose A  with expected payoff $ .1 "!!

 State of Nature Exp.
Alternative     Payoff
A
A          
Prior Probability     

W W
%!! "!! "!!

! "!! '!
!Þ% !Þ'

" #

"

2
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(b)

 State of Nature
Alternative     
A
A        
Prior Probability     
Maximum Payoff    

W W
%!! "!!

! "!!
!Þ% !Þ'
%!! "!!

" #

"

2

Expected Payoff with Perfect Information: !Þ%Ð%!!Ñ  !Þ'Ð"!!Ñ œ ##!

Expected Payoff without Information: "!!

EVPI $ , so it might be worthwhile to do the research.œ ##!  "!! œ "#!

(c) Let  denote the state of nature and  denote the prediction. From Bayes' Rule,\ ]

 P(  and ) P( )P( ).\ œ B ] œ C œ \ œ B ] œ Cl\ œ B

 (i) P( S  and S )\ œ ] œ œ Ð!Þ%ÑÐ!Þ'Ñ œ !Þ#%1 1
 (ii) P( S  and S )\ œ ] œ œ Ð!Þ%ÑÐ!Þ%Ñ œ !Þ"'1 2
 (iii) P( S  and S )\ œ ] œ œ Ð!Þ'ÑÐ!Þ#Ñ œ !Þ"#2 1
 (iv) P( S  and S )\ œ ] œ œ Ð!Þ'ÑÐ!Þ)Ñ œ !Þ%)2 2

(d) P(S ) , P(S )1 2œ !Þ#%  !Þ"# œ !Þ$' œ !Þ"'  !Þ%) œ !Þ'%

(e) Bayes' Rule: P( )\ œ Bl] œ C œ P(  and )
P(

\œB ]œC
\œBÑ

 P(S S )1 1l œ !Þ#%Î!Þ$' œ !Þ''(
 P(S S )1 2l œ !Þ"'Î!Þ'% œ !Þ#&
 P(S S )2 1l œ !Þ"#Î!Þ$' œ !Þ$$$
 P(S S )2 2l œ !Þ%)Î!Þ'% œ !Þ(&

(f)

 

 

(g) If S  is predicted, then choose A  with expected payoff $ .1 1 #$$Þ$$

 State of Nature Exp.
Alternative     Payoff
A
A          
Prior Probability

W W
%!! "!! #$$Þ&

! "!! $$Þ$
!Þ''( !Þ$$$

" #

"

2
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(h) If S  is predicted, then choose A  with expected payoff $ .2 2 (&

 State of Nature Exp.
Alternative     Payoff
A
A        
Prior Probability   

W W
%!! "!! #&

! "!! (&
!Þ#& !Þ(&

" #

"

2

(i) Given that the research is done, the expected payoff is

 $ .Ð!Þ$'ÑÐ#$$Þ$$Ñ  Ð!Þ'%ÑÐ(&Ñ  "!! œ $#

(j) The optimal policy is to not do research and to choose A .1

15.3-8.

(a) EVPI œ ÒÐ#Î$ÑÐ"Þ!"# † "! Ñ  Ð"Î$ÑÐ"Þ"$& † "! ÑÓ  Ð"Þ!(' † "! Ñ( ( (

   $ .œ #$!ß !!!

(b)

P(  30 spares required)) œ #"l œ P(30 spares required )P( )
P(30 spares required )P( ) P(30 spares required )P(

l œ#" œ#"
l œ#" œ#"  l œ#% œ

) )
) ) ) ) #%)

             œ œ !Þ%"*Ð!Þ!"$ÑÐ#Î$Ñ
Ð!Þ!"$ÑÐ#Î$ÑÐ!Þ!$'ÑÐ"Î$Ñ

P(  30 spares required)) œ #%l œ "  !Þ%"* œ !Þ&)"

Order 15: EP œ !Þ%"*Ð"Þ"&& † "! Ñ  !Þ&)"Ð"Þ%"% † "! Ñ œ "Þ$!& † "!( ( (

Order 20: EP œ !Þ%"*Ð"Þ!"# † "! Ñ  !Þ&)"Ð"Þ#!( † "! Ñ œ "Þ"#& † "!( ( (

Order 25: EP œ !Þ%"*Ð"Þ!%( † "! Ñ  !Þ&)"Ð"Þ"$& † "! Ñ œ "Þ!*) † "!( ( (

The optimal alternative is to order 25.

15.3-9.

(a)

                  State of Nature
Alternative Poor Risk Average Risk Good Risk
Extend Credit       
Not Extend Credi

"&ß !!! "!ß !!! #!ß !!!
t                                        

Prior Probability                   
! ! !

!Þ# !Þ& !Þ$

(b) Choose to extend credit with expected payoff $ .)ß !!!

                  State of Nature Exp.
Alternative Poor Risk Average Risk Good Risk Payoff
Extend Credit       
N

"&ß !!! "!ß !!! #!ß !!! )ß !!!
ot Extend Credit                                                

Prior Probability                   
! ! ! !

!Þ# !Þ& !Þ$
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(c)                  State of Nature
Alternative Poor Risk Average Risk Good Risk
Extend Credit       
Not Extend Cr

"&ß !!! "!ß !!! #!ß !!!
edit                                        

Prior Probability                   
Maximum Payoff                  

! ! !
!Þ# !Þ& !Þ$

! "!ß !!!   #!ß !!!

Expected Payoff with Perfect Information:

 !Þ#Ð!Ñ  !Þ$Ð"!ß !!!Ñ  !Þ%Ð#!ß !!!Ñ œ ""ß !!!

Expected Payoff without Information: )ß !!!

EVPI $œ ""ß !!!  )ß !!! œ $ß !!!

Hence, the credit-rating organization should not be used.

(d)
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(e)

 

 
(f) Vincent should not get the credit rating and extend credit.

15.3-10.

(a) Given that the test is positive, the athlete is a drug user with probability .!Þ)&!*

(b) Given that the test is positive, the athlete is not a drug user with probability .!Þ"%*"

(c) Given that the test is negative, the athlete is a drug user with probability .!Þ!!&%

(d) Given that the test is negative, the athlete is not a drug user with probability .!Þ**%'
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(e) The answers in Excel agree with those found in parts (a), (b), (c), and (d).

 

 

15-3.11.

(a)

          State of Nature
Alternative  Successful  Unsuccessful
Develop New Product
Not Develop New Product        

"ß &!!ß !!! "ß )!!ß !!!
                          

Prior Probability              
! !

!Þ''( !Þ$$$

(b) Choose to develop new product with expected payoff $ .%!!ß !!!

          State of Nature Exp.
Alternative  Successful  Unsuccessful Payoff
Develop New Product
Not Develop N

"ß &!!ß !!! "ß )!!ß !!! %!!ß !!!
ew Product                                             

Prior Probability              
! ! !

!Þ''( !Þ$$$

(c)

          State of Nature
Alternative  Successful  Unsuccessful
Develop New Product
Not Develop New Product        

"ß &!!ß !!! "ß )!!ß !!!
                          

Prior Probability              
Maximum Payoff                   

! !
!Þ''( !Þ$$$

"ß &!!ß !!! !

Expected Payoff with Perfect Information: !Þ''(Ð"ß &!!ß !!!Ñ  !Þ$$$Ð!Ñ œ "ß !!!ß !!!

Expected Payoff without Information: %!!ß !!!

EVPI $œ "ß !!!ß !!!  %!!ß !!! œ '!!ß !!!

This indicates that consideration should be given to conducting the market survey.
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(d)

 

 

(e)
Action Prediction Expected Payoff
Develop product Successful $
Not develop product Successful
Dev

Ò!Þ)%#"Ð"Þ&Ñ  !Þ"&(*Ð"Þ)ÑÓ † "! œ *(*ß !!!
!

'

elop product Unsuccessful $
Not develop product Unsuccessful

Ò!Þ$'$'Ð"Þ&Ñ  !Þ'$'%Ð"Þ)ÑÓ † "! œ  '!!ß !!!
!

'

It is optimal to develop the product if it is predicted to be successful and to not develop
otherwise. Let S be the event that the product is predicted to be successful. Then,

 P(S) P(S )P( ) P(S )P( ) .œ l  l œ !Þ)Ð#Î$Ñ  !Þ#Ð"Î$Ñ œ !Þ') ) ) )" " # #

The expected payoff given the information is $ , so!Þ'Ð*(*ß !!!Ñ  !Þ%Ð!Ñ œ &)(ß !!!

 EVE $ $ Cost of survey.œ &)(ß !!!  %!!ß !!! œ ")(ß !!!  $!!ß !!! œ

Hence, the optimal strategy is to not conduct the market survey, and to market the
product.

15.3-12.

(a)

      State of Nature
Alternative
Screen
Not Screen     
Prior Probability              

: œ !Þ!& : œ !Þ#&
"ß &!! "ß &!!

(&! $ß (&!
!Þ) !Þ#

(b) Choose to not screen with expected loss $ ."ß $&!

      State of Nature Exp.
Alternative Payoff
Screen
Not Screen     
Prior Probability    

: œ !Þ!& : œ !Þ#&
"ß &!! "ß &!! "ß &!!

(&! $ß (&! "ß $&!
          !Þ) !Þ#
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(c)

      State of Nature
Alternative
Screen
Not Screen     
Prior Probability              
Maximu

: œ !Þ!& : œ !Þ#&
"ß &!! "ß &!!

(&! $ß (&!
!Þ) !Þ#

m Payoff     (&! "ß &!!

Expected Payoff with Perfect Information: !Þ)Ð(&!Ñ  !Þ#Ð"ß &!!Ñ œ *!!

Expected Payoff without Information: "ß $&!

EVPI $œ *!!  Ð"ß $&!Ñ œ %&!

This indicates that consideration should be given to inspecting the single item.

(d)

 

 

(e) P(defective)  and P(nondefective)œ Ð!Þ!&ÑÐ!Þ)Ñ  Ð!Þ#&ÑÐ!à #Ñ œ !Þ!* œ !Þ*"

 EVE œ ÒÐ!Þ!*ÑÐ"&!!Ñ  Ð!Þ*"ÑÐ"#%&ÑÓ  Ð"$&!Ñ œ )#Þ!&

Since the cost of the inspection is $ $ , inspecting the single item is not worth-"#&  )#Þ!&
while.

(f) If defective:

 EP(screen, defective))l œ !Þ%%%Ð"&!!Ñ  !Þ&&'Ð"&!!Ñ œ "&!!
 EP(no screen, defective))l œ !Þ%%%Ð(&!Ñ  !Þ&&'Ð$(&!Ñ œ #%")

     If nondefective:

 EP(screen, defective))l œ "&!!
 EP(no screen, defective))l œ !Þ)$&Ð(&!Ñ  !Þ"'&Ð$(&!Ñ œ "#%&

Hence, the optimal policy with experimentation is to screen if defective is found and not
screen if nondefective is found. On the other hand, from part (e), inspecting a single item,
in other words experimenting is not worthwhile. Using part (b), the overall optimal
policy is to not inspect the single items, to not screen each item in the lot, instead, rework
each item that is ultimately found to be defective.
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15.3-13.

(a) Say coin 1 tossed: EP œ !Þ'Ð!Ñ  !Þ%Ð"Ñ œ !Þ%
 Say coin 2 tossed: EP œ !Þ'Ð"Ñ  !Þ%Ð!Ñ œ !Þ'

The optimal alternative is to say coin 1 is tossed.

(b) If the outcome is heads (H):

 P(coin 1 H)l œ œ œP(H coin 1)P(coin 1)
P(H coin 1)P(coin 1) P(H coin 2)P(coin 2)

l !Þ$Ð!Þ'Ñ
l  l !Þ$Ð!Þ'Ñ!Þ'Ð!Þ%Ñ (

$

 P(coin 2 H)l œ %
(

 Say coin 1: EP œ Ð!Ñ  Ð"Ñ œ $ % %
( ( (

 Say coin 2: EP œ Ð"Ñ  Ð!Ñ œ $ % $
( ( (

     The optimal alternative is to say coin 2.

     If the outcome is tails (T):

 P(coin 1 T)l œ œ œ !Þ(#%"P(T coin 1)P(coin 1)
P(T coin 1)P(coin 1) P(T coin 2)P(coin 2)

l !Þ(Ð!Þ'Ñ
l  l !Þ(Ð!Þ'Ñ!Þ%Ð!Þ%Ñ

 P(coin 2 T)l œ !Þ#(&*

 Say coin 1: EP œ !Þ(#%"Ð!Ñ  !Þ#(&*Ð"Ñ œ !Þ#(&*

 Say coin 2: EP œ !Þ(#%"Ð"Ñ  !Þ#(&*Ð!Ñ œ !Þ(#%"

     The optimal alternative is to say coin 1.

15.3-14.

(a) State of Nature
Alternative Coin 1 Coin 2
Predict 0 H   
Predict 1 H
Predict 2 H   
Prior probabilities     0.

##Þ& "##Þ&
"!& "!&
"##Þ& ##Þ&

5     0.5

Predict 0 H: EP    œ !Þ&Ð##Þ&Ñ  !Þ&Ð"##Þ&Ñ œ (#Þ&
Predict 1 H: EP  œ !Þ&Ð"!&Ñ  !Þ&Ð"!&Ñ œ "!&
Predict 2 H: EP    œ !Þ&Ð"##Þ&Ñ  !Þ&Ð##Þ&Ñ œ (#Þ&

The optimal alternative is to predict one heads with expected payoff $ ."!&

(b)
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(c) If the outcome is heads (H):

 Predict 0 H: EP    œ !Þ(Ð##Þ&Ñ  !Þ$Ð"##Þ&Ñ œ &#Þ&
 Predict 1 H: EP  œ !Þ(Ð"!&Ñ  !Þ$Ð"!&Ñ œ "!&
 Predict 2 H: EP    œ !Þ(Ð"##Þ&Ñ  !Þ$Ð##Þ&Ñ œ *#Þ&

     The optimal alternative is to predict one heads.

     If the outcome is tails (T):

 Predict 0 H: EP    œ !Þ$Ð##Þ&Ñ  !Þ(Ð"##Þ&Ñ œ *#Þ&
 Predict 1 H: EP  œ !Þ$Ð"!&Ñ  !Þ(Ð"!&Ñ œ "!&
 Predict 2 H: EP    œ !Þ$Ð"##Þ&Ñ  !Þ(Ð##Þ&Ñ œ &#Þ&

     The optimal alternative is to predict one heads.

Since EP(H) EP(T) , the expected payoff is $ .œ œ "!& "!&

(d) EVE $ $ , so it is better to not pay for the experiment andœ "!&  "!& œ !  $!
choose to predict either one or two heads.

15.4-1.

Driven by "the pressure to reduce costs and deliver high-impact technology quickly while
justifying investments" [p. 57], Westinghouse initiated this study to evaluate R and D
efforts effectively. At any point in time, the firm chooses between launching, delaying
and abandoning an innovation. When the launch is delayed, there is a chance of losing
the opportunity. R and D is hence treated as a call option with flexibility. The value of
the innovation and the optimal decision rule in subsequent stages are found by using
dynamic programming. This value is then used in the analysis of the decision tree
constructed to find the present value of the project. In this tree, decisions consist of
whether to fund or not at different stages and each decision node is followed by a chance
node that represents either a technical milestone or strategic fit. Sensitivity analysis is
performed to ensure robustness of the model.

As a result of this study, explicit decision rules for funding R and D projects are obtained.
Including flexibility in the model yields a more realistic model. The new system helps
identifying cost-effective research portfolios with simplified data acquisition and easy
implementation.
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15.4-2.

The optimal policy is to build the computers without doing market research.

15.4-3.
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15.4-4.

(a) State of Nature
Alternative    
Hold Campaign  
Not Hold Campaign     
Prior Probability  

[ P
$ #
! !
!Þ' !Þ%

(b) Choose to hold the campaign with expected payoff $  million."

 State of Nature Exp.
Alternative    Payoff
Hold Campaign  
Not Hold Campaign     
Prior Probability  

[ P
$ # "
! ! !
!Þ' !Þ%

(c) State of Nature
Alternative    
Hold Campaign  
Not Hold Campaign     
Prior Probability  
Maximum Payoff     

[ P
$ #
! !
!Þ' !Þ%
$ !

Expected Payoff with Perfect Information: !Þ'Ð$Ñ  !Þ%Ð!Ñ œ "Þ)
Expected Payoff without Information: "
EVPI œ "Þ)  " œ !Þ)$  million

(d)
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(e)

 

 

(f) Leland University should hire William. If he predicts a winning season, then they
should hold the campaign and if he predicts a losing season, then they should not hold the
campaign.
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15.4-5.

(a)
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(b) The comptroller should invest in stocks the first year. If growth occurs in the first
year, then she should invest in stocks again the second year. If recession occurs in the
first year, then she should invest in bonds the second year.
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15.4-6.

The optimal policy is to wait until Wednesday to buy if the price is $9 on Tuesday. If the
price is $10 or $11 on Tuesday, then buying on Tuesday is optimal.



15-30

15.4-7.

(a)

(b) Prior Distribution:

   
P

) ) )" # $

)Ð5Ñ !Þ# !Þ& !Þ$

     
    

U ÐBÑ

B
\ !Þ& !Þ% !Þ#
\ !Þ% !Þ& !Þ%
\ !Þ" !Þ" !Þ%

\l œ5

" # $

"

#

$

)

) ) )

 Posterior Distribution:

     
       

2 Ð5Ñ

B
\ !Þ#() !Þ&&' !Þ"'(
\ !Þ"() !Þ&&' !Þ#'(
\ !Þ"!& !Þ#'$ !Þ'$#

)l\œB

" # $

"

#

$

) ) )

(c) It is optimal to not use credit rating, but to extend credit, see part (a).
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15.4-8.

(a)

(b) Prior Distribution:

       
P

) )" #

)Ð5Ñ !Þ''( !Þ$$$

   
     

U ÐBÑ

B
\ !Þ) !Þ$
\ !Þ# !Þ(

\l œ5

" #

"

#

)

) )

 Posterior Distribution:

   
     

2 Ð5Ñ

B
\ !Þ)%# !Þ"&)
\ !Þ$'% !Þ'$'

)l\œB

" #

"

#

) )

(c) It is optimal to not conduct a survey, but to market the new product, see part (a).



15-32

15.4-9.

(a)

(b) Prior Distribution:

     
P

) )" #

)Ð5Ñ !Þ) !Þ#

   
     

U ÐBÑ

B
\ !Þ*& !Þ(&
\ !Þ!& !Þ#&

\l œ5

" #

"

#

)

) )

 Posterior Distribution:

   
     

2 Ð5Ñ

B
\ !Þ)$& !Þ"'&
\ !Þ%%% !Þ&&'

)l\œB

" #

"

#

) )

(c) It is optimal to not test and to not screen, see part (a).
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15.4-10.

(a)

(b) Prior Distribution:

     
P

) )" #

)Ð5Ñ !Þ' !Þ%

   
   

U ÐBÑ

B
\ !Þ$ !Þ'
\ !Þ( !Þ%

\l œ5

" #

"

#

)

) )

 Posterior Distribution:

   
     

2 Ð5Ñ

B
\ !Þ%#* !Þ&("
\ !Þ(#% !Þ#('

)l\œB

" #

"

#

) )

(c) It is optimal to choose coin 1 if the outcome is tails and coin 2 if the outcome is
heads, see part (a).
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15.4-11.

(a)

(b)

 

 

(c) The optimal policy is to not pay for testing and to hire Matthew.

(d) Even if the fee is zero, hiring Matthew without any further investigation is optimal, so
Western Bank should not pay anything for the detailed report.
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15.5-1.

(a)

           State of Nature
Alternative Sell Sell 
Build Computers                
Sell Rights              

"!ß !!! "!!ß !!!
! &%

"& "&

They should build computers with an expected payoff of $  million.#(

(b)
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15.5-2.

(a) The optimal policy is to not do market research and build the computers. The
expected payoff is $  million.#(

(b) If the rights can be sold for $  or $  million, the optimal policy is still to build the"'Þ& "$Þ&
computers with an expected payoff of $  million. If the cost of setting up the assembly line#(
is $  million or $  million, the optimal policy is still to build the computers with an&Þ% 'Þ'
expected payoff of $  or $  million respectively. If the difference between the selling#(Þ' #'Þ%
price and the variable cost of each computer is $  or $ , the optimal policy is still to&%! ''!
build the computers with an expected payoff of $  or $  million respectively. For#$Þ( $$Þ$
each combination of financial data, the expected payoff is as shown in the following table.
In all cases, the optimal policy is to build the computers without doing market research.

  Sell Rights Cost of Assembly Line Selling Price Variable Cost Expected Payoff
$13.5 million         $5.4 million                  $5


40   $23.4 million

$13.5 million         $5.4 million                  $660   $30.9 million
$13.5 million         $6.6 million                  $540   $23.1 million
$13.5 million         $6.6 million                  $660   $29.7 million
$16.5 million         $5.4 million                  $540   $24.3 million
$16.5 million         $5.4 million                  $660   $30.9 million
$16.5 million         $6.6 million                  $540   $23.1 million
$16.5 million         $6.6 million                  $660   $29.7 million
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(c)
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(d)

15.5-3.
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15.5-4.



15-40
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15.5-5.

The optimal policy is to wait until Wednesday to buy if the price is $  on Tuesday. If the*
price is $  or $  on Tuesday, then buy on Tuesday."! ""
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15.5-6.

 

 

The optimal policy is to sample the fruit and buy if it is excellent and reject if it is
unsatisfactory.
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15.5-7.

(a) Choose to introduce the new product with expected payoff of $  million."#Þ&

          State of Nature Exp.
Alternative Successful Unsuccessful Payoff
Introduce New Product $  million $  million $  million
Don

%!  "& "#Þ&
't Introduce New Product                

Prior Probabilities            
! ! !
!Þ& !Þ&

(b) With perfect information, Morton Ward should introduce the product if it will be
successful and not introduce it if it will not be successful.

Expected Payoff with Perfect Information: !Þ&Ð%!Ñ  !Þ&Ð!Ñ œ #!

Expected Payoff without Information: "#Þ&

EVPI $  millionœ #!  "#Þ& œ (Þ&

(c) The optimal policy is to not test but to introduce the new product, with expected
payoff $  million."#Þ&

 

 

The associated decision tree is on the next page.

(d) If the net profit if successful is only $  million, then the optimal policy is to test and$!
to introduce the product only if the test market approves. The expected payoff is $)Þ"#&
million. If the net profit if successful is $  million, then the optimal policy is to skip the&!
test and to introduce the product, with an expected payoff of $  million. If the net loss"(Þ&
if unsuccessful is only $  million, then the optimal policy is to skip the test and to""Þ#&
introduce the product, with an expected payoff of $  million. If the net loss if"%Þ$(&
unsuccessful is $  million, then the optimal policy is to conduct the test and to")Þ(&
introduce the product only if the test market approves. The expected payoff is $""Þ'&'
million. For each combination of financial data, the expected payoff and the optimal
policy are as shown below.

Successful Unsuccessful Optimal Policy Expected Profit
$30 million -$11.25 million Skip Test, Introduce Product   $9.375   million
$30 million -$18.75 million Test, Introduce Product if Approved   $7.656   million
$50 million -$11.25 million Skip Test, Introduce Product   $19.375 million
$50 million -$18.75 million Test, Introduce if Approved   $15.656 million
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(e)
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(f)

 

Both charts indicate that the expected profit is sensitive to both parameters, but is
somewhat more sensitive to changes in the profit if successful than to changes in the loss
if unsuccessful.
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15.5-8.

Chelsea should run in the NH primary. If she does well, then she should run in the ST
primaries. If she does poorly in the NH primary, then should not run the ST primaries.
The expected payoff is $ .'''ß ''(

(b) If the payoff for doing well in ST is only $  million, Chelsea should not run in either"#
NH or ST, with expected payoff of $ . If the payoff for doing well in ST is $  million,! #!
Chelsea should not run in NH, but run in ST, with expected payoff of $  million. If the#
loss for doing poorly in ST is $  million, Chelsea should not run in NH, but run in ST,(Þ&
with expected payoff of $  million. If the loss for doing poorly in ST is only $"Þ* "#Þ&
million, Chelsea should run in NH and run in ST if she does well in NH, with expected
payoff of $ . For each combination of financial data, the expected payoff and the"''ß ''(
optimal policy is as shown below.

Well in ST Poorly in ST Optimal Policy Expected Funds
$12 million -$7.5   million Run in ST Only   $300,000
$12 million -$12.5 million Don't Run in Either   $0
$20 million -$7.5   million Run in ST Only   $3.5 million
$20 million -$12.5 million Run in NH, Run in ST if Well   $1.233 million
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(c)
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(d)

Both charts indicate that the expected payoff is sensitive to both parameters, although it
is slightly more sensitive to changes in the profit if she does well than to changes in the
loss if she does poorly.
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15.6-1.

(a) - (b) The optimal policy is to not conduct a survey and to sell the land.

15.6-2.

(a) Choose to not buy insurance with expected payoff $ .#%*ß )%!

           State of Nature Exp.
Alternative Earthquake No Earthquake Payoff
Buy Insurance      
Not Buy Insurance   

#%*ß )#! #%*ß )#! #%*ß )#!
     

Prior Probability            
*!ß !!! #&!ß !!! #%*ß )%!
!Þ!!" !Þ***

(b) (insurance)Y œ YÐ#&!ß !!!  ")!Ñ œ #%*ß )#! œ %**Þ)#È
 (no insurance)Y œ !Þ***Y Ð#&!ß !!!Ñ  !Þ!!"Y Ð*!ß !!!Ñ œ %**Þ)

The optimal policy is to buy insurance.

15.6-3.

Expected utility of $ :   "*ß !!! Y Ð"*Ñ œ #& œ &È
Expected utility of investment: !Þ$Y Ð"!Ñ  !Þ(Y Ð$!Ñ œ !Þ$ "'  !Þ( $' œ &Þ%È È
Choose the investment to maximize expected utility.
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15.6-4.

Expected utility of A Expected utility of A1 2œ

 :YÐ"!Ñ  Ð"  :ÑY Ð$!Ñ œ YÐ"*Ñ

 !Þ$Y Ð"!Ñ  !Þ(Ð#!Ñ œ "'Þ( Ê YÐ"!Ñ œ *

15.6-5.

(a) Expected utility of A Expected utility of A1 2œ

     :YÐ"!Ñ  Ð"  :ÑY Ð!Ñ œ YÐ"Ñ

     !Þ"#&Y Ð"!Ñ  !Þ)(&Ð!Ñ œ " Ê YÐ"!Ñ œ )

(b) Expected utility of A Expected utility of A1 2œ

     :YÐ"!Ñ  Ð"  :ÑY Ð!Ñ œ YÐ&Ñ

     !Þ&'#&Ð)Ñ  !Þ%$(&Ð!Ñ œ YÐ&Ñ Ê YÐ&Ñ œ %Þ&

(c) Answers will vary.

15.6-6.

(a) Expected utility of A1 œ :YÐ$'Ñ  Ð"  :ÑY Ð%*Ñ œ ':  (Ð"  :Ñ œ (  :

 Expected utility of A2 œ :YÐ"%%Ñ  Ð"  :ÑY Ð!Ñ œ "#:  ! œ "#:

 Expected utility of A3 œ :YÐ!Ñ  Ð"  :ÑY Ð)"Ñ œ !  *Ð"  :Ñ œ *  *:

 

 A  and A  cross when .1 2 (  : œ "#: Ê : œ (Î"$

 A  and A  cross when .1 3 (  : œ *  *: Ê : œ "Î%

Thus, A  is best when , A  is best when , and A  is best when3 1 2: Ÿ "Î% "Î% Ÿ : Ÿ (Î"$
:   (Î"$.
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(b) YÐQÑ œ &!Ð"  / ÑQÎ&!

 %: œ #&

 %: œ &!
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 %: œ (&
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15.6-7.

The optimal policy is to not test for disease A, but to treat disease A.
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15.6-8.

(a)

At ,  and max max , so A  is optimal.: œ !Þ#& "!&:  & œ #"Þ#& Ð##:  #ß #Ñ œ Ð$Þ&ß #Ñ œ $Þ& 1

(b)

 

As can be seen on the graph, A  stays optimal for .1 "Î"& Ÿ : Ÿ !Þ&
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CASES

CASE 15.1 Brainy Business

(a) The relevant data are summarized in the following spreadsheet.

(b) The scenario "moderate competition, sales of 30,000 units at a unit price of $30" has
the largest total probability. Therefore, under the maximum likelihood criterion,
Charlotte should price the product at $30.

To find out best maximin alternative, note that for a price of

 $30: 20,000 units at a unit price $30 is the worst case,
 $40: 20,000 units at a unit price $40 is the worst case,
 $50: 20,000 units at a unit price $50 is the worst case.

The maximum of these three is for the price of $50, so it is optimal under the maximin
criterion.
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(c) The three branches of the decision tree for the decision problem without additional
information follow.

To find the expected revenue for a high price strategy, multiply each final outcome
("Sales") by its probability. For example, the expected sales given severe competition
equals: . The remaining!Þ#Ð&!ß !!!Ñ  !Þ#&Ð$!ß !!!Ñ  !Þ&&Ð#!ß !!!Ñ œ "ß %#&ß !!!
expected values are computed similarly. The decision tree indicates that the alternative
with the maximum expected value is the high price strategy. Hence, Charlotte should
price the product at $50.
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(d) The decision tree for the decision problem with additional information follows in two
sections. The branches of the decisions follow the first half of the tree. Note that the
decision alternative "Expected Value w/o Information" represents the entire decision tree
of part (c). The computations in the tree are performed in the same manner as in part (c).

Decision tree (with additional info)



15-58

Since the expected value for the decision tree with additional (imperfect) information is
less than that without information, Charlotte should not purchase the services of the
market research company.
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CASE 15.2 Smart Steering Support

(a) The available data are summarized in the table.

(b) The basic decision tree is shown. Rectangular nodes represent decision forks and oval
nodes represent chance forks.

(c) The decision tree displays all the expected payoffs.

(d) The best course of action is to do the research project. The expected payoff is $#Þ%)))
million.

(e) The decision tree with perfect information on research is displayed. The expected
value in this case equals $  million. The difference between the expected values#Þ&%))
with and without information is $ , which is the value of perfect information on'!ß !!!
research.
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(f) The decision tree with perfect information on development is displayed. The expected
value in this case equals $  million. The difference between the expected values#Þ('")
with and without information is $ , which is the value of perfect information on#($ß !!!
development

(g) - (h) - (i) The decision tree with expected utilities is displayed. The expected utilities
are calculated in the following way: for each of the outcome branches of the decision tree
(e.g., profit of $ ), the corresponding utility is computed (e.g., ). Once'ß (!!ß !!! "#Þ%&**#
this is done, the expected utilities are calculated. The best course of action is to not do
research (expected utility of  vs.  in the case of doing research)."!Þ"%%'* *Þ)%'#'(

(j) The expected utility for perfect information on research equals , which is still*Þ*$*$*(
less than the expected utility of not doing research ( ). Therefore, the best course"!Þ"%%'*
of action is to not do research, implying a value of zero for perfect information on the
outcome of the research effort.



15-61

(k) The expected utility for perfect information on development equals , which"!Þ$#"$%(
is more than the expected utility without information ( ). The value of perfect"!Þ"%%'*
information on development is the difference between the inverses of these two utility
values, U U . The value of" "Ð"!Þ$#"$%(Ñ  Ð"!Þ"%%'*Ñ œ #!Þ*$#(%  #! œ !Þ*$#(%
perfect information on the outcome of the development effort is $ .*$Þ#(%
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CASE 15.3 Who Wants to be a Millionaire

(a) The course of action that maximizes the expected payoff is to answer $500,000
question alone. If you get the question correct, then use the phone-a-friend lifeline to help
answer $1 million question. The expected payoff is $440,980.

(b) Answers will vary depending on your level of risk aversion. One possible solution is
obtained by setting

 $1 million  and $32,000 .YÐ Ñ œ YÐ Ñ œ " YÐ Ñ œ YÐ Ñ œ !Maximum Minimum

If getting $250,000 for sure is equivalent to a 60% chance of getting $1 million vs. a 40%
chance of getting $32,000, then $250,000 .YÐ Ñ œ : œ !Þ'

If getting $500,000 for sure is equivalent to a 90% chance of getting $1 million vs. a 10%
chance of getting $32,000, then $500,000 .YÐ Ñ œ : œ !Þ*

(c) With the utilities derived in part (b), the decision changes to using the phone-a-friend
lifeline to help answer the $500,000 question, and then walk away.
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CASE 15.4 University Toys and the Business Professor Action Figures

(a)
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(b) The best course of action is to skip the test market, and immediately market the
product fully. The expected payoff is $1750.

(c) If the probability that the LSPAFs enter the market before the test marketing would be
completed increases this would make the test market even less desirable, so it would still
not be worthwhile to do. However, if the probability decreases, this would make the test
market more desirable. It might reach the point where the test market is worthwhile.
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(d) Let  denote the probability that the LSPAFs will enter and EP the expected payoff.:

:

!Þ!
!Þ"
!Þ#
!Þ$
!Þ%
!Þ&

   EP Test Market?
$1,750      No
$1,906      Yes
$1,755      Yes
$1,750      No
$1,750      No
$1,750      No
$1,750      No
$1,750      No
$1,750      No
$1,750      No
$1,750      No
$1,750      No

!Þ'
!Þ(
!Þ)
!Þ*
"Þ!

(e) It is better to perform the test market if the probability that the LSPAFs will enter the
market is 10% or less. It is better to skip the test market if this probability is greater than
10%.
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CHAPTER 16: MARKOV CHAINS

16.2-1.

In this study, Markov chains are used to model the changes in credit ratings of
corporations that work with Merrill Lynch Bank USA. The bank manages a portfolio of
revolving credit-line commitments worth billions of dollars. A corporation that has a
credit line can withdraw a significant amount of money from the bank on short notice.
The risk associated with the bank's ability to meet these cash requests is referred to as the
liquidity risk. Merrill Lynch developed a model to assess this risk and to evaluate various
scenarios like financial stress. The model consists of a mix of multiple OR techniques.
The core of the model is a Monte Carlo simulation of revolving credit lines. In doing this,
the monthly changes in credit ratings for each company are modeled as a discrete-time
Markov chain. A company's rating in a month is assumed to depend only on its rating in
the previous month and the transition probabilities used in forming the credit-migration
matrix are assumed to be stationary.

The model provided Merrill Lynch Bank a systematic way to measure and to manage the
liquidity risk. After the implementation of the model, required liquidity reserves have
been decreased by 30% and $4 billion that is freed up consequently can now be used in
more profitable investments. During the first 21 months, the bank's portfolio has
increased from $8 billion to $13 billion and from 80 companies to 100. The evaluation of
different scenarios enabled the bank to ensure liquidity even during financial crises. The
basic model is now run once every month and is also used in long-term planning.

16.2-2.

(a) Since the probability of rain tomorrow is only dependent on the weather today,
Markovian property holds for the evolution of the weather.

(b) Let the two states be Rain and No Rain. Then the transition matrix is! œ " œ

 P P .œ œÐ"Ñ !Þ& !Þ&
!Þ" !Þ*

ˆ ‰   
   

16.2-3.

(a) Let increased today and yesterday," œ
 increased today and decreased yesterday,# œ
 decreased today and increased yesterday,$ œ
 decreased today and yesterday.% œ

 P Pœ œ

! "  !
! "  !

! ! " 
! ! " 

Ð"Ñ

" "

# #

$ $

% %

Î ÑÐ ÓÐ Ó
Ï Ò
! !
! !

! !
! !

(b) The state space is properly defined to include information about changes yesterday
and today. This is the only information needed to determine the next state, namely
changes today and tomorrow.
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16.2-4.

Yes, it can be formulated as a Markov chain with the following   states.) Ð œ # Ñ$

State Today 1 Day Ago 2 Days Ago
  1    inc      inc      inc
  2    inc      inc     dec
  3    inc     dec      inc
  4    inc     dec     dec
  5   dec      inc      inc
  6   dec      inc     dec
  7   dec     dec      inc
  8   dec     dec     dec

These states include all the information needed to predict the change in the stock
tomorrow whereas the states in Prob. 16.2-2 do not consider the day before yesterday, so
they do not contain all necessary information to predict the change tomorrow.

16.3-1.

(a)

 P  PÐ#Ñ Ð&Ñœ œ
!Þ$ !Þ( !Þ"(& !Þ)#&
!Þ"% !Þ)' !Þ"'& !Þ)$&Œ  Œ 

 P  PÐ"!Ñ Ð#!Ñœ œ
!Þ"'( !Þ)$$ !Þ"'( !Þ)$$
!Þ"'( !Þ)$$ !Þ"'( !Þ)$$Œ  Œ 

(b)

 P Rain  days from now | Rain today PÐ 8 Ñ œ
Ð8Ñ
""

 P Rain  days from now | No rain today P .Ð 8 Ñ œ
Ð8Ñ
#"

If the probability it will rain today is ,!Þ&

 P Rain  days from now  P P .Ð 8 Ñ œ : œ !Þ&  !Þ&8
Ð8Ñ Ð8Ñ
"" #"

Hence, , , , .: œ !Þ## : œ !Þ"( : œ !Þ"'( : œ !Þ"'(# & "! #!

(c) We find  and . As  grows large, P  approaches1 1" #
Ð8Ñœ !Þ"'( œ !Þ)$$ 8

   ,Œ 1 1
1 1
" #

" #

the stationary probabilities. Indeed,

  P P .Ð"!Ñ Ð#!Ñ " #

" #
œ œ Œ 1 1

1 1



16-3

16.3-2.

(a) Let states  and  denote that a  and a  have been recorded respectively. Then the! " ! "
transition matrix is

  P œ ß
"  ; ;
; "  ;Œ 

where .; œ !Þ!!&

(b)

 PÐ"!Ñ œ
!Þ*&# !Þ!%)
!Þ!%) !Þ*&#Œ 

The probability that a digit will be recorded accurately after the last transmission is
!Þ*&#.

(c)

 PÐ"!Ñ œ
!Þ*) !Þ!#
!Þ!# !Þ*)Œ 

The probability that a digit will be recorded accurately after the last transmission is .!Þ*)

16.3-3.

(a)

 P .œ

! !Þ& ! ! !Þ&
!Þ& ! !Þ& ! !
! !Þ& ! !Þ& !
! ! !Þ& ! !Þ&
!Þ& ! ! !Þ& !

Î ÑÐ ÓÐ ÓÐ ÓÐ Ó
Ï Ò

(b)
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(c) .1 1 1 1 1" # $ % &œ œ œ œ œ !Þ#

16.4-1.

(a) P has one recurrent communicating class: .Ö!ß "ß #ß $×

(b) P has 3 communicating classes:  absorbing, so recurrent;  recurrent and Ö!× Ö"ß #× Ö$×
transient.

16.4-2.

(a) P has one recurrent communicating class: .Ö!ß "ß #ß $×

(b) P has one recurrent communicating class: .Ö!ß "ß #×

16.4-3.

P has 3 communicating classes:  recurrent,  transient and  recurrent.Ö!ß "× Ö#× Ö$ß %×

16.4-4.

P has one communicating class, so each state has the same period .%

16.4-5.

(a) P has two classes:  transient and  recurrent.Ö!ß "ß #ß %× Ö$×

(b) The period of  is  and the period of  is .Ö!ß "ß #ß %× # Ö$× "

16.5-1.

 P œ
" 

" Œ ! !
" "

 P  and 1 1 !1 " 1 1 1 1œ Ê  Ð"  Ñ œ  œ "" # " " #

 .Ê œ ß1 Š ‹"
#  # 

""
! " ! "

!
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16.5-2.

We need to show that  for  satisfies the steady-state equations:14
"

Q"œ 4 œ !ß "ßá ßQ

1 1 14 3 34 3 34
Q Q Q
3œ! 3œ! 3œ!œ T œ " T œ "! ! ! and . These are easily verified, using  for every

4. The chain is irreducible, aperiodic and positive recurrent , so this is the unique
solution.

16.5-3.

Q œ & Ê œ œ œ œ œ "Î& œ !Þ#1 1 1 1 1" # $ % &

The steady-state probabilities do not change if the probabilities for moving steps change.

16.5-4.

1 œ Ð!Þ&""ß !Þ#)*ß !Þ#Ñ

The steady-state market share for A and B are  and  respectively.!Þ&"" !Þ#)*

16.5-5.

(a) Assuming demand occurs after delivery of orders:

P œ

!Þ' !Þ% ! ! ! ! !
!Þ$ !Þ$ !Þ% ! ! ! !
!Þ" !Þ# !Þ$ !Þ% ! ! !
! !Þ" !Þ# !Þ$ !Þ% ! !
! ! !Þ" !Þ# !Þ$ !Þ% !
! ! ! !Þ" !Þ# !Þ$ !Þ%
! ! ! ! !Þ" !Þ# !Þ(

Î ÑÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÐ Ó
Ï Ò

(b)  P  and               .1 1 1 1œ œ " Ê œ Ð!Þ"$* !Þ"$* !Þ"$* !Þ"$) !Þ"%" !Þ"$! !Þ"(%Ñ!
4 4

(c) The steady-state probability that a pint of blood is to be discarded is

P P state  x .ÐH œ !Ñ † Ð œ (Ñ œ !Þ% !Þ"(% œ !Þ!'*'

(d) P need for emergency delivery  P state PÐ Ñ œ Ð œ 3Ñ † ÐH  3Ñ!#
3œ"

                                                      x  x œ !Þ"$* Ð!Þ#  !Þ"Ñ  !Þ"$* !Þ"

     œ !Þ!&&'

16.5-6.

For an  policy with  and :Ð=ß WÑ = œ # W œ $

-ÐB ßH Ñ œ
"!  #&Ð$  B Ñ  &! ÐH  $ß !Ñ B  #
&! ÐH  B ß !Ñ B   #>" >

>" > >"

> >" >"
œ max

max
     for 

                                   for .

OÐ!Ñ œ IÒ-Ð!ßH ÑÓ œ )&  &!Ò Ð4  $Ñ † T ÐH œ 4ÑÓ ¶ )'Þ#> >
_
4œ%

! ,

OÐ"Ñ œ IÒ-Ð"ßH ÑÓ œ '!  &!Ò Ð4  $Ñ † T ÐH œ 4ÑÓ ¶ '"Þ#> >
_
4œ%

! ,
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OÐ#Ñ œ IÒ-Ð#ßH ÑÓ œ !  &!Ò Ð4  #Ñ † T ÐH œ 4ÑÓ ¶ &Þ#> >
_
4œ%

! ,

OÐ$Ñ œ IÒ-Ð$ßH ÑÓ œ !  &!Ò Ð4  #Ñ † T ÐH œ 4ÑÓ ¶ "Þ#> >
_
4œ%

! .

B œ
Ð$  H ß !Ñ B  #
ÐB  H ß !Ñ B   #>"

>" >

> >" >
œ max

max
       for 
     for 

P œ

!Þ!)! !Þ")% !Þ$') !Þ$')
!Þ!)! !Þ")% !Þ$') !Þ$')
!Þ#'% !Þ$') !Þ$') !
!Þ!)! !Þ")% !Þ$') !Þ$')

Î ÑÐ ÓÐ Ó
Ï Ò

Solving the steady-state equations gives .Ð ß ß ß Ñ œ Ð!Þ"%)ß !Þ#&#ß !Þ$')ß !Þ#$#Ñ1 1 1 1! " # $

Then the long-run average cost per week is .!$
4œ! 4OÐ4Ñ † œ $!Þ$(1

16.5-7.

(a)

          for 
              for B œ

ÐB  # H ß !Ñ B Ÿ "
ÐB  H ß !Ñ B   #>"

> >" >

> >" >
œ max

max

 P œ

!Þ#'% !Þ$') !Þ$') !
!Þ!)! !Þ")% !Þ$') !Þ$')
!Þ#'% !Þ$') !Þ$') !
!Þ!)! !Þ")% !Þ$') !Þ$')

Î ÑÐ ÓÐ Ó
Ï Ò

Solving the steady-state equations gives .Ð ß ß ß Ñ œ Ð!Þ")#ß !Þ#)&ß !Þ$')ß !Þ"'&Ñ1 1 1 1! " # $

(b) .lim8Ä_ > ! " # $
"
8

8
>œ"I -ÐB Ñ œ ! †  # †  ) †  ") † œ 'Þ%)ˆ ! ‹ 1 1 1 1

16.5-8.

(a) P P P P"" 8" 8" 8"œ ÐH œ !Ñ  ÐH œ #Ñ  ÐH œ %Ñ œ $Î&

 P P P"# 8" 8"œ ÐH œ "Ñ  ÐH œ $Ñ œ #Î&

     P P P#" 8" 8"œ ÐH œ "Ñ  ÐH œ $Ñ œ #Î&

 P P P P## 8" 8" 8"œ ÐH œ !Ñ  ÐH œ #Ñ  ÐH œ %Ñ œ $Î&

 P œ
$Î& #Î&
#Î& $Î&Œ 

(b) P and   .1 1 1 1 1 1œ  œ " Ê œ œ "Î#" # " #

(c) P is doubly stochastic and there are two states, so .1 1" #œ œ "Î#

(d)  OÐ"Ñ œ IÒ-Ð"ßH ÑÓ8

  œ Ð#Î&ÑÒ$  #Ð"ÑÓ  Ð#Î&ÑÒ$  #Ð#ÑÓ  Ð"Î&ÑÐ"Ñ  Ð%Î&ÑÒ"  #  $Ó

  ,œ *Þ)
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      OÐ#Ñ œ IÒ-Ð#ßH ÑÓ8

              œ Ð#Î&ÑÒ$  #Ð"ÑÓ  Ð"Î&ÑÒ$  #Ð#ÑÓ  Ð"Î&ÑÐ#  "Ñ  Ð%Î&ÑÒ"  #Ó

  .œ 'Þ%

So the long-run average cost per unit time is .*Þ)Ð"Î#Ñ  'Þ%Ð"Î#Ñ œ )Þ"

16.5-9.

(a) P the unit will be inoperable after  periods PÐ 8 Ñ œ
Ð8Ñ
!#

 : P ; : P ;8 œ # œ !Þ!% 8 œ & œ !Þ!$(
Ð8Ñ Ð8Ñ
!# !#

 : P ; : P .8 œ "! œ !Þ!$* 8 œ #! œ !Þ!$)
Ð8Ñ Ð8Ñ
!# !#

(b) , , , and .1 1 1 1! " # $œ !Þ'"& œ !Þ"*# œ !Þ!$) œ !Þ"&%

(c) Long-run average cost per period is .$!ß !!! œ %ß '#!1$

16.6-1.

(a)

 P œ
!Þ*& !Þ!&
!Þ&! !Þ&!Œ 

(b) . .!! "!œ "  !Þ!&
 . .!" !"œ "  !Þ*&
   . ."! "!œ "  !Þ&!
   . ."" !"œ "  !Þ&!

Ê œ "Þ"ß œ #!ß œ #ß œ "" . . . .!! !" "! ""

16.6-2.

(a) States: Operational, Down, Repaired.! œ " œ # œ

 P œ
!Þ* !Þ" !
! ! "
!Þ* !Þ" !

Î Ñ
Ï Ò
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(b) We need to solve P  for every  and .. .34 35 545Á4œ "  3 4!
 . .!! "!œ "  !Þ"
 . ."! #!œ " 
 . .#! "!œ "  !Þ"

Ê œ ""Î*ß œ #!Î*ß œ ""Î*. . .!! "! #!

 . .!" !"œ "  !Þ*
 . ."" #"œ " 
 . .#" !"œ "  !Þ*

Ê œ "!ß œ ""ß œ "!. . .!" "" #"

 . . .!# !# "#œ "  !Þ*  !Þ"
 ."# œ "  !
 . . .## !# "#œ "  !Þ*  !Þ"

Ê œ ""ß œ "ß œ "". . .!# "# ##

The expected number of full days that the machine will remain operational before the
next breakdown after a repair is completed is ..!" œ "!

(c) It remains the same because of the Markovian property. The expected number of days
the machine will remain operational starting operational does not depend on how long the
machine remained operational in the past.

16.6-3.

(a) We order the states as ,  and  and write the transition matrix:Ð"ß "Ñ Ð!ß "Ñ Ð"ß !Ñ

 P .œ
!Þ* !Þ" !
!Þ* ! !Þ"
!Þ* !Þ" !

Î Ñ
Ï Ò

(b) . From P and , we get , so the expected. 1 1 1 1 1$$ $ $œ "Î œ † " œ " œ "Î""!
recurrence time for the state  is .Ð"ß !Ñ œ ""!.$$

16.6-4.

(a)

 P œ
!Þ#& !Þ& !Þ#&
!Þ(& !Þ#& !
!Þ#& !Þ& !Þ#&

Î Ñ
Ï Ò

(b)

 PÐ#Ñ œ
!Þ& !Þ$(& !Þ"#&

!Þ$(& !Þ%$) !Þ"))
!Þ& !Þ$(& !Þ"#&

Î Ñ
Ï Ò
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 PÐ&Ñ œ
!Þ%%* !Þ% !Þ"&
!Þ%&" !Þ$** !Þ"%*
!Þ%%* !Þ% !Þ"&

Î Ñ
Ï Ò

 PÐ"!Ñ œ
!Þ%& !Þ% !Þ"&
!Þ%& !Þ% !Þ"&
!Þ%& !Þ% !Þ"&

Î Ñ
Ï Ò

(c)  . . .!! "! #!œ "  !Þ&  !Þ#&
 . ."! "!œ "  !Þ#&
 . . .#! "! #!œ "  !Þ&  !Þ#&

Ê œ #!Î*ß œ %Î$ß œ #!Î*. . .!! "! #!

 . . .!" !" #"œ "  !Þ#&  !Þ#&
 . ."" !"œ "  !Þ(&
 . . .#" !" #"œ "  !Þ#&  !Þ#&

Ê œ #ß œ # ß œ #. . .!" "" #"
"
#

 . . .!# !# "#œ "  !Þ#&  !Þ&
 . . ."# !# "#œ "  !Þ(&  !Þ#&
 . . .## !# "#œ "  !Þ#&  !Þ&

Ê œ #!Î$ß œ )ß œ #!Î$. . .!# "# ##

(d) The steady-state probability vector is     .Ð!Þ%& !Þ% !Þ"&Ñ

(e) $   week1 † G œ !Ð!Þ%&Ñ  #Ð!Þ%Ñ  )Ð!Þ"&Ñ œ # Î

16.6-5.

(a)

 P œ

! !Þ)(& !Þ!'# !Þ!'#
! !Þ(& !Þ"#& !Þ"#&
! ! !Þ& !Þ&
" ! ! !

Î ÑÐ ÓÐ Ó
Ï Ò

 , , , and 1 1 1 1! " # $œ !Þ"&% œ !Þ&$) œ !Þ"&% œ !Þ"&%

(b) $ 1 † G œ "Ð!Þ&$)Ñ  $Ð!Þ"&%Ñ  'Ð!Þ"&%Ñ œ "*#$Þ!)

(c)  . . . .!! "! #! $!œ "  !Þ)(&  !Þ!'#&  !Þ!'#&
 . . . ."! "! #! $!œ "  !Þ(&  !Þ"#&  !Þ"#&
 . . .#! #! $!œ "  !Þ&  !Þ&
 .$! œ "  !

So the expected recurrence time for state  is .! œ 'Þ&.!!
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16.7-1.

(a) P P ; P ; P ; P  else.!! XX 3ß3" 3ß3" 3ß5œ œ " œ ; œ : œ !

 P œ

" ! ! ! â
; ! : ! â

ã ä
; ! : !
! ; ! :
! ! ! "

Î ÑÐ ÓÐ ÓÐ ÓÐ ÓÐ ÓÐ Ó
Ï Ò

(b) Class 1:  absorbingÖ!×
     Class 2:  absorbingÖX×
    Class 3:  transientÖ"ß #ßá ß X  "×

(c) Let P absorption at  starting at . Then , .0 œ Ð O 3Ñ 0 œ 0 œ " 0 œ 0 œ !3O !! $$ $! !$

Since P  for  and P , P , we get:34 3ß3" 3ß3"œ ! l3  4l Á " œ : œ ;

 0 œ ;  :0"! #!

 0 œ "  0"$ "!

 0 œ ;0#! "!

 0 œ "  0#$ #!

Solving this system gives

 , , , .0 œ œ !Þ))' 0 œ !Þ""% 0 œ !Þ'# 0 œ !Þ$)"! "$ #! #$
;

":;

(d) Plugging in  in the formulas in part (c), we obtain: œ !Þ(

 , , , .0 œ !Þ$) 0 œ !Þ'# 0 œ !Þ""% 0 œ !Þ))'"! "$ #! #$

Observe that when , the drift is towards  and when , it is towards .:  "Î# X :  "Î# !

16.7-2.

(a) Have to honor warranty! œ
 Reorder in 1st year" œ
 Reorder in 2nd year# œ
 Reorder in 3rd year$ œ

 P œ

" ! ! !
!Þ!" ! !Þ** !
!Þ!& ! ! !Þ*&
! ! ! "

Î ÑÐ ÓÐ Ó
Ï Ò

(b) The probability that the manufacturer has to honor the warranty is 0"!.

 0 œ !Þ!"0  !0  !Þ**0  !0"! !! "! #! $!

 0 œ !Þ!&0  !0  !0  !Þ*&0#! !! "! #! $!

  and 0 œ " 0 œ !!! $!

  and Ê 0 œ !Þ!"  !Þ**0 0 œ !Þ!&"! #! #!

 %.Ê 0 œ !Þ!&*& œ &Þ*&"!
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16.8-1.

In 1998, the new management of PSA Peugeot Citroën set new goals regarding the
amount of production, the introduction of new models and the profit in the following
years. To achieve these goals, the car-body shops, which were the bottlenecks of
production, needed to be redesigned. A new architecture was needed to process diverse
models on the same platform and to introduce new models quickly. To evaluate the
performance of various designs, PSA adopted a combination of simulation and analytic
models. The states of a machine or of a worker in a production line are modeled as a
continuous time Markov chain. A machine can be either up or down. When it is up, it can
go down with the average failure rate . When it is down, it can be repaired with the-
average repair rate . If the machine can fail only when it is processing a car part, an.
additional state is included to represent an idle machine. The operators are also treated as
machines. An operator's state is "up" when he is working regular time and "down" when
he is working overtime.

As a result of this study, a software called DispO is developed. A conservative estimate of
the additional profit generated using this software is $130 million, which is around 6.5%
of the total profit. PSA acquired a 4% increase in productivity in 2001. Additionally, the
new model enabled PSA to understand its assembly lines better and to correct "some
incorrect but deeply ingrained beliefs and practices" [p. 46]. The ability to compare the
estimates obtained from analysis with the actual values convinced the personnel about the
reliability of the methods. As a consequence, OR gained importance throughout the
company. The efficiency in improving production-line designs enhanced throughput
without overloading workers. The social climate and the quality of production are both
improved. The software developed is used also by the suppliers of PSA. This, in turn,
reduces the time to negotiate schedules.

16.8-2.

(a)

 

(b) Steady-state equations:

   $ œ #1 1! "

   % œ $  #1 1 1" ! #

   $ œ #  #1 1 1# " $

   # œ1 1$ #

   1 1 1 1! " # $   œ "

(c) Solving the steady-state equations gives .1 œ ß ß ßŠ ‹% ' ' $
"* "* "* "*
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16.8-3.

(a) Let the state be the number of jobs at the work center.

 

(b) Steady-state equations:

   "
# ! "1 1œ

   $ "
# #" ! #1 1 1œ 

   1 1# "
"
#œ

   1 1 1! " #  œ "

(c) Solving the steady-state equations gives .1 œ ß ßŠ ‹% # "
( ( (
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CHAPTER 17: QUEUEING THEORY

17.2-1.

A typical barber shop is a queueing system with input source being the population having
hair, customers being the people who want haircut and servers being the barbers. The
queue forms as customers wait for a barber to serve them. The customers are served
usually with the first-come-first-served discipline. The service mechanism involves the
barbers and equipment.

17.2-2.

(a) Average number of customers in the shop, including those getting their haircut:

 P œ !  "  #  $  % œ #Š ‹ Š ‹ Š ‹ Š ‹ Š ‹" % ' % "
"' "' "' "' "'

(b) # in queue probability product
      
      
      
         
         

8
! !
" !
# !
$ " !Þ#& !Þ#&
% # !Þ!'#& !Þ"#&

Average number of customers waiting in the shop: P œ !Þ$(&;

(c) Expected number of customers being served: % ' % " "$
"' "' "' "' ) #   œŠ ‹

(d)  hours  minutes[ œ œ œ !Þ& œ $!P #
%-

  hours  minutes[ œ œ œ !Þ!*% œ &Þ'#&;
P !Þ$(&

%
;

-

Hence, each customer will be in the shop for half an hour on the average. This includes
the time to get a haircut. The average waiting time for a customer before getting a haircut
is  minutes.&Þ'#&

(e)  hours  minutes[ [ œ !Þ%!' œ #%Þ$';

17.2-3.

(a) A parking lot is a queueing system for providing parking. The customers are the cars
and the servers are the parking spaces. The service time is the amount of time a car stays
parked in a space and the queue capacity is zero.

(b)  carsP œ !Ð!Þ"Ñ  "Ð!Þ#Ñ  #Ð!Þ%Ñ  $Ð!Þ$Ñ œ "Þ*

  carsP œ !;

  hours[ œ œ œ !Þ*&P "Þ*
#-

  hours[ œ œ œ !;
P !

#
;

-

(c) A car spends an average of  minutes in a parking space.&(
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17.2-4.

(a) FALSE. The queue is where customers wait before being served.

(b) FALSE. Queueing models conventionally assume infinite capacity.

(c) TRUE. The most common is first-come-first-served.

17.2-5.

(a) A bank is a queueing system with people as the customers and tellers as the servers.

(b)  minute[ œ ";

  minutes[ œ [  œ "  # œ $;
"
.

  customersP œ [ œ Ð"Ñ œ !Þ''(; ;
%!
'!-

  customersP œ [ œ Ð$Ñ œ #- %!
'!

17.2-6.

The utilization factor  represents the fraction of time that the server is busy. The server3
is busy except when there is nobody in the system.  is the probability of having zeroT!

customers in the system, so .3 œ "  T!

17.2-7.

- - . .# " # " # "
[
[ P Î

P Îœ # ß œ # ß P œ #P Ê œ œ ""

# # #

" "-
-

17.2-8.

(a)

 when nobody is in the system
otherwiseP œ

P
P  "œ ;

;

Ê P œ T P  Ð"  T ÑÐP  "Ñ œ P  Ð"  T Ñ! ; ! ; ; !

(b) P œ [ œ Ð[  "Î Ñ œ [  Î œ P - - . - - . 3; ; ;

(c) P œ P  œ P  Ð"  T Ñ Ê œ Ð"  T Ñ; ; ! !3 3

17.2-9.

          P œ 8T œ 8T  8T œ 8T  Ð8  =ÑT  =T! ! ! ! ! !
8œ! 8œ! 8œ!

_ =" _ =" _ _

8 8 8 8 8 8
8œ= 8œ= 8œ=

 œ 8T  P  = T œ 8T  P  = "  T! ! ! !Š ‹
8œ! 8œ! 8œ!

=" _ =" ="

8 ; 8 8 ; 8
8œ=
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17.3-1.

Part Customers Servers
(a) Customers waiting for checkout Checkers
(b) Fires Firefighting units
(c) Cars Toll collectors
(d) Broken bicycles Bicycle repairpersons
(e) Ships to be loaded or unloaded Longshoremen & equipment
(f) Machines needing operator Operator
(g) Materials to be handled Handling equipment
(h) Calls for plumbers Plumbers
(i) Custom orders Customized process
(j) Typing requests Typists

17.4-1.

- .8 8œ "Î# 8   ! œ
"Î# 8 œ "
" 8   #

 for  and for 
for œ

(a) next arrival before 1:00TÖ × œ "  / œ !Þ$*$"Î#

 next arrival between 1:00 and 2:00TÖ × œ Ð"  / ÑÐ"  / Ñ œ !Þ#$*Ð"Î#Ñ†# "Î#

 next arrival after 2:00TÖ × œ / œ !Þ$')Ð"Î#Ñ†#

(b) Probability that the next arrival will occur between 1:00 and 2:00 given no arrivals
between 12:00 and 1:00 is .Ð"  / Ñ œ !Þ$*$"Î#

(c) no arrivals between 1:00 and 2:00TÖ × œ œ / œ !Þ'!(Ð >Ñ /
!x

"Î#- !  >-

 one arrival between 1:00 and 2:00TÖ × œ œ / œ !Þ$!$Ð >Ñ /
"x #

" "Î#- "  >-

 two or more arrivals between 1:00 and 2:00TÖ × œ "  /  / œ !Þ!*"Î# "Î#"
#

(d) none served by 2:00TÖ × œ / œ !Þ$')"

 none served by 1:10TÖ × œ / œ !Þ)%'"Ð"Î"!Ñ

 none served by 1:01TÖ × œ / œ !Þ*)$"Ð"Î'!Ñ

17.4-2.

-8
# /
8xœ # 8   ! Ê TÖ8 × œ for  arrivals in an hour 8 #

(a)  arrivals in an hourTÖ! × œ œ !Þ"$&# /
!x

! #

(b)  arrivals in an hourTÖ# × œ œ !Þ#(!# /
#x

# #

(c)  or more arrivals in an hour  arrivals in an hourTÖ& × œ "  TÖ8 ×!
8œ!

%

 œ "  /  #/  Ð%Î$Ñ/  Ð#Î$Ñ/ œ !Þ&#(# # # #
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17.4-3.

Expected pay: "!! † TÖX  #×  )! † TÖX  #× œ "!!  #! † TÖX  #×

 TÖX  #× œ / œ !Þ'!(old
 †#"

%

 TÖX  #× œ / œ !Þ$')special
 †#"

#

Expected increase in pay: #!ÒTÖX  #×  TÖX  #×Ó œ %Þ()old special

17.4-4.

Given the memoryless property, the system becomes a two-server after the first
completion occurs. Let  be the amount of time after  until the next serviceX > œ "
completion occurs.

 minTÖX  >× œ TÖ ÐX ß X Ñ  >×# $

By Property 3,  has an exponential distribution with mean .X !Þ&Î# œ !Þ#&

17.4-5.

By memoryless property, min , where Exp ,Y œ ÐX ß X ß X Ñ X µ Ð"Î$!Ñ" # $ "

X µ Ð"Î#!Ñ X µ Ð"Î"&Ñ# $Exp , and Exp . By Property 3

 Exp Exp .Y µ   œ Ð!Þ"&ÑŒ " " "
$! #! "&

Then, the expected waiting time is  minutes."Î!Þ"& ¸ 'Þ'(

17.4-6.

(a) From aggregation property of Poisson process, the arrival process does still have a
Poisson distribution with mean rate  per hour, so the distribution of the time between"!
consecutive arrivals is exponential with a mean of  hours  minutes.!Þ" œ '

(b) The waiting time of this type 2 customer is the minimum of two exponential random
variables, so by Property 3, it is exponentially distributed with a mean of  minutes.&

17.4-7.

(a) This customer's waiting time is exponentially distributed with a mean of  minutes.&

(b) The total waiting time of the customer in the system is , where  andj j jœ  X; = ;

X= are independent from each other.

  minutes  hourIÐ Ñ œ IÐ Ñ  IÐX Ñ œ &  "! œ "& œ "Î%j j; =

 var var varÐ Ñ œ Ð Ñ  ÐX Ñ œ  œ !Þ!$%(j j; =
" "
"# '

# #Š ‹ Š ‹
(c)  minutes, varj j j jœ &  Ê IÐ Ñ œ #! Ð Ñ œ !Þ!$%(
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17.4-8.

(a) FALSE.  and var , p.775.IÐX Ñ œ "Î ÐX Ñ œ "Î! !#

(b) FALSE. "The exponential distribution clearly does not provide a close approximation
to the service-time distribution for this type of situation," second paragraph, p.776.

(c) FALSE. A new arrival would have an expected waiting time, before entering service
of , second last paragraph, p.777."Î8.

17.4-9.

Let min .Y œ ÖX ßá ß X ×" 8

TÖY œ X × œ TÖX  X 3 Á 4lX œ >× / .>4 4 3 4 4!
_  >  for all ' ! !4

  œ / / / .> œ / .> œ' '
! !
_ _> >

>  >
4 4

! !
!3œ" 3œ"

8 8

3 3
4 4 4

3œ"

8

3

! !
! ! !

!
! !

17.5-1.

(a)

 

(b)

 T œ T œ T" ! !
$
#

-
.
!

"

 T œ T œ T# ! !
$
#

- -
. .
! "

" #

 T œ T œ T$ ! !
$
%

- - -
. . .
! " #

" # $

 T œ T œ â œ !% &

 T  T  T  T œ "    T œ "! " # $ !
$ $ $
# # %Š ‹

 Ê T œ ßT œ T œ ßT œ! " # $
% "# '
"* $) $)

(c) P œ 8T œ ! † T  " † T  # † T  $ † T œ œ "Þ%#"!
8œ!

_

8 ! " # $
#(
"*

 P œ Ð8  "ÑT œ ! † T  " † T  # † T œ œ !Þ'$#; 8 " # $
8œ"

_
"#
"*

!
 - -œ T œ $ † T  # † T  " † T  ! † T œ œ "Þ&(*!

8œ!

_

8 8 ! " # $
$!
"*

 [ œ œ œ !Þ*P #(Î"*
$!Î"*-

 [ œ œ œ !Þ%;
P "#Î"*

$!Î"*
;

-
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17.5-2.

(a)

 

(b) %T œ %T ß 'T œ %T  'T ß 'T œ #T ß T  T  T œ "! " " ! # # " ! " #

(c) T œ T œ ßT œ! " #
$ "
( (

(d)

 T œ T œ T ßT œ T œ T" ! ! # ! !
"
$

- - -
. . .
! ! "

" " #

 T  T  T œ "  "  T œ " Ê T œ T œ ßT œ! " # ! ! " #
" $ "
$ ( (Š ‹

 P œ 8T œ ! † T  " † T  # † T œ!
8œ!

_

8 ! " #
&
(

 P œ Ð8  "ÑT œ ! † T  " † T œ; 8 " #
8œ"

_
"
(

!
 - -œ T œ % † T  # † T œ!

8œ!

_

8 8 ! "
")
(

 [ œ œP &
")-

 [ œ œ;
P "

")
;

-
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17.5-3.

(a)

 

(b) (1) #T œ $T! "

 (2) #T  %T œ 'T! # "

 (3) $T  T œ 'T" $ #

 (4) #T  #T œ #T# % $

 (5) T œ #T$ %

 (6) T  T  T  T  T œ "! " # $ %

(c)

 (1) Ê T œ T" !
#
$

 (2) Ê T œ ' † T  #T Î% œ T# ! ! !
# "
$ #Š ‹

 (3) Ê T œ ' † T  $ † T œ T$ ! ! !
" #
# $Š ‹

 (4) Ê T œ #T  # † T Î# œ T% ! ! !
" "
# #Š ‹

 (5) Ê T  T  T  T  T œ "! ! ! ! !
# " "
$ # #

 Ê T œ T œ ßT œ ßT œ T œ! $ " # %
$ # $
"" "" ##

(d)

 T œ T œ T" ! !
#
$

-
.
!

"

 T œ T œ T# ! !
"
#

- -
. .
! "

" #

 T œ T œ T$ ! !
- - -
. . .
! " #

" # $

 T œ T œ T% ! !
"
#

- - - -
. . . .
! " # $

" # $ %

 T  T  T  T œ " Ê T œ T œ ßT œ ßT œ T œ! " # $ ! $ " # %
$ # $
"" "" ##

 P œ 8T œ ! † T  " † T  # † T  $ † T  % † T œ!
8œ!

_

8 ! " # $ %
#!
""

 P œ Ð8  "ÑT œ ! † T  " † T  # † T  $ † T œ; 8 " # $ %
8œ"

_
"#
""

!
 - -œ T œ # † T  $ † T  # † T  " † T œ!

8œ!

_

8 8 ! " # $
")
""

 [ œ œP "!
*-

 [ œ œ;
P #

$
;

-



17-8

17.5-4.

(a)

 

(b)
 T œ T œ T" ! !

-
.
!

"

 T œ T œ T# ! !
"
#

- -
. .
! "

" #

 ã

 T œ T œ T8 ! !
â
â #

"
8"

- - -
. . .
! " 8"

" # 8
Š ‹

 ! !Š ‹ Š ‹
8œ! 8œ"

_ _

8 ! ! ! ! 8
" " " "
# $ $ #

8" 8"

T œ T  T œ $T œ " Ê T œ ßT œ †

(c) The mean arrival rate to the system and the mean service rate for each server when it
is busy serving customers are both .#

17.5-5.

(a)

 

(b) (1) "&T œ "&T! "

 (2) "&T  "&T œ #&T! # "

 (3) "!T  "&T œ #!T" $ #

 (4) &T œ "&T# $

 (5) T  T  T  T œ "! " # $

(c) (1) Ê T œ T" !

 (2) Ê T œ Ð#Î$ÑT# !

 (3) Ê T œ Ð#Î*ÑT$ !

 (5) Ê T œ T œ ßT œ ßT œ! " # $
* $ "
#' "$ "$

The same equations can be obtained as follows:

T œ T œ T T œ T œ T T œ T œ T" ! ! # ! ! $ ! !
# #
$ *

- - - - - -
. . . . . .
! ! " ! " #

" " # " # $
, , .

(d) P œ ! † T  " † T  # † T  $ † T œ œ "Þ!%! " # $
#(
#'

 - œ "& † T  "! † T  & † T œ œ *Þ)"! " #
#&&
#'

  hours[ œ œ œ !Þ"!'P *
)&-
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17.5-6.

(a) Let the state represent the number of machines that are broken down.

 

(b)

 T œ T ßT œ T ß T  T  T œ "" ! # ! ! " #
) $#
& #&

 Ê T œ ßT œ ßT œ! " #
#& %! $#
*( *( *(

(c)

 - œ † T  † T œ œ !Þ!*$" " *
& "! *(! "

     P œ ! † T  " † T  # † T œ œ "Þ!(#! " #
"!%
*(

     P œ ! † T  " † T œ œ !Þ$$!; " #
$#
*(

      hours[ œ œ ¸ ""Þ&&'P "!%
*-

      hours[ œ œ ¸ $Þ&&';
P $#

*
;

-

(d)

 T  T œ œ !Þ(%#" #
(#
*(

(e)

 T  T œ œ !Þ%'%! "
" %&
# *(

(f) The birth-and-death process is a special case of continuous time Markov chains.

17.5-7.

(a)

(b) . -T œ T" !

 - . ) . -T  Ð  ÑT œ Ð  ÑT! # "

 ã

 - . ) . - )T  Ð  8 ÑT œ Ð   Ð8  "Ñ ÑT8" 8" 8
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17.5-8.

(a)

 

(b)

  T œ "  œ " !
8œ" 8œ"

_ _" "8"” • ” •! !Š ‹- - -
. . . .

8

" #
8"

" #

  œ "  œ "  œ !Þ%” Œ • ” Œ •-
."

#

"
#

" $ "
"

" "

% "-
.

   for T œ T œ 8   "8 !
$ "
& #

8
-

. .

8

" #
8" Š ‹

(c)

 P œ 8T œ 8 œ † † œ! ! Š ‹
8œ! 8œ"

_ _

8
$ " $ " " '
& # & # &

8

"Š ‹"# #

 P œ P  Ð"  T Ñ œ; !
$
&

 , [ œ œ [ œ œP " "
#& &!;

P
- -

;

17.5-9.

(a) Let the state represent the number of documents received, but not completed.

 

(b)  below corresponds to the steady-state probability that  documents are receivedT 88

but not completed.

 T œ T ßT œ T ßâßT œ T" ! # ! 8 !
# # " # "
$ $ # $ #

8"Š ‹ Š ‹
 ! !Œ Š ‹ Š ‹

8œ! 8œ"

_ _

8 ! ! ! 8
# " ( $ % "
$ # $ ( ( #

8" 8

T œ "  T œ T œ " Ê T œ ßT œ

(c)

 P œ 8T œ 8 œ † † œ! ! Š ‹
8œ! 8œ"

_ _

8
% " % " " )
( # ( # (

8

"Š ‹"# #

 P œ Ð8  "ÑT œ P  Ð"  T Ñ œ; 8 !
8œ"

_
%
(

!
 , [ œ œ [ œ œP % #

( (;
P

- -
;
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17.5-10.

 T œ T œ #T" ! !
-
.
!

"

 T œ T œ #T# ! !
- -
. .
! "

" #

 ã

 T œ T œ T8 ! !
â
â 8x

#- - -
. . .
! " 8"

" # 8

8

  for !
8œ!

_

8 ! ! 8
# # #T œ / † T œ " Ê T œ / ß T œ #/ 8   "

17.5-11.

(a)

 

(b) &T œ %T" !

 &T œ *T# "

 &T  %T œ *T$ ! #

 ã

 &T  %T œ *T8" 8# 8

(c)
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17.5-12.

(a) Let  be the number of customers in the system.8

Balance equations: T œ T ßT œ T  T ß #T œ T  T ß #T œ T ß T œ T! # " ! $ # " % $ # % $

(b) Let the state  be the number of customers in service and in queue respectively.Ð=ß ;Ñ

Balance equations: T œ T  T!! "! #!

   #T œ T  T  T"! !! "" #"

   #T œ T" "!1
      #T œ T  T#! "# ##

   #T œ T ß T œ T#" #! #" ##

17.5-13.

(a) Let the state  be the number of type 1 and type 2 customers in the systems.Ð8 ß 8 Ñ" #

 

(b) Balance equations: "#T œ &T!" !!

   "&T œ "#ÐT  T Ñ!! !" "!

   ##T œ "!T  #%T"! !! #!

   #%T œ "!T#! "!

   T  T  T  T œ "!! "! !" #!

(c) T œ ßT œ ßT œ ßT œ!! "! !" #!
(# '! $! #&
")( ")( ")( ")(

(d) Type 1 customers are blocked when the system is in state  or , so theÐ#ß !Ñ Ð!ß "Ñ
fraction of type 1 customers who cannot enter the system is . Type 2T  T œ &&Î")(#! !"

customers are blocked when the system is in state ,  or , so the fraction ofÐ#ß !Ñ Ð!ß "Ñ Ð"ß !Ñ
type 2 arrivals that are blocked is .T  T  T œ ""&Î")(#! "! !"
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17.6-1.

KeyCorp deploys queueing theory as part of its Service Excellence Management System
(SEMS) to improve productivity and service in its branches. The main objective of this
study is to enhance customer satisfaction by reducing wait times without increasing the
staffing costs. To do this, first a system that collects data about various phases of
customer transactions is developed. Then, a preliminary analysis is conducted to
determine the number of tellers required for at most 10% of customers to wait more than
five minutes. The underlying model is an M/M/k queue with an average service time of
246 seconds. The arrival and service rates,  and  are estimated from the data. By using- .
steady state equations, measures such as average queue length, average waiting time, and
probability of having zero customers waiting are computed. The analysis revealed that
with the current service time, the bank needed over 500 new employees. Hiring so many
new tellers was too costly and physically impossible. Alternatively, the bank could
achieve its goal by reducing the average service time. The investigation of the collected
data helped to identify potential improvements in service. Accordingly, customer
processing is reengineered, proficiency of tellers is improved and efficient schedules are
obtained. Heuristic algorithms are incorporated in the model to make it more realistic.

The model allowed KeyCorp to reduce the processing time by 53%. As a result of this,
the customer wait time has decreased and the percentage of customers who wait more
than five minutes is reduced to 4%. In addition to increased customer satisfaction, the
new system resulted in the reduction of operating costs. Savings from personnel expenses
is estimated to be $98 million over five years whereas the cost of the new system was
only half a million dollars. The reports generated from the data are used in obtaining
better schedules and identifying service components that are open to improvement.
Efficient scheduling and reduced personnel released 15% of the capacity, which can now
be used for more profitable investments. KeyCorp also gained more credibility by using a
systematic approach in making decisions. KeyCorp management, customers, employees
and shareholders all benefit from this study.

17.6-2.

(a) M/M/1 queue with - . 3œ #ß œ % Ê œ "Î#

  and Ê T œ "  œ "Î# T œ Ð"  Ñ œ Ð"Î#Ñ! 8
8 8"3 3 3

Proportion of the time the storage space will be adequate: !
8œ!

%

8T œ $"Î$# œ !Þ*(

(b)

 
  Total œ !Þ*(
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17.6-3.

- . 3 3œ $!ß œ &! Ê œ !Þ'ß T œ "  œ !Þ%!  (proportion of time no one is waiting)

17.6-4.

(a) Expj . - j . - . -µ Ð  Ñß[ œ ßTÖ  [× œ Ð  Ñ/ œ Ð  ÑÎ/"



. -

. -

. -



(b) [ œ; Ð  Ñ
-

. . -

 
if 
if 

j
3

3
;  Ð" Ñ>Ð>Ñ œ

"  > Ÿ !

"  / >  !œ . 3

 TÖ  [ × œ "  Ð[ Ñ œ / œ /j j 3; ; ; ;
  Î

. 3 -
. . -
Ð" Ñ
Ð  Ñ -

.
- .

17.6-5.

Use the equalities  and .T œ "  [ œ! ; Ð  Ñ
- -
. . . -

 Ð"T Ñ
[ T Ð" Ñ

!
#

; !

# #

Ð  Ñ #
œ œ œ

Š ‹ Š ‹- -
. .

- - -
. . - . .

-

 "T
[ T Ð" Ñ

!

; ! Ð  Ñ #
œ œ œ

- -
. .

- - -
. . - . .

.

17.6-6.

The system without the storage restriction is an M/M/1 queue with  and . The- .œ % œ &
proportion of the time that  square feet floor space is adequate for waiting jobs is8! !

3œ!
8"

3 4 3 43œ!
8 "

T 8 T   ; 4 œ "ß #ß $. Hence, the goal is to find  such that  for  and4

; œ !Þ& ; œ !Þ* ; œ !Þ**" # $, , .

! ! Œ 
3œ! 3œ!

8 " 8 "

3 4 4 4 4
3 8 #"

"

4 4 8 #4
4T   ; Í Ð"  Ñ   ; Í Ð"  Ñ   ; Í Ÿ "  ;3 3 3 33

3

Í Ð8  #Ñ Ÿ Ð"  ; Ñ Í 8    #ß œ !Þ)4 4 4
Ð"; Ñln ln  3 3

ln
ln

4

3

Part  Floor space required
 (a)                       
 (b)                       
 (c)       

;  #

!Þ& "Þ"!' #
!Þ* )Þ$"* *
!Þ** ")Þ'

4
Ð"; Ñln
ln

4

3

$) "*            

17.6-7.

(a) TRUE. A customer does not wait before the service begins if and only if there is no
one in the system, so the long-run probability that the customer does not wait is
"  T œ! 3.

(b) FALSE. The expected number of customers in the system is , so it isP œ ÎÐ"  Ñ3 3
not proportional to .3

(c) FALSE. When  is increased from  to ,  increases from  to . When it is3 !Þ* !Þ** P * **
increased from  to ,  increases from  to .!Þ** !Þ*** P ** ***
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17.6-8.

(a) FALSE. A temporary return to the state where no customers are present is possible.

(b) TRUE. Since , the queue grows without bound.- .

(c) TRUE. Since , the system can reach steady-state conditions.- . #

17.6-9.

(a) TRUE. "  has an exponential distribution with parameter ," p.787.j . 3Ð"  Ñ

(b) FALSE. "  does not quite have an exponential distribution, because ,"j j; ;T Ö œ !×  !
p.787.

(c) TRUE. "  represents the conditional waiting time given  customers already inW 88"

the system. As discussed in Sec. 17.7,  is known to have an Erlang distribution,"W8"

p.787.

17.6-10.

(a)  customers,  hoursP œ œ œ # [ œ œ œ !Þ"-
. - . - $!#!  $!#!

#! " "

  hours,  customers[ œ œ œ P œ [ œ #! † œ; ; ;Ð  Ñ $!Ð$!#!Ñ "& "& $
#! " " %-

. . - -

 , , T œ "  œ "  œ T œ Ð"  Ñ œ T œ Ð"  Ñ œ! " #
# " # %
$ $ * #(

#3 3 3 3 3

There is a % chance of having more than 2 customers at the checkout stand.#*Þ'

(b) Time in minutes:

  

 Time in hours:
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(c)  customer,  hrsP œ œ œ " [ œ œ œ !Þ!&-
. - . - %!#!  %!#!

#! " "

  hrs,  customers[ œ œ œ !Þ!#& P œ [ œ #! † !Þ!#& œ !Þ&; ; ;Ð  Ñ %!Ð%!#!Ñ
#!-

. . - -

 , , T œ "  œ "  !Þ& œ !Þ& T œ Ð"  Ñ œ !Þ#& T œ Ð"  Ñ œ !Þ"#&! " #
#3 3 3 3 3

There is a % chance of having more than 2 customers at the checkout stand."#Þ&

(d) Time in hours:

  
(e) The manager should hire another person to help the cashier by bagging the groceries.

17.6-11.

(a) All the criteria are currently satisfied.

  

T  T  T  T  T  T œ !Þ*)%! " # $ % &

(b) None of the criteria are satisfied.

  

T  T  T  T  T  T œ !Þ)##! " # $ % &
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(c) The first and third criteria are satisfied, but the second is not.

  

T  T  T  T  T  T œ !Þ*#(! " # $ % &

17.6-12.

(a) All the guidelines are currently met.

  

!
3œ!

*

3T œ !Þ**(

(b) The first two guidelines will not be satisfied in a year, but the third will be.

  

!
3œ!

*

3T œ !Þ*!*

(c) Five tellers are needed in a year.
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17.6-13.

(a)     
             
           

   

- jP P [ [ TÖ  &×

!Þ& " !Þ&! # " !Þ!)#
!Þ* * )Þ"! "! * !Þ'!(
!Þ** ** *)Þ!" "!! ** !Þ*&"

; ;

(b)
- - . 3 jÎ T P P [ [ TÖ  &×

!Þ& " !Þ& !Þ$$$$ "Þ$$$ !Þ$$$ #Þ''( !Þ''( !Þ"&!
!Þ* "Þ) !Þ* !Þ!&#' *Þ%(% (Þ'(% "!Þ&#' )Þ&

                
             
        

! ; ;

#' !Þ'%"
!Þ** "Þ*) !Þ** !Þ!!&! **Þ%*( *(Þ&"( "!!Þ&!* *)Þ&!$ !Þ*&'

   
   

17.6-14.

  
T  T œ !Þ$!'! "

  
T  T  T œ !Þ)*)! " #

  
T  T  T  T œ !Þ*)%! " # $
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T  T  T  T  T œ !Þ**)! " # $ %

  
T  T  T  T  T  T œ !Þ***(! " # $ % &

 Part (a) (b) (c) (d) (e) (f) (g)
Number of servers        # $ # " & " $

17.6-15.

M/M/1 queue with - .œ #!ß œ $!

TÖ × œ T œ "  œAn arriving customer does not have to wait before service !
"
$

-
.

Expected price of gasoline per gallon: $% ‚  $Þ& ‚ œ $Þ''(" #
$ $

17.6-16.

Expected cost per customer: ! !
8œ! 8œ"

_ _

8
8

" 8 † T œ 8 † Ð"  Ñ œ œ3 3 3
3 . -

-

17.6-17.

Let  and .KÐ>Ñ œ TÖ Ÿ >× 1Ð>Ñ œj .KÐ>Ñ
.>

"  KÐ>Ñ œ TÖ  >× œ T † TÖW  >× j !
8œ!

_

8 8"

  œ Ð"  Ñ .B! ’ “'
8œ!

_
8

>
_ B /

8x3 3 .8" 8  B.

  œ Ð"  Ñ "  .B! ’ “'
8œ!

_
8

!
> B /

8x3 3 .8" 8  B.

Differentiate both sides of the equation.
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1Ð>Ñ œ Ð"  Ñ œ Ð"  Ñ / ! !
8œ! 8œ!

_ _
8  >> /

8x 8x
Ð >Ñ3 3 3 .. . -8" 8  > 8.

 œ Ð"  Ñ / / œ Ð"  Ñ /3 . 3 . > >  Ð" Ñ>. - . 3

Integrate to get .TÖ  >×j

TÖ  >× œ "  1ÐBÑ.B œ /j '
!
>  Ð" Ñ>. 3

17.6-18.

(a) Let  and .KÐ>Ñ œ TÖ Ÿ >× 1Ð>Ñ œ .KÐ>ÑÎ.>j

"  KÐ>Ñ œ TÖ  >× œ T † TÖW  >× œ Ð"  Ñ "  .Bj 3 3! ! ’ “'
8œ" 8œ"

_ _

8 8
8

!
> B /

Ð8"Ñx
.8 8"  B.

Differentiate both sides of the equation.

1Ð>Ñ œ Ð"  Ñ œ Ð"  Ñ / ! !
8œ" 8œ"

_ _
8  >> /

Ð8"Ñx Ð8"Ñx
Ð >Ñ3 3 3 -. . -8 8"  > 8".

 œ Ð"  Ñ / / œ Ð  Ñ/3 - . - > > Ð  Ñ>. - . --
.Š ‹

[ œ >Ð  Ñ/ .> œ; !
_ Ð  Ñ>

Ð  Ñ Š ‹'- -
. . . -

. -. -

(b) Let  and .KÐ>Ñ œ TÖ Ÿ >× 1Ð>Ñ œ .KÐ>ÑÎ.>j

"  KÐ>Ñ œ TÖ  >× œ T † TÖW  >× œ T "  .Bj ! ! ’ “'
8œ= 8œ=

_ _

8 8=" 8 !
> Ð= Ñ B /

Ð8=Ñx
. 8=" 8= Ð= ÑB.

T œ T 8   =8 !
Ð Î Ñ
=x=
- . 8

8=  for 

Differentiate both sides of the equation.

1Ð>Ñ œ !’ “’ “
8œ=

_
Ð Î Ñ T Ð= Ñ > /
=x= Ð8=Ñx
- . .8 8=" 8= Ð= Ñ>

!
8=

.

 œ / œ / /T Ð= ÑÐ Î Ñ Ð >Ñ T Ð= ÑÐ Î Ñ
=x Ð8=Ñx =x

= > = > >

8œ=

_
! !

= 8= =. - . - . - .. . -!
 œ /T Ð= ÑÐ Î Ñ

=x
Ð= ÑÐ" Ñ>!

=. - . . 3

[ œ >Ð= Ñ/ .>;
T Ð= ÑÐ Î Ñ

=x !
_ Ð= ÑÐ" Ñ> !

=. - . . 3' .

 œ >Ð= ÑÐ"  Ñ/ .> œ œ œT Ð= ÑÐ Î Ñ T Ð Î Ñ T Ð Î Ñ
=xÐ" Ñ =xÐ" Ñ Ð= Ñ =xÐ" Ñ!

_ Ð= ÑÐ" Ñ> P! ! !
= = =

# #
;. - . - . - . 3

3 3 . 3 - -
. 3' . 3

17.6-19.

- .œ $ß œ #ß = œ # Ê T œ ßT œ ßT œ! " #
" $ *
( "% &'

Mean rate at which service completion occurs during the periods when no customers are
waiting in the queue:

 . . .! ! " " # #

! " # ! " #

! " #T  T  T
T T T T T T #*

!T #T %T '!œ œ œ #Þ!(
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17.6-20.

  

TÖ  !Þ& l   #× œj;
TÖ !Þ&ß  #×

TÖ  #×  number of customers  j; number of customers
number of customers

      œ œ œ !Þ!")
TÖ !Þ&×
"T T "!Þ&!Þ$$$$

!Þ!!$j;

! "

17.6-21.

(a) [ œ Ð  Ñ. - "

[ œ œ "Î% œ "&Clara
"

#!"'  hours  minutes

[ œ œ "Î' œ "!Clarence
"

#!"%  hours  minutes

[ œ TÖ ×[  TÖ ×[ œ † "&  † "!total Clara Clarence Clara Clarence "' "%
$! $!

  minutes  hoursœ "#Þ'( œ !Þ#""

(b) It is an M/M/2 queue, , , and . OR Courseware gives- .œ "'  "% œ $! œ #! = œ #
[ œ !Þ""% hours.

(c)       . [
'!Î$Þ& !Þ#%*
'!Î$Þ% !Þ#!%
'!Î$Þ%& !Þ##&
'!Î$Þ%#& !Þ#"%
'!Î$Þ%"* !Þ#"#
'!Î$Þ%")& !Þ#""

An expected processing time of  minutes results in the same expected waiting time.$Þ%)&

17.6-22.

(a) Current system: - .œ "!ß œ (Þ&ß = œ #
 Ê P œ #Þ%ß P œ "Þ!'(ß[ œ !Þ#%ß[ œ !Þ"!(; ;

 Next year's system: - .œ &ß œ (Þ&ß = œ "
 Ê P œ #ßP œ "Þ$$$ß[ œ !Þ%ß[ œ !Þ#'(; ;

The next year's system yields smaller , but larger ,  and .P P [ [; ;

(b) [ œ Ð  Ñ Ê œ [  œ !Þ#%  & œ *Þ"(. - . -" " "

(c) [ œ Ê œ Ê œ *Þ(); Ð  Ñ #[

[ „ Ð [ Ñ % [-
. . -

- - -
. .; ; ;

#

;

È
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17.6-23.

(a) The future evolution of the queueing system is affected by whether the parameter of
the service time distribution for the customer currently in service is  or . Therefore,. ." #

the current state of the system needs to include this information from the history of the
process. Let the state  be the number of customers in the system and the index ofÐ8ß =Ñ
the current service rate. Note that the state  does not need an index of service rate.8 œ !

 if the current parameter is ,
if the current parameter is .= œ

"
#œ .

.
"

#

(b) - . .T œ T  T! " "ß" # "ß#

 Ð  ÑT œ T- . -" "ß" !

  for Ð  ÑT œ T 8   #- . -" 8ß" 8"ß"

 Ð  ÑT œ T  T- . . .# "ß# " #ß" # #ß#

  for Ð  ÑT œ T  T  T 8   #- . - . .# 8ß# 8"ß# " 8"ß# # 8"ß#

(c) Truncate the balance equations at a very large  and then solve the resulting finite8
system of equations numerically. The resulting approximation of the stationary
distribution should be good if the steady-state probability that the number of customers in
the original system exceeds  is negligible.8

(d) P œ 8ÐT  T Ñß[ œ ßP œ Ð8  "ÑÐT  T Ñß[ œ! !
8œ" 8œ"

_ _

8ß" 8ß# ; 8ß" 8ß# ;
P P
- -

;

(e) Because the input is Poisson, the distribution of the state of the system is the same just
before an arrival and at an arbitrary point in time.

TÖ Ÿ >× œ TÖ Ÿ >l !×Tj j A new arrival finds the system in state !

  A new arrival finds the system in state  TÖ Ÿ >l Ð8ß "Ñ×T!
8œ"

_

8ß"j

  A new arrival finds the system in state  TÖ Ÿ >l Ð8ß #Ñ×T!
8œ"

_

8ß#j

The three conditional distributions of  are (1) Exp , (2) a convolution of Expj . .Ð Ñ Ð Ñ" "

and Erlang , (3) Erlang  respectively.Ð8Î ß 8Ñ ÐÐ8  "Ñ ß 8  "Ñ. .# #

TÖ Ÿ >× œ Ð"  / ÑT  "  / .> T  .B Tj  >  Ð>> Ñ
! " 8ß" 8ß#

8œ" 8œ"

_ _

! !
> >> /

Ð8"Ñx 8x
B /. . . .

" " " # " #
8 8"  ># 8" 8  B#! !’ Š ‹ “ ’ “' '. .
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17.6-24.

(a) (0) - .T œ T! "

 (1) - . - .T  T œ Ð  ÑT! # "

   ã

 ( ) 8 T  T œ Ð  ÑT- . - .8" 8" 8

The solution given in Sec. 17.6 is:  for . Substitute this inT œ Ð"  Ñ 8 œ !ß "ß #ßá8
83 3

the balance equations.

   (0) - 3 . 3 3 - . 3 . -Ð"  Ñ œ Ð"  Ñ Í œ † œ † œ-
.

   ( ) 8 Ð"  Ñ  Ð"  Ñ œ Ð  ÑÐ"  Ñ Í  œ Ð  Ñ- 3 3 . 3 3 - . 3 3 - .3 - . 38" 8" 8 #

        Í  œ Ð  Ñ- . - .Š ‹- -
. .

#

Hence, the solution satisfies the balance equations.

(b) - .T œ T! "

 - . - .T  T œ Ð  ÑT! # "

 - .T œ T" #

The solution given in Sec. 17.6 is:  for . Substitute this in theT œ 8 œ !ß "ß #8
"
"

8Š ‹33$ 3

balance equations.

   - . 3 - . 3 . -Š ‹ Š ‹" "
" "

3 3
3 3 .

-
$ $œ Í œ † œ † œ

   - . 3 - . 3 - .3 - . 3Š ‹ Š ‹ Š ‹" " "
" " "

# #3 3 3
3 3 3$ $ $ œ Ð  Ñ Í  œ Ð  Ñ

   Í  œ Ð  Ñ- . - .Š ‹- -
. .

#

   - 3 . 3 -3 .3 - .Š ‹ Š ‹ Š ‹" "
" "

# #
#

3 3
3 3 . .

- -
$ $œ Í œ Í † œ

Hence, the solution satisfies the balance equations.

(c) # T œ T- .! "

 # T  T œ Ð  ÑT- . - .! # "

 - .T œ T" #

The solution given in Sec. 17.6 is:

   T œ œ "  #  #!
8œ!

#
#x

Ð#8Ñx

8 #" "” • ” •! Š ‹ Š ‹ Š ‹- - -
. . .

  for .T œ T 8 œ "ß #8 !
#x

Ð#8Ñx

8Š ‹-.
Substitute this in the balance equations.
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   #

"# # "# #

†#
- -

.

.Š ‹ Š ‹ Š ‹ Š ‹
Š ‹

- - - -
. . . .

-
.

# #œ Í # œ † #- . Š ‹
   #

"# # "# # "# #

†# Ð  Ñ# #
- - -

. - .

. .Š ‹ Š ‹ Š ‹ Š ‹ Š ‹ Š ‹
Š ‹ Š ‹

- - - - - -
. . . . . .

- -
. .

# # #

#

 œ Í #  # œ #Ð  Ñ- . - .Š ‹ Š ‹
   

- .
- -
. .

†# †#

"# # "# #

Š ‹ Š ‹
Š ‹ Š ‹ Š ‹ Š ‹

- -
. .

- - - -
. . . .

# #

#

# #

œ Í # œ #

Hence, the solution satisfies the balance equations.

17.6-25.

(a)

  

(b) A phone is answered immediatelyTÖ × œ "  TÖ  !× œ !Þ('$j;

Or A phone is answered immediately At least one server is freeTÖ × œ TÖ ×

 œ T  T  T œ !Þ#"!&$  !Þ$"&(*  !Þ#$')% œ !Þ('$! " #

(c)

  calls on hold if 
if TÖ8 × œ

T 8   "
T  T  T  T 8 œ !œ 8$

! " # $

(d) Finite Queue Variation

  

TÖ × œ TÖ × œ T œ !Þ"$%$$An arriving call is lost All three servers are busy $
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17.6-26.

These form M/M/1/K queues with ,  and  respectively,  and , soO œ " $ & œ "Î% œ "Î$- .
3 œ $Î% and the fraction of customers lost is

   .T œ †O
Ð" Ñ

Ð" Ñ
O3

3O" 3

(a) Zero spaces:

  T œ † Ð$Î%Ñ œ $Î( œ !Þ%#*"
Ð"$Î%Ñ

Ð"Ð$Î%Ñ Ñ#

(b) Two spaces:

  T œ † Ð$Î%Ñ œ #(Î"(& œ !Þ"&%$
Ð"$Î%Ñ

Ð"Ð$Î%Ñ Ñ
$

%

(c) Four spaces:

  T œ † Ð$Î%Ñ œ #%$Î$$'( œ !Þ!(#&
Ð"$Î%Ñ

Ð"Ð$Î%Ñ Ñ
&

'

17.6-27.

M/M/s/K model

P œ Ð8  =ÑT œ Ð8  =Ñ T œ Ð8  =Ñ; 8 !
8œ= 8œ= 8œ=

_ O O
Ð Î Ñ T Ð Î Ñ
=x= =x= =

8="

 ! ! ! Š ‹- . - . -
.

8 ="

8=
!

      œ 4 œ œT Ð Î Ñ T Ð Î Ñ .Ð Ñ T Ð Î Ñ
=x =x . =x .

4œ! 4œ! 4œ!

O= O= O=
4" 4.! ! !

= = 4 =- . 3 - . 3 3 - . 3
3 3

! ! !Œ 3 3

  œ œT Ð Î Ñ T Ð Î Ñ " ÐO=Ñ Ð" Ñ
=x . " =x Ð" Ñ

. "! !
= = O= O=O="

#

- . 3 - . 3 3 3 3
3 3 3

3Œ  ” •
17.6-28.

j j and  represent the waiting times of arriving customers who enter the system. The;

probability that such a customer finds  customers in the system already is:8

TÖ8 l × œ
! Ÿ 8 Ÿ O  "

! 8 œ O
 customers in system system not full for 

for .œ T
"T

8

O

(a)

  TÖ  >× œ T TÖW  >×j "
"T

8œ!

O"

8 8"
O

!
(b)

  TÖ  >× œ T TÖW  >×j; 8 8
"

"T
8œ!

O"

O

!
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17.6-29.

(a) - (b)

 

  

  

 

(c) 

Spaces Rate  at which Change in   Profit / hour  Change in
customers are lost     $ Profit / hour

                   $

T
T % Ð"  T Ñ

# !Þ#" '

O

O O-
$Þ#!

$ !Þ"# !Þ!* (!Þ%! (Þ#!
% !Þ!) !Þ!% ($Þ'! $Þ#!
& !Þ!& !Þ!$

                      $     $
                      $     $
                      $('Þ!! #Þ%!    $

(d) Since it costs $  per month per car length rented, each additional space must bring#!!
at least $  per month (or $  per hour) in additional profit. Five spaces still bring more#!! "
than that, so five should be provided.
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17.6-30.

(a) The M/M/s model with finite calling population fits this queueing system.

(b) The probabilities that there are 0, 1, 2, or 3 machines not running are , , , andT T T! " #

T P œ !Þ(")$ respectively. The mean of this distribution is .

   
(c)  hours[ œ PÎ œ !Þ(")Î!Þ#&$ œ #Þ)$#-

(d) The expected fraction of time that the repair technician will be busy is the system
utilization, which is .3 œ !Þ''(

(e) M/M/s model

 
 M/M/s/K model

 
(f)

  
The probabilities that there are 0, 1, 2, or 3 machines not running are , , , and T T T T! " # $

respectively. The mean of this distribution is . The expected fraction of timeP œ !Þ&&$
that the repair technician will be busy is the system utilization, .3 œ !Þ$$$
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17.6-31.

(a) This is an M/M/s model with a finite calling population, with , , ,- .œ " œ # = œ "
and .R œ $

(b)

  

17.6-32.

(a) Alternative 1:

 
Three machines are the maximum that can be assigned to an operator while still
achieving the required production rate. The average number of machines not running is
P œ !Þ$# "  Ð!Þ$#Î$Ñ œ )*Þ(, so % of the machines are running on the average. The
utilization of servers is .Ð Î= Ñ œ "Þ!(#ÎÐ" † %Ñ œ !Þ#')- .

(b) Alternative 2:

 
Three operators are needed to achieve the required production rate. The average number
of machines not running is , so % of the machines areP œ "Þ"#& "  Ð"Þ"#&Î"#Ñ œ *!Þ'
running on the average. The utilization of servers is .Ð Î= Ñ œ %Þ$&!ÎÐ$ † %Ñ œ !Þ$'$- .

(c) Alternative 3:

 
Two operators are needed to achieve the required production rate. The average number of
machines not running is , so % of the machines areP œ "Þ!$& "  Ð"Þ!$&Î"#Ñ œ *"Þ%
running on the average. The utilization of servers is .Ð Î= Ñ œ %Þ$)'ÎÐ" † )Ñ œ !Þ&%)- .
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17.6-33.

(a) Let the state  be the number of failed machines (  and the stage ofÐ8ß 3Ñ 8 œ !ß "ß #ß $Ñ
service for the machine under repair (  if all machines are running properly  or 3 œ ! ß " #
otherwise).

(b)

 

(c) State Balance Equation
Ð!ß !Ñ T  #T œ T

Ð"ß "Ñ T  T  #T œ   T

Ð#ß "Ñ T  T  #T œ   T

Ð$ß "Ñ

%
$ "ß" "ß# !ß!

!ß! #ß" #ß# "ß"
% % # "
$ $ $ $

# % % # "
$ $ $ $ $"ß" $ß" $ß# #ß"

Š ‹
Š ‹

" % #
$ $ $#ß" $ß"

# #
$ $"ß" "ß#

# "
$ $"ß# #ß" #ß#

" #
$ $#ß# $ß" $ß#

T œ  T

Ð"ß #Ñ T œ #  T

Ð#ß #Ñ ÐT  T Ñ œ #  T

Ð$ß #Ñ T  T œ #T

Š ‹
Š ‹

Š ‹
17.7-1.

(a)

 (i) Exponential: [ œExp
; Ð  Ñ

-
. . -

 (ii) Constant: [ œ †C
;

"
# Ð  Ñ

-
. . -

 (iii) Erlang: 5 5œ !  œ Ê œ Ê O œ %" " " "
# # %

#Š ‹. . .#

  [ œ † œ †Erlang
;

"% &
) Ð  Ñ ) Ð  Ñ

- -
. . - . . -

Ê [ œ #[ œ Ð)Î&Ñ[Exp ErlangC
; ;;

(b) Let  when the distribution is exponential, constant and ErlangF œ "ß Ð"Î#Ñß Ð&Î)Ñ
respectively. Now,  and .- - . .Ð#Ñ Ð"Ñ Ð#Ñ Ð"Ñœ # œ #

 [ œ F œ;
Ð#Ñ #

# Ð# # Ñ

[
#’ “-

. . -

Ð"Ñ

Ð"Ñ Ð"Ñ Ð"Ñ
;
Ð"Ñ

 P œ [ œ # [ Î# œ [ œ P; ; ; ; ;
Ð#Ñ Ð#Ñ Ð"Ñ Ð"Ñ Ð"ÑÐ#Ñ Ð"Ñ Ð"Ñ- - -

Hence, the expected waiting time is reduced by % and the expected queue length re-&!
mained the same.
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17.7-2.

(a)

(b) If ,  is half of the value with , so it is quite important to reduce the vari-5 5œ ! P œ %;

ability of the service times.

(c) Change

 largest reduction

 smallest reduction

5 P

% $Þ#
$ #Þ& !Þ(
# # !Þ&
" "Þ( !Þ$
! "Þ' !Þ"

;

(d)  needs to be increased by  to achieve the same .. !Þ!& P;
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17.7-3.

M/G/1 with : 3 3 " P œ  ßP œ ß[ œ ß[ œ- 5 3 - 5 3
3 3 - -

# # # # # #
; 

#Ð" Ñ #Ð" Ñ; ;
P P

(a) FALSE. When  and  increase, both  and  increase too provided that  isP P [ [; ; -
fixed.

(b) FALSE. Smaller  and  do not necessarily imply a smaller . For example, let. 5#
;P

- . 5 . 5 . . 5 5œ "ß œ #ß œ "ß œ &ß œ "Þ'  " # " #" # " #
# # # #. Even though  and ,

P œ "Þ#&  "Þ!#& œ P;ß" ;ß#.

(c) TRUE. If the service time is exponential,  so that . If it is5 .# #
;

#
#Ð" Ñœ "Î P œ 3

3

#

constant,  and .5#
; #Ð" Ñœ ! P œ 3

3

#

(d) FALSE. It is possible to find a distribution with .5 .# # "Î

17.7-4.

(a) - . 3œ #&ß œ %! Ê œ !Þ'#&  "

 5 œ œ !Þ!#&"
.

 P œ œ "Þ!%#;


#Ð" Ñ
- 5 3

3

# # #

 P œ  P œ "Þ''(3 ;

  hours[ œ œ !Þ!%#;
P;

-

  hours[ œ [  œ !Þ!'(;
"
.

(b) - . 3œ #&ß œ %! Ê œ !Þ'#&  "

 5 œ !

 P œ œ !Þ&#";


#Ð" Ñ
- 5 3

3

# # #

 P œ  P œ "Þ"%'3 ;

  hours[ œ œ !Þ!#";
P;

-

  hours[ œ [  œ !Þ!%';
"
.

(c)  in (b) is half of  in (a).P P; ;

(d) . œ %! Ê P œ "Þ!%#;

 . œ )! Ê P œ !Þ"%#;

 . œ '! Ê P œ !Þ#*);

 . œ &! Ê P œ !Þ&;

 . œ %* Ê P œ !Þ&$";

Marsha needs to serve about  customers per hour, assuming the distribution of the&!
service time will still be exponential. This means that she should reduce her expected
service time to  seconds.(#
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17.7-5.

(a)

 

 . -T œ T" !

 . - .T œ Ð  ÑT# "

 - . - .T  T œ Ð  ÑT! $ #

 ã

 - . - .T  T œ Ð  ÑT8# 8" 8

(b) Poisson input with  and Erlang service times with , .- .œ " œ %Î# œ # 5 œ #

(c) P œ  P œ  œ !Þ&  œ !Þ)(&3 3;


#Ð" Ñ #Ð"!Þ&Ñ
" !Þ$&% !Þ&- 5 3

3

# # # # # #

(d) [ œ [ œ  œ  œ !Þ)(&" " " !Þ)(&!Þ&
;

P
# ". . -

;

(e)

17.7-6.

(a) Current Policy:

 

 Proposal:

Under the current policy, an airplane loses one day of flying time as opposed to 3.25 days
under the proposed policy.
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(b) Under the current policy, one airplane is losing flying time each day as opposed to
0.8125 airplanes under the proposed policy.

(c) The comparison in (b) is the appropriate one for making the decision, since it takes
into account that airplanes will not have to come in for service as often.

17.7-7.

(a) Let the state  be the number of airplanes at the base and the stage of service ofÐ8ß =Ñ
the airplane being overhauled.

(b)

17.7-8.

For the current arrangement,  and , so . For the proposal, ,- . 3 -œ ") œ #! œ !Þ* œ $'
. 3œ #! = œ # œ !Þ* and , so .

                         Current       Proposal
Model  at each crib Total  
Fig. 17.6              
F

P P [ œ PÎ P [ œ PÎ
*Þ! ")Þ! !Þ&!! *Þ%( !Þ#'$

- -

ig. 17.8                
Fig. 17.10              
Fig. 17.11              

%Þ*& *Þ* !Þ#(& ) !Þ###
'Þ*(& "$Þ*& !Þ$)) ( !Þ"*%
&Þ& "" !Þ!'" ' !Þ"'(

17.7-9.

(a) Let the state  denote  calling units in the system with the calling unit beingÐ3ß 4Ñ 3
served at the th stage of its service. Then, the state space is4
ÖÐ!ß !Ñß Ð"ß #Ñß Ð"ß "Ñß Ð#ß #Ñß Ð#ß "Ñ×.
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Note that this analysis is possible because an Erlang distribution with parameters
"Î œ "Î% 5 œ #.  and  is equivalent to the distribution of the sum of two independent
exponential random variables each with parameter . The steady-state"Î œ "Î).
equations are:

     )T œ #T )T œ "!T"ß# !ß! "ß" "ß#

   .#T  )T œ "!T #T  )T œ )T #T œ )T!ß! #ß# "ß" "ß# #ß" #ß# "ß" #ß"

(b) The solution of the steady-state equations:

 ÐT ß T ß T ß T ß T Ñ œ ß ß ß ß!ß! "ß# "ß" #ß# #ß"
'% "' #! * &
""% ""% ""% ""% ""%Š ‹

 Ê T œ œ !Þ&'"ß T œ œ !Þ$"'ß T œ œ !Þ"#$! " #
'% "'#! *&
""% ""% ""%

 Ê P œ œ !Þ&'"")"%
&#

(c) If the service time is exponential, then the system is an M/M/1 queue with capacity
O œ # œ # œ %,  and .- .

 T œ œ œ !Þ&("ß T œ T œ !Þ#)'ß T œ T œ !Þ"%$! " ! # !
"

"
"Î#

""Î) # #
" "

#
3

3O" Š ‹
 P œ œ !Þ&("##

(

17.7-10.

Let the state  represent the number of customers in the system  and theÐ8ß 3Ñ Ð8   !Ñ
number of completed arrival stages for currently arriving customer .Ð3 œ !ß "Ñ
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17.7-11.

(a) Let  be the repair time.X

IÐX Ñ œ IÐX l Ñ † !Þ*  IÐX l Ñ † !Þ" minor repair needed major repair needed

  hoursœ † !Þ*  & † !Þ" œ !Þ*&"
#

Now let  be a Bernoulli random variable with\

  and ,TÖ\ œ "× œ : œ !Þ* TÖ\ œ !× œ ; œ !Þ"

] "Î 3 œ "ß # œ #3 3 " be an exponential random variable with mean  for , where  and- -
-# œ "Î&.

 ,X œ ] † \  ] † Ð"  \Ñ" #

where  are independent.\ß] ß ]" #

 var var varÐX l\Ñ œ Ð] Ñ † \  Ð] Ñ † Ð"  \Ñ œ † \  † Ð"  \Ñ" #
" "
- -" #
# #

 varIÐ ÐX l\ÑÑ œ : ;
- -" #
# #

 IÐX l\Ñ œ IÐ] Ñ † \  IÐ] Ñ † Ð"  \Ñ œ † \  † Ð"  \Ñ" #
" "
- -" #

   œ   \" " "
- - -# " #

Š ‹
 var varÐIÐX l\ÑÑ œ  Ð\Ñ œ  :;Š ‹ Š ‹" " " "

# #

- - - -" # " #

 varÐX Ñ œ    :; œ %Þ&%(&: ; " "
#

- - - -" #
# #

" #
Š ‹

Observe that  has a much larger variance than , the variance of anX Ð!Þ*&Ñ œ !Þ*!#&#

exponential random variable with the same mean.

(b) M/G/1 queue with . - 3œ "Î!Þ*&ß œ " Ê œ !Þ*&

 T œ "  œ !Þ!&! 3

 P œ œ œ #"&Þ)#;


#Ð" Ñ #Ð"!Þ*&Ñ
" %Þ&%(& !Þ*&- 5 3

3

# # # # # #

 P œ  P œ #"'Þ((3 ;

 [ œ œ #"&Þ)#;
P;

-

 [ œ [ œ #"'Þ(("
;.

(c) major repair needed[l œ [  & œ ##!Þ)#;

     minor repair needed[l œ [  !Þ& œ #"'Þ$#;

     P œ Ð ÑÐ!Þ"ÑÐ##!Þ)#Ñ œ ##Þ!)#major repair machines -

     P œ Ð ÑÐ!Þ*ÑÐ#"'Þ$#Ñ œ "*%Þ'))minor repair machines -
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(d) Let the state  denote the number of failed machines and the type of repair beingÐ8ß 3Ñ
done on the machine under repair (  represents minor repair and  represents3 œ " 3 œ #
major repair).

(e)

17.7-12.

(a)

  and ,if 
if \ œ \ Ÿ $

\  "  E \   "
E \ œ !8" 8"

8 8" 8

8" 8
œ

where  is the number of arrivals in  minutes.E "!8"

  and TÖE œ 8× œ œ + > œ † œ !Þ#/ Ð >Ñ
8x &! '!8

'! "! > 8- - -

Ê T œ œ

+ + + "  +  +  + !Þ)"* !Þ"'% !Þ!"' !Þ!!"
+ + + "  +  +  + !Þ)"* !Þ"'% !Þ!"' !Þ!!"
! + + "  +  + ! !Þ)"* !Þ"'% !Þ!"(
! ! + "  +

Î Ñ Î ÑÐ ÓÐ ÓÐ ÓÐ Ó
Ï Ò Ï Ò

! " # ! " #

! " # ! " #

! " ! "

! ! ! ! !Þ)"* !Þ")"

(b) Using  Courseware: the OR T œ !Þ)!"ß T œ !Þ"((ß T œ !Þ!#ß T œ !Þ!!#! " # $

(c) P œ T  # † T  $ † T œ !Þ##$" # $

M/D/1 model: P œ  œ !Þ#  œ !Þ##&  !Þ##$ œ P_
#Ð" Ñ #Ð"!Þ#Ñ

!Þ#3 3
3

# #

17.8-1.

(a) This system is an example of a nonpreemptive priority queueing system.

(b) 8 œ #ß œ #!ß = œ ".

 
(c) [

[ !Þ!)$
!Þ!$$;ß"

;ß#
œ œ !Þ%

(d)   hours  hours3 œ !Þ' Ð"# Ñ œ (Þ#
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17.8-2.

= [ P [ P [ P [ P

" ' !Þ#!) !Þ%"( !Þ$(& !Þ(& "Þ#& $Þ(& "Þ%"( %Þ#&
# $ !Þ")* !Þ$(* !Þ&#$ "Þ!%& "Þ"$' $Þ%!* "Þ%( %Þ%!*

. ;ß" ;ß" " " ;ß# ;ß# # #

If  is the primary concern, one should choose the alternative with one fast server. If["

[;ß" is the primary concern, one should choose the alternative with two slow servers.

17.8-3.

(a)

 
(b)

 
The approximation is not good for  and .[ [# $

17.8-4.

- - - - - ." # $ 3
3œ"

$

œ #ß œ %ß œ #ß œ œ )ß œ "!!
(a) First-come-first-served:  days[ œ Ð  Ñ œ !Þ&. - "

(b) Nonpreemptive priority:

 E œ œ.
-

# #&
#

 F œ "  œ ßF œ "  œ ßF œ "  œ" # $
% # "
& & &

- - -
. . .

-" " #

  days[ œ  œ œ !Þ#"
" " "

EF &" .

  days[ œ  œ œ !Þ$&#
" " (

EF F #!" # .

  days[ œ  œ œ "Þ"$
" " ""

EF F "!# $ .

(c) Preemptive priority:  days[ œ œ œ !Þ"#&"
"Î
F )

".

"

     days[ œ œ œ !Þ$"#&#
"Î
F F "'

&.

" #

     days[ œ œ œ "Þ#&$
"Î
F F %

&.

# $
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17.8-5.

- - - - - ." # $ 3
3œ"

$

œ !Þ"ß œ !Þ%ß œ "Þ&ß œ œ #ß œ $!
    Preemptive Nonpreemptive

  
      

    
    
    

= œ " = œ # = œ " = œ #
E â â %Þ& $'
F !Þ*'( â !Þ*'( !Þ*)$
F !Þ)$$ â !Þ)$$ !Þ*"(
F !Þ$$$ â !Þ$$$ !Þ''(

[  !Þ

"

#

$

"
"
. !"" !Þ!!!!* !Þ#$! !Þ!#)

[  !Þ!)! !Þ!!#)* !Þ#(' !Þ!$"

[  !Þ)'( !Þ!&%*$ !Þ)!! !Þ!%&

#
"

$
"
.

.

17.8-6.

(a) The expected number of customers would not change since customers of both types
have exactly the same arrival pattern and service times. The change of the priority would
not affect the total service rate from the server's view and thus, the total queue size stays
the same.

(b) Using the template for M/M/s nonpreemptive priorities queueing model:

 

P œ P  P œ &Þ%&%&&: " #

     Using the template for M/M/s queueing model:

 

Hence, .P œ P:
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17.8-7.

Let the state  denote  jobs of high priority and  jobs of low priority.Ð3ß 4Ñ 3 4

State Balance Equation

 for 
 for 

Ð!ß !Ñ ÐT  T Ñ œ Ð  ÑT

Ð3ß !Ñ 3   " T  T œ Ð   ÑT

Ð!ß 4Ñ 4   " ÐT  T Ñ  T

. - -

. - . - -

. -

!ß" "ß! " # !ß!

3"ß! " 3"ß! " # 3ß!

3ß4 !ß4" # !ß4" " # !ß4

3"ß4 " 3"ß4 # 3ß4" " # 3ß4

œ Ð   ÑT

Ð3ß 4Ñ 3ß 4   " T  T  T œ Ð   ÑT

. - -

. - - . - - for 

17.9-1.

GM launched this project to improve the throughput of its production lines. A sequence
of stations through which parts move sequentially until completion is called a production
line. These stations are separated by finite-capacity buffers. Since machines may have
unequal speeds and fail randomly, analyzing even simple production lines is not easy. To
overcome the difficulties in measuring throughput and identifying bottlenecks, GM
developed a throughput-analysis tool named C-MORE. The analysis assumes unreliable
stations with deterministic speeds, exponential failure and repair times. Analytic
decomposition and simulation methods are deployed. Analytic decomposition is based on
first solving the two-station problem and then extending the results to multiple stations.
Each station is modeled as a single-server queueing system with constant interarrival and
service times. The server at each station can fail randomly. The first station is blocked
and shuts down if its buffer is full and the second station is starved and shuts down if
there are no jobs completed by the first station. The state of the system includes
information about blocked and starved stations, downtimes, and buffer contents.  Closed-
form expressions for the steady-state distribution of buffer contents when both stations
are up are obtained. The output includes throughput, system-time and work-in-process
averages, average state of the system, bottleneck and sensitivity analysis.

The results of this study include enhanced throughput, lowered overtime and increased
sales of high-demand products. These improvements translated into savings of more than
$2.1 billion. The use of a systematic approach enabled GM to make reliable decisions
about equipment purchases, product launch times and maintenance schedules while
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meeting its production targets. Consequently, unprofitable investments and unfruitful
improvement efforts are avoided. Alternatives are evaluated efficiently and questions are
answered accurately. Continuous improvement of productivity is made possible. Overall,
this study provided GM a competitive advantage in the industry. Following this study,
OR has been widely adopted throughout the organization.

17.9-2.

(a) Let the state  be the number of type 1 customers in the system.8"

(b) Let the state  be the number of customers in the system.8

(c) Let the state  be the number of type 1 and type 2 customers in the systemÐ8 ß 8 Ñ" #

respectively

17.9-3.

(a) T œ ßT œ8 8
" " " #
# # $ $

8 8

" #

" #Š ‹Š ‹ Š ‹Š ‹
      TÖÐR ßR Ñ œ Ð8 ß 8 Ñ× œ T † T œ" # " # 8 8

" " #
' # $

8 8

" #

" #Š ‹Š ‹ Š ‹
(b) TÖÐR ßR Ñ œ Ð!ß !Ñ× œ" #

"
'

(c)  P œ P  P œ "  # œ $" #

       hour  minutes[ œ [ [ œ  œ !Þ$ œ ")" #
" #
"! "!
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17.9-4.

In a system of infinite queues in series, customers are served at  service facilities in a7
fixed order. Each facility has an infinite queue capacity. The arrivals from outside the
system to the first facility form a Poisson process with rate . There are no arrivals+ œ" -
from outside the system to other facilities, so  for , this is a Poisson process+ œ ! 3  "3

with parameter . From the equivalence property, under steady-state conditions, the!
arrivals to each facility  have a Poisson distribution with rate . Facility  has  servers3 3 =- 3

whose service time is exponentially distributed with rate . A customer leaving facility .3 3
is routed to facility  with probability  if  and leaves the system if , so for3" " 3  7 3 œ 7
3  7,

  if 
else,: œ

" 4 œ 3  "
!34 œ

and . It is assumed that  so that the queue does not grow without bound.; œ " = 7 3 3. -

17.9-5.

(a) -" " " # $œ +  ! † +  !Þ& † +  !Þ% † + œ ""Þ'

 -# # " # $œ +  !Þ# † +  ! † +  !Þ$ † + œ "!Þ%

 -$ $ " # $œ +  !Þ% † +  !Þ$ † +  ! † + œ )Þ)

(b)

 
for 
for 
for 

33 =œ œ
!Þ%'% 3 œ "
!Þ$%( 3 œ #
!Þ%%! 3 œ $

-
.
3

3 3

Ú
ÛÜ

  for facility 1T œ Ð!Þ&$'ÑÐ!Þ%'%Ñ8
8

"
"

  for facility 2T œ Ð!Þ'&$ÑÐ!Þ$%(Ñ8
8

#
#

  for facility 3T œ Ð!Þ&'!ÑÐ!Þ%%!Ñ8
8

$
$

T ÖÐR ßR ßR Ñ œ Ð8 ß 8 ß 8 Ñ× œ T T T œ !Þ"*'Ð!Þ%'%Ñ Ð!Þ$%(Ñ Ð!Þ%%!Ñ" # $ " # $ 8 8 8
8 8 8

" # $
" # $

(c) TÖÐR ßR ßR Ñ œ Ð!ß !ß !Ñ× œ !Þ"*'" # $

(d) P œ !Þ)''ß P œ !Þ&$"ß P œ !Þ()' Ê P œ P  P  P œ #Þ")#" # $ " # $

(e)

 [ œ œ œ !Þ"#"P #Þ")#
+ + + ')%" # $
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17.10-1.

(a) The optimal number of servers is one.

(b) The optimal number of servers is two.
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(c) The optimal number of servers is three.

17.10-2.

Jim should operate four cash registers during the lunch hour.
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17.10-3.

Note that if there are less than three copiers, , so the queue for the copier explodes.3  "

Number of Copiers                               
Total Cost $ $ $ $ $ $

$ % & ' ( )
$'(Þ)( "%%Þ*% "#%Þ!' "#!Þ'& "#"Þ"* "##Þ)!

The company needs a total of six machines to minimize its expected total cost per hour.

17.11-1.

Answers will vary.

17.11-2.

Answers will vary.



17.1 a) Status quo at the presses – 7.52 sheets of in-process inventory. 

1
2
3
4
5
6

A B C D E G H

Template for the M/M/s Queueing Model

Data Results
��� 7 (mean arrival rate) L = 7.517372837
��� 1 (mean service rate) Lq = 0.517372837
s = 10 (# servers)

Status quo at the inspection station – 3.94 wing sections of in-process inventory. 

1
2
3
4
5
6

A B C D E F G

Template for M/D/1 Queueing Model

Data Results
��� 7 (mean arrival rate) L = 3.9375
��� 8 (mean service rate) Lq = 3.0625
s = 1 (# servers)

Inventory cost = (7.52 + 3.94)($8/hour) = $91.68 / hour 
Machine cost = (10)($7/hour) = $70 / hour 
Inspector cost = $17 / hour 

Total cost = $178.68 / hour 

 b) Proposal 1 will increase the in-process inventory at the presses to 11.05 sheets since the 
mean service rate has decreased. 

1
2
3
4
5
6

A B C D E G H

Template for the M/M/s Queueing Model

Data Results
��� 7 (mean arrival rate) L = 11.04740664
��� 0.83333333 (mean service rate) Lq = 2.647406638
s = 10 (# servers)

The in-process inventory at the inspection station will not change. 

Inventory cost = (11.05 + 3.94)($8/hour) = $119.92 / hour 
Machine cost = (10)($6.50) = $65 / hour 
Inspector cost = $17 / hour 

Total cost = $201.92 / hour 

This total cost is higher than for the status quo so should not be adopted.  The main 
reason for the higher cost is that slowing down the machines won’t change in-process 
inventory for the inspection station. 
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 c) Proposal 2 will increase the in-process inventory at the inspection station to 4.15 wing 
sections since the variability of the service rate has increased. 

3
4
5
6
7
8

B C D E F G
Data Results

��� 7 (mean arrival rate) L = 4.1475
��� 8.33333333 (mean service rate) Lq = 3.3075
k = 2 (shape parameter)
s = 1 (# servers) W = 0.5925

Wq = 0.4725

The in-process inventory at the presses will not change. 

Inventory cost = (7.52 + 4.15)($8/hour) = $93.36 / hour 
Machine cost = (10)($7/hour) = $70 / hour 
Inspector cost = $17 / hour 

Total cost = $180.36 / hour 

This total cost is higher than for the status quo so should not be adopted. The main 
reason for the higher cost is the increase in the service rate variability (Erlang rather 
than constant) and the resulting increase in the in-process inventory. 

 d) They should consider increasing power to the presses (increasing there cost to $7.50 
per hour but reducing their average time to form a wing section to 0.8 hours). This 
would decrease the in-process inventory at the presses to 5.69. 

1
2
3
4
5
6

A B C D E G H

Template for the M/M/s Queueing Model

Data Results
��� 7 (mean arrival rate) L = 5.688419945
��� 1.25 (mean service rate) Lq = 0.088419945
s = 10 (# servers)

Inventory cost = (5.69 + 3.94)($8/hour) = $77.04 / hour 
Machine cost = (10)($7.50/hour) = $75 / hour 
Inspector cost = $17 / hour 

Total cost = $169.04 / hour 

This total cost is lower than the status quo and both proposals. 
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CHAPTER 18: INVENTORY THEORY

18.3-1.

(a)

 , , O œ "& 2 œ !Þ$! . œ $! Ê U œ œ &%Þ((‡ Ð#ÑÐ$!ÑÐ"&Ñ
!Þ$!

É
  months> œ U Î. œ "Þ)$‡ ‡

(b)

 : œ $ Ê U œ œ &(Þ%&‡ #Ð$!ÑÐ"&Ñ
!Þ$! $

$!Þ$!É É
 W œ œ &#Þ##‡ #Ð$!ÑÐ"&Ñ

!Þ$! $!Þ$!
$É É

  months> œ U Î. œ "Þ*"‡ ‡

18.3-2.

(a)

 , , O œ %! 2 œ !Þ"! . œ "ß !!! Ê U œ œ )*%Þ%$‡ #Ð"ß!!!ÑÐ%!Ñ
!Þ"!

É
  weeks> œ U Î. œ !Þ)*%%$‡ ‡

(b)

 : œ $ Ê U œ œ *!*Þ#"‡ #Ð"ß!!!ÑÐ%!Ñ
!Þ"! $

$!Þ"!É É
 W œ œ )(*Þ))‡ #Ð"ß!!!ÑÐ%!Ñ

!Þ"! $!Þ"!
$É É

  weeks> œ U Î. œ !Þ*!*#"‡ ‡

18.3-3.

(a)
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(b)

(c)

(d)

The results are the same as those obtained in (c).

(e)

  computers purchased with each orderU œ œ œ "$‡ #OH
2 !Þ#Ð$!!!Ñ

#Ð(&ÑÐ'('ÑÉ É
(f)

 Number of order per year: H '('
U "$œ œ &#

  inventory level when each order is placedVST œ HÐPXÑ œ Ð"$Ñ œ 'Þ&Š ‹"#
(g) The optimal policy reduces the total variable inventory cost by $  per year,$ß )%!
which is a 33% reduction.
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18.3-4.

(a)

(b)

(c)

If  is required to be integer:U
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(d)

The results are the same as those in (c).

(e)
    gallons purchased with each orderU œ œ œ $"ß '##Þ()‡ #OH

2 !Þ!%
#Ð#ß!!!ÑÐ"!ß!!!ÑÉ É

18.3-5.

(a)  will decrease by half.U‡

(b)  will double.U‡

(c)  remains the same.U‡

(d)  will double.U‡

(e)  remains the same.U‡

18.3-6.

(a)

 $  per month,U œ Ê &! œ Ê 2 œ $‡ #OH
2 2

#Ð(&ÑÐ&!ÑÉ É
which is 15% of the acquisition cost.
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(b) Optimal Order Quantity

 Current Order Quantity

(c)

(d)  hammers, which adds $ $   to TVC everyVST œ &  Ð&!ÑÐ&Î#&Ñ œ "& & ‚ % œ #!
month, $  per year.#%!

18.3-7.

 , , , O œ "#ß !!! 2 œ !Þ$! . œ )ß !!! : œ &

 U œ œ #'ß !%'‡ #Ð)!!!ÑÐ"#!!!Ñ
!Þ$! &

&!Þ$!É É
 W œ œ #%ß &(#‡ #Ð)!!!ÑÐ"#!!!Ñ

!Þ$! &!Þ$!
&É É

  months> œ U Î. œ $Þ#'‡ ‡
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18.3-8.

(a)

(b)

18.3-9.

(a)

This TVC is almost  half of the optimal value found for Problem 18.3-3.
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(b)

(c)
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18.3-10.

 Maximum Inventory Level Maximum Shortage
1/3            2,000               500          1,500
 1            1,414      

: 2:
2 : 2

‡ #OHU œ É É
         707             707

 2            1,225               816             408
 3            1,155               866             289
 5            1,095               913             183
10            1,049               953               95

18.3-11.

(a)

 Maximum inventory: Ð,+ÑU
,

 Length of interval : M U
,

 Average inventory in interval : M Ð,+ÑU
#,

 Length of interval : MM U U
+ ,

 Average inventory in interval : MM Ð,+ÑU
#,

 Average inventory per cycle: Ð,+ÑU
#,

 Holding cost per cycle: Ð,+ÑU
#+2

 Ê X œ    +-+O
U #,

Ð,+Ñ2U

(b)

 .X +O #+,5
.U U #, Ð,+Ñ2

Ð,+Ñ2 ‡œ   œ ! Ê U œ# É
18.3-12.

(a) $H œ &#!!ßO œ &!ß M œ !Þ#ßR œ $

(b)

 Orders placed per year: H &#!!
U &!!œ œ "!Þ%

 Time interval between orders:  years  weeksU
H &#!!

&!!œ œ !Þ!*' ¸ &
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18.3-13.

(a) $H œ $'&ßO œ "!ß M œ !Þ"ßR œ $

 

(b)

 Orders placed per year: H $'&
U "#%Þ'$œ œ #Þ*$

 Time interval between orders:  years  weeksU
H $'&

"#%Þ'$œ œ !Þ$%" ¸ "(Þ('

18.3-14.

(a)

Discount Category

             1

             2

XZ G œ -H O  2

XZ G œ Ð)Þ&!ÑÐ%!!Ñ  Ð)!Ñ  Ð!Þ#ÑÐ)Þ&!Ñ

XZ G œ Ð)Þ!!ÑÐ%!!Ñ  Ð)!Ñ 

H
U #

U

%!!
U #

U

%!!
U

Š ‹ Š ‹
Š ‹ Ð!Þ#ÑÐ)Þ!!Ñ

XZ G œ Ð(Þ&!ÑÐ%!!Ñ  Ð)!Ñ  Ð!Þ#ÑÐ(Þ&!Ñ

Š ‹
Š ‹ Š ‹

U
#

%!!
U #

U             3

(b)

Discount Category

             1

             2

             3

U œ

U œ œ "*%

U œ œ #!!

U œ

‡ #OH
2

‡ #Ð)!ÑÐ%!!Ñ
!Þ#Ð)Þ&!Ñ

‡ #Ð)!ÑÐ%!!Ñ
!Þ#Ð)Þ!!Ñ

‡ #Ð)

É
É
É
É !ÑÐ%!!Ñ

!Þ#Ð(Þ&!Ñ œ #!(

(c)

Discount Category Feasible 
             1                       $
             2                     $

U XZ G œ -H O  2

** $ß )!(Þ$)
#!! $ß

H
U #

U

&#!Þ!!
"!!! $ß ()#Þ!!             3                   $
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(d)

(e)  with a TVC of $U œ #!! $ß &#!‡

(f) $H œ %!!ßO œ )!ß M œ !Þ#ßR œ $

(g) Since the value of  that minimizes TVC for discount category 2 is feasible, thisU
order quantity minimizes the annual setup and holding costs. Then, category 1 cannot
have lower annual setup and holding costs. Furthermore, since the purchase price per
case is higher for category 1, it cannot have lower purchasing costs. Hence, category 1
can be eliminated as a candidate for providing the optimal order quantity.

(h)

 Orders placed per year: H %!!
U #!!œ œ #

 Time interval between orders:  years  monthsU
H %!!

#!!œ œ !Þ& œ '
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18.3-15.

(a)

Discount Category

             1

             2

XZ G œ -H O  2

XZ G œ Ð"Þ!!ÑÐ#%!!Ñ  Ð%Ñ  Ð!Þ"(ÑÐ"Þ!!Ñ

XZ G œ Ð!Þ*&ÑÐ#%!!Ñ  Ð%Ñ

H
U #

U

#%!!
U #

U

#%!!

Š ‹ Š ‹
Š U #

U

#%!!
U #

U

‹ Š ‹
Š ‹ Š ‹

 Ð!Þ"(ÑÐ!Þ*&Ñ

XZ G œ Ð!Þ*!ÑÐ#%!!Ñ  Ð%Ñ  Ð!Þ"(ÑÐ!Þ*!Ñ             3

(b)

Discount Category

             1

             2

             3

U œ

U œ œ $$'

U œ œ $%&

U œ

‡ #OH
2

‡ #Ð%ÑÐ#%!!Ñ
!Þ"(Ð"Þ!!Ñ

‡ #Ð%ÑÐ#%!!Ñ
!Þ"(Ð!Þ*&Ñ

‡ #

É
É
É
É Ð%ÑÐ#%!!Ñ

!Þ"(Ð!Þ*!Ñ œ $&%

(c)

Discount Category Feasible 
             1                     $
             2                     $

U XZ G œ -H O  2

"** #ß %'&Þ"'
$%& #ß $

H
U #

U

$&Þ')
&!! #ß #"(Þ%&             3                     $

(d)

(e)  with a TVC of $U œ &!! #ß #"(Þ%&‡



18-12

(f) $H œ #%!!ßO œ %ß M œ !Þ"(ßR œ $

(g) Since the value of  that minimizes TVC for discount category 2 is feasible, thisU
order quantity minimizes the annual setup and holding costs. Then, category 1 cannot
have lower annual setup and holding costs. Furthermore, since the purchase price per bag
is higher for category 1, it cannot have lower purchasing costs. Hence, category 1 can be
eliminated as a candidate for providing the optimal order quantity.

(h)

 Orders placed per year: H #%!!
U &!!œ œ %Þ)

 Time interval between orders:  years  monthsU
H #%!!

&!!œ œ !Þ#" ¸ #Þ&

18.4-1.

G œ G  * œ !  * œ *& '

G œ G  * œ *  * œ ")
Ð%Ñ
% &

G œ G  *  !Þ)Ð< Ñ œ !  *  !Þ)Ð#!Ñ œ #&
Ð&Ñ
% ' &

G œ Ö")ß #&× œ ")% min

G œ G  * œ ")  * œ #(
Ð$Ñ
$ %

G œ G  *  !Þ)Ð< Ñ œ *  *  !Þ)Ð"!Ñ œ #'
Ð%Ñ
$ & %

G œ G  *  !Þ)Ð<  #< Ñ œ !  *  !Þ)Ð"!  %!Ñ œ %*
Ð&Ñ
$ ' % &

G œ Ö#(ß #'ß %*× œ #'$ min

G œ G  * œ #'  * œ $&
Ð#Ñ
# $

G œ G  *  !Þ)Ð< Ñ œ ")  *  !Þ)Ð"&Ñ œ $*
Ð$Ñ
# % $

G œ G  *  !Þ)Ð<  #< Ñ œ *  *  !Þ)Ð"&  #!Ñ œ %'
Ð%Ñ
# & $ %

G œ G  *  !Þ)Ð<  #<  $< Ñ œ !  *  !Þ)Ð"&  #!  '!Ñ œ )&
Ð&Ñ
# ' $ % &

G œ Ö$&ß $*ß %'ß )&× œ $&# min

G œ G  * œ $&  * œ %%
Ð"Ñ
" #

G œ G  *  !Þ)Ð< Ñ œ #'  *  !Þ)Ð#&Ñ œ &&
Ð#Ñ
" $ #
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G œ G  *  !Þ)Ð<  #< Ñ œ ")  *  !Þ)Ð#&  $!Ñ œ ("
Ð$Ñ
" % # $

G œ G  *  !Þ)Ð<  #<  $< Ñ œ *  *  !Þ)Ð#&  $!  $!Ñ œ )'
Ð%Ñ
" & # $ %

G œ G  *  !Þ)Ð<  #<  $<  %< Ñ œ !  *  !Þ)Ð#&  $!  $!  )!Ñ œ "%"
Ð&Ñ
" ' # $ % &

G œ Ö%%ß &&ß ("ß )'ß "%"× œ %%" min

The optimal production schedule is to produce  in the first month,  in the second, "! #& #&
in the third and  in the last month. The total variable cost associated with this schedule#!
is $ . The total cost including the production cost is $ .%%ß !!! #)%ß !!!

18.4-2.

G œ G  # œ #% &

G œ G  # œ #  # œ %
Ð$Ñ
$ %

G œ G  #  !Þ#Ð< Ñ œ !  #  !Þ#Ð$Ñ œ #Þ'
Ð%Ñ
$ & %

G œ Ö%ß #Þ'× œ #Þ'$ min

G œ G  # œ #Þ'  # œ %Þ'
Ð#Ñ
# $

G œ G  #  !Þ#Ð< Ñ œ #  #  !Þ#Ð%Ñ œ %Þ)
Ð$Ñ
# % $

G œ G  #  !Þ#Ð<  #< Ñ œ !  #  !Þ#Ð%  'Ñ œ %
Ð%Ñ
# & $ %

G œ Ö%Þ'ß %Þ)ß %× œ %# min

G œ G  # œ %  # œ '
Ð"Ñ
" #

G œ G  #  !Þ#Ð< Ñ œ #Þ'  #  !Þ#Ð$Ñ œ &Þ#
Ð#Ñ
" $ #

G œ G  #  !Þ#Ð<  #< Ñ œ #  #  !Þ#Ð$  )Ñ œ 'Þ#
Ð$Ñ
" % # $

G œ G  #  !Þ#Ð<  #<  $< Ñ œ !  #  !Þ#Ð$  )  *Ñ œ '
Ð%Ñ
" & # $ %

G œ Ö'ß &Þ#ß 'Þ#ß '× œ &Þ#" min

The optimal production schedule is to produce  units in the first and third periods at a(
total variable cost of $  million.&Þ#
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18.4-3.

B D G ÐB Ñ D G ÐB ß D Ñ
! # % # B ! " # $ % & G ÐB Ñ D
" " $ "
# ! ! !

!    "!Þ# "!Þ) *Þ% *Þ% &
"  

% % % $ $ $% %
‡ ‡

$ $
‡ ‡
$ $              

      
      

                    

      
 )Þ) *Þ% )Þ!  )Þ! %
#  (Þ% )Þ! 'Þ'   'Þ' $
$ %Þ! 'Þ' &Þ#    %Þ! !
% $Þ# $Þ)     $Þ# !
& !Þ%      !Þ% !

         
         
        
        
        

                   
               

     
   

G ÐB ß D Ñ
B ! " # $ % & ' ( G ÐB Ñ D
!   "$Þ% "$Þ# "%Þ! ""Þ' "$Þ! "!Þ% "!Þ% (
"  "#Þ% "#Þ# "$Þ! "!Þ' "#Þ! *Þ%

# # #

# #
‡ ‡
# #

      
            
             
                
 

 *Þ% '
# *Þ% ""Þ# "#Þ! *Þ' ""Þ! )Þ%   )Þ% &
$ )Þ# ""Þ! )Þ' "!Þ! (Þ%    (Þ% %
% (Þ! (Þ' *Þ! 'Þ%     'Þ% $
& %Þ' )Þ! &Þ%      %Þ' !
' %Þ! %Þ%       %Þ! !
( "Þ%        "Þ% !

              
              
             

                 
               

    

G ÐB ß D Ñ
B $ % & ' ( ) * "! G ÐB Ñ D
! "'Þ) "(Þ# "(Þ) ")Þ% "*Þ! ")Þ) "*Þ) ")Þ) "'Þ) $

" " "

" "
‡ ‡
" "

The optimal production schedule is to produce  units in period 1 and  units in period 2,$ (
with a cost of $  million."'Þ)

18.4-4.

2 œ #

FÐB ß D Ñ œ
5  - D  # Ö!ß D  $×  2ÐB  D  < Ñ !  D Ÿ %
2ÐB  D Ñ D œ !8 8
8 8 8 8 8 8 8 8

8 8 8
œ max for 

for 

B D G ÐB Ñ D G ÐB ß D Ñ
! % %( %
" $ $' $
# # #( #
$ " ") "
% ! % !

B ! " # $ % G ÐB Ñ D
!    )( *!

$ $ $ # # #$ $
‡ ‡

# #
‡ ‡
# #     

     
     
     
       

                   
       

        
         
          
           
           

)( $
"   (( () )$ (( #
#  '( ') (" (' '( "
$ %( &) '" '% '% %( !
% $) &" &% &#  $) !

                   
     

     

G ÐB ß D Ñ
B ! " # $ % G ÐB Ñ D
! )( *# *# )# )& )# $

" " "

" "
‡ ‡
" "

The optimal production schedule is to produce  units in period 1 and  units in period 3,$ %
with a cost of $  thousand.)#
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18.5-1.

Deere & Company uses inventory theory to determine optimal inventory levels ensuring
product availability, on-time delivery, and customer satisfaction. In doing this, the
multistage inventory planning and optimization (MIPO) tool developed by SmartOps is
deployed. The underlying model is a stochastic, capacitated, multiechelon, multiproduct
production and inventory model. In MIPO, the material flow in the supply chain is
represented as an acyclic-directed graph. The recommended stock levels are found by
minimizing the inventory costs among periodic-review replenishment policies with a
certain service level. The demand is stochastic and its probability distribution is
nonstationary over time. The latter allows to model seasonality of demand. The capacities
and supply paths can be nonstationary. Lower bounds on service levels and other
constraints can be encapsulated in the model. The main decision variables are safety
stocks. Once the optimal stock levels are found, what-if analyses are performed to
evaluate the impact of changes.

After the implementation of the results, on-time deliveries have increased from 63% to
92% with a 90% customer service level. The reduction in inventory provided a savings of
$890 million between 2001 and 2003 and a $107 million increase in annual shareholder
value added. Estimated savings by the end of 2004 exceed $1 billion. The new system
also allows Deere to reduce the amount of aged inventory and to offer customers newer
models. This, in turn, avoids discounts and saves Deere over $10 million per year. Other
benefits from this study include enhanced manufacturing flexibility, improved service
levels, accurate predictions, ability to respond to changes quickly and trust in the supply
chain.

18.5-2.

O œ #&ß !!!ßO œ "ß &!!ß 2 œ $!ß 2 œ $&ß . œ %ß !!!" # " #$ $ $ $

Optimizing separately:

   U œ œ &)'#
‡ #.O

2É #

#

   $G œ #.O 2 œ #!ß %*$Þ*#
‡

# #È
   8 œ œ %Þ%"ß Ÿ Ê 8 œ %‡ O 2

O 2 Ò8 Ó 8
8 Ò8 Ó"É " #

# "

‡

‡ ‡

‡

   U œ 8U œ #$%%" #
‡ ‡

   $G œ  œ '*ß !$#Þ"#"
‡ .O

8U #
2 Ð8"ÑU"

#

" #

   $G œ G  G œ )*ß &#'Þ!#‡ ‡ ‡
" #

Optimizing simultaneously:

   / œ 2 œ $!ß / œ 2  2 œ &" " # # "

   8 œ œ "Þ'(ß  Ê 8 œ #‡ O /
O / Ò8 Ó 8

8 Ò8 Ó"É " #

# "

‡

‡ ‡

‡

   U œ œ "$"$#
‡

#. O

8/ /
Ë Œ O"

8 #

" #
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   U œ 8U œ #'#'" #
‡ ‡

   $G œ #. O Ð8/  / Ñ œ )&ß $##Þ*#‡ O
8 # " #Ë Œ "

Quantity Separate Optimization Simultaneous Optimization
                         
                          
   

U &)' "$"$
8 %Þ%" "Þ'(

#
‡

‡

8 % #
U #$%% #'#'
G )*ß &#' )&ß $#$

                       
                        
          $         $

"
‡

‡

The increase in the total variable cost per unit time if the results from separate
optimization were to be used instead of the ones from simultaneous optimization is
almost %.&

18.5-3.

(a) $ $2 œ #&ß 2 œ #&!ß . œ #ß &!!" #

Quantity $ $ $ $ $ $
                                
                              

Ð #&!!!ß "!!!Ñ Ð "!!!!ß #&!!Ñ Ð &!!!ß &!!!Ñ
U "%* #$' $$$
8 "& '

#
‡

‡        
                                     
                             

$
8 "& ' $
U ##$' "%"% "!!!"

‡

(b) $ $O œ "!ß !!!ßO œ #&!!ß . œ #ß &!!" #

Quantity $ $ $ $ $ $
                     
                          
                     

Ð "!ß &!!Ñ Ð #&ß #&!Ñ Ð &!ß "!!Ñ
U "'! #$' &!!
8 "% ' #
8 "% '

#
‡

‡

     
                  

#
U ##$' "%"% "!!!"

‡

(c) $ $ $ $O œ "!ß !!!ßO œ #&!!ß 2 œ #&ß 2 œ #&!" # " #

Quantity
       
             
             
    

"!!! #&!! &!!!
U "%* #$' $$$
8 ' ' '
8 ' ' '
U )*% "%"% #!!!

#
‡

‡

"
‡
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18.5-4.

O œ &ß !!!ßO œ #!!ß 2 œ "!ß 2 œ ""ß . œ "!!" # " #$ $ $ $

Quantity Separate Optimization (a) Simultaneous Optimization (b)
                                    
                
U '! "'!
8 &Þ#%

#
‡

‡                   
                                      
                                  
                

"Þ&)
8 & #
U $!# $#"
G $&#)

"
‡

‡                 $$'(

(c) The decrease in the total variable cost per unit time  by using the approach in (b)G‡

rather than the one in (a) is %.&

18.5-5.

O œ &!ß !!!ßO œ &!!ß 2 œ &!ß 2 œ '!ß . œ &!!" # " #$ $ $ $

Quantity Separate Optimization (a) Simultaneous Optimization (b)
                                    
                
U *" #%*
G &%(

#
‡

#
‡ ( )%'*

8 "!Þ*& %Þ%(
8 "" %
U "

                 
                                 
                                      
                

‡

"
‡ !!% **&

G %((") %$()!
G &$"*& &##%*

                   
                                
                                

"
‡

‡

(c) The assembly plant will lose money ( $ ) by using the joint inventory policy #ß **#
obtained in (b) whereas the supplier will make money ($ ) by doing so. One$ß *$)
possible financial agreement between the supplier and the assembly plant is that the
supplier will compensate for the loss of the plant so that the plant agrees to a supply
contract inducing the inventory policy in (b). By using this policy instead of separately
optimal ones, the total saving is $ $ $ . #ß **#  $ß *$) œ *%'

18.5-6.

O œ &!ß !!!ßO œ #ß !!!ßO œ $'!ß 2 œ "ß 2 œ #ß 2 œ "!ß . œ &ß !!!" # $ " # $$ $ $ $ $ $

The cost  is about % above the optimal cost  of the relaxed problem. Since theG !Þ#* G

latter is a lower bound on the optimal cost  of the original problem, the optimal cost G G‡

of the revised problem can exceed  at most by %.G !Þ#*‡
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18.5-7.

O œ "#&ß !!!ßO œ #!ß !!!ßO œ 'ß !!!ßO œ "!ß !!!ßO œ #&!" # $ % &$ $ $ $ $
2 œ #ß 2 œ "!ß 2 œ "&ß 2 œ #!ß 2 œ $!ß . œ "ß !!!" # $ % &$ $ $ $ $
/ œ #ß / œ )ß / œ &ß / œ &ß / œ "!" # $ % &$ $ $ $ $

Since , we need to merge the installation 3 and 4 asÐO Î/ Ñ œ "#!!  #!!! œ ÐO Î/ Ñ$ $ % %

a new installation 3' with $  and $ .O œ "'ß !!! / œ "!$ $w w

The cost  is about % above the optimal cost  of the relaxed problem. Since theG "Þ)% G

latter is a lower bound on the optimal cost  of the original problem, the optimal cost G G‡

of the revised problem can exceed  at most by %.G "Þ)%‡

18.5-8.

O œ "ß !!!ßO œ &ßO œ (&ßO œ )!" # $ %$ $ $ $
2 œ !Þ&ß 2 œ !Þ&&ß 2 œ $Þ&&ß 2 œ (Þ&&ß . œ %ß !!!" # $ %$ $ $ $

The cost  is about % above the optimal cost  of the relaxed problem. Since theG "Þ") G

latter is a lower bound on the optimal cost  of the original problem, the optimal cost G G‡

of the revised problem can exceed  at most by %.G "Þ")‡

18.5-9.

O œ '!ß !!!ßO œ 'ß !!!ßO œ %!!ß 2 œ $ß 2 œ (ß 2 œ *ß . œ "!ß !!!" # $ " # $$ $ $ $ $ $

The cost  is about % above the optimal cost  of the relaxed problem. Since theG !Þ#" G

latter is a lower bound on the optimal cost  of the original problem, the optimal cost G G‡

of the revised problem can exceed  at most by %.G !Þ#"‡
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18.6-1.

(a)

 U œ œ œ '!É É É É2:
: 2 "!!! $!!!

#OH $!!!"!!! #Ð"&!!ÑÐ*!!Ñ

(b) V œ O œ &!  !Þ'(&Ð"&Ñ œ '!. 5P

(c)

(d) Safety Stock: meanV  œ '!  &! œ "!

(e) If demand during the delivery time exceeds the order quantity , then the reorder'!
point will be hit again before the order arrives, triggering another order.

18.6-2.

(a)

 U œ œ œ )!É É É É#HO "&$
2 : "& $

2: #Ð)!ÑÐ"!!Ñ

 V œ +  PÐ,  +Ñ œ "!  !Þ)Ð$!  "!Ñ œ #'

(b)

(c) Average number of orders per year: Ð)!ÑÐ"#ÑÎ)! œ "#
 Probability of a stock-out before the order is received: "  !Þ) œ !Þ#
 Average number of stock-outs per year: "#Ð!Þ#Ñ œ #Þ%
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18.6-3.

(a)
     Case 1        Case 2        Case 3         Case 4

 $ $ $ $
                             

P 2 œ "ß œ " 2 œ "!!ß œ " 2 œ "ß œ "!! 2 œ "!!ß œ "!!
!Þ& ! ! !

5 5 5 5
                

                                   
                           

!
!Þ(& !Þ'(& '(Þ& '(Þ& '(&!
!Þ* "Þ#)# "#)Þ# "#)Þ# "#ß )#!
!Þ*&                            

                           
             

"Þ'%& "'%Þ& "'%Þ& "'ß %&!
!Þ** #Þ$#( #$#Þ( #$#Þ( #$ß #(!
!Þ*** $Þ!*) $!*Þ)               $!*Þ) $!ß *)!

(b)
     Case 1        Case 2        Case 3         Case 4

$ $ $ $
                       

? 5 5 5 5P 2 œ "ß œ " 2 œ "!!ß œ " 2 œ "ß œ "!! 2 œ "!!ß œ "!!
!Þ& !Þ'(& '(Þ&             

                                   
                                   

'(Þ& '(&!
!Þ"& !Þ'!( '!Þ( '!Þ( '!(!
!Þ!& !Þ$'$ $'Þ$ $'Þ$ $'$!
!Þ!% !Þ')# ')Þ# ')Þ# ')#!
!Þ!!* !Þ((" ((Þ" ((Þ" (("!

                                   
                                   

(c) As the service level gets higher, increasing the service level further costs more for
smaller increases. Thus, there will be diminishing returns when raising the service level
further and further. A manager should balance the cost of the safety stock with the cost of
stock-outs to determine the best service level.

18.6-4.

(a) $G œ 2O œ Ð"!!ÑÐ"Þ#)#ÑÐ"!!Ñ œ "#ß )#!P5

(b) 5 5 5 5œ . Ê "!! œ % Ê œ &!È È
" " "

If the lead time were one day: $ . This is aG œ 2O œ Ð"!!ÑÐ"Þ#)#ÑÐ&!Ñ œ 'ß %"!P "5
&!% reduction in the cost of the safety stock.

(c) , $5 5 5œ . œ )Ð&!Ñ œ "%"Þ% G œ 2O œ Ð"!!ÑÐ"Þ#)#ÑÐ"%"Þ%Ñ œ ")ß "#(È È
" P "

This is a % increase in the cost of the safety stock.%"

(d) The lead time would need to quadruple to  days."'

18.6-5.

(a) The safety stock drops to zero.

(b) The safety stock decreases.

(c) The safety stock remains the same for a given service level. However, with higher
shortage costs, there will be an incentive to increase the service level, which induces a
higher level of safety stock.

(d) The safety stock increases.

(e) The safety stock doubles.

(f) The safety stock doubles.
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18.6-6.

(a) Ground Chuck

 Chuck Wagon

(b) Ground Chuck: V œ +  PÐ,  +Ñ œ &!  !Þ*&Ð"&!  &!Ñ œ "%&

 Chuck Wagon: V œ O œ &!!  "Þ'%&Ð#!!Ñ œ )#*. 5P

(c) Ground Chuck: safety stock meanV  œ "%&  "!! œ %&

 Chuck Wagon: safety stock meanV  œ )#*  &!! œ $#*

(d) Ground Chuck:

  Annual average holding cost: $Ð!Þ$!Ñ œ $%!Þ*&Š ‹%&Ð#")$%&Ñ
#

 Chuck Wagon:

  Annual average holding cost: $Ð!Þ$!Ñ œ $ß %"'Þ&!Š ‹$#*Ð'"(&$#*Ñ
#

(e) Ground Chuck:

  Annual shipping cost: $O œ #& œ #*(Þ('Š ‹ Š ‹H
U #")$

#'ß!!!

  Annual purchasing cost: $Ð#'ß !!!ÑÐ"Þ%*Ñ œ $)ß (%!

  Average annual acquisition cost: $ $ $#*(Þ('  $)ß (%! œ $*ß !$(Þ('
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 Chuck Wagon:

  Annual shipping cost: O  !Þ"!H œ #!!  !Þ"!Ð#'ß !!!ÑŠ ‹ Š ‹H
U '"(&

#'ß!!!

       $œ $%%#Þ""

  Annual purchasing cost: $Ð#'ß !!!ÑÐ"Þ$&Ñ œ $&ß "!!

  Average annual acquisition cost: $ $ $$%%#Þ""  $&ß "!! œ $)ß &%#Þ""

(f) Ground Chuck: $ $ $$%!Þ*&  $*ß !$(Þ(' œ $*ß $()Þ("

 Chuck Wagon: $ $ $$ß %"'Þ&!  $)ß &%#Þ"" œ %"ß *&)Þ'"

Jed should choose Ground Chuck as their supplier.

(g) If Jed would like to use the beef within a month of receiving it, then Ground Chuck is
the best choice. The order quantity with Ground Chuck is roughly one month's supply
whereas with Chuck Wagon, it is roughly three months' supply.

18.7-1.

In this study, inventory theory is applied to the three-echelon distribution problem faced
by Time Inc., the largest magazine publisher in the US. For each issue of each magazine,
Time Inc. needs to solve three subproblems. The first is to determine the total number H
of copies to be printed and shipped. The second is to find an allocation  ofH ßá ßH" R

these  copies among  wholesalers. The third subproblem is to decide on theH R
distribution  of  copies among  retailers of wholesaler  for every . Complicated. H 8 4 434 4 4

cost and revenue structures, timing and constraints on available information complicate
these problems. The overall objective is to maximize the expected total profit. The
problem is solved backwards by using readily available results from the literature of
newsvendor problem under ideal conditions. The solution found is then adjusted to
incorporate deviations from the ideal.

To solve the store-level allocation problem, first the distribution of demand is estimated
using statistical analysis. If  is the probability that the demand in store  ofJÐ5l Ñ 3.34

wholesaler  is at least , then the optimal allocation to this retailer is determined as4 5
. œ J Ð l Ñ34 34

" - .  or the best approximation to this. With this allocation, the probability
of selling out is  for each store and the solution satisfies . Similarly, the"  . œ H- !

3 34 3

wholesaler-level allocation is found from the equation , where  is the7 ÐH Ñ œ 7 7 Ð † Ñ4 4 4

probability that wholesaler  will sell the last copy shipped and  is chosen such that4 7!
4 4H œ H. Finally, a lower bound on the national print order is determined from

QÐH Ñ œ -Î< QÐ † Ñ! , where  is the probability of selling the last copy printed and
shipped,  and  are the marginal cost and revenue respectively. Because of the- <
complications in identifying  and , Time Inc. aims at producing more than .- < H!

The new system increased Time Inc.'s annual profits by over $3.5 million. The benefits
include improvement of wholesaler and retailer allocations, and increase of sales
stimulation effect by over 1%.

18.7-2.

FÐW Ñ œ œ œ Ê W œ &!  ¸ &(‡ ‡W &! !Þ(&!Þ&& &
#& :2 !Þ(&!Þ!" !Þ('

:-‡
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18.7-3.

(a) Freddie's most profitable alternative is to order  copies."'

    State of Nature Expected
Alternative 15 16 17 18   Payoff
Order 15 copies 15 15 15 15 $15.00
Order 16 copies 14 16 16 16 $15.20 Maximum
Order 17 copies 13 15 17 17 $15.00
Order 18 copies 12 14 16 18 $14.20
Prior Probability 0.4 0.2 0.3 0.1

(b) Freddie's most profitable alternative is to order  copies."'

    State of Nature Expected
Alternative 15 16 17 18   Cost
Order 15 copies  0  1  2  3 $1.10
Order 16 copies  1  0  1  2 $0.90 Minimum
Order 17 copies  2  1  0  1 $1.10
Order 18 copies  3  2  1  0 $1.90
Prior Probability 0.4 0.2 0.3 0.1

(c)
Alternative Service Level
Order  copies         
Order  copies         
Order  copies         
Order  copies         

"& !Þ%
"' !Þ'
"( !Þ*
") "

Optimal service level: G
G G ""

"under
under over

œ œ !Þ&

Freddie should order  copies."'

(d)
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18.7-4.

(a) $ $ $ , $ $ $G œ $  " œ # G œ "  !Þ&! œ !Þ&!under over

(b) Prepare  doughnuts everyday to minimize the costs.%

(c)
Alternative Service Level
Make        
Make        
Make        
Make        
Make        
Make        

! !Þ"
" !Þ#&
# !Þ%&
$ !Þ(&
% !Þ*
& "

Optimal service level: G
G G #!Þ&

#under
under over

œ œ !Þ)

Prepare  doughnuts everyday.%

(d) The probability of running short is %."  !Þ* œ "!

(e) Before  doughnuts are prepared, the optimal service level needs to exceed . Let & !Þ* 1
be the cost of lost customer goodwill. Then .G œ #  1under

 G
G G #1!Þ&

#1under
under over

 !Þ* Í  !Þ* Í 1  #Þ&!

The goodwill cost should be at least $  before  doughnuts are prepared.#Þ&! &
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18.7-5.

(a) Optimal service level: G
G G "!Þ&

"under
under over

œ œ !Þ''(

(b)

(c) U œ $!!  !Þ''(Ð'!!  $!!Ñ œ &!!‡

(d) The probability of running short is %."  !Þ''( œ $$Þ$

(e) Optimal service level:

   G
G G ""Þ&!Þ&

""Þ&under
under over

œ œ !Þ)$$

 U œ $!!  !Þ)$$Ð'!!  $!!Ñ œ &&!‡

The probability of running short is %."  !Þ)$$ œ "'Þ(

18.7-6.

(a) Revenue (with shortages): $&!!Ð$Ñ œ "ß &!!

(b) Average number of loaves sold (without shortages): $!!  œ %!!&!!$!!
#

 Average daily revenue (without shortages): $%!!Ð$Þ!!Ñ œ "ß #!!

(c) With shortages: $"ß &!! ‚ !Þ$$$ œ &!!

 Without shortages: $"ß #!! ‚ !Þ''( œ )!!

 Average daily revenue over all days: $ $ $&!!  )!! œ "ß $!!

(d) Average number of loves not sold: #!!!
# œ "!!

 Average number of day-old loaves obtained over all days: "!! ‚ !Þ''( œ ''Þ(

 Average daily revenue from day-old loaves: $''Þ(Ð"Þ&!Ñ œ "!!

(e) Average total daily revenue: $ $ $"ß $!!  "!! œ "ß %!!

 Average daily profit: $ $ $"ß %!!  #Ð&!!Ñ œ %!!

(f) Average daily profit with  loaves: $'!! $Ð%&!Ñ  #Ð'!!Ñ  "Þ&!Ð"&!Ñ œ $(&
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(g) Average daily profit with  loaves: $&&! $(&  œ $)(Þ&!%!!$(&
#

(h) Average size of shortage with  loaves:  loaves&&! œ #&'!!&&!
#

      Average daily shortage over all days: #& ‚ !Þ"'( œ %Þ"'(

      Average daily cost of lost goodwill: $%Þ"'( ‚ "Þ&! œ 'Þ#&

      Average daily profit with  loaves and lost goodwill: &&! $ $ $$)(Þ&!  'Þ#& œ $)"Þ#&

(i) Average size of shortage with  loaves:  loaves&!! œ &!"!!!
#

    Average daily shortage over all days: &! ‚ !Þ$$$ œ "'Þ'(

      Average daily cost of lost goodwill: $"'Þ'( ‚ "Þ&! œ #&

      Average daily profit with  loaves and lost goodwill: $ $ $&!! %!!  #& œ $(&

18.7-7.

(a) service levelU œ +  Ð ÑÐ,  +Ñ œ +  Ð!Þ''(ÑÐ(&Ñ œ +  &!‡

(b) Probability of incurring shortage: % (same as in 18.7-4)"  !Þ''( œ $$Þ$

(c) Maximum shortage: ,  Ð+  &!Ñ œ #&

     Maximum number of loaves that will not be sold: &!

The corresponding numbers for 18.7-5 are  and  respectively, which are four times"!! #!!
the amounts in this problem.

(d) The average daily costs of underordering and overordering for the new plan are %#&
of the original costs, so it is quite valuable to obtain as much information as possible
about the demand before placing the final order for a perishable product.

(e) service levelU œ +  Ð ÑÐ,  +Ñ œ +  Ð!Þ)$$ÑÐ(&Ñ œ +  '#Þ&‡

 Probability of incurring shortage: %"  !Þ)$$ œ "'Þ'(

 Maximum shortage: ,  Ð+  '#Þ&Ñ œ "#Þ&

 Maximum number of loaves that will not be sold: '#Þ&

18.7-8.

(a)

 ln lnW œ  œ &! ¸ "!$‡ -2 "!!!$!!
:2 "!!!!$!!- Š ‹ Š ‹

(b) GÐCÑ œ -ÐC  MÑ  PÐCÑ œ -C  -M  PÐCÑ

Taking the derivative with respect to , the term involving the initial inventory C M
vanishes, so the optimal policy is the same as in (a), i.e., to order up to  or"!$
equivalently to order  parts."!$  #$ œ )!

(c) P F lnÖH Ÿ W× œ ÐWÑ œ "  / œ !Þ* Ê W œ &! Ð!Þ"Ñ ¸ ""& W
&!

(d)

 $:- :"!!!
:2 :$!!œ !Þ* Ê œ !Þ* Ê : œ "#ß (!!
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18.7-9.

(a) Optimal service level:

   G
G G $!!!"!!!

$!!!under
under over

œ œ !Þ(&

(b) U œ O œ &!  Ð!Þ'(&ÑÐ"&Ñ œ '!. 5P

18.7-10.

PÐCÑ œ ÐC  BÑ.B  $ ÐB  CÑ.B œ  $C  $!"
#! "!! C

C #! C’ “' ' #

-C  PÐCÑ œ #C   $C  $! œ  C  $!C C
"! "!

# #

Taking the derivative with respect to : . We could have used theC  " œ ! Ê W œ &C
&

result P  directly:ÖH Ÿ W× œ Ð:  -ÑÎÐ:  2Ñ

 P .ÖH Ÿ W× œ WÎ#! œ Ð:  -ÑÎÐ:  2Ñ œ Ð$  #ÑÎÐ$  "Ñ œ !Þ#& Ê W œ &

 GÐ=Ñ œ O  -W  PÐWÑ Ê -=  PÐ=Ñ œ O  -W  PÐWÑ

 Ê  =  $! œ "Þ&!   &  $! Ê  =  " œ != & =
"! "! "!

# # #

 Ê = œ &  "& ¸ "Þ"$È
The  policy is optimal.Ð=ß WÑ œ Ð"Þ"$ß &Ñ

18.7-11.

Single-period model with a setup cost:

Demand density is exponential with . Per unit production/purchasing cost is- œ #&
- œ " 2 œ !Þ% : œ "Þ&. Per unit inventory holding cost is  and per unit shortage cost is .
The setup cost is . The optimal policy is an  policy with  andO œ "! Ð=ß WÑ = œ ""Þ/$
W œ (Þ'$%&%.

18.8-1.

In each case, $  and  has a normal distribution with mean  andP œ #!!ß : œ "!!! H '!"

standard deviation .#!

: œ $!! Ê JÐB Ñ œ "  œ !Þ( Ê B œ '! O Ð#!Ñ œ '!  !Þ&#Ð#!Ñ œ (!Þ%# !Þ$
‡ ‡:

:$    #

"

When the discount fare is $ ,  seats should be reserved for class 1 customers and the$!! (!
request to make a sale to the class 2 customer should be accepted if there are  or more("
seats remaining.

: œ %!! Ê JÐB Ñ œ "  œ !Þ' Ê B œ '! O Ð#!Ñ œ '!  !Þ#&Ð#!Ñ œ '&# !Þ%
‡ ‡:

:$   #

"

: œ &!! Ê JÐB Ñ œ "  œ !Þ& Ê B œ '! O Ð#!Ñ œ '!  !Ð#!Ñ œ '!# !Þ&
‡ ‡:

:$   #

"

: œ '!! Ê JÐB Ñ œ "  œ !Þ% Ê B œ '! O Ð#!Ñ# !Þ'
‡ ‡:

:$   #

"

      œ '! O Ð#!Ñ œ '!  !Þ#&Ð#!Ñ œ &&!Þ%

As the discount fare increases, the optimal number  of reservation slots for class 1B‡

customers decreases.
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18.8-2.

The capacity  is the price  paid by luxury-seeking customers is $  and theP "!!!ß : #!ß !!!"

discount fare is $ . The demand  by luxury-seeking customers has a normal: œ "#ß !!! H#

distribution with mean  and standard deviation .%!! "!!

JÐB Ñ œ "  œ !Þ%‡ :
:
#

"

Ê B œ %!! O Ð"!!Ñ œ %!! O Ð"!!Ñ œ %!!  !Þ#&Ð"!!Ñ œ "&!  ‡ !Þ' !Þ%

Ê P  B œ "!!!  "&! œ )&! ‡

Hence, the maximum number of cabins that should be sold at the discount fare is .)&!

18.8-3.

P œ "!!ß : œ $!!ß : œ "!!" #

The demand  for full-fare tickets has a uniform distribution on integers between  andH $"
&!.

 : Ÿ : TÐH   B Ñ Í œ Ÿ Í B Ÿ &"  œ %%Þ$$# "
‡ ‡:

: $ #! $
" &!B " #!#

"

‡

 :  : TÐH   B  "Ñ Í œ  Í B  &!  œ %$Þ$$# "
‡ ‡:

: $ #! $
" &!B #!#

"

‡

Thus  slots should be reserved to full-fare customers.B œ %%‡

18.8-4.

P œ "&!ß : œ !Þ)ß < œ $!!ß = œ "&!!$ $

TÖHÐ8 Ñ   "&!× œ œ !Þ#&‡ <
=:

HÐ8Ñ !Þ)8 !Þ% 8 is normally distributed with mean  and standard deviation .È
O œ Ê !Þ'( œ Ê !Þ)8  !Þ#') 8  "&! œ !!Þ#&

"&!!Þ)8 "&!!Þ)8
!Þ% 8 !Þ% 8È È È

Ê 8 œ œ "$Þ&#( Ê 8 œ Ð"$Þ&#(Ñ œ ")$È !Þ#') Ð!Þ#')Ñ %Ð!Þ)ÑÐ"&!Ñ
"Þ'

‡ #È #

We chose the smallest integer that is greater than  to determine . Hence, theÐ"$Þ&#(Ñ 8# ‡

number of reservations to accept for this flight is .")$

18.8-5.

P œ "#&ß < œ #&!ß = œ $!!  $!! œ '!!$ $

Finding the optimal overbooking requires finding the smallest integer  with 8 ?IÐTÐ8ÑÑ
nonpositive.

?IÐTÐ8ÑÑ œ #&!  '!! Ð.  "#&ÑÒTÖHÐ8  "Ñ œ .×  TÖHÐ8Ñ œ .×Ó ” •!
.œ"#'

8

Let  denote the random variable associated with no-shows.\

?IÐTÐ8ÑÑ œ #&!  '!! Ð8  5  "#&ÑÒTÖ\ œ 5  "×  TÖ\ œ 5×Ó ” •!
5œ!

8"#'

  œ #&!  '!! TÖ\ œ 5  "× œ #&!  '!!TÖ\ Ÿ 8  "#&×” •!
5œ!

8"#'



18-29

Then the problem is to find the smallest  such that8

 .TÖ\ Ÿ 8  "#&×   œ !Þ%"(#&!
'!!

                     B ! " # $ % & ' ( ) *
TÖ\ Ÿ B× ! !Þ!& !Þ"& !Þ#& !Þ% !Þ' !Þ(& !Þ)& !Þ*& "

From the cumulative distribution of ,  is found to be , so \ 8 "#&  & œ "$! &‡

reservations can be accepted in addition to the capacity.

18.8-6.

P œ $ß : œ !Þ&ß < œ "!!!ß = œ &!!!$ $

To determine the optimal number of reservations to accept, we need to find the smallest
integer  such that8

 =:TÖHÐ8Ñ   $×   < Í TÖHÐ8Ñ   $×   !Þ% Í TÖHÐ8Ñ Ÿ #× Ÿ !Þ'

 Í   !Þ& Ÿ !Þ'
8 8 8
! " #”Œ  Œ  Œ • 8

 Í Ð8  8  #Ñ!Þ& Ÿ !Þ'# 8"

A first guess can be , since then the average number of customers with reservation8 œ '
and who actually show up is . It satisfiesP œ $

 ,Ð'  '  #Ñ!Þ&  !Þ'# (

so . This suggests . Now consider .=:TÖHÐ'Ñ   $×   < 8 Ÿ ' 8 œ &‡

 ,Ð&  &  #Ñ!Þ&  !Þ'# '

so . Then . For ,=:TÖHÐ&Ñ   $×   < 8 Ÿ & 8 œ %‡

 ,Ð%  %  #Ñ!Þ&  !Þ'# &

so . Hence the optimal number of reservations to accept is .=:TÖHÐ%Ñ   $×  < &

18.8-7.

P œ "!!ß : œ !Þ*ß < œ $!!!ß = œ #!!!!$ $

TÖHÐ8 Ñ   "!!× œ œ ¸ !Þ"'(‡ < "
=: '

HÐ8 Ñ !Þ*8 !Þ$ 8‡  is normally distributed with mean  and standard deviation .È
O œ Ê !Þ*( œ!Þ"'(

"!!!Þ*8 "!!!Þ*8
!Þ$ 8 !Þ$ 8È È

Ê 8 œ ¸ "!Þ$) Ê 8 œ Ð"!Þ$)Ñ œ "!)È !Þ#*" Ð!Þ#*"Ñ %Ð!Þ*ÑÐ"!!Ñ
"Þ)

‡ #È #

The number of reservations to accept is , so  reservations should be overbooked."!) )

18.9-1.

Answers will vary.

18.9-2.

Answers will vary.
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CASES

CASE 18.1 Brushing Up on Inventory Control

(a) Robert's problem can be solved using the basic EOQ model, with the data:

 , ,H œ "#Ð#&!Ñ œ $ß !!! O œ ")Þ(&Î$ œ 'Þ#&

 , , 2 œ !Þ"#Ð"Þ#&Ñ œ !Þ"& P œ ! [H œ "#Ð$!Ñ œ $'!

Robert should order 500 toothbrushes 6 times per year.

(b) EOQ model with  daysP œ '

Whenever the inventory drops down to , Robert should place an order for  tooth-&! &!!
brushes. He needs to place  orders per year.'

(c) Planned shortages with $ /unit: œ "Þ&!

Robert should order about  toothbrushes. Since the lead time is  days, the reorder&#% '
point is . The maximum shortage size is approximately%(Þ'(  'Ð$!!!Î$'!Ñ œ #Þ$$
%).
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(d) Two extreme cases: $ /unit and $ /unit: œ !Þ)& : œ #&

The reorder point when $ /unit is .: œ !Þ)& )"Þ$&  'Ð$!!!Î$'!Ñ œ $"Þ$&

The reorder point when $ /unit is . This suggests: œ #& #Þ**  'Ð$!!!Î$'!Ñ œ %(Þ!"
that as the shortage cost increases, the reorder point increases.

(e) EOQ model with quantity discounts, with three prices $ , $  and $  and"Þ#& "Þ"& "Þ!!
holding cost rate .M œ !Þ"#

The optimal order quantity is  and Robert should order  times a year.U œ "ß !!! $
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CASE 18.2 TNT: Tackling Newsboy's Teaching

For the analysis of this case, we use the template for perishable products.

(a) First we need to determine the optimal service level for Howie. The unit sale price is
$ , the unit purchase cost is $ , and the unit salvage value is $ $ .& $ !Þ& ‚ $ œ "

Since Talia assumes that the demand is uniformly distributed between  and  sets,"#! %#!
Howie should order  sets."#!  !Þ& ‚ $!! œ #(!

(b) If Leisure Limited refunds 75% of the purchase cost, then the unit salvage value for a
returned set becomes $ $ $ . We determine the new optimal service!Þ(& ‚ $  !Þ& œ "Þ(&
level.

The order quantity is now . Note that Howie can now"#!  !Þ'"&$)& ‚ $!! œ $!%Þ'#
order more sets at one time than he could under the scenario of part (a) because he is not
punished as severely as before when he fails to sell all sets.

When the refund is 25%, the unit salvage cost is $ .!Þ#&

Consequently, the order quantity is reduced to . In this"#!  !Þ%#"!&$ ‚ $!! œ #%'Þ$#
case, Howie should purchase fewer sets at one time (compared to previous scenarios),
since he is punished more severely for failing to sell all the sets.

(c) The unit sale price is now $  and there is a 50% refund on returned firecracker sets.'
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However, if Howie raises the price of a firecracker set, one would expect a decrease in
the demand for his sets, so Talia should not use the same uniform demand distribution
that she used for her previous calculations of the optimal order quantity.

(d) Talia's strategy for estimating the demand is overly simplistic. She makes the very
simplifying assumption that the demand is uniformly distributed between  and "#! %#!
sets. However, she does not take into account that the demand depends on the price of a
firecracker set. She should expect that stands charging less than the average price of $&
per set typically sell more sets than stands charging more. Talia should call Buddy again
to try to obtain more detailed information such as the range of sales and the average sale
of stands charging $  or $  per set.& '

Talia should also reevaluate her assumption that the demand is uniformly distributed. She
should check how her forecasts change if she uses other demand distribution like normal
distribution.
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CASE 18.3 Jettisoning Surplus Stock

(a) We can use Excel to compute the sample mean and variance.
                                       Observations Mean Std. Dev.
25 31 18 22 40 19 38 21 25 36 34 28 27   28 7.29154

Hence, the sample mean is 28 and the sample variance is 7.29154 53.1667.2 ¸

(b) Based on the findings of Scarlett Windermere, American Aerospace can use an
ÐVßUÑ policy for the inventory of part 10003487. The assumptions of the model are
satisfied.

1- The part is a stable product.

2- Its inventory level is under continuous review.

3- While the production of the part itself has no lead time, it is typically delayed by the
lead time of  months of the little steel part. Assume the lead time is  months."Þ& "Þ&

4- The demand for the part is the same as for the jet engine MX332, since it is used only
for this particular engine. Hence, assume that the demand is approximately normally
distributed with mean  and variance .#) &$Þ"''(

5- Excess demand is backlogged.

6- There is a fixed setup cost $ , a holding cost $  and a shortage costO œ &ß )!! 2 œ (&!
: œ $ß #&!$ .

Note that the average demand per year is , the average demand during the"# ‚ #) œ $$'
lead time is  and it has a standard deviation of ."Þ& ‚ #) œ %# "Þ& ‚ (Þ#*"&% œ "!Þ*$($#

American Aerospace should implement the  policy with  andÐVßUÑ V œ &$Þ$%
U œ (*Þ*) V œ &$ U œ )!. These can be rounded to  and , since the order for the part
should be integer-valued.

(c) The average inventory just before an order arrives is  and the one just&$  %# œ ""
after an order has arrived is . Then, the average inventory is""  )! œ *"
Ð""  *"ÑÎ# œ &" &"Ð(&!Ñ œ $)ß #&!, with an average holding cost of $  per year. The
average number of setups in a year is , with a resulting average setup cost$$'Î)! œ %Þ#
of $  per year.%Þ#Ð&ß )!!Ñ œ #%ß $'!
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(d) The new service level is .P œ !Þ*&

Round these values up to get  and . The average inventory just before anV œ '! U œ )!
order arrives is  and just after an order has arrived is , so the)!  '! œ #! #!  )! œ "!!
average inventory is  and the resulting average inventory holding cost is'!
'!Ð(&!Ñ œ %&ß !!!$  per year. Note that the average holding cost has increased
substantially. This is a consequence of increasing the safety stock to  from . The#! ""
average number of setups per year is still  and the average setup cost is $  per%Þ# #%ß $'!
year.

(e) Scarlett's independent analysis of the stationary part 10003487 can be justified since
there is only one jet engine that needs this part and this part appears to be the bottleneck
in the production process. However, in general, a stationary part is used for several jet
engines, so the demand for stationary parts depends on the demand for several jet engines
and a stock-out in one stationary part affects the demand for other parts. These
interdependencies cannot be captured by an independent analysis of each part; therefore,
Scarlett's approach is most likely to result in rather inaccurate inventory policies for
many other stationary parts.

(f) Scarlett could try to forecast the demand for jet engines based on sales data from
previous years.
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SUPPLEMENT 1 TO CHAPTER 18

DERIVATION OF THE OPTIMAL POLICY FOR THE STOCHASTIC

SINGLE-PERIOD MODEL FOR PERISHABLE PRODUCTS

18S1-1.

GÐWÑ œ -W  2 ÐW  BÑ0ÐBÑ.B  : ÐB  WÑ0ÐBÑ.B  5TÖH   W×' '
! W
W _

H Ò+ß ,Ó TÖH   W× œ is uniformly distributed on , so .,W
,+

GÐWÑ œ -W  5  PÐWÑ Ê œ -   2JÐWÑ  :Ö"  JÐWÑÓ œ !,W
,+ .W ,+

.GÐWÑ 5

Ê JÐWÑ œ
: -

:2

5
,+

Let .: œ -  #ß 5 œ "%ß 2 œ Ð-  "Ñß + œ %!ß , œ '!

Ê JÐWÑ œ œ œ !Þ* Ê W œ &)W%!
#! $

#Þ(

18S1-2.

(a)

 GÐMß WÑ œ -ÐW  MÑ  :TÖH  W× œ -ÐW  MÑ  :/W

 ln Ê œ -  :/ œ ! Ê W œ  Ð-Î:Ñ`GÐMßWÑ
`W

W

Order up to  if , do not order otherwise.W M  W

(b)

 if 
if 

GÐMß WÑ œ
O  -ÐW  MÑ  :/ M  W

:/ M œ W
œ W

M

An  policy is optimal with ln  and  being the smallest value such thatÐ=ß WÑ W œ  Ð-Î:Ñ =

  ln .-=  :/ œ O  - Ð-Î:Ñ  -=
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SUPPLEMENT 2 TO CHAPTER 18

STOCHASTIC PERIODIC-REVIEW MODELS

18S2-1.

(a) Single-period model with no setup cost:

Demand density is exponential with . Per unit production/purchasing cost is- œ #&
- œ "! 2 œ ' : œ "&. Per unit inventory holding cost is  and per unit shortage cost is . The
optimal one-period inventory level is .WÐ!Ñ œ 'Þ(*)$%

(b) Two-period model with no setup cost:

Demand density is exponential with . Per unit production/purchasing cost is- œ #&
- œ "! 2 œ ' : œ "&. Per unit inventory holding cost is  and per unit shortage cost is . The
optimal two-period policy consists of the inventory levels  andW Ð!Ñ œ #$Þ#*$#"

W Ð!Ñ œ 'Þ(*)$%# .

18S2-2.

(a) Single-period model with no setup cost:

Demand density is uniform on . Per unit production/purchasing cost is . PerÒ!ß &!Ó - œ "!
unit inventory holding cost is  and per unit shortage cost is . The optimal2 œ ) : œ "&
one-period inventory level is . It is optimal to order up to  if the initialW œ "!Þ)'*' W‡ ‡

inventory is below  and not to order otherwise.W‡

(b) Two-period model with no setup cost:

Demand density is uniform on . Per unit production/purchasing cost is . PerÒ!ß &!Ó - œ "!
unit inventory holding cost is  and per unit shortage cost is . The optimal2 œ ) : œ "&
two-period policy consists of the inventory levels  and . It isW œ *Þ#'"&' W œ "!Þ)'*'" #

‡ ‡

optimal to order up to  if the initial inventory is below  in period  and not to orderW W 33 3
‡ ‡

otherwise.

18S2-3.

Two-period model with no setup cost:

Demand density is exponential with . Per unit production/purchasing cost is- œ #&
- œ " 2 œ !Þ#& : œ #. Per unit inventory holding cost is  and per unit shortage cost is .
The discount factor is . The optimal two-period policy is the same as the one for the!Þ*
infinite-period model, so consists of the inventory level .WÐ!Ñ œ %'Þ&"))

18S2-4.

Two-period model with no setup cost:

Demand density is exponential with . Per unit production/purchasing cost is- œ #&
- œ " 2 œ !Þ#& : œ #. Per unit inventory holding cost is  and per unit shortage cost is .
The optimal two-period policy consists of the inventory levels  andW Ð!Ñ œ $'Þ&#""

W Ð!Ñ œ "%Þ'*%(# .
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18S2-5.

Infinite-period model with no setup cost:

Demand density is exponential with . Per unit production/purchasing cost is- œ #&
- œ " 2 œ !Þ#& : œ #. Per unit inventory holding cost is  and per unit shortage cost is .
The discount factor is . The optimal policy consists of the inventory level!Þ*
WÐ!Ñ œ %'Þ&")).

18S2-6.

Infinite-period model with no setup cost:

Demand density is exponential with . Per unit production/purchasing cost is .- œ " - œ #
Per unit inventory holding cost is  and per unit shortage cost is . The discount2 œ " : œ &
factor is . The optimal policy consists of the inventory level .!Þ*& WÐ!Ñ œ "Þ'*'%&

18S2-7.

12-period model with no setup cost:

The answer is the same as in 18S2-6, so the optimal policy consists of the inventory level
WÐ!Ñ œ "Þ'*'%&.

18S2-8.

Infinite-period model with no setup cost:

Demand density is uniform on . Per unit production/purchasing cost isÒ#!!!ß $!!!Ó
- œ "&! 2 œ # : œ $!. Per unit inventory holding cost is  and per unit shortage cost is .
The discount factor is . The optimal policy consists of the inventory level!Þ*
WÐ!Ñ œ #ß %')Þ(&.

18S2-9.

Infinite-period model with no setup cost:

Demand density is exponential with . Per unit production/purchasing cost is- œ "!!!
- œ )! 2 œ !Þ(! : œ #. Per unit inventory holding cost is  and per unit shortage cost is .
The discount factor is . The optimal policy consists of the inventory level!Þ**)
WÐ!Ñ œ %*(.

18S2-10.

2 œ !Þ$ß : œ #Þ&

KÐWÑ œ !Þ$ / .B  #Þ& / .B œ !Þ$W  (!/  (Þ&' '
! W
W _ÐWBÑ ÐBWÑ

#& #&
BÎ#& BÎ#& WÎ#&

K ÐWÑ œ !Þ$  #Þ)/ œ ! Ê W œ &&Þ)%w WÎ#&

K ÐWÑ œ /  ! Ê W œ &&Þ)% KÐWÑww WÎ#&#Þ)
#&  minimizes .

KÐ5Ñ œ KÐ5  "!!Ñ Í !Þ$5  (!/ œ !Þ$Ð5  "!!Ñ  (!/5Î#& Ð5"!!ÑÎ#&

Í (!/ Ð"  / Ñ œ $! Í 5 œ #!Þ(# ¸ #"5Î#& %

5 œ #"  W œ &&Þ)%  "#" œ 5  "!! KÐ#"Ñ ¸ KÐ"#"Ñ and 

Hence, the optimal policy is a  policy.Ð5ßUÑ œ Ð#"ß "!!Ñ
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18S2-11.

Since , the answer is identical to that for 18.S2-10, viz.,  is- œ ! Ð5ßUÑ œ Ð#"ß "!!Ñ
optimal.

18S2-12.

PÐWÑ œ 2ÐW  BÑ0ÐBÑ.B  :ÐB  WÑ0ÐBÑ.B' '
! W
W _

.PÐWÑ
.W ! W

W _
œ 20ÐBÑ.B  :0ÐBÑ.B œ 2JÐWÑ  :Ò"  JÐWÑÓ' '

.PÐWÑ
.W  -Ð"  Ñ œ ! Ê :  :JÐWÑ  2JÐWÑ  -Ð"  Ñ œ !! !

Ê JÐWÑ œ :-Ð" Ñ
:2

!
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CHAPTER 19: MARKOV DECISION PROCESSES

19.2-1.

Bank One, one of the major credit card issuers in the United States has developed the
portfolio control and optimization (PORTICO) system to manage APR and credit-line
changes of its card holders. Customers prefer low APR and high credit lines, which can
reduce the bank's profitability and increase the risk. Consequently, the bank faces the
need to find a balance between revenue growth and risk. PORTICO formulates the
problem as a Markov decision process. The state variables are chosen in a way to satisfy
Markovian assumption as closely as possible while keeping the dimension of the state
space at a tractable level. The resulting variables are , where  corresponds to theÐBß CÑ B
credit line and APR level and  represents the behavior variables. The transitionC
probabilities are estimated from the available data. The objective is to maximize the
expected net present value of the cash flows over a 36-month horizon. The dynamic
programming equation for the decision periods of the problem is

Z ÐBß CÑ œ <ÐB „ +ß CÑ  :ÐB „ +ß Cà 4ÑZ ÐB „ +ß 4Ñ> >"
+−EÐBßCÑ 4−

max ,š ›!"
f

where  denotes the immediate net cash flow and  is the discount factor. The<Ð † Ñ "
solution obtained is then adjusted to conform to business rules.

Benchmark tests are performed to evaluate the output policy. These tests suggest that the
new policy improves profitability. By adopting this policy, Bank One is expected to
increase its annual profit by more than $75 million.
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19.2-2.

(a) Let the states  be the number of customers at the facility. There are two3 œ !ß "ß #
possible actions when the facility has one or two customers. Let decision 1 be to use the
slow configuration and decision 2 be to use the fast configuration. Also let  denote theG34

expected net immediate cost of using decision  in state . Then,4 3

 G œ G œ $  ‚ &! œ #("" #"
$
&

 G œ G œ *  ‚ &! œ $""# ##
%
&

 G œ $!"

 G œ *!#

(b) In state , the configuration chosen does not affect the transition probabilities, so it is!
best to choose the slow configuration when there are no customers in line. Consequently,
the number of stationary policies is four.

 
                
                

3 . ÐV Ñ . ÐV Ñ . ÐV Ñ . ÐV Ñ
" " " # #
# " # " #

3 " 3 # 3 $ 3 %

 Policy Transition Matrix Expected Average Cost

 

 

V G œ $ #(  #(

!

!

V G œ $ #(  $"

!

!

" " ! " #

" "
# #
$ " "
"! # &

$ #
& &

# # ! "

" "
# #
$ " "
"! # &

% "
& &

Î ÑÐ Ó
Ï Ò
Î ÑÐ Ó
Ï Ò

1 1 1

1 1 1#

$ $ ! " #

" "
# #
# " "
& # "!

$ #
& &

% % ! " #

" "
# #
# " "
& # "!

% "
& &

 

 

V G œ $ $"  #(

!

!

V G œ $ $"  $"

!

!

Î ÑÐ Ó
Ï Ò
Î ÑÐ Ó
Ï Ò

1 1 1

1 1 1

(c)

 Policy       Average Cost
 
 
 
 

1 1 1! " #

" "

# #

$ $

%

V !Þ$"!$ !Þ&"(# !Þ"(#% G œ "(Þ'*
V !Þ$#%$ !Þ&%!& !Þ"$&" G œ "(Þ)"
V !Þ%!') !Þ&!)& !Þ!)%( G œ "'Þ)$
V !Þ%"' !Þ&"* !Þ!'& G œ "'Þ)(%

G V# # is the minimum, so the optimal policy is , i.e., to use slow configuration when no
customer or only one customer is present and fast configuration when there are two
customers.
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19.2-3.

(a) Let the states represent whether the student's car is dented, , or not, .3 œ " 3 œ !

 Decision Action State Immediate Cost
     Park on street in one space       
     Park on street in two spaces       
 

" ! G œ !
# ! G œ %Þ&

!"

!#

    Park in lot       
     Have it repaired       
     Drive dented       

$ ! G œ &
% " G œ &!
& " G œ *

!$

"%

"&

(b) Assuming the student's car has no dent initially, once she decides to park in lot, state
" " will never be entered. In that case, the decision chosen in state  does not affect the
expected average cost. Hence, it is enough to consider five stationary deterministic
policies.

 
                    
                    

3 . ÐV Ñ . ÐV Ñ . ÐV Ñ . ÐV Ñ . ÐV Ñ
! " " # # $
" % & % & 

3 " 3 # 3 $ 3 % 3 &

 Policy Transition Matrix Expected Average Cost

 

 

 

 

V G œ !  &!
!Þ* !Þ"
" !

V G œ !  *
!Þ* !Þ"
! "

V G œ %Þ&  &!
!Þ*) !Þ!#
" !

V
!Þ*

" " "

# # "

$ $ "

%

Œ 
Œ 
Œ 
Œ 

1 1

1 1

1 1

0

0

0

) !Þ!#
! "

G œ %Þ&  *

V G œ &
" !
 

% "

& &

1 1

1

0

0 Œ 
(c)

 Policy     Average Cost
 
 
 
 
  (if initially not dented)

1 1! "

"

#

$

%

&

V !Þ*!* !Þ!*" %Þ&&
V ! " *
V !Þ*) !Þ!# &Þ%"
V ! " *
V " ! &

The policy  has the minimum cost, so it is optimal to park on the street in one space ifV"

not dented and to have it repaired if dented.
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19.2-4.

(a) Let states  and  denote the good and the bad mood respectively. The decision in! "
each state is between providing refreshments or not.

 Decision Action State Immediate Cost
     Provide refreshments      
     Not provide refreshments      
     Provide r

" ! G œ "%
# ! G œ !
"

!"

!#

efreshments      
     Not provide refreshments      

" G œ "%
# " G œ (&

""

"#

(b) There are four possible stationary policies.
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! " " # #
" " # " #

3 " 3 # 3 $ 3 %

 Policy Transition Matrix Expected Average Cost

 

 

 

V G œ "%  "%
!Þ)(& !Þ"#&
!Þ)(& !Þ"#&

V G œ "%  (&
!Þ)(& !Þ"#&
!Þ"#& !Þ)(&

V
!Þ"#

" " ! "

# # ! "

$

Œ 
Œ 
Œ 

1 1

1 1

& !Þ)(&
!Þ)(& !Þ"#&

G œ "%

V G œ (&
!Þ"#& !Þ)(&
!Þ"#& !Þ)(&

$ "

% % "

1

1 Œ 
(c)

 Policy      Average Cost
 
 
 
 

1 1! "

" "

# #

$ $

%

V !Þ)(& !Þ"#& G œ "%
V !Þ& !Þ& G œ %%Þ&
V !Þ& !Þ& G œ (
V% !Þ"#& !Þ)(& G œ '&Þ'#&

The optimal policy is , i.e., to provide refreshments only if the group begins the nightV$

in a bad mood.
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19.2-5.

(a) Let state  denote point over, two serves to go on next point and state  denote one! "
serve left. The decision in each state is to attempt an ace or a lob.

Decision Action State Immediate Cost

     Attempt ace      

     Attempt lob      

 

" ! G œ Ð"Ñ  Ð"Ñ œ 

# ! G œ Ð"Ñ  Ð"Ñ œ

!"
$ # " "
) $ $ )

!#
( " # (
) $ $ #%

Š ‹
Š ‹

    Attempt ace      

     Attempt lob      

" " G œ Ð"Ñ  Ð"Ñ  Ð"Ñ œ

# " G œ Ð"Ñ  Ð"Ñ  Ð"Ñ œ

""
$ # " & "
) $ $ ) #

"#
( " # " &
) $ $ ) "#

Š ‹
Š ‹

(b) There are four possible stationary deterministic policies.
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! " " # #
" " # " #

3 " 3 # 3 $ 3 %

 Policy Transition Matrix Expected Average Cost

 

 

 

V G œ Ð"Î)Ñ  Ð"Î#Ñ
$Î) &Î)
" !

V G œ Ð"Î)Ñ  Ð&Î"#Ñ
$Î) &Î)
" !

V G œ Ð(
(Î) "Î)
" !

" " ! "

# # ! "

$ $

Œ 
Œ 
Œ 

1 1

1 1

Î#%Ñ  Ð"Î#Ñ

V G œ Ð(Î#%Ñ  Ð&Î"#Ñ
(Î) "Î)
" !

1 1

1 1

! "

% % ! " Œ 
(c)

 Policy      Average Cost
 
 
 
 

1 1! "

" "

# #

$ $

%

V !Þ'"& !Þ$)& G œ !Þ#(!
V !Þ'"& !Þ$)& G œ !Þ#$(
V !Þ))* !Þ""" G œ !Þ$"&
V% !Þ))* !Þ""" G œ !Þ$!'

The optimal policy is , i.e., to attempt lob in state  and ace in state .V ! "$
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19.2-6.

(a) Let states  represent the state of the market, ,  and 3 œ !ß "ß # "$ß !!! "%ß !!! "&ß !!!
respectively. The decision is between two funds, namely the Go-Go Fund and the Go-
Slow Mutual Fund. All the costs are expressed in thousand dollars.

Decision Action State Immediate Cost
     Invest in the Go-Go    
     Invest in the Go-Slow    

" ! G œ !Þ%Ð#&Ñ  !Þ#Ð'!Ñ œ ##
# ! G œ !Þ%Ð"

!"

!# !Ñ  !Þ#Ð#&Ñ œ *
" " G œ !Þ$Ð#&Ñ  !Þ$Ð'!Ñ œ "!Þ&
# " G œ !Þ$Ð"!Ñ  !Þ$Ð#&Ñ œ %Þ&

     Invest in the Go-Go    
     Invest in the Go-Slow    
   

""

"#

  Invest in the Go-Go    
     Invest in the Go-Slow    

" # G œ !Þ"Ð'!Ñ  !Þ%Ð#&Ñ œ "'
# # G œ !Þ"Ð#&Ñ  !Þ%Ð"!Ñ œ 'Þ&

#"

##

(b) There are eight possible stationary policies.

3 . ÐV Ñ . ÐV Ñ . ÐV Ñ . ÐV Ñ . ÐV Ñ . ÐV Ñ . ÐV Ñ . ÐV Ñ
! " " " " # # # #
" " " # # # " "

3 " 3 # 3 $ 3 % 3 & 3 ' 3 ( 3 )

                                
                                
                                

#
# " # # " " # " #

All 's have the same transition matrix: .V
!Þ% !Þ% !Þ#
!Þ$ !Þ% !Þ$
!Þ" !Þ% !Þ&

3

Î Ñ
Ï Ò

 Policy Expected Average Cost
 
 
 
 
 

V G œ ##  "!Þ&  "'
V G œ ##  "!Þ&  'Þ&
V G œ ##  %Þ&  'Þ&
V G œ ##  %Þ&  "'
V G œ *

" " ! " #

# # ! " #

$ $ ! " #

% % ! " #

& &

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

! " #

' ' ! " #

( ( ! " #

) ) ! " #

 %Þ&  "'
V G œ *  "!Þ&  'Þ&
V G œ *  "!Þ&  "'
V G œ *  %Þ&  'Þ&

 
 
 

(c) 1 œ Ð!Þ#&(ß !Þ%ß !Þ$%$Ñ

 Policy Average Cost
    
    
    
    
       
    
    
    

V %Þ$("
V (Þ'#*
V &Þ##*
V "Þ*("
V "Þ$("
V %Þ#)'
V "Þ!#*
V "Þ))'

"

#

$

%

&

'

(

)

The optimal policy is , i.e. to invest in the Go-Go Fund in states  and , in the Go-V ! "&

Slow Fund in state .#
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19.2-7.

(a) Let states  and  represent whether the machine is broken down or is running! "
respectively. The decision is between Buck and Bill.

 Decision Action State Immediate Cost
     Buck      
     Bill      
     Buck      
     Bill      

" ! G œ !
# ! G œ !
" " G œ "#!!
# " G œ "#!!

!"

!#

""

"#

(b) There are four possible stationary deterministic policies.
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 Policy Transition Matrix Expected Average Cost

 

 

 

 

V G œ "#!!
!Þ% !Þ'
!Þ' !Þ%

V G œ "#!!
!Þ% !Þ'
!Þ% !Þ'

V G œ "#!!
!Þ& !Þ&
!Þ' !Þ%

V

" " "

# # "

$ $ "

Œ 
Œ 
Œ 

1

1

1

% % "Œ !Þ& !Þ&
!Þ% !Þ'

G œ "#!!1

(c)

 Policy      Average Cost
 
 
 
 

1 1! "

" "

# #

$ $

%

V !Þ& !Þ& G œ '!!
V !Þ% !Þ' G œ (#!
V !Þ&%& !Þ%&& G œ &%'
V% !Þ%%% !Þ&&' G œ ''(Þ#

The largest expected average profit is given by .V#

19.2-8.

(a) Let the states be the number of items in inventory at the beginning of the period and
the decision be the number of items ordered. To conform to the software package, one
needs to relabel the decisions as  respectively. The cost matrix is:"ß #ß $

         
 
      
     

- " # $
! %!Î$ &'Î$ #%
" % "* 
# %  

35

Let  denote the policy to order  items when the inventory level is initially  and not toV # !$

order when the inventory level is initially either  or . In other words,  and! " . ÐV Ñ œ $! $

. ÐV Ñ œ . ÐV Ñ œ "" $ # $ .
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 TÐV Ñ œ Ê œ Ð%Î*ß $Î*ß #Î*Ñ
"Î$ "Î$ "Î$
#Î$ "Î$ !
"Î$ "Î$ "Î$

$

Î Ñ
Ï Ò 1

Expected average cost: $ /periodÐ%Î*ÑG  Ð$Î*ÑG  Ð#Î*ÑG œ ""'Î* ¸ "#Þ)*!$ "" #"

(b) There are  stationary policies, since one can order  or  items in each state.$ œ #( !ß " #$

However, only six of these are feasible. The remaining  policies are infeasible and the#"
decision at least in one of the states leads to over capacity.

 
                  
                  
                  

3 . ÐV Ñ . ÐV Ñ . ÐV Ñ . ÐV Ñ . ÐV Ñ . ÐV Ñ
! " # $ " # $
" " " " # # #
# " " " " " "

3 " 3 # 3 $ 3 % 3 & 3 '

19.3-1.

(a) minimize $C  *C  $C  *C  #)C  $%C!" !# "" "# #" ##

 subject to C  C  C  C  C  C œ "!" !# "" "# #" ##

   C  C  C  C  C  C œ !!" !# !" !# "" "#
" " $ #
# # "! &Š ‹

   C  C  C  C  C  C  C  C œ !"" "# !" !# "" "# #" ##
" " " " $ %
# # # # & &Š ‹

   C  C  C  C  C  C œ !#" ## "" "# #" ##
# " # "
"! "! & &Š ‹

    for  and C   ! 3 œ !ß "ß # 5 œ "ß #35

(b) Using the simplex method, we find  andC œ !Þ$#%$#ß C œ !Þ&%!&%ß C œ !Þ"$&"%!" "" ##

the remaining 's are zero. Hence, the optimal policy uses decision  in states  and ,C " ! "35

decision  in state .# #

19.3-2.

(a) minimize %Þ&C  &C  &!C  *C!# !$ "% "&

 subject to C  C  C  C  C œ "!" !# !$ "% "&

   C  C  C  C  C  C  C œ !!" !# !$ !" !# !$ "%
* %*
"! &!Š ‹

   C  C  C  C  C œ !"% "& !" !# "&
" "
"! &!Š ‹

   C ß C ß C ß C ß C   !!" !# !$ "% "&

(b) Using the simplex method, all 's turn out to be zero except that  andC C œ !Þ*!*!*35 !"

C œ !Þ!*!*" " ! % ""% , so the policy that uses decision  in state  and decision  in state  is
optimal.
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19.3-3.

(a)  minimize "%C  "%C  (&C!" "" "#

 subject to C  C  C  C œ "!" !# "" "#

   C  C  C  C  C  C œ !!" !# !" !# "" "#
( " ( "
) ) ) )Š ‹

   C  C  C  C  C  C œ !"" "# !" !# "" "#
" ( " (
) ) ) )Š ‹

    for  and C   ! 3 œ !ß " 5 œ "ß #35

(b) Using the simplex method, we find , so the optimalC œ C œ !Þ&ß C œ C œ !!# "" !" "#

policy is to use decision  in state  and decision  in state .# ! " "

19.3-4.

(a) minimize  C  C  C  C" ( " &
) #% # "#!" !# "" "#

 subject to C  C  C  C œ "!" !# "" "#

   C  C  C  C  C  C œ !!" !# !" !# "" "#
$ (
) )Š ‹

   C  C  C  C œ !"" "# !" !#
& "
) )Š ‹

    for  and C   ! 3 œ !ß " 5 œ "ß #35

(b) Using the simplex method, we find , so theC œ !Þ)))*ß C œ !Þ""""ß C œ C œ !!# "" !" "#

optimal policy is to use decision  (lob) in state  and decision  (ace) in state .# ! " "

19.3-5.

(a) minimize ##C  *C  "!Þ&C  %Þ&C  "'C  'Þ&C!" !# "" "# #" ##

     subject to C  C  C  C  C  C œ "!" !# "" "# #" ##

  C  C  C  C  C  C  C  C œ !!" !# !" !# "" "# #" ##
% % $ $ " "
"! "! "! "! "! "!Š ‹

  C  C  C  C  C  C  C  C œ !"" "# !" !# "" "# #" ##
% % % % % %
"! "! "! "! "! "!Š ‹

  C  C  C  C  C  C  C  C œ !#" ## !" !# "" "# #" ##
# # $ $ & &
"! "! "! "! "! "!Š ‹

   for  and C   ! 3 œ !ß "ß # 5 œ "ß #35

(b) Using the simplex method, we find  and theC œ !Þ#&(ß C œ !Þ%ß C œ !Þ$%$!" "" ##

remaining 's are zero. Hence, the optimal policy uses decision  (the Go-Go Fund) inC "35

states  and , decision  in state  (the Go-Slow Fund).! " # #
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19.3-6.

(a) minimize "#!!C "#!!C"" "#

 subject to C  C  C  C œ "!" !# "" "#

   C  C  !Þ%C  !Þ&C  !Þ'C  !Þ%C œ !!" !# !" !# "" "#Š ‹
   C  C  !Þ'C  !Þ&C  !Þ%C  !Þ'C œ !"" "# !" !# "" "#Š ‹
    for  and C   ! 3 œ !ß " 5 œ "ß #35

(b) Using the simplex method, we find , so theC œ !Þ%ß C œ !Þ'ß C œ C œ !!" "# !# ""

optimal policy is to use decision  (Buck) in state  and decision  (Bill) in state ." ! # "

19.3-7.

(a) minimize %! &'
$ $!" !# !$ "" "# #"C  C  #%C  %C  "*C  %C

     subject to C  C  C  C  C  C œ "!" !# !$ "" "# #"

  C  C  C  C  C  C  C  C œ !!" !# !" !# !$ "" "# #"
# " # " "
$ $ $ $ $Š ‹

  C  C  C  C  C  C  C œ !"" "# !# !$ "" "# #"
" " " " "
$ $ $ $ $Š ‹

  C  C  C  C  C œ !#" !$ "" "# #"
" " " "
$ $ $ $Š ‹

   for  and C   ! 3 œ !ß "ß # 5 œ "ß #ß $35

(b) Using the simplex method, we find  and theC œ !Þ%%%%ß C œ !Þ$$$$ß C œ !Þ####!$ "" #"

remaining 's are zero. Hence, the optimal policy is to order  items in state  and not toC # !35

order in states  and ." #
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19.4-1.
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19.4-2.
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19.4-3.
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19.4-4.
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19.4-5.
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19.4-6.
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19.4-7.
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19.4-8.

When the number of pints of blood delivered can be specified at the time of delivery, the
starting number of pints including the delivery will never exceed the largest possible
demand in a period, so we can restrict our attention to states . The admissible3 œ !ß "ß #ß $
actions in state  are to order . Given a decision , the transition3 ! Ÿ 5 Ÿ $  3 5
probabilities and the immediate cost are computed as follows:

  if : Ð5Ñ œ TÖH œ 3  5  4× 4   "34

 : Ð5Ñ œ TÖH   3  5×3!

 .G œ &!5  IÒ"!!Ð3  5 HÑ Ó35


Initialization:  for  and . ÐV Ñ œ " 3 œ !ß "ß # . ÐV Ñ œ !3 " $ "

 P  ÐV Ñ œ GÐV Ñ œ

!Þ' !Þ% ! ! *!
!Þ$ !Þ$ !Þ% ! '!
!Þ" !Þ# !Þ$ !Þ% &!
!Þ" !Þ# !Þ$ !Þ% !

" "

Î Ñ Î ÑÐ Ó Ð ÓÐ Ó Ð Ó
Ï Ò Ï Ò

Iteration 1:
Step 1: Value determination:

 1Ð Ñ œ *!  !Þ'@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð ÑV V V V" " " "! " !

 1Ð Ñ œ '!  !Þ$@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð ÑV V V V V" " " " "! " # "

 1Ð Ñ œ &!  !Þ"@ Ð Ñ  !Þ#@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð ÑV V V V V V" " " " " "! " # $ #

   1Ð Ñ œ !  !Þ"@ Ð Ñ  !Þ#@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð ÑV V V V V V" " " " " "! " # $ $

 @ Ð Ñ œ !$ V"

Ê 1Ð Ñ œ &(Þ)ß @ Ð Ñ œ "*'Þ$ß @ Ð Ñ œ ""&Þ*ß @ Ð Ñ œ &!ß @ Ð Ñ œ !V V V V V" " " " "! " # $

Step 2: Policy improvement:

minimize 
Î ÑÐ ÓÐ Ó
Ï Ò

"!!  @ Ð Ñ  @ Ð Ñ œ "!!
*!  !Þ'@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ œ &(Þ)

""!  !Þ$@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ œ #(Þ$'
"&!  !Þ"@ Ð

! !

! " !

! " # !

!

V V
V V V

V V V V

" "

" " "

" " " "

V V V V V" " " " "Ñ  !Þ#@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ œ" # $ ! ""Þ&"

Ê . ÐV Ñ œ $! #

minimize 
Î Ñ
Ï Ò

%!  !Þ'@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ œ ))Þ#%
'!  !Þ$@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ œ &(Þ)

"!!  !Þ"@ Ð Ñ  !Þ#@ Ð Ñ  !Þ$@ Ð Ñ  !Þ

! " "

! " # "

! " #

V V V
V V V V

V V V

" " "

" " " "

" " " %@ Ð Ñ  @ Ð Ñ œ$ "V V" " %"Þ*"

Ê . ÐV Ñ œ #" #

minimize Œ "!  !Þ$@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ œ ($Þ''
&!  !Þ"@ Ð Ñ  !Þ#@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ œ

! " # #

! " # $ #

V V V V
V V V V V

" " " "

" " " " " &(Þ)

Ê . ÐV Ñ œ "# #

V V# " is not identical to , so optimality test fails.
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Iteration :#
Step 1: Value determination:

 1Ð Ñ œ "&!  !Þ"@ Ð ÑV# # # # # #! V  !Þ#@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ" # $ !V V V V

 1Ð Ñ œ "!!V# # # # # # !Þ"@ Ð Ñ  !Þ#@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ! " # $ "V V V V V

 1Ð Ñ œ &!  !Þ"@ Ð Ñ  !Þ#@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð ÑV V V V V V# # # # # #! " # $ #

   1Ð Ñ œ !  !Þ"@ Ð Ñ  !Þ#@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð ÑV V V V V V# # # # # #! " # $ $

 @ Ð Ñ œ !$ V#

Ê 1Ð Ñ œ &!ß @ Ð Ñ œ "&!ß @ Ð Ñ œ "!!ß @ Ð Ñ œ &!ß @ Ð Ñ œ !V V V V V# # # # #! " # $

Step 2: Policy improvement:

minimize 
Î ÑÐ ÓÐ Ó
Ï Ò

"!!  @ Ð Ñ  @ Ð Ñ œ "!!
*!  !Þ'@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ œ (!

""!  !Þ$@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ œ &&
"&!  !Þ"@ Ð Ñ  !

! !

! " !

! " # !

!

V V
V V V

V V V V
V

# #

# # #

# # # #

# Þ#@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ œ" # $ !V V V V# # # # &!

Ê . ÐV Ñ œ $! $

minimize 
Î Ñ
Ï Ò

%!  !Þ'@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ œ (!
'!  !Þ$@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ œ &&

"!!  !Þ"@ Ð Ñ  !Þ#@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð

! " "

! " # "

! " # $

V V V
V V V V

V V V V

# # #

# # # #

# # # # #Ñ  @ Ð Ñ œ" V &!

Ê . ÐV Ñ œ #" $

minimize Œ "!  !Þ$@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ œ &&
&!  !Þ"@ Ð Ñ  !Þ#@ Ð Ñ  !Þ$@ Ð Ñ  !Þ%@ Ð Ñ  @ Ð Ñ œ

! " # #

! " # $ #

V V V V
V V V V V

" " " "

" " " " " &!

Ê . ÐV Ñ œ "# $

V V $$ # is identical to , so it is optimal to start every period with  pints of blood after
delivery of the order.

19.5-1.

Let states ,  and  denote $ , $  and $  offers respectively and let state ! " # '!! )!! "!!! $
designate the case that the car has already been sold (state  of the hint). Let decisions _ "
and  be to reject and to accept the offer respectively.#

G œ G œ G œ '! G œ '!! G œ )!! G œ "!!!!" "" #" !# "# ##, ,  and 

TÐ"Ñ œ ß T Ð#Ñ œ

&Î) "Î% "Î) ! ! ! ! "
&Î) "Î% "Î) ! ! ! ! "
&Î) "Î% "Î) ! ! ! ! "
! ! ! " ! ! ! "

Î Ñ Î ÑÐ Ó Ð ÓÐ Ó Ð Ó
Ï Ò Ï Ò

Start with the policy to reject only the $  offer. The relevant equations are:'!!

 Z œ '!  !Þ*& Z  Z  Z! ! " #
& " "
) % )Š ‹

 Z œ )!!  !Þ*&Z" $

 Z œ "!!!  !Þ*&Z# $

 ,Z œ !Þ*&Z$ $
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which admit the unique solution .ÐZ ß Z ß Z ß Z Ñ œ Ð(*'!Î"$ß)!!ß"!!!ß !Ñ! " # $

Policy improvement:

State  with decision : ! # '!!  !Þ*&Z œ '!!  Z$ !

State  with decision : " " '!  !Þ*&ÒÐ&Î)ÑZ  Ð"Î%ÑZ  Ð"Î)ÑZ Ó œ (*'!Î"$  Z! " # "

State  with decision : # " '!  !Þ*&ÒÐ&Î)ÑZ  Ð"Î%ÑZ  Ð"Î)ÑZ Ó œ (*'!Î"$  Z! " # #

Hence, the policy to reject the $  offer and to accept $  and $  offers is optimal.'!! )!! "!!!

19.5-2.

(a) minimize '!C  '!!C  '!C  )!!C  '!C  "!!!C!" !# "" "# #" ##

     subject to           C  C  !Þ*& C  C  C œ!" !# !" "" #"
& "
) $Š ‹Š ‹

            C  C  !Þ*& C  C  C œ"" "# !" "" #"
" "
% $Š ‹Š ‹

            C  C  !Þ*& C  C  C œ#" ## !" "" #"
" "
) $Š ‹Š ‹

       for  and C   ! 3 œ !ß "ß # 5 œ "ß #35

(b) Using the simplex method, we find  andC œ !Þ)"*(*ß C œ !Þ&#((ß C œ !Þ%$!&'!" "# ##

the remaining 's are zero. Hence, the optimal policy is to reject the $  offer and toC '!!35

accept the $  and $  offers.)!! "!!!

19.5-3.

Z œ Ö'!  !Þ*&ÐÐ&Î)ÑZ  Ð"Î%ÑZ  Ð"Î)ÑZ ÑßÐ Ñ× 3 œ !ß "ß #3
8 8" 8" 8"

! " #min offer  for 

Z œ ! 3 œ !ß "ß #3
!  for 

Iteration 1: Z œ Ö'!ßÐ Ñ× œ Ð Ñ 3 œ !ß "ß # Ê3
" min offer offer  for Accept

Iteration 2: Z œ Ö'!&ß'!!× œ '!& Ê!
# min Reject

  min AcceptZ œ Ö'!&ß)!!× œ )!! Ê"
#

  min AcceptZ œ Ö'!&ß"!!!× œ "!!! Ê#
#

Iteration 3: Z œ Ö'!(Þ*(ß'!!× œ '!(Þ*( Ê!
$ min Reject

  min AcceptZ œ Ö'!(Þ*(ß)!!× œ )!! Ê"
$

  min AcceptZ œ Ö'!(Þ*(ß"!!!× œ "!!! Ê#
$

The approximate optimal solution is to reject the $  offer and to accept the $  and'!! )!!
$  offers. This policy is indeed optimal, as found in Problem 19.5-1 and 19.5-2."!!!

19.5-4.

Let states ,  and  denote the selling price of $ , $  and $  respectively and let state! " # "! #! $!
$ " # designate the case that the stock has already been sold. Let decisions  and  be to hold
and to sell the stock respectively.

G œ G œ G œ ! G œ "! G œ #! G œ $!!" "" #" !# "# ##, ,  and 
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TÐ"Ñ œ ß T Ð#Ñ œ

%Î& "Î& ! ! ! ! ! "
"Î% "Î% "Î# ! ! ! ! "
! $Î% "Î% ! ! ! ! "
! ! ! " ! ! ! "

Î Ñ Î ÑÐ Ó Ð ÓÐ Ó Ð Ó
Ï Ò Ï Ò

Start with the policy to sell only when the price is $ . The relevant equations are:$!

 Z œ !  !Þ* Z  Z! ! "
% "
& &Š ‹

 Z œ !  !Þ* Z  Z  Z" ! " #
" " "
% % #Š ‹

 Z œ $!  !Þ*Z# $

 ,Z œ !  !Þ*Z$ $

which admit the unique solution .ÐZ ß Z ß Z ß Z Ñ œ Ð%)'!Î$&$ß(&'!Î$&$ß$!ß !Ñ! " # $

Policy improvement:

State  with decision : ! # "!  !Þ*Z œ "!  Z$ !

State  with decision : " # #!  !Þ*Z œ #!  Z$ "

State  with decision : # " !  !Þ*ÒÐ$Î%ÑZ  Ð"Î%ÑZ Ó œ #"Þ#"  Z" # #

Hence, the policy to hold the stock when the price is $  and $ , and to sell it when the"! #!
price is $ .$!

19.5-5.

(a) minimize        "!C  #!C  $!C!# "# ##

     subject to      C  C  !Þ* C  C œ!" !# !" ""
% " "
& % $Š ‹

      C  C  !Þ* C  C  C œ"" "# !" "" #"
" " $ "
& % % $Š ‹

       C  C  !Þ* C  C œ#" ## "" #"
" " "
# % $Š ‹

   for  and C   ! 3 œ !ß "ß # 5 œ "ß #35

(b) Using the simplex method, we find  andC œ "Þ*'!&*ß C œ !Þ*&)&"ß C œ !Þ('%'$!" "" ##

the remaining 's are zero. Hence, the optimal policy is to hold the stock at the pricesC35
$  and $  and to sell it at the price $ ."! #! $!

19.5-6.

Z œ Ö!Þ*ÐÐ%Î&ÑZ  Ð"Î&ÑZ Ñß"!×! ! "
8 8" 8"min

Z œ Ö!Þ*ÐÐ"Î%ÑZ  Ð"Î%ÑZ  Ð"Î#ÑZ Ñß#!×" ! " #
8 8" 8" 8"min

Z œ Ö!Þ*ÐÐ$Î%ÑZ  Ð"Î%ÑZ Ñß$!×# " #
8 8" 8"min

Z œ ! 3 œ !ß "ß #3
!  for 

Iteration 1: Z œ Ö!ß"!× œ "! Ê!
" min Sell

  min SellZ œ Ö!ß#!× œ #! Ê"
"

  min SellZ œ Ö!ß$!× œ $! Ê#
"
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Iteration 2: Z œ Ö"!Þ)ß"!× œ "!Þ) Ê!
# min Hold

  min HoldZ œ Ö#!Þ#&ß#!× œ #!Þ#& Ê"
#

  min SellZ œ Ö#!Þ#&ß$!× œ $! Ê#
#

Iteration 3: Z œ Ö""Þ%#ß"!× œ ""Þ%# Ê!
$ min Hold

  min HoldZ œ Ö#!Þ%*ß#!× œ #!Þ%* Ê"
$

  min SellZ œ Ö#!Þ%#ß$!× œ $! Ê#
$

The approximate optimal solution is to sell if the price is $  and to hold otherwise. This$!
policy is indeed optimal, as found in Problem 19.5-3 and 19.5-4.

19.5-7.

(a) Let states  and  be the chemical produced this month,  and  respectively, and! " G" G#
decisions  and  refer to the process to be used next month,  and  respectively. There" # E F
are four stationary deterministic policies.

3 . ÐV Ñ . ÐV Ñ . ÐV Ñ . ÐV Ñ
! " " # #
" " # " #

3 " 3 # 3 $ 3 %

                
                

The transition matrix is the same for every decision, viz.

 .T œ
!Þ$ !Þ(
!Þ% !Þ'Œ 

The costs  correspond to the expected amount of pollution using the process  in theG 535

next period.

 G œ !Þ$Ð"&Ñ  !Þ(Ð#Ñ œ &Þ*ß!"

 G œ !Þ$Ð$Ñ  !Þ(Ð)Ñ œ 'Þ&ß!#

 G œ !Þ%Ð"&Ñ  !Þ'Ð#Ñ œ (Þ#ß""

 .G œ !Þ%Ð$Ñ  !Þ'Ð)Ñ œ '"#

(b)
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19.5-8.

(a) minimize &Þ*C  'Þ&C  (Þ#C  'C!" !# "" "#

     subject to         C  C  C  C  C  C œ!" !# !" "" !# "#
" $ % $ % "
# "! "! "! "! #Š ‹

          C  C  C  C  C  C œ"" "# !" "" !# "#
" ( ' ( ' "
# "! "! "! "! #Š ‹

       for  and C   ! 3 œ !ß " 5 œ "ß #35

(b) Using the simplex method, we find  and .C œ !Þ)&(ß C œ "Þ"%$ C œ C œ !!" "# !# ""

Hence, the optimal policy is to use process  if  is produced and  if  is producedE G" F G#
this month.
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19.5-9.

19.5-10.

The three iterations of successive approximations in Problem 19.5-9 gives the optimal
policy for the three-period problem. The optimal policy is, therefore, to use the process E
if  is produced and  if  is produced in all periods.G" F G#
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19.5-11.
Z œ Ö!  !Þ*!ÐÐ(Î)ÑZ  Ð"Î"'ÑZ  Ð"Î"'ÑZ Ñß %!!!  !Þ*!Z ß '!!!  !Þ*!Z ×! # !

8 8" 8" 8" 8" 8"
" $ "min

Z œ Ö"!!!  !Þ*!ÐÐ$Î%ÑZ  Ð"Î)ÑZ  Ð"Î)ÑZ Ñß %!!!  !Þ*!Z ß '!!!  !Þ*!Z ×" " $ "
8 8" 8" 8" 8" 8"

# !min

Z œ Ö$!!!  !Þ*!ÐÐ"Î#ÑZ  Ð"Î#ÑZ Ñß %!!!  !Þ*!Z ß '!!!  !Þ*!Z ×# # !
8 8" 8" 8" 8"

$ "min

Z œ '!!!  !Þ*!Z$ !
8 8"

Z œ ! 3 œ !ß "ß #ß $3
!  for 

Iteration 1: Z œ Ö!ß %!!!ß '!!!× œ ! Ê!
" min Do nothing

  min Do nothingZ œ Ö"!!!ß %!!!ß '!!!× œ "!!! Ê"
"

  min Do nothingZ œ Ö$!!!ß %!!!ß '!!!× œ $!!! Ê#
"

  ReplaceZ œ '!!! Ê$
"

Iteration 2: Z œ Ö"#*$Þ(&ß %*!!ß '!!!× œ "#*$Þ(& Ê!
# min Do nothing

  min Do nothingZ œ Ö#')(Þ&ß %*!!ß '!!!× œ #')(Þ& Ê"
#

  min OverhaulZ œ Ö(!&!ß %*!!ß '!!!× œ %*!! Ê#
#

  ReplaceZ œ '!!! Ê$
#

Iteration 3: Z œ Ö#(#*Þ&$ß '%")Þ(&ß ("'%Þ$)× œ #(#*Þ&$ Ê!
$ min Do nothing

  min Do nothingZ œ Ö%!%!Þ$"ß '%")Þ(&ß ("'%Þ$)× œ %!%!Þ$" Ê"
$

  min OverhaulZ œ Ö(*!&ß '%")Þ(&ß ("'%Þ$)× œ '%")Þ(& Ê#
$

  ReplaceZ œ ("'%Þ$) Ê$
$

Iteration 4: Z œ Ö$*%&Þ)!ß ('$'Þ#)ß )%&'Þ&)× œ $*%&Þ)! Ê!
% min Do nothing

  min Do nothingZ œ Ö&#&&Þ$"ß ('$'Þ#)ß )%&'Þ&)× œ &#&&Þ$" Ê"
%

  min OverhaulZ œ Ö*""#Þ%"ß ('$'Þ#)ß )%&'Þ&)× œ ('$'Þ#) Ê#
%

  ReplaceZ œ )%&'Þ&) Ê$
%

The optimal policy is to do nothing in states  and to replace in state  in all periods.!ß " $
When in state , it is best to overhaul in periods  and to do nothing in period .# "ß #ß $ %
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CHAPTER 20: SIMULATION

20.1-1.

(a)  to  correspond to tails.!Þ!!!! !Þ%***
  to  correspond to heads.!Þ&!!! !Þ****

Random observations: heads, tails, tails, tails,!Þ'*'" œ !Þ#!)' œ !Þ"%&( œ !Þ$!*) œ
!Þ'**' œ !Þ*'"( œheads, heads

(b)  to  correspond to strikes.!Þ!!!! !Þ&***
  to  correspond to balls.!Þ'!!! !Þ****

Random observations: ball, strike, strike, strike,!Þ'*'" œ !Þ#!)' œ !Þ"%&( œ !Þ$!*) œ
!Þ'**' œ !Þ*'"( œball, ball

(c)  to  correspond to green lights.!Þ!!!! !Þ$***
  to  correspond to yellow lights.!Þ%!!! !Þ%***
  to  correspond to red lights.!Þ&!!! !Þ****

Random observations: red, green, green, green,!Þ'*'" œ !Þ#!)' œ !Þ"%&( œ !Þ$!*) œ
!Þ'**' œ !Þ*'"( œred, red

20.1-2.

(a) If it is raining:  to  correspond to rain next day,!Þ!!!! !Þ&***
    to  correspond to clear next day.!Þ'!!! !Þ****

 If it is clear:  to  correspond to clear next day,!Þ!!!! !Þ(***
    to  correspond to rain next day.!Þ)!!! !Þ****

 Day Random Number Weather
           Clear
           Rain
           Clear
           Clear
         

" !Þ'**'
# !Þ*'"(
$ !Þ'""(
% !Þ$*%)
& !Þ(('*
' !Þ&(&!
( !Þ'#("
) !Þ#!"(
* !Þ(('!
"! !Þ**")

  Clear
           Clear
           Clear
           Clear
           Clear
          Rain
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(b)

 Day Random Number Weather
           Rain
           Rain
           Rain
           Clear
         

" !Þ)#"#
# !Þ"%%*
$ !Þ"('#
% !Þ($")
& !Þ*#")
' !Þ"#$(
( !Þ#))"
) !Þ)#$&
* !Þ&*&%
"! !Þ)%!&

  Rain
           Rain
           Rain
           Clear
           Clear
          Rain

20.1-3.

(a)

 TÐ#Ñ œ ß T Ð$Ñ œ ß T Ð%Ñ œ ß T Ð&Ñ œ ß T Ð'Ñ œ% ( ) & "
#& #& #& #& #&

(b)

 Mean:  stovesÐ#Ñ  Ð$Ñ  Ð%Ñ  Ð&Ñ  Ð'Ñ œ $Þ')% ( ) & "
#& #& #& #& #&

(c)  to  correspond to  stoves being sold.!Þ!!!! !Þ"&** #
  to  correspond to  stoves being sold.!Þ"'!! !Þ%$** $
  to  correspond to  stoves being sold.!Þ%%!! !Þ(&** %
  to  correspond to  stoves being sold.!Þ('!! !Þ*&** &
  to  correspond to  stoves being sold.!Þ*'!! !Þ**** '

(d)  stoves,  stoves,  stoves!Þ%%(' Ê % !Þ*("$ Ê ' !Þ!'#* Ê #

The average of these is , which exceeds the mean in (b) by .Ð%  '  #ÑÎ$ œ % !Þ$#

(e) Answers will vary. The following -day simulation yielded an average demand of$!!
$Þ(#.

 Day Random Number Demand
              
              
              
              
          

" !Þ&%(& %
# !Þ$&*( $
$ !Þ'&$* %
% !Þ'#'$ %
& !Þ*&('     

              
              

            
            
            
       

&
' !Þ)$*' &
( !Þ"!!& #

#*( !Þ&)!* %
#*) !Þ$'($ $
#** !Þ%%&$ %
$!! !Þ"$'" #

!Þ"' ! #
!Þ#) !Þ"' $
!Þ$#

     

            Distribution of Demand
Probability Cumulative Demand
               
               
               
               
               

!Þ%% %
!Þ#! !Þ(' &
!Þ!% !Þ*' '
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20.1-4.

(a)

(b)

 Est   EstÖT × œ œ !Þ"&' ÖT × œ œ !Þ%'*! "
& $%"(
$# $#

 Est   EstÖT × œ œ !Þ$%% ÖT × œ œ !Þ!$"# $
&"#$ "

$# $#

Est  customersÖP× œ 8T œ ! † !Þ"&'  " † !Þ%'*  # † !Þ$%%  $ † !Þ!$" œ "Þ#&!
8œ!

$

8

Est  customersÖP × œ Ð8  "ÑT œ ! † !Þ%'*  " † !Þ$%%  # † !Þ!$" œ !Þ%!'; 8
8œ"

$!
Customers Arrival Time Service Time Departure Time System Time Wait Time
                                             
        

" & ) "$ ) !
#                                     

                                            
                             

) ' "* "" &
$ "( # #" % #
% ") % #& ( $
& ## ( $# "! $

               
                                           

Est  minutesÖ[× œ œ œ )sum of observed system times
number of observed system times

%!
&

Est  minutesÖ[ × œ œ œ #Þ';
$#
&

sum of observed waiting times
number of observed waiting times

(c)
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(d)

 Est  EstÖT × œ œ !Þ#(' ÖT × œ œ !Þ&"(! "
&$ $""$(
#* #*

 EstÖT × œ œ !Þ#!(#
&"
#*

Est  customersÖP× œ 8T œ ! † !Þ#('  " † !Þ&"(  # † !Þ#!( œ !Þ*$"!
8œ!

#

8

Est  customersÖP × œ Ð8  "ÑT œ ! † !Þ&"(  " † !Þ#!( œ !Þ#!(; 8
8œ"

#!
Customers Arrival Time Service Time Departure Time System Time Wait Time
                                             
        

" & ) "$ ) !
#                                      

                                            
                             

) ' "% ' !
$ "( # "* # !
% ") % ## % !
& ## ( #* ( !

               
                                            

Est  minutesÖ[× œ œ œ &Þ%sum of observed system times
number of observed system times

#(
&

Est  minutesÖ[ × œ œ œ !;
!
&

sum of observed waiting times
number of observed waiting times

20.1-5.

(a) Interarrival Time ~Exp  per minute , Service Time ~Exp  per minuteÐ"Î' Ñ Ð"Î& Ñ

 Next interarrival time: ln' <E

 Next service time: ln& <H

Let  and  denote the time in minutes and the number of customers in the system at> RÐ>Ñ
time  respectively. In the table below, > N.I.T. stands for Next Interarrival Time and
N.S.T. for Next Service Time.

      N.I.T.    N.S.T. Next Arriv. Next Dep. Next Event
                Arrival

    

> RÐ>Ñ < <
! ! !Þ!*' "%Þ!'!   "%Þ!'! 

"%Þ!'! " !Þ&'* $Þ$)$ !Þ

E H

''& #Þ!%! "(Þ%%$ "'Þ"!!
"'Þ"!! !     "(Þ%%$ 
"(Þ%%$ " !Þ('% "Þ'"& !Þ)%# !Þ)'! "*Þ!&) ")Þ$!$

    Departure
                   Arrival
        Departure
                   Arrival
  

")Þ$!$ !     "*Þ!&) 
"*Þ!&) "

(b)

 arrival in two-minute periodTÖ × œ "  / œ !Þ#)$"
$

 departure in two-minute periodTÖ × œ "  / œ !Þ$$!#
&

<  !Þ#)$ Ê <   !Þ#)$ ÊE Earrival occurred, arrival did not occur.

<  !Þ$$! Ê <   !Þ$$! ÊH Hdeparture occurred, departure did not occur.

Let  and  denote the time in minutes and the number of customers in the system at> RÐ>Ñ
time  respectively.>
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 Arrival? Departure?
    
    Yes
    No No
    No No
    No Yes

  No
 

> RÐ>Ñ < <
! !
# " !Þ!*'  
% " !Þ&'* !Þ''&
' " !Þ('% !Þ)%#
) ! !Þ%*# !Þ##%

"! ! !Þ*&!  
"#

E H

 No
  Yes
  No No
  No No
  No Yes

 

! !Þ'"!  
"% " !Þ"%&  
"' " !Þ%)% !Þ&&#
") " !Þ$&! !Þ&*!
#! ! !Þ%$! !Þ!%"

(c) Interarrival Time ~Exp , Service Time ~ExpÐ"Î"!Ñ Ð"Î"#Ñ
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Average number waiting to begin service: #Þ$$'&#
Average number waiting for or in service: $Þ"'("'#
Average waiting time excluding service: #Þ$!&#*
Average waiting time including service:  $Þ#"))(

(d)
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(e)

   

Every measure is inside the % confidence level.*&

20.1-6.

(a) The system is a single-server queueing system with the crew being servers and the
machines being customers. The service time has a uniform distribution between  and!
twice the mean. The interarrival time is exponentially distributed with mean being &
hours. A simulation clock records the amount of simulated time that elapses. The state
RÐ>Ñ > > of the system at time  is the number of machines that need repair at time . The
breakdowns and repairs that occur over time are randomly generated by generating
random observations from the distributions of interarrival and service times. The state of
the system needs to be adjusted when a breakdown or repair occurs:

 Reset if a breakdown occurs at time ,
if a repair occurs at time .RÐ>Ñ œ

RÐ>Ñ  " >
RÐ>Ñ  " >œ

The time on the simulation clock is adjusted by using the next-event time advance proce-
dure. The time  is in hours.>

(b) The random numbers  and  are obtained from Table 20.3 starting from the front< <E H

of the first row. N.I.T. stands for Next Interarrival Time and N.S.T. for Next Service
Time. Interarrival times are computed as ln  and service times correspond to .& < ) <E H

Initially there is one broken machine in the system.
> RÐ>Ñ < <
! " !Þ!*' ""Þ("( !Þ&'* %Þ&&# ""Þ("( %Þ&&#
%Þ&&# !     ""Þ(

  N.I.T.   N.S.T. Next Arriv. Next Dep. Next Event
        Departure
        

E H

"( 
""Þ("( " !Þ''& #Þ!%! !Þ('% 'Þ""# "$Þ(&( "(Þ)#*
"$Þ(&( # !Þ)%# !Þ)'!   "%Þ'"( "(Þ)#*
"%Þ'"( $ !Þ%*

     Arrival
       Arrival
         Arrival
  # $Þ&%'   ")Þ"'$ "(Þ)#*

"(Þ)#* #   !Þ##% "Þ(*# ")Þ"'$ "*Þ'#"
")Þ"'$ $ !Þ*&! !Þ#&'   ")Þ%#! "*Þ'#"

       Departure
        Arrival
         Arrival
         Departure
        Departure

")Þ%#! % !Þ'"! #Þ%("   #!Þ)*" "*Þ'#"
"*Þ'#" $   !Þ"%& "Þ"'! #!Þ)*" #!Þ()"
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(c)

 arrival in one-hour periodTÖ × œ "  / œ !Þ")""Î&

 departure in one-hour periodTÖ × œ "Î) œ !Þ"#&

<  !Þ")" Ê <   !Þ")" ÊE Earrival occurred, arrival did not occur.

<  !Þ"#& Ê <   !Þ"#& ÊH Hdeparture occurred, departure did not occur.

Let  and  denote the time in hours and the number of broken machines in the system> RÐ>Ñ
at time  respectively. > < <E H and  are obtained from Table 20.3 starting from the front of
the first row.

    Arrival?   Departure?
    
      Yes      No
      No      No
      No      No
    

> RÐ>Ñ < <
! "
! # !Þ!*' !Þ&'*
" # !Þ''& !Þ('%
# # !Þ)%# !Þ%*#
$ # !

E H

Þ##% !Þ*&!
% # !Þ'"! !Þ"%&
& # !Þ%)% !Þ&&#
' # !Þ$&! !Þ&*!
( " !Þ%$! !Þ!%"

  No      No
      No      No
      No      No
      No      No
      No      Yes
      No      No
      No      No

    No      No
    No      No
    No   

) " !Þ)!# !Þ%("
* " !Þ#&& !Þ(**

"! " !Þ'!) !Þ&((
"" " !Þ$%( !Þ*$$
"# " !Þ&)" !Þ"($    No

    No      Yes
    No       
    No       
    No       
    No       
  

"$ ! !Þ'!$ !Þ!%!
"% ! !Þ'!&  
"& ! !Þ)%#  
"' ! !Þ(#!  
"( ! !Þ%%*  
") " !Þ!('  
"* " !Þ%!( !Þ#!#
#! " !Þ*'$ !Þ%"#

  Yes       
    No      No
    No      No
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(d) Crew size œ #

 Average waiting time excluding service:  hours$Þ"%"
 Average waiting time including service:  hours(Þ*)#
 Average number waiting to begin service: !Þ#)#
 Average number waiting or in service: !Þ("(
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 Crew size œ $

 Average waiting time excluding service:  hours"Þ!&(
 Average waiting time including service:  hours%Þ*%$
 Average number waiting to begin service: !Þ#&)
 Average number waiting or in service: !Þ)"#
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 Crew size œ %

 Average waiting time excluding service:  hours!Þ##(
 Average waiting time including service:  hours#Þ$"%
 Average number waiting to begin service: !Þ!$'
 Average number waiting or in service: !Þ$(#
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(e) Crew size œ #

 Crew size œ $
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 Crew size œ %

According to these simulation runs, a crew size of  is enough to get the average waiting$
time before repair below  hours. If the high end of the 95% confidence interval is$
required to be less than  hours, then a crew size of  should be chosen.$ %

(f) , , , and  denote the mean breakdown rate, the expected repair time, the- . 5"Î =#

variance of the repair time, and the number of servers respectively. The variance of a
random variable uniformly distributed between  and  is .+ , Ð,  +Ñ Î"##

Crew size :œ #  - 5œ !Þ#ß œ %ß + œ !ß , œ )ß œ &Þ$$$" #
.

   3 œ œ !Þ)-
.

   , P œ œ #Þ"$$ P œ  P œ #Þ*$$; ;


#Ð" Ñ
- 5 3

3

# # #

3

   , [ œ œ "!Þ''( [ œ [  œ "%Þ''(; ;
P ";

- .

Crew size :œ $  - 5œ !Þ#ß œ $ß + œ !ß , œ 'ß œ $" #
.

   3 œ œ !Þ'-
.

   ,  P œ œ !Þ' P œ  P œ "Þ#; ;


#Ð" Ñ
- 5 3

3

# # #

3

   , [ œ œ $ [ œ [  œ '; ;
P ";

- .
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Crew size :œ %  - 5œ !Þ#ß œ #ß + œ !ß , œ %ß œ "Þ$$$" #
.

   3 œ œ !Þ%-
.

   , P œ œ !Þ"() P œ  P œ !Þ&(); ;


#Ð" Ñ
- 5 3

3

# # #

3

   , [ œ œ !Þ))* [ œ [  œ #Þ))*; ;
P ";

- .

A crew size of  is enough to have the average waiting time before repair begins no more$
than  hours.$

20.1-7.

(a)

(b)

 Est   EstÖT × œ œ !Þ" ÖT × œ œ !Þ%! "
"! "("&")
"!! "!!

 Est  EstÖT × œ œ !Þ% ÖT × œ œ !# $
#%"' !
"!! "!!

(c)

 Est  customersÖP× œ 8T œ ! † !Þ"  " † !Þ%  # † !Þ%  $ † ! œ "Þ#!
8œ!

$

8

 Est  customersÖP × œ Ð8  "ÑT œ ! † !Þ%  " † !Þ%  # † ! œ !Þ%; 8
8œ"

$!
(d)

 Est  minutesÖ[× œ œ œ %$Þ$$sum of observed system times
number of observed system times

%"&&$%
$

 Est  minutesÖ[ × œ œ œ "$Þ$$;
!#%"'

$
sum of observed waiting times

number of observed waiting times
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20.1-8.

(a)

Average number waiting to begin service: !Þ")')*"
Average number waiting for or in service: "Þ&##%!)
Average waiting time excluding service: !Þ")''*
Average waiting time including service:  "Þ)(&*(
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(b) Two Tellers

(c) Three Tellers
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(d) Two Tellers

 Three Tellers
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(e) Let  denote the average time between customer arrivals. Some performance-
measures are given for two-teller and three-teller systems in the following tables.

 Two Tellers Three Tellers  Tw
        
        
        
        

Idle         

P "Þ)*# "Þ&"'
P !Þ$)# !Þ!"#

[ "Þ))) "Þ&"#
[ !Þ$)# !Þ!"#

!Þ%!( !Þ))"

;

;

o Tellers Three Tellers
        
        
        
        

Idle         

P #Þ$*" "Þ(!&
P !Þ(#% !Þ!##

[ #Þ"%* "Þ&#"
[ !Þ'&! !Þ!#!

!Þ#)) !Þ)$!

;

;

        - -œ " œ !Þ*

The last row corresponds to the probability that at least one of the tellers is idle. For the
two-teller system it is  and for the three-teller system it is . There isT  T T  T  T! " ! " #

a big difference between the idle-time ratios of the two-teller and three-teller systems for
both  values. For this reason, it may be better to hire two tellers. Two tellers also-
provide reasonable wait times,  minutes for  and  minutes[ œ !Þ$)# œ " [ œ !Þ'&!; ;-
for . A thorough analysis would also incorporate the cost of hiring and the profit- œ !Þ*
from the completion of each job. Another consideration can be the robustness of the
system and its sensitivity to the uncertainty in . The following table gives the percent-
changes in the performance measures when  decreases from  to  minute.- " !Þ*

  % Change Two Tellers Three Tellers
         
        
          
        

Idle           

P #'Þ% "#Þ&
P )*Þ& )$Þ$

[ "$Þ) !Þ&
[ (!Þ# ''Þ(

#*Þ# &Þ)

;

;
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20.1-9.

Class 1 Customers: Average number waiting to begin service: !Þ#!*#"&
   Average number waiting for or in service: "Þ!!('"$
   Average waiting time excluding service: "Þ!($)"
   Average waiting time including service:  #Þ&*)#'

Class 2 Customers: Average number waiting to begin service: "Þ%!'%')
   Average number waiting for or in service: #Þ&(&(!'
   Average waiting time excluding service: !Þ$)"))
   Average waiting time including service:  "Þ*"')%
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20.1-10.

(a) For parts (a) through (f), each type of car corresponds to an M/M/1 system and they
are independent of each other. For parts (g) through (i), the system is an M/M/2 system.
Both interarrival and service times are exponentially distributed. A simulation clock
records the amount of simulated time that elapses. The state of the system at time >
consists of the number  of Japanese cars that need to be repaired at time  and theR Ð>Ñ >N

number  of German cars that need to be repaired at time . The breakdowns andR Ð>Ñ >K

repairs that occur over time are generated by random observations with exponential
distributions. The state of the system follows the dynamics:

 if a Japanese car arrives to the shop,
if a Japanese car is repaired,R Ð>Ñ œ

R Ð>Ñ  "
R Ð>Ñ  "N

N

N
œ

 if a German car arrives to the shop,
if a German car is repaired.R Ð>Ñ œ

R Ð>Ñ  "
R Ð>Ñ  "K

K

K
œ

The time is advanced using the next-event time advance procedure.

(b)
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(c) German Cars

(d) Japanese Cars
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(e)

(f) German Cars
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(g) This option significantly decreases the waiting time for German cars without the
added cost of an additional mechanic.

(h)

 Part Est  
(c)   
(d)   
(f)   
(g)   

Ö[× [
"Þ"#) "Þ!!!
!Þ$#" !Þ$$$
!Þ#$) !Þ#$)
!Þ$*$ !Þ$*!

The results of the simulation were quite accurate.

(i) Answers will vary. The option of training the two current mechanics significantly de-
creases the waiting time for German cars, without a significant impact on the wait for
German cars, and does so without the added cost of a third mechanic. Adding a third
mechanic reduces the average wait for German cars even more, but comes with the added
cost of a third mechanic.
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20.1-11.

(a) There are two independent G/M/1 systems: printers and monitors. For printers, the
arrival stream is deterministic; for monitors, the arrival process is uniformly distributed
between  and . The inspection time is exponentially distributed with a mean of "! #! "!
minutes. A simulation clock records the amount of simulated time that elapses. The state
of the system at time  consists of the number  of monitors in the inspection station> R Ð>ÑQ

at time  and the number  of printers in the inspection station at time . The arrivals> R Ð>Ñ >T

to the stations and the inspection times are generated by sampling distributions according
to interarrival and service time distributions. The system evolves according to the law:

 if a monitor arrives to the inspection station,
if a monitor is repaired,R Ð>Ñ œ

R Ð>Ñ  "
R Ð>Ñ  "Q

Q

Q
œ

 if a printer arrives to the inspection station,
if a printer is repaired.R Ð>Ñ œ

R Ð>Ñ  "
R Ð>Ñ  "T

T

T
œ

The time is advanced using the next-event time advance procedure.

(b)

(c)



20-25

(d) Monitors

 Printers
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(e) Monitors

 Printers

The new inspection equipment would drastically reduce the average waiting time for both
monitors from  minutes to  minutes  and printers from  minutes to  minute .Ð (Þ$ "Þ$ Ñ Ð ( " Ñ
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20.2-1.

Merrill Lynch launched the Management Science Group to deal with the issues raised by
the rise of electronic trading in the late 1990s. The group studied various product
structure and pricing alternatives. They focused on two main pricing options, viz., an
asset-based pricing option and a direct online pricing option. Monte Carlo simulation is
applied to simulate the behavior of the clients who choose between the two product and
pricing options in the light of economic and qualitative factors. In the simulation model,
"the observed system data consist of every revenue-generating component of every
account of every client at Merrill Lynch. The output measures are the resulting revenue at
the firm level, the compensation impact on each FA, and the percentage of clients
considered adverse selectors" [p. 13]. Sensitivity analysis is performed to evaluate
various scenarios.

"The benefits were significant and fell into four areas: seizing the marketplace initiative,
finding the pricing sweet spot, improving financial performance, and adopting the
approach in other strategic initiatives in other strategic initiatives" [p. 15]. As a result of
this study, Merrill Lynch also acquired new clients.

20.2-2.

Answers will vary.

20.3-1.

(a) 
          
          
      
          
          
      
      

8 B B  $ B

! # & &

" & ) )

# ) "" " "

$ " % %

% % ( (

& ( "! " !

' ! $

8 8 8"
B $
"!
&
"!
)
"!
"
"!
%
"!
(
"!
!
"!

8

    
          
          
      

 (b) 
            
        
       

$
"!
'
"!
*
"!
#
"!

8 8 8"
&B "

)
'
)
(
)
%
)

$

( $ ' '

) ' * *

* * "# " #

8 B &B  " B

! " ' '

" ' $" $ (

# ( $' %

8

 
        
        
        
        
            

%

$ % #" # &

% & #' $ #

& # "" " $

' $ "' " !

( ! " "

&
)
#
)
$
)
!
)
"
)

(c) 
         
     
     
     
   

8 B '"B  #( B

! "! '$( ' $(

" $( ##)% ## )%

# )% &"&" &" &"

$ &" $"$) $" $)

% $) #$%& #$

8 8 8"
'"B #(

"!!
$(
"!!
)%
"!!
&"
"!!
$)
"!!
%&

8

"!!   %&
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20.3-2.

(a)

 , Y œ 8 œ !ß "ßá ß *8"
B 

"!
8"

"
#

(b)

 , Y œ 8 œ !ß "ßá ß (8"
B 

)
8"

"
#

(c)

 , Y œ 8 œ !ß "ßá ß **8"
B 

"!!
8"

"
#

20.3-3.

 
         
     
         
           

         

8 B ""B  #$ B

! &# &*& & *&

" *& "!') "! ')

# ') ((" ( ("

$ (" )!% ) %

% % '(

8 8 8"
""B #$

"!!
*&
"!!
')
"!!
("
"!!
%

"!!

8

     '(
"!! '(

20.3-4.

  
        
      

          

8 B #!"B  &!$ B

! %)& *(*)) *( *))

" *)) "**!*" "** *"

# *" ")(*% ") (*%

8 8 8"
#!"B &!$

"!!!
*))
"!!!
*"

"!!!
(*%
"!!!

8

20.3-5.

(a)

 
             

               
           
           

     

8 B "$B  "& B

! "% "*( ' &

" & )! # "'

# "' ##$ ' $"

$ $" %") "$ #

% #

8 8 8"
"$B "&

$#
&
$#
"'
$#
$"
$#
#
$#

8

           %" " **
$#

(b)

 , Y œ 8 œ !ß "ßá ß % Ê Ð!Þ"("*ß !Þ&"&'ß !Þ*)%%ß !Þ!()"ß !Þ#'*'Ñ8"
B 

$#
8"

"
#
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20.3-6.

(a) B œ (ß B œ "!ß B œ &ß B œ *ß B œ ""ß B œ "#ß" # $ % & '

 B œ 'ß B œ $ß B œ )ß B œ %ß B œ #ß B œ "( ) * "! "" "#

(b) Each integer appears only once in part (a).

(c)  will repeat the cycle  with length .B ß B ßá B ßá ß B "#"$ "% " "#

20.4-1.

(a) Answers will vary.

(b) The formula in cell D10 is VLOOKUP C10 $J$8:$K$9 2 .œ Ð ß ß Ñ

(c) A simulation with 14 replications:  (d) A simulation with 1000 replications:
 Number

Play of Flips Winnings
     7      $1

  1     11     -$3
  2      5      $3
  3      5      $3
  4      9     -$1
  5      7      $1
  6      7      $1
  7      5      $3
  8      3      $5
  9     17     -$9
 10      5      $3
 11      5      $3
 12      3      $5
 13      9     -$1
 14      7      $1
Avg.      7      $1

    Number
Play of Flips Winnings

    11     -$3
   1      5      $3
   2     13     -$5
   3     15     -$7
   4      5      $3
   5     19     -$11
   6     11     -$3
   7      3      $5
   8      3      $5
   9      3      $5
  10      7      $1
 995      5      $3
 996      3      $5
 997      3      $5
 998      3      $5
 999     21     -$13
1000      5      $3
Avg.    9.15      $1.15
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20.4-2.

(a)

(b) JÐBÑ œ Ê JÐ&Þ")Ñ œ !Þ!*'&ß JÐ")Þ%'Ñ œ !Þ&'*#ß JÐ#$Þ#*Ñ œ !Þ''&)B"!
&!

(c) If cell A1 contains the uniform random number, then the Excel function is " A1 ."œ &!‡  "!

20.4-3.

(a) < œ TÖ\ Ÿ B× œ œ Ê B œ &!<  #&'
#&
B .> B#&

&! &!

        < \
!Þ!*' #*Þ)!
!Þ&'* &$Þ%&
!Þ''& &)Þ#&

(b) < œ TÖ\ Ÿ B× œ .> œ Ê B œ #<  "'
"
B Ð>"Ñ ÐB"Ñ

% "'

$ % ¼

        < \
!Þ!*' !Þ""$
!Þ&'* !Þ($(
!Þ''& !Þ)!'

(c) < œ TÖ\ Ÿ B× œ .> œ Ê B œ #!Ð#  <Ñ' È
%!
B Ð>%!Ñ ÐB%!Ñ

#!! %!!

#

         < \
!Þ!*' %'Þ"*(
!Þ&'* &&Þ!)'
!Þ''& &'Þ$"!

20.4-4.

(a) To determine whether  or  is distributed uniformly between  and , look\ œ ! \ & "&
at a three-digit random number from Table 20.3.

 .!!! Ÿ < Ÿ %** Ê \ œ !
  is uniformly distributed.&!! Ÿ < Ÿ *** Ê \
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If , nothing else need to be done. Otherwise, use the next three-digit random\ œ !
number as a decimal to generate .\

 < œ TÖ\ Ÿ B× œ œ Ê B œ #!<  &'
&
B .> B&

#! #!

    

 ~ 

 ~ 

<
!Þ!*' \ œ !
!Þ&'* \ YÐ&ß "&Ñ
!Þ''& \ œ #!Ð!Þ''&Ñ  & œ )Þ$
!Þ('% \ YÐ&ß "&Ñ
!Þ)%# \ œ #!Ð!Þ)%#Ñ  & œ ""Þ)%

"

#

#

$

$

Hence, the sequence is .Ð!ß )Þ$ß ""Þ)%Ñ

(b)

 , TÖ" Ÿ \ Ÿ #× œ Ð>  "Ñ.> œ TÖ# Ÿ \ Ÿ $× œ Ð$  >Ñ.> œ' '
" #
# $" "

# #

For ½, .! Ÿ < Ÿ < œ Ð>  "Ñ.> œ Ê B œ #<  "' È
"
B ÐB"Ñ

#

#

For ½ , .Ÿ < Ÿ " < œ  Ð$  >Ñ.> œ  Ê B œ $  #  #<" "
# # ##

B Ð$BÑ' È#

        < \
!Þ!*' "Þ%$)
!Þ&'* #Þ!(#
!Þ''& #Þ")"

(c) Let  be a Bernoulli random variable with , i.e.,  and^ : œ "Î$ TÖ^ œ "× œ "Î$
TÖ^ œ !× œ #Î$ \. Then,  is a random variable denoting the number of trials until the
Bernoulli random variable takes the value ."

 .!!! Ÿ < Ÿ $$# Ê ^ œ "
 .$$$ Ÿ < Ÿ *** Ê ^ œ !

  < ^ \
!*' " "
&'* !
''& !
('% !
)%# !
%*# !
##% " '
*&! !
'"! !
"%& " $

Hence, the sequence is .Ð"ß 'ß $Ñ
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20.4-5.

(a) Answers will vary.

(b)  to  correspond to heads.!Þ!!!! !Þ%***
  to  correspond to tails.!Þ&!!! !Þ****

Group 1: HHH, Group 2: THH, Group 3: HTT, Group 4: THT,
Group 5: THH, Group 6: HHT, Group 7: THT, Group 8: TTH
Number of groups with 0 heads: 0
Number of groups with 1 heads: 4
Number of groups with 2 heads: 3
Number of groups with 3 heads: 1

(c) Flip Random Number Result
       Heads
       Heads
       Tails

" !Þ'%%(
# !Þ')*(
$ !Þ"*'"

Total number of heads: #

(d) Answers will vary. The following eight replications have two replications with no
heads , four replications with one heads , one replication with two headsÐ"Î%Ñ Ð"Î#Ñ
Ð"Î)Ñ Ð"Î)Ñ, and one replication with three heads . This is not very close to the expected
probability distribution.

 Replication
Number of Heads

" # $ % & ' ( )
" $ # ! " " " !

(e) Answers will vary. Among the following  replications,  have no heads)!! *$
Ð*$Î)!!Ñ $!$ Ð$!$Î)!!Ñ $!* Ð$!*Î)!!Ñ *&,  have one heads ,  have two heads , and  have
three heads . This is quite close to the expected probability distribution.Ð*&Î)!!Ñ

 Replication
Number of Heads       

" # $ % & (*) (** )!!
" # " " " ! # "

20.4-6.

(a)
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(b) Answers will vary. Below is the results from a 25-replication simulation.
Game
Win?                    

" # $ % & ' ( ) *ßá ß "& "' "( ") "* #!ßá ß #% #&
! ! " ! ! ! ! " ! " ! " ! " !

(c) 9 wins and 16 loses win  and loseÊ TÖ × œ *Î#& TÖ × œ "'Î#&

(d)

  ~ \!Þ%*$ \!Þ%*$
!Þ&Î 8 !Þ&Î 8È ÈRÐ!ß "Ñ Ê T Ÿ "Þ'% œ !Þ*&š ›

 Ê T \ Ÿ  !Þ%*$ œ !Þ*&š ›!Þ)#
8È

 !Þ)#
8È  !Þ%*$ œ !Þ& Ê 8 œ "$Þ')*

20.4-7.

< œ TÖ\ Ÿ B× œ T Ÿ œ "  Ê B œ # Ð"  <Ñ  "š › Š ‹\" B" B"
# # #

"F F

We can use  directly instead of , since both have uniform distribution. The< "  <
following values  are obtained in Excel using the function NORMINV .F"Ð<Ñ Ð<ß !ß "Ñ

          

      
      
      
      

< Ð<Ñ B
!Þ!*' "Þ$!& "Þ'!*
!Þ&'* !Þ"(% "Þ$%)
!Þ''& !Þ%#' "Þ)&#
!Þ('% !Þ("* #Þ%$)
!Þ)%# "Þ!!$ $Þ!!&
!Þ%*# !Þ!

F"

#! !Þ*'!
!Þ##% !Þ(&* !Þ&")
!Þ*&! "Þ'%& %Þ#*!
!Þ'"! !Þ#(* "Þ&&*
!Þ"%& "Þ!&) "Þ""'

   

      
      

Average: "Þ##"

20.4-8.

(a)

            

               
        

< < < < B œ #! <  #&

!Þ!*' !Þ('% !Þ##%
!Þ&'* !Þ)%# !Þ*&!
!Þ''& !Þ%*# !Þ'"!

"Þ$$! "Þ'
#Þ!*)

3 3 3 3
" # $ 5 5

3
3œ" 3œ"

$ $

5! !Œ 
     

             
"(Þ!

"Þ()% "!Þ(

(b) B œ & Ð<Ñ  "!F"

        
  

   
   

< Ð<Ñ B
!Þ!*' "Þ$!& $Þ%(&
!Þ&'* !Þ"(% "!Þ)(!
!Þ''& !Þ%#' "#Þ"$!

F"
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20.4-9.

(a)              

          

< < < < < B œ # <  $

!Þ!*' !Þ('% !Þ##% !Þ"%&
!Þ&'* !Þ)%# !Þ*&! !Þ%)%
!Þ''& !Þ%*# !Þ'"! !Þ&&#

"Þ$$!

3 3 3 3 3
" # $ % 5 5

3
3œ" 3œ"

$ $

5! !Œ 
!Þ$%!

#Þ!*) "Þ"*'
"Þ()% !Þ&')
"Þ")" !Þ'$)

             
             
          

Let  denote the chi-square observations, for . ThenD 3 œ "ß #3

  and .D œ B  B œ "Þ&%' D œ B  B œ !Þ($!" #" # $
# # # #

%

(b)     

   
   
   

< Ð<Ñ
!Þ!*' "Þ$!&
!Þ&'* !Þ"(%
!Þ''& !Þ%#'
!Þ('% !Þ("*

F"

(c) ] œ \ \" #
# #

From (a),  and .] œ "Þ&%' ] œ !Þ($!" #

From (b),  and .] œ "Þ($$ ] œ !Þ'*)" #

20.4-10.

(a)     ln
     
       

< B œ "! Ð<Ñ
!Þ!*' #$Þ%$%
!Þ&'* &Þ'$*

(b)     ln
      
        

< < B œ & Ð< < ÑÓ
!Þ!*' !Þ&'* "%Þ&$'
!Þ''& !Þ('% $Þ$)'

" # " #

(c)     < <

!Þ!*' !Þ##%
!Þ&'* !Þ*&!
!Þ''& !Þ'"!
!Þ('% !Þ"%&
!Þ)%# !Þ%)%
!Þ%*# !Þ&&#

3 3
" #

  

           
             

! !Œ 
3œ" 3œ"

' '

3 3
5 5

5< B œ % <  #

$Þ%#) ""Þ("
#Þ*'& *Þ)'



20-35

20.4-11.

(a) Uniform Random Number Random Observation
                        
                        
              

!Þ#'&& *Þ##
!Þ$%(# *Þ%*
!Þ!#%) (Þ#&
!Þ*#!& "#Þ#"
!Þ'"$! "!Þ$)

          
                      
                      

(b) If cell C4 contains the uniform random number, then the Excel function would be:
œ IF(C4<0.2, 7+(2/0.2)*C4, IF(C4<0.8, 9+(2/0.6)*(C4-0.2), 11+(2/0.2)*(C4-0.8))).

20.4-12.

     ln
   
   
     
     

< B œ #! Ð<Ñ
!Þ!*' %'Þ)')
!Þ&'* ""Þ#()
!Þ''& )Þ"&*
!Þ('% &Þ$)%

Hence, the Erlang observation is .!
3œ"

%

5B œ ("Þ')*

20.4-13.

(a) TRUE. Both  and  are uniformly distributed.< "  <3 3

(b) FALSE. Numerically, .# # ! !< Á Ð"  < Ñ Ê B Á C3 3 3 3

(c) TRUE. The sum of independent exponential random variables each with the same
mean has Erlang distribution.

20.4-14.

(a) It is not valid, since . Replace  by  toTÖB œ )× œ TÖ)Î) Ÿ <  *Î)× œ ! 8 8  "3 3

make it a valid method. Generate uniform random numbers  and set  where < B œ 8 83 3

satisfies .Ð8  "ÑÎ) Ÿ <  8Î)3

(b) It is valid. When , .Ð8  "ÑÎ) Ÿ <  8Î) 8 Ÿ "  )<  8  "3 3

(c) It is not valid, since , , , , , , , ,B œ % B œ $ B œ ' B œ & B œ ! B œ ( B œ # B œ "! " # $ % & ' (
w w w w w w w w

and , so this method does not cover the number . Instead, let , then itB œ % ) B œ B  ") 3
w w

3

is a valid method.

20.4-15.

        Accept?
No
No
No
No

< B < 0ÐBÑ
!Þ!*' !Þ"*# !Þ&'* !Þ"*#
!Þ''& "Þ$$! !Þ('% !Þ'(!
!Þ)%# "Þ')% !Þ%*# !Þ$"'
!Þ##% !Þ%%) !Þ*&! !Þ%%)
!Þ'"! "Þ##! !Þ"%& !

" #

Þ()!
!Þ%)% !Þ*') !Þ&&# !Þ*')
!Þ$&! !Þ(!! !Þ&*! !Þ(!!

Yes
Yes
Yes

The three samples from the triangular distribution are , and ."Þ##!ß !Þ*') !Þ(!!
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20.4-16.

Let .B œ "!<  "!"

         Accept?
No
No
No
No

< B < 0ÐBÑ
!Þ!*' "!Þ*' !Þ&'* !Þ!"*#
!Þ''& "'Þ'& !Þ('% !Þ"$&!
!Þ)%# ")Þ%# !Þ%*# !Þ"')%
!Þ##% "#Þ#% !Þ*&! !Þ!%%)
!Þ'"! "'Þ"! !

" #

Þ"%& !Þ"##!
!Þ%)% "%Þ)% !Þ&&# !Þ!*')
!Þ$&! "$Þ&! !Þ&*! !Þ!(!!
!Þ%$! "%Þ$! !Þ!%" !Þ!)'!
!Þ)!# ")Þ!# !Þ%(" !Þ"'!%
!Þ#&& "#Þ&& !Þ(** !Þ!&"!

No
No
No
Yes
No
No

!Þ'!) "'Þ!) !Þ&(( !Þ"#"'
!Þ$%( "$Þ%( !Þ*$$ !Þ!'*%
!Þ&)" "&Þ)" !Þ"($ !Þ""'#
!Þ'!$ "'Þ!$ !Þ!%! !Þ"#!'
!Þ'!& "'Þ!& !Þ)%# !Þ"#"!
!Þ(#! "(Þ#! !Þ

No
No
No
Yes
No

%%* !Þ"%%!
!Þ!(' "!Þ(' !Þ%!( !Þ!"&#
!Þ#!# "#Þ!# !Þ*'$ !Þ!%!%
!Þ%"# "%Þ"# !Þ$'* !Þ!)#%
!Þ*(' "*Þ(' !Þ"(" !Þ"*&#

No
No
No
No
Yes

The three samples from the given distribution are , and ."%Þ$!ß "'Þ!$ "*Þ('

20.4-17.

 size of risk
if 
if 
if 

œ
! ! Ÿ Y  !Þ(
" !Þ( Ÿ Y  !Þ*
# !Þ* Ÿ Y  "

Ú
ÛÜ

 size of loss if ½
if ½B œ

Ð#!YÑ ! Ÿ Y 
#!!Y Y  œ #

      Run 1      Run 2                
   size    size

    
    
    
    

Y Y !Þ)%# "'%Þ%
!Þ!*' ! !Þ%*# !
!Þ&'* ! !Þ##% !
!Þ''& ! !Þ*&! #
!Þ('% " !Þ'"! !

Y B Y B
!Þ"%& )Þ%"
!Þ%)% *"Þ!*

   
  

Total loss: ! !
3œ" 4œ"

%

Ð !Ñ 34M Bsize
size

Two simulation runs give  and . Actually,  runs give ."'%Þ% **Þ& "!! "%&
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20.4-18.

Since the number  of employees incurring medical expenses has a binomial distributionR
with  and :: œ !Þ* 8 œ $

 ,TÖR œ !× œ G † !Þ* † !Þ" œ !Þ!!"$
! ! $

 ,TÖR œ "× œ G † !Þ* † !Þ" œ !Þ!#($
" " #

 ,TÖR œ #× œ G † !Þ* † !Þ" œ !Þ#%$$
# # "

 .TÖR œ $× œ G † !Þ* † !Þ" œ !Þ(#*$
$ $ !

Let .: œ !ß : œ !Þ!!"ß : œ !Þ!#)ß : œ !Þ#("ß : œ "! " # $ %

  if R œ 3 : Ÿ Y  :3 3"

 !Þ!" Ê R œ "ß !Þ#! Ê R œ #

 Total amount if 
if œ

"!! ! Ÿ Y  !Þ*
"!ß !!! !Þ* Ÿ Y  "œ

Only  causes an actual payment from the insurance company and the total payment is!Þ*&
$ .&ß !!!

20.5-1.

AT&T uses a discrete event simulation model to simulate inbound call centers. "The call
processing simulator (CAPS) simulates the interactive behavior of the operational
variables in inbound call centers. AT&T uses CAPS to propose optimal staffing, trunking
(number of phone lines), network routing, and premises routing. CAPS can demonstrate
cost/benefit trade-offs and can show the implications of good versus bad service levels. It
can also show the effects of proposed operational changes in an inbound call center,
using what-if scenarios" [p. 9]. Simulation allows modeling complex systems and
evaluating different modes of operation without changing the actual operation of the call
center. Three steps of the CAPS process are data collection, data case simulation and
alternative scenario simulation.

As a result of this study, "AT&T has increased, protected, and regained more than $1
billion from a business customer base of about 2,000 accounts per year. Much of its
effective market and revenue-share management results from using CAPS to demonstrate
advanced 800 network features. CAPS is vital to the marketability of such new and
exclusive AT&T 800 network offerings" [p. 20]. The revenues are increased also from
equipment sales to business customers whose need for new equipment is shown by CAPS
studies. This study improved AT&T's consultative profile, its credibility and the
profitability of 800 services. It also reduced the access charges and the overhead. The
benefits of the study for business customers include reduced overhead costs due to the
reduction in labor costs, increased call completion, reduced queue time, optimal
utilization of operators, increased revenues, higher customer satisfaction and repeated
sales.
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20.6-1.

(a) Answers will vary. A typical set of 5 runs: Ð%&Þ(#ß %%Þ#%ß %'Þ')ß %'Þ#%ß %(Þ*!Ñ

(b) Answers will vary. A typical set of 5 runs: Ð%'Þ'!ß %(Þ!'ß %'Þ'(ß %'Þ('ß %'Þ)%Ñ

(c) The mean profits in part (b) seem to be more consistent.

20.6-2.
 

1
2
3
4
5
6
7
8
9

10
11
12
13

A B C D E F G H I J K
Now Year 1 Year 2 Year 3 Year 4 Year 5

Land Purchase Fixed -1
Construction Cost Triangular(min,likely,max) -2.4 -2 -1.6 -2
Operating Profit Normal(mean,s.dev.) 0.7 0.7 0.7 0.7 0.7 0.7
Selling Price Uniform(min,max) 4 8 6

Total Cash Flow -1 -2 0.7 0.7 0.7 6.7

Discount Factor 10%

Net Present Value ($million) 2.925

Minimum Annual Operating Profit ($mill ion in y2-y5) 0.700

(a) The mean NPV is approximately $  million.#Þ*

(b) The probability that the NPV will be at least $  million is approximately %.# ((
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(c) The mean value of the minimum annual operating profit is approximately zero.

(d) The probability that the minimum annual operating profit will be at least zero in all
four years of operation is approximately %.%*Þ*

20.6-3.

The expected cost with the proposed system of replacing all relays whenever any one of them
fails is approximately $  per hour. This is cheaper than the current system of replacing#Þ$(
each relay as it fails. Therefore, they should replace all four relays with the first failure.

 
1
2
3
4
5
6
7
8
9

10
11
12

A B C D E
Time to
Failure
(hours) Min Max

Relay 1 1,500 Uniform 1,000 2,000
Relay 2 1,500 Uniform 1,000 2,000
Relay 3 1,500 Uniform 1,000 2,000
Relay 4 1,500 Uniform 1,000 2,000

Time to First Failure 1,500
Time to End of Shutdown 1,502

Total Cost $2,800
Cost per Hour $1.86
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20.6-4.

The chance of negative clearance is approximately %.")Þ%

 
1
2
3
4

A B C D E F
Shaft Radius 1.001 Triangular(min,likely,max) 1.000 1.001 1.002

Bushing Radius 1.002 Normal(mean,st.dev.) 1.002 0.001

Clearance 0.0010
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20.6-5.
 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

A B C D E F G H I
Toss Die 1 Die 2 Sum Win? Lose? Continue? Win

1 4 4 7 Yes No No Game?
2 4 4 7 #N/A #N/A #N/A (1=yes,0=no)
3 4 4 7 #N/A #N/A #N/A 1
4 4 4 7 #N/A #N/A #N/A
5 4 4 7 #N/A #N/A #N/A
6 4 4 7 #N/A #N/A #N/A
7 4 4 7 #N/A #N/A #N/A
8 4 4 7 #N/A #N/A #N/A
9 4 4 7 #N/A #N/A #N/A

10 4 4 7 #N/A #N/A #N/A
11 4 4 7 #N/A #N/A #N/A
12 4 4 7 #N/A #N/A #N/A
13 4 4 7 #N/A #N/A #N/A
14 4 4 7 #N/A #N/A #N/A
15 4 4 7 #N/A #N/A #N/A
16 4 4 7 #N/A #N/A #N/A
17 4 4 7 #N/A #N/A #N/A
18 4 4 7 #N/A #N/A #N/A
19 4 4 7 #N/A #N/A #N/A
20 4 4 7 #N/A #N/A #N/A
21 4 4 7 #N/A #N/A #N/A
22 4 4 7 #N/A #N/A #N/A
23 4 4 7 #N/A #N/A #N/A
24 4 4 7 #N/A #N/A #N/A
25 4 4 7 #N/A #N/A #N/A
26 4 4 7 #N/A #N/A #N/A
27 4 4 7 #N/A #N/A #N/A
28 4 4 7 #N/A #N/A #N/A
29 4 4 7 #N/A #N/A #N/A
30 4 4 7 #N/A #N/A #N/A

(a) Answers will vary. The mean standard error is approximately , so the typical!Þ!&
values should be between  and .!Þ%% !Þ&%
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(b) Answers will vary. The mean standard error is approximately , so the typical!Þ!"'
values should be between  and .!Þ%(' !Þ&!*

(c) Answers will vary. The mean standard error is approximately , so the typical!Þ!!&
values should be between  and .!Þ%)( !Þ%*(

(d) Answers will vary. There is a fair amount of variability in the number of wins, so a
large number of iterations, say , is necessary to predict the true probability. With"!ß !!!
"!ß !!! !Þ!!( iterations, the mean standard error is less than .
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20.6-6.

The order quantity that maximizes the mean profit is approximately .&&

O
rder Q

uantity (50)

O
rder Q

uantity (51)

O
rder Q

uantity (52)

O
rder Q

uantity (53)

O
rder Q

uantity (54)

O
rder Q

uantity (55)

O
rder Q

uantity (56)

O
rder Q

uantity (57)

O
rder Q

uantity (58)

O
rder Q

uantity (59)

O
rder Q

uantity (60)

$46.67 $46.97 $47.20 $47.36 $47.46 $47.50 $47.46 $47.36 $47.20 $46.96 $46.66

20.7-1.

Answers will vary.

20.7-2.

Answers will vary.
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CASE 20.2 Action Adventures 
(a) The spreadsheet model is spread over the next several pages: 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

A B C D E F G H I
Cost & Revenue Data Interest Rate Data

Selling Price $10 Initial Prime Rate 5%
Replacement Part Cost $5,000 Loan Rate Prime Gap 2%

Monthly Fixed Cost $15,000 Loan Rate Maximum 9%
Minimum Balance $20,000 Savings Rate Prime Gap -2%

Starting Balance $25,000 Savings Rate Minimum 2%

Sales Dec Jan Feb Mar Apr May June July
Seasonality Index 1.18 0.79 0.88 0.95 1.05 1.09 0.84 0.74

Base Sales 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000
Actual Sales 7,080 4,740 5,280 5,700 6,300 6,540 5,040 4,440

Fraction Cash Customers 42% 39% 39% 39% 39% 39% 39% 39%

Interest Rates
Prime Rate Change 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Prime Rate 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00%
Loan Interest Rate 7.00% 7.00% 7.00% 7.00% 7.00% 7.00% 7.00% 7.00%

Savings Interest Rate 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00%

Manufacturing Costs
Replacement Parts Needed 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Variable Cost $7 $7 $7 $7 $7 $7 $7

Cash Flows
Beginning Balance $25,000 $32,962 $27,479 $23,827 $20,762 $20,533 $26,469

Cash Receipts $18,328 $20,416 $22,040 $24,360 $25,288 $19,488 $17,168
30-Day Credit Receipts $41,064 $29,072 $32,384 $34,960 $38,640 $40,112 $30,912

Fixed Cost -$15,000 -$15,000 -$15,000 -$15,000 -$15,000 -$15,000 -$15,000
Total Variable Cost -$33,180 -$36,960 -$39,900 -$44,100 -$45,780 -$35,280 -$31,080

Repair Cost -$4,000 -$4,000 -$4,000 -$4,000 -$4,000 -$4,000 -$4,000
Loan Payoff $0 $0 $0 $0 $0 $0 $0

Loan Interest $0 $0 $0 $0 $0 $0 $0
Savings Interest $750 $989 $824 $715 $623 $616 $794

Balance Before Loan $32,962 $27,479 $23,827 $20,762 $20,533 $26,469 $25,263
New Loan $0 $0 $0 $0 $0 $0 $0

Ending Balance $25,000 $32,962 $27,479 $23,827 $20,762 $20,533 $26,469 $25,263
>= >= >= >= >= >= >=

Minimum Balance $20,000 $20,000 $20,000 $20,000 $20,000 $20,000 $20,000

Ending Net Worth $57,681

Maximum Loan $7,507
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

A B C
Cost & Revenue Data

Selling Price 10
Replacement Part Cost 5000

Monthly Fixed Cost 15000
Minimum Balance 20000

Starting Balance 25000

Sales Dec Jan
Seasonality Index 1.18 0.79

Base Sales 6000 6000
Actual Sales =SeasonalityIndex*BaseSales =SeasonalityIndex*BaseSales

Fraction Cash Customers 0.42 0.386666666666667

Interest Rates
Prime Rate Change 1.6784487245436E-19

Prime Rate =InitialPrimeRate =B16+PrimeRateChange
Loan Interest Rate =MIN(PrimeRate+LoanRateGap,LoanRateMax) =MIN(PrimeRate+LoanRateGap,LoanRateMax)

Savings Interest Rate =MAX(PrimeRate+SavingsRateGap,SavingsRateMin) =MAX(PrimeRate+SavingsRateGap,SavingsRateMin)

Manufacturing Costs
Replacement Parts Needed 0.8

Variable Cost 7

Cash Flows
Beginning Balance =B37

Cash Receipts =ActualSales*FractionCashCustomers*SellingPrice
30-Day Credit Receipts =B11*(1-B12)*SellingPrice

Fixed Cost =-MonthlyFixedCost
Total Variable Cost =-VariableCost*ActualSales

Repair Cost =-ReplacementPartsNeeded*ReplacementPartCost
Loan Payoff =-B36

Loan Interest =-B36*B17
Savings Interest =B37*B18

Balance Before Loan =SUM(C26:C34)
New Loan =IF(BalanceBeforeLoan<=MinimumBalance,MinimumBalance-BalanceBeforeLoan,0)

Ending Balance =StartingBalance =BalanceBeforeLoan+NewLoan
>=

Minimum Balance =MinimumBalance

Ending Net Worth =O35

Maximum Loan =MAX(NewLoan)
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

A J K L M N O P Q R

Selling Price
Replacement Part Cost

Monthly Fixed Cost
Minimum Balance

Starting Balance

Sales August Sept October November December January
Seasonality Index 0.98 1.06 1.1 1.16 1.18

Base Sales 6,000 6,000 6,000 6,000 6,000 Normal prev mo. 500
Actual Sales 5,880 6,360 6,600 6,960 7,080

Fraction Cash Customers 39% 39% 39% 39% 39% Triangular 28% 40% 48%

Interest Rates
Prime Rate Change 0.00% 0.00% 0.00% 0.00% 0.00% Custom -0.50% 0.05

Prime Rate 5.00% 5.00% 5.00% 5.00% 5.00% -0.25% 0.1
Loan Interest Rate 7.00% 7.00% 7.00% 7.00% 7.00% 0% 0.7

Savings Interest Rate 3.00% 3.00% 3.00% 3.00% 3.00% 0.25% 0.1
0.50% 0.05

Manufacturing Costs
Replacement Parts Needed 0.8 0.8 0.8 0.8 0.8 Binomial 10% 8

Variable Cost $7 $7 $7 $7 $7 Uniform $6 $8

Cash Flows
Beginning Balance $25,263 $20,000 $20,000 $20,000 $20,000 $20,000

Cash Receipts $22,736 $24,592 $25,520 $26,912 $27,376
30-Day Credit Receipts $27,232 $36,064 $39,008 $40,480 $42,688 $43,424

Fixed Cost -$15,000 -$15,000 -$15,000 -$15,000 -$15,000
Total Variable Cost -$41,160 -$44,520 -$46,200 -$48,720 -$49,560

Repair Cost -$4,000 -$4,000 -$4,000 -$4,000 -$4,000
Loan Payoff $0 -$4,171 -$6,727 -$7,270 -$7,507 -$5,928

Loan Interest $0 -$292 -$471 -$509 -$525 -$415
Savings Interest $758 $600 $600 $600 $600 $600

Balance Before Loan $15,829 $13,273 $12,730 $12,493 $14,072 $57,681
New Loan $4,171 $6,727 $7,270 $7,507 $5,928

Ending Balance $20,000 $20,000 $20,000 $20,000 $20,000
>= >= >= >= >=

Minimum Balance $20,000 $20,000 $20,000 $20,000 $20,000

Ending Net Worth

Maximum Loan
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

A N O

Selling Price
Replacement Part Cost

Monthly Fixed Cost
Minimum Balance

Starting Balance

Sales December January
Seasonality Index 1.18

Base Sales 6000 Normal
Actual Sales =SeasonalityIndex*BaseSales

Fraction Cash Customers 0.386666666666667 Triangular

Interest Rates
Prime Rate Change 1.6784487245436E-19 Custom

Prime Rate =M16+PrimeRateChange
Loan Interest Rate =MIN(PrimeRate+LoanRateGap,LoanRateMax)

Savings Interest Rate =MAX(PrimeRate+SavingsRateGap,SavingsRateMin)

Manufacturing Costs
Replacement Parts Needed 0.8 Binomial

Variable Cost 7 Uniform

Cash Flows
Beginning Balance =M37 =N37

Cash Receipts =ActualSales*FractionCashCustomers*SellingPrice
30-Day Credit Receipts =M11*(1-M12)*SellingPrice =N11*(1-N12)*SellingPrice

Fixed Cost =-MonthlyFixedCost
Total Variable Cost =-VariableCost*ActualSales

Repair Cost =-ReplacementPartsNeeded*ReplacementPartCost
Loan Payoff =-M36 =-N36

Loan Interest =-M36*M17 =-N36*N17
Savings Interest =M37*M18 =N37*N18

Balance Before Loan =SUM(N26:N34) =SUM(O26:O34)
New Loan =IF(BalanceBeforeLoan<=MinimumBalance,MinimumBalance-BalanceBeforeLoan,0)

Ending Balance =BalanceBeforeLoan+NewLoan
>=

Minimum Balance =MinimumBalance

Ending Net Worth

Maximum Loan
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The range names are as follows: 

Range Name Cells
ActualSales B11:N11
BalanceBeforeLoan C35:N35
BaseSales B10:N10
BeginningBalance C26:N26
CashReceipts C27:N27
CreditReceipts C28:N28
EndingBalance C37:N37
EndingNetWorth B41
FixedCost C29:N29
FractionCashCustomers B12:N12
InitialPrimeRate G2
LoanInterest C33:N33
LoanPayoff C32:N32
LoanRate B17:N17
LoanRateGap G3
LoanRateMax G4
MaximumLoan B43
MinimumBalance B5
MonthlyFixedCost B4
NewLoan C36:N36
PrimeRate B16:N16
PrimeRateChange C15:N15
RepairCost C31:N31
ReplacementPartCost B3
ReplacementPartsNeeded C21:N21
SavingsInterest C34:N34
SavingsRate B18:N18
SavingsRateGap G5
SavingsRateMin G6
SeasonalityIndex B9:N9
SellingPrice B2
StartingBalance B6
TotalVariableCost C30:N30
VariableCost C23:N23
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(b) The mean ending net worth is approximately $54.7 thousand. The probability that it will be 
greater than $0 is approximately 85.8%. 

(c) The maximum short-term loan is forecasted in cell B43. The cumulative chart and percentile 
chart follow. These charts indicate that the maximum short-term loan averages just over $25 
thousand. However, to be fairly sure that the credit limit is high enough, it should probably be set 
quite a bit higher. The cumulative chart shows the probability that any given credit limit will be 
large enough. For example, a $75 thousand credit limit has about a 95% chance of being sufficient. 
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Overall recommendation: Proposal 1 appears to be the most worthwhile with a net
savings of about $36/hour over the current situation. Other proposals that may be worth
looking into should include giving priority to platen castings, because of the higher
waiting cost for that type of job.

20-56



CASE 20.4 Pricing under Pressure

(a) Before we begin the formal problem, we must first calculate the mean � and standard deviation 
� of the normally distributed random variable N.  We are told that the annual interest rate will be 
used to estimate � and the historical annual volatility will be used to estimate �.  Because the case 
is simulating weekly – not yearly – change, we must convert these yearly values to weekly values. 

We first convert the annual interest rate r = 8% to a weekly interest rate w with the following 
formula: 

   w = (1 + r)(1/52) – 1 
    = (1 + 0.08)(1/52) – 1 
    = (1.08)(1/52) – 1 
    = 0.00148 

We next convert the annual volatility Va = 0.30 to a weekly volatility Vw with the following 
formula: 

   Vw = Va / �52
    = 0.30 / �52
    = 0.0416 

Once we have the weekly interest rate and volatility, we can calculate � and �.

   � = w – 0.5(Vw)2

    = 0.00148 – 0.5(0.0416)2

    = 0.0006 

   � = Vw
    = 0.0416 

1. One component appears in this system:  the stock price.  The stock price in the previous week is 
used to calculate the stock price in the next week.  The relationship between the stock price in the 
previous week and the stock price in the next week is given by sn = eN sc.

2. State of the system:  P(t) = price of the stock at time t.
3.  This simulation requires generating a series of random observations from the normal 
distribution.  Each random observation is a normally distributed random variable that determines 
the increase or decrease of the stock price at the end of next week.  The random variable is 
substituted for N in the following equation: 

    sn = eN sc
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To generate a series of random variables, we define an assumption cell with normal distribution, 
where � = 0.0006 and � = 0.0416. 

4. The formula sn  = eN sc gives us a procedure for changing the price (the state of the system) 
when an event occurs.   

5. In this simulation, the time periods are fixed.  We have a twelve-week period, and we need to 
calculate the change in the stock price each week.  We have a formula sn  = eN sc that relates the 
stock price at the end of the next week to the stock price at the end of the previous week.  Thus, we 
do not have to worry about advancing the clock.  We simply have to generate N for each of the 
twelve weeks.

6. We need to build a spreadsheet using the Crystal Ball.  We start with the current stock price of 
$42.00.  We then use the formula sn  = eN sc to calculate the stock price at the end of each of the 
twelve weeks.  We substitute a Crystal Ball assumption cell with normal distribution (with mean �
= 0.0006, and standard deviation � = 0.0416) for N.

We then use the stock price at the end of the twelfth week to calculate the value of the option at the 
end of the twelfth week.  If the stock price at the end of the twelfth week is greater than the 
exercise price of $44.00, the value of the option is the difference between the value of the stock at 
the end of the twelfth week and the exercise price.  If the stock price at the end of the twelfth week 
is less than or equal to the exercise price of $44.00, the value of the option is $0. 

Finally, we need to discount the value of the option at the end of the twelfth week to the value of 
the option in today’s dollars using the following formula: 

 (Value of the option at the end of the twelfth week) / (1.00148)12

The spreadsheet model is shown below. The assumption cells are the N values (B8:B19), and the 
forecast cell is the price of the option today (C22). 
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

A B C D E F

Simulation Model to Estimate Option Value

Current Stock Price $42.00 Annual Interest Rate 8%
Exercise Price $44.00 Weekly Interest Rate 0.148%

Stock Price at Annual Volatility 30%
Week N End of Week Weekly Volatility 4.160%

1 0.000615731 $42.03
2 0.000615731 $42.05 ��� 0.0006
3 0.000615731 $42.08 ��� 0.0416
4 0.000615731 $42.10
5 0.000615731 $42.13
6 0.000615731 $42.16
7 0.000615731 $42.18
8 0.000615731 $42.21
9 0.000615731 $42.23

10 0.000615731 $42.26
11 0.000615731 $42.29
12 0.000615731 $42.31

Price of Option at end of Week 12 $0.00
Price of Option Today $0.00

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

A B C
Current Stock Price 42

Exercise Price 44

Stock Price at
Week N End of Week

1 0.000615731176617215 =CurrentStockPrice*EXP(B8)
2 0.000615731176617215 =EXP(B9)*C8
3 0.000615731176617215 =EXP(B10)*C9
4 0.000615731176617215 =EXP(B11)*C10
5 0.000615731176617215 =EXP(B12)*C11
6 0.000615731176617215 =EXP(B13)*C12
7 0.000615731176617215 =EXP(B14)*C13
8 0.000615731176617215 =EXP(B15)*C14
9 0.000615731176617215 =EXP(B16)*C15
10 0.000615731176617215 =EXP(B17)*C16
11 0.000615731176617215 =EXP(B18)*C17
12 0.000615731176617215 =EXP(B19)*C18

Price of Option at end of Week 12 =IF(C19>ExercisePrice,C19-ExercisePrice,0)
Price of Option Today =C21/(1+WeeklyInterestRate)^12
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Range Name Cells
AnnualInterestRate F3
AnnualVolatility F6
CurrentStockPrice C3
ExercisePrice C4
Mean F9
PriceOfOption C22
StandardDeviation F10
WeeklyInterestRate F4
WeeklyVolatility F7

3
4
5
6
7
8
9
10

E F
Annual Interest Rate 0.08
Weekly Interest Rate =((1+AnnualInterestRate)^(1/52))-1

Annual Volatility 0.3
Weekly Volatility =AnnualVolatility/SQRT(52)

��� =WeeklyInterestRate-0.5*(WeeklyVolatility^2)
��� =WeeklyVolatility

The mean of the “Price of Option Today” is the price of the option in today’s dollars. The 
simulation results after 100, 500, and 1,000 trials are shown below. 
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(b) Using the Black-Scholes Formula, the price of the option is $1.88.  The spreadsheet used to 
calculate the Black-Scholes Formula in Excel follows: 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

A B C D E F

Black-Scholes Calculation of Option Value

Current Stock Price $42.00 Black-Scholes
d1 = -0.127503153

Weeks to exercise date 12 d2 = -0.271618491
Exercise Price $44.00

Exercise Price Present Value $43.23 N[d1] = 0.449271051
N[d2] = 0.39295775

Annual Interest Rate 8%
Weekly Interest Rate 0.148% Value = $1.88

Annual Volatility 30%
Weekly Volatility 4.160%

��� 0.0006
��� 0.0416

3
4
5
6
7
8
9
10

E F
Black-Scholes

d1 = =LN(CurrentStockPrice/ExercisePricePV)/(StandardDeviation*SQRT(WeeksToExerciseDate))+StandardDe
d2 = =d_1-StandardDeviation*SQRT(WeeksToExerciseDate)

N[d1] = =NORMSDIST(d_1)
N[d2] = =NORMSDIST(d_2)

Value = =Nd1*CurrentStockPrice-Nd2*ExercisePricePV

Range Name Cells
AnnualInterestRate C9
AnnualVolatility C12
CurrentStockPrice C3
d_1 F4
d_2 F5
ExercisePrice C6
ExercisePricePV C7
Mean C15
Nd1 F7
Nd2 F8
StandardDeviation C16
Value F10
WeeklyInterestRate C10
WeeklyVolatility C13
WeeksToExerciseDate C5

The price of the option obtained by simulation and the price of the option obtained by the Black-
Scholes formula are fairly close.  The 1,000-iteration simulation price is off by just thirteen cents. 
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(c) No, a random walk does not completely describe the price movement of the stock because the 
random walk assumes a consistent lognormal increase or decrease in the price of the stock.  The 
price of the stock could change according to a different distribution, however, especially if an 
event occurs to trigger a dramatic increase or decrease in the stock.  In this case, the European 
Space Agency may award Fellare the International Space Station contract.  The award notice 
would most likely trigger a dramatic movement in the stock.  The random walk does not take into 
account this dramatic event. 
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20S1-1

SUPPLEMENT 1 TO CHAPTER 20

VARIANCE-REDUCING TECHNIQUES

20S1-1.

(a)

 < œ TÖ\ Ÿ B× œ œ "  Ê B œ'
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B .> " "
> B "<#

     
     
     
     
     
     
     
     
   

< B œ "ÎÐ"  <Ñ
!Þ!*' "Þ"!'
!Þ&'* #Þ$#!
!Þ''& #Þ*)&
!Þ('% %Þ#$(
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!Þ##% "Þ#)*
!Þ*&! #!Þ!!!
!Þ'"! #Þ&'%
!Þ"%& "Þ"(!

     
     

 .s œ œ %Þ$*'*%$Þ*'*
"!

(b) Stratum 1: < œ !Þ!  !Þ'<w

 Stratum 2: < œ !Þ'  !Þ$<w

 Stratum 3: < œ !Þ*  !Þ"<w

Let  denote the sampling weight.A

 Stratum           
          ½   
          ½   
          

< < B œ "ÎÐ"  < Ñ A BÎA
" !Þ!*' !Þ!&) "Þ!'# #Þ"#%
" !Þ&'* !Þ$%" "Þ&"( $Þ!$%
" !Þ''& !Þ$** "Þ''

w w

% $Þ$#)
# !Þ('% !Þ)#* &Þ)%) " &Þ)%)
# !Þ)%# !Þ)&$ 'Þ)!$ " 'Þ)!$
# !Þ%*# !Þ(%) $Þ*') " $Þ*')
$ !Þ##% !Þ*##
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"#Þ)#" % $Þ#!&
$ !Þ*&! !Þ**& #!!Þ!!! % &!Þ!!!
$ !Þ'"! !Þ*'" #&Þ'%" % 'Þ%"!
$ !Þ"%& !Þ*"& ""Þ('& % #Þ*%"

 .s œ œ )Þ(''")(Þ''"
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(c)
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20S1-3.

(a)

 if 
if \ œ
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(b) Stratum 1: < œ !Þ!  !Þ*<‡

 Stratum 2:  < œ !Þ*  !Þ"<ß B œ "!!Ð<  !Þ*Ñ  &‡ ‡

 Stratum             
      
      
      
    

< < B A BÎA
" !Þ!*' !Þ!)'% !Þ!! #Î* !Þ!!
# !Þ''& !Þ*''& ""Þ'& ) "Þ%'
# !Þ)%# !Þ*)%# "$Þ%# ) "Þ')
# !Þ##% !Þ*##

‡

% (Þ#% ) !Þ*!&
# !Þ'"! !Þ*'"! ""Þ"! ) "Þ$*

    
      

 .s œ œ "Þ!)(&Þ%$&
&

20S1-4.

(a)  to  correspond to a minor repair.!Þ!!!! !Þ$***
  to  correspond to a major repair.!Þ%!!! !Þ****

Random observations: major, minor, major!Þ(#&' œ !Þ!)"( œ !Þ%$*# œ

Using random numbers, generate length of each repair:  hours  hours,"Þ##%$ ß !Þ*&!$
"Þ'"!% hours. Then the average repair time is

  hours.Ð"Þ##%$  !Þ*&!$  "Þ'"!%ÑÎ$ œ "Þ#'

(b)

 
(c)

 if 
if JÐBÑ œ

!Þ%B ! Ÿ B Ÿ "
!Þ%  !Þ'ÐB  "Ñ B   "œ

  hoursJÐBÑ œ !Þ##%$ Ê B œ !Þ&'"
  hoursJÐBÑ œ !Þ*&!$ Ê B œ "Þ*"(
  hoursJÐBÑ œ !Þ'"!% Ê B œ "Þ$&"

 Average repair time:  hoursÐ!Þ&'"  "Þ*"(  "Þ$&"ÑÎ$ œ "Þ#)

(d)  hoursJÐBÑ œ !Þ((&( Ê B œ "Þ'#'
  hoursJÐBÑ œ !Þ!%*( Ê B œ !Þ"#%
  hoursJÐBÑ œ !Þ$)*' Ê B œ !Þ*(%

 Average repair time:  hoursÐ"Þ'#'  !Þ"#%  !Þ*(%ÑÎ$ œ !Þ*"
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(e) Average repair time:

  hoursÐ!Þ&'"  "Þ*"(  "Þ$&"  "Þ'#'  !Þ"#%  !Þ*(%ÑÎ' œ "Þ!*

(f) The method of complementary random numbers in (e) gave the closest estimate. It
performs well because using complements helps counteract rather extreme random
numbers such as .!Þ*&!$

(g) Results will vary. The following 300-day simulation using the method of
complementary random numbers yielded an overall average service time of "Þ!*&
minutes. This is very close to the true mean, which is  minutes."Þ"

Random Service  Complimentary Complimentary
Day Number  Time Random Number  Service Time
  1  0.1348  0.337       0.8652      1.775
  2  0.6798  1.466       0.3202      0.800
  3  0.7941  1.657       0.2059      0.515
  4  0.1825  0.456       0.8175      1.696
  5  0.6502  1.417       0.3498      0.874
  6  0.1088  0.272       0.8912      1.819
  7  0.1153  0.288       0.8847      1.808
297  0.5456  1.243       0.4544      1.091
298  0.3514  0.878       0.6486      1.414
299  0.8990  1.832       0.1010      0.253
300  0.1544  0.386       0.8456      1.743

Average  1.102      1.088
Overall Average       1.095

(h) We get  for minor repair times and!Þ(#&'ß !Þ#(%%ß !Þ!)"(ß !Þ*")$ß !Þ%$)#ß !Þ&'!)
"Þ##%$ß "Þ((&(ß "Þ*&!$ß "Þ!%*(ß "Þ'"!%ß "Þ$)*' for major repair times. The weight for
minor repair times is  and the weight for major repair times isÐ'Î"#ÑÎ!Þ% œ "Þ#&
Ð'Î"#ÑÎ!Þ' œ "Þ!)* "Þ". By dividing each sample by its corresponding weight, we obtain 
minutes as the estimate of the mean of the overall distribution of repair times.

20S1-5.

(a)  to  correspond to no claims filled.!Þ!!!! !Þ$***
  to  correspond to small claims filled.!Þ%!!! !Þ(***
  to  correspond to large claims filled.!Þ)!!! !Þ****

Random observations: small, no, small!Þ(#&' œ !Þ!)"( œ !Þ%$*# œ

Using random numbers, generate size of each claim:

 $ $ , $ .!Þ##%$ † #ß !!! œ %%)Þ'!ß ! !Þ'"!% † #ß !!! œ "ß ##!Þ)!

Then the average claim size is

 $ .Ð%%)Þ'!  !  "ß ##!Þ)!ÑÎ$ œ &&'Þ%(
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(b)

(c)

 
if 
if 

if 
JÐBÑ œ

! B  !
!Þ%  !Þ% ! Ÿ B Ÿ #ß !!!

!Þ)  !Þ# #ß !!! Ÿ B Ÿ #!ß !!!

ÚÝÛÝÜ
B

#ß!!!
ÐB#ß!!!Ñ
")ß!!!

 $JÐBÑ œ !Þ##%$ Ê B œ !
 $JÐBÑ œ !Þ*&!$ Ê B œ "&ß &#(
 $JÐBÑ œ !Þ'"!% Ê B œ "ß !&#

 Average claim size: $ $ $ $Ð !  "&ß &#(  "ß !&#ÑÎ$ œ &ß &#'Þ$$

(d) $JÐBÑ œ !Þ((&( Ê B œ "ß ))!
 $JÐBÑ œ !Þ!%*( Ê B œ !
 $JÐBÑ œ !Þ$)*' Ê B œ !

 Average claim size: $ $ $ $Ð "ß ))!  !  !ÑÎ$ œ '#'Þ'(

(e) Average claim size: $ $ $ $ $ $ $Ð !  "&ß &#(  "ß !&#  "ß ))!  !  !ÑÎ' œ $ß !('Þ&!

(f) The method of complementary random numbers in (e) gave the closest estimate. It
performs well because using complements helps counteract rather extreme random
numbers such as .!Þ*&!$

(g) Results will vary. The following 300-day simulation using the method of
complementary random numbers yielded an overall average claim size of $ .#ß &%(Þ"&
This is very close to the true mean, which is $ .#ß '!!
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(h) We get , , , , ,  for small claims and ,"%&"Þ# "'$Þ% )()Þ% &%)Þ) ")$'Þ' ""#"Þ' '!$(Þ%
"*"!&Þ% "#*)(Þ# "&*'#Þ' #)*%Þ' *!"#Þ), , , ,  for large claims. The weight for small claims
is  and the weight for large claims is . By dividingÐ'Î"#ÑÎ!Þ% œ "Þ#& Ð'Î"#ÑÎ!Þ# œ #Þ&
each sample by its corresponding weight, we obtain $  as the estimate of the mean#ß '!!
of the overall distribution of claim sizes.

20S1-6.
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20S1-7.
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20S1-8.

(a)

  

if if 
if if 
if if 
if if 

TÖ\ œ 5× œ \ œ
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(b) Sample mean: Ð%  &ÑÎ' œ "Þ&

(c)
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 sample mean: $Î$ œ "

(d) < œ Ö!Þ*!%ß !Þ%$"ß !Þ$$&× Ê \ œ #" "
‡ ‡

 < œ Ö!Þ#$'ß !Þ"&)ß !Þ&!)× Ê \ œ ## #
‡ ‡

 < œ Ö!Þ(('ß !Þ!&!ß !Þ$*!× Ê \ œ #$ $
‡ ‡

 sample mean: Ð$  'ÑÎ$ œ $
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20S1-9.

(a)

 Shaft radius: < œ %!!/ .> œ "  / Ê = œ " = "
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" !Þ%)% "Þ!!"'&% !Þ&&# !Þ""! "Þ!!""! "Î$
# !Þ$&! "Þ!!"!(( !Þ&*! !Þ%$' "Þ!!%$

           
               
    ' !

# !Þ%$! "Þ!!"%!& !Þ!%" !Þ#"' "Þ!!#"' !
$ !Þ)!# "Þ!!"%!& !Þ%(" !Þ()) "Þ!!()) !
$ !Þ#&& "Þ!!!

             
                 
                 
    ($' !Þ(** !Þ*#! "Þ!!*#! !             

Estimated probability of interference: %Î$! œ #Î"&
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(c)

                   ?           
No Yes
No

< = < , =  , = , =  ,
!Þ!*' "Þ!!!#&# !Þ&'* "Þ!!&'* "Þ!!&)&* "Þ!!%$"
!Þ''& "Þ!!#($% !Þ('% "Þ!!('% "Þ!!"!#!

= ,
w w w w

"Þ!!#$'
!Þ)%# "Þ!!%'"$ !Þ%*# "Þ!!%*# "Þ!!!%$! "Þ!!&!)
!Þ##% "Þ!!!'$% !Þ*&! "Þ!!*&! "Þ!!$(%! "Þ!!!&!
!Þ'"! "Þ!!#$&% !Þ"%& "Þ!!"%& "Þ

No
No No
No Yes
Yes !!"#$' "Þ!!)&&

!Þ%)% "Þ!!"'&% !Þ&&# "Þ!!&&# "Þ!!")"% "Þ!!%%)
!Þ$&! "Þ!!"!(( !Þ&*! "Þ!!&*! "Þ!!#'#& "Þ!!%"!
!Þ%$! "Þ!!"%!& !Þ!%" "Þ!!!%"

No
No No
No No
Yes No
No Yes
No Yes

"Þ!!#""! "Þ!!*&*
!Þ)!# "Þ!!%!%) !Þ%(" "Þ!!%(" "Þ!!!&&# "Þ!!&#*
!Þ#&& "Þ!!!($' !Þ(** "Þ!!(** "Þ!!$%"' "Þ!!#!"

Estimated probability of interference: %" " #
# & &Š ‹ œ $!

Summary:

Method: Monte Carlo Stratified Sampling Complementary RNs
Interference Probability:                               "Î& #Î"& $Î"!
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SUPPLEMENT 2 TO CHAPTER 20

REGENERATIVE METHOD OF STATISTICAL ANALYSIS

20S2-1.

(a)   C œ !  &  % œ *à D œ $" "

     C œ !  # œ #à D œ ## #

   C œ !  $  "  ' œ "!à D œ %$ $

    C œ #"Î$ œ (à D œ *Î$ œ $

 EstÖ[ × œ œ #;
( "
$ $

 = œ Ð)"  %  "!!ÑÎ#  Ð*  #  "!Ñ Î' œ "*""
# #

 = œ Ð*  %  "'ÑÎ#  Ð$  #  %Ñ Î' œ "##
# #

 = œ Ð#(  %  %!ÑÎ#  Ð#"ÑÐ*ÑÎ' œ %"#
#

 = œ "*  Ð#ÑÐ(Î$ÑÐ%Ñ  Ð(Î$Ñ œ &Þ(() Ê = œ #Þ%!%# #

 "  # œ !Þ*! Ê œ !Þ!& Ê O œ "Þ'%&! ! !

 TÖ"Þ&(# Ÿ [ Ÿ $Þ!*%× œ !Þ*!;

(b)   C œ !  $  # œ &à D œ $" "

    C œ !  $  "  & œ *à D œ %# #

     C œ ! œ !à D œ "$ $

    C œ !  #  % œ 'à D œ $% %

    C œ !  $  &  # œ "!à D œ %& &

    C œ $!Î& œ 'à D œ "&Î& œ $

 EstÖ[ × œ œ #;
'
$

 = œ Ð#&  )"  $'  "!!ÑÎ%  Ð"!  '  !  *  &Ñ Î#! œ "&""
# # "

#

 = œ Ð*  "'  "  *  "'ÑÎ%  Ð$  %  "  $  %Ñ Î#! œ "##
# # "

#

 = œ Ð"&  $'  !  ")  %!ÑÎ%  Ð$!ÑÐ"&ÑÎ#! œ %"#
# $

%

 = œ "&  Ð#ÑÐ#Ñ %  Ð#Ñ " œ # Ê = œ "Þ&)"# #" $ " "
# % # #Š ‹ Š ‹

 "  # œ !Þ*! Ê œ !Þ!& Ê O œ "Þ'%&! ! !

 TÖ"Þ'"# Ÿ [ Ÿ #Þ$))× œ !Þ*!;

20S2-2.

When a service completion occurs,  minutes have passed since the last arrival, where>
! Ÿ > Ÿ #& > #&  >. The time until the next arrival is uniformly distributed between  and ,
where max . Thus, the probabilistic structure of when future arrivals will> œ Ð!ß &  >Ñ
occur depends on the history, so this cannot be a regeneration point.
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20S2-3.

(a) For any new tube, the time of the next failure is given by "current
time , "!!!  "!!!< " where  is a random number from Table 20.3. At each shutdown,<
one hour is added to the time of the next failure for all tubes when simulating the status
quo and two hours are added when simulating the proposal.

Simulation of the status quo:

              Time of Failure of
Time         Tube 1 Tube 2 Tube 3 Tube 4
      

< < < <
! !Þ!*' !Þ&'* !Þ''& !Þ('% "!*' "&'* "''& "('%

"!*' !Þ)%#

" # $ %

   
   
   
   
  

   #*$* "&(! "''' "('&
"&(!  !Þ%*#   #*%! $!'$ "''( "(''
"''(   !Þ##%  #*%" $!'% #)*# "('(
"('(    !Þ*&! #*%# $!'& #)*$ $(")
#)*$   !Þ'"!  

   
   
   

   

 #*%$ $!'' %&!% $("*
#*%$ !Þ"%&    %!)* $!'( %&!& $(#!
$!'(  !Þ%)%   %!*! %&&# %&!' $(#"
$(#"    !Þ&&# %!*" %&&$ %&!( &#(%
%!*" !Þ$&!    &%%# %&&% %&!) &#(&
%&!)   !Þ&*!  &%%$ %&&& '!** &#('
%&&&  !Þ%$!   &%%% &*)' '"!! &#((
&!!!     &%%% &*)' '"!! &#((

   
   
    

Estimated cost of the status quo: $ $"" ‚ "ß #!! œ "$ß #!!

Simulation of the proposal:

Time         First Tube to Fail Time of Failure
            Tube 1       

  

< < < <
! !Þ!*' !Þ&'* !Þ''& !Þ('% "!*'

"!*' !Þ)%# !Þ%*# !Þ##% !Þ*&!

" # $ %

    Tube 3       
      Tube 2       
      Tube 4       

#$##
#$## !Þ'"! !Þ"%& !Þ%)% !Þ&&# $%'*
$%'* !Þ$&! !Þ&*! !Þ%$! !Þ!%" %&"#
%&"# !Þ)!# !Þ%(" !Þ#&& !Þ(** &('*      Tube 3       

Estimated cost of the proposal: $ $% ‚ #ß )!! œ ""ß #!!

(b) Based on the simulation results in part (a), the proposal should be accepted.

(c) For the proposed policy, each shutdown is a regeneration point because all tubes are
replaced and the process begins a new. For the status quo, the process never repeats itself
because each tube is replaced when it fails.
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(d)

 Cycle Cycle Cost Cycle Length
     $     
     $     
     $     
     $     

" #ß )!! "!*'
# #ß )!! "##'
$ #ß )!! ""%(
% #ß )!! "!%$

 $C œ #ß )!!ß D œ ""#)

 Est cost/hour $Ö × œ #)!!Î""#) œ #Þ%)#

 = œ  œ !""
# Ð%‚#)!! Ñ Ð%‚#)!!Ñ

$ "#

# #

 = œ  œ '!("##
# Ð"!)' "##' ""%( "!%$ Ñ Ð"!)'"##'""%("!%$Ñ

$ "# $
"

# # # # #

 = œ  œ !"#
# Ð#)!!ÑÐ"!)'"##'""%("!%$Ñ Ð%ÑÐ#)!!ÑÐ"!)'"##'""%("!%$Ñ

$ "#

 = œ !  Ð#Þ%)#ÑÐ!ÑÐ#Ñ  Ð#Þ%)#Ñ '!(" œ $(%"! Ê = œ "*$Þ%# # "
$Š ‹

 "  # œ !Þ*& Ê œ !Þ!#& Ê O œ "Þ*'! ! !

 cost/hourTÖ#Þ$"% Ÿ Ÿ #Þ'&!× œ !Þ*&

20S2-4.

(a)

(i)
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(ii)

(iii)

 P ÎP œ "Þ*$Î%Þ!( œ !Þ%(ß P ÎP œ "Þ&'Î%Þ!( œ !Þ$); ; ; ;# " $ "

(b)
 P œ ßP œ  P ß[ œ ß[ œ [ ; ; ; ;


#Ð" Ñ

P "- 5 3
3 - .

# # #
;3

(i) P œ œ $Þ#ß P œ %ß[ œ %ß[ œ &; " ; "" "
!Þ'%!Þ'%
#‚!Þ#

(ii) P œ œ #ßP œ #Þ)ß[ œ #Þ&ß[ œ $Þ&; # ; ## #
!Þ'%‚!Þ#&!Þ'%

#‚!Þ#
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(iii) P œ œ "Þ'ß P œ #Þ%ß[ œ #ß[ œ $; $ ; $$ $
!Þ'%
#‚!Þ#

 P ÎP œ !Þ'(&ß P ÎP œ "Þ'Î$Þ# œ !Þ&; ; ; ;# " $ "

They all fall into % confidence intervals in (a).*&

20S2-5.

(i)

(ii)
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(iii)

 P ÎP œ "Þ%$Î#Þ)# œ !Þ&"ß P ÎP œ "Þ"#Î#Þ)# œ !Þ%; ; ; ;# " $ "

20S2-6.
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 P ÎP œ "Þ*#Î%Þ!( œ !Þ%(ß P ÎP œ "Þ$'Î%Þ!( œ !Þ$$; ; ; ;# " $ "
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SUPPLEMENT 3 TO CHAPTER 20

OPTIMIZING WITH OPTQUEST

20S3-1.
 

1
2
3
4
5
6
7
8
9

10
11

A B C D E
Purchase Price $0.75

Selling Price $1.25

Order Quantity 350
Mean St. Dev.

Demand 300 Normal 300 50
Rounded Demand 300

Revenue $375.00
Purchase Cost $262.50

Total Profit $112.50

(a) The mean profit is approximately $ . The chance of making a nonnegative profit is"!(
approximately %.*'Þ$
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(b) The order quantities  and  are very close to maximizing the mean profit, so the#(& $!!
order quantity that actually maximizes the mean profit is probably somewhere between
these two quantities.

 O
rder Q

uantity (250)

O
rder Q

uantity (275)

O
rder Q

uantity (300)

O
rder Q

uantity (325)

O
rder Q

uantity (350)
$119.74 $125.08 $125.02 $118.83 $107.24

(c)
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(d) An order quantity of approximately  maximizes Michael's mean profit.#)(
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20S3-2.
 

1
2
3
4
5
6
7
8
9

10
11
12
13
14

A B C D E
Purchase Price $100

Selling Price $150

Order Quantity 14
Value Probability

Demand 14 Discrete (Custom) 10 0.05
11 0.1

Revenue $2,100 12 0.1
Purchase Cost $1,400 13 0.15

Total Profit $700 14 0.2
15 0.15
16 0.1
17 0.1
18 0.05

(a) The mean profit is approximately $ . There is a % chance of making a&($ "!!
nonnegative profit.



20S3-5

(b) Susan's mean profit is maximized with  tickets."$

 O
rder Q

uantity (10)

O
rder Q

uantity (11)

O
rder Q

uantity (12)

O
rder Q

uantity (13)

O
rder Q

uantity (14)

O
rder Q

uantity (15)

O
rder Q

uantity (16)

O
rder Q

uantity (17)

O
rder Q

uantity (18)
$500 $543 $570 $583 $573 $533 $470 $393 $300

(c)
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(d) The optimal order quantity found by OptQuest is ."$
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20S3-3.
 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

A B C D E
Data

Our Project Cost ($million) 5.000
Our Bid Cost ($million) 0.050

Competitor Bids Competitor 1 Competitor 2 Competitor 3 Competitor 4
Bid ($million) 6.083 6.083 6.083 6.083

Distribution Triangular Triangular Triangular Triangular

Competitor Distribution Parameters (Proportion of Our Project Cost)
Minimum 105% 105% 105% 105%

Most Likely 120% 120% 120% 120%
Maximum 140% 140% 140% 140%

Competitor Distribution Parameters ($millions)
Minimum 5.250 5.250 5.250 5.250

Most Likely 6.000 6.000 6.000 6.000
Maximum 7.000 7.000 7.000 7.000

Minimum Competitor
Bid ($million) 6.083

Our Bid ($million) 5.700

Win Bid? 1 (1=yes, 0=no)

Profit ($million) 0.650

(a) The mean profit is approximately $  million. The probability of winning the bid is!Þ$"
approximately %.&"Þ'
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(b) RPI's mean profit is maximized with a bid of approximately $  million.&Þ&

O
ur Bid (5.300)

O
ur B

id (5.400)

O
ur B

id (5.500)

O
ur Bid (5.600)

O
ur Bid (5.700)

O
ur B

id (5.800)

O
ur B

id (5.900)

O
ur Bid (6.000)

0.248 0.324 0.361 0.354 0.311 0.222 0.141 0.060

(c)
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(d) The optimal bid found by OptQuest is approximately $  million.&Þ&&
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20S3-4.
 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

A B C D E F
Airline Overbooking

Discount
Data Reservations

Seats Available 112 to Accept 75
Fixed Cost $10,000

Discount Fare $150 Total
Full Coach Fare $400 Reservations
Cost of Bumping $600 to Accept 120

Discount Ticket Demand (Triangular)
Minimum 50 Discount-Fare Demand 96.66666667

Most Likely 90 Rounded 97
Maximum 150 Tickets Purchased 75

Probability to Show Up 95% Number that Show 71.25

Full-Coach Ticket Demand (Uniform) Full Coach Demand 50
Minimum 30 Rounded 50
Maximum 70 Tickets Purchased 45

Probability to Show Up 85% Number that Show 38.25

Number Denied Boarding 0
Number of Filled Seats 109.5

Revenue (Discount Fare) $11,250
Revenue (Full Coach) $15,300

Bumping Cost $0
Fixed Cost $10,000

Profit $16,550.00
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(a)
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(b)
 

D
iscount to A

ccept (50)

Discount to Accept (60)

Discount to Accept (70)

Discount to Accept (80)

Discount to Accept (90)

Total to Accept (112) $14,234.40 $14,627.05 $14,202.90 $13,117.10 $11,818.25
Total to Accept (117) $14,467.20 $15,284.45 $15,263.50 $14,518.70 $13,348.45
Total to Accept (122) $14,503.80 $15,668.65 $15,909.10 $15,334.70 $14,161.65
Total to Accept (127) $14,503.80 $15,725.25 $15,948.30 $15,263.50 $13,920.25
Total to Accept (132) $14,503.80 $15,715.05 $15,789.50 $14,923.30 $13,423.25

Trend Chart

Overlay Chart

Forecast Charts
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(c) They should accept approximately  discount reservations and up to approximately'(
"#& total in order to maximize the mean profit, as found by OptQuest.
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CHAPTER 21: THE ART OF MODELING WITH SPREADSHEETS

21.1.

21.2.

(a) The COO will need to know how many of each product to produce. Thus, the
decisions are how many end tables, how many coffee tables, and how many dining room
tables to produce. The objective is to maximize total profit.

(b) Pine wood used œ (3 end tables)(8 pounds/end table)
    (3 dining room tables)(80 pounds/dining room table)
    264 poundsœ

 Labor used (3 end tables)(1 hour/end table)œ
   (3 dining room tables)(4 hours/dining room table)
   15 hoursœ

(c)
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(d)

21.3.

(a) Top management will need to know how much to produce in each quarter. Thus, the
decisions are the production levels in quarters 1, 2, 3, and 4. The objective is to maximize
the net profit.

(b) 

   Ending Inventory(Q1) Starting Inventory(Q1) Production(Q1) Sales(Q1)œ  
    œ "ß !!!  &ß !!!  $ß !!! œ $ß !!!

   Ending Inventory(Q2) Starting Inventory(Q2) Production(Q2) Sales(Q2)œ  
    œ $ß !!!  &ß !!!  %ß !!! œ %ß !!!

   Profit from Sales(Q1) Sales(Q1) $ $ $œ ‚ Ð #!Ñ œ $ß !!! ‚ Ð #!Ñ œ '!ß !!!

   Profit from Sales(Q2) Sales(Q2) $ $ $œ ‚ Ð #!Ñ œ %ß !!! ‚ Ð #!Ñ œ )!ß !!!

   Inventory Cost(Q1) Ending Inventory(Q1) $ $ $œ ‚ Ð )Ñ œ $ß !!! ‚ Ð )Ñ œ #%ß !!!

   Inventory Cost(Q2) Ending Inventory(Q2) $ $ $œ ‚ Ð )Ñ œ %ß !!! ‚ Ð )Ñ œ $#ß !!!

(c)
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(d)

(e)

21.4.

(a) Fairwinds needs to know how much to participate in each of the three projects and
what their ending balances will be. The decisions to be made are how much to participate
in each of the three projects. The objective is to maximize the ending balance at the end
of six years.

(b)

  Ending Balance(Y1) Starting Balance Project A Project C Other Projectsœ   
   % % $  millionœ "!  Ð"!! ÑÐ%Ñ  Ð&! ÑÐ"!Ñ  ' œ (

  Ending Balance(Y2) Starting Balance Project A Project C Other Projectsœ   
   % % $  millionœ (  Ð"!! ÑÐ'Ñ  Ð&! ÑÐ(Ñ  ' œ $Þ&

(c)
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(d)

(e)

21.5.

(a) Web Mercantile needs to know each month how many square feet to lease and for
how long. The decisions therefore are for each month how many square feet to lease for
one month, two months, three months, etc. The objective is to minimize the overall
leasing cost.

(b) Total Cost (30,000 sq feet)($190/sq foot) (20,000 sq feet)($100/sq foot) $  millionœ  œ (Þ(
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(c)

(d)

(e)

21.6.

(a) Larry needs to know how many employees should work each possible shift. There-
fore, the decision variables are the number of employees that work each shift. The
objective is to minimize the total cost of the employees.

(b) Working 8 -noon:  3 FT morning 3 PTA.M.  œ '
 Working Noon-4 :  3 FT morning 2 FT afternoon 3 PTP.M.   œ )
 Working 4 -8 :  2 FT afternoon 4 FT evening 3 PTP.M P.M   œ *
 Working 8 -midnight: 4 FT evening 3 PTP.M  œ (
Total cost per day  FT  hrs $ /hr  PT  hrs $ /hr $œ Ð* ÑÐ) ÑÐ %! Ñ  Ð"# ÑÐ% ÑÐ $! Ñ œ %ß $#!
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(c)

(d)

21.7.

(a) Al will need to know how much to invest in each possible investment each year.
Thus, the decisions are how much to invest in investment A in year 1, 2, 3, and 4; how
much to invest in B in year 1, 2, and 3; how much to invest in C in year 2; and how much
to invest in D in year 5. The objective is to accumulate the maximum amount of money
by the beginning of year 6.

(b)

Ending Cash(Y1) ($60,000)(Starting Balance)-($20,000)(A in Y1) $40,000œ œ
Ending Cash(Y2) $0œ œ($40,000)(Starting Balance)-($20,000)(B in Y2)-($20,000)(C in Y2)
Ending Cash(Y3) $28,000œ œ($0)(Starting Balance)+($20,000)(1.4)(investment A)
Ending Cash(Y4) œ ($28,000)(Starting Balance)
Ending Cash(Y5) $62,000œ œ($28,000)(Starting Balance)+($20,000)(1.7)(investment B)
Ending Cash(Y6) $100,000œ œ($62,000)(Starting Balance)+($20,000)(1.9)(investment C)
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(c)

(d)

(e)

21.8.

In the poor formulation, the data are not separated from the formula - they are buried
inside the equations in column C. In contrast, the spreadsheet in Figure 21.6 separates all
of the data in their own cells, and then the formulas for hours used and total profit refer to
these data cells.

In the poor formulation, no range names are used. The spreadsheet in Figure 21.6 uses
range names for UnitProfit, HoursUsed, TotalProfit, etc.
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The poor formulation uses no borders, shading, or colors to distinguish between cell
types. The spreadsheet in Figure 21.6 uses borders and shading to distinguish the data
cells, changing cells, and target cell.

The poor formulation does not show the entire model on the spreadsheet. There is no
indication of the constraints on the spreadsheet (they are only displayed in the Solver
dialogue box). Furthermore, the right-hand-sides of the constraints are not on the
spreadsheet, but buried in the Solver dialogue box. The spreadsheet in Figure 21.6 shows
all of the constraints of the model in three adjacent cells on the spreadsheet.

21.9.

Cell F16 has -0.47 for LT Interest, rather than -LTRate*LTLoan.

Cell G14 for the 2013 ST Interest uses the LT Loan amount rather than the ST Loan
amount.

Cell H21 for the LT Payback refers to the 2010 ST Loan rather than the LT Loan to
determine the payback amount.

21.10.

Cell G21 for the 2020 ST Interest uses LTRate instead of STRate.

Cell H21 for the LT Payback in 2020 has -6.649 instead of -LTLoan.

Cell I15 for ST Payback in 2014 has -LTLoan instead of -E14 (STLoan for 2013).
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CASES

CASE 21.1 Prudent Provisions for Pensions

(a) PFS needs to know how many units of each of the four bonds to purchase, how much
to invest in the money market, and their ending balance in the money market fund each
year after paying the pensions. The decisions are how many units of each bond to
purchase, as well as the initial investment in 2007 in the money market. The objective is
to minimize the overall initial investment necessary in 2007 in order to meet the pension
payments through 2016.

(b)

Payment received from Bond 1 (2008) (10,000 units)($1,000 face value)œ
      (10,000 units)($1,000 face value)(0.04)
      $10.4 millionœ

Payment received from Bond 1 (2009) $0œ

Payment received from Bond 2 (2008) (10,000 units)($1,000 face value)(0.02)œ
      $0.2 millionœ

Payment received from Bond 2 (2009) (10,000 units)($1,000 face value)(0.02)œ
      $0.2 millionœ

Balance in money market fund (2007) $28 million (initial investment)œ
      $8 million (pension payment)
      $20 millionœ
Balance in money market fund (2008) $20 million (starting balance)œ
      $10.4 million (payment from Bond 1)
      $0.2 million (payment from Bond 2)
      $12 million (pension payment)
      $1 million (money market interest)
      $19.6 millionœ
Balance in money market fund (2009) $19.6 million (starting balance)œ
      $0.2 million (payment from Bond 2)
      $13 million (pension payment)
      $0.98 million (money market interest)
      $7.78 millionœ

(c) PFS will need to track the flow of cash from bond investments, the initial investment,
the required pension payments, interest from the money market, and the money market
balance. The decisions are the number of units to purchase of each bond. Data for the
problem include the yearly cash flows from the bonds (per unit purchased), the money
market rate, and the minimum required balance in the money market fund at the end of
each year. A sketch of a spreadsheet model might appear as follows.
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(d) The bond cash flows (per unit) are calculated in B7:E9. For example, one unit of
Bond 1 costs $0.98 in 2007, and returns the face value ($1) plus the coupon rate ($0.04)
in 2008. The total cash flow from bonds is then calculated in column F. The Initial
Investment (G7) is both a decision variable and the target cell. It includes all money
invested on January 1, 2007 (including enough to pay for the bonds and pension payment
in 2007, as well as any initial investment in the money market).

If just years 2007 through 2009 are considered, then 23.44 thousand units of Bond 1
should be purchased at a cost of $22.97 million, along with an initial $8 million
investment in the money market fund on January 1, 2007.

5
6
7
8
9

F
Bond
Flow

=SUMPRODUCT(B7:E7,UnitsPurchased)
=SUMPRODUCT(B8:E8,UnitsPurchased)
=SUMPRODUCT(B9:E9,UnitsPurchased)

4
5
6
7
8
9

I J
Money Money
Market Market
Interest Balance

=SUM(F7:I7)
=MoneyMarketRate*J7 =J7+SUM(F8:I8)
=MoneyMarketRate*J8 =J8+SUM(F9:I9)   
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Range Name Cells
BondFlow F7:F9
InitialInvestment G7
MinimumBalance L7:L9
MinimumRequiredBalance I2
MoneyMarketBalance J7:J9
MoneyMarketInterest I7:I9
MoneyMarketRate I1
PensionFlow H7:H9
UnitsPurchased B11:E11 

(e) Expanded to consider all years through 2016, the spreadsheet is as shown below. PFS
should purchase 44.27 thousand units of Bond 1, 51.36 thousand units of Bond 3, and
43.55 thousand units of Bond 4 (at a cost of $116.74 million), and invest an additional $8
million in the money market on January 1, 2007.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

A B C D E F G H I J K L
Money Market Rate 5%

Minimum Required Balance 0

Required Money Money
Bond Initial Pension Market Market

Bond 1 Bond 2 Bond 3 Bond 4 Flow Investment Flow Interest Balance
2010 -0.98 -0.92 -0.75 -0.80 -116.74 124.74 -8 0.00 >= 0
2011 1.04 0.02 0.03 47.34 -12 0.00 35.34 >= 0
2012 0.02 0.03 1.31 -13 1.77 25.42 >= 0
2013 1.02 0.03 1.31 -14 1.27 13.99 >= 0
2014 0.03 1.31 -16 0.70 0.00 >= 0
2015 1.00 0.03 52.67 -17 0.00 35.67 >= 0
2016 0.03 1.31 -20 1.78 18.76 >= 0
2017 0.03 1.31 -21 0.94 0.00 >= 0
2018 1.03 44.86 -22 0.00 22.86 >= 0
2019 0.00 -24 1.14 0.00 >= 0

Units Purchased 44.27 0 51.36 43.55 all cash figures in $millions
(thousands)

Bond Cash Flows (per unit)

 
5
6

7

8
9

10
11
12
13
14
15
16

F
Bond
Flow

=SUMPRODUCT(B7:E7,UnitsPurchased)
=SUMPRODUCT(B8:E8,UnitsPurchased)
=SUMPRODUCT(B9:E9,UnitsPurchased)
=SUMPRODUCT(B10:E10,UnitsPurchased)
=SUMPRODUCT(B11:E11,UnitsPurchased)
=SUMPRODUCT(B12:E12,UnitsPurchased)
=SUMPRODUCT(B13:E13,UnitsPurchased)
=SUMPRODUCT(B14:E14,UnitsPurchased)
=SUMPRODUCT(B15:E15,UnitsPurchased)
=SUMPRODUCT(B16:E16,UnitsPurchased)

4
5
6
7
8
9

10
11
12
13
14
15
16

I J
Money Money
Market Market
Interest Balance

=SUM(F7:I7)
=MoneyMarketRate*J7 =J7+SUM(F8:I8)
=MoneyMarketRate*J8 =J8+SUM(F9:I9)
=MoneyMarketRate*J9 =J9+SUM(F10:I10)
=MoneyMarketRate*J10 =J10+SUM(F11:I11)
=MoneyMarketRate*J11 =J11+SUM(F12:I12)
=MoneyMarketRate*J12 =J12+SUM(F13:I13)
=MoneyMarketRate*J13 =J13+SUM(F14:I14)
=MoneyMarketRate*J14 =J14+SUM(F15:I15)
=MoneyMarketRate*J15 =J15+SUM(F16:I16)   
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Range Name Cells
BondFlow F7:F 16
InitialInvestment G7
MinimumBalance L7:L16
MinimumRequiredBalance I2
MoneyMarketBalance J7:J16
MoneyMarketInterest I7:I16
MoneyMarketRate I1
PensionFlow H7:H16
UnitsPurchased B18:E18 
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CHAPTER 22: PROJECT MANAGEMENT WITH PERT/CPM

22.2-1.     22.2-2.

  



22-2

22.2-3.
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22.3-1.

(a)

 

(b) Start Finish   Length  minutesÄ E Ä F Ä N Ä P Ä œ (&
 Start Finish   Length  minutesÄ G Ä H Ä N Ä P Ä œ %&
 Start Finish   Length  minutesÄ I Ä J Ä N Ä P Ä œ (#
 Start Finish   Length  minutesÄ K Ä L Ä M Ä N Ä P Ä œ '(
 Start Finish     Length  minutesÄ O Ä P Ä œ %&

Hence, Start Finish is the critical path.Ä E Ä F Ä N Ä P Ä
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(c) - (d) - (e)

Critical Path: Start FinishÄ E Ä F Ä N Ä P Ä

(f) Dinner will be delayed three minutes because of the phone call. If the food processor
is used, dinner will not be delayed, since there was a slack of three minutes, five minutes
of cutting time is saved and the call used only six minutes of these eight minutes.

22.3-2.

(a) Start Finish   Length  weeksÄ E Ä G Ä œ %
 Start Finish  Length  weeksÄ E Ä H Ä I Ä œ (
 Start Finish   Length  weeksÄ F Ä G Ä œ &
 Start Finish  Length  weeksÄ F Ä H Ä I Ä œ )

Hence, Start Finish is the critical path.Ä F Ä H Ä I Ä

(b)

Critical Path: Start FinishÄ F Ä H Ä I Ä

(c) No, this will not shorten the length of the project because the activity is not on the
critical path.
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22.3-3.

(a) Start Finish    Length  weeksÄ E Ä H Ä œ %
 Start Finish    Length  weeksÄ E Ä I Ä œ &
 Start Finish   Length  weeksÄ E Ä J Ä O Ä œ )
 Start Finish  Length  weeksÄ E Ä K Ä L Ä M Ä N Ä œ )
 Start Finish    Length  weeksÄ F Ä H Ä œ $
 Start Finish   Length  weeksÄ F Ä G Ä I Ä œ '
 Start Finish  Length  weeksÄ F Ä G Ä L Ä M Ä N Ä œ )
 Start Finish   Length  weeksÄ F Ä G Ä O Ä œ (

Critical Paths: Start FinishÄ E Ä J Ä O Ä
  Start FinishÄ E Ä K Ä L Ä M Ä N Ä
  Start FinishÄ F Ä G Ä L Ä M Ä N Ä
(b)

Critical Paths: Start FinishÄ E Ä J Ä O Ä
  Start FinishÄ E Ä K Ä L Ä M Ä N Ä
  Start FinishÄ F Ä G Ä L Ä M Ä N Ä

(c) No, this will not shorten the length of the project because  is not on all of the criticalE
paths.

22.3-4.

(a) Start Finish  Length  weeksÄ E Ä H Ä L Ä Q Ä œ "*
 Start Finish  Length  weeksÄ F Ä I Ä N Ä Q Ä œ #!
 Start Finish  Length  weeksÄ G Ä J Ä O Ä R Ä œ "'
 Start Finish   Length  weeksÄ E Ä M Ä Q Ä œ "(
 Start Finish  Length  weeksÄ G Ä K Ä P Ä R Ä œ #!

Critical Paths: Start FinishÄ F Ä I Ä N Ä Q Ä
  Start FinishÄ G Ä K Ä P Ä R Ä
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(b)

Ken will be able to meet his deadline.

(c) Critical Paths: Start FinishÄ F Ä I Ä N Ä Q Ä
   Start FinishÄ G Ä K Ä P Ä R Ä

Focus attention on activities with no slack.

(d) If activity  takes two more weeks, there will be no delay because its slack is three. IfM
activity  takes two extra weeks, then there will be a delay of one week because its slackL
is only one week. If activity  takes two more weeks, there will be a delay of two weeks,N
since it has no slack.
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22.3-5.

(a)

 

(b)

Critical Path: Start FinishÄ E Ä I Ä J Ä

(c) 6 months
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22.3-6.

Critical Path: Start FinishÄ E Ä F Ä G Ä H Ä K Ä L Ä Q Ä
Total duration:  weeks(!

22.3-7.

Critical Path: Start FinishÄ E Ä F Ä G Ä I Ä J Ä N Ä O Ä R Ä
Total duration:  weeks#'



22-9

22.3-8.

Critical Path: Start FinishÄ E Ä F Ä G Ä I Ä J Ä N Ä O Ä R Ä
  Start FinishÄ E Ä F Ä G Ä I Ä J Ä N Ä P Ä R Ä
Total duration:  weeks#)

22.4-1.

 . œ œ œ $(9%7:
' '

$!%Ð$'Ñ%)

 5# :9
' '

# #
%)$!œ œ œ *Š ‹ Š ‹

22.4-2.

(a) Start Finish   Length  monthsÄ E Ä I Ä M Ä œ "(
 Start Finish  Length  monthsÄ E Ä G Ä J Ä M Ä œ "(
 Start Finish  Length  monthsÄ F Ä H Ä K Ä N Ä œ "(
 Start Finish   Length  monthsÄ F Ä L Ä N Ä œ ")

Critical Path: Start FinishÄ F Ä L Ä N Ä

(b) P. ##")

$"

.
5

:

:È Èœ œ !Þ(") Ê ÖX Ÿ ##× ¸ !Þ((

(c) Start Finish: PÄ E Ä I Ä M Ä œ œ " Ê ÖX Ÿ ##× ¸ !Þ)%
. ##"(

#&

.
5

:

:È È
     Start Finish: PÄ E Ä G Ä J Ä M Ä œ œ !Þ*'# Ê ÖX Ÿ ##× ¸ !Þ)%

. ##"(

#(

.
5

:

:È È
     Start Finish: PÄ F Ä H Ä K Ä N Ä œ œ !Þ*%& Ê ÖX Ÿ ##× ¸ !Þ)%

. ##"(

#)

.
5

:

:È È
(d) There is approximately a % chance that the drug will be ready in  weeks.(( ##
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22.4-3.

There is approximately a % chance that the drug will be ready in  weeks.($ ##

22.4-4.

(a)
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(b)

 Activity      
    A 4 0.111
    B 2 0
    C 4.83 0.25
    D 3 0.444
    E 3.17 0.25

. 5#

(c) Start Finish  Length  weeksÄ E Ä F Ä G Ä œ "!Þ)$
 Start Finish  Length  weeksÄ E Ä F Ä I Ä œ *Þ"(
 Start Finish  Length  weeksÄ E Ä H Ä I Ä œ "!Þ"(

Critical Path: Start FinishÄ E Ä F Ä G Ä

(d) P. """!Þ)$

!Þ$'"

.
5

:

:È Èœ œ !Þ!#) Ê ÖX Ÿ ""× œ !Þ'

(e) Make the bid, since there is approximately a % chance that the project will be'!
completed in  weeks or less.""
22.4-5.

(a)

 Activity  
    A 12  0
    B 23 16
    C 15  1
    D 27  9
    E 18  4
    F  6  4

. 5#

(b) Start Finish  Length  daysÄ E Ä G Ä I Ä J Ä œ &"
 Start Finish   Length  daysÄ F Ä H Ä œ &!

Critical Path: Start FinishÄ E Ä G Ä I Ä J Ä

(c) P  (Normal Distribution table). &(&"

*

.
5

:

:È Èœ œ # Ê ÖX Ÿ &(× œ !Þ*((#

(d) P  (Normal Distribution table). &(&!

#&

.
5

:

:È Èœ œ "Þ% Ê ÖX Ÿ &(× œ !Þ*"*#

(e) , so the procedure used in (c) overestimates theÐ!Þ*((#ÑÐ!Þ*"*#Ñ œ !Þ)*)#
probability of completing the project within  days.&(
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22.4-6.

(a)
 Activity    

    A 32  1.78
    B 27.7  2.78
    C 36  11.1
    D 16 0.444
    E 32    0
    F 53.7  32.1
    G 16.7    4
    H 20.3  2.78
    I 34  7.1

. 5#

1
    J 17.7    9

(b) Start Finish  Length  weeksÄ E Ä G Ä N Ä œ )&Þ(
 Start Finish  Length  weeksÄ F Ä J Ä N Ä œ **Þ"
 Start Finish  Length  weeksÄ F Ä I Ä L Ä œ )!
 Start Finish  Length  weeksÄ F Ä I Ä M Ä œ *$Þ(
 Start Finish Length  weeksÄ F Ä H Ä K Ä L Ä œ )!Þ(
 Start Finish Length  weeksÄ F Ä H Ä K Ä M Ä œ *%Þ%

Critical Path: Start FinishÄ F Ä J Ä N Ä

(c) P  (Normal Distribution table). "!!**Þ"

%$Þ)*

.
5

:

:È Èœ œ !Þ"$' Ê ÖX Ÿ "!!× œ !Þ%%%$

(d) Higher

22.4-7.

(a) TRUE. The optimistic and pessimistic estimates lie at the extremes of what is
possible, p.33.

(b) FALSE. The probability distribution is a Beta distribution, p.33.

(c) FALSE. The mean critical path will turn out to be the longest path in the project
network.

22.5-1.

  Length of Path
Activity to Crash Crash Cost

      
             $       
             $       
         

E G F H
"% "'

F &ß !!! "% "&
F &ß !!! "% "&

    $       
             $       
             $       
             $       
             $

H 'ß !!! "% "%
G %ß !!! "$ "%
H 'ß !!! "$ "$
G %ß !!! "# "$
H 'ß !!! "# "#      
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22.5-2.

(a) Let  and  be the reduction in  and  respectively, due to crashing.B B E GE G

 minimize G œ &!!!B  %!!!BE G

 subject to B Ÿ $E

   B Ÿ #G

   B  B   #E G

 and  B ß B   !E G

 

Optimal Solution:  and .ÐB ß B Ñ œ Ð!ß #Ñ G œ )ß !!!E G
‡

(b) Let  and  be the reduction in  and  respectively, due to crashing.B B F HF H

 minimize G œ &!!!B  '!!!BF H

 subject to B Ÿ #F

   B Ÿ $H

   B  B   %F H

 and  B ß B   !F H

 

Optimal Solution:  and .ÐB ß B Ñ œ Ð#ß #Ñ G œ ##ß !!!F H
‡
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(c) Let , , , and  be the reduction in the duration of , , , and B B B B E F G HE F G H

respectively, due to crashing.

 minimize G œ &!!!B  &!!!B  %!!!B  '!!!BE F G H

 subject to B Ÿ $E

   B Ÿ #F

   B Ÿ #G

   B Ÿ $H

   B  B   #E G

   B  B   %F H

 and  B ß B ß B ß B   !E F G H

Optimal Solution:  and .ÐB ß B ß B ß B Ñ œ Ð!ß #ß #ß #Ñ G œ $!ß !!!E F G H
‡

(d) Let  be the reduction in the duration of activity  due to crashing forB 44

4 œ EßFßGßH C 4 4 œ GßH C. Also let  denote the start time of activity  for  and 4 FINISH
the project duration.

 minimize G œ &!!!B  &!!!B  %!!!B  '!!!BE F G H

 subject to B Ÿ $ß B Ÿ #ß B Ÿ #ß B Ÿ $E F G H

   C   !  )  BG E

   C   !  *  BH F

   C   C  '  BFINISH G G

   C   C  (  BFINISH H H

   C Ÿ "#FINISH
 and  B ß B ß B ß B ß C ß C ß C   !E F G H G H FINISH

(e)

(f) The solution found using LINGO agrees with the solution in (e), i.e., it is optimal to
reduce the duration of activities , , and  by two months. Then the entire projectF G H
takes 12 months and costs  thousand dollars.#&  $!  #%  Ð#(  "#Ñ œ "")
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(g) Deadline of  months""

 Deadline of  months"$

22.5-3.

(a)

 Activity to Crash Crash Cost Length of Path B-D
          50

            B  $10,000           49
            B  $10,000           48
            B  $10,000           47

(b)

 Activity to Crash Crash Cost Length of Path A-C-E-F
               51

            C  $10,000                50
            C  $10,000                49
            C  $10,000                48
            E  $15,000                47
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(c)

22.5-4.

(a)

 Activity ES EF LS LF Slack Critical Path
 Start  0  0  0  0    0      Yes 
   A  0  3  0  3    0      Yes
   B  3  7  4  8    1      No
   C  3  8  3  8    0      Yes
   D  7 10  9 12    2      No
   E  8 12  8 12    0      Yes
 Finish 12 12 12 12    0      Yes

Critical Path: Start FinishÄ E Ä G Ä I Ä
Total Duration:  weeks"#

(b) $7,834 is saved by the new plan given below.

                       Length of Path
Activity to Crash Crash Cost

                     
            $    

EF H EF I E G I
"! "" "#

G "ß $$$                   
            $                      
      &   $                            
      & 

"! "" ""
I #ß &!! "! "! "!

H I %ß !!! * * *
F G   $                            %ß $$$ ) ) )

 Activity Duration    Cost
     weeks $
     weeks $
     weeks $
     weeks $
     weeks $

E $ &%ß !!!
F $ '&ß !!!
G $ &)ß '''
H # %"ß &!!
I # )!ß !!!
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(c)
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Crash to  weeks.)

22.5-5.

(a) Let  be the reduction in the duration of activity  and  be the start time of activityB 4 C4 4

4.

minimize G œ 'B  "#B  %B  'Þ'(B  "!B  (Þ$$B  &Þ(&B  )BE F G H I J K L

subject to    ! Ÿ B Ÿ # ! Ÿ B Ÿ " ! Ÿ B Ÿ # ! Ÿ B Ÿ $E F G H

     ! Ÿ B Ÿ " ! Ÿ B Ÿ $ ! Ÿ B Ÿ % ! Ÿ B Ÿ #I J K L

    C  &  B Ÿ C C  &  B Ÿ CE E E EG H

    C  $  B Ÿ C C  $  B Ÿ CF F I F F J

    C  %  B Ÿ C C  '  B Ÿ CG G K H H L

    C  &  B Ÿ C C  (  B Ÿ CI I K J J L

    C  *  B Ÿ C C  )  B Ÿ CK K L LFINISH FINISH
  ! Ÿ C Ÿ "&FINISH
  C   !4

(b) Finish Time:  weeks, total crashing cost: $  million, total cost: $   million."& %&Þ(& #&*Þ(&
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22.5-6.

(a) Let  be the reduction in the duration of activity  and  be the start time of activity .B 4 C 44 4

minimize G œ &B  (B  )B  %B  &B  'B  $B  %B  *B  #BE F G H I J K L M N

subject to     ! Ÿ B Ÿ % ! Ÿ B Ÿ $ ! Ÿ B Ÿ & ! Ÿ B Ÿ $ ! Ÿ B Ÿ &E F G H I

      ! Ÿ B Ÿ ( ! Ÿ B Ÿ # ! Ÿ B Ÿ $ ! Ÿ B Ÿ % ! Ÿ B Ÿ #J K L M N

    C  $#  B Ÿ C C  #)  B Ÿ CE E G F F H

    C  #)  B Ÿ C C  #)  B Ÿ CF F I F F J

    C  $'  B Ÿ C C  "'  B Ÿ CG G N H H K

    C  $#  B Ÿ C C  $#  B Ÿ CI I L I I M

    C  &%  B Ÿ C C  "(  B Ÿ CJ J N K K L

     C  "(  B Ÿ C C  #!  B Ÿ CK K M L L FINISH
   C  $%  B Ÿ C C  ")  B Ÿ CM M N NFINISH FINISH
  ! Ÿ C Ÿ *#FINISH
  C   !4

(b) Finish Time:  weeks, total crashing cost: $  million, total cost: $  billion.*# %$ "Þ$))

22.6-1.

(a) Activity ES EF
 Start  0  0
   A  0  3
   B  3  6
   C  3  6
   D  6  8
   E  6  8
 Finish  8  8

Total Duration:  weeks)
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(b) - (c) - (d)

(e)

Michael should concentrate his efforts on activity , since it is not yet completed.G

22.6-2.

(a)

 Activity ES EF LS LF Slack
 Start  0  0  0  0    0
   A  0  6  0  6    0
   B  0  2  4  6    4
   C  6 10  9 13    3
   D  6 11  6 11    0
   E 10 17 13 20    3
   F 11 20 11 20    0
 Finish 20 20 20 20    0

The earliest finish time for this project is  weeks.#!

(b)
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(c)

(d)
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(e)

The project manager should focus attention on activity , since it is not yet finished andH
they are running over budget.

22.6-3.

(a)
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(b)

(c)
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(d)

The project manager should investigate activities ,  and , since they are not yetH I M
finished and they are running over budget.
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CASE

CASE 22.1 "School's Out Forever ..." Alice Cooper

(a)

The estimated project duration equals the length of the longest path in the project
network. To calculate this length, we use the layout of the Excel spreadsheets for
Reliable's project in this chapter. We need to modify the spreadsheet to reflect the
network unique to this case.
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Brent can start the interviews in  days. The critical steps in the process are:%*
Start Finish.Ä I Ä S Ä T Ä U Ä V Ä

(b) We substitute first the pessimistic, then the optimistic estimates for the time values
used in part (a).
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Pessimistic Estimates:

Under the worst-case scenario, Brent will require  days before he is ready to start(%
interviewing. The critical path is:

 Start Finish.Ä F Ä J Ä P Ä Q Ä S Ä T Ä U Ä V Ä

Optimistic Estimates:
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Under the best-case scenario, Brent will require  days before he is ready to begin$#
interviewing. The critical path remains the same as in (a).

(c) The mean critical path is the path in the project network that would be critical path if
the duration of each activity equals its mean. To compute the mean duration of each
activity, we use the Excel spreadsheet named PERT.

Now, substitute the mean duration of each activity for the time values.
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The mean critical path is the same as in (a). To compute the variance of the project
duration, we use the PERT template again.

 

 The mean and the variance of the mean critical path are  and .. 5œ %*Þ$$$ œ (Þ(###

(d) We use the PERT template as in part (c). We substitute the value  for  in cell K12.'! .

Brent will be ready for his interviews within  days with probability %.'! **Þ**%

(e) The earliest start time for the career fair is day  and the career fair itself still lasts#%
one day. To ensure that the earliest start time for the career fair is day , we add a#%
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dummy node  with duration  days to the project network, directly following theX #%
START node and preceding the career fair node .O

(f) To obtain the mean critical path for the new network and the probability that Brent
will complete the project within  days, we first use the PERT template to compute the'!
mean duration for each activity. We add the new node  to the list of activities.X
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We next substitute these mean duration values for the time values to find the critical path.
We need to add node  to the spreadsheet used in (a).X
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The mean project duration is now  days and the new mean critical path is:&#Þ$$

 Start Finish.Ä X Ä O Ä Q Ä S Ä T Ä U Ä V Ä

We specify this new critical path in the PERT spreadsheet to obtain the probability that
Brent will complete the project within  days.'!

 

Brent will be ready for his interviews within  days with probability %, which is'! **Þ*'(
slightly less than the probability computed in part (d). This decrease is a result of the
increase in the mean project duration. However, since the variance of the project duration
is smaller than the one found in (d), the probability decreases only slightly.
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CHAPTER 23: ADDITIONAL SPECIAL TYPES OF

LINEAR PROGRAMMING PROBLEMS

23.1-1.

(a) Locations 1, 2, 3 are supply centers and locations 4, 5, 6, 7 are receiving centers.
Shipments can be sent via intermediate points.

(b)

 
M

M

M

M M
M

" # $ % & ' ( =
" ! #" &! '# *$ (( #(!
# #* ! "( &% '( %) #)!
$ &! "( ! '! *) '( #& #&!
% '# &% '! ! #( $) #!!
& *$ '( *) #( ! %( %# #!!
' (( '( %( ! $& #!!
( %) #& $) %# $& ! #!!
. #!!

3

4 #!! #!! #$! #'! #&! #'!

(c)

 " # $ % & ' ( =
" #!! (! #(!
# "$! "&! #)!
$ &! #!! #&!
% $! "(! #!!
& *! ""! #!!
' "%! '! #!!
( #!! #!!
. #!! #!! #!! #$! #'! #&! #'!

3

4

 

The shipping pattern obtained with the northwest corner rule forms a chain where
location  ships only to location .3 3  "
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(d)

Shipping pattern:

   
23.1-2.

(a) Let the supply center be year 0 with a supply of 1 and the receiving center be year 3
with a demand of 1. Years 1 and 2 are transshipment points. The parameter table is as
follows:

Years     Supply
       
       
       
       
Demand     

! " # $
! ! "$ #) %) "
" Q ! "( $$ !
# Q Q ! #! !
$ Q Q Q ! !

! ! ! "

(b) The transportation problem is the same as above except that all supplies and demands
are increased by one.
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(c) Vogel's approximation

(d) Vogel's approximation prices out optimal.

23.1-3.

(a) Let  be the cost of buying a very old car  or a moderately old car  at- Ð5 œ "Ñ Ð5 œ #Ñ34
5

the beginning of year  and trading it in at the end of year . This cost is the difference of3 4
the purchase price, operating and maintenance costs for years  from the"ß #ßá ß 43"
trade in value after  years.43"

  - -" #
34 34     

                          

  M    M
  M   M  
  M   M   M  

" # $ % " # $ %
" #%!! %)!! (%!! "!$!! " $!!! &!!! (#!! "!(!!
# #%!! %)!! (%!! # $!!!
$ #%!! %)!!
% #%!!

  

&!!! (#!!
$ $!!! &!!!
% $!!!

 
  M   M  
  M   M   M  

Let min . Let the supply center be year 1 with unit supply and the- œ Ö- ß - ×3ß4"
" #
34 34

demand center be year 5 with unit demand. Years 2, 3, 4 are transshipment points.
- œ ! - œ 3  " - œ 4  &33 3" &4, M for  and M for . The following is the parameter table of
this transshipment problem:

                     Year 
Year               Supply
         
    M          
    M   M    

4
3 " # $ % &

" ! #%!! %)!! (#!! "!$!! "
# ! #%!! %)!! (#!! !
$ ! #%!! %)!! !
% ! #%!! !
& ! !

! ! ! ! "

      
    M   M   M          
    M   M   M   M          
Demand                
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(b) The cost and requirements table of the equivalent transportation problem is identical
to the one in (a) except that all supplies and demands need to be increased by one.

(c)

    Supply
         
         
         
         
         
Demand Cost: 

" # $ % &
" " " #
# " "
$ " "
% " "
& " "

" " " " # *ß '!!

The optimal solution is to purchase a very old car for year 1 and a moderately old one for
years 2, 3, and 4. The cost of this is $ .*ß '!!

23.1-4.

Suppose there are  supply centers,  receiving centers and  transshipment points.7 8 :

minimize       ! !
3œ" 4œ"

78: 78:

34 34- B

subject to 
for 
for 
for 

! Ú
ÛÜ4œ"

78:

34 43

3

3ÐB  B Ñ œ
= 3 œ "ß #ßá ß7
. 3 œ 7"ßá ß78
! 3 œ 78"ßá ß78:

  , for all B   ! 3 Á 434

This model has the special structure that each decision variable appears in exactly two
constraints, once with a coefficient of  and once with a coefficient of . The table of" "
constraint coefficients is:
B B â B B B â B â B B â B

" " â " " ! â ! â " ! â !
"# "$ "ß78: #" #$ #ß78: 78:ß" 78:ß# 78:ß78:"

                                                   
" ! â ! " " â " â ! " â !
ã ã ã ã ã ã ã ã ã

                                                 
                                                       
                                               ! ! â " ! ! â " â " " â "

23.2-1.

(a) Maximize   #B  %B  $B  #B  &B  $B" # $ % & '

 Master Problem    &B  #B  $B  %B  #B  B Ÿ #!" # $ % & '

                 #B  %B  #B  $B Ÿ '!" # % '

 Subproblem 1         $B  #B  $B Ÿ $!" # $

                     &B  B Ÿ $!" $

            B  #B  B   #!" # $

 Subproblem 2          B Ÿ "&%

            B   $%

 Subproblem 3                  #B  B Ÿ #!& '

                  #B  $B Ÿ %!& '

 , for B   ! 4 œ "ß #ßá ß '4
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(b) After converting  inequalities to  inequalities, the coefficient table becomes:  Ÿ

          
         

         
      

   

   

B B B B B B
& # $ % # "
# % # $
$ # $
& "
" # "

"
"

# "
# $

" # $ % & '

23.2-2.

(a)

 Constraint     
Master Problem          

         
Subproblem 1       

      
      

Subproblem

B B B B B B B
$ % # $ % " # !
' ! ! & " % $ #
# ! "
& " "
* # %

" % # & ( $ '

 2       
      

Subproblem 3             
            

" " " "
) # " $
% # %
( ! "

(b) The first constraint of Subproblem 1 and the second constraint of Subproblem 3 are
the upper-bound constraints. The second constraint of Subproblem 1 and the first
constraint of Subproblem 2 are the GUB constraints.

23.2-3.

(a) maximize (B  $B  &B  %B  (B  &B" # $ % & '

 subject to "'B  (B  "$B  )B  #!B  "!B Ÿ "&!" # $ % & '

   "!B  $B  (B Ÿ &!" # $

   %B  #B  &B Ÿ $!" # $

     'B  "$B  *B Ÿ %&% & '

       $B  )B  #B Ÿ #&% & '

   , for B4   ! 4 œ "ß #ßá ß '

(b)

 

 
 

 
  

B B B B B B
"' ( "$ ) #! "!
"! $ (
% # &

' "$ *
$ ) #

" # $ % & '
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23.3-1.

E œ E œ Ð$Ñ E œ Ð#Ñ E œ Ð"Ñ E œ Ð#Ñ
$ #
" !
! #

Î Ñ
Ï Ò, , , , " # $ %

- œ Ð$Ñ - œ Ð&Ñ B œ ÐB Ñ B œ ÐB Ñ , œ ") , œ % , œ "#" # " " # # " #
Ä Ä, , , , , , 

Subproblem 1: maximize D œ $B" "

  subject to , B Ÿ % B   !" "

   ,  B œ ! Ä B œ % Ä"" "#
‡ ‡

"" "#3 3

Subproblem 2: maximize D œ &B# #

  subject to , #B Ÿ "# B   !# #

   ,  B œ ! Ä B œ ' Ä#" ##
‡ ‡

#" ##3 3

Reformulate: maximize "#  $!3 3"# ##

  subject to "#  "#  B œ ")3 3"# ## &

    3 3"" "# œ "
    3 3#" ## œ "
    3   !ß B   !&

(1) Start with , , B œ F œ M œ F F , œ
B ")

"
"

F

&

""

#"

" "
Î Ñ Î Ñ
Ï Ò Ï Ò3
3

4 œ ": minimize A œ $B" "

 subject to , B Ÿ % B   ! Ä B œ % œ A œ "#" " " "
‡ ‡B"#

‡ , 

4 œ #: minimize A œ &B# #

 subject to , #B Ÿ "# B   ! Ä B œ ' œ A œ $!# # # #
‡ ‡B##

‡ , 

Not optimal, , so  enters the basis.A  A# "
‡ ‡

##3

E œ5
w

#"

Î Ñ Î Ñ
Ï Ò Ï Ò

"# ")
! "
" "

F , œ "Î", , minimum ratio: , so " 3  leaves the basis.

(2) , , , B œ - œ F œ F œ
B " " "# " ! "#

! ! $! ! " ! ! " !
! ! " ! ! "

F F

&

""

##

"
Î Ñ Î Ñ Î Ñ
Ï Ò Ï Ò Ï Òa b3
3

A œ $B B œ % œ A œ "#" " " "
‡ ‡, B"#

‡ , 

A œ &B  $! B œ ' œ A œ !# # # #
‡ ‡, B##

‡ , 

Not optimal, , so  enters the basis.A  A" #
‡ ‡

"#3

E œ B5
w

&

Î Ñ Î Ñ
Ï Ò Ï Ò

"# '
" "
! "

F , œ 'Î"#, , minimum ratio: , so "  leaves the basis.
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(3) , , ,B œ - œ F œ"# ! $! " " !
"# ! "#

! ! "
F F

"#

""

##

Î Ñ Î Ñ
Ï Ò Ï Òa b3
3
3

F œ
"Î"# ! "

"Î"# " "
! ! "

"
Î Ñ
Ï Ò

   
   
   

A œ !B  !" "

A œ $B  ") B œ ' œ A œ !# # # #
‡ ‡, B##

‡ , 

- F œ "  !F
" , so the solution is optimal, stop.

B œ œ F , œ
"Î#
"Î#
"

F

"#

""

##

"
Î Ñ Î Ñ
Ï Ò Ï Ò
3
3
3

Ê B œ !Ð"Î#Ñ  %Ð"Î#Ñ œ # B œ !Ð!Ñ  'Ð"Ñ œ ' D œ $'" #, , 

23.3-2.

(a) Reformulate:

Subproblem 1: , , , B œ B œ B œ B œ
! & &Î# !
! ! "&Î# "!"" "# "$ "%

‡ ‡ ‡ ‡Œ  Œ  Œ  Œ 
Subproblem 2: , , , B œ B œ B œ B œ

! & "!Î$ !
! ! "!Î$ &#" ## #$ "%

‡ ‡ ‡ ‡Œ  Œ  Œ  Œ 
maximize &!   &!  %!  &!  $&3 3 3 3 3 3"# "$ "% ## #$ #%

"#&
#

subject to $!   &!  #!   $!  B œ %!3 3 3 3 3 3"# "$ "% ## #$ #% &
"!& "!!
# $

  3 3 3 3"" "# "$ "%   œ "

  3 3 3 3#" ## #$ #%   œ "

  3   !ß B   !&

(b) Start with , , B œ F œ M œ F F , œ ß - œ !
B %!

"
"

F F

&

""

#"

" "
Î Ñ Î Ñ
Ï Ò Ï Ò3
3

4 œ ": minimize A œ "!B  &B" " #

 subject to , , $B  B Ÿ "& B  B Ÿ "! B ß B   !" # " # " #

 .B œ
&Î#
"&Î#"$

‡ Œ  is optimal, A œ "#&Î#"
‡

4 œ #: minimize A œ )B  (B# $ %

 subject to , , B  #B Ÿ "! #B  B Ÿ "! B ß B   !$ % $ % $ %

 .B œ
"!Î$
"!Î$#$

‡ Œ  is optimal, A œ &!#
‡

Not optimal, , so  enters the basis.A  A" #
‡ ‡

"$3
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E œ B5
w

&

Î Ñ Î Ñ
Ï Ò Ï Ò

"!&Î# %!
" "
! "

F , œ )!Î"!&, , minimum ratio: , so "  leaves the basis.

(2) , , ,B œ - œ F œ"#&Î# ! ! " " !
"!&Î# ! !

! ! "
F F

"$

""

#"

Î Ñ Î Ñ
Ï Ò Ï Òa b3
3
3

F œ
#Î"!& ! !

#Î"!& " !
! ! "

"
Î Ñ
Ï Ò

   

A œ  B  B A œ "%Þ#)" " #
#! #!
( #" "

‡, .B"#
‡  is optimal, 

A œ  B  B A œ "'Þ"*# $ %
') "
#" ( #

‡, .B##
‡  is optimal, 

Not optimal, , so  enters the basis.A  A# "
‡ ‡

##3

E œ5
w

#"

Î Ñ Î Ñ
Ï Ò Ï Ò

   
, , minimum ratio: , so 

%!Î"!& )!Î"!&
%!Î"!& #&Î"!&

" "
F , œ "Î"" 3  leaves the basis.

(3) , , ,B œ - œ F œ"#&Î# ! %! " " !
"!&Î# ! #!

! ! "
F F

"$

""

##

Î Ñ Î Ñ
Ï Ò Ï Òa b3
3
3

F œ
#Î"!& ! %!Î"!&

#Î"!& " %!Î"!&
! ! "

"
Î Ñ
Ï Ò

   
   

  

A œ  B  B A œ "%Þ#)" " #
#! #!
( #" "

‡, .B"#
‡  is optimal, 

A œ  B  B   %! A œ !# $ %
') " &!!
#" ( #" #

‡, .B##
‡  is optimal, 

Not optimal, , so  enters the basis.A  A" #
‡ ‡

"#3

E œ5
w

"$

Î Ñ Î Ñ
Ï Ò Ï Ò

'!Î"!& %!Î"!&
&&Î"!& '&Î"!&

! "
F , œ %!Î'!, , minimum ratio: , so " 3  leaves the basis.

(4) , , ,B œ - œ F œ&! ! %! " " !
$! ! #!

! ! "
F F

"#

""

##

Î Ñ Î Ñ
Ï Ò Ï Òa b3
3
3

F œ
"Î$! ! #Î$

"Î$! " #Î$
! ! "

"
Î Ñ
Ï Ò

   
   

  

A œ B A œ !" #
"!
$ "

‡, .B B"" "#
‡ ‡ and  are both optimal, 

A œ  B  $B   %! A œ !# $ %
% "!!
$ $ #

‡, .B##
‡  is optimal, 

- F œ &Î$  !F
" , so optimality test holds, stop.
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B œ œ F , œ
#Î$
"Î$
"

F

"#

""

##

"
Î Ñ Î Ñ
Ï Ò Ï Ò
3
3
3

Ê B œ  œ B œ " œ
! & "!Î$ & &
! ! ! ! !" #

Ä Ä" #
$ $Œ  Œ  Œ  Œ  Œ , 

Ê B œ "!Î$ B œ ! B œ & B œ ! D œ ##!Î$" # $ %, , , , 

23.3-3.

The problem has three subproblems and two linking constraints.

(1) Initial basis: , , B œ F œ F œ M - œ !

B
B

F F

&"

&#

""

#"

$"

"

Î ÑÐ ÓÐ ÓÐ ÓÐ Ó
Ï Ò
3
3
3

4 œ ": minimize )B  &B  'B" # $

 subject to #B  %B  $B Ÿ "!" # $

   (B  $B  'B Ÿ "&" # $

         &B  $B Ÿ "#" $

   B ß B ß B   !" # $

 .B œ
"&Î""
#!Î""

!
"5
‡

Î Ñ
Ï Ò is optimal, A œ #!"

‡

4 œ #: minimize *B  (B  *B% & '

 subject to   $B  B  #B Ÿ (% & '

   #B  %B  $B Ÿ *% & '

   B ß B ß B   !% & '

 .B œ
$Î&
!

"$Î&
#5
‡

Î Ñ
Ï Ò is optimal, A œ #)Þ)#

‡

4 œ $: minimize 'B  &B( )

 subject to )B  &B Ÿ #&( )

   (B  *B Ÿ $!( )

   'B  %B Ÿ #!( )

   B ß B   !( )

 .B œ
(&Î$(
'&Î$($5

‡ Œ  is optimal, A œ #!Þ*&#
‡

A#
‡

#5 is smallest, so  enters the basis.3
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E œ F , œ5
w "

Î ÑÐ ÓÐ ÓÐ Ó Ð ÓÐ ÓÐ ÓÐ Ó Ð Ó
Ï Ò

Î ÑÐ ÓÐ ÓÐ Ó Ð Ó
Ð ÓÐ Ó Ð ÓÐ Ó
Ï Ò

Œ Î Ñ
Ï Ò Î Ñ Î Ñ

Ï Ò Ï Ò

E B
! "$Î&
"
!

œ œ

# ! $ * $!
$ ( ! *Î& #!

$Î&
!

!
"
!

! "
" "
! "

# #5
‡

, 

minimum ratio: , so  leaves."Î" 3#"

(2) , , B œ - œ F œ

B " ! ! * !
B ! " ! *Î& !

! ! ! "%%Î& ! ! ! " ! !
! ! ! " !
! ! ! ! "

F F

&"

&#

""

#5

$"

"

Î Ñ Î ÑÐ Ó Ð ÓÐ Ó Ð ÓÐ Ó Ð ÓÐ Ó Ð Ó
Ï Ò Ï Ò

a b3
3
3

  same, A A œ #!" "
‡

 A œ B  "%%Î& A œ !* ( *# #
Ä

#
‡a b , 

  same, A A œ #!Þ*&$ $
‡

A$
‡

$5 is smallest, so  enters the basis.3

E œ F , œ5
w "

Î ÑÐ ÓÐ ÓÐ Ó Ð ÓÐ ÓÐ ÓÐ Ó Ð Ó
Ï Ò

Î Ñ Î Ñ Î ÑÐ ÓÐ Ó Ð Ó
Ð ÓÐ Ó Ð Ó
Ï Ò Ï Ò Ï Ò

Œ Œ E B
!
!
"

œ œ

% ' (&Î$(
" ! '&Î$(

!
!
"

")Þ'& #"
#Þ!$ *"Î&
! "
! "
" "

$ $5
‡

, 

minimum ratio: , so  leaves."Î" 3$"

Let  and continue. This suggests that in the next iteration,  will beB œ

B
B

F ""

&"

&#

""

#5

$5

Î ÑÐ ÓÐ ÓÐ ÓÐ Ó
Ï Ò
3
3
3

3

replaced by .3"5

23.4-1.

 Constraint           
                
             
                   
          

B B B B B B B B B B
" ! ! ! $ "
# " ! ! " #
$ ! ! ! " &
% " " " # "

$ ' ( " # % & ) * "!

                   
                    
                 

& ! ! ! ! "
' " " " " $ #
( ! ! ! # " "
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23.4-2.

(a) Let  denote the number of units of product  to be produced in year  for B 3 4 3 œ "ß #34

and . Let  denote the number of units of product  to be sold in year  for4 œ "ß #ß $ C 3 434

3 œ "ß # 4 œ "ß #ß $ D 3 and . Let  denote the number of units of product  to be produced345

and stored in year  and sold in year , for , , and .4 5 3 œ "ß # 4 œ "ß #ß $ 5 œ 4"ß 4#ßá ß $

maximize $C  &C  %C  %C  &C  )C"" #" "# ## "$ #$

   #D  #D  %D  %D  #D  #D""# #"# ""$ #"$ "#$ ##$

subject to B Ÿ %""

  #B Ÿ "##"

  $B  #B Ÿ ")"" #"

  B  C  D  D œ !"" "" ""# ""$

  B  C  D  D œ !#" #" #"# #"$

  B Ÿ '"#

  #B Ÿ "###

  $B  #B Ÿ #%"# ##

  D  B  C  D œ !""# "# "# "#$

  D  C Ÿ !""# "#

  D  B  C  D œ !#"# ## ## ##$

  D  C Ÿ !#"# ##

  B Ÿ $"$

  #B Ÿ "!#$

  $B  #B Ÿ "&"$ #$

  D  D  B  C œ !""$ "#$ "$ "$

  D  D  B  C œ !#"$ ##$ #$ #$

   for all .B   !ß C   !ß D   !ß 3ß 4ß 534 34 345

(b) Table of constraint coefficients:
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23.5-1.

 Constraint             
              
                       
                

B B B B B B B B B B
$ " ! & " # $ " ! % !
( " " # $ ! ! ! " ! #
" ! " #

# ) " % $ ( & * "! '

$
' ! ! " "
# " # " #
) " " # "
& " # # & $
* ! ! " # "
"! " ! %

                
                
          
              
                    
                
          

" &
% ! " "

23.5-2.

(a) Let types 1 and 2 denote raw lumber and plywood respectively. Let  be theB34

thousand board feet of type  to be purchased in season , for  and .3 4 3 œ "ß # 4 œ "ß #ß $ß %
Let  be the thousand board feet of type  to be sold in season , for  andC 3 4 3 œ "ß #34

4 œ "ß #ß $ß % D 3. Let  be the thousand board feet of type  to be purchased and stored in345

season  and sold in season , for , , and .4 5 3 œ "ß # 4 œ "ß #ß $ß % 5 œ 4"ß 4#ßá ß %
maximize %"!B  %#&C  "(D  #(D  $(D"" "" ""# ""$ ""%

  ')!B  (!&C  #%D  %#D  '!D#" #" #"# #"$ #"%

  %$!B  %%!C  "(D  #(D"# "# "#$ "#%

  ("&B  ($!C  #%D  %#D## ## ##$ ##%

  %'!B  %'&C  "(D ('!B  ((!C  #%D"$ "$ "$% #$ #$ #$%

  %&!B  %&&C (%!B  (&!C"% "% #% #%

subject to B  C  D  D  D œ !"" "" ""# ""$ ""%

  B  C  D  D  D œ !#" #" #"# #"$ #"%

  B  B Ÿ #!!!"" #"

  C Ÿ "!!!""

  C Ÿ )!!#"

  D  B  C  D  D œ !""# "# "# "#$ "#%

  D  C Ÿ !""# "#

  D  B  C  D  D œ !#"# ## ## ##$ ##%

  D  C Ÿ !#"# ##

  D  D  D  D  D  D  B  B Ÿ #!!!""# ""$ ""% #"# #"$ #"% "# ##

  C Ÿ "%!!"#

  C Ÿ "#!!##

  D  D  B  C  D œ !""$ "#$ "$ "$ "$%

  D  D  C Ÿ !""$ "#$ "$

  D  D  B  C  D œ !#"$ ##$ #$ #$ #$%

  D  D  C Ÿ !#"$ ##$ #$

  D  D  D  D  D  D  D  D  B  B Ÿ #!!!""$ ""% "#$ "#% #"$ #"% ##$ ##% "$ #$

  C Ÿ #!!!"$

  C Ÿ "&!!#$

  D  D  D  B  C œ !""% "#% "$% "% "%

  D  D  D  B  C œ !#"% ##% #$% #% #%

  D  D  D  D  D  D  B  B Ÿ #!!!""% "#% "$% #"% ##% #$% "% #%

  C Ÿ "'!!"%

  C Ÿ "!!#%

   for all .B   !ß C   !ß D   !ß 3ß 4ß 534 34 345
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(b)
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23.6-1.

(a) maximize #!B  $!B  #&B" # $

 subject to   $B  #B  B Ÿ #*" # $

   #B  %B  #B Ÿ %)" # $

     B  $B  &B Ÿ &(" # $

     B ß B ß B   !" # $

(b) Let , ,  be the values of  when  are observed respectively for B B B B #*ß $!ß $" ,#" ## #$ # "

and , , ,  be the values of  when the values for  are ,B B á B B Ð, ß , Ñ Ð#*ß %)Ñ$" $# $* $ " #

Ð#*ß &!Ñ Ð#*ß &#Ñ Ð$!ß %)Ñ Ð$!ß &!Ñ Ð$!ß &#Ñ Ð$"ß %)Ñ Ð$"ß &!Ñ Ð$"ß &#Ñ, , , , , , ,  respectively.

maximize  #!B  $!B  #& B  B  B" #" $" $# $$
" " " "
% % # %Š ‹š ’Š ‹ Š ‹ Š ‹ “›

   $!B  #& B  B  BŠ ‹š ’Š ‹ Š ‹ Š ‹ “›" " " "
# % # %## $% $& $'

   $!B  #& B  B  BŠ ‹š ’Š ‹ Š ‹ Š ‹ “›" " " "
% % # %#$ $( $) $*

subject to $B  #B  B Ÿ #*" #" $"

  $B  #B  B Ÿ #*" #" $#

  $B  #B  B Ÿ #*" #" $$

  $B  #B  B Ÿ $!" ## $%

  $B  #B  B Ÿ $!" ## $&

  $B  #B  B Ÿ $!" ## $'

  $B  #B  B Ÿ $"" #$ $(

  $B  #B  B Ÿ $"" #$ $)

  $B  #B  B Ÿ $"" #$ $*

  #B  %B  #B Ÿ %)" #" $"

  #B  %B  #B Ÿ &!" #" $#

  #B  %B  #B Ÿ &#" #" $$

  #B  %B  #B Ÿ %)" ## $%

  #B  %B  #B Ÿ &!" ## $&

  #B  %B  #B Ÿ &#" ## $'

  #B  %B  #B Ÿ %)" #$ $(

  #B  %B  #B Ÿ &!" #$ $)

  #B  %B  #B Ÿ &#" #$ $*

  B  $B  &B Ÿ &(" #" $#

  B  $B  &B Ÿ &(" #" $$

  B  $B  &B Ÿ &(" ## $%

  B  $B  &B Ÿ &(" ## $&

  B  $B  &B Ÿ &(" ## $'

  B  $B  &B Ÿ &(" #$ $(

  B  $B  &B Ÿ &(" #$ $)

  B  $B  &B Ÿ &(" #$ $*

   for  and B   !ß B   !ß B   !ß 3 œ "ß #ß $ 4 œ "ßá ß *" #3 $4
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23.7-1.

(a) P Pš ›(   Ÿ , œ Ö# Ÿ D× œ !Þ*((#%% "*
$ $ "

 P Pš ›"% )) $)
$ $ $ #  Ÿ , œ Ö&Î$ Ÿ D× œ !Þ*&"&

 P Pš ›( *&
$ $ $ ##  Ÿ , œ Ö%Î$ Ÿ D× œ !Þ*!)#

 P all constraints are satisfiedÖ × œ !Þ*((# ‚ !Þ*&"& ‚ !Þ*!)# œ !Þ)%&!

The solution is feasible.

(b) maximize #!B  $!B  #&B" # $

 subject to   $B  #B  B Ÿ #)Þ!%" # $

   #B  %B  #B Ÿ %'Þ("" # $

     B  $B  &B Ÿ &'Þ"'" # $

     B ß B ß B   !" # $

(c) maximize #!C  $!C  #&C" # $

 subject to   $C  #C  C Ÿ #'Þ*'" # $

   #C  %C  #C Ÿ '$Þ#*" # $

     C  $C  &C Ÿ *!Þ"&" # $

     C ß C ß C   !" # $

."
" " "
% # #œ $!  # $!  " $!  &! œ #&’Š ‹ “ ’Š ‹ Š ‹ “

.#
" " "
% # #œ &!  % $!  # $!  &! œ '!’Š ‹ “ ’Š ‹ Š ‹ “

.$
" " " $$!
% # # %œ '!  $ $!  & $!  &! œ ’Š ‹ “ ’Š ‹ Š ‹ “

5"
# " " "

# # #

# #

œ † %  "   † " œ "Š ‹ Š ‹
5#
# " " "

% # #

# #

œ %  # † "  "  # † % œ %’ Š ‹ Š ‹“ ’ Š ‹“
5$
# " " " &'*

% # # "'

# #

œ $  & † "  & † % œ’ Š ‹ Š ‹“ ’ Š ‹“
23.7-2.

(a)  has a normal distribution with mean E E  and,  + B Ð, Ñ  B Ð+ Ñ3 34 4 3 4 344œ" 4œ"
8 8! !

variance . Hence,5 5# # #
3 344œ"

8
4Ð, Ñ  B Ð+ Ñ!

 P Pš ›!  Ÿ! Ÿ ,  + B œ Ÿ D  3 34 4 3
4œ"

8  Ð, Ñ B Ð+ Ñ

Ð, Ñ B Ð+ Ñ

E E3 4 34
4œ"

8

# #
3 34

4œ"

8

4
#

"Î#

!
’ “!5 5

!

if and only if

 E E . Ð, Ñ  B Ð+ Ñ Ÿ O Ð, Ñ  B Ð+ Ñ3 4 34 3 34
4œ" 4œ"

8 8
# # #

4

"Î#! !’ “!3
5 5
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(b)  has a normal distribution with mean,  + B œ ,  + , .3 34 4 3 34 5 454œ" 4œ" 5œ"
8 8 7! ! !

E E  and variance . Hence,Ð, Ñ  + . Ð, Ñ Ð, Ñ  + . Ð, Ñ3 34 45 5 3 54œ" 5œ" 4œ" 5œ"
8 7 8 7# # # #

34 45
! ! ! !5 5

 P Pš ›!  Ÿ! Ÿ ,  + B œ Ÿ D  3 34 4 3
4œ"

8  Ð, Ñ + . Ð, Ñ

Ð, Ñ + . Ð, Ñ

E E3 34 45 5
4œ"

8 7

5œ"

# #
3 5

4œ"

8 7

34
# #

5œ"
45

"Î#

! !
’ “! !5 5

!

if and only if

 E E . Ð, Ñ  + . Ð, Ñ Ÿ O Ð, Ñ  + . Ð, Ñ3 34 45 5 3 5
4œ" 4œ"

8 7 8 7

5œ" 5œ"

# # # #
34 45

"Î#! ! ! !’ “!3
5 5
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CHAPTER 24: PROBABILITY THEORY

24.1.

(a) The six colored sides: red, white, blue, green, yellow, and violet.

(b) TÖ\ œ !× œ TÖ\ œ "× œ TÖ\ œ #× œ "Î$

(c) IÐ] Ñ œ IÐ\  "Ñ œ Ð5  "Ñ TÖ\ œ 5× œ %# #

5œ!

#
#
$

!
24.2.

(a) 

if 
if 
if 
else

T Ð3Ñ œ

TÖA  A × œ TÖA ×  TÖA × œ "Î$  "Î& œ )Î"& 3 œ "
TÖA × œ $Î"! 3 œ %
TÖA × œ "Î' 3 œ &
!

\

" # " #

$

%
"

ÚÝÝÛÝÝÜ
(b) IÐ\ Ñ œ " †  % †  & † œ #"

) $ " "(
"& "! ' $!

(c) 

if 
if 
if 
else

T Ð3Ñ œ

TÖA  A × œ TÖA ×  TÖA × œ "Î$  "Î& œ )Î"& 3 œ #
TÖA × œ $Î"! 3 œ &
TÖA × œ "Î' 3 œ "!
!

\ \

" # " #

$

%
" #

ÚÝÝÛÝÝÜ
(d) IÐ\ \ Ñ œ # †  & †  "! † œ %" #

) $ " (
"& "! ' $!

 IÐ\ Ñ œ " †    & † œ "#
" " $ " #
$ & "! ' $Š ‹

or  IÐ\ Ñ œ IÐ\ \ Ñ  IÐ\ Ñ# " # "

(e) 

for  or 
for  and 
for  and 
for  and 
for  

J Ð, ß , Ñ œ

! ,  " ,  "
)Î"& " Ÿ ,  % " Ÿ ,  _
&Î' % Ÿ ,  & " Ÿ ,  _
&Î' % Ÿ ,  _ " Ÿ ,  &
" & Ÿ ,

\ \ " #

" #

" #

" #

" #

"

" #

ÚÝÝÝÝÛÝÝÝÝÜ and & Ÿ ,#

(f)

 3 œ IÒ\ IÐ\ ÑÓÒ\ IÐ\ ÑÓ

IÒ\ IÐ\ ÑÓ IÒ\ IÐ\ ÑÓ
" " # #

" " # #
# #È

Since , , ,  andIÐ\ Ñ œ ((Î$! IÐ\ Ñ œ #)&Î$! IÐ\ Ñ œ &!Î$! IÐ\ Ñ œ "&!Î$!" #" #
# #

IÐ\ \ Ñ œ "((Î$! ¶ !Þ'%" # , .3

(g) IÐ#\  $\ Ñ œ #IÐ\ Ñ  $IÐ\ Ñ œ #Î"&" # " #
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24.3.
 (a) (b)  (c)

GG  
GM  
GB  
MG  
MM  
MB  
BG  
BM  
BB  

% "Î%
$ "Î'
# "Î"#
$ "Î'
# "Î*
" "Î")
# "Î"#
" "Î")
! "Î$'

(d) \ − Ö!ß "ß #ß $ß %×

 ,TÖ\ œ !× œ "Î$'

 ,TÖ\ œ "× œ "Î")  "Î") œ "Î*

 ,TÖ\ œ #× œ "Î"#  "Î*  "Î"# œ &Î")

 ,TÖ\ œ $× œ "Î'  "Î' œ "Î$

 ,TÖ\ œ %× œ "Î%

  for .TÖ\ œ 5× œ ! 5 Â Ö!ß "ß #ß $ß %×

(e) IÐ\Ñ œ ! † "Î$'  " † "Î*  # † &Î")  $ † "Î$  % † "Î% œ ##
$

24.4.

(a) , so " œ 0 ÐCÑ.C œ .C  O.C œ O O O œ œ " ' ' '
! !
" "

\
# Ð" Ñ

Ð" Ñ

)
)

)
)) ) ) )

#

(b)

J Ð,Ñ œ

! ,  !

.C œ , ! Ÿ , 

 Ð"  Ñ.C œ  Ð"  Ñ,  Ð"  Ñ œ ,  ,  Ÿ ,  "

" " Ÿ ,

\
!
,

# #,

ÚÝÝÝÛÝÝÝÜ
'

'
if 
if 
if 
if 

) ) )

) ) ) ) ) ) ) ) ))

(c) IÐ\Ñ œ C .C  CÐ"  Ñ.C œ Ð"   ÑÎ#' '
!

" #)
)) ) ) )

(d) No, a counterexample is obtained by choosing . In that case,! Ÿ + Ÿ œ "Î$)

  TÖ\  "Î$  +× œ TÖ\  +  "Î$× œ J Ð+  "Î$Ñ\

                                        œ Ð+  "Î$Ñ  Ð"Î$ÑÐ+  "Î$Ñ  "Î$ œ Ð%Î$Ñ+  "Î*

  TÖÐ\  "Î$Ñ  +× œ TÖ\   +  "Î$× œ "  J Ð  +  "Î$Ñ\

    ,œ "  Ð"Î$ÑÐ  +  "Î$Ñ œ Ð"Î$Ñ+  )Î*

so the equality does not hold.



24-3

24.5.

(a)   IÐ\Ñ œ B  B œ ! Ê B œ $B" $
% %" # " #

 varÐ\Ñ œ IÐ\ Ñ  ÒIÐ\ÑÓ œ IÐ\ Ñ œ B  B œ "!# # # # #" $
% %" #

        
 and 

 and 
Ê Ð$B Ñ  B œ $B œ "! Ê

B œ $ "!Î$ B œ "!Î$

B œ $ "!Î$ B œ  "!Î$
" $
% %#

# # #
# #

" #

" #
 È ÈÈ È

(b) Depending on  and , the CDF can be represented as either one of the followingB B" #

two graphs

24.6.

(a) TÖ\   #&!× œ "  TÖ\  #&!× œ "  0 ÐCÑ.C œ "  .C' '
! "!!
#&! #&!

\
"!!
C#

                          œ "   œ "  #Î&  " œ #Î&Š ‹"!!
C

#&!

"!!

(b)   IÐ\Ñ œ C0 ÐCÑ.C œ .C œ "!!Ð _ "!!Ñ œ _' '
! "!!
_ _

\
"!!
C ln ln

24.7.

(a) 

ÚÝÝÝÝÛÝÝÝÝÜ

TÖ"  \  #× œ TÖ\ œ !×  TÖ\ œ "× œ !Þ%
TÖ\ œ !× œ !Þ$
TÖl\l Ÿ "× œ TÖ\ œ "×  TÖ\ œ !×  TÖ\ œ "× œ !Þ'
TÖ\   #× œ TÖ\ œ #× œ TÖ\ œ "×  TÖ\ œ "×
TÖ\ œ #×  TÖ\ œ "×  TÖ\ œ !×  TÖ\ œ "×  TÖ\ œ #× œ "

Solving this system of equations gives: 5 # " ! " #
TÖ\ œ 5× !Þ" !Þ# !Þ$ !Þ" !Þ$

(b)

(c) IÐ\Ñ œ !Þ" † Ð#Ñ  !Þ# † Ð"Ñ  !Þ$ † Ð!Ñ  !Þ" † Ð"Ñ  !Þ$ † Ð#Ñ œ !Þ$
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24.8.

(a)   ' Š ‹"
" # C

$ $ %

"

"

%O $OÐ"  C Ñ.C œ O C  œ œ " Ê O œ
$

(b)

J Ð,Ñ œ

! ,  "

OÐ"  C Ñ.C œ C  œ Ð,  "Ñ  Ð,  "Ñ "   ,  "

" "   ,

\ "
, # $$ $ "

% $ % %
C

,

"

ÚÝÛÝÜ
' Š ‹

if 

if 
if 

$

(c) IÐ#\  "Ñ œ #IÐ\Ñ  " œ # C Ð"  C Ñ.C  " œ   " œ "Š ‹ Š ‹'
"
" $ $

% # # %
# C C

"

"

# %

Note that .IÐ\Ñ œ !

(d) varÐ\Ñ œ IÐ\ Ñ  ÒIÐ\ÑÓ œ IÐ\ Ñ œ C Ð"  C Ñ.C œ "Î&# # # # #
"
" $

%
'

(e) From the Central Limit Theorem,  is approximately normal with mean  and\ IÐ\Ñ

variance var , equivalently N  and henceÐ\Ñ µ Ð!ß "Ñ\IÐ\Ñ

Ð\ÑÎ8Èvar

 NTÖ\  !× œ T  œ TÖ Ð!ß "Ñ  !× œ !Þ&œ \IÐ\Ñ IÐ\Ñ

Ð\ÑÎ8 Ð\ÑÎ8È Èvar var

24.9.

(a)   " œ "  .C œ C  œ Ê + œ #' Š ‹ Š ‹!
"!!! + + +

"!!! "!!! "!!! #!!! #
C C

"!!!

!

#

(b) IÐ\Ñ œ C "  .C œ  œ $$$' Š ‹ Š ‹!
"!!! # " "

"!!! "!!! &!! # $!!! $
C C C

"!!!

!

# $

(c) 

if 

if 

if 

J Ð,Ñ œ

! ,  !

"  .C œ C  œ  ! Ÿ ,  "!!!

" "!!! Ÿ ,

\ !
, # " , ,
"!!! "!!! &!! #!!! &!! !

C C
,

!

ÚÝÛÝÜ
' Š ‹ Š ‹# #

'1

(d) 
if 
if 
if 

J Ð,Ñ œ J Ð,Î$Ñ œ

! ,  !

 ! Ÿ ,  $!!!

" $!!! Ÿ ,
^ \

, ,
"&!! *† !

Ú
ÛÜ

#

'1

24.10.

(a) TÖ\   #&× œ "  TÖ\ Ÿ #%× œ "  !Þ%($ œ !Þ&#(

 TÖ\ œ #!× œ TÖ\ Ÿ #!×  TÖ\ Ÿ "*× œ !Þ")&  !Þ"$% œ !Þ!&"

(b) shortageTÖ × œ TÖ\  $&× œ "  TÖ\ Ÿ $&× œ "  !Þ*() œ !Þ!##
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24.11.

(a) IÐ\Ñ œ # Ð"Î#Ñ œ " œ _! !
8œ" 8œ"

_ _
8 8

Hence, player B should pay  to player A so that the game is fair. Otherwise, the game_
can never be made fair.

(b) Since the mean is infinite and , the variance is , soIÐ\ Ñ   ÒIÐ\ÑÓ œ _ __# #

not well-defined.

(c) TÖ\ Ÿ )× œ TÖ\ œ #×  TÖ\ œ %×  TÖ\ œ )× œ "Î#  "Î%  "Î) œ (Î)

24.12.

(a) " œ TÖH œ "×  TÖH œ !×  TÖH œ "× œ "Î)  &Î)  -Î) œ 'Î)  -Î)

Solving this equation for  gives .- - œ #

(b) I / œ † /  † "  † / œ Ð&  $/ÑŠ ‹H " & # "
) ) ) )

#

(c)

24.13.

(a) Let  denote the volume of bottle  for  and .\ 3 3 œ "ß #ß $ ^ œ \ \ \3 " # $

    IÐ^Ñ œ IÐ\ Ñ  IÐ\ Ñ  IÐ\ Ñ œ $ † "& œ %&" # $

 var var var varÐ^Ñ œ Ð\ Ñ  Ð\ Ñ  Ð\ Ñ œ $ † Ð!Þ!)Ñ œ !Þ!"*#" # $
#

        var5^ œ Ð^Ñ œ !Þ"$*È
(b) N^ µ Ð%&ß !Þ!"*#Ñ

 NTÖ^   %&Þ#× œ T   œ TÖ Ð!ß "Ñ   "Þ%%× œ !Þ!(&š ›^%& %&Þ#%&
!Þ"$* !Þ"$*

24.14.

(a) 

if 

if 

if 

J Ð,Ñ œ

! ,  !

'CÐ"  CÑ.C œ '  œ $,  #, ! Ÿ ,  "

" " Ÿ ,

\ !
, C C

# $

,

!

# $

ÚÝÛÝÜ
' Š ‹# $
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(b)   IÐ\Ñ œ C'CÐ"  CÑ.C œ '  œ !Þ&' Š ‹!
" C C

$ %

"

!

$ %

 varÐ\Ñ œ IÐ\ Ñ  ÒIÐ\ÑÓ œ C 'CÐ"  CÑ.C  !Þ#&# # #
!
"'

  œ '   !Þ#& œ !Þ!&Š ‹C C
% &

"

!

% &

(c) TÖ\  !Þ&× œ "  TÖ\ Ÿ !Þ&× œ "  Ð$ † !Þ&  # † !Þ& Ñ œ !Þ&# $

(d) I œ † ' † IÐ\ Ñ œ !Þ&Š ‹\ \ \ \ \ \
' '

"
"

" # $ % & '

(e) var varŠ ‹\ \ \ \ \ \
' $'

"
"

" # $ % & ' œ † ' † Ð\ Ñ œ "Î"#!

24.15.

(a) Let  and  be the voltage of battery 1 and 2 respectively, and .\ \ ^ œ \ \" # " #

Since

 N  and N , N .\ µ " ß !Þ!'#&Ñ \ µ " ß !Þ!'#&Ñ ^ µ Ð$ß !Þ"#&Ñ" #
" "
# #Š Š

 failureTÖ × œ TÖ^  #Þ(&×  TÖ^  $Þ#&× œ # † TÖ^  $Þ#&×

     N Nœ # † T Ð!ß "Ñ  œ # † TÖ Ð!ß "Ñ  !Þ(!(× œ !Þ%)š ›$Þ#&$

!Þ"#&È
The second equality is a result of the symmetry of normal distribution.

(b) Chebyshev's Inequality states . Hence, the probabilityTÖl\  l   O × Ÿ "ÎO. 5 #

T T T ¶ !Þ$&%Ö^  #Þ(&×  Ö^  $Þ#&× œ Öl\  l   !Þ#&× Ÿ "ÎÐ!Þ#&Î Ñ. 5 # and since ,5
the upper bound is . This value exceeds , so it is not a useful bound on the"ÎÐ!Þ(!'Ñ "#

probability.

24.16.

T "!!! † † l\  l Ÿ "& œ !Þ*! Í TÖl\  l Ÿ (&× œ !Þ*!š ›"
&!!! . .

Í TÖl\  l  (&× œ !Þ"! Í TÖ\   (&× œ !Þ!&. .

Í T  œ !Þ!& Í T Ð!ß "Ñ  œ !Þ!&š › š ›l\ l (& (&.
5 5 5\ \ \

N

Í œ "Þ'%& Í œ %&Þ' ¶ #!(*    or (&
\ \

#
5\

5 5

Since ,  . Hence, choosing  is5 5
\
# #

\œ Î8 #!(* œ %!!!!Î8 Ê 8 œ "*Þ#% 8   #!

sufficient.
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24.17.

(a) 0 Ð=Ñ œ 0 Ð=ß >Ñ.>\ \ ß\_
_

" " #
'

Let  and  so that .. / 5œ œ .> œ .@
= >

\
. .

5 5
\ \" #

\ \" #
#

0 Ð=Ñ œ Ð  #  Ñ .@\
" "

# " _
_

#Ð" Ñ
# #

"
\"

# #15 3 3È ' šŠ ‹ ›exp . 3./ /

            œ Ð  #    Ñ .@" "
# " _

_

#Ð" Ñ
# # # # # #

15 3 3\"
# #È ' šŠ ‹ ›exp / 3./ 3 . 3 . .

Now let  so that .D œ .@ œ "  .D/ 3.

3



"
#È #

È 3

0 Ð=Ñ œ ÐD Î#Ñ.D œ † # œ \
Ð Î#Ñ Ð Î#Ñ
# # #_

_ # " "

#

= #

"

# #

\ \ \" " "\"

\"exp exp. .
15 15 515

.' È ’ Š ‹ “exp exp1 È
Hence, N  and the same analysis leads to  the conclusion\ µ Ð ß Ñ" \

#
\. 5

" "

\ µ Ð ß Ñ# \
#
\N .. 5

# #

(b) CorrÐ\ ß\ Ñ œ" #
IÒ\ IÐ\ ÑÓÒ\ IÐ\ ÑÓ" " # #

\ \" #
5 5

      œ Ð=  ÑÐ>  Ñ0 Ð=ß >Ñ.=.>"
_ _
_ _

\ \ \ ß\5 5\ \" #
" # " #

' ' . .

Let  and .. /œ œ
= >. .

5 5
\ \" #

\ \" #

CorrÐ\ ß\ Ñ œ Ð  #  Ñ . ." #
" "

# " _ _
_ _

#Ð" Ñ
# #

1 3 3È # #
' ' šŠ ‹ ›./ . 3./ / . /exp

                         œ . / . Ð  Ñ" "
# " _ _

_ _ Î# #
#Ð" Ñ1 3

.
3È #

#

#
' ' šŠ ‹ ›. . / / / 3.exp

Now let  .D œ / 3.

3



"È #

Corr  Ð\ ß\ Ñ œ . / Ò!  "  # Ó" #
"

# " _
_  Î# #

1 3
.È #

#' È È. . 3. 3 1

                        œ . / œ3

1
.È# _

_  Î#' . . 3
#

(c) See part (a).

(d) Let  and .. /œ œ
B  B " \ # \" #

\ \" #

. .

5 5

   0 ÐB lB Ñ œ œ\ l\ " #
0 ÐB ßB Ñ

0 ÐB Ñ

Ð #  Ñ

/
" #

\ ß\ " # \ \" # " #

\ ##

" "

# " # #Ð" Ñ#
# #

"

# \#

 Î##

Œ  šŠ ‹ ›
Œ 

15 5 3 3

15
/

É
È

exp . 3./ /

   œ " "

# " #

B   ÐB  Ñ

"È ÈÈ15 3

. 3 .

5 3\"
#

# \ # \" #

\"

\#

\"
#expœ ” •Š ‹ 5

5
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24.18.

(a)   " œ -.=.> œ #&!!- Ê - œ "Î#&!!' '
"!! &!
"&! "!!

(b)

J Ð, ß , Ñ œ

! ,  "!! ,  &!

.=.> œ Ð,  "!!ÑÐ,  &!Ñ "!! Ÿ ,  "&! &! Ÿ ,  "!!

\ \ " #

" #

"!! &!
, , " "

#&!! #&!! " # " #

"!! &!
"&! , "

" #

" #

#

ÚÝÝÝÝÝÛÝÝÝÝÝÜ

' '
' '

for  or 
for  and 

#&!! &!
Ð, &!Ñ

" #

"!! &!
, "!! "

#&!! &!
Ð, "!!Ñ

" #

" #

.=.> œ "&! Ÿ , &! Ÿ ,  "!!

.=.> œ "!! Ÿ ,  "&! "!! Ÿ ,

" "&! Ÿ , "!! Ÿ ,

#

" "

for  and 
for  and 
for  and 

' '

J Ð, Ñ œ

! ,  "!!

.=.> œ "!! Ÿ ,  "&!

" "&! Ÿ ,
\ "

"

"!! &!
, "!! "

#&!! #&!!
Ð, "!!Ñ

"

"

"
" "

Ú
ÛÜ' ' for 

for 
for 

J Ð, Ñ œ

! ,  &!

.=.> œ &! Ÿ ,  "!!

" "!! Ÿ ,
\ #

#

"!! &!
"&! , "

#&!! #&!!
Ð, &!Ñ

#

#

#
# #

Ú
ÛÜ' ' for 

for 
for 

(c)  for 0 Ð=Ñ œ "Î&! "!! Ÿ =  "&!\"

0 Ð>Ñ œ œ œ "!! Ÿ =  "&! 0 Ð>Ñ œ !\ l\ œ= \ l\ œ=
0 Ð=ß>Ñ

0 Ð=Ñ "Î&! &!
"Î#&!! "

# " # "

\ ß\" #

\"
 for  and  else.

24.19.

(a) T Ð!Ñ œ T Ð!ß 5Ñ œ "Î#\ \ ß\
5œ!

#

" " #
!

 T Ð"Ñ œ "  T Ð!Ñ œ "Î#\ \" "

 T Ð!Ñ œ T Ð5ß !Ñ œ "Î)\ \ ß\
5œ!

"

# " #
!

 T Ð"Ñ œ T Ð5ß "Ñ œ $Î)\ \ ß\
5œ!

"

# " #
!

 T Ð#Ñ œ "  T Ð!Ñ  T Ð"Ñ œ "Î#\ \ \# # #

(b) T Ð!Ñ œ œ œ\ l\ œ"
T Ð!ß"Ñ

T Ð"Ñ $Î) $
"Î% #

" #

\ ß\" #

\#

 T Ð"Ñ œ œ œ\ l\ œ"
T Ð"ß"Ñ

T Ð"Ñ $Î) $
"Î) "

" #

\ ß\" #

\#

(c) No, consider .T Ð!Ñ œ #Î$ Á "Î# œ T Ð!Ñ\ l\ œ" \" # "

(d)  and varIÐ\ Ñ œ "Î# Ð\ Ñ œ "Î%" "

  and varIÐ\ Ñ œ ""Î) Ð\ Ñ œ $"Î'%# #
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(e) T Ð!Ñ œ "Î)\ \" #

 T Ð"Ñ œ "Î%  ! œ "Î%\ \" #

 T Ð#Ñ œ "Î)  "Î) œ "Î%\ \" #

 T Ð$Ñ œ $Î)\ \" #

24.20.

(a) TÖJ× œ TÖJ  × œ TÖJ  ÐI  I á I Ñ× œ TÖ  ÐJ  I Ñ×H " # 7 3
3œ"

7

                 since  for œ TÖJ  I × TÖI  I × œ ! 3 Á 4!
3œ"

7

3 3 4

                   since   œ TÖJ l I ×TÖI × TÖJ l I × œ!
3œ"

7

3 3 3
TÖJI ×
TÖI ×

3

3

(b)   TÖI l J× œ œ œ3
TÖI J× TÖI J× TÖJ l I ×TÖI ×
TÖJ×

TÖJ l I ×TÖI × TÖJ l I ×TÖI ×

3 3 3 3

3œ" 3œ"

7 7

3 3 3 3! !    
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CHAPTER 25: RELIABILITY

25.1-1.

The minimal paths for the system are  and . Hence,\ \ \ \" # " $

 max max9Ð\ ß\ ß\ Ñ œ Ò\ \ ß\ \ Ó œ \ Ò\ ß\ Ó" # $ " # " $ " # $

    .œ \ Ò"  Ð"  \ ÑÐ"  \ ÑÓ" # $

25.1-2.

The minimal paths for the system are  and . Hence,\ \ \ \ \ \" # $ " # %

 max max9Ð\ ß\ ß\ ß\ Ñ œ Ò\ \ \ ß\ \ \ Ó œ \ \ Ò\ ß\ Ó" # $ % " # $ " # % " # $ %

                 .œ \ \ Ò"  Ð"  \ ÑÐ"  \ ÑÓ" # $ %

25.2-1.

Note that throughout this chapter we assume that the component reliabilities are indepen-
dent.

 EVÐ: ß : ß : Ñ œ Ò Ð\ ß\ ß\ ÑÓ œ : Ò"  Ð"  : ÑÐ"  : ÑÓ" # $ " # $ " # $9

25.2-2.

 EVÐ: ß : ß : ß : Ñ œ Ò Ð\ ß\ ß\ ß\ ÑÓ œ : : Ò"  Ð"  : ÑÐ"  : ÑÓ" # $ % " # $ % " # $ %9

25.3-1.

(a) Yes, , .5 œ # 8 œ $

(b)

 

(c) 9Ð\ ß\ ß\ Ñ œ "  Ð"  \ \ ÑÐ"  \ \ ÑÐ"  \ \ Ñ" # $ " # " $ # $

        œ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \" # $ " # $
# # # # # #

# $ " $ " # " # " $

(d) VÐ: ß : ß : Ñ œ "  Ð"  : : ÑÐ"  : : ÑÐ"  : : Ñ" # $ " # " $ # $
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25.3-2.

(a)

 

(b) 9Ð\ ß\ ß\ ß\ ß\ Ñ œ "  Ð"  \ \ ÑÐ"  \ \ ÑÐ"  \ \ \ Ñ" # $ % & " % # & # $ %

(c) VÐ>Ñ œ "  Ð"  V Ð>ÑV Ð>ÑÑÐ"  V Ð>ÑV Ð>ÑÑÐ"  V Ð>ÑV Ð>ÑV Ð>ÑÑ" % # & # $ %

25.3-3.

Let  and  denote the two units of type . Then, the two systems to be com-\ \ 3 œ "ß #ß $3 3
w

pared can be represented as follows.

System A

System B

 

9E " # $ " # $" # $ " # $
w w w w w wÐ\ ß\ ß\ ß\ ß\ ß\ Ñ œ Ò Ð\ ß\ ÑÓÒ Ð\ ß\ ÑÓÒ Ð\ ß\ ÑÓmax max max

9F " # $ " # $" # $ " # $
w w w w w wÐ\ ß\ ß\ ß\ ß\ ß\ Ñ œ Ð\ \ \ ß\ \ \ Ñmax

Ò Ð\ ß\ ÑÓÒ Ð\ ß\ ÑÓÒ Ð\ ß\ ÑÓ   \ \ \max max max" # $ " # $" # $
w w w

Ò Ð\ ß\ ÑÓÒ Ð\ ß\ ÑÓÒ Ð\ ß\ ÑÓ   \ \ \max max max" # $" # $ " # $
w w w w w w

Hence, max  and system A is more9 9E
w w w w w

" # $ F" # $
wÐ\ß\ Ñ   Ð\ \ \ ß\ \ \ Ñ œ Ð\ß\ Ñ

reliable than system B.
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25.4-1.

(a) Minimal paths:  and \ \ \ \" $ # %

     Minimal cuts:   , ,  and \ \ \ \ \ \ \ \" # " % # $ $ %

(b) From the minimal path representation:

9Ð\ ß\ ß\ ß\ Ñ œ Ò\ \ ß\ \ Ó œ "  Ð"  \ \ ÑÐ"  \ \ Ñ" # $ % " $ # % " $ # %max

VÐ: ß : ß : ß : Ñ œ "  Ð"  : : ÑÐ"  : : Ñ" # $ % " $ # % .

If  for all , .: œ : œ !Þ*! 3 VÐ:Ñ œ !Þ*'$*3

(c) Upper bound œ "  Ð"  : : ÑÐ"  : : Ñ" $ # %

 Lower bound œ Ð"  ; ; ÑÐ"  ; ; ÑÐ"  ; ; ÑÐ"  ; ; Ñ" # " % # $ $ %

where . If  for all , then the upper bound is  and the; œ "  : : œ : œ !Þ*! 3 !Þ*'$*3 3 3

lower bound is .!Þ*'!'!

25.4-2.

(a) Minimal paths: , ,  and \ \ \ \ \ \ \ \ \ \" & " $ % # $ & # %

 Minimal cuts:   , ,  and \ \ \ \ \ \ \ \ \ \" # " $ % # $ & % &

(b) VÐ: ß : ß : ß : ß : Ñ" # $ % &

œ ÖÐ\ \ œ "Ñ  Ð\ \ \ œ "Ñ  Ð\ \ \ œ "Ñ  Ð\ \ œ "Ñ×P " & " $ % # $ & # %

œ Ð\ \ œ "Ñ  Ð\ \ \ œ "Ñ  Ð\ \ \ œ "Ñ  Ð\ \ œ "ÑP P P P" & " $ % # $ & # %

 Ð\ \ \ \ œ "Ñ  Ð\ \ \ \ œ "Ñ  Ð\ \ \ \ œ "ÑP P P" $ % & " # $ & " # % &

 Ð\ \ \ \ \ œ "Ñ  Ð\ \ \ \ œ "Ñ  Ð\ \ \ \ œ "ÑP P P" # $ % & " # $ % # $ % &

 Ð\ \ \ \ \ œ "Ñ  Ð\ \ \ \ \ œ "Ñ  Ð\ \ \ \ \ œ "ÑP P P" # $ % & " # $ % & " # $ % &

 Ð\ \ \ \ \ œ "Ñ  Ð\ \ \ \ \ œ "ÑP P" # $ % & " # $ % &

œ : :  : : :  : : :  : :  : : : :  : : : :  : : : :  : : : :" & " $ % # $ & # % " $ % & " # $ & " # % & " # $ %

 : : : :  #: : : : :# $ % & " # $ % &

If  for all , .: œ : œ !Þ*! 3 VÐ:Ñ œ !Þ*()%)3

(c) Upper bound œ "  Ð"  : : ÑÐ"  : : : ÑÐ"  : : : ÑÐ"  : : Ñ" & " $ % # $ & # %

 Lower bound œ Ð"  ; ; ÑÐ"  ; ; ; ÑÐ"  ; ; ; ÑÐ"  ; ; Ñ" # " $ % # $ & % &

where . If  for all , then the upper bound is  and the; œ "  : : œ : œ !Þ*! 3 !Þ**($&3 3 3

lower bound is .!Þ*()"%

25.4-3.

(a) Minimal paths:  and \ \ \ \" # # $

 Minimal cuts:    and \ \ \" $ #

(b) From the minimal path representation:

9Ð\ ß\ ß\ Ñ œ Ò\ \ ß\ \ Ó œ \ Ò"  Ð"  \ ÑÐ"  \ ÑÓ" # $ " # # $ # " $max

VÐ: ß : ß : Ñ œ : Ò"  Ð"  : ÑÐ"  : ÑÓ œ : :  : :  : : :" # $ # " $ " # # $ " # $.

If  for all , .: œ : œ !Þ*! 3 VÐ:Ñ œ !Þ)*"3
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(c) Upper bound œ "  Ð"  : : ÑÐ"  : : Ñ" # # $

 Lower bound œ Ð"  ; ; ÑÐ"  ; Ñ" $ #

where . If  for all , then the upper bound is  and the; œ "  : : œ : œ !Þ*! 3 !Þ*'$*3 3 3

lower bound is .!Þ)*"

25.4-4.

(a) Minimal paths: , ,  and \ \ \ \ \ \ \ \ \ \" & " $ ' # ' # % &

 Minimal cuts:   , ,  and \ \ \ \ \ \ \ \ \ \" # " % ' # $ & & '

(b) VÐ: ß : ß : ß : ß : ß : Ñ" # $ % & '

œ ÖÐ\ \ œ "Ñ  Ð\ \ \ œ "Ñ  Ð\ \ œ "Ñ  Ð\ \ \ œ "Ñ×P " & " $ ' # ' # % &

œ : :  : : :  : :  : : :  : : : :  : : : :  : : : :  : : : :" & " $ ' # ' # % & " $ & ' " # & ' " # % & " # $ '

 : : : :  : : : : :  : : : : :# % & ' " # $ & ' " # % & '

If  for all ,  and if , then ..: œ : 3 VÐ:Ñ œ #:  #:  &:  #: : œ !Þ* VÐ:Ñ œ !Þ*()%)3
# $ % &

(c) Upper bound œ "  Ð"  : : ÑÐ"  : : : ÑÐ"  : : ÑÐ"  : : : Ñ" & " $ ' # ' # % &

 Lower bound œ Ð"  ; ; ÑÐ"  ; ; ; ÑÐ"  ; ; ; ÑÐ"  ; ; Ñ" # " % ' # $ & & '

where . If  for all , then the upper bound is  and the; œ "  : : œ : œ !Þ*! 3 !Þ**($&3 3 3

lower bound is .!Þ*()"%

25-5.1.

(a)  for , so .VÐ>Ñ   / > Ÿ Ê VÐ"Î%Ñ   / ¸ !Þ'&* !Þ'&* Ÿ VÐ"Î%Ñ Ÿ ">Î Ð"Î%ÑÎ!Þ'. .

(b)  for  where , so we need to find  such that VÐ>Ñ Ÿ / >  "  A œ / A / œA> A> A. .
"  !Þ'A.

 

Hence,  and .A ¸ *Î) ! Ÿ VÐ>Ñ Ÿ / ¸ !Þ$#&*Î)

25-5.2.

  and , so ,0Ð>Ñ œ > / VÐ>Ñ œ / <Ð>Ñ œ œ >" "
( (

" ( ( "" > Î > Î "0Ð>Ñ
VÐ>Ñ

" "

which is nondecreasing if , nonincreasing if . Therefore, the Weibull" "  " Ÿ "
distribution is IFR for  and DFR for ." "  " Ÿ "
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25-5.3.

 P  and ,VÐ>Ñ œ ÖX  > X  >× œ / / œ /" #
  > > >

" #

" "

" #) ) ) )Š ‹
so the failure rate of the system is exponentially distributed with parameter
Ð"Î ÑÐ"Î Ñ) )" #  and as noted in Section , the exponential distribution is both IFR and25.5
DFR.

25.5-4.

Let  denote the failure time of component  and  the failure time of the system. Also\ 3 \3

let . Then- .3 3œ "Î

 P P , ,JÐ>Ñ œ Ö\ Ÿ >× œ Ö\ Ÿ > \ Ÿ >× œ Ð"  / ÑÐ"  / Ñ" #
 >  >- -" #

 .<Ð>Ñ œ œ0Ð>Ñ /  / Ð  Ñ/
"JÐ>Ñ / / /

- - - -" # " #
 >  > Ð  Ñ>" # " #

 >  > Ð  Ñ>" # " #

- - - -

- - - -

Note that .<Ð!Ñ œ !

 .<Ð>Ñ
.>

/  / Ð  Ñ /

Ò/ / / Ó
œ

- - - -" #
# Ð # Ñ> # Ð#  Ñ> # Ð  Ñ>" # " # " #" #

 >  > Ð  Ñ>" # " # #

- - - - - -

- - - -

         œ / Ò /  / Ð  Ñ Ó

Ò/ / / Ó

Ð  Ñ> #  > #  > #" # # "
" # " #

 >  > Ð  Ñ>" # " # #

- - - -

- - - -

- - - -

Let  and note that:OÐ>Ñ œ /  /  Ð  Ñ- - - -" #
#  > #  > #

" #
- -# "

 ,OÐ!Ñ œ #  !- -" #

 , since  andOÐ_Ñ œ Ð  Ñ  ! Á- - - -" # " #
#

 ..OÐ>Ñ
.> " #

#  > #  >
# "œ  /  /  !- - - -- -# "

Hence,  is a strictly decreasing function of . It is positive at  and negative as OÐ>Ñ > > œ ! >
tends to . These together with the continuity imply that  has a unique_ OÐ>Ñ œ !
solution. Now, suppose  for some .OÐ> Ñ œ ! !  >  _! !

  
for for 
for for 
for for 

OÐ>Ñ
 ! >  >  ! >  >
œ ! > œ > œ ! > œ >
 ! >  >  ! >  >

Ú Ú
Û ÛÜ Ü

! !

! !

! !

.<Ð>Ñ
.>

Then,  is increasing for  and decreasing for . Thus, the system can be IFR<Ð>Ñ > Ÿ > >   >! !

if and only if . But since , this can occur if and only if> œ _ OÐ_Ñ œ Ð  Ñ! " #
#- -

- - . ." # " #œ Á, which contradicts the assumption that .

25.5-5.

Each component has an exponential failure time. The exponential distribution is IFR and
hence the time to failure distribution of each component is IFRA, so the system of
Problem 25.5-4 is composed of two independent IFRA components. The last paragraph
of Section 25.5 states the result that the time to failure distribution of the system is IFRA.
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CHAPTER 26: THE APPLICATION OF QUEUEING THEORY

26.2-1.
                   Service Costs           Waiting Costs

(a) Salaries of checkers, cost of cash registers Lost profit from lost business
(b) Salaries of firemen, cost of fire trucks Cost of destruction due to waiting
(c) Salaries of toll takers, cost of constructing toll lane Cost of waiting for commuters
(d) Salaries of repairpersons, cost of tools Lost profit from lost business
(e) Salaries of longshoremen, cost of equipment Lost profit from ships not loaded or unloaded
(f) Salary of an operator as a function of their experience Lost profit/productivity from unused machines
(g) Salaries of operators, cost of equipment Lost profit/productivity from waiting materials
(h) Salaries of plumbers, cost of tools Lost profit from lost business
(i) Salaries of employees, cost of equipment Lost profit from lost business
(j) Salaries of typists, cost of typewriters Lost profit from unfinished jobs

26.3-1.

= œ "ß œ #ß œ % Ê œ !Þ& Ê T œ !Þ& 0 Ð>Ñ œ #/- . 3 8 8
8" #> and 

The answers in (a) and (b) are based on the following identities.

(i)    if !
8œ!

_
8 B

Ð"BÑ8B œ lBl  "#

(ii)   if !
8œ!

_
# 8 #B B

Ð"BÑ Ð"BÑ8 B œ  lBl  "
#

$ #

(iii) ' '
! !
, _ B  ,  ,  B" "B/ .B œ Ð"  /  ,/ Ñ Ê B/ .B œ! ! ! !

! !# #!

(iv) '
!
_ $  B 'B / .B œ!

!%

(a) E(WC) Pœ Ð"!8  #8 Ñ œ "! 8!Þ&  # 8 !Þ&! ! !
8œ! 8œ! 8œ!

_ _ _
# 8" # 8"

8

  œ & 8!Þ&  8 !Þ& œ &   œ "'! !    
8œ! 8œ!

_ _
8 # 8 !Þ& #†!Þ& !Þ&

"!Þ& "!Þ& "!Þ&Š ‹ Š ‹ Š ‹# $ #

#

(b) E(WC) E[ ]œ 2Ð Ñ œ # Ð#&A  A ÑÐ#/ Ñ.A- j '
!
_ $ #A

  œ "!! A/ .A  % A / .A œ "!! †  % † œ #'Þ&' '
! !
_ _#A $ #A " '

# ## %

26.3-2.

The answers in (a) and (b) are based on the following identities.

(i)     if !
8œ!

_
8 B

Ð"BÑ8B œ lBl  "#

(ii)    if !
8œ!

_
# 8 #B B

Ð"BÑ Ð"BÑ8 B œ  lBl  "
#

$ #

(iii)  if !
8œ!

_
$ 8 'B 'B B

Ð"BÑ Ð"BÑ Ð"BÑ8 B œ   lBl  "
$ #

% $ #

(iv) ' '
! !
, _ B  ,  ,  B" "B/ .B œ Ð"  /  ,/ Ñ Ê B/ .B œ! ! ! !

! !# #!



26-2

(v) '
,
_ #  B # #  ,"B / .B œ Ð#  # ,  , Ñ/! !

!$ ! !

(a) E(WC) œ "! 8!Þ&  '8 !Þ&  8 !Þ&! ! !
8œ! 8œ$ 8œ'

# & _
8" # 8" $ 8"

  œ "! †  #! †  &% †  *' †  "&! †  8 !Þ&" " " " "
% ) "' $# '%

8œ'

_
$ 8"!

  œ #!  œ #$Þ#($%"*
"#)

(b) E(WC) œ # A#/ .A  # A #/ .A' '
! "
" _#A # #A

   œ % Ð"  /  #/ Ñ  % Ð#  %  %Ñ/’ “ ’ “" "
# #

# # #
# $

  œ "  $/  &/ œ "Þ#("# #

26.4-1.

- .œ % œ & G œ #!, , W

1ÐRÑ œ
! R œ !
"#! R œ "
"#!  ")!ÐR  "Ñ R   #

Ú
ÛÜ

for 
for 
for 

E(WC) P P P Pœ 1Ð8Ñ œ "#!  ")! 8  ")!! ! ! !
8œ! 8œ" 8œ# 8œ#

_ _ _ _

8 8 8 8

 P L P P P P Lœ "#!Ð"  Ñ  ")!Ð  Ñ  ")!Ð"   Ñ œ '!  ")!  '!! " ! " !

= œ %Î&& T P
" !Þ) !Þ#! %Þ! '(#Þ!! #!Þ! '*#Þ!!
# !Þ% !Þ%$ !Þ*& "$'Þ)! %!Þ! "('Þ)!
$ !Þ#'( !Þ%& !Þ)# ""%Þ'! '!Þ! "(%Þ'!
%

3   E(WC) E(SC)  E(TC)
    
    
    
  

!

  !Þ# !Þ%% !Þ)! ""!Þ%! )!Þ! "*!Þ%!

Hence, s  and E(TC) $  per hour.‡ œ $ œ "(%Þ'!

26.4-2.

(a) Model 2 with s  fixed, A , ,œ " œ Ö$!ß %!× œ #!-

 for 
for 0Ð Ñ œ

% œ $!
"# œ %!

.
.
.œ

We need to choose between a slow server consisting of only the cashier and a fast one
consisting of the cashier and a box boy.

(b) E(WC) E[ ] E[ ] W Lœ 2Ð Ñ œ Ð!Þ!)Ñ œ Ð!Þ!)Ñ œ !Þ!) œ !Þ!)- j - j - -
. -

. .0
$! % !Þ"' %Þ"'
%! "# !Þ!) "#Þ!)

( ) E(WC) E(TC)
       
   

Hence, the status quo should be maintained.
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26.4-3.

(a) P œ "Þ& Ê [ œ œ œ (Þ& Ê [ œ [  œ (Þ&  œ "Þ&P "Þ& " "
!Þ# !Þ"'(;- .

 Ê P œ [ œ !Þ#Ð"Þ&Ñ œ !Þ$; ;-

(b)

 

(c) TC(Alternative 1) $ $ $œ (!  Ð "!!ÑÐPÑ œ ##!
 TC(Alternative 2) $ $ $œ "!!  Ð "!!ÑÐPÑ œ #!&

Alternative 2 should be chosen.

26.4-4.

(a)

 
(b)

 

(c) The new proposal shows that they will be slightly better off if they switch to the new
queueing system.

(d) TC(Status quo) $ $ $ /hourœ %!  ÐP ÑÐ #!Ñ œ )&;

 TC(Proposal) $ $ $ /hourœ %!  ÐP ÑÐ #!Ñ œ )$;

26.4-5.

(a) P œ # Ê [ œ œ œ 'Þ'( Ê [ œ [  œ 'Þ'(  œ "Þ'(P # " "
!Þ$ !Þ#;- .

 Ê P œ [ œ !Þ$Ð"Þ'(Ñ œ !Þ&; ;-
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(b)

 

(c) TC(Alternative 1) $ $ $œ $!!!  Ð "&!ÑÐPÑ œ $ß $!!
 TC(Alternative 2) $ $ $œ #(&!  Ð "&!ÑÐPÑ œ $ß &)*

Alternative 1 should be chosen.

26.4-6.

For the status quo, the system has Poisson arrivals with , exponential service time- œ "&
with ,  and the capacity of the waiting room is . There is a waiting. œ "& = œ " O œ %
cost of  for each customer due to loss of good will and also a waiting cost of $  per'[ %&;

hour when the system is full (i.e., when there are four cars in the system) due to loss of
potential customers.

 E(TC) E(WC)œ œ '[  %&T œ 'P  %&T- ; % ; %

  for 3 - .œ Î œ " Ê T œ œ 8 œ !ß "ß #ß $ß %8
" "

O" &

 P œ 8T œ Ð"  #  $  %Ñ œ #!
8œ"

O

8
"
&

 P œ P  Ð"  T Ñ œ #  œ; !
% '
& &

 E(TC) $  per hourœ ' †  %& † œ "'Þ#!' "
& &

For Proposal 1, the system has Poisson arrivals with , exponential service time- œ "&
with  and . In addition to the waiting cost of  due to loss of good will,. œ #! = œ " 'P;

there is an expected waiting cost of $  per customer that waits longer than half an hour#
before his car is ready. The expected value of this additional waiting cost is given by:

 .# TÖ  !Þ&× œ # / œ $!/ œ #Þ%'- j -  Ð" ÑÎ# #Þ&. 3

 P œ œ œ #Þ#&; Ð  Ñ #!†&
##&-

. . -

#

 E(TC) $  per hour,œ $  ' † #Þ#&  #Þ%' œ ")Þ*'

where $  is the capitalized cost of the new equipment.$

For Proposal 2, the system has Poisson arrivals with , Erlang service time with- œ "&
. œ $!ß 5 œ # = œ " 'P and . The only waiting cost is  due to loss of good will.;

 P œ œ † œ !Þ$(&;
5" $ ##&
#5 Ð  Ñ % $!†"&Š ‹Š ‹-

. . -

#

 E(TC) $  per hourœ "!  #Þ#& œ "#Þ#&

Hence, Proposal 2 should be adopted.
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26.4-7.

(a) The customers are trucks to be loaded or unloaded and the servers are crews. The
system currently has one server.

(b)

(c) 

(d)

(e) A one person team should not be considered since that would lead to a utilization
factor of , which is not permitted in this model.3 œ "
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(f) - (g)

 TC $ $Ð7Ñ œ Ð #!ÑÐ7Ñ  Ð $!ÑÐP Ñ;
 TC $ $ $ /hourÐ%Ñ œ Ð #!ÑÐ%Ñ  Ð $!ÑÐ!Þ!)$$Ñ œ )#Þ&!
 TC $ $ $ /hourÐ$Ñ œ Ð #!ÑÐ$Ñ  Ð $!ÑÐ!Þ"'(Ñ œ '&
 TC $ $ $ /hourÐ#Ñ œ Ð #!ÑÐ#Ñ  Ð $!ÑÐ!Þ&Ñ œ &&

A crew of 2 people will minimize the expected total cost per hour.

(h)

 s L E(WC) L E(SC) s E(TC)
                         
                  
   

.s œ œ œ "& œ "!

" "Þ!!! _ _ "! _
# "Þ%"% #Þ%"% $'Þ#" #! &'Þ#"
$ "Þ($# "Þ$''

Ès -
. -s

               
                  
                  

#!Þ%* $! &!Þ%*
% #Þ!!! "Þ!!! "&Þ!! %! &&Þ!!
& #Þ#$' !Þ)!* "$Þ(& &! '$Þ(&

Since clearly E(SC)  for s , it follows that s . &!Þ%*   ' œ $‡

26.4-8.

- . - . -œ % œ '8 R œ ÎÐ  Ñ œ %ÎÐ'8  %Ñ, , E( )

Hourly cost E( )-Ð8Ñ œ ")8  #! R œ ")8  )!
'8%

One can easily check that  is convex in . When  is restricted to be integer, -Ð8Ñ 8 8 -Ð8Ñ
attains its minimum at , so two leaders would minimize the expected hourly cost.8 œ #

26.4-9.

- .œ $ œ Ð  $Ñ, E(T) "

Expected cost E(T)-Ð Ñ œ &  '! † œ &  ")!Ð  $Ñ. . - . . "

- Ð Ñ œ &  ")!Ð  $Ñw #. .

The derivative is zero at  and  is convex in , so  attains its minimum at. . . .œ * -Ð Ñ -Ð Ñ
. œ * %&. Equivalently, an hourly wage of $  minimizes the expected total cost.

26.4-10.

(a) , - œ !Þ& = œ "

Recall: , 3 œ -
.
 

= P , P! 8
8œ "  œ Ð"  Ñ3 3 3

 L , Lœ œ- -
. - . . - Ð  Ñq

#

 P , PÐ  >Ñ œ / Ð  >Ñ œ /j j 3 Ð" Ñ>  Ð" Ñ>. 3 . 3
q

 W , Wœ œ"
 Ð  Ñ. - . . -

-
q

. œ #:   , P , P3 œ !Þ#& œ !Þ(& œ !Þ(& † !Þ#&! 8
8

  L , Lœ "Î$ œ !Þ!)$q
  P , PÐ  =Ñ œ !Þ!!!&&$ Ð  =Ñ œ !Þ!!!"$)j jq
  W , Wœ !Þ'( œ !Þ"(q
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. œ ":   , P , P3 œ !Þ& œ !Þ& œ !Þ&! 8
8"

  L , Lœ " œ !Þ&q
  P , PÐ  =Ñ œ !Þ!)# Ð  =Ñ œ !Þ!%"j jq
  W , Wœ # œ "q

. œ #Î$:   , P , P3 œ !Þ(& œ !Þ#& œ !Þ#& † !Þ(&! 8
8

      L , Lœ $ œ #Þ#&q
      P , PÐ  =Ñ œ !Þ%$& Ð  =Ñ œ !Þ$#'j jq
      W , Wœ ' œ %Þ&q

(b) TC(mean œ !Þ&Ñ œ "Þ'!  !Þ)Ð"Î$Ñ œ "Þ)(
      TC(mean        œ "Ñ œ !Þ%!  !Þ)Ð"Ñ œ "Þ#!
      TC(mean     œ "Þ&Ñ œ !Þ#!  !Þ)Ð$Ñ œ #Þ'!

Hence, ..‡ œ "

26.4-11.

Given that , from the optimality of a single server result,= œ "

 E(TC) Lœ G  G œ G  G< A < A . . Š ‹-
. -

 .
. Ð  Ñ< A A <

E(TC)
. . -

-œ G  G œ ! Ê œ  G ÎGŠ ‹ È
# . - -

  for all ..
. Ð  ÑA

#

# $
E(TC)
. . -

-œ #G  ! Š ‹ . -

Assuming  and , E(TC) is strictly convex in  and  isG  ! G Á ! œ  G ÎGA A A <. . - -È
the unique minimizer.

26.4-12.

 E(TC) œ H . -
. -

G
Ð  Ñ#

 .
. Ð  Ñ

# GE(TC)
. . -

-œ H œ ! Ê œ  # GÎH$
$. - -È

  for all ,.
. Ð  Ñ

' G#

# %
E(TC)
. . -

-œ  ! G  !

so E(TC) is strictly convex in  and  is the unique minimizer.. . - -œ  # GÎHÈ$
26.4-13.

(a) The original design would give a smaller expected number of customers in the system
because of the pooling effect of multiple servers.

(b) The original design is an M/M/2 queue where  and . Running ProMod, we- .œ & œ '
find L  from Figure 17.7. The alternative design consists of two M/M/1 queues withœ "Þ"
L . This result agrees with the claim in (a).œ # ÎÐ  Ñ œ "!- . -

26.4-14.

(a) Part (a) of Problem 17.6-31 is a special case of Model 3, in which  is fixed and= œ "
the goal is to determine the mean arrival rate , or equivalently the number of machines-
assigned to one operator.
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(b) (i) The resulting system is an M/M/s queue with finite calling population, whose
size equals the total number of machines. The associated decision problem fits Model 1,
with  being unknown.=

 (ii) The resulting system is a collection of independent M/M/1 queues with finite
calling populations. The appropriate decision model is a combination of Model 2 and
Model 3, since the goal is to determine , depending on the number of operators.
assigned, and , depending on the number of machines assigned. In this case,  is- = œ "
fixed.

 (iii) This system does not fit any of the models described in section 26.4.

Each of the proposed alternatives allows resource (operator) sharing to some extent in
contrast to the original proposal. Since in the original proposal, the operators would be
idle most of the time, it is reasonable to expect that allowing interaction will result in an
increase of the production rate obtained with the same number of operators. As a
consequence of this, the number of operators needed to achieve a given production rate
will decrease. Then, the question is what could prevent this from happening. In
alternatives (i) and (iii), the travel time, which is not considered in the preceding
argument, may pose a problem. The idle time could turn into travel time rather than
service time. Moreover, in alternative (iii), the service rate of a group of  workers can8
be smaller than  times the individual service rate, since they will not be working8
together regularly. This is not the case in alternative (ii), where the members of a crew do
work together regularly; even then, the service rate of a crew of  operators may be8
strictly less than  times the individual rate.8

26.4-15.

From Table 17.3:

 
W
W
W

= œ " = œ #

 !Þ!#% !Þ!!!$(

 !Þ"&% !Þ!!(*$

 "Þ!$$ !Þ!'&%#

"
"

#
"

$
"

.

.

.

Note that ,  and .- - -" # $œ !Þ# œ !Þ' œ "Þ#

 s                     E(WC) E(SC) E(TC)
critical serious stable total

          
" %)!Þ!! *#Þ%! "#Þ%! &)%Þ)! %!Þ!! '#%Þ)!
# (Þ%! %Þ(' !Þ(* "#Þ*& )!Þ!! *#Þ*&  

Hiring two doctors incurs less cost.

26.5-1.

+ œ , œ - œ . œ $!! @ œ $ œ #'% and  miles/hour  feet/min

E(T)  minutesœ  œ #Þ#("
#'% Ð$!!$!!Ñ Ð$!!$!!Ñ

Ð$!!Ñ Ð$!!Ñ Ð$!!Ñ Ð$!!Ñ’ “# # # #
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26.5-2.

. -œ $! = œ " œ #% G œ #! G œ "& G œ #&, , , , , : 0 = >

8 œ ": ,  and - œ Î8 œ #% + œ , œ . œ &! - œ "!!-:

 

 2E(T)  hoursœ  œ !Þ!#'(" &! "!! &! &!
&ß!!! &!"!! &!&!Š ‹# # # #

 L œ œ %-
. -

8 œ #: ,  and  by relabeling symmetric areas:- œ Î8 œ "# + œ , œ . œ &! - œ #&-:

 

 E(T)  hoursœ  œ !Þ!")$" &! #& &! &!
&ß!!! &!#& &!&!Š ‹# # # #

 L œ œ-
. - $

#

E(TC) Tœ 8ÒÐ  Ñ   Ð ÑÓG G G G0 = > >L E-

   E(T)   L  T E(TC)
               

          

8 Ð Ñ

" #% !Þ!#'( % $& "!! "' "&"
# "# !Þ!")$ #Î$ $& &!Î$ &Þ& ""%Þ$$

- -G  G G G0 = > >L E

So, there should be two facilities.
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26.5-3.

The first step is to relabel Location 3 as the origin  for an  coordinate systemÐ!ß !Ñ ÐBß CÑ
by subtracting 450 from all  coordinates shown in the following figure.

 

The probability density function of  is obtained by using the height of the area assigned\
to the tool crib at Location 3 for each possible value of  and then dividing by the\ œ B
size of the area, as given in figure 1-(a) below. This then yields the uniform distribution
of  shown in 1-(b).l\l

Figure 1 - Probability density functions of (a) X and (b) l\l

Thus, E .Ðl\lÑ œ B.B œ (&"
"&! !

"&!'
The probability density function of Y is obtained by using the width of the area assigned
to tool crib at Location 3 for each possible value of  and then dividing by the size] œ C
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of the area, as given in figure 2-(a). This then leads to the probability density function of
l] l shown in 2-(b).

Figure 2 - Probability density functions of (a )  and (b) ] l] l

Thus, E .Ðl] lÑ œ C.C  "  C.C œ "$$" " "
##& $!! %&! $! "&!

"&! %&! C' ' Š ‹
E(T) E E  hrœ Ò Ðl\lÑ  Ðl] lÑÓ œ (&  "$$ œ !Þ!#()# # "

@ "&ß!!! $Š ‹
26.5-4.

(a) Total area œ Ð#<Ñ  Ð%<Ñ œ #!<# # #

Probability density of Probability density of \ l\l     

 EÐl\lÑ œ B.B œ #Þ&<'
!
&< "

&<

Probability density of Probability density of ] l] l     

 EÐl] lÑ œ C.C  C.C œ !Þ*<' '
! <
< #<$ #
&< &<

 E(T) œ Ð#Þ&  !Þ*Ñ< œ# 'Þ)<
@ @
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(b) The area is symmetric about , so E E  and the total area isÐ!ß !Ñ Ðl\lÑ œ Ðl] lÑ
&Ð#<Ñ œ #!<# #.

Probability density of Probability density of \ l\l     

 EÐl\lÑ œ B.B  B.B œ "Þ"<' '
! <
< $<$ "
&< &<

 E(T) œ Ð"Þ"  "Þ"Ñ< œ# %Þ%<
@ @

(c) Total area œ #Ð#<  <  !Þ&< Ñ œ (<# # # #

Probability density of Probability density of \ l\l     

 EÐl\lÑ œ B.B  Ð&<  #BÑB.B œ <' '
! <
< #<& " "'
(< (< #"#

Probability density of Probability density of ] l] l     

 EÐl] lÑ œ Ð&<  CÑC.C  Ð%<  CÑC.C œ <" &
(< '! <

< #<
#Œ' '

 E(T) œ  < œ# "' & $Þ"*<
@ #" ' @Š ‹
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(d) Total area œ 'Ð%< Ñ œ #%<# #

Probability density of Probability density of \ l\l     

 EÐl\lÑ œ B.B  B.B œ <' '
! #<
#< %<% # &

"#< "#< $

Probability density of Probability density of ] l] l     

 EÐl] lÑ œ C.C  C.C œ <' '
! <
< $<' $ &
"#< "#< %

 E(T) œ  < œ# & & &Þ)$<
@ $ % @Š ‹

26.5-5.

Given , , , ,  feet/hour, the expectedG œ "! G œ "& G œ %! œ *! @ œ #!ß !!!0 7 > :-
loading time is  hours. For unloading,  where  is the crew size."Î#! œ $!7 7.7

8 œ ": , , + œ - œ $!! , œ ! . œ '!!

 

 E(T) œ "
#!ß!!!’ “Ð$!!Ñ Ð$!!Ñ Ð'!!Ñ

Ð$!!$!!Ñ '!!

# # #

 œ !Þ!%& hours

 L œ œ-
. -7 7$

$
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8 œ #: , , + œ - œ $!! , œ ! . œ $!!

 

 E(T) œ "
#!ß!!!’ “Ð$!!Ñ Ð$!!Ñ Ð$!!Ñ

Ð$!!$!!Ñ $!!

# # #

 œ !Þ!$! hours

 L  since œ œ œ œ %&-
. -

-

7

:

 #7$ 8
$ -

8 œ $: The facilities would be located as follows:

 

Consider Locations 1 and 2, which are symmetric. Each can be labeled as:

 

with a total area of ."$&ß !!!

Probability density of      Probability density of \ l\l     

 EÐl\lÑ œ #  B.B œ' Š ‹!
$!! " B %!!

%&! $!! $
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 Probability density of ] œ l] l

 E EÐl] lÑ œ Ðl\lÑ œ %!!
$

 E TÐ Ñ œ  œ œ !Þ!#'(# %!! %!! %
#!ß!!! $ $ "&!Š ‹

 L  since œ œ œ"$&Î%
$!7"$&Î% )7* %

* "$&-

Now consider Location 3. The area would be labeled as follows:

 

with a total area of .*!ß !!!

Probability density of Probability density of \ l\l     

 EÐl\lÑ œ "  B.B œ "!!' Š ‹!
$!! " B

"&! $!!

 Probability density of ] œ l] l

 E EÐl] lÑ œ Ðl\lÑ œ "!!

 E(T)  hoursœ Ð"!!  "!!Ñ œ !Þ!#!2
#!ß!!!
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 L œ œ%&Î#
$!7%&Î# %7$

$

8 œ %: The areas served by the four facilities would be identical to that of Location 3 for
8 œ $ Ð Ñ œ %Î#!! œ !Þ!#! œ $ÎÐ%7 $Ñ, so E T  hours and L .

 E(T) in hours    L
   
   

 L1,L2    
   L3    

   

8

"

#

$

%

!Þ!%&

!Þ!$!

!Þ!#'(

!Þ!#!

!Þ!#!

$
7$

$
#7$

*
)7*

$
%7$

$
%7$

where L1, L2, and L3 represent Locations 1, 2 and 3 respectively.

If , E(TC) L E(T)  where .8 œ " œ ÐG 7G Ñ  G  G  G Î#! œ *!0 7 > > >- - -

7 G 7G G G G Î#!

% $ !Þ!%& (! "#! "'# ")! &$#Þ!!
& "Þ& !Þ!%& )& '! "'# ")! %)(Þ!!
' " !Þ!%& "!!

L  E(T) L E(T) E(TC)
             
               
       

0 7 > > >- -

%! "'# ")! %)#Þ!!
( !Þ(& !Þ!%& ""& $! "'# ")! %)(Þ!!

      
             

For , the minimum cost per hour is $  with .8 œ " %)# 7 œ '

If , E(TC) L E(T)  where .8 œ # œ #ÒÐG 7G Ñ  G  G  G Î#!Ó œ %&0 7 > > >- - -

7 G 7G G G G Î#!

# $ !Þ!$! %! "#! &% *! '!)Þ!!
$ " !Þ!$! && %! &% *! %()Þ!!
% !Þ' !Þ!$! (!

L  E(T) L E(T) E(TC)
               
                 
        

0 7 > > >- -

         
                 

#% &% *! %('Þ!!
& $Î( !Þ!$! )& "(Þ"% &% *! %*#Þ#*

For , the minimum cost per hour is $  with .8 œ # %(' 7 œ %

If , at Locations 1 and 2 where :8 œ $ œ "$&Î%-

7 G 7G G G G Î#!

# *Î( !Þ!#'( %! &"Þ%$ $' '(Þ& "*%Þ*$
$ $Î& !Þ!#'( && #% $' '(Þ& ")#Þ&!
% *Î#$ !Þ!#'

L E(T) L E(T) E(TC)
               
               

0 7 > > >- -

( (! "&Þ'& $' '(Þ& ")*Þ"&               

At Location 3 where :- œ ##Þ&

7 G 7G G G G Î#!

" $ !Þ!#! #& "#! ") %& #!)Þ!!
# $Î& !Þ!#! %! #% ") %& "#(Þ!!
$ "Î$ !Þ!#! &&

L E(T) L E(T) E(TC)
               
                 
       

0 7 > > >- -

          "$Þ$$ ") %& "$"Þ$$

So, for , the minimum cost per hour is  with  at8 œ $ #Ð")#Þ&!Ñ  "#( œ %*# 7 œ $
Locations 1 and 2, and  at Location 3.7 œ #
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If , since all areas served are symmetric and each one is same as Location 3 of the8 œ %
case with , the minimum cost per hour is  with .8 œ $ %Ð"#(Ñ œ &!) 7 œ #

The following table summarizes these results.

 E(TC)
  

 at both locations   
 at Locations 1 and 2   
 at Location 3   
 at all locations   

8 7
" ' %)#
# % %('
$ $ %*#

#
% # &!)

Therefore, the best is to have two facilities with a crew size of .%
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CHAPTER 27: FORECASTING

27.1-1.

Answers will vary.

27.1-2.

Answers will vary.

27.4-1.

(a)
 J œ B œ $*' &

(b)

 J œ œ œ #''

B

& &
&"(#*%"$*

!
>œ"

&

>

(c)

 J œ œ œ $''

B

$ $
#*%"$*

!
>œ$

&

>

(d) The demand seems to be rising, so the average forecasting method may be
inappropriate, since it uses older, out of data.

27.4-2.

(a)
 J œ B œ "$' &

(b)

 J œ œ œ "&'

B

& &
"&")"#"("$

!
>œ"

&

>

(c)

 J œ œ œ "%'

B

$ $
"#"("$

!
>œ$

&

>

(d) The averaging method seems to be the best, since all five months of data are relevant
in determining the forecast of sales for the next month.

27.4-3.

 J œ  #!)$ œ #!*">"
"*(("*%&

%

27.4-4

 J œ  ()# œ (()>"
(*$)!&

$

27.4-5.

 J œ  "&&" œ "&%">"
"&$#"'$#

"!

27.4-6.

 J œ B  Ð"  ÑJ>" > >! !

 J Ð!Þ"Ñ œ Ð!Þ"ÑÐ(*#Ñ  Ð"  !Þ"ÑÐ()#Ñ œ ()$>"

 J Ð!Þ$Ñ œ Ð!Þ$ÑÐ(*#Ñ  Ð"  !Þ$ÑÐ()#Ñ œ ()&>"

 J Ð!Þ&Ñ œ Ð!Þ&ÑÐ(*#Ñ  Ð"  !Þ&ÑÐ()#Ñ œ ()(>"
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27.4-7.

 J œ B  Ð"  ÑJ>" > >! !

 J Ð!Þ"Ñ œ Ð!Þ"ÑÐ"*($Ñ  Ð"  !Þ"ÑÐ#!)$Ñ œ #!(#>"

 J Ð!Þ$Ñ œ Ð!Þ$ÑÐ"*($Ñ  Ð"  !Þ$ÑÐ#!)$Ñ œ #!&!>"

 J Ð!Þ&Ñ œ Ð!Þ&ÑÐ"*($Ñ  Ð"  !Þ&ÑÐ#!)$Ñ œ #!#)>"

27.4-8.

 ! œ ! Ê J œ J œ á œ J>" > "

The forecast remains equal to the best initial guess for the variable and never changes.

 ! œ " Ê J œ B>" >

The forecast always equals the current value of the variable.

27.4-9.

(a) J œ B  Ð"  ÑJ Ê B œ ÒJ  Ð"  ÑJ Ó œ #J  J>" > > > >" > >" >
"! ! !!

Ê #Ð$*!Ñ  $)! œ %!! Actual demand in April: 

 Actual demand in May: #Ð$)!Ñ  $*! œ $(!

(b) J œ !Þ&B  !Þ&JFeb Jan Jan

 J œ !Þ&B  !Þ&J œ !Þ&B  !Þ#&B  !Þ#&JMarch Feb Feb Feb Jan Jan

 , , B œ B  $# B œ B J œ JJan JanJan Feb JanFeb
w w w

 Ê J œ J  Ð!Þ#&ÑÐ$#Ñ œ %!)March March
w

 Jan Feb March April May June
Forecast      
Actual     

%!) $)% $*# $)"
%!! $'! %!! $(!

27.5-1.

(a)

 Quarter Call Volume Seasonal Factor
            
            
            
    

" ')!* œ !Þ*(

# '%'& œ !Þ*#

$ '&'* œ !Þ*$

')!*
(!#(
'%'&
(!#(
'&'*
(!#(

        % )#'' œ "Þ"))#''
(!#(

(b)

Quarter Seasonal Factor Actual Call Volume Seasonally Adjusted Call Volume
                                     " !Þ*( (#&( œ (%(#&(

!Þ*( )"

# !Þ*# (!'% œ ('()

$ !Þ*$ (()% œ )$(!

%

                                     
                                     
       

(!'%
!Þ*#
(()%
!Þ*$

                              "Þ") )(#% œ ($*$)(#%
"Þ")
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(c)

 Quarter Two-year Average Seasonal Factor
                 
                 
               

" (!$$ œ !Þ*&

# '('& œ !Þ*#

$ ("(

(!$$
($'(
'('&
($'(

( œ !Þ*(

% )%*& œ "Þ"&

  
                 

("((
($'(
)%*&
($'(

(d)

Quarter Seasonal Factor Actual Call Volume Seasonally Adjusted Call Volume
                                     " !Þ*& '**# œ ($'**#

!Þ*& '!

# !Þ*# ')## œ (%"&

$ !Þ*( (*%* œ )"*&

%

                                     
                                     
       

')##
!Þ*#
(*%*
!Þ*(

                              "Þ"& *'&! œ )$*"*'&!
"Þ"&

27.5-2.

(a)

 Quarter Unemployment Rate Seasonal Factor
                 
                 
           

" !Þ!'# œ !Þ*)

# !Þ!'! œ !Þ*&

$

!Þ!'#
!Þ!'$
!Þ!'!
!Þ!'$

      
                 

!Þ!(& œ "Þ"*

% !Þ!&& œ !Þ)(

!Þ!(&
!Þ!'$
!Þ!&&
!Þ!'$

(b)

Quarter Seasonal Factor Act. Unemploy. Rate Seasonally Adj. Unemploy. Rate
                                     " !Þ*) !Þ!() œ!Þ!()

!Þ*) !Þ!)!

# !Þ*& !Þ!(% œ !Þ!()

$ "Þ"* !Þ!)( œ !Þ!(

                                     
                                     

!Þ!(%
!Þ*&
!Þ!)(
"Þ"* $

% !Þ)( !Þ!'" œ !Þ!(!                                     !Þ!'"!Þ)(

This progression indicates that the state's economy is improving with the unemployment
rate decreasing from 8% to 7% (seasonally adjusted) over the four quarters.

27.5-3.

(a)

 Quarter Three-year Average Seasonal Factor
                       
                       
                

" #" œ !Þ)%

# #$ œ !Þ*#

$

#"
#&
#$
#&

       
                       

$! œ "Þ#

% #' œ "Þ!%

$!
#&
#'
#&

(b) Seasonally adjusted value: forecast:#)
"Þ!% œ #( Ê Ð#(ÑÐ!Þ)%Ñ œ #$
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(c) Quarter 1: seasonally adjusted value: forecast:#$Î!Þ)% œ #( Ê Ð#(ÑÐ!Þ)%Ñ œ #$
 Quarter 2: seasonally adjusted value: forecast: 0#&Î!Þ*# œ #( Ê Ð#(ÑÐ"Þ# Ñ œ $$
 Quarter 3: seasonally adjusted value: 0 forecast:$$Î"Þ# œ #( Ê Ð#(ÑÐ"Þ!%Ñ œ #)

(d)
 Quarter Seasonal Factor Avg. House Sales Seasonally Adjusted Forecast

                              
          

" !Þ)% #& Ð#&ÑÐ!Þ)%Ñ œ #"
#                     

                              
                              

!Þ*# #& Ð#&ÑÐ!Þ*#Ñ œ #$
$ "Þ#! #& Ð#&ÑÐ"Þ#!Ñ œ $!
% "Þ!% #& Ð#&ÑÐ"Þ!%Ñ œ #'

27.5-4.

(a) - (b) - (c) - (d) ! #œ !Þ"ß œ !Þ#

(e) There is a seasonal effect: , and it is incorporated by the parameter ." Ä # M
down

(f) There is a substantial error in these estimates, the constant level assumption is not
good enough with  and .! #œ !Þ" œ !Þ#

27.6-1.

J œ B  Ð"  ÑJ  Ò ÐB  B Ñ  Ð"  ÑÐJ  J ÑÓ  Ð"  ÑX>" > > > >" > >" >"! ! " ! ! "

J œ B  X œ $*!!  (!! œ %'!!" ! "

J œ# Ð!Þ#&ÑÐ%'!!Ñ  Ð!Þ(&ÑÐ%'!!Ñ  Ð!Þ#&ÑÒÐ!Þ#&ÑÐ(!!Ñ  Ð!Þ(&ÑÐ(!!ÑÓ  Ð!Þ(&ÑÐ(!!Ñ  

    œ &$!!

J œ$ Ð!Þ#&ÑÐ&$!!Ñ  Ð!Þ(&ÑÐ&$!!Ñ  Ð!Þ#&ÑÒÐ!Þ#&ÑÐ(!!Ñ  Ð!Þ(&ÑÐ(!!ÑÓ  Ð!Þ(&ÑÐ(!!Ñ

    œ '!!!
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27.6-2.

J œ B  Ð"  ÑJ  Ò ÐB  B Ñ  Ð"  ÑÐJ  J ÑÓ  Ð"  ÑX>" > > > >" > >" >"! ! " ! ! "

J œ>" Ð!Þ#ÑÐ&&!Ñ  Ð!Þ)ÑÐ&%!Ñ  Ð!Þ$ÑÒÐ!Þ#ÑÐ"&Ñ  Ð!Þ)ÑÐ"!ÑÓ  Ð!Þ(ÑÐ"!Ñ œ &&#

27.6-3.

J œ B  Ð"  ÑJ  Ò ÐB  B Ñ  Ð"  ÑÐJ  J ÑÓ  Ð"  ÑX>" > > > >" > >" >"! ! " ! ! "

J œ>" Ð!Þ"ÑÐ%$*&Ñ  Ð!Þ*ÑÐ%*(&Ñ  Ð!Þ#ÑÒÐ!Þ"ÑÐ#)!Ñ  Ð!Þ*ÑÐ#&&ÑÓ  Ð!Þ)ÑÐ#%!Ñ

        œ &#"&

27.6-4.

Forecast for next production yield: %'#

27.7-1.

(a) Best , forecast    (b) Best , forecast ! !œ !Þ#& &! œ !Þ""% &"
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(c) Best , forecast ! œ !Þ#') &%

 

27.7-2.

(a) Best , best , forecast ! "œ !Þ'$( œ !Þ%)) ((

 

(b) Best , best , forecast ! "œ !Þ)% œ !Þ&)# (%
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(c) Best , best , forecast ! "œ !Þ*!% œ !Þ*** (*

 

27.7-3.

The best method is exponential smoothing with trend, using  and .! "œ !Þ$"( œ !Þ***

 

27.8-1.

 Quarter Forecast True Value Error
               
               
                 
               

" $#( $%& ")
# $$# $"( "&
$ $#) $$' )
% $$! $"" "*

 MAD œ œ œ "&sum of forecasting errors
number of forecasts

")"&)"*
%

 MSE œ œ #%$Þ&sum of squares of forecasting errors
number of forecasts

27.8-2.

(a) Method 1: MAD œ #&)%**&'!)!*'!*
& œ &%(

 Method 2: MAD œ $(%%("#*$*!'$*'
& œ %))

(b) Method 1: MSE œ $$!ß *!&

 Method 2: MSE œ #)&ß !%%
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(c) She can use the older data to calculate more forecasting errors and compare MSE and
MAD for a longer time span. This may make her feel more comfortable with her
decision.

27.8-3.

(a) J œ B  Ð"  ÑJ>" > >! !

 J œ B œ &!!!" !

 J œ Ð!Þ#&ÑÐ%'!!Ñ  Ð"  !Þ#&ÑÐ&!!!Ñ œ %*!!#

 J œ Ð!Þ#&ÑÐ&$!!Ñ  Ð"  !Þ#&ÑÐ%*!!Ñ œ &!!!$

(b) MAD œ œ '!!%!!%!!"!!!
$

(c) MSE œ œ %%!ß !!!%!! %!! "!!!
$

# # #

(d) J œ œ Ð!Þ#&ÑÐ'!!!Ñ  Ð"  !Þ#&ÑÐ&!!!Ñ œ &#&!>"

27.8-4.

(a) Since sales are relatively stable, the averaging method would be appropriate for
forecasting future sales. This method uses a larger sample size than the last-value
method, which should make it more accurate and since the older data is still relevant, it
should not be excluded, as would be the case in the moving-average method.

(b) Last-Value Method
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(c) Averaging Method

 

(d) Moving-Average Method Ð8 œ $Ñ

  

(e) Considering the MAD values , the averaging method is the best.Ð&Þ#ß $Þ!ß $Þ*Ñ

(f) Considering the MSE values , the averaging method is the best.Ð$!Þ'ß ""Þ"ß "(Þ%Ñ

(g) Unless there is a reason to believe that sales will not continue to be relatively stable,
the averaging method should be the most accurate in the future as well.

27.8-5.

Ben Swanson should choose  for the smoothing constant.!Þ"

Smoothing Constant MAD MSE
                
              
              
              

!Þ" #Þ(! *Þ%%
!Þ# #Þ)# "!Þ#%
!Þ$ #Þ*( ""Þ#!
!Þ% $Þ"$ "#Þ$&
!Þ& $Þ$# "$Þ(&              
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27.8-6.

(a) Answers will vary. The averaging or the moving-average methods seem to do a better
job than the last-value method.

(b) For the last-value method, a change in April affects only the forecast of May. For the
averaging method, it affects all forecasts after April and for the moving-average method,
it affects the forecasts for May, June and July.

(c) Answers will vary. The averaging and the moving-average methods seem to do
slightly better than the last-value method.

(d) Answers will vary. The averaging and the moving-average methods seem to do
slightly better than the last-value method.

27.8-7.

(a) Since the sales level is shifting significantly from month to month and there is no
consistent trend, the last-value method seems to be appropriate. The averaging method
will not do as well because it places too much weight on the old data. The moving-
average method will be better than the averaging method, but it will lag any short-term
trends. The exponential smoothing method will also lag trends by placing too much
weight on the old data. Exponential smoothing with trend will likely not to do well
because the trend is not consistent.

(b) Last-Value Method
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 Averaging Method

 

 Moving-Average Method

 

Comparing MAD values  and MSE values , the last-Ð&Þ$ß "!Þ!ß )Þ"Ñ Ð$'Þ#ß "$"Þ%ß )%Þ$Ñ
value method is the best.

(c) Using the template for exponential smoothing with an initial estimate of , the"#!
following forecast errors are obtained for various values of the smoothing constant .!

 MAD MSE

  
    

!
!Þ" ")Þ& $)#Þ(
!Þ# "$Þ! #"!Þ#
!Þ$ "!Þ" "$*Þ(
!Þ% )Þ( "!%Þ#
!Þ& )Þ! )#Þ*

Considering both MAD and MSE, a high value of the smoothing constant seems to be
appropriate.

(d) Using the template for exponential smoothing with trend using an initial estimate of
"#! "! for the average value and  for the trend, the following forecast errors are obtained
for various values of the smoothing constants  and .! "
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  MAD MSE

  
  
  
  

! "
!Þ" !Þ" #&Þ% *"*Þ'
!Þ" !Þ$ #"Þ# '$%Þ"
!Þ" !Þ& "(Þ( %&!Þ'
!Þ$ !Þ" "$Þ& #'"Þ*
!Þ$ !Þ$ *Þ) "%%Þ"
!Þ$ !Þ& )Þ) """Þ&
!Þ& !Þ" )Þ% ""'Þ"
!Þ& !Þ$ (Þ! (#Þ#
!Þ& !Þ& 'Þ& '"Þ"

  
    

Considering both MAD and MSE, high values of the smoothing constants seem to be
appropriate.

(e) The management should use the last-value method to forecast sales. Using this
method, the forecast for January of the new year is . Exponential smoothing with"''
trend using high smoothing constants, e.g., , also works well. With this! "œ œ !Þ&
method, the forecast for January of the new year is ."'&

27.8-8.

(a) Answers will vary. The last-value method seems to be the best. Exponential smoothing
with trend is a close second.

(b) For the last-value method, a change in April affects only the forecast for May. For the
averaging method, exponential smoothing with or without trend, it affects all forecasts
after April. For the moving-average method, it affects the forecasts for May, June, and
July.

(c) Answers will vary. The last-value method and exponential smoothing seem to do better
than the others.

(d) Answers will vary. The last-value method and exponential smoothing seem to do better
than the others.

27.8-9.

(a)  MAD   (b)  MAD   (c)  MAD
   
   
  
  
  

! ! !
!Þ" "Þ&" !Þ" "Þ)% !Þ" #Þ)#
!Þ# "Þ'# !Þ# "Þ)) !Þ# #Þ&%
!Þ$ "Þ($ !Þ$ "Þ*# !
!Þ% "Þ)% !Þ% #Þ!!
!Þ& "Þ*& !Þ& #Þ"!

Þ$ #Þ#'
!Þ% #Þ!'
!Þ& "Þ*!

 
 
 

          Choose .  Choose .  Choose .! ! !œ !Þ" œ !Þ" œ !Þ&

27.8-10.

(a)  MAD   (b)  MAD   (c)  MAD
  
  
 
 
 

" " "
!Þ" !Þ(%! !Þ" #Þ'" !Þ" &Þ''
!Þ# !Þ(%* !Þ# #Þ(' !Þ# 'Þ!#
!Þ$ !Þ(&* !Þ$ #Þ)( !
!Þ% !Þ((! !Þ% #Þ**
!Þ& !Þ()# !Þ& $Þ!&

Þ$ 'Þ#$
!Þ% 'Þ$'
!Þ& 'Þ&%

 
 
 

          Choose .  Choose .  Choose ." " "œ !Þ" œ !Þ" œ !Þ"
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27.8-11.

(a) The time series is not stable enough for the moving-average method.

(b)

 

(c)

 

(d)
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(e) Exponential smoothing with a trend is recommended, since it offers the smallest MAD.

27.8-12.

Moving-Average Method: The forecasts typically lie below the demands.
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Exponential Smoothing: The forecasts typically lie below the demands.
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Exponential Smoothing with Trend: The forecasts are at about the same level as demands
(perhaps slightly above). This indicates that exponential smoothing with trend is the best
method to use hereafter.

27.8-13.

(a)

 

(b) Forecast:  acre-feet#(
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(c) Winter: , Spring: ,Ð%*ÑÐ!Þ&&Ñ œ #( Ð%*ÑÐ"Þ!$Ñ œ &!

 Summer: , Fall: Ð%*ÑÐ"Þ&#Ñ œ (% Ð%*ÑÐ!Þ*Ñ œ %%

(d) Forecast:  acre-feet#&
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(e) Forecast:  acre-feet#'

 

(f) Forecast:  acre-feet#&
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(g) Exponential smoothing results in the lowest MAD value, ."Þ%

(h) Exponential smoothing gives the lowest MSE value, .#Þ(

27.8-14.

(a)

 
(b)
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(c)

 

(d)



27-21

 

(e)
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(f)

 

(g) Using the last-value method with seasonality MAD , the forecast for first quarterÐ œ "Þ&Ñ
is  houses.#$

(h) Quarter 2: , Quarter 3: , Quarter 4: Ð#(ÑÐ!Þ*#Ñ œ #& Ð#(ÑÐ"Þ#Ñ œ $# Ð#(ÑÐ"Þ!%Ñ œ #)
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27.8-15.

(a) Last-Value Method with Seasonality

 Averaging Method with Seasonality
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 Moving-Average Method with Seasonality

 Exponential Smoothing Method  with Seasonality

 

Method MAD MSE
Last-Value  
Averaging  
Moving-Average    
Exponential Smoothing    

$Þ!( "#Þ)*
$Þ"# "$Þ!(
#Þ") &Þ(*
#Þ$% *Þ$"
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(b) The moving-average method with seasonality has the lowest MAD value. With this
method, the forecast for January is  passengers.($

27.8-16.

(a)

 Method MAD MSE
Last-Value    
Averaging  
Moving-Average    
Exp. Smoothing  

#Þ%' )Þ$%
(Þ!' (%Þ($
#Þ(* *Þ')
%Þ#) #&Þ)(

(b) Forecast: *%

MAD and MSE values are lower than those in (a).

(c)

MAD and MSE values obtained are higher than the ones in (b).
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(d) Exponential smoothing with seasonality and trend (with parameters as in (b) should be used.

(e) The best values for the smoothing constants are  and . The! " #œ œ !Þ$ œ !Þ!!"
forecasts for the coming year are given in the table below.
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27.8-17.

(a) Based on past sales:

(b) Moving Average with Seasonality
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(c) Exponential Smoothing with Seasonality

(d) Exponential Smoothing with Seasonality and Trend

(e) The moving-average method results in the best MAD value  and the best MSEÐ"$Þ$!Ñ
value .Ð#%*Þ!*Ñ
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(f)
 Month Avg. Forecast Forecasting Error

January                   
February                     
March                   
Ap

$%" #$
$%& #
$(& "'

ril                   
May                     
June                     
July                     
August           

%!! $(
%&" (
%*( $
%&* *
&$(         

September                   
October                   
November                   
December               

")
$'* ")
$&% "!
'(( "&
&*#     "#

MAD œ "%Þ"(

(g) The moving-average method performed better than the average of all three, so it
should be used next year.

(h) The best method is exponential smoothing with seasonality and trend, using ! "œ œ !Þ$
and .# œ !Þ!!"

27.8-18.

         SMALLEST
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27.8-19.

             smallest

27.10-1.

(a)

(b) C œ %"!  "(Þ'B

(c)

(d) C œ %"!  Ð"(Þ'ÑÐ""Ñ œ '!%

(e) C œ %"!  Ð"(Þ'ÑÐ#!Ñ œ ('#

(f) The average growth in monthly sales is ."(Þ'
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27.10-2.

(a)

(b)

(c) C œ $*!!  (!!B

(d) Year 4CÐ Ñ œ $*!!  Ð(!!ÑÐ%Ñ œ '(!!
 Year 5CÐ Ñ œ $*!!  Ð(!!ÑÐ&Ñ œ (%!!
 Year 6CÐ Ñ œ $*!!  Ð(!!ÑÐ'Ñ œ )"!!
 Year 7CÐ Ñ œ $*!!  Ð(!!ÑÐ(Ñ œ ))!!
 Year 8CÐ Ñ œ $*!!  Ð(!!ÑÐ)Ñ œ *&!!

(e) It does not make sense to use the forecast obtained earlier, . The relationship*&!!
between the variables has changed and thus the linear regression that was used is no
longer appropriate.
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(f)

 C œ &##)  *#Þ*B
 C œ &##)  Ð*#Þ*ÑÐ)Ñ œ &*("

The linear regression line does not provide a close fit to the data. Consequently, the
forecast that it provides for year 8 is not likely to be accurate. It does not make sense to
continue to use a linear regression line when changing conditions cause a large shift in
the underlying trend in the data.

(g)

 

Casual forecasting takes all the data into account, even the data from before changing
conditions cause a shift. Exponential smoothing with trend adjusts to shifts in the
underlying trend.
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27.10-3.

(a)

(b) C œ $)!Þ#(  )Þ"&B

(c)
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(d) C œ $)!  Ð)Þ"&ÑÐ""Ñ œ %(!

(e) C œ $)!  Ð)Þ"&ÑÐ"&Ñ œ &!$

(f) The average growth per year is  tons.)Þ"&

(g)
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27.10-4.

(a) .The amount of advertising is the independent variable and sales is the dependent variable

(b)

(c) C œ )Þ("  !Þ!$"B

(d)  passengersC œ )Þ("  Ð!Þ!$"ÑÐ$!!Ñ œ ")ß !!!

(e) $## œ )Þ("  Ð!Þ!$"ÑÐBÑ Ê B œ %#*ß !!!

(f) An increase of  passengers can be attained.$"
27.10-5.

(a) If the sales increase from  to  when the amount of advertising is , then the"' "* ##&
linear regression line shifts below this point. The line actually shifts up, but not as much
as the data point has shifted up.

(b) If the sales increase from  to  when the amount of advertising is , then the#$ #' %&!
linear regression line shifts below this point. The line actually shifts up, but not as much
as the data point has shifted up.

(c) If the sales increase from  to  when the amount of advertising is , then the#! #$ $&!
linear regression line shifts below this point. The line actually shifts up, but not as much
as the data point has shifted up.
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27.10-6.

(a) The number of flying hours is the independent variable and the number of wing flaps
needed is the dependent variable.

(b)

(c) C œ $Þ$)#  !Þ!*$B

 
(d)

(e) C œ $Þ$)#  Ð!Þ!*$ÑÐ"&!Ñ œ ""

(f) C œ $Þ$)#  Ð!Þ!*$ÑÐ#!!Ñ œ "&
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27.10-7.

Joe should use the linear regression line  to develop a forecast forC œ *Þ*&  !Þ!*(B
jobs in the future.

27.10-8.

(a) CÐBÑ œ "#"Þ!%  "Þ!$%'B Ê CÐ&&Ñ œ '%Þ"$(s s

(b) > œ #Þ&("ß = œ 'Þ$%!Þ!#&À& ClB

 É"   œ "Þ!($&"
( ÐB BÑ

ÐB BÑ>
#

3
#!

The % prediction interval is .*& Ò%'Þ'%ß )"Þ'%Ó

(c) By interpolation:

 > œ $Þ$'&  Ð$Þ$'&  #Þ&("Ñ œ $Þ#$$!Þ!"#&À&
!Þ!!#&
!Þ!"&

The simultaneous % prediction interval is .*& Ò%#Þ"$ß )'Þ"%Ó

(d) By interpolation:

 - œ "!Þ(##  Ð""Þ"&!  "!Þ(##Ñ œ "!Þ*$'‡‡ "
#

The simultaneous tolerance interval is .Ò$(Þ"ß *"Þ#Ó

27.10-9.

(a) , , , ! ! ! !
3œ" 3œ" 3œ" 3œ"

& & & &
#B œ #! C œ %! BC œ #%# B œ "#!

 Ê CÐBÑ œ !Þ#  #Þ!&B Ê CÐ"!Ñ œ #!Þ$s s

(b) = œ !Þ'$$$ß > œ $Þ")#ClB
#

!Þ!#&À$

 É È"
& ÐB BÑ

ÐB BÑ œ "Þ">
#

3
#!

The % prediction interval is .*& Ò"(Þ'%ß ##Þ*Ó
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(c)

 É È"   œ #Þ""
& ÐB BÑ

ÐB BÑ>
#

3
#!

The % prediction interval is .*& Ò"'Þ'$!ß #$Þ*(!Ó

(d) By interpolation:

 - œ ""Þ"&!  Ð"%Þ*&$  ""Þ"&!Ñ œ "$Þ!&"&‡‡ "
#

The simultaneous tolerance interval is .Ò*Þ%!'ß $"Þ"*%Ó

27.10-10.

(a)

 5 œ œ œ "Þ**'
! ! !Œ 

! !Œ 
3œ" 3œ" 3œ"

& & &

3 3 3 3

3œ" 3œ"

& &

3
#

3

#

B C  B C Î&

B  B Î&

"*Þ*'!
"!!

 log 1 œ œ œ !Þ!"'
!
3œ"

&

3 3ÐC 5B Ñ

& &
!Þ!)

 log log Ê < œ !Þ!"'  "Þ**' >

 log log > œ $ Ê < œ !Þ!"'  "Þ**' ‚ $ œ 'Þ!!%

The forecast for the distance traveled when log  is then , which is> œ $ "!'Þ!!%

approximately one million.

(b)

 log log log 
    
    

      
      
      
      

> < IÐ <Ñs

#Þ! $Þ*& 
"Þ! #Þ"# 
!Þ! !Þ!) $Þ('(
"Þ! #Þ#! $Þ$)#
#Þ! $Þ)( #Þ)#%
$Þ!  #Þ"&&

(c)

 log log Trend log 
       
       

              
  

> < B  Ð"  ÑJ IÐ <Ñs

#Þ! $Þ*& $Þ*&! "Þ**' 
"Þ! #Þ"# "Þ*(" "Þ**% 
!Þ! !Þ!) !Þ!#* "Þ**& !Þ!#%

! !

            
              
                  

"Þ! #Þ#! #Þ!%# "Þ**( #Þ!#%
#Þ! $Þ)( %Þ!## "Þ**& %Þ!$*
$Þ!    'Þ!"(

27.10-11.

U œ ÐC  ,B Ñ Ê œ #B ÐC  ,B Ñ œ ! Ê F œ! !
3œ" 3œ"

8 8

3 3 3 3 3
# .U

.,

B C

B

!
!3œ"

8

3 3

3œ"

8

3
#
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CHAPTER 28: EXAMPLES OF PERFORMING SIMULATIONS
                    ON SPREADSHEETS WITH CRYSTAL BALL

28.1.

(a) Answers will vary. A typical set of 5 runs: 46.49, 45.98, 45.76, 45.99, and 46.74.

(b) Answers will vary. A typical set of 5 runs: 46.13, 46.15, 46.42, 46.14, and 46.27.

(c) The mean completion times in (b) should be more consistent.

28.2.

(a) Triangular Distribution (Min 293.51, Likeliest 50 .00, Max 599. )œ œ $ œ &!

(b) Min Extreme Distribution (Likeliest 492.26, Scale 56.34)œ œ

28.3.

(a) Uniform Distribution (Min 299.27, Max 498.73)œ œ

(b) Lognormal Distribution (Mean 390.84, Standard Deviation 59.91)œ œ

28.4.
 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A B C D E F G H I
(all times in months)

Start Activity Finish
Activity Predecessor Distribution Parameters Time Time Time
A  Secure funding — Normal (mean, st. dev.) 6 1 0.0 6 6.0
B  Design Building A Uniform (min, max) 6 10 6.0 8 14.0
C  Site Preparation A Triangular (min, most likely, 1.5 2 2.5 6.0 2 8.0
D  Foundation B, C Triangular (min, most likely, 1.5 2 3 14.0 2.1666667 16.2
E  Framing D Triangular (min, most likely, 3 4 6 16.2 4.3333333 20.5
F  Electrical E Triangular (min, most likely, 2 3 5 20.5 3.3333333 23.8
G  Plumbing E Triangular (min, most likely, 3 4 5 20.5 4 24.5
H  Walls and Roof F, G Triangular (min, most likely, 4 5 7 24.5 5.3333333 29.8
I  Finish Work H Triangular (min, most likely, 5 6 7 29.8 6 35.8
J  Landscaping H Fixed (5) 29.8 5 34.8

Project Completion Time 34.8
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(a) The mean project completion time is approximately 35 months.

(b) The probability that the project completion time will be less than 36 months is
approximately 71.8%.
(c) Activity A and Activity B have the largest impact on the variability of the project
completion time.
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28.5.

(a) Option 2: Hotel Project Only

(b) Option 3: Shopping Center Project Only

(c) Option 1 appears to be the best. It has the highest expected NPV, $18 million whereas
Option 2 has an expected NPV less than $12 million and Option 3 has an expected NPV
less than $7 million. Moreover, there is less chance of losing money if one chooses
Option 1. This probability is less than 20% for Option 1 while for the other options, it
exceeds 25%.
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28.6.

(a) A bid of approximately $5.3 million maximizes the mean profit.
 O

urB
id (5.200)

O
urB

id (5.250)

O
urBid (5.300)

O
urBid (5.350)

O
urB

id (5.400)

O
urB

id (5.450)

O
urBid (5.500)

O
urBid (5.550)

O
urBid (5.600)

0.473 0.486 0.489 0.488 0.480 0.463 0.392 0.311 0.241

(b) The optimal bid is approximately $5.3  million, as found by OptQuest.!&

28.7.

(a) A long-term loan of approximately $5 million maximizes Everglade's mean ending
balance.

 LT Loan (0.00)

LT Loan (5.00)

LT Loan (10.00)

LT Loan (15.00)

LT Loan (20.00)

5.73 6.72 5.82 3.07 -0.33
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(b)

(c) The optimal long-term loan is approximately $5.  million, as found by OptQuest.)(
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28.8.

(a) Accepting approximately 185 reservations maximizes the mean profit.

ReservationsToA
ccept (180)

ReservationsToAccept (181)

R
eservationsToAccept (182)

ReservationsToA
ccept (183)

ReservationsToAccept (184)

R
eservationsToAccept (185)

R
eservationsToA

ccept (186)

ReservationsToA
ccept (187)

R
eservationsToAccept (188)

R
eservationsToA

ccept (189)

ReservationsToA
ccept (190)

$6,613 $6,719 $6,803 $6,869 $6,908 $6,926 $6,924 $6,894 $6,841 $6,777 $6,693

(b)
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(c) The optimal number of reservations to accept is approximately 185, as found by
OptQuest.
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