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Preface

This volume constitutes the proceedings of the Fifth International Conference
on Multi-Objective Programming and Goal Programming: Theory & Appli-
cations (MOPGP’02) held in Nara, Japan on June 4-7, 2002. Eighty-two
people from 16 countries attended the conference and 78 papers (including 9
plenary talks) were presented.

MOPGP is an international conference within which researchers and prac-
titioners can meet and learn from each other about the recent development
in multi-objective programming and goal programming. The participants are
from different disciplines such as Optimization, Operations Research, Math-
ematical Programming and Multi-Criteria Decision Aid, whose common in-
terest is in multi-objective analysis.

The first MOPGP Conference was held at Portsmouth, United Kingdom,
in 1994. The subsequent conferenes were held at Torremolinos, Spain in 1996,
at Quebec City, Canada in 1998, and at Katowice, Poland in 2000. The fifth
conference was held at Nara, which was the capital of Japan for more than
seventy years in the eighth century. During this Nara period the basis of
Japanese society, or culture established itself. Nara is a beautiful place and
has a number of historic monuments in the World Heritage List.

The members of the International Committee of MOPGP’02 were Dylan
Jones, Pekka Korhonen, Carlos Romero, Ralph Steuer and Mehrdad Tamiz.
The Local Committee in Japan consisted of Masahiro Inuiguchi (Osaka Uni-
versity), Hiroataka Nakayama (Konan University), Eiji Takeda (Osaka Un-
viersity), Hiroyuki Tamura (Osaka University), Tamaki Tanaka (Niigata Un-
viersity) — co-chair, Tetsuzo Tanino (Osaka University) — co-chair, and Ki-
ichiro Tsuji (osaka University). We would like to thank the secretaries, Keiji
Tatsumi (Osaka Unviersity), Masayo Tsurumi (Tokyo University of Science),
Syuuji Yamada (Toyama College) and Ye-Boon Yun (Kagawa University) for
their earnest work.

We highly appreciate the financial support that the Commemorative As-
sociation for the Japan World Exposition (1970) gave us. We would also
like to thank the following organizations which have made helpful supports
and endorsements for MOPGP’02: The Pacific Optimization Research Ac-
tivity Group (POP), the Institute of Systems, Control and Information En-
gineers (ISCIE) and Japan Society for Fuzzy Theory and Systems (SOFT).
We are grateful, last but not least, to Nara Convention Bureau for several
supports. Particulary, without the devoteful help by Mrs. Keiko Nakamura
and Mr. Shigekazu Kuribayashi, this conference would not had been possible.

This volume consists of 61 papers. Thanks to the efforts made by the
referees, readers will enjoy turning the pages.

Osaka and Niigata, Tetsuzo Tanino
December, 2002 Tamaki Tanaka
Masahiro Inuiguchs
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Abstract. In this paper we take the reader on a very brief guided tour of mul-
tiobjective combinatorial optimization (MOCQO). We point out the increasing im-
portance of consideration of multiple objectives in real world applications of com-
binatorial optimization, survey the problem context and the main characteristics
of (MOCO) problems. Our main stops on the tour are for overviews of exact and
heuristic solution methods for MOCO. We conclude the presentation with an out-
look on promising destinations for future expeditions into the field.

1 Importance in Practice

The importance of multiobjective combinatorial optimization for the solu-
tion of real world problems has been recognized in the last few years. We
present a number of examples. Trip organization (for tourism purposes) in-
volves minimizing transport, activity, and lodging cost while at the same time
maximizing attractivity of activities and lodging. This problem has been for-
mulated as a preference-based multicriteria TSP and heuristic methods have
been applied for its solution [39]. In airline crew scheduling the classical ob-
jective is to minimize cost. However, minimal cost crew schedules might be
sensitive to delays. Therefore the additional consideration of maximization
of robustness should be taken into account. The resulting (large scale) bicri-
teria set partitioning problems can be solved by exact methods using state of
the art integer programming techniques [4]. The planning of railway network
infrastructure capacity has the goals of maximizing the number of trains that
can use the infrastructure element (e.g. a station) and to maximize robustness
of the solution to disruptions in operation. This problem can be modelled as
(again large scale) set packing problem with two objectives [19]. Heuristic
methods are currently used for its solution. Other recent applications include
exact and heuristic methods for portfolio optimization, e.g. [7], a heuristic
method for multiobjective vehicle routing problems [29], telecommunication
networks [81] and timetabling problems [9)].
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2 Definitions

A multiobjective combinatorial optimization problem can be defined as fol-
lows. Given a finite set A = {a1,...,a,} a subset X C 24 defines a fea-
sible set with a combinatorial structure. Objective functions are obtained
from weight functions w; : A —» Z, j = 1,...,Q by defining for S € X
27(S) = > ,cswj(a) (sum objective) or 27(S) = max,es w;(a) (bottleneck
objective). A multiobjective combinatorial optimization problem is then

[T N | Q

min (27(5),...,2%(9)). (MOCO)
The definition of “min” and thus the definition of an optimal solution
of (MOCO) depends on the order of IR?. In Pareto optimality (efficiency)
S € X is called Pareto optimal (efficient) if there is no S’ € X with 29(S’) <
29(S), 7 =1,...,Q and 29(S") < 29(S) for some g. In this case 2(S) =
(z1(S), ... ,29(S)) is called efficient (non-dominated) and the set of Pareto
optimal (efficient) solutions is denoted by E. Lexicographic optimality is de-
fined with respect to the lexicographic order z(S1) <ier 2(S2) if 27(S1) <
27(S2) and j is the smallest index such that 27(S1) # 27(Ss). It is possi-
ble to consider lexicographic optimality with respect to one or all permuta-
tions of the objective functions 27. For maz-ordering optimality the goal is to
minimize the worst objective function, i.e. mingex max;=1,.. ¢ 2’(S). Lex-
tcographic maz-ordering optimality considers the vectors of objective values
2(S) reordered non-increasingly and compares these reordered vectors lexico-
graphically. Because of the combinatorial structure a feasible solution S € X
can be represented as a binary vector z € {0,1}" by defining z; = 1 if and
only if a; € S, and 0 otherwise. Thus, (MOCO) is a discrete optimization
problem, with n variables z;, ¢ = 1,... ,n, m constraints of specific structure
defining X, @ objectives 27, = 1,...,Q, and an order of IR? to define opti-
mality. In this paper we will be mainly concerned with the Pareto optimality

concept.

3 Characteristics of MOCO Problems

3.1 Supported and Nonsupported Efficient Solutions

The most important property of (MOCO) can be explained via scalarization
using convex combinations of objectives. A multiobjective linear programme
(MOLP) is the problem min{Cxz : Az = b,z > 0}, where C is a Q x n
objective function matrix. A fundamental result in multiobjective linear pro-
gramming is that E is the set of solutions of parametric linear programmes
min{}>;_, oz : Az = b,z > 0} with 0 < A; < 1 and Z?:l Aj =1
The non-convexity of the feasible set of a MOCO problem, however, implies
that supported efficient solutions SE (solutions of parametric problems, as in
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(MOLP)), as well as nonsupported efficient solutions NE exist. This is even
true for problems in which the convex hull of feasible solutions coincides with
the feasible set of the LP relaxation (implying that total unimodularity is not
as useful for MOCO as it is in single objective combinatorial optimization).
Adding to the difficulty is the number of efficient solutions. Theoretical re-
sults show that E might be exponential in problem size, in fact every feasible
solution might be efficient. Such problems are clearly intractable in terms
of polynomial time algorithms. Problems for which this behaviour has been
shown include spanning tree [42], shortest path [45], travelling salesperson
[30]. Even the set of supported solutions SE can be exponential in problem
size (network flow problems [70]). Experimental solutions reveal a more differ-
entiated picture. For knapsack problems the number of supported solutions
grows linearly, the number of nonsupported solutions grows exponentially
[87]. It also seems to be the case that the numerical values of the objectives
have an impact on the number of efficient solutions and the size of SE/NE
[18]. The situation is better for bottleneck objectives, see e.g. [62].

3.2 Computational Complexity

The existence of nonsupported efficient solutions already indicates that MOCO
problems are hard. For a more thorough investigation we have to define a de-
cision problem related to (MOCO): Given ki,... kg € Z does there exist
some S € X such that 27(S) <kj, j=1,...,Q?Closely related is the count-
ing problem: How many S € X satisfy 27(S) < kj, j = 1,...,Q? Research
results indicate that decision versions of MOCO problems are “always” INP-
complete and the counting versions often #P-complete. The following prob-
lems are among those known to be INP-complete: the unconstrained (MOCO)
[20], multiobjective shortest path [74], multiobjective spanning tree [10] and
multiobjective assignment [74]. The proofs show that knapsack or partition
structures are present in these problems. In addition, all single objective INP-
hard problems are obviously INP-hard in the multiobjective case. We briefly
summarize results for other optimality concepts. The max-ordering problem
with sum objectives is INP-hard in general [11]. The max-ordering problem
with bottleneck objectives is as easy or difficult as the single objective coun-
terpart [21]. Lexicographic problems are often easy (for a given permutation
of the objectives), because the lexicographic order is a total order.

4 Exact Solution Methods

4.1 Weighted Sums Method

The most popular albeit not really appropriate method for solving (MOCO)
problems and multiobjective programmes in general is the weighted sums
method. The scalarized problem
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Q
min Z N2l (z)xeX (Px)

=1

has to be solved for all A € R? with 0 < A; < 1 and 3.7, \; = 1. The
method finds all supported efficient solutions, but of course no unsupported
ones. In early papers on MOCO it is striking that nonsupported efficient
solutions have not been considered, presumably because their existence was
not known. The weighted sums method is most often used when @ = 2, a
generalization for @ > 3 is not straightforward and no general technique is
known. Applications include assignment [17], knapsack [69], shortest path
[88], spanning tree [42], etc.

4.2 Compromise Programming

The idea of compromise programming is to minimize the distance to the ideal
point z! defined by z]I := mingex 2?(x). Most often a Tchebycheff norm is
used as distance measure, so that the compromise program becomes

min {r?%f({/\jlzj @ -2} :ze X} . (CP)

With appropriate choices of A all efficient solutions can be found. The
drawback, however, is that (CP) is usually INP-hard (shortest path [64]).
Note that if the Tchebycheff norm is replaced by the /; norm (CP) coincides
with (Py). With the [, norm, 1 < p < oo, (CP) has a nonlinear objective, a
problem which is hardly ever considered, a rare exception is [85]. Also note
that because problems of similar form as (CP) are often used in interactive
methods, the INP-hardness results cast some shadow on the effectiveness of
interactive procedures in multiobjective combinatorial optimization.

4.3 e-Constraint and Elastic Constraint Method

The main idea of these methods is to minimize only one of the objectives
whilst imposing constraints on the others. The scalarization used in the &-
constraint method is

min {z*(z) 1z € X, 27 (z) < ¢j,j #1}. (€C)

It is possible to find all Pareto optimal solutions, but in a (MOCO) context
the problem (¢C) where 2*(z) are sum objectives is often INP-hard because
of the (knapsack) constraints on the objectives. In the literature it is mostly
used for bottleneck objectives, e.g. for assignment, knapsack, spanning tree,
TSP [62]. In this case it is a very effective method.
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The elastic constraints method can be seen as a modification of the origi-
nal e-constraint method based on the idea to reduce the computational diffi-
culties created by the constraints by making them elastic, i.e. the scalarization
becomes

min { 2*(z) + ijsuj cx € X, (x) —slj +su; =¢5,j#ip, (EC)
J#i

where sl; and su; are slack and surplus variables for the constraints on the
objectives. The method is also able to find all Pareto optimal solutions and in
addition shows computationally superior performance in hard but structured
combinatorial problems (set partitioning in [4]). Interestingly, the method is a
common generalization of both the weighted sums and &-constraint methods.

4.4 Ranking

In combinatorial optimization the ranking of solutions, or the computation
of K-best solutions, has received considerable attention. This concept can be
exploited for finding efficient solutions of (MOCO) problems. For problems

with two objectives the Nadir point 2V is defined as 2 := mingex {2/(x) :

J
24 (x) = 2!, i # j}. Then, because z!, 2V are lower and upper bounds
on efficient solutions the following procedure is possible: Start by finding a
solution with z!(z) = 2! and continue to find second best, third best, ...,
K-best solutions with respect to 2! until the value z}¥ is reached. Algorithms
based on this idea have been used to solve shortest path [60] problems. The
idea of ranking is also useful for max-ordering even in the general case of
Q > 2 [26,42]. To properly generalize the ranking approach to more than
three objectives the consideration of level sets of the objectives is currently

under investigation [28].

4.5 Specific Methods

Researchers have also pursued the path of generalizing specific methods for
solving particular single objective combinatorial problems to the multicriteria
case. These efforts resulted in work on multiobjective dynamic programming
which is based on a recursion formula min (gN (zn) + Zfev;ol i (Tk, uk)) with
a vector cost function g, state variables xx, and control variables uy. Natu-
rally, this research has focused on problems for which dynamic programming
formulations have been successfully applied in the single objective case, such
as shortest path problems, e.g. [54] and knapsack problems, e.g. [52]. Other
specific methods include label correcting methods for shortest path problems
[59] and greedy algorithms for spanning tree problems [1].
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4.6 Two Phases Method

To conclude this section, we describe a method that is generic for the MOCO
area. Its name illustrates the main idea: In Phase 1, find all supported effi-
cient solutions and use this information in Phase 2 to generate nonsupported
efficient solutions. This information can be reduced costs, bounds etc. The
method performs particularly well if the single objective counterpart is poly-
nomially solvable, so that solution of each (Py) problem is “easy”. So far
it has been applied to a number of biobjective problems: network flow [55],
assignment [84], spanning tree [67], knapsack [87]. A generalization to more
objectives is still an open question, due to the same reasons the weighted
sums approach for @ > 3 is still not definitively settled.

5 Heuristic Solution Methods

5.1 Approximation in a Multiobjective Context

The challenge for heuristic methods in multiobjective programming is that
rather than finding one “good” solution the objective value of which approxi-
mates the optimal solution value of the problem, we have to approximate the
unknown set E. Multiple objective heuristics (MOH) methods have to provide
a good tradeoff between the quality of the set of potential efficient solutions E
and the time and memory requirements. When the method refers to a meta-
heuristic one talks about multiple objective metaheuristic (MOMH). From a
historical perspective, metaheuristic techniques for the solution of multiob-
jective problems have appeared since 1984, in the following order: Genetic
Algorithms (1984) [73], Neural Networks (1990) [58], Simulated Annealing
(1992) [75], and Tabu Search (1996) [35]. Even though it was easy to clas-
sify the pioneer methods as either evolutionary algorithms or neighborhood
search algorithms, they are often hybridized today. A central question con-
cerns the quality of a set of potential efficient solutions. Various researchers
have contributed to the discussion of how to measure it. These contributions
can be divided into those that consider the case when E is known [83] and
include criteria of coverage, uniformity, and cardinality [71] or integrated
convex preference [51]. The other broad group are those that consider com-
parison of approximations, such as evaluations of approximations [43] and
metrics of performance [89] or the comparison with bounds and bound sets
[23]. Considering the number of recent publications, approximation methods
in multiobjective programming receive more and more attention. The follow-
ing discussion is restricted to MOMH designed to identify sets of potential
efficient solutions £ for MOCO problems.

5.2 Evolutionary Algorithms

Evolutionary methods manage a population of solutions rather than a single
feasible one. In general, they start from an initial population and combine



Multiobjective Combinatorial Optimization 9

principles of self adaptation, i.e. independent evolution, and cooperation, i.e.
the exchange of information between individuals, for improving solution qual-
ity. Thus, they develop a parallel process where the whole population con-
tributes to the evolution process to generate E. The first multiobjective evo-
lutionary algorithm (MOEA) was the Vector Evaluated Genetic Algorithm
(VEGA) by Schaffer [72]. For each generation three stages are performed. The
population is divided into @ subpopulations S? according to performance in
objective q. Subpopulations are then shuffled to create a mixed population.
Genetic operators such as mutation and crossover are applied producing new
potential efficient individuals. This process is repeated for N, iterations.
The approximations achieved with VEGA typically showed good performance
towards the extremes (close to optimality for individual objectives) but poor
quality for areas of E corresponding to compromise solutions. Methods of
ranking, niching and sharing have been proposed later to have a uniform
convergence an distribution of individuals along the efficient frontier. The
idea of ranking methods [40] is to subdivide the population into groups of
different ranks according to their quality. Niches are neighbourhoods of solu-
tions in objective space centered at candidate solutions and with some radius
osh. Based on the number N of solutions in these niches the selection of indi-
viduals can be influenced to areas in which niches are sparsely populated to
aim at greater uniformity of distribution along the efficient frontier. A num-
ber of important implementations of MOEA have been published in recent
years, there are even a number of surveys on the topic (see [12,13,33,50]).
Here we describe the methods which have been used for (MOCO).

o Pioneer MOEAs: Vector Evaluated Genetic Algorithm by Schaffer, 1984
[72]; Multiple Objective Genetic Algorithm by Fonseca and Fleming, 1993
[32]; Nondominated Sorting Genetic Algorithm by Srinivas and Deb, 1994
[77]; Niched Pareto Genetic Algorithm by Horn, Nafpliotis and Goldberg,
1994 [47].

e Multiple Objective Genetic Algorithm (MOGA) by Murata and Ishibuchi,
1995 [63]. This method is based on a weighted sum of objective functions
to combine them into a scalar fitness function using weight values gener-
ated randomly in each iteration. Later they coupled a local search with
genetic algorithm, introducing the memetic algorithm principle for mul-
tiobjective problems.

e Morita’s method (MGK) by Morita, Gandibleux and Katoh, 1998 [36].
Seeding solutions, i.e. greedy or supported solutions, are put in the ini-
tial population to initialise the algorithm with good genetic information.
The biobjective knapsack problem is used to validate the principle. It
becomes a memetic algorithm when a local search is performed on each
new potential efficient solution [37].

e Strength Pareto Evolutionary Algorithm (SPEA) by Zitzler and Thiele,
1998 [90]. SPEA takes the best features of previous MOEAs and includes
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them in a single algorithm. The multiobjective multi-constraint knapsack
problem has been used as benchmark to evaluate the method [91].

e Multiple Objective Genetic Local Search (MO-GLS) by Jaszkiewicz, 2001
[49]. This method hybridizes recombination operators with local improve-
ment heuristics. A scalarizing function is drawn at random for selecting
solutions, which are recombined and their offspring are improved using
heuristics.

e Multiple Objective Genetic Tabu Search (MOGTS) by Barichard and
Hao, 2002 [4]. Another hybrid method where a genetic algorithm is cou-
pled with a tabu search. MOGTS has been evaluated on the multi-
constraint knapsack problem.

5.3 Simulated Annealing Based Metaheuristics

In 1992, Serafini has published the first ideas about multiobjective simu-
lated annealing [75] in a multiobjective context. At the same time, Ulungu
introduced MOSA [83], one of the most popular simulated annealing based
methods. It is a direct derivation of the simulated annealing principle to deal
with multiple objectives. Starting from an initial solution z¢ and a neigh-
bourhood structure M (zp), MOSA computes approximations using a weight
set A defining search directions A € A and a local aggregation mechanism
S(z(x), A) together with a cooling schedule to accept deteriorations in values
with decreasing probability. Like all neighbourhood search based methods,
MOSA combines several sequential processes in the objective space Z. For
each )\ in a set of weights A it starts with a randomly generated solution x.
Then a solution in the neighbourhood of z is generated and accepted if it is ei-
ther better (dominates x) or based on a probability depending on the current
“temperature”. Next the set of potential efficient solutions E} in direction A
and other parameters are updated. The search stops after a certain number of
iterations or when a predetermined temperature is reached. Finally the sets
E) are merged. Multiobjective metaheuristics based on simulated annealing
published in the literature are the following.

e Multiobjective Simulated Annealing (MOSA) by Ulungu, 1993 [83].

e Engrand’s method, 1997 [31] revised by Park and Suppapitnarm [66].
The method uses only the non-domination definition to select potential
efficient solutions, avoiding the management of search direction and ag-
gregation mechanism.

e Pareto Simulated Annealing (PSA) by Czyzak and Jaszkiewicz, 1998 [15].
PSA also uses a weighted sum. However, a sample set of initial solutions
S C X is combined with an exploration principle exploiting interaction
between solutions to guide the generation process through the values of
A

e Nam and Park’s method, 2000 [65]. Another simulated annealing based
method. The authors show good results on comparison with MOEA.
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e Other simulated Annealing based methods. Bicriteria scheduling prob-
lems on a single machine [53]; Interactive SA-TS hybrid method for 0-1
multiobjective problems [3]; Trip planning problem [39]; Aircrew rostering
problem [57]; Assembly line balancing problem with parallel workstations
[61]; Analogue filter tuning [82].

5.4 Tabu Search Based Metaheuristics

Extensions of tabu search to multiobjective programming are recent in com-
parison with other classical metaheuristics. The first methods use a tabu
process guided automatically by the current approximation obtained [35] or
by a decision-maker in an interactive way [78]. These methods start from
an initial solution zg, use a neighbourhood structure N'(z(zo)) and search
directions A. The tabu process with its memory structure is applied with a
local aggregation mechanism s(z(z), 2V, \) that involves a reference point 2
to browse the objective space. Hybrid methods appeared a short time later,
trying to improve the diversification of solutions along the efficient frontier.
Ideas come from MOEA, like the use of a population [44], or a combina-
tion of tabu search with genetic algorithms [1]. Multiobjective tabu search
procedures have been applied mainly on MOCO problems, especially on the
knapsack problem. In the literature one can find the following MOMH based
on tabu search.

e “False MOMH” using tabu search. They are not designed to reach a
(sub)set of potential efficient solutions. (MOCO) is solved through a se-
quence of Q single objective problems with penalty terms [46], or through
solution of (Py) [16].

e Multiobjective Tabu Search (MOTS) by Gandibleux, Mezdaoui and Fréville,
1997 [35]. The method has been tested on an unconstrained permutation
problem, and later on the biobjective knapsack problem [34] using bounds
to reduce the search space.

e Sun’s method, 1997 [78]. This is an interactive procedure using a tabu
search process as solver of combinatorial optimization subproblems. The
components used to design the tabu search process are almost the same
than in MOTS [35]. The method has been used for facility location plan-
ning [2].

e Multiobjective Tabu Search (MOTS*) by Hansen, 1997 [44]. This method
uses a generation set (i.e. a number of solutions rather than one, each of
which has its own tabu list) and a drift criterion. Results are available
for the knapsack problem, and also for the resource constrained project
scheduling problem [86].

e Ben Abdelaziz, Chaouachi and S. Krichen’s hybrid method, 1999 [1].
The authors present a mutiobjective hybrid heuristic for the knapsack
problem. The method is a mix of tabu search and a genetic algorithm.
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e Baykasoglu, Owen and Gindy’s method, 1999 [6]. Another tabu search
based method designed to handle any type of variable. The method has
been also used for goal programming problems [5].

e Other tabu search based methods have been developed for scheduling
problems [56] and the trip planning problem [39].

5.5 Other Methods

Besides these multiobjective versions of now classical metaheuristic methods
there exist other MOMH. We are aware of Artificial Neural Networks ANN
[58,79,80], Greedy Randomized Adaptive Search Procedure GRASP [38], Ant
Colony Systems ACO [41,48,76], and Scatter Search [8].

6 Directions of Research and Resources

The state of the art in multiobjective combinatorial optimization indicates
a number of directions of research that are promising and should be consid-
ered to make substantial progress in the field. We list some of these here,
divided into theory, methods, and applications. In the theory of MOCO an
interesting question is which results in single objective combinatorial opti-
mization are still valid when @ > 17 E.g. the Martello and Toth bound for
knapsack problems is not valid when Q = 2. Further investigation into bound
sets (started in [23]) and Nadir points (see [27]) can be expected to lead to
better methods. In terms of the hardness of MOCO problems the question of
whether there are easy and hard problems in MOCO in a sense other than
INP-hardness arises. The quality of approximations and the representation
of Pareto sets by smaller subsets are exciting topics for research. As far as
methods are concerned we point out that exact methods for @ > 3 objectives
are not available. A closer look at the two phases method for Q = 2 when the
single objective problem is INP-hard should provide better understanding of
MOCO. In the area of heuristics a fundamental question is the performance
of generic MOMH versus problem specific MOMH. Also, the effectiveness of
MOMH for different problems should be considered, or the use of semi-exact
methods that may use bounds to reduce search space as in [34] is promising.
For applications there is the general question of the choice between meth-
ods that generate the efficient set as opposed to interactive methods. Can
guidelines for this choice be developed? The study of real world problems as
MOCO models is becoming increasingly important. In this context we note
that practical MOCO problems should not be treated as single objective
problems, as has often been the case in the past. For further references and a
more detailed exposition of the topics of this paper we refer to the publications
[22,24]. Also, a library of numerical instances of MOCO problems is available
on the internet. At the time of printing the library includes instances for the
multiobjective assignment, knapsack, set covering, set packing, and traveling
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salesman problems, as well as test Problems for multiobjective optimizers.
The library is located at www.terry.uga.edu/mcdm/.
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Abstract

This paper provides a commentary and some analysis on recent advances in the field of
distance metric optimisation, with particular reference to the place of distance metric
optimisation within the overall disciplines of operational research and soft computing. The
trend of integration and combination with other techniques is examined, with particular
reference to the analytical hierarchy method, meta-heuristic methods, and data mining.
Finally, some further thoughts on good modelling practice for distance metric optimisation
models are offered.
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1. Introduction

Distance metric optimisation is characterized by the minimization of some distance function
between the achieved levels of a set of objectives and either an ideal level or a decision
maker desired level measured in terms of the same set of objectives. The well-known multi-
objective techniques that fall into the category of distance metric optimization include goal
programming, compromise programming, the reference-point method, and some interactive
extensions of the previous methods. Mathematically speaking, the non-lexicographic
distance metric optimisation minimisation function can be defined as:

Y

| 32
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i=l

with an associated set of goals or objectives:
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fi(X)+n—p;=b i=1..,q
and optional set of hard constraints:

xe F

where X is the set of decision variables, f;(x) is a mathematical expression defining the
achieved value of the i’th goal or objective, %, and v, are the weights associated with the

penalization of the deviations (#;, p; respectively) from the desired or ideal level (b,- ) of

the i th objective. A weight of zero associated with a deviation indicates the minimization
of that deviation is unimportant to the decision maker. The term p is the distance metric
used to measure the distance between the achieved and the desired or ideal levels of the set
of objectives. Varying p between its end-point values of 1 and o produces arange of
solutions that vary between a ruthless optimization approach (0 =1) and a balanced

approach that produces as equilibrated a solution as possible (0 =oo). The term ki isa

normalisation constant included to overcome incommensurability and hence to allow the
deviations from the objectives to be compared directly. The traditional choice for the
normalisation constant in compromise programming is the distance between the ideal and
the nadir value for that objective, thus scaling all objectives onto a zero-one range. The anti-
ideal value of the objective is sometimes used as a surrogate for the nadir value if the latter
is too computationally difficult to compute. Popular normalisation methods for the goal
programming model include the percentage, zero-one, and Euclidean methods. These are
analysed by Tamiz and Jones [23] who also present an algorithm for measuring the level
incommensurability and hence suggesting or automatically applying an appropriate
normalisation technique.

This model covers all non-lexicographic distance metric optimisation techniques. This is
sufficient to model compromise programming and non-pre-emptive (weighted) goal
programming models. In order to extend the theory to other methods a lexicographic order
must be introduced. This leads to the following algebraic formulation of the achievement
function:

n)/ Y
1 1 11/ p ) ) ) )
Mina= qE u_’(M)ﬁ d ML
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i=l 1

where the commas represent the distinction between the L pre-emptive priority levels in the
model. The distance metric used in the I’th priority level is given by p;and the weights
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associated with penalisation of the negative and positive deviational variables of the i’th

O] O]

; " and v; respectively. With the

possibility of negative and zero weights, this model allows the lexicographic based distance
optimisation models such as lexicographic goal programming and the reference pint
method to be modelled. Variations or partial variations of this model to allow various linear
programming and distance-metric models to be formulated under a common framework are
given by Romero [17], Ignizio [9], and Uria et el [24]. Romero, Tamiz, and Jones [18]
propose further theoretical connections between the major techniques of distance metric
optimisation. This topic is further developed by Ogryczak [16] and Ganjavi et al. [6].

The fundamentals and algebraic formulation of distance metric optimisation models
have been outlined above. The remainder of this paper concentrates on the integration and
combination of distance metric models with some other techniques within the Operational
Research and Soft Computing disciplines. Section 2 details the interface of meta-heuristic
methods and distance metric optimisation, section 3 of distance metric optimisation and the
analytical hierarchy process, section 4 details the role of distance optimisation models in
pattern classification, and section 5 offers some further thoughts and suggestions about good
modelling practice in goal programming. The final section draws conclusions.

objective in the I'th priority level are given by

2. Distance Metric Optimisation and Meta Heuristic Methods

A meta-heuristic method draws on ideas and methodology from disciplines outside of
artificial system optimization to provide algorithms for the solution of artificial system
optimization models. Well-known meta heuristics include genetic algorithms, simulated
annealing, and tabu search which draw on ideas from genetics, physics, and the social
concept of Taboo respectively. Meta-Heuristic methods can be classified within the field of
soft computing. The interface between meta-heuristic methods and the wider field of multi-
objective programming, and in particular the use of genetic algorithm techniques for
efficient frontier calculation, has been considerable. This can be traced to the fact that both
genetic algorithms and Pareto frontier generation require a population of spaced solutions in
order to work efficiently. A recent survey by Jones, Mirrazavi, and Tamiz [13] found that
90% of the journal articles related to multi-objective meta-heuristics are based around
techniques for the calculation of the efficient set. The next most popular technique was goal
programming, accounting for 7% of the articles, with compromise programming and
interactive methods making up the remaining 3%. These statistics show that either the
interface between distance metric optimization of meta-heuristics is non-existent in the
sense of being of little benefit or is of practical benefit but has yet to be realized or
developed. The discussion in the following paragraphs will argue in favour of the latter state
of affairs.

In analyzing future developments in the interface between distance metric optimization
and meta-heuristic methods three possible directions are apparent at this point in time.
Firstly distance optimization techniques could be used to enhance the internal workings of
the meta-heuristic method. This seems a possibility as there are various internal mechanisms
in meta-heuristic techniques that rely on concepts of distance and deviation. The use of
penalty functions [14] and of niching [8] in genetic algorithms fall into this category.
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The second possible direction is to use the benefits of the meta-heuristic methods to
provide enhanced or computationally faster solutions to certain distance metric optimization
techniques. For example, genetic algorithm techniques have the potential to produce
estimations of the compromise set in compromise programming in an analogous way to the
methods that produce estimations of the efficient set in multi-objective programming. The
commonality between the two methods would be the exploitation of the population-based
nature of the genetic algorithm.

The third possible direction is the use of meta-heuristic methods to solve models that are
too computationally complex or loosely defined to be modeled and solved using
conventional means. This approach has proved very successful in the areas of single
objective optimization and combinational optimization and the concepts can be transferred
or modified to the distance optimization techniques. This is the most developed direction of
the interface between meta-heuristic methods and distance metric optimization, particularly
in respect to goal programming models. A recent goal programming survey [12] lists both
simulated annealing and genetic algorithms as a solution tool for non-linear models in the
field of engineering, and algorithms combining goal programming and Taboo search
methods are available in the literature [1]. Mirrazavi, Jones, and Tamiz [15] present a
decision support system capable of solving a wide variety of distance metric models by
genetic algorithm means.

3. Distance Metric Optimisation and the Analytical Hierarchy
Process

The analytical hierarchy process (AHP), developed by Saaty [19], has been one of the most
widely used techniques in the field of decision analysis. The AHP framework allows for the
determination of a set of priority weights from a matrix of pair-wise comparisons over the
set of objectives given by the decision maker. These comparisons are made on a nine-point
scale ranging from equal importance (1) to absolute importance (9).

The interface between distance metric optimisation and the analytical hierarchy process
has been developed in two major directions. The first direction involves the use of a distance
metric model as a surrogate to the standard Eigenvalue method in Saaty’s original
formulation. The earliest models of this type used the L, distance metric and were known
as the least squares (LSM) and logarithmic least squares (LLSM) models, depending on
whether the minimisation uses the logarithm of the matrix entries or not. The LLSM equates
to the calculation of the geometric mean and hence demonstrates some good theoretical

properties. Models based around the Logarithmic L, metric [2] and the L_metric [5] have

also been proposed. Islam, Biswal, and Alam [10] give an L, based method that
incorporates interval judgements. Distance metric theory suggests that these solutions all
form points in a compromise set corresponding to the metrics L,, L, , and L_ [25]. There
is no reason why the intermediate distance-metric solutions corresponding to values of p
other than 1,2, and e should not also be considered.

The second direction in which the interface between distance metric optimisation and
the AHP has been developed is that of the use of the AHP to set weights in a non pre-
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emptive goal programming model. This concept benefits both approaches as it quantifies the
subjective weight setting of goal programming and provides an additional stage of analysis
in a mathematical programming framework for the AHP. Gass [7] describes an early use of
this approach in the context of large scale military planning. Jones and Tamiz [12] detail a
range of reported applications of this combined method in computing and information
technology, energy planning and production, environmental and waste management, health
planning, management and strategic planning, and production planning.

4. Distance Metric Optimisation and Data Mining

Another area that has been a field of application of distance metric models is that of data
mining. This field roughly involves the extraction and analysis of information from sets of
data and falls into the general area of soft computing. The use of distance metric
optimization in this field has concentrated around the use of constrained regression,
regression with underlying distance metrics other than the standard P =2 metric, and
pattern classification and discriminant models. It is worth remembering that the original goal
programming model [3] was introduced in the context of constrained regression in the
context of an executive compensation model. Since then the theory of constrained regression
has been developed, with the beneficial properties of least absolute value (LAV) regression
being detailed by Sueyoshi and Sekitani[21]. This type of regression utilizes the p =1

metric and therefore shows less sensitivity towards outliers than the other distance-metric
models. Cooper, Lebs, and Sueyoshi [4] present an application of LAV regression to
finance and further develop the theory to include the use of dual variables in the underlying
goal programming model. The generalized regression model, using metrics from the
compromise set from P = 1 through to P = oo is a possible future research direction, as it
offers possibilities of a range of models with a parameter allowing the analyst to increase or
decrease outlier sensitivity as necessary.

The area of pattern classification differs from regression analysis in that the task involved
is to classify a set of observations into a number of well-defined groups based on their
characteristics. The underlying problem here again involves a minimization of a form of
distance function pertaining to either the number or amount of misclassifications across the
set of observations [20]. The ‘distance’ of misclassification for an observation is that from
the discriminant line that divides the classes in decision space and the multi-objective
aggregation of the misclassified distances can be carried out using any metric from the
compromise set between P =1 and p = oo . The case of using the number of misclassified
observations as the measure of performance requires the use of mixed-integer programming
techniques and is sometimes referred to as the P = () metric. A review of these so-called
‘L, norm methods’ for pattern classification is given by Stam [20].
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5. Some Further Observations on Goal Programming Modelling
Practice

The traditional goal programming model is defined as having an achievement function
comprised entirely of deviational variables[9]. This may take the form of a single weighted
sum in weighted goal programming) or of a number of priority levels in lexicographic goal
programming. In compromise programming models the normalised difference of the
difference between the ideal and achieved values is minimized, this difference can be
expressed as a deviational variable[18]. With the growing range of distance-metric model
applications and integrations, there is more possibility of a mixed achievement function
occurring. This case is defined by Jones [11] as a combination of decision and deviational
variables in the achievement function. Assuming that the deviational and decision variables
terms are separable then the weighted goal programming model achievement function can
be written as:

9 yn +v: p:
Minz=Y S0P piy

i=1 i

This may cause problems with various types of solution and analysis such as Pareto
efficiency detection and restoration [22] and also cause incommensurability in the model. In
this case the following transformation is recommended:

+1
Minz = i“i”i tViPi
k.

i=l g

with the added constraint:
JX)+ng—pgu =0

where U, =0,V g+ 18 set to represent the relative importance of the minimisation of

q+
the term £ (X) to the decision maker, and k g+l is set in order to give appropriate scaling to

the term f (x) . The actual value of k .. is dependent on the type of normalisation used for

the other objectives in the model, but one possibility is the Euclidean Norm of the
coefficients of f(x) [23].

This model can be considered better than the original formulation as it is more elegant
and correct from a theoretical point of view; gives no hindrance to the use of solution and
analysis techniques, and allows for correct scaling of all objectives in the model. It is also
more convenient for integration with the other Operational Research and Soft Computing
techniques described in this paper to have the goal programme expressed in standard form.
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Hence it is recommended that any models with mixed achievement functions are
transformed in this way.

6. Conclusions

This paper has analyzed some of the recent trends and applications in distance metric
optimization. It has been shown that the subject, now approaching its fiftieth birthday since
the conception of the goal programming model [3], continues to be relevant and applicable
to the modern techniques being developed within the fields of operational research and soft
computing. A substantial amount of change and development in order to apply the
techniques of distance metric optimization to new and emerging application areas has taken
place and needs to continue to take place. The distance metric framework laid down in the
context of compromise programming by Yu [25] continues to offer a spectrum of possible
solutions ranging between the pure optimization and balanced approaches, characterized by

the p =1 and p = oo metrics respectively, to each of these areas. This paper has been

somewhat speculative in suggesting possible new research directions for each of these areas.
The suggestions are not intended to be either definitive or exhaustive in terms of advances in
distance metric optimization and its interface with the techniques detailed in the paper. They
are, however, intended to demonstrate the fact that the area remains relevant and one in
which there exist many avenues and interesting areas yet to be developed that should be of
interest to both established and younger researchers with the field of multiple criteria
decision making.

References

[1] Baykasoglu A (2001) Goal programming using multiple objective tabu search, Journal
Of The Operational Research Society,52 (12), 1359-1369

[2] Bryson. N (1995) A goal programming method for generating priority vectors, Journal
of the Operational Research Society, 46 (5), 641-648.

[3] Charnes A, Cooper WW, Ferguson R (1955) Optimal estimation of executive
compensation by linear programming, Management Science, 1, 138-151.

[4] Cooper WW, Lelas V, Sueyoshi, T (1997) Goal programming models and their duality
relations for use in evaluating security portfolio and regression relations, European
Journal of Operational Research, 98,431-443.

[S] Despotis DK (1996) Fractional minmax goal programming: A unified approach to
priority estimation and preference analysis in MCDM, Journal Of The Operational
Research Society, 47 (8): 989-999.

[6] Ganjavi O, Aouni B, Wang Z (2002) Technical note on balanced solutions in goal
programming, compromise programming and reference point method, Journal Of The
Operational Research Society, 53 (8): 927-929

[7] Gass SI (1987) A process for determining priorities and weights for large scale goal

programmes, Journal of the Operational Research Society, 37, 779-785.



26  D.F.Jones and M.Tamiz

[8] Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning,
Addison Wesley Longman, Reading, MA. Pages 185-197.

[9] Ignizio JP (1982) Linear programming in single and multiple objective systems,

Prentice Hall, Englewood Cliffs, NJ.

[10] Islam R, Biswal MP, Alam SS (1997) Preference programming and inconsistent
interval judgments, European Journal Of Operational Research, 97 (1): 53-62.

[11] Jones DF(1995) The design and development of an intelligent goal programming

system, Ph.D.Thesis, University of Portsmouth, UK.

[12] Jones DF, Tamiz M (2002) Goal programming in the period 1990-2000, in Multiple

criteria
optimization state of the art annotated Bibliographic surveys, M. Erghott X.
Gandibleux (eds.) Kluwver.

[13] Jones DF., SK. Mirrazavi, and Tamiz M(2002) Multi-Objective meta-heuristics: an

overview
of the current state-of-the art, European Journal of Operational Research, 137, 1-9.[14]
Michalewicz Z (1996) Genetic Algorithms + Data Structures = Evolution Structures,
Springer-Verlag, Berlin, pages 80-93.

[15] SK Mirrazavi, DF Jones, and M. Tamiz (2003) MultiGen: an integrated multiple-
objective solution system, to appear in Decision Support Systems.

[16] Ogryczak W (2001) Comments on Romero C, Tamiz M and Jones DF (1998). Goal
programming, compromise programming and reference point method formulations:
Linkages and utility interpretations, Journal Of The Operational Research Society, 52
(8): 960-962.

[17] Romero C (2001) Extended lexicographic goal programming: a unifying approach,
Omega-International Journal Of Management Science, 29 (1): 63-71.

[18] Romero C, Tamiz M, Jones DF (1998) Goal programming, compromise programming
and reference point method formulations: linkages and utility interpretations, Journal Of
The Operational Research Society, 49 (9): 986-991.

[19] T.L. Saaty (1977) A Scaling Method for Priorities in Hierarchical Structures, Journal of
Mathematical Psychology, 15 (3), 234-281.

[20] Stam A (1997) Nontraditional approaches to statistical classification: Some
perspectives on Ly norm methods’, Annals of Operations Research, 74, 1-36.

[21] Sueyoshi, T, Sekitani K (1998) Mathematical properties of least absolute value
estimation with serial correlation, Asia-Pacific Journal of Operational Research, 15,
75-92.

[22] Tamiz, M, Jones, DF(1996) Goal Programming and Pareto Efficiency, Journal of
Information and Optimization Sciences, 17,291-307.

[23] Tamiz, M and Jones DF (1997) An example of good modelling practice in goal
programming: Means for overcoming incommensurability, Lecture notes in Economics
and Mathematical Systems, R. Caballero, F. Ruiz(Eds), Springer, 455, 29-37.

[24] Uria MVR, Caballero R, Ruiz F, Romero C (2002) Meta-goal programming, European
Journal Of Operational Research, 136 (2): 422-429.

[25] YuPL (1973) A class of solutions for group decision problems, Management Science,

19, 936-946.



MOP/GP Approaches to Data Mining

Hirotaka Nakayama

Department of Information Science and Systems Engineering
Konan University

8-9-1 Okamoto, Higashinada, Kobe 658-8501, JAPAN
e-mail: nakayama@konan-u.ac.jp

Abstract. Recently, data mining is attracting researchers’ interest as a tool for get-
ting knowledge from data bases on a large scale. Although there have been several
approaches to data mining, we focus on mathematical programming (in particu-
lar, multi-objective and goal programming; MOP/GP) approaches in this paper.
Among them, Support Vector Machine (SVM) is gaining popularity as a method
for machine learning. In pattern classification problems with two class sets, its idea
is to find a maximal margin separating hyperplane which gives the greatest separa-
tion between the classes in a high dimensional feature space. This task is performed
by solving a quadratic programming problem in a traditional formulation, and can
be reduced to solving a linear programming in another formulation. However, the
idea of maximal margin separation is not quite new: in 1960’s the multi-surface
method (MSM) was suggested by Mangasarian. In 1980’s, linear classifiers using
goal programming were developed extensively.

This paper presents a survey on how effectively MOP/GP techniques can be
applied to machine learning such as SVM, and discusses their problems.

1 Introduction

One of main purposes in data mining is to discover knowledge in data bases
with very large scale. Usually, machine learning techniques are utilized for
this knowledge acquisition. Typical approaches to machine learning are 1) to
find an explicit rule as if-then rule and 2) to judge newly observed data by an
implicit rule which is usually represented as a nonlinear function. Well known
ID3 (recently C5.0) and CART belong to the former category. On the other
hand, artificial neural networks and mathemtical programming approaches
belong to the latter category. In this paper, we focus on the latter category.

For convenience, we consider pattern classification problems. Let X be a
space of conditional attributtes. For binary classification problems, the value
of +1 or —1 is assigend to each data x; according to its calss A or B. The
aim of machine learning is to predict which class newly observed data belong
to on the basis of the given data set (x;,y;) (¢ = 1,...,!), where y; = +1 or
—1.

For such a pattern classification problem, articial neural networks have
been widely applied. However, the back propagation method is reduced to
nonlinear optimization with multiple local optima, and hence difficult to
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apply to large scale problems. Another drawback in the back propagation
method is in the fact that it is difficult to change the structure adaptively
according to the change of environment in incremental learning. Reently, Sup-
port Vector Machine (SVM, in short) is attracting interest of researchers, in
particular, people who are engaged in mathematcal programming, because
it is reduced to quadratic programming (QP) or linear programming (LP).
One of main features in SVM is that it is a linear classifer with maximal
margin on the feature space. The idea of maximal margin in linear classifier
has a long history in mathematical programming and goal programming. In
the following in this paper, we review it in brief and try to explain how ef-
fectively techniques in multi-objective programming and goal programming
(MOP/GP) can be applied.

2 Multisurface Method (MSM)

Suppose that given data in a set X of n-dimensional Euclidean space belong
to one of two categories A and B. Let A be a matrix whose row vectors denote
points in the category A. Similarly, let B be a matrix whose row vectors
denote points in the category B. For simplicity of notation, we denote the
set of points of A by A. The set of points of B is denoted by B similarly.
MSM suggested by Mangasarian (1968) finds a piecewise linear discrimination
surface separating two sets A and B by solving linear programming problems
iteratively. The main idea is to find two hyperplanes parallel with each other
which classify as many given data as possible:

T

gw)=ztw=c

glw)=x2Tw=2
This is performed by the following algorithm:

Step 1. Solve the following linear programming problem at k-th iteration
(set k = 1 at the beginning):

(MSM) Maximize ¢;(A,B)=a -

subject to
Aw 2 al
Bw < g1
-1 w £ 1
rp>L(L, T
b;w= 3 (2 + p; pz) (1)

where p; is given by one of p¥ = (%,0,... ,0), p¥ = (—%,O,... ,0),---ph.
0,...,0, —\/%)-
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Here the constraint (1) is introduced in order to avoid a trivial solution
w =0, a=0, =0 from a linear approximation of wTw > % Namely,

1
wTw = pTp + 2pT (w — p)>—

After soving LP problem (MSM) for each i such that 1 < ¢ < 2n, we take a
hyperplane which classify correctly as many given data as possible. Let the
solution be w*, a*, 3*, and let the corresponding value of objective function
be ¢*(A, B).

If $*(A, B) > 0, then we have a complete separating hyperplane g(w*) =
(@* + B*)/2. Set Ak — {z € X| g(w*) > (@* +B*)/2} and B* = {z €
X| g(w*) < (a* + B*)/2}. A* and B* include the sets A and B in X,
respectively, which is decided at this stage. Go to Step 3.

Otherwise, go to Step 2.

Step 2 . First, remove the points such that £Tw* > 8* from the set A.
Let A* denote the set of removed points. Take the separating hyperplne as
glw*) = (B* +ﬁ)/2 where 3 = Min {zTw*| ¢ € A*}. Let A* = {x ¢
X| g(w*) > (8* + §)/2}. The set A* denotes a subregion in the category A
in X which is decided at this stage. Rewrlte X \Ak by X and A\A* by A.

Next, remove the points such that Tw* < a* from the set B. Let B*
denote the set of removed points. Take the separating hyperplne as g(w*) =
(o + &)/2 where &= Min {xTw*| ¢ € B*}. Let B* = {z € X| g(w*) <
(o* + @)/2}. The set B* denotes a subregion in the category B in X which
is decided at this stage. Rewrite X\B* by X and B\B* by B.

Set £ =k + 1 and go to Step 1.

Step 3. Construct a piecewise linear separating hypersurface for A and B
by adopting the relevant parts of the hyperplanes obtained above.

Remark At the final p-th stage, we haye the region of A in X as Aty
A2 U...U AP and that of Bin X as BLUB2U...U BP. Given a new point,
its class1ﬁcat;10n is easily made. Namely, since the new point is either one
of these subregions in X, we can classify it by checking which subregion it
belongs to in the order of 1,2,... ,p

As stated above, if ¢*(A, B) > 0, then the given data set can be linearly
separated. Then, note that the parallel hyperplanes g(w*) = a* and g(w*) =
B* solving LP problem (MSM) provides a maximal margin.

3 Goal Programming Approaches to Pattern
Classification

MSM often provides too complex discrimination boundaries, which results in
a poor ability of generalization. In 1981, Freed-Glover suggested to get just a
hyperplane separating two classes with as few misclassified data as possible
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by using goal programming (Freed-Glover (1981)). Let &; denote the exterior
deviation which is a deviation from the hyperplane of a point x; improperly
classified. Similary, let 7; denote the interior deviation which is a deviation
from the hyperplane of a point &; properly classified. Some of main objectives
in this approach are as follows:

i) Minimize the maximum exterior deviation (decrease errors as much as
possible)

ii) Maximize the minimum interior deviation (i.e., maximize the margin)

iii) Maximize the weighted sum of interior deviation

iv) Minimize the weighted sum of exterior deviation

Although many models have been suggested, the one considering iii) and
iv) above may be given by the following linear goal programming:

Minimize Z:L(hlfl - kz’l’]z)
subject to :c?'w-i—b:m—fi, 1€y
w?w-’-b:—’l’li-i-&, 1€ lp
&, 1 >0 telsulp

Here, h; and k; are positive constants. It should be noted that the above
formulation may yield some unacceptable solutions such as w = 0 and un-
bounded solution. In order to avoid these unacceptable solutions, several
normalization conditions have been suggested. For example, for some s

wll+b=s.

If the classification problem is linearly separable, then using the normal-
ization ||w|| = 1, the separating hyperplane H = {x € R™| wTz + b = 0}
with maximal margin can be given by

(GP)  Maximize n
subject to Aw + b1 = 7l
Bw+b1 £ —nl
|lwl| =1

4 Revision of MSM by MOP/GP

One of drawbacks in MSM is the fact that it yields sometimes too complex dis-
crimination boundaries which cause poor genealizaiton ability. In Nakayama-
Kagaku (1998), several modifications of MSM are suggested. One of them
introduces interior deviations as well as exterior deviations in MSM. This is
formulated as a multi-objective programming problem. If only exterior devi-
ations are considered, this is reduced to a goal programming problem, which
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is the same as the one suggested by Benett-Mangasarian (1992) called RLPD
(robust linear programming discrimination). Applying these MOP/GP ap-
proaches to MSM, we can obtain smoother discrimination boundary than
the original MSM.

Furtheremore, Nakayama-Kagaku (1998) applied a fuzzy programming
technique to MSM, because it is more natural to regard the constraints AT w+
b1 > 0 and BTw + b1 < 0 as those which are to be satisfied approximately.
This approach yields gray zones for discrimination boundaries, in which the
data are not decided clearly as of A or B. However, this is rather natural,
because we usually require further investigation on those data as in cases of
medical diagnosis.

5 Support Vector Machine

Support vector machine (SVM) is developed by Vapnik et al. (1995), and its
main features are

1) SVM is based on linear classfiers with maximal margin on the feature
space,

2) SVM uses kernel representation preserving inner products on the feature
space,

3) SVM provides an evaluation of the generalization ability using VC di-
mension.

In cases where training data set X is not linearly separable, we map the
original data set X to a feature space Z by some nonlinear map ¢. Increasing
the dimension of the feature space, it is expected that the mapped data set
is linearly separable. We try to find linear classifiers with maximal margin
in the feature space. Instead of maximizing the minimum interior deviation
in (GP) stated above, we use the following equivalent formulation with the
normalization w” z + b = +1 at points with the minimum interior deviation:

(SVM) Minimize [|wl|
such that y; (wT2z; +b) >1, i=1,...,1

where y; is +1 or —1 depending on the class of z;. Several kinds of norm are
possible. When ||w||2 is used, the problem is reduced to quadratic program-
ming, while the problem with ||w||; or ||w||e is reduced to linear program-
ming (see, e.g., Mangasarian (2000)).

Dual problem of (SVM) with ||wl||2 is

! l
. 1
Min Zai ~3 Z i yiy;d(z:) T p(x;)
=1 i,j=1
Subject to a; > 0, (i=1,...,1) (2)

!
Zai'yi =0
=1
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Using the kernel function K(z,z’) = ¢(z)T¢(x’), the problem (2) can be
reformulated as follows:

! !
1
Mi : E i~ 5 E iy K(xs, 5
in 2 @y ij=1a oYy K (24, 25)
Subject to: a; > 0, (t=1,...,1) 3)

1
D iy =0
i=1
Several kinds of kernel functions are possible: among them, g-polynomial
K(z,z') = (72’ +1)7
and Gaussian
z —a'|]

K(z,x') = exp(—“—rz—)

are most populary used. In applying the Gaussian kernel, it is important
to decide the parameter r. The author and his coresearchers have observed
through their numerical experiments that the value of » may be effectively
determined by the simple estimate modifying the formula given by Haykin
(1994) slightly,

dmaa:
L

r=
Ilm

where dmq, is the maximal distance among the data; n is the dimension of
data; [ is the number of data.

Unlike MSM, SVM can provide smooth nonlinear discrimination bound-
aries in the original data space which result in better generalization ability.
However, it can be expected that many devices in MSM and MOP/GP ap-
proaches to linear classifiers can be applied to SVM.

Hard Margin and Soft Margin

Separating two sets A and B completely is called the hard margin method,
which tends to make overlearning. This implies the hard margin method is
easily affected by noise. In order to overcome this difficulty, the soft margin
method is introduced. The soft margin method allows some slight error which
is represented by a slack variable (exterior deviation) & (i =1,...,1). Now,
we have the following formulation for the soft margin method:

1
(SVMsoft) Minimize 'wTw + Z él
i=1
subject to y; (Wix; +b) 21-¢§
& 20,i=1,...,1
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Using a kernel function in the dual problem yields

i l
e 1
Minimize zz:;ai ~3 iél ooy K (x4, )
Subject to C > «a; > 0, (i=1,...,]) (4)
]

Zaiyi =0
=1

It can be seen that the idea of soft margin method is the same as the
goal programming approach to linear classifiers. Not only exterior deviations
but also interior deviations can be considered in SVM. Such MOP/GP ap-
proaches to SVM are discussed in the author and his coresearchers paper
(Asada-Nakayama (2001),(2002), Yoon-Nakayama-Yun (2002)). In this event,
note that each interior deviation represents how far the sample is from the
separating hyperplane, but does not imply the exact distance between the
sample and the hyperplane itself. This is a little confusing. Putting the nor-
malization that wlz + b = 41 at support vectors (the samples closest to
the separating hyperplane), the corresponding interior deviation indicates
the distance between the sample and the hyperplane. However, maximizing
n; subject to y;(wT 2z; +b) = 1+n; may yiels unbounded solution, because 7;
can increase as much as possible as y;(wT z; +b) = 1 tends to the separating
hyperplane w” z; + b= 0.

Example
Let 2y = (=1,1), 22 = (0,2) € A and 23 = (1,-1), z4 = (0,-2) € B.
Constraint functions of SVM are given by

z1: wi(=1)+we(1)+b2=21

zo: wi(0)+wa(2)+b21 5
2z wi(l)+wa(-1)+b< —1 (5)
za: wi(0)+we(—-2)+b= -1

Since it is clear that the optimal hyperplane has b = 0, the constraint
functions for z3 and z4 are identical to those for z; and z2. The feasible
region in (wq, w)-plane is given by wy 2 wy+1 and we 2 1/2. Minimizing the
objective function of SVM yields the optimal solution (w;, w2) = (-1/2, 1/2)
for the QP formaulation. Similarly, we have a solution among the line segment
{ws 2 w1 +1} N {-1/2 < w; £ 0} depending on the initial solution for the
LP formulation.

Now consider the goal programming formulation with the objective func-
tion consisting of &€ and 7. Here, it is clear that £ = 0 at the optimal solution.
The constraints include 5 added in the right hand side. Note that the feasible
region in this formulation moves to the north-west by increasing 7. Maxi-
mizing 7 yields unbounded optimal solution unless any further constraint in
w are added. In MOP/GP approach, therefore, some appropriate normality



34 Hirotaka Nakayama

condition must be imposed on w in order to provide a bounded optimal solu-
tion. One of such normality conditions is ||w|| = 1. However, this normality
condition makes the problem to be of nonlinear optimization. Note that the
SVM formulation with the objective function minimizing ||w|| can avoid this
unboundedness handily.

If we add the term of 7 in the objective function of SVM, either an un-
bounded optimal solution or a bounded optimal solution is possible depending
on the trade-off ratio between minimizing ||w|| and maximizing 7. Since it
is difficult to decide an appropriate value of the trade-off ratio in practice
in advance, some kind of normality condition on 7 should be imposed. This
subject is on-going by the author and his coresearchers.

6 Concluding remarks

A brief survey of linear classifiers using mathematical programming was pre-
sented in this paper. In particular, SVM was discussed from a veipoint of
MOP/GP. It has been observed that MOP/GP techniques can be effectively
applied to these classifiers. However, there remain many problems in question,
which will be future subjects.
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Abstract. In this paper we argue for the recognition of criteria beyond risk and
return in portfolio theory in finance. We discuss how multiple criteria are logical
and demonstrate computational results consistent with the existence of multiple
criteria in portfolio selection. With the efficient frontier becoming an efficient sur-
face, the paper considers that what is the modern portfolio theory of today is best
interpreted as a projection onto two-space of the real multiple criteria portfolio
selection problem in higher dimensional space.

1 Introduction

At the foundation of modern portfolio theory (Elton and Gruber 1995 is a
representative reference), there is the famous Markowitz portfolio selection
model. Today, with little in the way of differences from when it was intro-
duced (Markowitz 1952), the Markowitz portfolio selection model is described
as follows. Assume n securities, a initial sum of money to be invested, the be-
ginning of a holding period, and the end of the holding period. Let z1, ...z,
denote the investment proportion weights. These are the proportions of the
initial sum to be invested at the beginning of the holding period in the n
securities. Also, let 7; be the random variable for the percent return realized
on security ¢ at the end of the holding period. Then r,, the random variable
for the percent return realized on a portfolio at the end of the holding period,
is the payoff and, as a function of the z;, is given by

n
Tp = E TiZ;
i=1

The difficulty is that the realizations of the r;, 1 < i < n, are not known at
the beginning of the holding period (i.e., at the time the z; are to be chosen).
However, the r; random variables are assumed to have known expected values
E{r;}, variances o;;, and covariances o;;. In this way, the expected value of
rp is given by the linear function

E{’r’p} = Z E{r,}w,

i=1
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and the predicted standard deviation of r, is given by the square root of a
quadratic function

o{rp} =

In pursuit of a set of x; investment proportion weights that will result in a
desirable realization of r,, Markowitz theory assumes that investors will only
fix upon both expected portfolio return E{r,} and predicted portfolio stan-
dard deviation o{rp} to control the process. Furthermore, Markowitz theory
is based upon the assumption that investors like expected portfolio return
E{rp}, but dislike predicted portfolio standard deviation o{r,}. They dislike
predicted portfolio standard deviation because standard deviation is believed
to capture adequately risk, the likelihood that an undesirable realization of r,
might occur. In this way, investors will prefer vectors of investment propor-
tion weights that cause the resultant portfolio to have the smallest predicted
standard deviation (i.e., least amount of risk) for any given level of expected
return, and investors will prefer vectors of investment proportion weights that
cause the resultant portfolio to have the highest expected return for any given
level of predicted standard deviation (risk). Thus, the problem is to compute
all of the model’s feasible (o{rp}, E{rp}) nondominated combinations and
then select from them the most preferred. By taking the inverse image of
the investor’s most preferred nondominated combination, we will then have
the x; investment proportion weights that produce the Markowitz model’s
“optimal” portfolio.

With regard to the issue of feasibility, Y .- ; ; = 1 is always a constraint.
When this is the only constraint, we have the short-sales-allowed model. Be-
cause the boundary of the region of all feasible (¢{r}, E{rp}) combinations is
a hyperbola, the short-sales-allowed model has very nice mathematical char-
acteristics. That is, virtually all information that anyone would ever want to
know about the feasible region in (o{rp}, E{rp}) space is available in closed-
form. One of the places relevant formulas can be found is in (Roll 1977,
Appendix A).

For the short-sales-allowed model, the region of all feasible (o{rp}, E{rp})
combinations is demonstrated in Figure 1 (left) in which

a. the set of all feasible (o{rp}, E{rp}) combinations is unbounded.

b. the dots represent the (o{r;}, E{r;}) combinations for the individual
securities considered, 1 < i < n.

c. the upper half of the hyperbola boundary is the set of all nondomi-
nated combinations, referred to in finance as an efficient frontier.

A shortcoming of the short-sales-allowed model in which Y- z; = 1 is
the only constraint, is that there is nothing to stop the z; from taking on neg-
ative values. When an z; is negative, this means that money is raised from
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Fig. 1. Short-sales-allowed feasible boundary (left) and short-sales-prohibited effi-
cient frontier (right)

the security. This can only be accomplished by selling short. The problem
here is that the constraint imposes no limit on the extent to which a stock
can be sold short (because the weights can still always be made to sum to
one). This is why the feasible region is unbounded. The type of short selling
implied by the model is that it is possible to sell a security you don’t own
to an unlimited extent and use as collateral the stock you are able to buy
with the proceeds and the other money you have. While this is possible to
a limited extent, carrying it too far will inevitably run into margin require-
ment difficulties, violate security laws, and not be feasible in reality (despite
its theoretical feasibility in the model). Consequently, the region of feasible
(o{rp}, E{rp}) combinations in the short-sales-allowed model is not nearly
as large as commonly portrayed in graphs such as in Figure 1 (left).

In contrast to the short-sales-allowed model, we have the short-sales-
prohibited model. This model is the same as the short-sales-allowed model
but also imposes nonnegativity restrictions on the weights thus “prohibit-
ing” short selling. The inclusion of nonnegativity restrictions might seem in-
nocuous, but they destroy the closed-form solution possibilities of the model
and require mathematical programming to be thought of as the solution
technique. As a result, a common way to compute the set of all feasible
(o{rp}, E{rp}) nondominated combinations of the short-sales-prohibited model
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is to form the mathematical programming problem

min { Z Zfl:io'ijxj =0*{rp}}

=1 j=1

s.t. ZE{ri}xi >p
=1

Z.’L'i =1
i=1
all z; >0

and then solve it repetitively for different values of p, that is, for different
lower bound values on the expected portfolio return. With a quadratic ob-
jective and linear constraints, this is a formulation for which highly effective
quadratic/LP solvers are available. In this paper we used, within Excel, the
Standard LP/Quadratic solver in Premium Solver Platform V3.5, a Solver up-
grade from Frontline Systems (2000). This produces a series of (o{rp}, E{rp})
observations which when connected produce the model’s “efficient frontier”
as in Figure 1 (right). In this case we note that the efficient frontier is not a
segment of a hyperbola and that the efficient frontier is not unbounded (hav-
ing as its rightmost endpoint the security with the highest expected return).

2 Different Perspectives

While anyone with a multiple criteria background would immediately recog-
nize the risk-return portfolio problem as a multiple criteria problem (albeit
with only two objectives), mainstream finance does not look at the problem
through the same prism and to date has shown no interest in viewing portfolio
selection from within a more generalized multiple criteria framework. From
their perspective, they feel that they have all that they need. To indicate how
portfolio selection is motivated, the following are excerpts from a sampling
of top-selling textbooks in finance.

“The ultimate goal of an investor is an efficient portfolio... Such port-
folios aren’t necessarily obvious: Investors usually must search out
investment alternatives to get the best combinations of risk and re-
turn.” (Gitman and Joehnk 1999, p. 631)

“The goal of investors is to maximize wealth. There is a chance that
this goal will not be achieved, however, because most investments are
risky... To include risk aversion in the decision of security selection,
we turn to the mean-variance criterion.” (Levy 1999, pp. 193 & 202)
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“In Chapter ... we learned that risky assets should be evaluated on
the basis of the expected returns and risk, as measured by the stan-
dard deviation... Markowitz portfolio theory provides the way to se-
lect optimal portfolios based on using the full information set about
securities.” (Jones 2000, pp. 511 & 526)

“Portfolio theory is built around the investor seeking to construct
an efficient portfolio that offers the highest return for a given level
of risk or the least amount of risk for a given level of return. Of
all the possible efficient portfolios, the individual investor selects the
portfolio that offers the highest level of satisfaction or utility.” (Mayo
2000, p. 163)

“Even with identical attitudes toward risk, different households and
institutions might choose different investment portfolios because of
their differing circumstances... These circumstances impose constraints
on investor choice. Together, objectives and constraints determine ap-
propriate investment policy.” (Bodie, Kane and Marcus 2001, p. 131)

The first quote is indicative of the difficulties many books have in sepa-
rating the portfolio selection problem from single-criterion ways of thinking.
The second quote shows the veering off from a multiple objective conceptu-
alization by use of the frequently employed term “mean-variance criterion.”
The third and fourth quotes are representative of books that more clearly rec-
ognize risk and return as distinct criteria, but typically present the material
in a rather dogmatic, this is the only way, fashion. The fifth quote is inter-
esting because it recognizes “differing circumstances” but instructs that if
present they be taken into account as constraints. Finance is in denial about
multiple criteria, but what is more perplexing is that mainstream finance
appears to be annoyed by even having to hear about new ideas in portfolio
theory. To them, all avenues in portfolio theory have been exhausted years
ago and there is nothing new to be found. Consequently, finance has now
moved enmasse to other foraging areas such as econometrics-based empir-
ical studies and stochastic asset pricing studies where a person’s research
future in mainstream finance is more promising. However, portfolio theory is
in need of a serious second look as multiple criteria procedures, unbeknownst
to mainstream finance, are now abundantly available.

It is the position of this paper that multiple criteria have always been
present in portfolio selection and have consistently manifested themselves in
the data of financial research, but have only been recognized as such mostly
by people who have benefited from also having backgrounds in other fields
(for example Ballestero 2000, Chang, Meade, Beasley and Sharaiha 2000,
Ehrgott 2003, Hallerbach and Spronk 2000, Hurson and Zopounidis 1994, Jog,
Kaliszewski and Michalowski 1999, Konno and Suzuki 1995, and Mansini,
Ogryczak and Speranza 2002).
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In multiple criteria there is always a line that must be drawn between
what is most appropriately modelled as an objective and what is most ap-
propriately modelled as an constraint, but in mainstream finance the line
has most likely been drawn too soon. Rather than ignoring, or treating as
insignificant, criteria beyond risk and return, an investor could easily face a
situation in which his or her optimal portfolio involves an important balance
among criteria such as the following six.

max {return}

min {risk}

max {dividends}

max {social responsibility}

min {number of securities in a portfolio}
min {short selling}

These criteria are not unreasonable. Beyond risk and return it is very
plausible that an investor might have criterion concerns about dividends (for
providing at least a minimal liquidity stream or for corroborating the health
of a security), social responsibility (to favor securities involved in environmen-
tally or socially preferable activities), the number of securities in a portfolio
(to minimize the time, headache and distraction involved in monitoring and
managing a portfolio), and short selling (to avoid problems with the spouse).
It is important that these be modelled as objectives so that investor can ex-
plore the trade-offs among the concerns before deciding upon the portfolio
that provides the greatest preference.

3 Computational Investigations

If it is true that meaningful multiple (that is, beyond two) criteria exist in
portfolio selection, then what is presented as risk-return portfolio selection in
traditional finance is merely a two-dimensional projection of the real portfolio
selection problem in higher dimensional space. What evidence might there
be for such a claim? We can start with the concept of the “market portfolio.”
The market portfolio (Bodie, Kane and Marcus 2001, p. 233) is at the heart
of equilibrium theory in portfolio analysis and is the portfolio for which each
security is held in proportion to its market value. The market portfolio is sup-
posed to be everyone’s optimal portfolio and is to be on the efficient frontier.
But in practice it has been found consistently to be deep below the efficient
frontier, in fact, so deep below that this cannot be explained by chance varia-
tion. Nevertheless, traditional finance has moved onward essentially agreeing
not to be bothered by this anomaly that it has never been able to reconcile.

The impact of multiple criteria in the modelling of portfolio selection is
that the efficient frontier becomes an efficient surface. Thus, if an optimal
portfolio is in the middle of the efficient frontier in risk-return finance, than
it may not be unreasonable for an optimal portfolio to be in the middle of
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the efficient surface in multiple criteria finance. We have been computing a
long line of experiments that will be reported elsewhere, but will only report
on the most dramatic here to make our point.

In a risk-return portfolio problem, let us assume that the feasible region is
an ellipse in two-space as in Figure 2. In this case, the efficient frontier is the
portion of the periphery of the ellipse in the second quadrant positioned at the
center of the ellipse. Correspondingly, in a k-criteria portfolio problem (with
objectives beyond risk and return), let us assume that the feasible region is
an ellipsoid in k-space. In this case, the efficient surface is the portion of the
surface of the ellipsoid in an orthant positioned at the center of the ellipsoid.
Now let us assume that the market portfolio, which by theory is efficient, is
in the middle of the efficient set. If this is the case, then the market portfolio
would be at z2 on the ellipse. However, if (a) there is a third objective, (b)
the feasible region is ellipsoidal in three-space, and (c¢) the market portfolio is
in the middle of the efficient surface in R®, then the market portfolio would
project onto risk-return space at z3. Now if (a) there is a fourth objective, (b)
the feasible region is ellipsoidal in four-space, and (c) the market portfolio is
in the middle of the efficient surface in R*, then the market portfolio would
project onto risk-return space at z*. With five objectives, then the market
portfolio would project onto risk-return space at z%, and so forth, becoming
deeper and deeper.

return

risk

Fig. 2. An ellipsoidal feasible region projected onto two-dimensional risk-return
space

To further illustrate, let us look at a 5 objective, 40 constraint, 20 vari-
able multiple objective linear program (MOLP). The problem was created by
the random problem generator in ADBASE and then solved for all nondomi-
nated vertices in criterion space. Projecting the MOLPs 5,365 nondominated
vertices onto the space of any two objectives results in graphs as in Figure
3. Here we can see how a nondominated vertex picked randomly to represent
the market portfolio can easily project deep into the interior of the projection
of the feasible region onto two-space. Hence, with the empirical results from
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traditional finance about the “buried” nature of the market portfolio, logical
arguments about multiple objectives in portfolio selection, and the projec-
tion situation as shown above, there is evidence that the portfolio selection
problem would be better modelled within a more generalized multiple crite-
ria framework. Thus, with the efficient frontier becoming an efficient surface,
multiple criteria optimization solution procedures as in (Sawaragi, Nakayama
and Tanino 1985) would then be more appropriate for searching for optimal
portfolios in the new world of multiple criteria portfolio selection.

Fig. 8. Projections of the nondominated vertices of a representative MOLP onto
two-space

4 Concluding Remarks

Maybe the reader has noticed that the word optimal in Section 1 was enclosed
in quotes. What is optimal depends upon the model. Consider the literal
model as follows. If an investor’s objective is “literally” to maximize the
value of r, at the end of the holding period, then the set of all z; weighting
vector contenders for optimality would only include all n unit vectors in R™.
Barring ties, this is because only one of the n securities will have the highest
rate of return at the end of the holding period. Thus, to maximize the payoff
Tp = ¥ .5, Ti%; at the end of the holding period, one would only have to have
invested in that security alone at the beginning of the holding period. This
is in contrast to the Markowitz approach in which we attempt to balance
expected portfolio return with predicted portfolio standard deviation, but
this comes at a price.

To see this, on the issue of contenders for optimality, let us now discuss the
differences between the short-sales-allowed and short-sales-prohibited mod-
els and the literal model. In the short-sales-allowed model, the x; weighting
vector contenders for optimality are those that produce the nondominated



Computational Investigations in Portfolio Optimization 43

(o{rp}, E{rp}) combinations along the (unbounded) efficient frontier. How-
ever, there are likely no x; weighting vector contenders for optimality in this
model that are in common with the literal model. With regard to the short-
sales-prohibited model, there is likely only one z; weighting vector contender
for optimality in this model that is in common with the x; weighting vector
contenders for optimality in the literal model. This is the unit vector in R™
corresponding to the security of highest expected return. The reason for the
major differences in the sets of weighting vectors of contenders is that, un-
fortunately, the literal model’s weighting vectors of contenders also contain
the weighting vector that minimizes the payoff r, = Y . | 7;z; at the end of
the holding period. While the Markowitz approach eliminates the possibil-
ity of constructing a portfolio that would result in the minimum payoff, its
disadvantage is that it eliminates the possibility of maximizing the payoff.
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Abstract: The focus of this paper is some behavioral (or descriptive) models of indi-
vidual decision making and group decision making as follows: 1) A model to explain
the violations of expected utility models for the individual decision making; 2) A model
to describe the ethical consensus formation process among multi-agent conflicting deci-
sion makers. Some applications to public sectors are mentioned.

1. Introduction

The expected utility model has been widely used as a normative model of deci-
sion analysis under risk for modeling individual decision making. But, various
paradoxes [1,2] have been reported for the expected utility model, and it is ar-
gued that the expected utility model is not an adequate behavioral (descriptive)
model. In this article some behavioral models are shown to resolve expected
utility paradoxes. Some realistic applications to public sectors are mentioned.

In multiattribute utility analysis Keeney and Raiffa’s [3] additive/utility in-
dependence has been widely used. If we try to deal with consensus formation
process under multiple conflicting agents based on the additive/utility inde-
pendence, we could only model selfish/stubborn agents. To resolve this restric -
tion, we try to model ethical preference [4] of each agent based on the property
of convex dependence [5].

2. Behavioral Models to Resolve Expected Utility
Paradoxes

In this section a descriptive extension of the expected utility model to account
for various paradoxes is shown using the concept of strength of preference.
2.1 Measurable Value Function Under Risk

Let X be a set of all consequences, x€ X, and A be a set of all risky alterna-
tives; a risky alternative £ € A4 is written as
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£ =(X,%y 500X, 2 D15 Payeves Pr) Q)
which yields consequence x,€ X with probability p, i=1.2,..,n
where ) p, =1.

Let A* be a nonempty subset of4X A4, and > and - * be binary relations
on 4 and 4*, respectively. Relation = could also be a binary relation on X. We
interpret £, > £,(¢,,¢, € A) to mean that £, is preferred or indifferent to/,,
and £,€, »* 030, (C,,0,,05,4,€ A) to mean that the strength of preference for
£, over £, is greater than or equal to the strength of preference for ¢,
over{,.

We postulate that (4, 4%, *) takes a positive difference structure that is
based on the axioms described by Kranz et al. [6]. The axioms imply that there
exists a real-valued function F on A such that for all £,,¢,,¢,,¢,€ A4, if
£, =£,and £, - {,,then

00, x* 04, & F(£)-F(£,)2F(¢,)-F(¢,). 2)
Since F is unique up to a positive linear transformation, it is a cardinal func-
tion. It is natural to hold for £ ,7,,£, € A that

0l =% U0, & £ -4, 3)
Then from eqn.(2) we obtain
bt o F(4,)2F(¢,). 4)

Thus, F is a value function on 4 and, in view of eqn.(2), it is a measurable
value function.

We assume that the decision maker will try to maximize the value (or util-
ity) of a risky alternative £ € 4, which is given by the general form as

nllea}\xF(f)mg}\xz,f(xi,n) ®)

where f (x , p) denotes the value (strength of preference) for a consequence x
which comes out with probability p. This function is called the measurable
value function under risk . The main objectives here are to give an appropriate
decomposition and interpretation of f(x,p) and to explore its descriptive im-
plications to account for the various paradoxes.

The model eqn.(5) is reduced to the expected utility form by setting

fx, p)= pu(x) ©)
when u(x) is regarded as a von Neumann-Morgenstern utility function. The
prospect theory of Kahneman and Tversky [7] is obtained by setting

[, p)=m(p)v(x) Q)
where n‘( p) denotes a weighting function for probability and v(x) a value
function for consequence. In this model the value of each consequence is mul-

tiplied by a decision weight for probability (not by probability itself).
Extending this Kahneman-Tversky model we obtain a decomposition form
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S, p)=w(plx)v(x) @®

where

f(xp)
w(x| p)=———=, v(x)=v(x|]), v(x —

(+ P) ) (x)=v(x|), v(x| p) 70%.2)
and x* denotes the best consequence. The expected utility model, eqn.(6), and
Kahneman-Tversky model, eqn.(7), are included in our model, eqn.(8), as a
special case. Second equation in eqn.(9) implies that v(x) denotes a measurable
value function under certainty. Therefore, our model, eqn.(8), also ncludes
Dyer and Sarin’s model [8] as a special case. The model eqn.(8) could also be

written as

fx,p)
9
7 )

fe,p)=w(p)A xl p),  w(p)=w(p|x*). (10)
We assume that
f(%0)=0, VxeX; f(¥,p)=0, Vpe[0,]] 11

where x®e X denotes the reference point (e.g. status quo). The better region
on X compared with x® is called the gain domain and the worse region the
loss domain. We also assume that

S (x,p) =0 in the gain domain; f(x,p)<0 in the loss domain.

It will be shown that the conditional weighting function w(p|x) describes
the strength of preference for probability under the given conditional level of
consequence, and v( x| p) describes the strength of preference for conse-
quence under the given conditional level of probability.

For interpreting the descriptive model f(x,p) we need to interpret F such
that eqn.(2) holds. For all x,x,,x,,x,€ X, x€[0,1], and ye X such
thatx, >~ x, > x, = x,, we consider four alternatives:

4 =(x,y01-a), £, =(x,y;01-at), (12a)
4 =(x,yo1-a), £,=(x,y01-a). (12b)
In this case we obtain
L, »* 0t & f(xl’a) —f(xz,a) 2 f(xg,a) —f(x4,a) (13a)
& v(x|a)-v(x,|a)2v(x|a)-v(x,|a) (13b)
Therefore, the value function v(x|p) defined in eqn.(9) represents the
strength of preference for the risky four alternatives in eqn.(12).

On the other hand, forall ¢, @, &, ¢, € [0,1], x€ X and x® e X, we con-

sider four alternatives:
4 =(xx"%a,1-a,), ' =(xx"50,,1-a,), (14a)
6= (xx50,1-0), £, =(xx"0,1-a,). (14b)
Then we obtain
66" =xe,,) o f(no)-f(x,0)2f(xo)-f(x0) (15
o w(oy | x)-w(oy | x)2 wla, | x)-w(a,|x) (15b)
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Therefore, the weighting function defined in eqn.(9) represents the strength of
preference for the four risky alternatives in eqn.(14).

The above discussions assert that the descriptive model f (x , p) represents
the measurable value function under risk to evaluate the consequence x € X
which comes out with probability p.

The Kahneman-Tversky model of eqn.(7) could explain a so-called cer-
tainty effect to resolve the Allais paradox [1]. Our descriptive model f(x,p)
could also resolve the Allais paradox.

It is well known that the expected utility model is not an appropriate model
for modeling extreme events with low probability and high consequence. In [9]
it is shown that our descriptive model could resolve such paradox in the appli-
cation to public sector.

2.2 Measurable Value Function under Uncertainty

In this section we deal with the case where probability of occurence for each
event is unknown. When we describe the degree of ignorance and uncertainty
by the basic probability of Dempster-Shafer theory [10] the problem is how to
represent the value of a set element to construct a measurable value function
under uncertainty based on this concept.

In Dempster-Shafer theory of probability let u(A,-) be basic probability
which could be assigned by any subset 4 of ©, where © denotes a set con-
taining every possible element. The basic probability u(4;) can be regarded
as a semimobile probability mass. Let A =2° be a set containing every subset
of © . Then, the basic probability u(4;) is defined on A and takes a value
contained in [0,1]. When ,u(A,) >0, 4 is called the focal element or the set
element and the following conditions hold:

1(¢)=0, Zu(Ai)zl
A€A
where ¢ denotes an empty set.
Let the value function under uncertainty based on this basic probability be
S*(But)=w' (1) v*(B | 1) (16)
where B denotes a set element, U denotes the basic probability, w'denotes the
weighting function for the basic probability, and v* denotes the value function

with respect to a set element. The set element B is a subset of A = 2°. Equation
(16) is an extended version of the value function, eqn.(10), where an element is
extended to a set element and the Bayes’ probabilty is extended to the
Dempster-Shafer basic probability.

For identifying v*, we need to find the preference relations among set
elements, which is not an easy task. If the number of elements contained in the
set ® is getting larger, and the set element B contains considerbale number of
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element it is not practical to find v* as a function of B. To cope with this
difficulty we could use some appropriate axiom of dominance.

Our descriptive model f*(B,1t) could resolve Ellsburg paradox [2] by

restricting a set element B to

Q={(mM)e ©x0:m< M)
where m and M denote the worst and the best consequence in the set element
B, respectively. In this case eqn.(16) is reduced to

S A () =w()v (@)

Incorporating the Dempster-Shafer probability theory in the descriptive
model f*(Q,1) of a value function under uncertainty, we could model the
lack of belief which could not be modelled by Bayes’ probability theory. As
the result our descriptive model f* (Q, ,u) could resolve the Ellsburg paradox
[2].

This descriptive model could be applied to modeling some public sector
problems such as cancer risk problems, global environmental problems, etc.
under uncertainty in which probability for each event is not known but
probability for some set of events is known.

3. Behavioral Models to Resolve Restrictions of
Additive/Utility Independence in Consensus
Formation Process

Ethical consensus formation process among multi-agent conflicting decision
makers is modeled in this section.

3.1 A Group Disutility Function for Multi-agent Decision Making

Let D XD, be a two-attribute space of disutility levels and d, € D,, d,€ D,
denote the disutility levels of decision maker (DM) 1 and DM2, respectively.
For a given d, € D, and d,e€ D,, a group disutility function on D, xD,
space is defined as g(d,d,). Let us assume that d,” and d,’ denote the
worst levels of disutility of DM1 and DM2, respectively, and d,* and d, *
denote the best levels of disutility of DM1 and DM2, respectively. Given an
arbitrary d, € D, a normalized conditional group disutility function (NCGDF)
of DM1 is defined as
g (dl |d2) g(dl’d2) _g(dl*’dz)
g(dlo’dz )—g(dl *d,)

an
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where it is assumed that
g(d’.d,)>g(d*.d,).
It is obvious that
gl(d1"|d2)=l, gl(d1*|d2):0, (18)

that is, NCGDF is normalized and is a single-attribute group disutility func-
tion. Hence it is easily identified.

The NCGDF for DM2, that is, g, (d, | d,) can also be defined similarly as

- g(dl Idz)—g(dndz *)
&, (dz I ‘4 ) = °
g(dl Idz )_g(dl’dZ *)
The NCGDF g, (d,|d,) represents DM1’s and g,(d, | d,) represents DM2’s
subjective preference for the group disutility as a function of his own disutility
level, under the condition that the disutility level of the other DM is given.
IfFNCGDF g, (d,|d,) does not depend on the conditional level d, , then at-
tribute D, is utility independent [3] of attribute D, . If attributes D, and D,
are mutually utility independent, the two-attribute disutility function g(d,,d,)

(19)

can be described as either a multiplicative or additive form [3].
Suppose
gl(dlldl)igl(dlle*) (20)
for some d, € D,, that is, utility independence does not hold between two at-
tributes D, and D, . In this case we can use a property of convex dependence
[5] as a natural extension of utility independence.

The property of convex dependence is defined as follows: attribute D, is m-
th order convex dependent on attribute D, , denoted D, (CD,, ) D, , if there exist
distinct dzo,d;,...,d , €D, and real functions 4,4, -+, on D, such that
NCGDF g, (d,|d,) canbe written as

g (d|d,) 2/11 gl(d |d, ) i;{f(dz)zl- (21

for all d € D, and d, € D,, where m is the smallest non-negative integer for
which this relation holds.

This definition says that, if D, (CD,,)D,, then any NCGDF on D, can be
described as a convex combination of (m+1) NCGDFs with different condi-
tional levels where A, (d,) s are not necessarily non-negative. Especially,
when m = 0 and D,(CD,) D, , attribute D, is utility independent of attrib-

ute D, .

The algorithm for constructing a two-attribute group disutility function is as
follows [11]:
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Step 1. NCGDFs g, (dl |d2"), g (d,|d,*) and gl(dlldzo's) are assessed,
where d2°'5 denotes the ntermediate level of attribute D, between the
worst level d,” and the best leveld, *.

Step 2. If these NCGDFs are almost identical, D, (CD,) D, holds. Otherwise,
go to Step 3.

Step 3. If the convex combination of g (dl |d2") and g (d,|d,*) is almost
identical with g, (d1 | d2°'5) , D, (CD,)D, holds. Otherwise, higher order
convex dependence holds. Once the order of convex dependence is found,
the decomposition form [5] for two-attribute disutility function can be ob-
tained. Single-attribute NCGDFs play a role of basic elements in the two -
attribute group disutility function.

Step 4. By assessing the corner values of a group disutility function in two-
attribute space, coefficients of linear terms in the two-attribute group dis-
utility function are obtained [6]. As a result a two-attribute group disutility
function is obtained.

In modeling multi-agent decision making with conflicting DMs, NCGDF
plays the most important role as it can model various patterns of a DM’s pref-
erence who is self-centered and selfish or flexible and cooperative, and so
forth.

3.2 Consensus Formation Modeling for Multi-agent Decision
Making

Fig. 1. Consensus formation process between DM1 and DM2.
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Let DM1 and DM2 be
DM1: representative of the regional inhabitants;
DM2: representative of the enterpriser who is planning a public project.
Fig. 1 shows a consensus formation process between DM 1 and DM2 where lo-
cal government plays a role of mediator between them.
Suppose the disutility level d, for DM1 evaluates environmental impact

from the public project and the disutility level d, for DM2 evaluates the cost

to realize various countermeasures of the public project. These disutility func-
tions are constructed by questioning the environmental specialists about each
situation of DM1 and DM2.

We construct the NCGDFs by again questioning the environmental special-
ists about each situation of DM1 and DM2. Consequently, suppose we ob-
tained three types of models as follows:

Model 1: Mutual utility independence holds.

Fig. 2 shows the shape of NCGDF for Model 1. Both DM1 and DM2 do not
think that group disutility is small unless their own disutility is also small. In
this case both DM1 and DM2 are selfish and strongly insist upon their own
opinion. This situation shows the initial phase of planning a new project, when
the plan has just been presented to the regional inhabitants.

g &
gl(dlIdZ)’ gz(d2|dl)’
Vd2€D2 le eDl
d d,
(a) DM1 (b) DM2

Fig. 2. NCGDF of Model 1.

Model 2: Utility independence holds for DM1 and first order convex depend-
ence holds for DM2.

Fig. 3 shows the shape of NCGDF for this Model 2. The attitude of DM is
almost the same as in Model 1, however, DM2 is becoming more flexible to-
wards obtaining consensus of DM1. In this case DM1 does not have enough
information on the project, however, DM2 has obtained various information.
This situation corresponds to the second phase of the consensus formation
process.
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& & &> (dz |d1 *)
g (dild,), g2(d2|‘i10)
Vd,e D,
d, d,
(a) DM1 (b) DM2

Fig. 3. NCGDF of Model 2.

Model 3: Mutual first order convex dependence holds.

Fig. 4 shows the shape of NCGDF for this Model 3. The attitude of both
DM1 and DM2 is getting more flexible and cooperative. In this case both DMs
have obtained sufficient information about planning the public project and the
countermeasures for preventing environ-mental impacts from the project, and
thus, show a mutual concession taking into account ethical consideration with
each other. This situation corresponds to the final phase of the consensus for-
mation process between DM1 and DM2.

& & (d1 |, *) & g, (dz |d, *)
gl(dlldzo) & (dz |d1°)
dl d2
(a) DM1 g (di|d,*) (b) DM2

Fig. 4. NCGDF of Model 3.

Suppose the minimum value of group disutility is obtained for Model 3.
This implies that the most impartial consensus formation is obtained under the
situation of Model 3, which is based on convex dependence between two con-
flicting DMs.

As seen from the consensus formation model described above it may be used
as a fundamental material for discussion when the regional inhabitants and the
enterpriser of a public project regulate and adjust their opinion of each other.
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4. Concluding Remarks

Behavioral models of decision analysis both in individual decision making and
group decision making are described. In the model of the first category conse-
quence dependent non-additive probabilities are introduced as a measurable
value function under risk where probability of occurring each event is postu-
lated to be known. The effective application of this approach to public sectors
is mentioned in modeling risks of extreme events with low probability and high
consequence. Measurable value function under uncertainty is also described
where basic probability for a set of events is known but probability of occur-
ring each event is not known. It is shown that Ellsburg paradox is consistently
resolved by using this model. Potential applicability of measurable value func-
tion under uncertainty to cancer risk problems and global environmental prob-
lems is also mentioned.

The model of the second category is described as a group disutility function
as a function of normalized conditional group disutility function based on the
property of convex dependence among multiple agents. The application of this
approach to public sectors is shown in modeling environmental assessment
with public participation. It is shown that by using this group disutility model
we could model flexible decision makers who could change their attitude on
the preference depending upon the disutility level of the other conflicting deci-
sion makers. As the result the ethical consensus formation process could be
modelled. The consensus formation model described in this paper is expected
to be used as a fundamental material for discussion when the enterpriser of a
public project and the regional inhabitants regulate and adjust their opinion
with each other for realizing better social we Ifare. A systems method of ethical
conflict resolution described in this paper may help to realize a safe, secure and
reliable (SSR) megacity.

This research was supported in part by the Japan Society for the Promotion
of Science under Grant-in-Aid for Creative Scientific Research (Project No.
13GS0018).
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Abstract. A five year JSPS (Japan Society for Promotion of Science) re-
search project titled as "Distributed Autonomous Urban Energy Systems for
Mitigating Environmental Impact" was just finished at the end of March 2002.
Various types of mathematical optimization models have been developed dur-
ing the course of the study. Multi-objective optimization models played a ma-
jor role and many models ended up with mixed integer optimization problems.
For solution procedure some of them used commercially available
GAMS/Cplex, some of them used decomposition method and the other used
heuristic approach such as particle swarm method. These models will be de-
scribed briefly and also some findings from the project will be shown.

1 Introduction

In Japan energy demand in industry sector has leveled off but in both business
and commercial sector and residential sector it is still increasing. The general shift
toward tertiary industry and an increase of households have contributed to the in-
crease of energy demand in these sectors. On the other hand, the Kyoto Protocol in
1997 claims 6% reduction in CO2 emission from Japan around the year 2010, and
therefore it becomes evermore important to consider efficient use of energy and
energy saving in these sectors. As one of the effective means of achieving this, the
author proposed the concept of integrated energy service system for specific areas
in which electric and thermal energy delivery systems are optimized at the same
time. An image of the proposed system is illustrated in Fig.1. Advance of dis-
persed generation sources and apparatus such as photovoltaic generators, co-
generation for individual buildings, heat pump systems and district heating and
cooling systems have created a class of problems to search for the best combina-
tion according to a set of objectives.

A five-year JSPS research project titled as "Distributed Autonomous Urban En-
ergy Systems for Mitigating Environmental Impact" was carried out in which the
integrated energy service system was explored in detail [1][2]. A number of
mathematical programming models have been developed during the course of the
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project. This paper describes some of these models and some findings from the
project will be shown.

2 Optimization Problems in Integrated Energy Service
System

In the concept of integrated energy service system, a desirable energy supply
system including thermal and electric energy delivery networks is searched for a
small specific area (e.g., 2km by 2km). Under these circumstances, the following
hierarchical optimization approach has been adopted.

Fig. 1 An image of integrated energy service system

The first problem is to optimize energy systems as a whole for the specific area.
The major aim is to look for the best combination of various types of energy sys-
tems according to the specific objectives such as CO2 emission from the area,
primary energy consumption in the area and cost. CO2 emission versus cost and
also primary energy consumption versus cost are two major conflicting pairs of
objectives that should be explored by energy system planners forthe area. An im-
portant decision output at the end of this optimization is the scale of the area cov-
ered by a DHC (District Heating and Cooling) system.

The second problem is an optimization with respect to the DHC system itself.
The optimization is carried out over the capacities of each apparatus in the co-
generation plant as well as over network configuration (routing). Here the blocks
that are to be connected to the DHC system are predetermined, for example, by the
first optimization model above.

The third problem is to optimize electric energy delivery network. In the inte-
grated energy service system, a completely new concept of electric distribution
system referred to as FRIENDS (Flexible, Reliable and Intelligent Electric eNergy
Delivery System) proposed by Hasegawa and Nara[3] is taken into account.
FRIENDS assumes electric power delivery service differentiated by power quality
and for this purpose the system includes a number of special facilities called Qual-
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ity Control Center (QCC). QCC's are connected to each other by high voltage
(20kV) distribution line. Customers will be connected to a QCC through low volt-
age distribution line. On the low voltage side of the QCC, the quality of power
will be controlled according to the level of service required. Thus a number of op-
timization problems will arise that are related to 1) the size of QCC, 2) the loca-
tion of QCC's, and 3) the distribution network routing.

3 Energy System Optimization for Specific Area

Here the first optimization problem is described in some detail. More concrete
description is given in [4].

3.1 Optimization problem

Description of energy systems would be quite complex even for a small spe-
cific area because it involves so many factors that must be taken into account. The
approach taken here is summarized as follows:

1) The specific area is represented by a number of blocks surrounded by roads
and streets.

2) Urban facilities are represented for each block by floor areas for a number of
representative buildings category such as office, hotels, retail stores, etc.

3) Energy systems are expressed by a number of alternatives (the structure of
each alternative is fixed and is not the object of optimization) for each category of
buildings.

4) Energy demand is given for each category of buildings in terms of hourly
end-use energy demand (space heating, cooling, heated water supply, cooking,
etc.) corresponding to a number of representative days.

5) District heating and cooling (DHC) system is among the energy system al-
ternatives. The decision whether DHC is introduced or not is based on blocks, i.e.,
each block will determined whether it is to be connected to the DHC thermal en-
ergy delivery network. Once a block decides to be connected to the DHC, then
every building in the block is supposed to be connected to the DHC network.

6) The optimization over thermal delivery network is based on a simplified as-
sumption that a block is directly connected to the DHC plant by a straight line.

7) The configuration of the DHC co-generation plant is fixed and optimization
is carried out only over operational strategies. Energy balance equations and limits
on operational variables are the major constraints.

8) The major decision variables for optimization are i) the share of energy sys-
tem alternatives in terms of floor area and ii) the 0-1 decision variables that repre-
sent whether or not a block is connected to the DHC network.

9) Objectives explicitly considered in the model are the cost (fixed and variable
costs), CO2 emission and primary energy consumption in the specific area. The
multi-objective optimization problem is solved by either weighting method or e-
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constraints method. A reference scenario is pre-determined and the set of non-
inferior solutions (tradeoff curves) are examined by comparing them with the ref-
erence. The information of the tradeoff curves and associated energy system
shares is the major outputs of the developed model.

3.2 Issues relevant to optimization

The developed model can be used for various purposes.

1) Tradeoff analysis: The major purpose of the use of the developed model is to
analyze the tradeoff between the cost and CO2 emission, or between the cost and
primary energy consumption. Figs.2-4 illustrate an example of the analysis. Fig.2
is the tradeoff curve and the variation of energy system configuration in residential
sector according to the level of CO2 reduction rate and Fig.3 is the same for the
case of primary energy reduction rate. Fig.4 is an image of the specific area under
investigation. It was found that the set of Pareto optimal solutions and the associ-
ated energy system configurations are different each other. The former case the
variation is from electrification system to fuel cell and then to solar energy utiliza-
tion system, whereas the latter case the DHC system plays an important role.

Fig.2 CO2 emission and cost tradeoff, and corresponding energy system share

Fig.3 Primary energy and cost tradeoff, and corresponding energy system
share
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Fig.4 Image of the specific area under study

2) Break even cost analysis for new technologies: There are a number of tech-
nologies that are energy efficient but still expensive such as fuel cells, micro GT
(Gas Turbine), photovoltaic generation, high COP (Coefficient of Performance)
heat pump, solar water heater, wind turbine, etc. The developed model can be used
to determine the level of cost that allows a technology to be introduced in the set
of non-inferior solutions.

4 Optimization of DHC System[5]

The configuration of the co-generation plant under consideration is shown in
Fig.5. This is a gas turbine (GT) co-generation system in which the heat (steam)
extracted from GT is used for producing cold water by an absorption refrigerator
(RS). If the cold water is insufficient then electric turbo refrigerator (RE) is used
to produce required amount of cold water. During wintertime, the heat from GT is
used for space heating purposes. Electricity can either be drawn from the utility
grid or injected back to the grid. The decision variables in this plant is the capacity
of GT in terms of electricity output and thermal output, RS, RE, pump, heat ex-
changer (HEX) and auxiliary gas boiler (GB).

Fig.6 illustrates the optimization of thermal energy delivery network routes.
Here it is assumed that the heat demand is concentrated at the geometrical center
of gravity for each block and the thermal energy is delivered only to one of the
nodal point for each block. The possible routes are thus predetermined along the
streets and roads of blocks. A 0-1 decision variable is allocated to each of the can-
didate routes expressing whether a pipe should be constructed along the route or
not. Constraints are energy balance at each node and limit on thermal transfer for
each route. Thermal loss and pressure loss are also taken into account. The cost
includes plant equipment, pipes, utility demand and energy. CO2 emission and
primary energy consumption can be incorporated.
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Fig.5 Configuration of cogeneration plant in DHC

Fig.6 Concept of thermal energy network optimization

The resulting optimization problem is a multiobjective mixed integer program-
ming problem. The size of the problem depends on the scale of the DHC area. The
typical size of a block is about 80 meters by 80 meters, therefore if the DHC area
is 1 km2 then the number of 0-1 variables will become the order of 100. More-
over, the explicit accounts for thermal and pressure loss makes the problem quite
difficult to solve. A decomposition technique is used for solution, but it takes
sometimes more than several minutes on a modern fast computer, and tradeoff
curves are not easy to obtain. Fig.7 is an example of optimized thermal network.

5 Optimization of Electric Power Distribution Network[6]

Once the DHC area, the size of the DHC plant and the optimal energy system
configuration are determined, then electricity demand for each block is completely
determined. Under this circumstance, it is possible to consider optimization prob-
lem for electricity delivery network. Optimization problems here are twofold. One
is the QCC allocation problem and the other is high voltage distribution network
design.

The objective of allocating QCC's can be considered in a number of different
ways. The approach here uses an evaluation index in which the volume of copper
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Fig.7 Example of optimized thermal network

required between each QCC and its customers. Voronoi diagram[6] is used to
generate initial allocation of the QCC's and then the allocation is modified to
minimize the volume of cupper of low voltage distribution line. Different g-
proach may be to determine the location so as to equalize the size of QCC's.

Now the second problem is how to connect each QCC by high voltage distribu-
tion lines. Here non-linearity comes in because the circuit equations describing
electric power flows for each possible line are non-linear. Any QCC can be
equipped with generators and energy storage apparatus such as batteries, so these
factors must be taken into consideration as well. Also interruption of electric
power must be under prescribed value. The objective function here is taken to be
the minimization of distributed generation cost, distribution line construction cost
and the loss in the distribution lines. The resulting programming problem is a large
scale mixed integer non-linear problem. Conventional approach is not feasible and
some heuristic approach must be employed. Here tabu search procedure is incor-
porated and an optimized solution was found at the expense of several hours of
calculation time. Either a better formulation or a better solution procedure is
needed and it remains as one of the future research topics. Fig.8 is an example of
the results of optimization on QCC location and high voltage distribution network.

6 Concluding Remarks

Optimization problems for urban energy planning appeared in the JSPS e-
search project have been described. Some conclusions are as follows:

1) Some of them are multi-objective and tradeoffs among CO2 emission, pri-
mary energy consumption and cost have been discussed.

2) Many problems have been formulated as mixed integer programs: Solution
time for large-scale problems is still large.
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3) Application to real assessment suggests the importance of real data and also
the necessity of computer supported planning systems.
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Abstract

Since Kuhn and Tucker (1951) originally proposed the concept of proper noninfe-
rior solution solving nonlinear programming problems and it was later modified
by Geoffrion (1967), Yu (1973) further introduce compromise solution method to
cope with multicriteria decision-making problems. In addition, Charnes (1955)
presented goal programming method, and Bellman and Zadeh (1970) proposed the
concepts of decision-making in fuzzy environment, many distinguished work
guide person study in this field. This paper review some methods concerning basic
mathematical concepts of models applied on multiple objective decision making
problem including fuzzy multiobjective linear programming (FMOLP), fuzzy goal
programming (FGP), two-phase method, achievement function, data envelopment
analysis(DEA), and De Novo Programming.

1. Introduction

Since Kuhn and Tucker (1951) published multiple objectives using vector optimi-
zation concept, and Yu (1973) proposed compromise solution method to cope with
multicriteria decision-making problems, there have abundant work for applica-
tions such as in transportation investment and planning, econometric and devel-
opment planning, financial planning, business conducting and investment portfolio
selecting, land-use planning, water resource management, public policy and envi-
ronmental issues, and so on. After Bellman and Zadeh (1970) proposed the con-
cepts of decision-making in fuzzy environment, many distinguished work guide
person study in this field such as Hwang and Yoon (1981), Zimmermann (1978),
Sakawa (1983; 1984a,b), Lee and Li (1993), and so on.

FMOLP formulates the objectives and the constraints as fuzzy sets, character-
ized by their individual linear membership functions. The decision set is defined
as the intersection of all fuzzy sets and the relevant hard constraints. A crisp solu-
tion generated by selecting the optimal solution, such that it has the highest degree
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of membership in the decision set. For further discussions refer to Zimmermann
(1978), Werners (1987), Martinson (1993).

This paper organized as follows, the FMOLP model highlighted in Section 2.
The FGP model presented in Section 3. The fuzzy goal and fuzzy constraint pro-
gramming model presented in Section 4. Two phase approach for solving FMOLP
problems illustrated in Section 5. Three models of goal programming with
achievement function introduced in Section 6. We propose a new multiple objec-
tives programming approach to DEA in Section 7. De Novo programming method
in multi-criteria optimal system design presents in Section 8. Finally we summa-
rize most of the methods for multiple objective decision making problems and
point out the future direction of our research.

Fig. 1 Development of Multiple Objective Decision Making
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2, Fuzzy Multiple Objectives Linear Programming

FMOLP problems usually has the following format:

n
max Z, :Zéijj, k=1,2,..,q
j=t

n
min W, :Zékixj, k=g +1,..., g

= )

n

n
s.t. Za,.jxjsb,., i=1,2,...,m; Ggx;2b, i=m+1,...,m,
j=1 j=1

"
Max;=b, i=my+l...,m x,;20,j=1,2,.,n
j=1

where & is the j-th fuzzy coefficient of the k-th objective, 4, is the j-th fuzzy co-

efficient of the i-th constraint and b, is the fuzzy right hand side of the i-th con-
straint. Problem (1) can solve by transferring it into a crisp model shown as (2).

max (z,), = »,(c,)ux;, k=1,2,..,4q,
Jj=1

min (w,), = > C)ix,, k=g, +1, ..., q
Ve = 2 e k= @)

"
st Y (a)ex; B, i=l 2, m, my+ 1, m
Jj=1

a ) x, 2b)E, i=m +1, ..., my; x.20,j=1,2,..,n
] ijJa i 1 2 i
=

where (c,); and (c,)- , (a,); and (a;); and (), and (b,); are upper and lower
bound of fuzzy number ¢, , 4, and b, , respectively, by taking o -level cut. Prob-

lem (2) can be solved by fuzzy algorithm interactively. For details, see
Zimmermann (1978), Lee and Li (1993), Sakawa (1993,1995), Shibano et al.
(1996), Shih et al. (1996), Ida and Gen (1997), Shih and Lee (1999) etc.

3. Fuzzy Goal Programming

In most FGP problems can mathematically be represented as:

max  [,(x), £, (x), - ()] 3)

st. Ax<b; x=20
where x, b are vector of variables and right hand side (Yu 1973; Lai et al., 1994)
defined the membership function of fuzzy goal as follows:

1 L) > £ (x)

FACEY/C NP @
-1 ST (X)) fi(x)< S (%)
o, £i(x) < f7 (%)

B, (x)=41-



68  Gwo-Hshiung Tzeng

where f(x) and f;(x) represent the positive ideal solution and negative ideal so-
lution, respectively. We can transfer (3) to A expression method as follows:

max A
st A< LZL by ()
Si ()= f7 (%)
Ax<b; x>0
We also can employ max-min method to transfer (3) as follows:
maxmin A
st Ax<b 6)
x>

4. Fuzzy Goal and Fuzzy Constraint Programming

The fuzzy goal and fuzzy constraint programming problems can be represented as:
max [0, £,(0), i ()]
st. Ax<b ©)
x>0

where x is the vector of variables and 5 is vector of fuzzy right hand side. First,
we define the membership function of fuzzy goal as follows:

L, f)> £ ()
PR CO L /€O e .
by (9 ={1=t S S0 S0 S ®)
0, fix) < f7 ()
L (4x), <b,
e, (x) = - b b, <(4x),<b,+p, ©9)
0, (4x),>b, +p,

In this case, we can transfer (7) to A expression method as follows:
max A

PGl /L CI NP
VACRNNC)
Ax),—b,
A<l —L, j=12,...m; x>0
p;
We also can employ max-min method to transfer (4) as follows:
maxmin A

b an

st x>0

s.t.

(10)
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5. Two Phase Approach for Solving FMOLP Problem

Usually there are two or more goals in FMOLP problems, here we illustrate two
phase approach for solving the following mathematical programming:

max [/, /@, %), f, 0]
mxin [J;kln(Ek, %), i;:, +2(Cx 425 X), "ik(ak’x)] (12)
st. AxNb; x>0
where “ 1 ” represents binary relation and defined as follows:
M=IvEIvigtvi<ivi=), “v ” means “or”.
First, we consider crisp MOLP problems as following programming:
max  [£(CL, 0, /(Coro ), /i (Cou o]
T Y W/ (o) I Y (- PE R A (o))
st (ALx<@®)Y (13)
(A x2(b);
x20, xelX,
Zimmermann (1978) indicated that two important relation between o and B :
(1) Optimal level of o and B ,thatis a =B ;
(2) Having trade-off relation between a and B .
Then the mathematical programming (13) become as follows:
max B
st By, (%)
Bzu, )

xekX,

(14)

where
v -
_ f;(max)((:‘ia ’x) - j;(max)a
- * —
fi(max)a - fi(max)a

_ .,;(;lun)a - f;(nin)(ci:’x)
j;’;nin)a - f;:mm)a
Furthermore, using iteration procedure to find the optimal solution, when
a = B, then stop. That is, only to find A in second phase, such that: A = min{a,p}
Lee and Li (1993) proposed algorithm for this problems as follows:
Step 1. Setting tolerable error t , step width ¢ and initial « -cut (a =1.0), itera-
tive frequency ¢=1;
Step 2. Putting a =a —# , solve c-LP problem, then obtained B and x;
Step 3. If | — B |<t, let L =min{a,B}, go to step 4; otherwise, go back step 2. If
width ¢ is too large, let € =¢/2 and ¢ =1, go back step 2;
Step 4. Obtained A,a,B and x; end.

My ) =12,k

ugl(m)(x) =k +Lk+2,..k
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Therefore, we can solve c-LP2 problems as above two phases algorithm. More-
over, Ida and Gen (1997) proposed following programming to solve this problems:

— 1 L3
max B :;ZBI'
i=1

U _
< f;(max)(ciu ,X) - f;(max)m
i b

st. B<B, < - - i=12,..k
Sigmax = Fimans 15)
- f (CE,
p<p, < Lumme “SuwnCor®) oy pn
ff(min)a - fi(min)a

xelX,, B,Bie[O,l]

6. Goal Programming with Achievement Functions

Goal programming (GP) is an analytical approach devised to address decision-
making problems where targets have been assigned to all the attributes and where
the decision-maker is interested in minimizing the non-achievement of the corre-
sponding goals (Romero, 2001).

Initially conceived as an application of single objective linear programming by
Charnes and Cooper (1955, 1961), goal programming gained popularity in the
1960s and 70s from the works of Ijiri (1965), Lee (1972), and Ignizio (1976). A
key element of a GP model is the achievement function that represents a mathe-
matical expression of the unwanted deviation variables. Each type of achievement
function leads to a different GP variant. Tamiz and others (1995) show that around
65% of GP applications reported use lexicographic achievement functions, 21%
weighted achievement functions and the rest other types of achievement functions,
such as a MINMAX structure in which the maximum deviation is minimized.

The weighted achievement model lists the unwanted deviation variables, each
weighted according to importance, the programming shown as (Ignizio 1976):

Min Y (a,d; +Bd))

st.  f(x)+d, —-d =g, (16)
d7-d; =0
d >0, d >0
where

a, =w,/k, if d] is unwanted, otherwise o, =0;
B,=w/k if d’ is unwanted, otherwise B, =0.
The parameters w, and &, are the weights reflecting preferential and normaliz-

ing purposes attached to achievement of the i-th goal.
The second model, lexicography achievement model, is made up of an ordered
vector whose dimension coincides with the Q number of priority levels established
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in the model. Each component in this vector represents the unwanted deviation
variables of the goals placed in the corresponding priority level (Ignizio 1976).
Lex Min a=|Y (ad; +Bd ) (0d; +Bd )y (0d; + Bid,.*)}

ich ieh, ichg
st fl(xo)+d -d; =g, ie{l,...q} ieh re{l..Q} a7
xeF, d7 20, d/ =20
where 4, represents the index set of goals placed in the r-th priority level. Lexi-
cographic achievement functions imply a non-compensatory structure of prefer-
ences. In other words, there are no finite trade-offs among goals placed in differ-
ent priority levels (Romero 1991).

The third model, minmax achievement model, seeks for the minimization of the
maximum deviation from any single goal. If we represent by D this maximum de-
viation, the mathematical programming of a LGP model is the following (Flavell
1976):

Mxin D

s.t. ad +PBd’ <D (18)
fix)+d; -d =g, ie{l,...q}
xeF,d 20,d 20

This model implies the optimization of a utility function where the maximum

deviation is minimized. It provides the most balanced solution among the

achievement of different goals. Thus is, it is the solution of maximum equity
among the achievement of the different goals(Tamiz and others 1998).

7. Multiple Objective Programming with DEA

Data Envelopment Analysis (DEA) was developed by Charnes, et al. (1978)(CCR
model) and extended by Banker et al. (1984)(BCC model), is a non-parametric
programming method for estimating production frontiers and evaluating the rela-
tive efficiency of decision making units (DMUSs), with multiple outputs and multi-
ple inputs. In CCR model, solving the relative efficiency of DMU, as follows:

Max h, = ZLtjyﬂt
J=1

s.t. y vx, =1, fork=1,.,n
; ik (19)

Zujyﬂt - Zv,.x“t <0, fork=1,.,n
j=t i=1

v2e>0, i=l..,r; u;2e>0, j=L..,s
The objective here is to find the largest sum of weighted outputs of DMU,
while keeping the sum of its weighted inputs at unit value and forcing the ratio of
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the sum of weighted outputs to the sum of weighted inputs for any DMU to be less
than one. Transferring the problem to dual program can then find a minimal value
for an intensity factor 6, that indicates the potential of a proportional reduction in
all the inputs of DMU, .

In BCC model adds another restriction to the envelopment requirements. It re-
quires that the reference point on the production function for DMU, will be a

convex combination of the observed efficient DMUs. The primal formulation for
DMU, is written as:

Max h, = Zujyjk —u,

j=1
st Zvix,.o =1
i=l

Zlujyjk—Zv,.xik -u, <0, fork=1,.,n (20)
j= i=

v, 2e>0,i=1,..,r

u;2e>0,j=1,.,s

The corresponding primal has a slightly different objective from (19)

Furthermore, considering in CCR model, the efficiency ratio of each DMU is
calculated by its own best multipliers, not by the common multipliers for all
DMUs. Thus, this model often results in too many DMUs may be identified as ef-
ficient. We applied the concept of multiple objectives programming to CCR model
to find the common multipliers that could cause the efficiency ratio for all DMU
as large as possible. We consider the efficiency ratio of all DMUs rather than k-th
DMU, in CCR model and then establish the following model:

zUr'yrl ZUr'yrZ ZUr'yrn
— r=1

Max |z =

2V @y

V.ze >0,i=1,..m
We further transfer (19) to one objective programming using membership func-
tion with fuzzy multiple objectives linear programming approach (Sakawa & Yu-
mine 1983; Sakawa & Yano 1985; Ohta & Yamaguchi 1995), we then conduct the
common multipliers to calculate the efficiency achievement for all DMUs, the de-
tail procedure can refer to Chiang & Tzeng(2000).
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8. De Novo Programming Method in MODM

Dealing with a MODM problem, we usually confront a situation that is almost im-
possible to optimize all criteria in a given system. This property is so-called trade-
offs, which means that one cannot increase the levels of satisfaction for a criterion
without decreasing that for another criterion. Zeleny (1981,1986) developed a De
Novo programming for designing optimal system by reshaping the feasible set. He
suggested that trade-offs are properties of inadequately designed system and thus
can be eliminated through designing better, preferably optimal system. Zeleny
(1995) proposed the concept of optimal portfolio of resources which is design of
system resources in the sense of integration, so that there are no trade-offs in a
new designed system.

For example, when the budget of designing a new optimal system is higher than
total avail budget, Zeleny (1995) suggested an optimum-path ratio to contract the
budget to available budget along the optimal path. Along this line, Shi (1995) dis-
cussed different budgets from different point of views and define six type opti-
mum-path ratios to find alternatives for optimal system design.

However, since the ideal point used in the De Novo programming is not the
ideal point in the ordinary system, the budget for the redesigned system is always
larger than the total available budget. Consequently, no matter what optimum-path
ratio is used, it only can provide a certain path to locate a solution in the decision
space of the new system.

Assuming a MODM problem can be described as follows (Yu, 1985)
Max Cx

st. Ax<b (22)
x20
where C=C,, and 4=4,,, , b= (bl,.‘.,bm)T eR™, and x :(xl,...,xj,...,xn)r er".
Let the kth row of C be denoted by C* = (cf,...,c;,‘..c:) €R", so that C*x, k=1,...q,
is the kth criteria or objective function.
Assume that X = {x €R"|Ax<b,b> 0} , the ideal point of (22) is
f :(fl',...,fq')r , where f, = sup{C"x]x € X} for k=1,..,q . If there exists a

x = (x;,...,x:)r eR", such that Cx’ =(C‘x',...,C"x')T = (fl',..‘,f;)r , then the x

called the ideal solution.

Because the components of b in (22) are determined in advance, an ideal point
usually is not attainable for the properties of trade-offs among multiple criteria.
When the purpose is to design an optimal system rather than optimize a given sys-
tem, it is of interest to consider following problem:

Max Cx

st. Vx<B (23)

x20
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Then, we find the Min Vx for achieving ideal point, i.e.,
MinVx

st. C'x>f,, k=1,.,q
where V =pd4=(¥,,..,¥,)eR", p=(p,,...P,)€R™ and BeR present the unit

prices of resources and total available budget respectively. Formulation (23) im-
plies that given the unit prices of resources and total available budget allocate the
budget, so that the resulting portfolio of resources maximizes the values of the ob-
jective functions. There are three methods of De Novo programming for locating a
solution while dealing with multi-criteria optimal system design problem: A syn-
thetic-optimal budget, meta-optimal budget, and flexible-constraint meta-optimal
budget. For further discussion can refer to Shi (1995).

9. Summary

We have briefly sketched seven important topics of MODM problems, Being
space limit, it is difficult to list and discuss many other methods adopted on
MODM programming such as fuzzy regression analysis, multiobjective possibilis-
tic/necessity programming, interactive programming methods, two-level/multi-
level/multi-stage multiobjective programming, Habitual Domain, Genetic Algo-
rithms and Evolutionary Computing on MODM. We would like to introduce these
methods and its applications in near future.

Reference

[1] Banker, R.D., Charnes, A., and Cooper, W.W. (1984). “Some Models for Es-
timating Technical and Scale Inefficiencies in Data Envelopment Analysis”,
Management Science, 30(7). 1078-1092.

[2] Bellman, R.E., and Zadeh, L.A. (1970). “Decision-Making in a Fuzzy Envi-
ronment”’, Management Science, B17(1), 141-164.

[3] Charnes, A., and Cooper, W.W. (1961) Management Models and Industrial
Applications of Linear Programming, John Wiley & Sons, New York.

[4] Charnes, A., Cooper, W.W., and Ferguson, R. (1955). “Optimal Estimation of
Executive Compensation by Linear Programming”, Management Science,
1(1), 138-151.

[5] Charnes, A., Cooper, W.W., and Rhodes, E. (1978). “Measuring the Efficiency
of Decision Making Units” , European Journal of Operational Research, 2(3),
429-444.

[6] Chiang, C.I., and Tzeng, G.H. (2000). “A Multiple Objective Programming
Approach to Data Envelopment Analysis”, Shi, Y. and Zeleny, M. (eds) New
Frontiers of Decision Making for the Information Technology Era, World Sci-
ence Publishing Company, 270-285



Multiple Objective Decision Making in Past, Present, and Future 75

[7] Flavell, R.B. (1976). “A New Goal Programming Formulation”, Omega, 4(4),
731-732.

[8] Geoffrion, A.M. (1967). “Solving Bicriteria Mathematical Programs”, Opera-
tions Research, 15(1), 39-54.

[9] Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Ma-
chine Learning, Springer-Verlag, Addison-Wesley Publishing Company, Inc.

[10] Hwang, C.L., and Yoon, K. (1981). Multiple Attribute Decision Making:
Methods and Applications, Springer-Verlag, Heidelberg.

[11] Ida, K., and Gen, M., (1997). “Improvement of Two-Phase Approach for
Solving Fuzzy Multiple Objective Linear Programming” Journal of Japan So-
ciety for Fuzzy Theory and System, 19(1), 115-121.

[12] Ignizio, J.P. (1976) Goal Programming and Extensions, Heath, Lexington,
MA.

[13] Ljiri,Y., (1965). Management Goals and Accounting for Control, North-
Holland, Amsterdam.

[14] Kuhn, H.W., and Tucker, A.W. (1951). “Nonlinear Programming”, Proceed-
ings of the second Berkeley Symposium on Mathematical Statistics and Prob-
ability, 481-492. J. Neyman (Ed.), University of California Press, Berkeley.

[15] Lai, Y.J., Liu, T.Y., and Hwang, C.L. (1994). “TOPSIS for MODM?”, Euro-
pean Journal of Operational Research, 76(3), 486-500.

[16] Lee, S. (1972). Goal Programming for Decision Analysis, Auerbach, PA.

[17] Lee, E.S., and Li, R.J. (1993) “Fuzzy Multiple Objective Programming and
Compromise Programming with Pareto Optimum”, Fuzzy Sets and Systems,
53(2), 275-288.

[18] Martinson, F.K., (1993). “Fuzzy vs. Min-Max Weighted Multiobjective Lin-
ear Programming Illustrative Comparisons,” Decision Sciences, 24(5), 809-
824.

[19] Ohta, H., and Yamaguchi, T. (1995). “Multi-Goal Programming including
Fractional Goal in Consideration of Fuzzy Solutions”, Journal of Japan Soci-
ety for Fuzzy Theory and System, 7(7), 1221-1228.

[20] Romero, C., (1991). Handbook of Critical Issues in Goal Programming, Ox-
ford Pergamon Press.

[21] Romero, C. (2001) “Extended Lexicographic Goal Programming: A Unifying
Approach” Omega, 29(1), 63-71.

[22] Sakawa, M., (1983). “Interactive Computer Programs for Fuzzy Linear Pro-
gramming with Multiple Objectives” International Journal of Man-Machine
Studies, 18(4), 489-503.

[23] Sakawa, M., (1984). “Interactive Fuzzy Goal Programming for Multiobjec-
tive Nonlinear Problems and Its Application to Water Quality Management”
Control and Cybernetics, 13(2), 217-228.

[24] Sakawa, M. (1993). Fuzzy Sets and Interactive Multiobjective Optimization,
Plenum Press, New York.

[25] Sakawa, M., Kato, K., Sundad, H., and Enda, Y., (1995). “An Interactive
Fuzzy Satisfying Method for Multiobjective 0-1 Programming Problems
through Revised Genetic Algorithms” Journal of Japan Society for Fuzzy The-
ory and System, 17(2), 361-370.



76  Gwo-Hshiung Tzeng

[26] Sakawa, M. and Yumine, T. (1983). “Interactive Fuzzy Decision Making for
Multi-objective Linear Fractional Programming Problems”, Large Scale Sys-
tem, 5(1), 105-114.

[27] Sakawa, M. and Yano, H. (1985). “Interactive Decision Making for Multi-
objective Linear Fractional Programming Problems with Parameters”, Cyber-
netics and Systems: An International Journal, 16(3), 377-394.

[28] Shi,Y. (1995). “Studies on Optimum-Path Ratios in Multi-Criteria De Novo
Programming Problems”, Computers and Mathematics with Applications,
29(5), 43-50.

[29] hibano, T., Sakawa, M., and Obata H., (1996). “Interactive Decision Making
for Multiobjective 0-1 Programming Problems with Fuzzy Parameters through
Genetic Algorithms” Journal of Japan Society for Fuzzy Theory and System,
18(6), 1144-1153.

[30] Shih, H.S., Lai, Y.J., and Lee, E.S. (1996). “Fuzzy Approach for Multi-Level
Mathematical Programming Problems” Computers and Operations Research,
23(1), 73-91.

[31] Shih, H.S., and Lee, E.S. (1999). “Fuzzy Multi-Level Minimum Cost Flow
Problem” Fuzzy Sets and Systems, 107(2), 159-176.

[32] Tamiz, M., Jones, D.F., and El-Darzi, E. (1995). “A Review of Goal Pro-
gramming and Its Applications” Annuals of Operations Research, 58(1), 39-
53.

[33] Tamiz, M., Jones, D.F., and Romero, C. (1998). “Goal Programming for De-
cision Making: an Overview of the Current State-of-Art” European Journal of
Operational Research, 111(4), 569-581.

[34] Werners, B. (1987). “Interactive Multiple Objective Programming Subject to
Flexible Constraints,” European Journal of Operational Research, 31(2), 342-
349.

[35] Yu, P.L. (1973). “A Class of Solutions for Group Decision Problems”, Man-
agement Science, 19(8), 936-946.

[36] Yu, P.L. (1985). Multiple Criteria Decision Making: Concepts, Techniques,
and Extensions, Plenum, New York.

[37] Zeleny, M. (1981). “A Case Study in Multiple Objective Design: De Novo
Programming”, in Multiple Criteria Analysis, Operational Methods, P. Ni-
jkamp and J. Spronk, Eds., Gower Publishing Co., Hampshire, 37-52.

[38] Zeleny, M. (1986). “Optimal System Design with Multiple Criteria: De Novo
Programming Approach”, Engineering Costs and Production Economics,
10(1), 89-95.

[39] Zeleny, M. (1995). “Trade-Offs-Free Management via De Novo Program-
ming”, International Journal of Operations and Quantitative Management,
1(1), 3-13.

[40] Zimmermann, H.J. (1978). “Fuzzy Programming and Linear Programming
with Several Objective Functions”, Fuzzy Sets and Systems, 1(1), 45-55.



Dynamic Multiple Goals Optimization in
Behavior Mechanism

P.L. Yu

C. A. Scupin Distinguished Professor, School of Business, University of
Kansas, USA, and Chaired Professor, Institute of Information Management,
National Chiao Tung University, Taiwan

C. Y. ChiangLin

Associate Professor, Institute of Finance and Information, National Kaoshiung
University of Applied Sciences, Taiwan

Abstract

There exists a behavior mechanism which continuously allocates our
attention to various events. Broadly classified, there are seven goals in our life:
survival and security, perpetuation of the species, feelings of self-importance,
social approval, sensuous gratification, cognitive consistency and curiosity, and
self-actualization. For each goal, there is an ideal value or equilibrium point to
pursue and/or maintain. If there is a significant discrepancy of current status from
the ideal or equilibrium point, a charge (mental pressure) will be produced. At any
moment, the totality of all charges created by all goals from all events is called
“the charge structure” at that moment. Our mind will try to allocate the attention
and resources to reduce the charge to a minimum level. The goals that catch our
attention are awakened; otherwise unawakened. The priority for the goals to get
our attention follows a dynamic scheme of multiple goals optimization. In this
paper, we shall describe and illustrate the dynamic multiple goals optimization, a
basic framework of behavior mechanism. Applications to vast decision making
problems, especially the challenging ones, will also be mentioned. The mechanism
will open up our minds as to make decisions more effectively.
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1. Introduction

Human behaviors are undoubtedly dynamic, evolving, interactive and
adaptive processes. These complex processes, which evolve dynamic changes of
multiple goals, have a common denominator resulting from a common behavior
mechanism.

In order to illustrate this dynamic mechanism, let us consider the following
example.

Example: First Dating with Motorcycle

John, a college man in Taiwan (where motorcycles are common vehicles),
was pretty excited to have his first date at 6:30 PM with his girl friend. At 6 PM,
his fantasy of having good time (an important goal), including his girl friend
holding him from the back seat, really made him restless. When he arrived at the
parking lot for his motorcycle, he was shocked that his motorcycle was locked and
he could not unlock it. He called a “taxi” to go to their dating place. When he
arrived at the destination he could not find his wallet. The taxi driver was very
upset and shouted menacingly, “Shame on you! Young man, there is no free
lunch ...”. John was threatened. How to get out of this situation became his
primary concern. Fortunately, he could use cellular phone to call his girl friend to
help. John felt extremely embarrassed and his first date was not as excited as he
had expected, because he constantly worried about losing his wallet and ID cards
therein. After the “date”, John went to the parking lot. Surprisingly, he found his
motorcycle unlocked and his wallet was still in the compartment under the
motorcycle ’s seat. Because most motorcycle looks the same, John rationalized that
his motorcycle might be locked by mistake by the owner of the motorcycle parked
next to his. In any event, what a relief to him!

The above example illustrated the dynamic changes of our goals and
behaviors. Indeed our behavior and multigoal optimization are dynamic,
interactive and changing with time and situations. The process can be depicted as
in Figure 1. The Figure is self-explanatory. The reader can use the above example
and imagination to understand it.

In the next four sections, based on [1-4] we will discuss goal setting and
state evaluation, charge structure and attention allocation, least resistance principle
and external information input sequentially. Section 6 is for a conclusion.
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Each human being has a set of goals to reach and maintain. Based on
psychology literature, we may summarize these possible goals as listed below:

(1) Survival and Security: physiological health (correct blood pressure, body
temperature and balance of biochemical states); right level and quality of
air, water, food, heat, clothes, shelter and mobility; safety; acquisition of
money and other economic goods;

(2) Perpetuation of the Species: sexual activities; giving birth to the next
generation; family love; health and welfare;

(3) Feelings of Self-Importance: self-respect and self-esteem; esteem and
respect from others; power and dominance; recognition and prestige;
achievement; creativity; superiority; accumulation of money and wealth;
giving and accepting sympathy and protectiveness;

(4) Social Approval: esteem and respect ffom others; friendship; affiliation
with (desired) groups; conformity with group ideology, beliefs, attitudes
and behaviors; giving and accepting sympathy and protectiveness;

(5) Sensuous Gratification: sexual; visual; auditory; smell; taste; tactile;

(6) Cognitive Consistency and Curiosity: consistency in thinking and
opinions; exploring and acquiring knowledge, truth, beauty and religion;

(7) Self-Actualization: ability to accept and depend on the self, to cease from
identifying with others, to rely on one’s own standard, to aspire to the
ego-ideal and to detach oneself from social demands and customs when
desirable.

The following is a summary of human behavior, called goal setting and state
evaluation hypothesis:

Each one of us has a set of goal functions and for each goal
function we have an ideal state or equilibrium point to reach
and maintain (goal setting). We continuously monitor,
consciously or subconsciously, where we are relative to the
ideal state or equilibrium point (state evaluation). Goal
setting and state evaluation are dynamic, interactive and are
subject to physiological forces, self-suggestion, external
information forces, current data bank (memory) and
information processing capacity.

This hypothesis implies the following points:

(1) There exists a set of goal functions in our internal information processing
which are used to measure the many dimensional aspects of life. A
probable set is given as above. Goal functions can be mutually associated,
interdependent and interrelated.

(2) The goal setting and state evaluation of each goal function are dynamic,
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interactive, and subject to physiological forces, self-suggestion, and
external information as well as to the current data bank (memory) and
information processing capacity.

The influence of self-suggestion can be very pervasive and important to
goal setting and state evaluation, and to consequential behavior and
decisions. Because of its direct access, self-suggestion can exert its
influence on the internal information processing. It can create new
perceptions and goal state variables, and can cause restructuring of the
data bases in the internal information processing center.
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3. Charge Structures and Attention Allocation

Let us first summarize as an important aspect of behavior mechanism as

follows:

Note that attention allocation is based on dynamic optimization principle. This

Each event is related to a set of goal functions. When there is
an unfavorable deviation of the perceived value from the ideal,
each goal function will produce various levels of charge. The
totality of the charges by all goal functions is called the charge
structure and it can change dynamically. At any point in time,
our attention will be paid to the event which has the most
influence on our charge structure.

The above is known as charge structure and attention allocation hypothesis.

hypothesis embodies the following details:

(D

2

(€))

4

Depending on the deviation of the perceived value from the ideal value,
various levels of charge for each goal function can occur. The higher

level is preemptive over the lower level in obtaining attention.

The collection of the charges on all goal functions created by all current
events at one point in time is the charge structure at that moment of time.
The charge structure is dynamic and changes (perhaps rapidly) over time.

Note, the charge structure can be ordered according to lexicographical

ordering to determine its level or strength. For instance, suppose that we
have seven goals of concerns as listed above. Two charge structures are

given as: A=(5, 2, 5,4, 3,2, 1) and B=(2, 3, 5, 5, 4, 2, 1, 3). We could
reorder A and B in monotonically decreasing order as A’=(5, 5, 4, 3, 2,2, 1)
and B’=(5, 5, 4, 3, 3, 2, 2, 1). As B’ is lexicographical graphically larger
than A’, B has a higher level of charge structure than A.

Each event can involve many goal functions. Its significance on the

charge structure is measured in terms of the extent of which its removal
will reduce the levels of charges. Given a fixed set of events, the priority
of attention to events at a moment in time depends on the relative
significance of the events on the charge structure at that moment in time.
The more intense the remaining charge after an event has been removed,

the less its relative significance and the lowerits relative priority.

For a given set of decision problems with uncertainty, the smaller the

decision maker's stake and the greater the decision maker's confidence in
obtaining a satisfactory solution within the imposed time limitations, the

less the significance of the problems on the charge structures and,
consequently, the lower their priority for attention.
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4. Least Resistance Principle

In the previous section we described how attention is allotted to various
events or decision problems according to the dictates of the charge structure.
The event or decision problem with the most significant charge commands our
attention at any given moment. Charge structures change quickly as events occur
requiring attention to be redirected.

How does our information processing capacity work once attention is
allotted to an event? Our information processing function can be characterized by
having two modes: (1) active problem solving or (2) avoidance justification.
The former tries to work actively to move the perceived states closer to the ideal
states; while the latter tries to rationalize the situations so as to lower the ideal
states closer to the perceived states. When operating in either of these modes our
information processing function will follow the least resistance principle as
described below:

To release charges, we tend to select the action which yields the
lowest remaining charge (the remaining charge is the resistance
to the total discharge) and this is called the least resistance
principle.

Note that the least resistance principle is a dynamic optimization principle.
The following points should be noted:

(1) Given the charge structure and the set of alternatives at time t, the selected
alternative for discharge will be the one that can reduce the residual
charge to the lowest level (the least resistance principle).

(2) The majority of daily decision problems that are often repetitive with low
stakes and satisfactory solutions are usually readily available for
discharge.

(3) When the decision problem involves high stakes and/or uncertainty, active
problem solving or avoidance justification can be activated depending on
whether or not the decision maker has adequate confidence in finding a
satisfactory solution in due time. Either activity can restructure the charge
structure and may delay the decision temporarily.

(4) When one is caught unprepared or by surprise (a decision problem
involving high stakes and a short time frame for its solution), he/she may
act quickly and perhaps unwisely because of time pressures and high
levels of charges (refer to the flooded situations of Section 3.2 of [4]).

5. Information Input

Human beings live in a world in which continuous interaction with external
events is unavoidable. It can even be suggested that interaction with extemal
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events is essential for gaining the information and resources to attain life goals.
This interaction with the external world stimulates our information processing
mechanism. On the one hand, scanning the external world warns us of
forthcoming events that will interfere with our goal attainment. On the other
hand, external information is required to confirm or measure our perceived goal
states.

We have the following Information Input Hypothesis:

Humans have innate needs to gather external information.
Unless attention is paid, external information inputs may not be
processed.

6. Conclusion

We have briefly described a behavior mechanism and showed that our daily
decision problems and behavior are solved or based on a dynamic optimization of
a set of goals. Charge structure, attention allocation and arriving information can
change the priority of our goals, alternatives and our decisions.

Fortunately, these charge structures, attention allocation and priority over
goals can be stabilized and form habitual domains [14]. Thus many human
behaviors can become predictable. To avoid being trapped by habitual domains.
Let us be reminded by Maslow who said, “If the only tool you have is a hammer,
you tend to see each problem as a nail.”

Let us also face up the challenge that real nontrivial decision problems are
dynamic. The optimal solution is a dynamic function of the charge structure,
attention allocation and situations of the decision makers.

How to create charges and catch attention by changing situations and
sending out information become an important part of forming winning strategies
in conflicts, and in solving challenging decision problems. Being limited by space,
the interested reader is referred to [2, 4] for further discussions.
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Abstract. In real-world optimization problems involving multiple objectives, the
weights of the objectives may not be specified, whereas example solutions, i.e., the
solutions for real instances prepared by human experts, are usually available. This
paper proposes a method for determining the objective weights by using example
solutions as the training set so that a search algorithm can find reasonably good
solutions for all the instances. Our proposed method generates neighborhood so-
lutions defined by the search algorithm for each example solution, and determines
the weight settings. The method was successfully applied to a scheduling problem
in the steel manufacturing industry.

1 Introduction

In real-world optimization problems, system developers often encounter a
situation where they can not design the objective function easily. Of course
they have the specification, but the constraints specified are so restrictive
that most of the real-world instances can not have solutions which satisfy all
the constraints. Thus they have to determine how much violation is allowed
for each constraint or which constraints are more important than other con-
straints and design the objective function that takes account of the trade-off
between each constraint and each objective.

To determine the trade-off, the most effective method seems to be to ask
human experts. However, this might be difficult for various reasons, e.g., the
system developers and human experts work for different companies, and so
on. To make matters worse, even if we can ask the human experts, they might
not be able to evaluate the trade-off quantitatively. As a result, it takes very
long time to develop the final systems.

To reduce the development period, there are some clues available, the
example solutions for real instances prepared by human experts. Thus what
we hope to do is to extract the maximum amount of information from the
example solutions and thus design the objective function used in our system.
In this paper, we propose a method for determining the weight setting when
we fix the objective function in the form of a weighted sum of the objectives,
and apply our method to a scheduling problem in the steel manufacturing
industry.
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However, determining the weight setting by using example solutions has
some difficult aspects. For example, human experts are not perfect because
the example solutions by human experts are taken as good solutions but
it almost cannot happen that the solutions are any of the Pareto optimal
solution. Moreover, the evaluation criterion of human experts is not always
consistent for all of the example solutions.

Our approach for the problem which we focus on is based on the following
conjecture: “If the human expert did the best to find the example solution,
the solution is the best solution which he found.” When this conjecture is
rephrased into the terms of combinatorial optimization, “the example solution
is a local optimal solution for the neighborhood structure which the human
expert can find,” where neighborhood structure means the search space for
a solution. Our approach is shown in Section 2 in detail.

We applied our method to a scheduling problem in the steel manufactur-
ing industry [1,2]. In this area, scheduling problems tend to be so complicated
and involve conflicting objectives, and many scheduling tasks are still done
by skilled human experts. Therefore, it is a challenge for multi-objective pro-
gramming to emulate the skilled experts.

This paper has the following organization. In Section 2, we show our
method to design the objective function (as a weighted sum of the objectives).
In Section 3, we give the numerical experiment results by our method and
compare the solutions obtained by some variations of our method. In Section
4, we present our conclusions. Due to lack of the space, we omit the detailed
explanations and describe them in the full version of this paper [3].

2 Our Learning Approach

In this section, we describe our method that finds the weight settings from
example solutions from human experts. Suppose that the objective value of
the ith objective is f;(s) for solution s. The objective function F(s) is defined

F(S) = szfl(s)y

where w; is the weight for the ith objective. As mentioned before, our ap-
proach is based on the idea, “Example solutions are local optimal solutions
for the neighborhood structure which human experts can find.”

First, we have to define the neighborhood structure of a solution which
human experts can find. In this stage, stronger neighborhoods should not
be used, because such neighborhoods do not seem to reflect the neighbor-
hoods whose solutions are found by human experts. For example, consider a
scheduling problem whose solution is represented as a sequence of jobs sorted
in the processed order. The solutions obtained by moving one subsequence to
another position will be able to be found by human experts, but the solutions
obtained by moving ten subsequences to other positions at a time will not.
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Next, we generate inequalities by using the defined neighborhood struc-
ture and the example solution. Let s be the example solution and N(s) be
the set of the neighborhood solutions of s. Then, if the example solution is
better than the neighborhood solutions, the inequality, F(s) < F(s’), should
hold for s’ € N(s). However, this is not always correct because the example
solution is not always better than the neighborhood solutions, that is, there
may exist a solution s’ which dominates solution s. It might be better if,
as a preprocess, we change the example solution until the solution becomes
the non-dominated solution for the defined neighborhood structure. However,
this change may increase the inconsistency between human experts’ criterion
and the generated inequalities regarding the obtained solution because the
changed solution is not the solution made by human experts anymore. We
will experiment with both cases, i.e., with preprocessing and without prepro-
cessing, and compare the results. We call both the example solution without
preprocessing and the non-dominated solution obtained by preprocessing the
base solutions.

Finally, we find the weight setting such that they maximize the number
of satisfiable inequalities for the set of inequalities generated by the above
procedure. This problem can be formalized as a minimization problem for
MIP. Let C be a sufficiently large constant, M be the number of inequalities
generated, and the neighborhood solution which corresponds to jth inequality
be s; (1 < j < M). Then this problem is formalized as

. M

mn XY,

subject to: Y. (fi(s) — fi(s5)) - w; < C - x;
S, w; = 100

w; € RY, z;€{0,1}.

If the jth inequality is not satisfiable, it is easy to see that x; = 1. There-
fore the objective function equals the number of inequalities which are not
satisfiable. The second constraint means that the sum of weights is constant.
Since the weights are just measures of relative importance, adding the equa-
tion does not sacrifice generality. This problem is known to be N P-hard [4].
Therefore it is hard to find the optimal solution unless P = NP. We solved
this problem by using the IBM OSL [5] and limited the number of nodes for
branch-and-bound to obtain a solution within a practical amount of time.
Furthermore, to reduce the problem size (the number of inequalities), we
delete the neighborhood solutions which are infeasible solutions (the solu-
tions with extremely large violations), or which are dominated by the base
solution.

We explained the basic procedure above. The basic procedure is not as-
sumed that we have a priori knowledge that some objectives are more impor-
tant than the others, but in real situation, we often have it. If so, the objective
function is slightly modified and the procedure is also modified. Suppose that
the objectives are divided into two sets, A and B, and the objectives in A are
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more important than the objectives in B. Then the objective function consists
of two parts; one consisting of the objectives in A, Fi(s) = > ;4 w; - fi(s),
and the other consisting of the objectives in B, F5(s) =Y, g w; - fi(s). The
objective function is defined as

F(s) =C - Fi(s) + Fa(s),

where C is a sufficiently large constant. Moreover, the procedure to find the
weight setting is performed twice. First, the basic procedure is performed for
the weights of objectives in A. Second, the basic procedure is performed for
the weights of objectives in B by generating inequalities for neighborhood
solutions whose objective values for the objectives in A are the same as the
base solution’s ones. Even if the objectives are divided into three sets or more,
its objective function and its learning procedure are performed in the same
way.

3 Numerical Experiments

In this section, we present the results obtained by applying our method to a
scheduling problem in steel manufacturing industry. The detailed explanation
of the scheduling problem is shown in full version of this paper [3].

3.1 Experimental setting

In all there are m = 8 objectives. We tried six variations of our methods
shown in Table 1. These methods are divided into two types for preprocessing
((2), (4), and (6) in Table 1) or no ((1), (3), and (5)), and divided into three
types depending on the degree of a priori knowledge. The methods (1) and
(2) do not have any a priori knowledge. The methods (3) and (4) have a
priori knowledge that the seven objectives are more important than the other
objectives. The methods (5) and (6) have a priori knowledge that the four
objectives are the most important, the three are the second, and the one is
the least.

Table 1. Six methods examined

(1) no preprocess, no a priori knowledge.

(2) preprocess, no a priori knowledge.

(3) no preprocess, a priori knowledge, seven objs, one obj.

(4) preprocess, a priori knowledge, seven objs, one obj.

(5) no preprocess, a priori knowledge, four objs, three objs, one obj.
(6) preprocess, a priori knowledge, four objs, three objs, one obj.
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3.2 Result

We found the weight settings by using the IBM OSL with limiting the number
of nodes for branch-and-bound to 20,000 nodes and evaluated the solutions
of the problem obtained by using the weight settings found. Since our goal
is to find the superior solutions for every objectives, we use the sum of step
function as the evaluation function. The evaluation function for solution s(I)
is defined as

eval(s(I)) = Z step(fi(s(1)), fi(se(1))),

where the step function is defined as

0, ifzx<
step(z, y) = { L ifr> Z
’ ’

se(I) denotes the example solution for instance I, and f;(s.(I)) denotes the
1th objective value of s.(I). Suppose that s(Ix) is the solution of instance I
(1 € k < K) obtained with the weight setting W. Then the evaluation value
for the weight setting W is defined as

K
eval(W) = % 3 eval(s(Ix)) (1)
k=1

and the evaluation value for the ith objective is defined as

K
eval(obji) = 7 3 step(fi(s(1)), f(se(1). (@)
k=1

This is the procedure we used for evaluating solutions. The number of
instances used is 12. We performed each instance ten times for each weight
setting. The average results for the solutions are shown in Fig. 1. The data
“total” corresponds to the total evaluation value (Eq. (1)), the data “A”
corresponds to the sum of the evaluation values for the most important four
objectives, and the data “B” corresponds to the sum of the evaluation values
for the second important three objectives. From Fig. 1, it is easy to see that
preprocessing is useful. We can also see that the total evaluation value of the
method (4) is the best. However, this does not strongly support the conclusion
that the weight for the method (4) is the best because the superiority of the
method (4) appears to come from the better objective values regarding the
B. On the other hand, the A’s values for the methods (5) and (6) are better
than the ones for the method (4), so the B’s values in the methods (5) and (6)
contribute to the better A’s values. Therefore, if a priori knowledge should be
respected, the weight setting from the method (5) would be the best weight
setting, otherwise the one from the method (4) would be the best one.
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Fig. 1. Evaluation values for weight settings

4 Concluding Remarks

In this paper, we discussed a method to design an objective function by
learning from the example solutions from human experts and applied our
method to a scheduling problem in the steel manufacturing industry. As a
result, we were able to find the good weight settings automatically for the
instances used for learning the weight settings.

We offer these observations about our method. First, our method depends
on the ability of human experts. If the example solutions from human experts
are not good solutions or if the evaluation criterion of the human experts is
extremely inconsistent, our method will fail. Second, our method depends
on the objective function model. If the objective function does not include
the necessary objectives or if the objective function includes irrelevant ob-
jectives, such an objective function will not be well fitted to the example
solutions. Third, we verified that our weight settings performed very well for
the instances used for learning, but not that they perform well for the other
instances also. This will be future work.

Finally, the problem we are attacking is very ambiguous and there might
not exist a 100% right method, but this is a very common situation in real-
world optimization. It seems that this kind of problems should be more fo-
cused on for the practical use of optimization.
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Abstract. Support Vector Machines are now thought as a powerful method for
solving pattern recognition problems. In general, SVMs tend to make overlearn-
ing. In order to overcome this difficulty, the notion of soft margin is introduced.
In this event, it is difficult to decide the weight for slack variables reflecting soft
margin. In this paper, Soft margin method is extended to Multi Objective Linear
Programming(MOLP). To solve MOLP, Goal Programming method is used.

1 Principle of SVM

SVMs are usually formulated as Quadratic Programming (QP). However it
takes an expensive computation time to solve when the size of data is large.
In order to overcome this difficulty, SVMs are reformulated as Linear Pro-
gramming (LP).

We consider two given sets A and B in n-dimensional real space ™. Set
y; = +1 for x; € A, and set y; = —1 for x; € B. When A and B are
not linearly separable, the original problem is considered in a feature space
usually with a high dimension mapped by some non-linear mapping ¢ : x —
z (x € {original space} , z € {feature space}). Using this mapping, the
dataset A and B are expected to be separated linearly. Thus, the separating
hyperplane can be expressed ! as

wlz+b=0, (1)
and we can lead the Generalized Support Vector Machines [4]:
m
[GSVM]  Minimize |lwll, +C ) &
= @
s.t. yi(szi+b)21—£i (t=1, ..., m),

where z; = ¢ (x;), m is the number of data, C is a weight parameter for
3" &, and &; is a slack variable which reflects the distance between separation

! When A and B are linearly separable in the dataset, the separating hyperplane
can be expressed as wTx + b = 0.
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Fig. 1. Example to categorize circles and squares.

hyperplane and misclassified data. Using £;-norm or f-norm to measure
the distance, the problem (2) becomes LP. In this paper, for instance, we use
£oo-norm which yields the following formulation:

[LPSVM] Minimize  [[w]l; +C) &
i=1 ®)

st oy (whzi+b) >1-¢ @=1, ..., m)

By the way, the separating hyperplane (1) can be expressed by

f(x) = 3" yiaiK (x5,x) + b = 0, where K(-,-) is a kernel function which
satisfies Mercer’s theorem and defined as K (x;,x;) = 27z, = ¢ x:)T (x5)
[4]. In this paper, Gauss function K (x,y) = exp {—||x — y||3/r%} is used as
a kernel function. It is important to select an appropriate value of r. From
our experience, the formula 7 = dpqz/ {/nm has been observed to give a good
estimate. Here, n is the dimension of dataset, m is the number of data, and
dmaz 18 the maximum distance between the data.

2 Multi Objective Programming formulation

2.1 Maximizing the surplus

Let us consider the example to categorize circles and squares shown in Fig.1
(a). There are 12 circle data and 6 square data. Define the point X as (0.5125,
0.7625) indicated as a black square in Fig.1 (a). The classification results for
Fig.1 (a) using formulation (3) is given in Fig.2. Fig.2 (h) is the result by
the hard margin method which gives a perfect separation. It can be seen in
this example that even though the point X is an outlier, a perfect separation
is attained by the hard margin method. On the other hand, the soft margin
method (3) which allows some misclassified data can discard the point X as
an outlier by controlling the weight of slack variable C. However, it is difficult
to select an appropriate value of C. When C is small, soft margin method
provides a separating hyperplane which takes into account the influence of
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noise, shown in Fig.2 (a)-(d). As the value of C increases, a slight change of
C brings a big change of separating hyperplanes shown in Fig.2 (d)-(e). This
phenomenon implies that soft margin method is sensitive to the value C. To
overcome this problem, Multi Objective Programming(MOP) is introduced.

Surplus variable 1 is introduced in addition to slack variable €. Surplus
variable reflects the distance between separating hyperplane and correct data
recognized correctly. In order to improve discrimination ability, 17 should be
maximized. And in order to control the noise effect, £ should be minimized.
Now the following problem is introduced:

[MOPSVM] Minimize > &
i=1
i=1
s.t. yi (WTz; +b) =1-& +n
£€>0, >0 (i=1, ..., m)

One method for solving MOPSVM is Compromise Programming. Intro-
ducing the ideal points £€* and n*, the compromise programming can be ex-
pressed as follows [1] [2] [7]:

[MOPSVM-CP]  Minimize llwlls +df +dy
s.t. Yi (WTzi + b) =1-&+m
& -y G+df —df =0 (5)
nt =Y mi+df —dy =0
df,d;,dr,ds >0
£€>0, >0 (i=1, ..., m)

Fig.3 is the result by MOPSVM-CP for the example given in Fig.1 (a). The
discrimination boundaries are similarly horizontal separating hyperplanes.
However, the area S for the category B (of square data) with fewer data be-
comes too small depending on the ideal points. This implies that the method
may have a poor classification for the category B with fewer number of data.
Moreover, in Fig.3, these horizontal separating hyperplanes treat the isolated
data X as an outlier. However, if several new square data appear around the
point X as the time passes (e.g., Fig.1 (b)), the point X should be considered
as an important data rather than an outlier.

2.2 Minimizing the surplus

The discriminant boundary provided by MOPSVM-CP is not change sud-
denly depending on the ideal points, however, the area S becomes too small.
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Fig. 2. The result of LPSVM for the example in Fig.1 (a).
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Fig. 3. The result of MOPSVM-CP for the example in Fig.1 (a).

In addition, the point X, which may be important data in the future, is
considered as an outlier. In order to overcome the difficulties stated above,
Y% mi is minimized, and the area S becomes larger than the one obtained by
MOPSVM-CP. Now the following mathematical programming is introduced:

[MOPSVM-pt]  Minimize ||w||; + C; Zg, +Cy Z’h
=
(6)
s.t. y,(w zl+b)—1—§,+17,
£>0, n>0 (=1, ..., m)

Fig.4 is the result by MOPSVM-pt for the example given in Fig.1 (a).
This figure shows that MOPSVM-pt makes various separating hyperplanes
depend on the parameters C; and C;. This implies that MOPSVM-pt is
able to provide the discriminant boundary depending on the environment
by controlling C; and Cs, e.g., in Fig.4, MOPSVM-pt considers the isolated
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Fig. 4. The result of MOPSVM-pt for the example in Fig.1 (a).

point X as important data when C; = 10.0, C3 = 10.0, and it considers X
as an outlier when C; = 1.0, Cy = 1.0.

3 Application to Stock Investment problem

In this section, SVM is applied to incremental learning. Incremental learning
updates the rule when the knowledge is added. The environment in stock
investment tends to change suddenly, therefore incremental learning is ex-
pected to yield good results under this situation. The dataset consists of the
monthly stock price of some companies from January 1985 to November 1994.
It has a seven dimensional economic index. Training data are of the first 49
periods, and test data are of the left 70 periods.

The result using incremental learning is shown in Table 1. In comparison,
C = 10.0 is used for LPSVM, &* = 1.0,7* = 10.0 used for MOPSVM-CP,
and C; = 5.0, C2 = 10.0 used for MOPSVM-pt. Training data “buy” is
more than “not to buy”, while test data has a reverse situation. Therefore
this problem has a difficulty in treating a sudden change of situation. Existing
methods tend to overfit to only one category. LPSVM seems to bring better
correctness only for the data not to buy, while MOPSVM-CP brings a reverse
result. On the other hand, MOPSVM-pt seems to make better correctness
for both category.

4 Conclusion

Soft margin method (3) is sensitive to the value C, while the discrimination
boundary decided by MOPSVM-CP is not so much sensitive to the ideal
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Table 1. Comparison among LPSVM, MOPSVM-CP and MOPSVM-pt in terms
of rate of correctness for test data.

L [ ”correctness
Total 70.00%
LPSVM to buy 35.29%

not to buy|| 81.13%

Total 33.33%
MOPSVM-CP| to buy 94.12%
not to buy|| 13.46%

Total 77.14%
MOPSVM-pt | to buy 35.29%
not to buy|| 90.57%

points &* and n*. However, when the dataset has some unbalance in the
number of data, the soft margin method or MOPSVM-CP may give a poor
ability of classification for the category with fewer data. On the other hand,
MOPSVM-pt seems to work well for each category by controlling the values
C: and C5. The decision of 1 and Cs from the dataset, i.e., self-tuning of
C: and C; should be subject to a future research.
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Abstract DEA inefficiency can be characterized by scale and congestion
components. We show that the scale and congestion depend on the different
technology assumption. The scale component and congestion component depend
on the input disposability and returns to scale (RTS) assumptions, respectively. It
is also shown that the congestion is associated with the non-zero slack values.

Key words: data envelopment analysis (DEA), efficiency, congestion.

1. Introduction

Byrnes, Fidre and Grosskopf (1984) provide a decomposition of Data
Envelopment Analysis (DEA) inefficiency into scale and congestion components.
McDonald (1996) argues that the decomposition may be sensitive to the order in
which the two components are calculated, and consequently, use of the
decomp osition can result in misleading signals being given to management.
However, McDonald (1996) does not notice that different technologies are
employed in his two proposed decompositions. As a result, different outcomes of
scale and congestion measures should be expected.

By generalizing the definitions of scale and congestion, we show that the
scale and congestion component are dependent upon the nput disposability and
returns to scale (RTS) assumptions without benefit of this insight. McDonald
(1996) erroneously concludes that the decomposition is arbitrary. Finally, we
characterize congestion in terms of non-zero slack values.

! Joe Zhu wants to thank the financial support from the Japan Society for Promotion of
Science (JSPS). The paper was finished while Joe Zhu was visiting the Osaka University
under the JSPS Invitation Research Fellowship.
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2. Scale and Congestion Components

On the basis of two different returns to scale (RTS) assumptions and two
different input disposability assumptions, one can obtain four different efficiency
measures as listed in Table 1.

Table 1. Efficiency measures under different technologies.

Efficiency measures Returns to Scale (RTS) Input Disposability
CS Constant Returns to Scale (CRS) Strong
Ccw Constant Returns to Scale (CRS) Weak
\A Variable Returns to Scale (VRS) Strong
vw Variable Returns to Scale (VRS) Weak

Only three of these efficiency measures (CS, VS and VW) were defined and
used by Byrnes ef al. (1984) to define a specific scale component and a specific
congestion component. Within our more general framework a scale comp onent
can be obtained by comparing CRS and VRS technologies, and a congestion
component can be obtained by comparing strong and weak input disposability
technologies. Thus, one could define
Definition 1: (i) (Strong) Scale = CS/VS and (ii) (VRS) Congestion = VS/VW

Obviously, in the above definition, the scale component is based on strong
input disposability and the congestion component is based on VRS. On the other
hand, one could define:

Definition 2: (i) (Weak) Scale = CW/VW and (ii) (CRS) Congestion = CS/CW
where the scale component is based on weak input disposability and the
congestion component is based on CRS

Table 2. Three DMUs with two inputs and one output.

DMUI DMU2 DMU3
Input 1 1 2 2
Input 2 1 1 2
Output 3 2 4 3

Consider the three DMUs example of McDonald (1996) given in Table 2.
Table 3 provides the efficiency results for DMU3 under the different efficiency
measures.

From Zhu and Shen (1995) and Seiford and Zhu (1999), DMU3 exhbits
strong scale efficiency (CRS) since CS=VS, but weak scale inefficiency
(decreasing returns to scale (DRS)) since CW#VW. Alternate methods for
determining scale efficiency (Fare, Grosskopf and Lovell, 1994 and Banker and
Thrall, 1992) yield identical results. (Fare, Grosskopf and Lovell (1994) compute
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CS/VS =1 and CW/VW < 1, while the Banker and Thrall (1992) approach relies
on a CS solution with z ,1; =1 and a unique CW solution with 2 )L; >1))

DEA measure  Intensity vector ~_Radial component w;I,ﬁP}l,t slack
/1*1 =1.5 or N 5, =0

(O /1*2 =0.75 or 0 =015 57075
X =X,=05 %703

CwW xl is 0*:0.75 no slack

VS xl _ ;L*z 0.5 0*20'75 no slack

A 1*3 - 0*= 1 no slack

Fig. 1. Congestion at point C and No Congestion at point C

The above RTS estimation demonstrates that different input disposability
assumptions may lead to different RTS results for the same DMU. Consequently,
the different results for the scale component in definitions 1 and 2 should not be
unexpected. In fact, we have (strong) scale =1 and (weak) scale = 0.75. The latter
scale inefficiency is due to DRS. i.e., the assumption of weak input disposability
causes scale inefficiency. Thus, the scale component is dependent upon the
disposability assumption.

Next, note that the two congestion components which McDonald (1996)
compared were computed under two different RTS assumptions. In order to
further illustrate this point, we first examine the nature of congestion. Figure 1
plots an input isoquant. Input congestion is presented at C in the left Figure 1, but
absent at C in the right Figure 1 because of the presence of the weakly efficient
point D (a frontier point with non-zero slacks). The shaded regions indicate the
presence of input congestion. Because of weak input disposability, the isoquant
bends at point A in the left Figure 1 and similarly at point D in the right Figure 1.
Furthermore, note that if the efficient reference set consists of A, point C will have
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a positive slack value for the second input x2. However, for the efficient reference
set consisting of points A and D, point C will not have slack values. Thus, we
obtain the following theorem:
Theorem: VRS (CRS) input congestion is not presented at DMU, if and only
if there exist some referent frontier DMUs such that non-zero input slack values
are not detected for the VRS (CRS) strong disposability DEA measure.
[Proof]: We prove this theorem under definition 1, i.e., VRS. The proof under
definition 2, i.e., CRS, is similar.
The VS measure is

6’ =min@

n
s.t. lex,.j <6x, i=l,..m;

j=l

n (VS)
Zij,j >y r=1..s;
j=1
XA =1
j=1
A, 20 and 6 free
The VW measure is
¢" = min ¢
s.t. lexij =¢x, i=l.,m
j=1
, (VW)

Zlf.yrj 2y, r=LlL.s

J=1

Enl%- =L
=1
A; 20 and ¢ free.

The only difference between (VS) and (VW) is that the input inequalities are
changed to equalities. The referent frontier DMUs are those in the basis when
calculating the strong disposability model, say (VS). If we have some referent
DMUs such that no non-zero input slack values are detected for DMU,, then we

have, at optimality,
2 Ax;=0x,
jeB
where B represents the set of referent DMUs, B={j| /'L*j >0}. Obviously, /'L'] and

0" are also optimal for VW, therefore O = ¢. Thus no input congestion
occurs. This completes the ifpart.
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To establish the only ifpart, we note that if no input congestion occurs, then at

optimality, there exists a basis B’ such that ijxij = (I)*xio = 9*x,.0. This
jeB'

indicates that there exist some referent DMUSs such that the input constraints are
binding in (VS). Therefore no non-zero input slack values are detected by
reference to those DMUs in B'. -

[Remarks]: The input slacks in (VS) do not necessarily represent DEA slack
values (Banker et al. 1984). However, if all frontier DMUs are extreme efficient,
e.g., A and B, in Figure 1.A, then the input slacks are the same as the DEA slack
values. In the right Figure 1, because C can be compared to a convex combination
of D (weakly efficient) and A, no input slack is announced. (With a DEA model,
the same DEA slack should be obtained in either the left or right Figure 1.) See
Cooper, Seiford and Zhu (2000) for discussions on congestion measures based
upon slacks.

It is well know that in the single input and the single output situation, no input
or output slack will occur for CRS measures, whereas, non-zero slack values may
occur for VRS measures. That is to say, congestion will never occur with CRS but
can possibly happen with VRS. Clearly for the single input - single output case,
the congestion component depends upon the RTS assumption. Thus, in general
one should not be surprised to obtain different congestion results from different
RTS assumptions.

In the authors’ experience that the DEA efficient frontiers of most real world

data sets are composed solely of extreme efficient DMUs. Therefore, we readily
have the following:
Corollary: If the efficient frontier is only composed of extreme efficient DMUs,
then congestion occurs if and only if non-zero slack values are detected.
Furthermore, the factors responsible for the congestion are those with non-zero
slack values.

Fire et al. (1994) introduced a procedure for detecting the factors responsible
for the congestion. By the above results (non-zero slack values), one can easily
find and identify congestion and its sources without the need for calculating
another comresponding DEA measure satisfying weak disposability.

Finally to address McDonald’s (1996) concern, as to the order of comp utation
of the scale and congestion components, we have that

CcS Ccs VS

Decomposition 1 (definition 1): —— =

Vs Cs

Decomposition 2 (definition 2): _C_'S;: W s _ S Cw
VW Cw cw vyw

It is obvious from the above two equations that the outcomes have nothing to do
with the computation orders but rather reflect the different technologies upon
which the computations are based.
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3. Conclusion

We have examined the decomposition of inefficiency into scale and
congestion components and have shown that those two components depend upon
both disposability and RTS assumptions. Caution should be exercised when
discussing a particular decomposition. McDonald (1996) proposes two different
decompositions and obtains dramatically opposite outcome. He erroneously
concludes the decomposition is arbitrary and misleading. In fact, the different
outcomes of scale and congestion measures should be expected because different
technologies were assumed.

In closing, we note that the results and framework of his paper can be further
extended in several obvious directions. Scale component could also be defined
under different output disposability assumptions. Congestion measures could be
defined under other RTS assumptions such as nonincreasing or nondecreasing
returns to scale. Again different should be expected from those new technologies.

Finally, we limited our discussion of decomposition to the input-oriented
DEA measures. Similar remarks can be made for the output-oriented DEA
measures.
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Abstract: Constrained facet analysis is used to evaluate decision making units
(DMUs) which have non-zero slacks in data envelopment analysis (DEA) by
requiring a full dimensional efficient facet (FDEF). The current paper shows that
the FDEF-based approach may deem those extreme efficient DMUs which are not
located on any FDEF as inefficient. Using strong complementary slackness
condition (SCSC) solutions, this paper develops an alternative method for the
treatment of non-zero slack values in DEA. The newly proposed method can deal
with the situation when FDEFs do not exist.

Keywords: Data Envelopment Analysis (DEA); Efficient; Slack; Strong
Complementary Slackness Condition (SCSC).

1. Introduction

Experience with the application of data envelopment analysis (DEA) shows
that two inefficient decision making units (DMUs) may have the same efficiency
score, but one may have larger amount of underutilized resources or unachieved
outputs, i.e., non-zero slacks, than the other. Those non-zero slacks are treated by
an infinitesimal (€) Charnes et al. (1979) (CCR), or by extrapolated efficient facets
in Bessent et al. (1988) and Chang and Guh (1991).

The constrained facet aalysis by Bessent et al. (1988) fails to work when
extreme efficient DMUs span a non full dimensional efficient facet (FDEF). A
FDEF refers to an efficient facet withm+s-1 dimension under CCR model, where
m and s are the numbers of inputs and outputs, respectively. Green et al. (1996)

! Joe Zhu wants to thank the financial support from the Japan Society for Promotion of
Science (JSPS). The paper was finished while Joe Zhu was visiting the Osaka University
under the JSPS Invitation Research Fellowship.
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develop a mixed-binary linear programming problem to treat the non-zero slacks.
Green et al. (1996) claim that a basic requirement for their implementation is that
there must be at least m+s-1 CCR extreme efficient DMUs. However, m+s-1 CCR
extreme efficient DMUs do not necessarily span a FDEF, and they may span
several non-FDEFs. Particularly, some extreme efficient DMUs which are not
located on any FDEF may be termed as inefficient by the mixed-binary linear
programming problem even the number of extreme efficient DMUs is greater than
m+ts-1. This indicates that Green et al.’s (1996) new implementation also requires
the existence of FDEFs, rather than the existence of at least m+s-1 extreme
efficient DMUs. But this condition may not be satisfied in real world applications
(see Bessent et al. 1988).

The current paper places lower bounds that are obtained by strong
complementary slackness condition (SCSC) solution pairs for extreme efficient
DMUs. It is shown that our method does not change the efficiency ratings for
those DMUs which do not have non-zero slacks.

2. Determination of the lower bounds

Suppose we have n decision making units (DMUs). Each DMU; j=12,.,n

produces s different outputs y,; (r = 1, 2, ..., 5) using m different inputs x; (i = 1,
2, ..., m). Then the Charnes et al. (1978, 1979) (CCR) model with infinitesimal &
can be expressed as:

max ¥ u,y,, 1)

r=1

S S
s.t. Zu,yri—ZV,.xii <0 j=1...,n;
r=1

i=1
m

z vix, =1
i=1

v, 2 €.

ro> i

u

The above CCR model is equivalent to the following fractional programming
model:

S u, )
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On the basis of CCR model (1), all » DMUs can be partitioned into six classes
E, E, F, NE, NE, and NF (Charnes et al. 1991). The first two are efficient, F class
is frontier but has non-zero slacks, and the last three are DEA projections in E, E,
F, respectively.

DMU:s in class E determine the efficient facets. An efficient facet can be either
a FDEF spanned by m+s-1 CCR extreme efficient DMUs, or a non-FDEF spanned
by some CCR extreme efficient DMUs whose number is less than m+s-1. Here we
need a regularity condition that every subset of m+s-1 extreme efficient DMUs is
linearly independent. Otherwise, if a subset of m+s-1 extreme efficient DMUs is
linearly dependent, then the dimension of this efficient face will be strictly less
than s+m-1.

Note that the purpose of introducing non-Archimedean € is to impose the
positivity on DEA multipliers. The non-zero slacks are relative to the zero optimal
values of multipliers. If we can determine the positive lower bound on each
multiplier, then by the complementary slackness condition of linear programming,
we can suppress the non-zero slacks and consequently obtain a comparable overall
efficiency score for each DMU.

Note that there must exist a non-zero optimal multiplier solution for a DMU in
set E. But we cannot conclude that for a DMU in set E, the optimal multipliers are
always positive after running the DEA model without & Because of the multiple
optima, zero optimal multipliers are likely to occur. In order to deal with this
situation, we use the solutions that satisfy strong complementary slackness
condition (SCSC) which states that there exists an optimal solution ( },;, s

_ * * * . . . ops
S; U,, v;, t;)for which, in addition to complementary slackness condition, we

i?

have s*+u’ >0 (r=1,..,8), s7+y >0G=1,..., m), /l}*‘t; >0G=1, ...,

S s
n), where ‘-El,u,y,,» +2:,foi,- .

r= =
Lemma 1: For a specific DMU,, let 57,5l and v be an optimal solution. If
this optimal solution satisfies SCSC, then 42 and ,° are all positive.

On the basis of Lemma 1, we can find a set of positive optimal dual multipliers
for each DMU in set E. As stated in Charnes et al. (1991), the procedure for
computing SCSC solution is well adapted for DMUs in set E. But first we need to
find out DMUs in set E. By the resent results of Thrall (1996), we solve the
following modified DEA model (see Seiford and Zhu (1999) for a detailed
discussion on this type of DEA models):

max S, .,
r=1
S Kl 3
st Uy~ 2% S0 j#o 3)
r=1 i=1
m
vx, =1
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The DMU, under evaluation is excluded from reference set. Then DMU,€E

if and only if the optimal value to (3) is greater than one, or (3) is infeasible.
Next, since we only interest in positive multipliers, we find a SCSC solution for
a specific DMU, € E by the following model:

max ) ¢+ iu, + iv,.
Jj#o r=l i=l

s s
s.t. -Zu,y,}-+2v‘.xij=tj ]#0,
r=1 i=1

n )
vx, =1
i=1
>uy, =1
r=1
u,v.,t.20.
r> i’

We solve (4) and remove positive ¢, #,, and v;, then re-run (4) until the optimal
value is zero, i.e., all ¢, u,, and v; are removed from the objective function. An
optimal multiplier solution pair (3°,v?) that satisfies SCSC is the average of all

(u,, v;) in each step.
Now for convenience, let first Q DMUSs be those in set E, i.e., DMU, €E for q
=1, 2, ..., Q. Denote SCSC solution for each DMU, as u' and v

Then we have the following algorithm:
Step 1: Find out all extreme efficient DMUs by (3).
Step 2: Compute SCSC solution for each DMU in set E by (4).

Step3: Let " = min {u?} and y; = min {v]
q=1,.,0 q=1,...,0
Step 4: Denote set J={i|x, haszeroslack vale,DMU, e For NF} and set
R={r|y, haszeroslack value, DMU, € F or NF} -
Step 5 Add the constraints y, >y ieland y >4 reR into the

unbounded (¢ = 0) DEA fractional programming model:

s
DY v
r=1

m
z“)ixia
i=1

i uryrj (5)

st = <1 j=12,.,n

ZW:x.y-
i=1

U, >u,reRyw,2v, iel.
Step 6: Run the DEA model (5) with lower weight bounds.

max
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Note that the lower bound DEA model (5), is a fractional programming
problem. By the Charnes-Cooper transformation in Charnes and Cooper (1962),
we can obtain the following equivalent linear multiplier DEA model.

S
max Y u,y,,
r=1
S
st Zu,y,j —Zv,xy <0 j=1l..,m (6)
r=1 i=1
m
Zv,xm =1
i=l
—u, +tu <0 reR
—v,+t,v, <0 iel

u, 20,re R;v, 20,iel.
in which t = (iWi x,)" >0 is the transformation factor for DMU, (see also Roll

et al. 1991). It is easy to show the following.
Lemma 2: Suppose #, and Vv, is an optimal solution to (1) with £= 0, then it
is also an optimal solution to (2) with £ = 0.
Theorem: (i) If pMU €E, or E', or NE, or NE' under the DEA model without g,
then the efficiency classification of this DMU, remams the same under the DEA
model with lower weight bounds of ,’ and v, (i) If DMU,€F or NF under
the DEA model without €, then the efﬁmency score of DMU will be changed
under the DEA model with lower weight bounds of u and v

The above theorem indicates that (i) the approach described here not only
allows the weight flexibility in original DEA model, but also imposes positivity of
multipliers so that we obtain an efficient frontier rather than a weakly efficient
frontier, and (ii) our approach does not require the existence of FDEF.

The proposed technique is demonstrated by seven DMUs given in Chang and
Guh (1991) (see Figure 1).

5

AP P FREE P

: ouputLy:1 1 1 11 1 1
24 inputl,x,: 1 2 4 53 2 9
input2,x,:4 2 1 12 3 2

Fig. 1. Hypothetical Efficient Facet

We have that E={P;, P;, P3}, NE’={Ps, P}, F={P;} and NF={P;}. The SCSC
solutions for Py, P, and Py are (1,0.60, 0.10), (1, 0.25, 0.25), and (1, 0.10, 0.60),
respectively
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Thus 4" =1,v; =0.1,v,=0.1 and I = {1} and R = &. Then we have the lower
bounds of w, 20.1 in model (7). Now we obtain the adjusted efficiency scores

10/11 and 10/21 respectively for P4, and P.

However, we should note that our approach is dependent of the choice of SCSC
solutions. As a matter of fact, the lower bounds (SCSC solutions) introduce some
hypothetical efficient facets at the end of original efficient facets. These kinds of
facets are part of different supporting hyperplanes at DMUs in set E. Thus, if we
choose a different set of SCSC solutions, the lower bounds will be changed and
consequently, the adjusted efficiency score for a DMU€eF or NF may be different.
For example, the lower bound in the above example introduce a new point X
(10,0) and P;X becomes our hypothetical extended efficient facet for measuring
the efficiency of P, and P; which have non-zero slack onx; (see Figure 1). If there
exists a FDEF near the area of P; and Ps, say P, P3, then P;Y is the extrapolated
efficient facet by Chang and Guh (1991) and Bessent et al. (1988). Different
SCSC solutions may establish different hypothetical efficient facets in the region
below ray P; P4 and above P;Y. In fact, the infinitesimal £ constructs a
hypothetical efficient facet with norm (€, 1) in that region for P, and P;.

References

Bessent, A., Bessent, W., Elam, J., and Clark, T. (1988), “Efficiency frontier determination
by constrained facet analysis”, Operations Research 36/5, 785-796.

Chang, K.P., and Guh, Y.Y. (1991), “Linear production functions and data envelopment
analysis ", European Journal of Operational Research 52, 215-223.

Charnes, A., and Cooper, W.W. (1962), “Programming with linear fractional functions”,
Naval Res. Logist. Quart. 9, 181-186.

Charnes, A., Cooper, W.W., and Rhodes, E. (1978), “Measuring the efficiency of decision
making units”, European Journal of Operational Research 2/6, 429-444.

Charnes, A., Cooper, W.W., and Thrall, RM. (1991), “A structure for classifying and
characterizing efficiency and inefficiency in data envelopment analysis”, Journal of
Productivity Analysis 2, 197-237.

Green, R.H., Doyle, J.R., and Cook, W.D. (1996), “Efficiency bounds in data envelopment
analysis”, European Journal of Operational Research 89, 482-490.

Roll, Y., Cook, W.D. and Golany, B. (1991), “Controlling factor weights in data
envelopment analysis”, IIE Transaction 23, 2-9.

Seiford, L.M. and J. Zhu (1999), “Infeasibility of super-efficiency data envelopment
analysis models,” INFOR 37 (May) 174-187.

Thrall, R. M. (1996), “Duality, classification and slacks in DEA,” Annals of Operations
Research 66 109-138.



An Extended Approach of Multicriteria
Optimization for MODM Problems

Hua-Kai Chiou *, Gwo-Hshiung Tzeng "'

? Institute of Management of Technology, National Chiao Tung University; Fac-
ulty of Department of Statistics, National Defense University, P.O. Box 90046-
15, Chungho, 235, Taiwan. Fax:+886-2-22250488

® Institute of Management of Technology, National Chiao Tung University, 1001,
Ta-Hsuch Rd., Hsinchu 300, Taiwan. Fax: +886-3-5726749

Abstract

In this paper we propose an extended method for multicriteria optimization and
compromise solution to solve multiple objective decision making (MODM) prob-
lems. This method assumes that optimal compromise solution should have the
shortest distance from the positive ideal solution (PIS) as well as the longest dis-
tance from the negative ideal solution (NIS). We use the membership function of
fuzzy set theory to express the satisfaction level, and use max-min operation for
this bi-objective programming problem To illustrate this procedure, prequalifica-
tion for the project bidding process of an outsourcing partner for semiconductor
enterprise in Taiwan is solved by use of our procedure.

Keywords: compromise solution, fuzzy set theory, max-min operation, semicon-
ductor, prequalification

1. Introduction

Kuhn and Tucker (1951) published one of earliest considerations of mu ltiple
objectives using vector optimization concept, followed by Yu (1973) who pro-
posed a compromise solution method for coping with multicriteria decision-
making (MCDM) problems. Subsequently, there have many works using MCDM
for applications such as transportation investment and planning, econometric and
development planning, capital budgeting, investment portfolio selecting, health
care planning, forest management, public policy and environmental issues, etc.

Dealing with MCDM problems decision makers have more than one objective
or goal in selecting a course of action, while satisfying the constraints dictated by
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environment, process and resources. Mathematically, these problems can be repre-
sented as:

max/min [f,(x),fz(x),,fk(x)]
st.  xe X, X ={x| g,(x) <0, i= 1,2,...,m}

where x is an n-dimensional vector of decision variables, that consists of m con-
straints andk objectives. Any or all of the functions may be nonlinear.

On account of incommensurability and conflicting nature of the multiple crite-
ria, Yu (1973) proposed compromise solution methods. Hwang and Yoon (1981)
proposed TOPSIS using the concept of optimal compromise solution. Lai et al.
(1994) further utilized the Euclidean distance to drive the TOPSIS approach for
MODM problem. In addition, Opricovic (1998) proposed a new approach called
VIKOR to solve the MODM problem. However, the VIKOR method considered
only the shortest distance of L -metric from PIS.

)

In this paper we extend both VIKOR and the compromise solution method, also
considering the optimal compromise solution that satisfies both the shortest dis-
tance from PIS and the longest distance from NIS. We also use membership func-
tions to express the satisfaction level and employ maxmin operation for this bi-
objective programming problem. To illustrate this procedure, the selection of an
outsourcing partner for a Taiwan semiconductor enterprise is solved by use of this
procedure.

Follows, the concept of multicriteria ranking and compromise solution with dis-
tance of Minkowski’s LP -metric is reviewed in Section 2; the evaluation model of

this study is presented in Section 3; an illustrative example shown in Section 4
demonstrates this model in practice; the conclusions are summarized in Section 5.

2. The Multicriteria Metric for Compromise Ranking
Methods

With a given reference point, the MODM problem can then be solved by locating
decision points that are the closest to the reference point. Generally, the global cri-
teria method measures the distance using Minkowski’s Lp -metric, which defines

the distance between two points, f and f* in k-dimensional space as follows

k Yp
Lpz{Z(ﬁ'—ﬁ)”} , where p2>1 ©))

where f* is the reference point, and distance Lp decreases as p increases, i.e.,

L 2L, 2---2L, . Specifically, L, called the Manhattan distance and L,, called

the Euclidean distance are the longest and the shortest distances in the geometrical
sense, respectively, whereas L_, called the Tchebycheff distance, is the shortest

distance in the numerical sense, that is,
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= maxll ] o
With the concept of compromise solution, we then transfer Eq.(1) to the follow-
ing bi-objective problem,
min  L’®(x)

max L) (x) 4
st. xe X

where p=1,2,...,00, [’ and L':’s represent the distance of L, -metric from PIS

and from NIS, respectively. Since there are usually conflicts with each objective,
it is difficult to simultaneously obtain their individual optima. Thus, we utilize the
membership functions (, (x) and y,(x) to represent the satisfactory level of bi-

objective functions and use the maxmin operation (Bellman and Zadeh 1970,
Zimmermann 1978) to drive the equivalent model giving the same values of o :

max o
st. u@za and p,(x)zo )
xeX
where a = min(l, ,i, ) is the minimal satisfactory level for both objectives, and in
practice the parameter ¢ is generally subjectively selected by DM.

3. The Extended Compromise Ranking Approach

In this study, we consider that the optimal compromise solution should have the
shortest distance from PIS as well as the longest distance from NIS. Firstly, we
employ normalization by reference point to remove the effects of the incom-
mensurability nature, and then establish the algorithm as following steps:

1. Determine the best value f” and the worst value f;~ of all criterion functions,
where f; is the value of i-th criterion function for the j-th alternative, respec-
tively, for criteria i=1,...,k, we have
S =maxfy, f7=minf,

J J

2. Compute the values of S;°, SY* R™ , and R for j=1,..,J . The first two
represent the L -metric for p=1 and the last two represent the L, -metric for
p = oo from PIS and from NIS, respectively.

S;vs - i f j!‘[_ . _2" f;)’ _fi_

5, -5 ©

e _max[ L=t ] R _max[ S S ]

AR AR




114 Hua-Kai Chiou and Gwo-Hshiung Tzeng

where w, represents the relative weight of i-th criterion.
3. Compute the values Q; and Q}° for j=1,..,J which is defined as
S;’ls _ (SPIS )— Rfls _ (RPIS )—

=V et (1Y, ) e —
Q] VP (SPIS) _(SPIS)— ( v ) (R ) —(R S) (7)
0" =v, el G PR il G

" E™) (8™ R™Y - (R"™)

where 0 Svp <1, 0<vy,<1,and
(™) =max §7°;(S™)” = min S7°;(R™)" =max RY*;(R™)” =minR";
j J J J
(SNIS )‘ — max S]NIS ;(SNIS)— = min S?IIS;(RNIS) * =maxR‘;VIS;(RNIS)— =Imn R]I.WS.
J J J J
4. The objective of our approach is to solve following mathematic programming:
min Q" (x)-0" (x) ®
st. xelX
where X is the set of feasible solutions, and setting the same importance for the
values Q7" and Q" in this study.

4, lllustrative Example

Project mangers are faced with decision environments in complex projects. The
elements of the problems are numerous; the interrelationships among the elements
are extremely complicated; and human value and judgment systems are integral
elements of project problems (Lifson and Shaifer, 1982). Therefore, the ability to
make sound decisions is very important to the success of a project.

Prequalification is defined by Stephen (1984), Moore (1985) and Clough
(1986) as the screening of construction contractors by project owners or their rep-
resentatives according to a predetermined set of criteria deemed necessary for suc-
cessful project performance. Thus, prequalification means that the contracting
firm wishing to bid on a project needs to be qualified before it can be issued bid-
ding documents on which it can submit a proposal. Prequalification can aid public
and private owners in achieving successful and efficient use of their funds by en-
suring that only qualified contractors will bid on the project.

A simplified project example of contractor prequalification is presented here
for demonstration purposes. To simplify calculations, the seven factors that are
considered to evaluate this project example for prequalification are experience, fi-
nancial stability, capital assets, quality performance, manpower resources,
equipment resources and current workload.

Table 1 presents a project example for which contractors A, B, C, D and E wish
to prequalify. In order to evaluate these participating contractors, we first employ
AHP to aggregate the judgment of group decision-making behavior. After deriv-
ing the relative weight among considered criteria shown as Table 2.
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Furthermore, we utilize the extended compromise ranking method step by step
in Section 3, where there are two minimal criteria, financial stability and current
workload. For both of these, smaller values are better, while other criteria seek
maximal values; here we pick v, =v, =0.5 in general. Finally we can conduct

the Q7 and Q7 by Eq.(7), and obtain the preference order of participating con-

tractors by Eq.(8), as shown in Table 3: E> C> D> B> A, where E > C indi-
cates the prequalification result of contractor £ being superior to contractor C.
This has almost the same preferential order with VIKOR method, except for con-
tractor C and contractor D. It seems that these two contractors are not comparable
because their difference in Q value (Opricovic 1998) does not exceed 0.25.

Table 1. Qualification of participating contractors in project bid

Contractor A B C D E
Experience 5 years 7 years 8 years 10 years 15 years
Financial ~ High growthrate $5.5 M liabilities $6 M liabilities $4 M liabilities $1.5 M liabilities
Stability no liability

Capital Asset $7 M assets $10Massets  $14Massets  $11 Massets  $6 M assets

Quality )
> Good Medium Good Good Weak

MapOwer o) jaborers~ 100laborers  120laborers 90 laborers 40 laborers

Equipment 4 mixer 6 mixer 1 mixer 4 mixer 2 mixer
Resources  machines machines machines machines machines
Current 2 projectinmid 2 projects ending 1 medium 1 medium 2 small projects
Workload  and 1 big project project started  project inmid  started and 3
ending and2projects and 2 big projects ending
ending projects ending

Table 2. The weight of considered criteria by AHP

. Financial Capital Quality Manpower Equipment Current
Factor  Experience Stability _Assets Performance Resources Resources Workload
weight 0.372 0.204 0.102 0.148 0.053 0.039 0.082

Table 3. The compromise solutions’ distance from PIS and NIS w.r.t. each contractor

Contractor A B C D E

Value of O7° 1.00000 0.73858  0.31201  0.27693  0.00000

Value of O} 0.07088  0.09535  0.50976 0.45157  1.00000
PIS NIS

0" -0; 0.92912  0.64323 -0.19775 -0.17465 -1.00000

Preferential order 5 4 2 3 1
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5. Conclusion

Project management involves complex decision-making situations that require
discerning abilities and methods to make sound decisions. This paper has success-
fully demonstrated the revised compromise ranking method using L -metric dis-

tance family to find optimal solutions that have shortest distance from positive
ideal solution, as well as has longest distance from negative ideal solutions.
In addition, this compromise solution is stable within different decision-making

processes, whether they be “voting by majority rule” when ether v, > 0.5 or
vy > 0.5 is needed, or “by consensus” with either v, = 0.5 or v, = 0.5, or “with
veto” with either v, <0.5 or v, <0.5. Both v, and v, are the weights of deci-
sion making strategy with the majority of criteria.
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Abstract. We consider scalarization techniques for multiobjective combinatorial
optimization. We briefly discuss the problems occurring in known methods and
show that a new method of elastic constraints can overcome these. The method
is a generalization of both the weighted sum method and the &-constraint method
and generates all Pareto optimal solutions. We show an application of the method
in airline crew scheduling, where we optimize cost and robustness of solutions.
Numerical results on real world instances are given.

1 Multiobjective Combinatorial Optimization

A multiobjective combinatorial optimization problem (MOCO) is the follow-
ing mathematical program:

min(clz, ... ,CQT)
subject to Az <b (1)
x > 0, integer.

Here c; € R™, j = 1,...,Q are (Q objective vectors, z € IR™ is a vector of
variables, A € IR™>™ is a constraint matrix and b € IR™ a right hand side
vector. It is therefore an integer programming problem with n variables z;
(these are usually binary), m constraints, and @ linear objective functions.
The feasible set X = {z : Az < b;z > 0;z integer} is finite and represents a
combinatorial structure, e.g. the set of perfect matchings of a graph. We un-
derstand the minimization in the sense of Pareto optimality (efficiency). For
a survey on the state of the art in multiobjective combinatorial optimization
see [2].

MOCO problems are usually solved using scalarization techniques. The
most popular one of weighted sum scalarization is

Q
min } el z, (2)
z€X
i=1
which uses a weighting vector A € Rf with Efil A; = L. It has the drawback
that it cannot find all Pareto optimal solutions, due to the feasible set X not
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being convex. On the other hand, it preserves the structure of the problem
and the computational effort for solving the scalarized problem is exactly the
same as for the single objective version of the problem under consideration.

The situation is completely different for the e-constraint method, which
is based on the scalarization

min ¢ ©
ze€X (3)
. T .,
subject to c;z <¢ej, j#14,

where the ¢; denote bounds on the objectives C]T.’L‘. Using this, all Pareto
optimal solutions can be generated. However, the knapsack constraints that
have been added imply that the scalarized problem is often NP-hard, even
if the single objective version of the problem is polynomially solvable, see
references in [2]. In addition, the constraints also tend to make NP-hard
problems even harder, as we shall see below.

Similar comments apply for other methods, such as the augmented weight-
ed Chebychev method, or Benson’s method. The reason is that the scalar-
izations used in these methods are essentially models in which constraints on
the objectives are present.

2 The Method of Elastic Constraints

From the above observations the challenge is then to find a solution method
for MOCO problems in which the scalarizations do not introduce too much
additional difficulty, like the ones based on constraints, and which are able
to generate the whole set of Pareto optimal solutions.

Such a technique is the method of elastic constraints. The idea is to allow
the constraints on objective values in (3) to be violated, but to penalize that
violation in the objective function. Thus the scalarization becomes

T
;rél)rg c; T+ ijsu]-
J#i
subject to c]Tm +sl;—su; =¢; j#i.
slj,su; >0 j#i1

(4)

Here the constraints of (3) are relaxed by introducing a slack variable s;
and a surplus variable su; for each of the constraints on objective values.
Parameters p; penalize positive values of su;, i.e. constraint violation. The
following theorem is the main result about this method.

Theorem 1. 1. An optimal solution of (4) is a Pareto optimal solution of
(1), if pj >0 for all j # 3.

2. Let z* be a Pareto optimal solution of (1). Then there is some ¢ € IR
and for each i = 1,...,Q a vector p* € R~ such that =* defines an



The Method of Elastic Constraints 119

optimal solution of (4) for this i for all penalty vectors p € IR® with
pj = P5,J # 1

Note that the first part is ’qrivial. For the second it is sufficient to consider
e=(cfz*,... ,cha*) and p} = max(max . .roccrey (6] & — ¢f ) /(] 2* -
cT'z),0), where z',... ,2!,... 2" are all Pareto optimal solutions of (1).

We give a small example to illustrate the method.

min(z, z2)
subject to 2z; + 3z2 > 11
1,72 < 4

1,2 > 0, integer

This problem has Pareto optimal solutions (0,4), (1,3), (3,2), and (4,1), of
which (3,2) is unsupported, i.e. not optimal for (2) for any choice of . To
identify (3,2) as an optimal solution of an elastic constraint problem (4), we
choose i = 2,¢1 = 3 to get

min x2 + p1suy
z€X

subject to 1 + sl —su; =3
T e X.

It is easy to see that for all p; > 1 (3,2) is a unique optimal solution of the
problem. Indeed, there is a whole range of parameters that yield (3,2) as
optimal solution.

It is interesting to note two special cases. First consider ¢; = min{c]Tz :
xz € X}, j # i. This implies that all slack variables sl; are zero and thus
the scalarized problem is equivalent to a weighted sum problem. Secondly,
consider p; = 0o, j # i. Here, all surplus variables su; must be zero and
the problem is equivalent to an e-constraint problem. The method of elastic
constraints is therefore a common generalization of the weighted sum and the
e-constraint method. In contrast to other such methods with this property,
e.g. [5], our scalarized problem does not retain the “hard” form of the con-
straints present in (3), which turns out to be its major advantage, as will be
shown below. Further discussion of the method can be found in [3].

3 Bicriteria Airline Crew Scheduling: Cost and
Robustness

Airline crew scheduling consists of two distinct problems. The tour of duty
(ToD) or pairings planning problem, which involves the construction of tours
of duty, and the rostering problem, which means the allocation of ToDs to
individual crew members. Here we consider the ToD planning problem. A
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tour of duty consists of sequences of flights and rest periods that can be
operated by a crew member. This problem can be formulated as a gener-
alized set partitioning model, in which the variables are all legal ToDs and
the constraints guarantee that each flight in the flight schedule is covered by
exactly one ToD. Additional base constraints with non-unit right hand sides
are included to take into account the available crew at each base. The objec-
tive is to minimize cost. These problems are solved using LP relaxations and
branch and bound. Column generation techniques are used to accommodate
the huge number of possible variables. The branching process is specifically
designed for the model using so-called constraint branching. An overview on
optimization techniques for airline crew scheduling can be found in [1].

Statistical delay information from airline operation indicates that min-
imal cost sets of ToDs can contribute to increasing delays throughout the
day because crew are sometimes required to change aircraft. If in that case
insufficient ground time is scheduled a delay of the aircraft on which the
crew member arrives might cause a delay for the aircraft on which that crew
member departs. Our goal was to find solutions of the ToD planning prob-
lem which do avoid this behaviour as far as possible while at the same time
remaining cost effective. We developed a linear objective function that mea-
sures the vulnerability of a solution to disruptions (i.e. the non-robustness of
a set of ToDs, see [4]). This yields a bicriteria tour of duty planning model:

min[rTz, ¢ ]
subject to Ajxz =€
Az =0
z € {0,1}.

Here Ajx = e, where e = (1,...,1)7 are the flight constraints (each flight is
in exactly one ToD) and A2z = b are the so-called base constraints mentioned
earlier. The elastic constraint reformulation of the problem is as follows.

minrTz + psu
subject to cTz 4+ sl —su=¢

Az =e
AziE =b
z € {0,1},

where € is a desired cost level that can be given as a certain percentage
increase over the optimal integer solution of the single objective problem of
minimizing cost alone.
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4 Numerical Results

We implemented the weighted sum method, the e-constraint method and the
method of elastic constraints and solved real world ToD planning problems
for technical (pilot and first officer) and cabin crew.

The results show that the weighted sum method finds too few solutions,
and also that the intervals of the parameter A that yield some of these so-
lutions when the weighted sum objective minc”z 4+ Ar”x is used are very
small. This shows that the solution is very sensitive to small changes of A. It
is therefore not useful in practice. The e-constraint method needed unaccept-
able computation times, sometimes exceeding the node limit of 1000 nodes
before finding an optimal solution.

For the elastic constraint method the computation times did strongly
depend on the value of p: The smaller p, the quicker the problem was solved.
Note that larger values of p yield problems that approach the e-constraint
scalarization with its computational difficulties.

Below we show the solutions found on two problem instances for technical
crew (Fig. 1) and cabin crew (Fig. 2). Here we increased the value of £ in steps
of 0.5% over the cost optimal solution until the optimal value of robustness
was reached. The penalty was chosen to be the slope of the efficient frontier
of the LP relaxation (the piecewise linear curve shown in Figs. 1 and 2) at
the chosen right hand side value of the cost constraint and bound gaps of
0%, 2%, and 20% were used. In both figures the vertical line indicates the
optimal cost when solving the single objective problem. The non-robustness
objective coefficient r; for a ToD was computed as a sum of a penalty value
that reflects the non-robustness caused by any pair of subsequent flights in
a ToD. This penalty is either O if both flights are on the same aircraft or
the ground duty time plus the expected delay of the incoming flight plus two
times the variance of that delay minus the scheduled ground time between
the flights, if that number is positive. More detailed results are given in [4].

5 Conclusion

We have shown that well known methods for solving multiobjective optimiza-
tion problems fail to solve large scale multiobjective combinatorial optimiza-
tion problems that appear in real world applications. As a consequence we
developed the method of elastic constraints which combines the advantages of
the weighted sum and e-constraint methods but avoids their disadvantages.
The method was used in a real world application to solve airline crew schedul-
ing problems. The numerical results illustrate the potential of the method of
elastic constraints to solve MOCO problems of practically relevant sizes, i.e.
large scale problems.
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Fig. 1. Set of solutions for technical crew.

Fig. 2. Set of solutions for cabin crew.
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Abstract. We propose a new approach for obtaining two interval efficiency values
with interval data as an extension of DEA. We deal with interval data that can
reflect uncertainty in real situations. The two interval efficiency values are obtained
from the optimistic and pessimistic viewpoints. Their upper and lower bounds are
obtained by two different extreme values in the given interval data respectively.
Thus, we formulate four types of efficiency values from two viewpoints with two
extreme values in the given interval data. Our emphasis is to obtain two interval
efficiency values reflecting uncertainty of the given data. Thus our approach can
be described as a kind of interval data analysis. A numerical example is shown to
illustrate our proposed approach.

1 Introduction

DEA (Data Envelopment Analysis) is a non-parametric technique for mea-
suring the efficiency of DMUs which stand for Decision Making Units with
common input and output terms [1]. In DEA, the ratio of weighted sum
of output data to that of input data is assumed to be the efficiency of the
DMU. The input and output weights are variables that are determined so as
to maximize the analyzed DMU'’s ratio subject to the condition concerning
every DMU. Therefore, the efficiency value obtained by the optimal weights
is regarded as the relative evaluation value from the optimistic viewpoint.
This is so-called DEA generally.

We have already formulated the efficiency value from the pessimistic view-
point in [4] where the input and output weights are determined to minimize
the ratio of the analyzed DMU to the other DMUs. Thus, the efficiency is
estimated as an interval value constituted of the optimistic and pessimistic
efficiency values.

In this paper, we deal with interval data that reflect uncertainty in real
situations. Since there is no doubt that real problems contain some uncer-
tainty, uncertain phenomena need to be handled. Various studies [2][5] have
been discussed on uncertainty in real problems. For instance monthly sales
change every month depending on such as economic situations, seasons and
so on. Thus monthly sales can be regarded as an interval value including
all the given possible values. We have to deal with interval data reflecting
uncertainty in real problems.
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The aim of this study is to obtain two interval efficiency values. They
are formulated by four types of efficiency values as [max min, max max| and
[min min, min max] where [ ] denotes an interval value. Each of the inner
operations, max or min, is based on the optimistic or pessimistic viewpoint re-
spectively. Each of the outer operations, min or max, is based on the extreme
values in the given interval data. The former and latter interval efficiency val-
ues are called the optimistic and pessimistic approximations of efficiency. We
put our emphasis on interval efficiency values from two different viewpoints.
Our results obtained by our proposed approach might be adequate for real
situations.

Lastly, a numerical example is shown to illustrate the proposed approach.

2 Relative Efficiency Value

The relative efficiency value of the analyzed unit DM U, is denoted as follows.

vy,
b0 = — e~ 1)
max; (W‘;’)

where x; and y; are the given input and output vector of DMU; whose
elements are all positive, and v and u are the weight variables. The numbers
of input and output data and DMUs are m, k and n, respectively. The ratio
of weighted sum of output data to that of input data for DMU, is compared
to the maximum ratio of all DMUs.

By maximizing or minimizing (1) with respect to the weight variables,
v and u, 6, is approximated by two kind of values, 6} and 6o.. They are
the extreme values of the relative efficiency values from the optimistic and
pessimistic viewpoints for DMU,.

The problem to obtain 8} is formulated as follows.

'u.:y
* __ VT,
bo =y — ey, 2)
i\ vtz

st.u>0, v>0

The weight variables are determined to maximize the relative efficiency
value 6,. Then we call 0} optimistic approximation of 6,.

On the other hand, by minimizing 6, with respect to the weight vriables,
0,4 is obtained by the following problem.

ut
va:o
t
ey () ®
st.u>0, v>0

Oox = mln
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0,4 is called pessimistic approximation of 8,, since the relative ratio 4, is
minimized.

The relative efficiency value and two approximations by (2) and (3) have
the inequality relation 8, < 6, < 8. The efficinecy value measured relatively
is smaller than the optimistic approximation and greater than the pessimistic
one. We use two extreme values obtained from the optimisitc and pessimistic
viewpoints to approximate and denote the relative efficiency value. In the
previous study [4], the relative efficiency value is defined as an interval value
[6ox,0%] based on the possibility concept.

3 Approximations of Relative Efficiency Value with
Interval Data

In real situations, there are cases that uncertain phenomena need to be han-
dled. Considering the possibility of all the observations, the input and output
data are given as interval values. The interval input and output data are de-
noted as follows with their upper* and lower, bounds.

input data ouput data
Tjr € [Tjre, T, ] . i € Wipe )
x; = (T}, s T y; = (y}l,...,y;fk)t

Tj, = (Tj1x, --‘amjm*)t Y = (Y5145 -~,yjk*)t

These interval values are determined so as to include uncertainty of the
given data based on the possibility concept. Using the given interval input
and output data, the problems to obtain the extreme values that approximate
the relative efficiency value are discussed in this section.

3.1 Optimistic Approximation

The optimistic approximation of the relative efficiency value is obtained as
the similar formulation to (2). The given data x; and y, in (2) are extended to
interval values. Therefore the optimistic approximation @} is also obtained
as interval value as ©* = [0,8,] defined below. When the given data are
extended to interval values, the optimistic approximation that is the extreme
value from the optimistic viewpoint is also extended to an interval value.
The problem to obtain the upper bound of the interval optimistic approx-

imation @} can be defined as

u'y,
9" = max max L PR
° i Uy,
wY T;Y. ) 4
$93 max; (_L'vt.’l:j) ( )

st. i <x; <}, ¥;, <Y; <y}, v>0, v>0.
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When the data are the optimistic ones for DMU,, which means that the
input data are x,. and 2} (j # o) and the outuput data are y} and y;.(j # o),
the relative ratio is maximized. Instead of maximizing the relative ratio with
respect to the given interval data, using these chosen input and otuput data
(4) can be written as

- b
0, = max oz
u,v max; (—l—z,g;‘) (5)
st.u>0, v>0.

The lower bound of the interval optimistic approximation ©} is obtained

as follows.
u'y,
0* = max min — 2 %o _
o " ut R
©TUY Ty (vt%) (6)

st.xje <xj <z, Y;, <Y; <y;, u>0, v>0

Instead of minimizing the relative ratio with respect to the given interval
data, the pessimistic data for DMU, are chosen in the given interval data.
With the chosen input data, z} and z;«(j # 0), and the chosen output data,
Yos and y;(j # o), (6) can be written as

u'y,,
vt

0% = max ————%-——

=0 u,v max; utyj (7)
I\ V.

st.u>0, v>0.

3.2 Pessimistic Approximation

The pessimistic approximation of the relative efficiency value G = [0,,, 0o«
is formulated in the same way as in (3) with interval input and output data,
x; and y,;. The problem to obtain the upper bound of the interval pessimistic

approximation 6, is as follows.

_1_“_?/1) (8)
i
s.t.wj*S:z:ij;f, yj*gngy;, >0, v>0

The optimistic data for DMU, that are chosen in the same way as in
the optimistic approximation model (5) are used. Without taking the max
operation with respect to the given interval data, (8) can be written as

utyt
5 . viT
0ox = min ———=2=
u,v uty,,
max; (—Lvtw*. 9)
J

st.u>0, v>0.
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Although in the optimistic approximation model (5) the ratio is maxi-
mized with respect to the weight variables, in the pessimistic approximation
model (9) it is minimized. Then the relation of upper bounds of both approx-
imations, 8,, < 8., is easily found from (5) and (9).

The problem to obtain the lower bound of the interval pessimistic approx-
imation 6, is as follows.

t
:,t::;:l
0,, = min min ——2%-——
0% N ut .
UV T3, may ( vtg;) (10)
J

s.t.:z:j*ga:jgw;, Y <Y; <Y;, ©u>0, v>0

The chosen data are the same as ones in the optimistic approximation
model (7). With the pessimistic data for DMU, (10) can be written as

vy,
. vt
0 = min ———-2——
Lox uty*
u,v ] Y; (11)
max] (fvtwj*)

st.u>0, v>0.

From (7) and (11), the lower bounds of both approximations have the
relation @, < @. Therefore, the interval optimistic and pessimistic approx-
imations satisfy the inequality relation O,s = [0,,,80+] < O* = [65,8,]. The
pessimistic approximation is smaller than the optimistic one in a sense of
interval order relation in [3], where A = [a,@] < B = [b, b] holds if and only
ifa<band@<b.

In rough set theory[6], X is approximated with the upper and lower ap-
proximations, A*(X) and A.(X), that satisfy the inclusion relation A.(X) C
A*(X). The lower approximation is included in the upper one. The inclusion
relation in rough set theory corresponds to the inequality relation in this
study.

4 Numerical Example

All the given input data are normalized to 1 and two kinds of output data
are interval values including uncertainty of the given data in Table 1. Using
the data we calculate the interval optimistic approximation by (5) and (7)
and the interval pessimistic approximation by (9) and (11).

5 Conclusion

The relative efficiency value is approximated by two extreme values from the
optimistic and pessimisitic viewpoints with optimistic and pessimisitic data
for the analyzed unit DMU,. The pessimistic approximation is always smaller
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Table 1. Interval data and interval approximations

input outputl output2 optimistic approximation pessimistic approximation
A 1 [0.8,1.2] [7.5,8.5] [1.000, 1.000] [0.110, 0.179)
B 1 [1.8,2.2] [2.4,3.6] [0.416, 0.634] [0.247, 0.328]
C 1 [1.7,2.3] [5.7,6.3] [0.729, 0.923] [0.233, 0.343]
D 1 [2.5,3.5] [2.7,3.3] [0.525, 0.786] [0.318, 0.440]
E 1 [2.8,3.2] [6.7,7.3] [0.964, 1.000] [0.384, 0.477]
F 1 [3.8,4.2] [1.8,2.2] [0.614, 0.782] [0.212, 0.293]
G 1 [3.4,4.6] [4.6,5.4] [0.801, 1.000] [0.466, 0.687]
H 1 [4.7,5.3] [1.5,2.5] [0.702, 0.962] [0.176, 0.333]
I 1 [5.6,6.4] [1.7,2.3] [0.829, 1.000} [0.200, 0.307]
J 1 [6.7,7.3] [0.8,1.2] [1.000, 1.000] [0.094, 0.160]

than the optimistic one. The case that the input and output data are given
as interval values has been dealt with in this paper. Interval data including
all the observations are suitable to reflect uncertainty in real situations. Then
the interval optimistic and pessimistic approximations of a DMU are obtained
to reflect uncertainty in real situations.

What we have done with the given interval data is to denote the rela-
tive efficiency values of DMUs by their interval optimistic and pessimistic
approximations. The interval efficiency values are useful information for the
analyzed DMUs. The order relation over DMUs with them is not discussed
in this paper, but it might depend on a decision maker’s attitude toward the
problem.

References

1. Charnes, A., Cooper, W. W. and Rhodes, E. (1978) Measuring the Efficiency of
Decision Making Units, European Journal of Operational Research, 2, 429-444.

2. Despotis, D. K. and Smirlis, Y.G. (2002) Data Envelopment Analysis with Im-
precise Data, European Journal of Operational Research, 140, 24-36.

3. Dubious, D. and Prade H. (1980) Systems of Linear Fuzzy Constraints, Fuzzy
Sets and Systems, 3, 37-48.

4. Entani, T., Maeda, Y. and Tanaka, H. (2002) Dual Models of Interval DEA and
Its Extension to Interval Data, European Journal of Operational Research, 136,
32-45.

5. Inuiguchi, M. and Tanino, T. (2000) Data Envelopment Analysis with Fuzzy
Input-output Data, in: Haimes, Y. Y. and Steuer, R. E. (Eds.): Research and
Practice in Multiple Criteria Decision Making, Springer-Verlag, Berlin, 296-307.

6. Pawlak, Z. (1984) Rough Classification, Journal of Man-Machine Studies, 20,
469-482.



Possibility and Necessity Measures in
Dominance-based Rough Set Approach

Salvatore Greco!, Masahiro Inuiguchi?, and Roman Slowirniski®

! Faculty of Economics, University of Catania, Corso Italia, 55, 95129 Catania,
Italy, salgreco@unict.it

2 Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871,
Japan, inuigutiQeie.eng.osaka-u.ac.jp

3 Institute of Computing Science, Poznan University of Technology, 60-965
Poznan, Poland, slowinsk@sol.put.poznan.pl

Abstract. Dominance-based rough set approach is an extension of the basic rough
set approach proposed by Pawlak, to multicriteria classification problems. In this
paper, the dominance-based rough set approach is considered in the context of
vague information on preferences and decision classes. The vagueness is handled by
possibility and necessity measures defined using modifiers of fuzzy sets. Due to this
way of handling the vagueness, the lower and upper approximations of preference-
ordered decision classes are fuzzy sets whose membership functions are necessity
and possibility measures, respectively.

1 Introduction

The rough set theory has been proposed by Z. Pawlak [5] to deal with in-
consistency problems following from information granulation. The original
rough set idea has proved to be particularly useful in the analysis of multiat-
tribute classification problems; however, it was failing when attributes whose
domains are preference-ordered (criteria) had to be taken into account. In-
deed, in many real problems it is important to consider the ordinal properties
of the considered criteria. For example, in bankruptcy risk evaluation, if the
debt index (total debt/total activity) of firm A has a modest value, while
the same index of firm B has a significant value, then, within the rough set
approach, the two firms are merely discernible, but no preference is given
to one of them with reference to the attribute “debt ratio”. In reality, from
the point of view of the bankruptcy risk evaluation, it would be advisable to
consider firm A better than firm B, and not simply different (discernible).
Therefore, the attribute “debt ratio” is a criterion. Consideration of criteria
in rough set approximation can be made by replacing indiscernibility or sim-
ilarity relation by the dominance relation, which is a very natural concept
within multicriteria decision making.

In order to deal with problems of multicriteria decision making (MCDM),
like sorting, choice or ranking, a number of methodological changes to the
original rough set theory were necessary [2]. The main change is the substitu-
tion of the indiscernibility relation by a dominance relation (crisp or fuzzy),
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Table 1. An example of Q%, i = 1,2, my, and My

Modifier 0 — h — 1
Qr most weakly |more or less|normally very most strongly
Q7 most weakly |more or less|normally very most strongly
myp  |most strongly very normally|more or less| most weakly
M, most weakly [more or less|normally very most strongly

which permits approximation of ordered sets in multicriteria sorting. In this
paper we propose a fuzzy extension of the rough approximation by dominance
relation based on the concepts of necessity and possibility. In particular, we
are considering a special definition of necessity and possibility measures in-
troduced in [4]. For an alternative fuzzy extension of rough approximation by
dominance relation see [2,3]. The paper is organized as follows. Section two
recalls necessity and possibility measures. Section three presents basic idea
of rough approximation by fuzzy dominance. Conclusions are grouped in the
last section.

2 Possibility and Necessity Measures

Possibility and necessity measures are defined by
II(B|A) = supC(pa(z), pe(z)),  N(B|A) =infI(pa(z), u5(2)),
T x

where A and B are fuzzy sets with membership functions p4 and pup. C and
I:[0,1] x [0,1] — [0, 1] are conjunction and implication functions such that

C1) €(0,0) = C(0,1) = C(1,0) =0 and C(1,1) = 1,
11) 1(0,0) = I(0,1) = I(1,1) = 1 and I(1,0) = 0.

We often use monotonic conjunction and implication functions C and I which
satisfy

C2) C(a,b) <C(c,d) ifa < candb<d,
12) I(a,b) < I(c,d) ifa>cand c<d.

If C and I satisfies C2) and 12) then we have the following properties, re-
spectively:

I1(B1|A1) < I1(Bz|A2) and N(Bi]|A) < N(Bz|A;) if A1 C Az and By C B.

In the following we use also a negation function neg : [0, 1] — [0, 1], such
that neg(0) = 1, neg(neg(a)) = a and neg is a non-increasing function.

Since there exist many conjunction and implication functions, we have also
many possibility and necessity measures. Thus there is a question, how we
select possibility and necessity measures. To answer this question, in [4] the
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level cut conditioning approach has been proposed. In this approach, we can
specify possibility and necessity measures based on the following equivalences:

II(BJA) < h if and only if Q1(4) C (Q#(B))°, (1)
N(B|A) > hif and only if mp(A) C Mx(B), (2)

where A° is the complement fuzzy set of A and inclusion relation A C B is
defined by pa < up. Q};, i = 1,2, mp and M}, are modifiers varying with
a parameter h € (0,1). An example of @i, i = 1,2, my, and M, is given in
Table 1. As h becomes large, condition Q}(A4) C (Q%(B))° becomes weak
while condition mp(A) C M (B) becomes strong.

In order to proceed with calculations, Q% (A), i = 1,2, my(A) and My (A)
are defined by the following membership functions:

BQi (4)(@) = g; 2(pa@),h), i=1,2,
pmn(4)(@) = g™ (1a(2), h) and pag,a)(@) = g™ (ua(2), ).
From the properties of modifiers Qi’ my and My, modiﬁer functions ng .
g™ and gM should satisfy the following requirements: ql) g; (a -) is lower
seml—contmuous for all @ € [0,1], q2) g2(1, h) = 1 and g2(0,h) = 0 for all
h<1,4q3) g%(a,1) =0 for all @ € [0,1], q4) g%(a, ) is non—lncreasmg for all
a € [0,1], g5) g2 (-, h) is non-decreasing for all h € [0, 1], q6) g% (a,0) > O for
all a € (0,1), gl) g™(a,-) and gM(a, ) are lower and upper semi-continuous
for all a € [0, 1], respectively, g2) g™(1,h) = gM(1,h) = 1 and g™(0,h) =
gM(0,h) = 0 for all A > 0, g3) g™(a,0) = 0 and g™ (a,0) = 1 for all
a € [0,1], g4) g™(a,-) is non-decreasing and g™ (a,-) is non-increasing for
all @ € [0,1], gb) g™(-,h) and gM (-, h) are non-decreasing for all h € [0, 1]
and g6) g™(a,1) > 0 and gM(a,1) < 1 for all a € (0, 1).
Given modifier functions giQ (i = 1,2), g™ and gM, it is shown that
possibility and necessity measures are obtained as (see [4])

I*(B|A) = inf{h € [0,1] | Q4(4) € (QR(B))*} = S‘;PCL(#A(Q’)’HB(Q’)),
N*(B|A) = sup{h € [0, 1] | mn(4) © My(B)} = inf I" (pa(2), pa (),

where conjunction function C¥ and implication function I” are defined by
CL(a,b) = 1nf{h, €[0,1] | g (a h) < neg(g (b,h))},
I%(a,b) = sup{h € [0,1] | g™(a, h) < g™ (5, h)}.
h
Conjunction and implication functions C* and I satisfy C2) and 12), respec-
tively. It is shown that many famous COIIJllIlCthIl functions and 1mphca.t10n

functions are obtained from modifier functions gl (i=1,2), g™ and gM. Prop-
erties of CL and I are investigated in [4].
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3 Approximations by Means of Fuzzy Dominance
Relations

Let us remember that formally, by an information table we understand the
4-tuple S = (U,Q,V, f), where U is a finite set of objects, @ is a finite
set of attributes, V = quQ V, and V; is a domain of the attribute ¢, and
f:UxXxQ — V is a total function such that f(x,q) € V; for every ¢ € Q,
z € U, called an information function (cf. [5]).

Furthermore an information table can be seen as decision table assuming
that the set of attributes Q = K U D and K N D = (), where set K contains
so-called condition attributes, and D, decision attributes. In the dominance-
based rough set approach we are considering attributes with preference-
ordered domains — such attributes are called criteria.

In this section we refine the concept of dominance-based rough approx-
imation recalled in section 2, by introducing gradedness through the use of
fuzzy sets. In the following we shall use the concepts of T-norm T and T-
conorm T* defined as follows: T' : [0,1] x [0,1] — [0, 1] such that for each
a,b,c,d € [0,1], T(a,b) > T(c,d) when @ > c and b > d, T(a,1) = a,
T(a,b) = T(b,a) and T(a,T(b,c)) = T(T(a,bd),c); T* : [0,1] x [0,1] — [0, 1]
such that for each a,b,¢,d € [0,1], T*(a,b) > T*(c,d) when a > c and b > d,
T*(a,0) = a, T*(a,b) = T*(b,a) and T*(a, T*(b,c)) = T*(T*(a,b),c)).

Let S, be a fuzzy outranking relation on U with respect to criterion
g€ K,ie S;:UxU — [0,1], such that Sy(z,y) represents the credibil-
ity of the proposition “z is at least as good as y with respect to criterion
q”. It is natural to consider S, as a fuzzy partial T-preorder, i.e. reflex-
ive (for each x € U, Sy(z,z) = 1) and T-transitive (for each z,y,z € U,
T(Sq(z,y), Sq(y,2)) < Sq(z, 2)). Fuzzy outranking relation Sy can be build
from another fuzzy complete T-preorder defined on domain V; of criterion
q€ K, ie. Sy, : Vg xVy — [0,1] such that S,(z,y) = Sv,(f(z,q), f(¥,9))-

Using the fuzzy outranking relations Sg, ¢ € K, a fuzzy dominance rela-
tion on U (denotation Dp(z,y)) can be defined for each P C K as follows:

Dp(z,y) = T S,(z,v).
p(Z,y) qg’P 7(Z,9)

Given (z,y) € U x U, Dp(z,y) represents the credibility of the proposition
“z outranks y on each criterion ¢ from P”. Let us remark that from the
reflexivity of fuzzy outranking S;, ¢ € K, we have that for each z € U
Dp(z,z) =1, i.e. also Dp is reflexive.

Since the fuzzy outranking relations S, are supposed to be partial T-
preorders, then also the fuzzy dominance relation Dp is a partial T-preorder.
Furthermore, let Cl = {Cl;,t € H}, H = {1, ...,n}, be a set of fuzzy classes
in U, such that for each z € U, Cli(x) represents the membership function
of = to Cl;. We suppose that the classes of Cl are ordered according to
increasing preference, i.e. that for each r, s € H, such that r > s, the elements
of Cl,. have a better comprehensive evaluation than the elements of Cl,.
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For example, in a problem of bankruptcy risk evaluation, Cl; is the set of
unacceptable risk firms, Cl; is a set of high risk firms, Clj is a set of medium
risk firms, and so on.

On the basis of the membership functions of the fuzzy class Cl;, we can
define fuzzy membership functions of two merged fuzzy sets:

1) the upward merged fuzzy set CIZ, whose membership function ClZ(z)
represents the credibility of the proposition “z is at least as good as the
objects in Cl;”,

> 8 1 ifdse H:Cly(z) >0and s >t
Cli(w) = {Clt(x) otherwise,

2) the downward merged fuzzy set Cl5, whose membership function CIS (z)
represents the credibility of the proposition “z is at most as good as the
objects in Cl;”,

<, N 1 ifdse H:Clg(x)>0and s <t
Cli () = {Clt(x) otherwise.

We say that the credibility of the statement “z belongs without ambiguity
to C’ltz” is equal to the degree of necessity of the statement “all objects y € U
dominating z belong to C’lt2 ”. Furthermore, we say that the credibility of the
statement “z possibly belongs to Cltz” is equal to the degree of possibility
of the statement “some object y € U dominated by x belongs to CltZ”.
Analogous statements can be formulated for inclusion of = in CIS.

Therefore, the P-lower and the P-upper approximations of C'ltZ with re-
spect to P C K are fuzzy sets in U, whose membership functions (denotation

P[CIZ ()] and P[CIZ(z)], respectively) are defined as:
P[CI ()] = N(CIF D7 (=) = inf I(Dy(y, %), CI7 (v),

P[CIF ()] = I(CIF|D; (z)) = sup C(Dy(z,y), ClF (3)),

where Djf () is a fuzzy set of objects y € U dominating = with respect to
P C K and D, () is a fuzzy set of objects y € U dominated by x with respect

to P C K. The membership functions of D/f (x) and D; (z) are defined as:
y‘(y7 D;_(KE)) = Dp(y7w)7 /J'(yv D;(:E)) = Dp(.'l), y)

The P-lower and P-upper approximations of C’ltS with respect to P C K
(denotation P[CI ()] and P[CIS (z)]) can be defined, analogously.

Greco, Inuiguchi and Stowiniski proved that the basic properties of rough
set theory hold for the above definitions of lower and upper approximations
subject to some conditions [1].
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4 Conclusion

We introduced fuzzy rough approximation using fuzzy dominance to deal
with multicriteria sorting problems. We proved that our extension of rough
approximation maintains the same desirable properties of classical rough set
approximation within fuzzy set context. Given the rough approximations of
fuzzy decision classes being merged according to the preference order, one is
able to induce certain and possible decision rules from these approximations.
Each certain rule is characterized by a necessity degree, and each possible
rule, by a possibility degree, corresponding to rule credibility. For example,
in the context of credit analysis a decision rule can have a syntax like “if
the debt ratio is not larger than 3 and the return on investment not smaller
than 10%, then the firm is at most a medium risk firm; the credibility of this
implication being equal to 75%.”
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Abstract. A new algorithm called Simplex Coding Genetic Algorithm (SCGA)

is proposed for solving nonlinear global optimization problems. This algorithm is

obtained by hybridizing genetic algorithm and simplex-based local search method

called Nelder-Mead method. The efficiency of SCGA is tested on some well known

functions. Comparison with other meta-heuristics indicates that the SCGA is promis-
ing.

1 Introduction

Global optimization has drawn much attention recently [5,9], because of a
very broad spectrum of applications in real-world systems. In this paper, we
focus on the case of unconstrained minimization, i.e., the problem is

o 1@,

where f is a generally nonconvex, real valued function defined on R™. Meta-
heuristics contribute to a reasonable extent in solving global optimization
problems, mainly combinatorial problems [10]. Genetic algorithms (GAs) are
one of the most efficient meta-heuristics [7], that have been employed in a
wide variety of problems. However, GAs, like other meta-heuristics, suffer
from the slow convergence that brings about the high computational cost.

Recently, several new approaches have been developed to furnish meta-
heuristics with the ability to simulate the fast convergence of local search
methods. Most of these approaches hybridize local search methods with meta-
heuristics to obtain more efficient methods with relatively faster convergence.
This paper pursues in that direction and proposes a new hybrid method that
combines GA with a local search method called Nelder-Mead method [9]. In
the combined method, called the simplex coding genetic algorithm (SCGA),
we consider the members of the population to be simplices, i.e., each chromo-
some is a simplex and the gene is a vertex of this simplex. Selection, crossover
and mutation procedures are used to improve the initial population. More-
over, Nelder-Mead method is applied to improve the population in the initial

* This research was supported in part by a Grant-in-Aid for Scientific Research
from the Ministry of Education, Science, Sports and Culture of Japan.



136 Abdel-Rahman Hedar and Masao Fukushima

stage and every intermediate stage when new children are generated. In the
SCGA, we use the linear ranking selection scheme [1] to choose some fit par-
ents to be mated. Then, using a new scheme of a multi-parents crossover, new
children are reproduced and a few of them are mutated. Applying Kelley’s
modification [6] of Nelder-Mead method on the best point visited is the final
stage in the SCGA to accelerate the search and to improve this best point.

There have been some attempts to utilize the idea of hybridizing local
search methods with GA. Simple hybrid methods use the GA or local search
methods to generate the points for the new population and then apply the
other technique to improve this new population. Other hybrid methods do
some modifications in the GA operations; selection, crossover and mutation
using local search methods [11].

The description of the proposed method is given in the next section. Sec-
tion 3 discusses the experimental results along with the initialization of some
parameters and the setting of the control parameters of the proposed method.
The conclusion follows the experimental results and makes up Section 4.

2 Description of SCGA

In this section, we describe the proposed method SCGA. The SCGA uses the
main functions of the GA; selection, crossover and mutation, on a popula-
tion of simplices to encourage the exploration process. Moreover, the SCGA
tries to improve the initial members and new children by applying a local
search method to enhance the exploitation process. This kind of exploration-
exploitation procedure is sometimes called “Memetic Algorithm”, see [8].
Finally, the SCGA applies an effective local search method on the best point
reached by the previous exploration-exploitation procedure. The purpose of
this local search is to accelerate the final stages of the GA procedure. This
strategy is expected to be effective because the GA has a difficulty in ob-
taining some required accuracy although the GA may quickly approach the
neighborhood of the global minimum.

2.1 Initialization
The SCGA starts with the following initialization procedure:

1. Generate the initial population P that consists of M chromosomes (sim-
plices), i.e., Py = {Sj 187 = {:vj’i}?:ll; e R j=1,... ,M}
2. Order the vertices of each simplex S7, j =1,2,..., M, so that
f@) < f(@?) <o < fla?m). ey
3. Apply a small number of iterations of the Nelder-Mead method with

each S7 as an initial simplex to improve the chromosomes in the initial
population Py.
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4. Order the simplices 7 = {xj’i}?:ll , j =1,..., M in the improved
population Py so that

f@M) < f@Y) <o < fEM). @)

2.2 GA loop

While the stopping conditions are not satisfied, repeat the following proce-
dures; selection, crossover and mutation, and reduction of the population.
Selection. We describe how we select the set @ C P of the members that
will be given the chance to be mated from the current population P. The
number of members in each P or @ stays constant but more fit members
in P are chosen with higher probability in Q. We use Baker’s scheme called
“linear ranking selection” [1] to select the new members in Q.

Crossover and mutation. Choose a random number from the unit interval
[0, 1] for each chromosome in Q. If this number is less than the predertermined
crossover probability p., then this chromosome is chosen as a parent. Repeat
the following steps until all parents are mating.

1. Select a number n, from the set {2,...,n+ 1} randomly to determine
the number of parents chosen to be mlated together.
2. Compute new children C* = {mi’k}n+ i=1,...,ncby

k=1
zhh =7F pdrt k=1,...,n+1, (3)
where r%, i = 1,... ,ne, are random vectors of length less than 1, d is the

maximum distance between pairs of parents and Z* is the average of the
kth vertices of all parents, i.e.,

N
Ek:iZmi’k,kzl,...,n-!-l. (4)
Ne
=1

Figure 1 shows an example of crossover in two dimensions. In Figure
1(a), we use Equations (4) to compute the dotted simplex whose vertices
are the average of the vertices of the parents S!, S? and S3. By using
Equations (3), we move this dotted simplex randomly inside the circle to
create the children C!, C? and C3, as in Figure 1(b).

3. Choose a random number from the unit interval [0,1] for each child
C% i =1,...,n. If this number is less than the predertermined mu-
tation probability p,,, then this child is mutated. Let I,,, be the index set
of those children who are mutated.

4. Apply the following procedure for each child C* = {mfzk}::; , 4 € Iy,
Select a number n; from the set {1,2,...,n+ 1} randomly to determine

the vertex that is reflected as a mutation. Compute the mutated child Ci
= {aiF}il) by
m =1
gk =gk k=1,... 0 —1,n;+1,...,n+1,
TiM =T+ u (T — 2h™),
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where u is a random number in the interval [0.5, 1.5] and Z is the average
of vectors z¥!,. .. ,9:’ miml ginitl 0 zbntl | Replace the child C* by
the mutated one C*. Figure 1(c) shows an example of mutation in two
dlmenswns where the mutated simplex consists of the vertices z1,!, z1:2
and z1;3, where the vertex z1;2 is randomly chosen on the line segment
P1p2.

(©)

Fig. 1. An example of SCGA crossover and mutation in two dimensions

5. Apply a small number of iterations of the Nelder-Mead method with each
child Ct, i =1,... ,n, as an initial simplex to improve the chromosomes.

6. The population in the next generation consists of the M best ones from
the set P U {C’}n“1 Re-order the chromosomes in the new population
so that (1) and (2) hold.

Reduction of the population. After every predetermined number of gen-
erations, remove some of the worst members in the population P.
Acceleration in the final stage. From the best point obtained by the above
procedures, construct a small simplex. Then, apply Kelley’s modification [6]
of the Nelder-Mead method on this simplex to obtain the final solution.

3 Experimental Results

GA loop parameters. The steps of the GA loop have been described in the
previous section. Here we specify the values of the parameters used in this
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loop. The control parameter 7max in the selection procedure is chosen to be
1.1 according to the original setting in [1]. The crossover probability p. and
the mutation probability p,, are set equal to 0.6 and 0.1, respectively. The
number of Nelder-Mead iterations in the local search for the new children
is fixed at 2. At every 3n generations, we remove the n worst chromosomes
from the population unless the number of its chromosomes is less than 2n.
Termination criteria. The SCGA is terminated when the function values
at all vertices of the simplex that contains the best point become close to
each other. In order to limit the computations whenever this termination
condition cannot be achieved, we terminate the algorithm if the number of
generations exceeds the predetermined number set equal to min (10n, 100).
Numerical results. The performance of the SCGA was tested on a number
of well known functions [2,3,4]. For each function we made 100 trials with
different initial populations. The SCGA algorithm was programmed in MAT-
LAB and was run on a personal computer running at 733 MHz. To judge the
success of a trial, we used the condition: |f* — f | < €1 |f*| + €2, where f refers
to the best function value obtained by SCGA, f* refers to the known exact
global minimum, and €; and €5 are small positive numbers. We set €; and €2
equal to 10™* and 1078, respectively. The results are shown in Table 1, where
the average number of function evaluations is related to only successful tri-
als. Table 1 shows that the SCGA reached the global minima in a very good
successful rate for the majority of the tested functions. In this Table, we also
compare the results of the SCGA with those of three other meta-heuristic
methods. These methods are Real-value Coding Genetic Algorithm (RCGA)
[2], Continuous Genetic Algorithm (CGA) [3] and Direct Search Simulated
Annealing (DSSA) [4]. The figures for these methods in Table 1 are taken
from the original references. The comparison given in Table 1 shows the DSSA
outperforms the other GA methods for the majority of test functions.

4 Conclusion

In this paper, we have introduced a simplex coding genetic algorithm that
uses a set of simplices as the population. Applying the Nelder-Mead local
search method on these simplices in addition to the ordinary GA operations
such as selection, crossover and mutation enhances the exploration process
and accelerates the convergence of the GA. We also have introduced a new
kind of multi-parents crossover that gives the chance to more than two parents
to cooperate in reproducing children and exploring the region around these
parents. Moreover, using a local search method again in the final stage helps
the GA in obtaining good accuracy quickly. Finally, the computational results
show that the SCGA works successfully on some well known test functions.
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Table 1. Average number of function evaluations

Function SCGA RCGA [2] CGA [4] DSSA [8]
Branin 173 490 620 118

Easom 715 642 1504 1442 (93%)
Goldstein 191 270 410 261
Shubert 742 (98%) 946 575 457 (94%)
Michalewicz 179 452 - -
Rosenbrock (R2) 222 596 960 306
Zakharov (Z2) 170 437 620 186

De Joung 187 395 750 273
Hartmann (Hs4) 201 342 582 572

Shekel (S4,5) 1086 (79%) 1158 (62%) 610 (76%) 993 (81%)
Shekel (S4,7) 1087 (81%) 1143 (70%) 680 (83%) 932 (84%)
Shekel (S5,10) 1068 (84%) 1235 (58%) 650 (81%) 992 (77%)

Rosenbrock (Rs) 3629 (90%) 4150 (60%) 3990 2685

Zakharov (Zs) 998 1115 1350 914

Hartmann (He,s) 989 (99%) 973 970 1737 (92%)

Rosenbrock (R10) 6340 (90%) 8100 (70%) 21563 (80%) 16785

Zakharov (Z10) 1829 2190 6991 12501
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Abstract. The paper is concerned with a multicriteria game whose payoff takes
its values in an ordered vector space. As compare with usual single-criterion games,
useful results in such classical games do not always hold as to multicriteria games.
For example, minimax and maximin values are coincident under certain conditions
in usual single-criterion games, but their values are not always coincident under
similar conditions in multicriteria games. Therefore, in this paper, we propose a
certain coincidence condition on minimax and maximin values under suitable set-
ting in multicriteria games.

1 Introduction

Game theory started from famous minimax theorem and has been developed
widely. In game theory for single-criterion, several kinds of solution concepts
and their useful properties have been analyzed and used; see [4] and refer-
ences cited therein. One of unsolved problems in game theory is whether
games with multiple non-comparable criteria have an acceptable theory sim-
ilar to standard results for single-criterion games. In general, such kind of
games is called “multicriteria game”, and it has been studied as strategic
forms in [1,5,6] and references cited therein. Optimal strategies of a multi-
criteria game are characterized by a plural number of incomparable optimal
solutions, denoted by a set of efficient (or Pareto, or nondominated) points.
In single-criterion games, it is well-known that minimax and maximin values
are coincident with the saddle value under some conditions, but its analogy
for multicriteria games can not be expected in general. Therefore, the aim of
this paper is to examine what kind of condition is sufficient for minimax and
maximin values to be coincident with each other in multicriteria games.

2 Multicriteria two-person zero-sum game

First, we define a partial ordering for vector-values instead of the total or-
dering for real-values.

Definition 1. For any two vectors z and y,

z<cy<=y—cze€C, z<cy<=y-—zecC\{6}
zdcye=>y—2¢C, zdoy<=y—z¢C\{0}
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where C' is a solid pointed convex cone, i.e., intC # @, C N (-C) = {4}.

Next, we introduce concepts of C-minimal and C-maximal points of a set
with respect to the ordering defined by a cone C, i.e., concepts of lower and
upper efficient points. Throughout this paper, let Z be an ordered vector
space with an ordering <¢.

Definition 2. 2y € A C Z is said to be a C-minimal point of A if AN (2 —
C) = {z0}, and a C-maximal point of A if AN (29 + C) = {2}, respectively.
We denote the set of such all C-minimal (resp. C-maximal) points of A by
MinA (resp. MaxA).

Under these definitions, we consider a game I' = (X, Y, —f, f), where X
and Y are nonempty sets, and f : X x Y — Z. The set X (resp. Y) is
the set of strategies of Player 1 (resp. Player 2), and the mapping —f (resp.
f) is the payoff function of this player. We call this game “multicriteria two-
person zero-sum game”, and we can consider the following idea of equilibrium
strategies in the same manner as single-criterion games.

Definition 3. In multicriteria two-person zero-sum games, a point (zq, o)
is said to be an equilibrium optimal response strategy pair of the game if

f(@,90) £ f(xo,90) and f(zo,90) %¢ f(20,9),Vz € X, y €Y.
Above definition is equivalent to the following one.

Definition 4. Let f : X XY — Z be a vector-valued function. A point
(xo0, Yo) is said to be a C-saddle point of f with respect to X x Y if f(zqg,y0) €
Ma.xf($0, Y) n Mlnf(X7 yO)

The set of C-saddle values is denoted by SV (f). Let

D1 ={(zo,y0) € X XY | f(zo,y0) € Maxf(z9,Y)} and
D2 = {(.’L‘(),yo) e X x Y| f(.’L‘(),yo) (S Mlnf(X, yo)} ,

Dy N D, is the set of all C-saddle points of f, and f(D1 N Dg) = SV(f). By
calculating D; and Dy, we can easily obtain the set SV(f); see Example 1.

Moreover, by using concepts of C-minimal and C-maximal points, we can
define the following subsets of Z as analogues of minimax and maximin values
in single-criterion games.

Definition 5. In multicriteria two-person zero-sum games, subsets of Z
Minimaxf := Min U Maxf(z,Y) and Maximinf := Max U Minf(X,y)
zeX yeyY

are the set of all minimax values for f and the set of all maximin values for
f, respectively.

Note that these three sets SV(f), Minimaxf and Maximinf are not coinci-
dent in general.
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Example 1. Let Z and C be a 2-dimensional Euclidean space and its positive
orthant of Z, respectively. We consider the following game I' = (X, Y, — f, f).
X and Y are sets of mixed strategies in another 2-dimensional Euclidean
space, i.e., co{(1,0)%,(0,1)!}. We consider the following matrix type payoff
function f(z,y) = (2 Ay, z'By)* where

01 11
A:(w)’ B‘(o1>'
This example is given by Corley [1]. Then, we get the set of C-saddle values

SV(f) ={f(z,y)| (z,y) e D}
={(u,v)t[u:y1, v=—y1+1, Ogylgé}
U{(u v)t u=21+y —2T1Y1, V= ~Y1 +$1y1+1,}

0<m <3 s<y<1
where z = (x1,1 —x1)%, y = (y1,1 —%1)" and

D = D1 n D2
={zy|e1=0,0<y1 <5} U{(z,y)|0<z1 <}, §<y <1},
Minimaxf and Maximinf for this example are as follows; (see Fig. 1.)

Minimaxf = {(u,v)! | u =91, v=1—y;, 0<y; < 1},
u2+4v2—6u—8v+4uv+5:0,}

Maximinf = < (u,v)*| 3
’ 3<u<gl, 0<v<y

Maximinf

Minimax f

0 1 u

Fig. 1. Minimaxf and Maximinf in Example 1.
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3 Coincidence condition

In multicriteria two-person zero-sum games, we consider the following setting.
Let Z and C be an n-dimensional Euclidean space and its positive orthant
of Z, respectively. Strategy sets X and Y are convex hulls generated by
(1,0)% and (0,1)* in 2-dimensional Euclidean space, i.e., co{(1,0)?, (0,1)%}.
The payoff function f is a bilinear function with respect to x and y.

We introduce a dominance property that is important in the problem of
efficient points.

Lemma 1. (See Lemma 5.2 in [5]) Let Z be an ordered vector space with an
ordering defined by a solid pointed conver cone C, and A a subset of Z. If
the convex cone C of Z satisfies the condition

cC + (C\{6}) c C

and if A is nonempty and compact, then MinA # (), A C MinA + C and
MaxA # 0, A C MaxA — C.

As to dominance property, more complex one has been proposed. The first
condition in the dominance property is

clC + (C\L) C C

where L is the maximal subspace included in C, i.e., L = C N (-C), in
general; see [2,3]. When C is pointed, this condition is coincident with one
of Lemma 1. It is sufficient with this lemma in our setting because Z is the
finite-dimensional vector space. By using the dominance property, we can get
the following theorem.

Theorem 1. We assume that SV(f) # 0 and Minimaxf, Maximinf C
SV(f). Minimaxf = Maximinf if one of the following statements holds:

(i) Vz € X, d; e CU (-C)
(ii) Vy €Y, dy e CU(-C)

where dy = f(z,(1,0)") — f(z,(0,1)*) and dy = f((1,0)*,9) — f((0,1)%,),
which are called “direction vector”.

Proof. We assume that d; € CU(—C) for any z € X. For any z € Minimaxf,
there exist £o € X and yo € Y such that z = f(zo,y0) and

2 4oz and z 45 f(xo,y), V2’ € Maxf(z,Y), z€ X, yeY.

Therefore, we have z € Maxf(zg,Y). Since we assume that the set of minimax
values is a subset of SV(f),

z = f(xo0,Y0) € Maxf(zo,Y) N Minf (X, o),
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ie., f(z, %) £ 2, Vo € X. Since dy, € CU(—C), we obtain Maxf(zo,Y) =
{z}. Moreover, C satisfies the condition in Lemma 1 because C is a closed
set, and f(z,Y) is a bounded closed set for each z € X, and then it is a
compact set. Hence, f(zo,Y) C z—C by Lemma 1. Here, for given y € Y, let
ZMin(y) be an element of Minf(X,y). We suppose that zprin(y) € 2+ C\{6},
then

f(z0,y) <c 2 = f(x0,y0) and z = f(z0,Y0) <C ZMin(y)-

Hence, we obtain f(xo,y) <c 2Min(y)- This is contradictory to zprin(y) €
Minf(X,y). Therefore, we have zprin(y) ¢ 2+ C\{6}. Since z is also a saddle
value,

f(xa yO) ¢C'z and z ¢C ZMin(y)» VzMin(y) S Mlﬂf(X, y)) Te X’ RS Y.

So, we obtain z € Maximinf and hence Minimaxf C Maximinf.
On the other hand, for any 2 € Maximinf, there exist o and yg such
that 2z = f(zo,yo) and

f(@,y0) 4oz and 2z €52/, V2 eMinf(X,y), z€ X, yeY.

Therefore, we have z € Minf (X, yo). Since we assume that the set of maximin
values is a subset of SV (f), we have

z = f(l’.O’yO) S M&Xf((vo,Y) N Mlnf(X7 yO)a

ie., z £ f(z0,y), Yy € Y. Here, for given x € X, let 2p/44() be an element of
Maxf(x,Y). Then, from d, € CU(—C), we obtain Maxf(z,Y) = {2pas(s)}-
Moreover, f(z,Y) is a compact set for each z € X so f(x,Y) C 2pas(z) —C
by Lemma 1. We suppose that 2pq4(z) € 2 — C\{6}, then

f(xa yO) <c ZMaz(z) and ZMaz(z) <cz= f(anyO)'

Hence, we obtain f(z,y0) <¢ z = f(zo,yo). This is contradictory to z €
Minf(X,yo). Therefore, we have zprqq(c) ¢ 2 — C\{#}. Since z is also a
saddle value,

ZMaz(x) 3(02 and z ¢C f(xo,y)7 VzMa:z:(:l:) € Maxf(a:, Y)’ T € X, ye Y.

So, we obtain z € Minimaxf and hence Minimaxf D Maximinf.
Consequently, we obtain

Minimax f = Maximinf.

When we also assume that dy, € C U (—C) for any y € Y, we can prove
similarly. This completes the proof. ]

Note that Theorem 1 holds for the payoff function f + a as well, where a is
a vector in Z.
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Abstract. This paper proposes a new approximation method for the multi-
objective optimization problem. Proposal method is based on the beam search us-
ing the tree structure which is one of the approximate algorithms for combinatorial
optimization. In this algorithm, not only finding a solution by search, but back-
tracking is also executed further, and quality of the solution is improved by using
analyzed result of tentative solution. We apply this method to the multi-objective
flow-shop problem in which it minimizes maximum completion time, total setup
cost and etc. in order to demonstrate the effectiveness of this method by a numeri-
cal experiment.

Keywords. Multiobjective Scheduling, Flow-shop, Beam search, Approximation
Algorithm, Non-dominated Solution

1. Introduction

Most scheduling problems considered so far treat single objective function only.
Scheduling problems of real productions have not a single but multiple criteria.
Due to this reason, there is a need to study multiple objective problens.

Flowshop scheduling problems are one of the most well known problems in the
scheduling problems. The makespan minimization is often employed as a criterion
of flowshop scheduling problem. We treat the multiobjective flowshop problem to
minimize two objective, average flow time, and total setup cost, etc. at the same
time. As we know, there may not be a schedule that optimizes both criteria at the
same time. Thus, we seek non-dominated schedules thereafter.

In the multi-objective problem, it is easy to search only for the solution biased
to a certain weight, but it is difficult to search for various solutions not biased. We
propose the algorithm which searches for all directions and the solution by using
various weights. We also apply our algorithm to the multiobjective flowshop
scheduling problem.

This paper is organized as follows. Section 2 defines the non-dominated solu-
tion and formu lates the problem discussed in this paper. In Section 3, we review
the beam search which based on our method and propose our backtrack beam
search method. Section 4 applies our method to scheduling problem. The comp u-
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tational experiments and results are given in Section 5. Finally, conclusion and
further research problems are discussed in Section 6.

2. Problem Formulation

The definition and the assumption of the scheduling problem (permutation flow

shop model) used by our research are shown as follows.

- There are m machines (M, M, ... , M,,) and n jobs (Jy, J3, ... ,J,,) to be processed
on these processors.

- The processing time p;; of jobJ; on machine M; is given.

- For each machine, two jobs or more can not be processed at the same time.

- Each job is processed in the same order of machine, i.e. My, M,, ... , M,,.

- Preemption is not allowed.

- The completion time of job J; on machine M; is denoted by c;, makespan is de-
noted by c; = max ¢; =cy, -

- The average flow time is average completion time of all jobs.

- The setup cost is required when changing the job on first machine. The setup
cost is not related to time, and does not influence at completion time. The total
setup cost is sum of costs between each job.

- The objective function is minimization of makespan, minimization of average
flow time, and minimization of total setup cost.

- The purpose of this problem is to search non-dominated schedule.

- We define schedule vector v* as a vector consisting two elements, i.e, " and
/7 in some feasible schedule = . Thatis, v =(f", f)).

- For two schedule vectors v™ =(f",f;") and V" =(f"2,f,?), we say V"
dominates v™ when f™ < f', fi™ < f? andv™ #v™2 .

- A feasible Schedule 7z is called to be non-dominated if and only if there exists
no feasible schedule 7’ that dominates 7 .

3. Search Method

3.1. Back-track beam search method

Beam search is a heuristic technique for solving optimization problems. It was
adapted from the branch and bound method and was developed in the AI commu-
nity in the mid 1970’s. Lowerre (1976) was the very first person to use this search
technique for a speech recognition problem. This technique uses heuristic method
to estimate k best promising nodes where k is beam width and hold these k nodes
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and permanently pruning the rest. The running time of this method is polynomial
in the size of the problem compared to exponential in the size of the problems for
the branch and bound method.

At each level (except for level 0), k£ promising nodes are selected for further
branching and pruning the rest. The promising nodes are selected based on some
evaluation function or criteria and normally related to objective function.

In the beam search, if the accuracy of the evaluation value is not good, the node
which contains a good solution might be pruned off. The node pruned off is not
searched again. If the beam search is performed without pruned off a node so as to
obtain a good solution, it is necessary to expand beam width greatly and search for
a lot of nodes at the same time. Therefore, search for solution requires very long
calculation time.

In the backtrack beam search, the beam search for the past is performed first of
all, evaluation value of the node is calculated and pruned node is stored. Backtrack
to the promising node among stored nodes by wsing the past result so far. The
beam search is performed again from the backtracked node. While searching, all
nodes pruned are preserved. The lower bound of each node is compared with the
tentative solution whether the non-dominated solution exists or not, and the
bounded operation is performed to the node without the possibility where non-
dominated solution exists.

If backtracking keeps being performed without limitation, this method behaves
as the branch and bound method, and a strict solution is obtained. In order to ob-
tain a strict solution, long calculation time is required in a large-scale problem,
therefore the searching is stopped at a certain time.

In the multiobjective optimization problem, it is difficult to find various non-
dominated solution by searching only at once in the beam search for the past.
However, by using backtracking, various non-dominated solution can be found
because it is possible to search many times while changing weight. There fore, our
proposal method may be effective in a multiobjective problem.

Fig. 1. Search example of backtrack beam search method.
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3.2. Lower bound

In order to calculate the evaluation value of the node, lower bound is used. As the
lower bound of the makespan, we adopt that of J.Carlier, 1995. As the lower
bound of average flow time, we adopt that of S.P.Bansal, 1977. The total setup
cost minimization is equivalent to TSP. The lower bound of TSP is given, by the
result of J.D.C.Little, 1963.

3.3. Evaluation value

The evaluation value of the node of the beam search is calculated as follows.

F=—24_1pf+— "2 [pf,
w, +w, w, +w,

Where weight vector w = (W, W, ), the lower bound of objective function 1 is
assumed to be LBf;, the lower bound of objective function 2 is assumed to be LBf,.

3.4. Algorithms

In a numeric experiment, search stops when the specified calculation time, the
repetition search frequency, and the searched number of nodes are reached. Set of
solutions at that time is output as an approximation solution.

[Main Procedure]

1. Let n be the number of jobs. Let m be the number of machines. Let » be the
number of repetition times at initial phase. Let W be the beam width at initial
phase. Let w = (w1, w,) be the weight vector at initial phase. N{0} is generated
as the initial node, and added to the UnSearch list. Let L be the un-search node
level, and set toL =0.

2. W nodes in level L with good evaluation value are taken out from among the
list of UnSearch, and those nodes are moved to SearchList.

3. SearchlList is transferred to the function [Beam Search]

4. If non-dominated solution set has been updated, the bounded operation is done
to the list of UnSearch.

5. If r =0, go to Step8, otherwise go to Step6.

6. Setr =r - 1. UnSearch is sorted.

7. The node of the best evaluation value is taken out from among the list of Un-
Search, the node is moved to SearchList, and L is updated to the same level as
the node. Go to Step3.

8. Present phase end. It progresses to the next phase; the number of repetition
times r, beam width #, and the weight vector w are updated.

9. UnSearch is sorted. L is updated to the same level as the highest node. Go to
Step2.

10.End of main procedure.
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[Beam Search]

1. Let node list ParentNode be the received node list. Set L =L + 1.

2. Some node is taken out from among the list of UnSearch, the node is named N.

3. N is transferred to the function [Expansion of node]. The result is stored in the
node list ChildNode.

4. If the number of node of ParentNode is |ParentNode| > 0, go to Step2. Other-
wise go to Step5.

5. If the number of node of ChildNode is |ChildNode| = 0, go to Step11 without

updating the non-dominated solution. If |ChildNode| > 0, go to Step6.

. If the searching level L = n, go to Step10. Otherwise go to Step7.

7. If |ChildNode| > W, node list of ChildNode is sorted.

8. Wnodes with good evaluation value in ChildNode are left, and the remainder is
moved to UnSearch.

9. All nodes in ChildNode are moved to ParentNode. Go to Stepl.

10.Tentative non-dominated solution is updated by using ChildNode.

(=)

[Expansion of node]

1. The received node list is named N.

2. The child node is generated with determine the partial job order from the set of
un-scheduled job.

3. All generated child nodes are compared with non-dominated solutions. Inferior
child node to non-dominated solution is deleted.

4. A remaining node is output as an expanded result set.

4. Numerical Experiments

We apply the proposed algorithm to permutation flow shop problem with bi-
criteria, and confirm the effectiveness of our algorithm by numerical expetriment.
The algorithm has been implemented using C language on an IBM Compatible-PC
with 512MB memory and Celeron 533MHz.

The processing time of each job on each machine and setup cost between jobs
are randomly generated integer value among interval [0, 50].

Fig.2 shows the non-dominated schedules generated after each phases for the
15 jobs 15 machines problem. This is the result of the transition of the solution
among phases. The objective functions are makespan and average flow time. The
beam width is 10. The number of backtrackings of each phase is 20. In phase 1,
weight vector is (1, 0), this means the priority search of objective function 1. It
changes to the next phase after backtracking is perfomed 20 times. Next, the
weight vector is (0, 1) in phase 2 to search for objective function 2 by priority. The
weight vector from phase 3 to 5 are (2, 1), (1, 2), (1, 1) to search for the balanced
solutions. The result shows the effectiveness of the repeated search changing
weight.

Fig.3 shows the comparison result of Beam search (BS) and Backtrack beam
search (BTBS). The objective functions are makespan and total setup cost. The
number of jobs is 20. The number of machine is 20. We show 6 kinds of BS with
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different weight and one BTBS. Calculation time is the nearly the same respec-
tively. At BS, a beam width is 800 to 1000. In BTBS, a beam width is changed be-
tween 5 and 150. Although the solution has been partially biased in BS according
to the given weight, the balanced solution is obtained in BTBS.

wresiresPhase 1 Weight
— 43 — Phese?2 550 & - BSO1, (1, 0)
= & = Phese3 "\-\ e0BS02, (0, 1)
o - =X = Phesed 450 =====BS03, (1, 5)
u; -y %, m——() == Phese5 g ammmmB S04, (1, 1)
2 688 —%%—ﬁ‘ | g %0 “BS05, (2, 1)
¢ . R ki —e—5506, (3, 1)
2 675 —— "é' 250 em@unpTES01
665
e 1%
655 . . . . TSN me—@e— ()
890 910 930 950 970 % * * : y *
1200 1250 1300 1350 1400 1450 1500
Makespan Makespan

Fig. 2. Non-dominated schedules after Fig. 3. Beam search vs. Backtrack
each phase beam search

5. Conclusion

In this paper, we have introduced an approximation algorithm based on beam
search method for multiobjective optimization problems. We have applyed our
method for multi-objective flowshop problem which minimize makespan, average
flow time and total setup cost. In the proposal algorithm, various solutions can be
obtained by the repeated search with changing weight. As shown by the numerical
examples, our proposal algorithm can obtain more balanced solution than the
beam search method. In our method, t is necessary to give parameters of beam-
width, weight, and the number of backtracking, etc. before experiments. We will
try the automation of these parameters in the future study.
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Cones to Aid Decision Making in Multicriteria
Programming

Brian J. Hunt and Margaret M. Wiecek*
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Abstract. Theoretical and applied aspects of using convex polyhedral cones in
multicriteria programming and decision making are explored. Pointed and non-
pointed cones are examined and applications of pointed cones to model decision
maker’s preferences in bicriteria programming are presented.

1 Introduction

A multicriteria program involves a feasible set of decisions evaluated by means
of several real-valued criterion functions. As every feasible decision yields an
attainable outcome, it is of interest to identify a subset of the feasible deci-
sions producing the best outcomes. In a vast majority of multicriteria prob-
lems reported in the literature, the best outcomes are those that outperform
each other with respect to the Pareto concept of optimality. This concept has
been generalized by many authors. Yu [6] introduced cones to define the best
outcomes, which allows for viewing Pareto optimality as a special case of op-
timality with respect to a convex cone. This was followed by many theoretical
and methodological studies on multicriteria programming with convex cones
(e.g., [4], [5]). Applied sciences, however, did not follow on this research direc-
tion and did not make use of general convex cones in multicriteria problems.
The authors of this paper are not aware of a real-life application of multicrite-
ria programming with convex cones. On the other hand, some scientists have
undertaken an effort to describe relative importance of criteria with convex
cones in order to more accurately model decision maker’s preferences (e.g.,
2], [3)).

The goal of this paper is to further explore the applicability of convex
cones to multicriteria decision making and bring it closer to prospective users.
We first connect results by Yu [7] who assumed that the cone used for choosing
the best outcomes is acute, and results by Weidner [5] who introduced a more
general condition. We then present two applications of polyhedral cones to
bicriteria decision making and demonstrate them on an engineering design
problem.

* This research was partially supported by the Automotive Research Center, a
U.S. Army Center of Excellence for Automotive Research at the University of
Michigan.
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2 Problem Formulation

The following notation is used throughout this paper. Let y*,y? € IR™ be two
vectors. y* > y? denotes y} > y? for all i = 1,2,...,m but y* # y2. y* = y?
denotes y; > y7 for all i = 1,2,...,m. Also let R} = {y € R"|y 2 0}.

Definition 1. A set C C R™ is called a cone if y € C implies that A\y € C
for all A > 0. A cone C is called convez if y* € C and y? € C implies that
y' +y? € C. A cone C is called pointed if y € C,y # 0 implies that —y ¢ C.

A polyhedral cone, C C IR™, can be represented in intersection form by
{y € R"|Ay = 0} where A is a p X m matrix. Define the nullspace of A as
N(A) = {y e R"|Ay = 0}.

Let X C R* be a set of all feasible decision vectors and let f;(x), i =
1,2,...,m, be real-valued functions. Then f(z*) represents the attainable
outcome vector [fi(x*),..., fm(x*)] for the feasible decision vector «*. Define
the set of all attainable outcome vectors as ¥ = {y € R"|y = f(z),z €
X} CR". Also, define the multiplication of a set Y C R™ by a p X m matrix
Aas AeY ={z € R|z = Ay,y € Y} C IR’ and the algebraic sum of the
sets Y and ~Y as Y - Y = {y e R"|y = f(a') — f(«?) for ', 2% € X}.

Let C C IR™ represent a set of “attractive” directions to the decision
maker and be referred to as a preference come. A direction is considered
“attractive” if traveling along it results in improvement of, or at least no
change in, all criterion values with respect to the decision maker’s preferences.
Yu [6] models the decision maker’s preferences with a so-called domination
cone that contains all directions considered “unattractive” to the decision
maker.

Given the problem related to the triple (X, f,C) and following Yu [6],
we define efficient decisions and nondominated outcomes with respect to a
preference cone C.

Definition 2. A feasible decision &* € X is said to be an efficient decision
for (X, f,C) if there is no direction d € C, d # 0 and no &' € X such that
F(x') = f(z*) + d. An attainable outcome y* = f(x*) € Y is said to be
a nondominated outcome for (X, f,C) if there is no direction d € C, d # 0
and no y' = f(x') € Y such that y! = y* +d. Let E(X, f,C) and N(Y,C)
denote the set of efficient decisions and the set of nondominated outcomes,
respectively.

3 Pointed and Non-Pointed Cones in Multicriteria
Programming

Weidner [5] generalized the concept of pointedness by introducing the condi-
tion N(A)N(Y —Y’) = {0} relating the cone to the set of outcomes. We follow
on her results and extend them within the framework proposed by Yu [6].
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Proposition 1. If C is a pointed, convex polyhedral cone represented in in-
tersection form, then N(A)N(Y —Y) = {0}.

Proof: C is pointed if and only if rank(A) = m which is equivalent to
N(A) = {0}. By definition, 0 € (Y —=Y) so N(A)N(Y —-Y) ={0}. O

Theorem 1. (Yu [7]) Let C be an acute, convez polyhedral cone represented
in intersection form. Then y € N(Y,C) if and only if Ay € N(AeY, ]R’é)

Theorem 2. (Weidner [5]) Let C be a convex polyhedral cone represented
in intersection form. Then

1. E(X,f,C) CE(X,Af,R,).
2. If N(A) N (Y —Y) = {0}, then E(X, f,C) = E(X, Af, ).

Proof:

(1) Let ¢ € E(X, f,C) and assume that ¢ ¢ E(X, Af,IR}). Then there exists
a direction d € R, d # 0 and an &’ € X such that Af(x) + d = Af(z’)
which yields d = Af(2’) — Af(x) = A(f(z’) — f(x)). Since d > 0, we
know that A(f(x’) — f(x)) > 0 and by the representation of the cone C,
it must be that f(a’) — f(z) = d’ € C. We know that d’ # 0 because
Ad’ # 0. So there exists a direction d’ € C, d’ # 0 and an &’ € X such that
f(xz)+d’' = f(=’). This means that ¢ ¢ E(X, f,C) which is a contradiction.
Therefore, € E(X, Af, ]R’;) O

(2) We show that E(X,Af, ]R’;) C E(X,f,C). Let ¢ € E(X,Af, IR';) and

assume that x ¢ E(X, f,C). Then there exists a direction d € C, d # 0 and
an &’ € X such that f(x)+d = f(x’) and also Af(z)+ Ad = Af(x’). Since
d= f(z’) — f(x) then d € (Y — Y) and because N(A)N (Y —~Y) = {0} it
must be that d ¢ N(A) and therefore Ad # 0. However, sinced € C, Ad = 0
or equivalently Ad € ]R’; Let d’ = Ad. Now we have a direction d’ € ]R’;

d’ # 0 and an 2’ € X such that Af(z) +d’ = Af(x’). This implies that
z ¢ E(X,Af,R) which is a contradiction. Therefore, « € E(X, f,C). O

Theorem 3. Let C be a convex polyhedral cone represented in intersection
form. If N(A)N (Y —Y) = {0}, then y € N(Y,C) if and only if Ay €
AeN(Y,C).

Proof: (=) Obvious. (<) Let Ay € A e N(Y,C) and assume that y ¢
N(Y,C). Then there exists a y’ € N(Y,C),y’ # y such that Ay = Ay’ or
equivalently A(y — y’) = 0. This implies that y — y’ € N(A) and because
N(A)N(Y —Y) = {0}, it must be that y —y’ ¢ (Y —Y). However, y —y’ €
(Y — Y) by definition which is a contradiction. Therefore, y € N(Y,C). O

Theorem 4. Let C' be a convex polyhedral cone represented in intersection
form. Then
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1. AeN(Y,C) C N(AeY, ).
2. IFN(A)N (Y —Y) = {0}, then Ae N(Y,C) = N(Ae Y, E).

Proof:
(1) Let z € Ae N(Y,C). Then there exists a y € N(Y, C) such that z = Ay.
Assume that z ¢ N(A e Y, IR ). Then there exists a direction d € B, d # 0

and a 2’ € AeY such that z+d = 2’. Since 2’ € AeY, thereexistsay’ € Y
such that 2’ = Ay’ and d = 2’ —2 = Ay’ — Ay = A(y’ —y). Since d > 0, we
know that A(y’ —y) > 0 and by the representation of the cone C, it must be
that y’ —y = d’ € C. We know that d’ # 0 because Ad’ # 0. So there exists
a vector ' € C, d’ # 0 and a ¢y’ € Y such that y + d’ = y’. This implies
y & N(Y,C) which is a contradiction. Therefore, z € N(AeY,R). O

(2) We show that N(AeY,IR}) C Ae N(Y,C). Let z € N(AeY,IR). Then

there exists a y € ¥ such that z = Ay. Assume that z ¢ A e N(Y,C). Then
it must be that y ¢ N(Y,C) which implies that there exists a d € C,d # 0
and a ¢’ € Y such that y+d =y’ and Ay+ Ad = Ay’. Since d = ¢y’ —y then
d € (Y ~Y) and because N(A)N(Y —Y) = {0} it must be that d ¢ N(A) and
therefore Ad # 0. However, since d € C, Ad 2 0 or equivalently Ad € K.
Let d’ = Ad. Now we have a directiond’ € R, d’ # 0 and a 2’ = Ay’ € AeY

such that Ay + d’ = Ay’ or equivalently z + d’ = 2’. This implies that
z ¢ N(AeY,R) which is a contradiction. Therefore, z € Ae N(Y,C). O

4 Decision Making With Polyhedral Cones

Pareto-based multicriteria programming uses the nonnegative (nonpositive)
orthant to model the decision maker’s preferences. Clearly a general convex
cone may or may not contain the Pareto cone. From a practical point of view,
no direction contained in the Pareto cone should ever be eliminated since
every vector in this cone represents a direction in which all criteria increase
(decrease) or remain unchanged for a maximization (minimization) problem.
Therefore, the general cones we are most interested in using are polyhedral
cones that contain the Pareto cone since they contain all the directions of the
Pareto cone with some additional directions that in special circumstances
may also be attractive to the decision maker.

In the context of decision making, the requirement that the preference
cone be pointed translates to the property that if a direction d is attractive to
the decision maker then the direction —d should not be considered attractive.

Now consider the bicriteria case and the (nonpositive) Pareto cone. As-
sume, additionally, that one criterion is relatively more important than the
other so that the decision maker allows the value of the less important crite-
rion to decay to obtain an improvement in the value of the more important
criterion. This relative importance (RI) of the two criteria can be modeled by
opening the Pareto cone into the second quadrant as illustrated in Figure 1.
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All directions in the second quadrant model the decision maker’s preference
that criterion f; is relatively more important than criterion fs so that it is
of interest to improve f; even in the presence of decaying f,. Consistently,
the bicriteria problem related to the triple (X, f with RI, Pareto cone) can
be equivalently reformulated as the bicriteria problem related to the triple
(X, f,C), where C is an Rl-related cone.

Another way of interpreting the general cone in bicriteria decision mak-
ing uses tradeoff information associated with every nondominated outcome.
This tradeoff information contains two ratios that inform how much one cri-
terion must be allowed to decay to obtain a unit of improvement in the other
criterion. In this sense, constraints may be placed upon the tradeoff infor-
mation of the nondominated outcomes. Assume that the decision maker is
willing to a priori discard those nondominated solutions that do not satisfy
certain tradeoff constraints (TOC). Since TOC work in the outcome space
they can be used to modify the Pareto cone to a general cone. Consistently,
the bicriteria problem related to the triple (X, f with TOC, Pareto cone) can
be equivalently reformulated as the bicriteria problem related to the triple
(X, f,C), where C is a TOC-related cone.

In view of Section 3, the efficient decisions of the bicriteria problems above
can be found by solving related Pareto bicriteria problems for which there
are many solution methods.

5 Example

Consider the design of a tractor trailer with two design variables, the height
of the hitch (z1) and the wheelbase of the trailer (z2). Two criteria of interest
in evaluating performance of a tractor trailer are lateral load transfer ratio
(f1) and rearward amplification ratio (f2) which should both be minimized
(see [1] for a detailed model).

Now suppose that the decision maker considers f; relatively more impor-
tant than f» and is willing to allow up to 2.3 units of decay in fo to gain
one unit of improvement in f;. We could also say that the decision maker
considers a tradeoff of at most 2.3 units “attractive”.

Alternatively, suppose that the decision maker imposes a TOC that every
outcome with a tradeoff of at least 2.3 units is to be retained for consider-
ation. The RlI-preference and the TOC-preference of the decision maker are
modeled by the obtuse cone in Figure 1, which results in the bicriteria prob-
lem related to the triple (X, f,C) where X = {(z1,z2) | 71 € [51.2,76.8], z2
€ [311.04,466.56]}, f = [fi(z1,22), fo(x1,22)], C = {d € R | Ad = 0} and
A= ___2%3 _01] . In this example C is pointed so by Proposition 1 and The-
orem 2, E(X, f,C) = E(X,-Af,-R) = E(X,Af,R) = {(z1,2)|z; €
[69.5,76.8],z, = 466.56}. We know that E(X,f,—IR?Z) = E(X, —f,]Ré) =
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(-1,2.3)

f

Fig. 1. Pareto cone, Rl-related cone and TOC-related cone for the example

{(z1,22) | z1 € [61.2,76.8],22 = 466.56} and we see that the set of efficient
decisions is reduced by using the preference cone in Figure 1.

6 Conclusion

In this paper, we investigated the theoretical implications of using non-
pointed polyhedral cones in multicriteria programming. We also presented
two approaches (relative importance of criteria and tradeoff constraints) to
model the decision maker’s preferences with pointed polyhedral cones. Prob-
lems with polyhedral cones are easily solvable since they can be reformulated
as Pareto multicriteria problems.
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Abstract. Solution for multiple objective linear programming is a set of all effi-
cient or Pareto optimal solutions. Hence development of useful solution generation
method has been desired. We proposed efficient solution generation method based
on extreme ray generation method that sequentially generates efficient points and
rays by adding inequality constraints of the polyhedral feasible region. In the con-
ventional multiple objective programming researches it is required to solve efficiency
test subproblem. On the other hand in our method by investigating the properties of
efficiency tests we can improve efficiency test process in solution generation method.

1 Introduction

Definition 1 (Multiple objective linear programming).

maximize ¢z
1

maximize ¢
subject to Az <b, 220 2
where e¢i,...,¢ are given vectors in R”, z is a decision variable vector in
IR™, A is a given m X n matrix, and b is a given vector in IR™. We denote
I x n criterion matrix by C = (e, ...,¢)" and the polyhedral feasible region

by P={z| Az £ b, = 2 0}.

Definition 2 (Efficiency). A point 2’ € P is said to be efficient or Pareto
optimal, if there does not exists another z € P such that Cx > Cx', where
> means at least one strict inequality.

In the past three decades various simplex-like algorithms that sequentially
enumerate efficient extreme points and efficient extreme rays have been devel-
oped [1]. On the other hand a new direction of computational techniques in
efficient solution generation method based on extreme ray generation method
or non-pivoting method has been developed [2]. The purpose of this paper is
to make progress in efficiency tests in objective space to improve the solution
generation method.
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2 Cone representation and efficiency test

We denote a convez hull of a set S = {z!,...,z%} and a cone generated by
S as follows:

conv S={d Xz | N=1N20fori=1,..,u} (3)

i=1 =1
coneS:{Z,u,::l:i'|ﬂi20fori=1,...,u} (4)
i=1

In the polyhedral theory the following proposition for polyhedral set P is
stated [3].

Proposition 1. Any pointed polyhedral set P has a unique minimal repre-
sentation as

P =conv U +cone V (5)
where U = {u?,...,u®} is the set of exactly the all vertices, extreme poinis,
of P, and V = {vl,..., vt} is the set of nonzero representatives for the all

extreme rays of the cone of P.

In order to deal with efficiency condition in cone representation we utilize
the following Proposition directly deduced from Definition 2:

Propaosition 2. A feasible solution x’ € P is efficient iff
cone{C(u' —2'),...,C(u® —z'), Cv',...,Cv'}NR, ={0}. (6)

Hereafter we use the symbol (v?) to denote the ray {Xv’ | A = 0} by
nonzero representative v*. In the polyhedral feasible region we focus on the
extreme feasible solutions such that &’ = v’ or 2’ = v’ + (v').

Concerning to check efficiency condition by Proposition 2 we obtain the
following effective efficiency test problems:

Proposition 3 (Efficiency test). A feasible solution x' € P is efficient
iff the mazimum value of the following linear programming problem is grater
than zero:

max {zg | 2 = {20, 21,...,21} € F} (7

F={zeR"*| El:zk(O(ui —z2"))r £0
k=1
forie{1,....s}\{i' | C(w" — ') <0}, and
zl:zk(Cvj)k <0 forje{l,...,t}\ {5 | Cv’ <0}
k:;dzogo, ziZzg fori=1,...,1} (8)
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(Proof ) The event of Proposition 2 is equivalent to that there does not exist
= (u1,-.-,s+t) = 0 such that >, u;C(u* — ') + Z;zl Hsy;CVI >
0. The alternative of this event is that there exists v = (v1,...,1) € R’
such that Y, vk (C(ui — 2'))x <0 fori = 1,...,5, Yh_, n(Cvi), <
0 forj=1,...,t, and v; >0 for j =1,...,1. If there exists v > 0, then
vi(C(ut — '), < 0 for {i' | C(u* —z') < 0}, and similar to the case of
extreme rays.

In a similar way to Proposition 3 we obtain the following efficiency test.

Proposition 4 (Efficiency test’). A feasible solution ' € P is efficient
iff the mazimum value of the following linear programming problem is grater
than zero:

max {zg | z = {#0,21,...,21} € F'} 9)
F={zeR™| Z 2(C(u' — 2" L0,
k¢S

Si={k|(Cu' —2'))r>0,i=1,...,5}
forie {1,...,s}, and

Z zk(C’vj)k g 0,

k¢S,

So={k|(Cv)>0,i=1,...,t}
forje{1,...,t}

and 20 20, 2; 229 fori=1,...,1} (10)

Now concerning the extreme points of P we can state the following propo-
sition that is effective in efficiency test process.

Propasition 5. If E( --- E(P,k1), -+-, km) has only one extreme point
u forky, - km € {1,...,1}, then u’ is efficient.

where E(S, k) is the solution set E(S, k) in a set S for one objective function
e (ke {1,...,1}), 1e., E(S,k) = {x € R" | ¢ = arg maxgcs crz}, ie.,
this proposition means that an optimal solution for each objective function
is efficient.

3 Efficient solution generation algorithm

We consider the cone K as cone representation of the feasible region P. Let
(w) = ((z,€)) is an extreme ray of K.

K={w=(z,§) e R™"| (-A,b)w = —Az + b£ 2 0, w = 0} (11)
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If¢=0,ie., w=(x,0), then (z) (= (v)) is an extreme ray of P, and if £ > 0
and we rewrite the ray as (w) = ((z/¢,1)), then /€ (= u) is the extreme
point of P.

We concern ourselves with finding all the extreme rays of the form K =
{w | Dw = 0,w = 0}, where D is n; x n,. Consider the matrix (?) where
I is ny X ng identity matrix. Eztreme ray generation method gives a series
of transformation of this matrix that generates all the extreme rays [4]. At
any stage of the process we denote the old matrix by Y = (%), and the new
matrix being generated denoted by Y

Now we can utilize the properties of efficiency in polyhedral representation
given in Section 2 to improve the efficient solution generation method based

on extreme ray generation method [2]:

(Step 0) Set Y = (_A b).

I
(Step 1)

(1) If any row of U has all components negative, then w = 0 is the only
solution of K.

(2) If all the elements of U are nonnegative, then the columns of L are
the edges of K, i.e., the ray (L.;) is an edge of K.

(Step 2)
(1) Choose the row of U, say row r, with at least one negative elements.
(2) (a) Let ¥ = { j|yr; 2 0} and v = |?| ( i.e., the number of elements
of ¥). Then the first v columns of the new matrix, Y, are Y,; (j €
7).

(b) If Y has only two columns and y,.19-2 < 0, adjoin the column
|yr2|Y1 + |yr1]Y2 to the Y matrix. Go to step 5.

(3) Let S = {(5,1) | Yrs¥rt < 0,5 < t},i.e., the set of all (unordered) pairs
of columns of Y whose elements in row 7 have opposite signs. Let I
be the index set of all nonnegative rows of Y. For each (s,t) € S, find
all 4 € Iy such that yis = y; = 0. Call this set I(s,#). We now use
some of the elements of S to create additional columns for Y:

(a) If (s,t) = ), then Y, and Y.; do not contribute another column
to the new matrix.

(b) If I # 0, check to see if there is a % not equal to either s or #, such
that g, = 0 for all 7 € I1(s,t). If such a u exists, then Y, and Y,
do not contribute another column to the new matrix. If no such
u exists, then choose a1, az > 0 to satisfy a;y,s + asy,s = O.
(one such choice is aq = |yre|, @2 = |yrs|. ) Adjoin the column
a1Y.s + apY; to the new matrix.

(4) When all pairs in S have been examined, and the additional columns
(if any) have been added, we say that row r has been processed. Now
let Y denote the matrix ¥ produced in processing row r.

(Step 3) For each extreme rays L.; of Y at this stage, by noting that L, ; =

0 means that the column v; of L.; = (v;,0) is the extreme ray of P and
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Lyt1,; = 1 means that the column u; of L.; = (uj,1) is the extreme
point of P, discriminate extreme rays {»!,...,v7} and extreme points
{u,...,uP}.

(Step 4) Check efficiency for L.; coressponding to each extreme ray or point.
After checking efficiency for all extreme rays and points of L, go to (Step

1).

Finally we can obtain all efficient extreme points and rays of P.

In each iteration in the algorithm obviously we can state about efficiency
as follows:

Proposition 6. If the pair of extreme rays ((z!,£')) and ((x2,£2)) of K
such that ' and =2 are efficient and one of them is eliminated in the row
process step, then feasible solution x' of the newly generated ray ((z',€))
from them is efficient.

4 Numerical example

-1 2 1
C_(Q 1)’ A=1 4
3

The initial matrix for this problem is denoted by Y. The objective values for
each extreme ray are represented by corresponding column of the objective
value matrix Z!. Let E and N denote efficient and not efficient.

- W W
N
N

1 -3 21 0 0 1 2
-1 -3 27 -6 6 —1 27
-4 -3 45 —15 24 —4 45
yi=|-3 ~-1 30 = Y?®=]|-10 23 -3 30
1 0 0 3 0 1 0
0 1 o0 1 7 0 0
0 0 1 0 1 o0 1
N N N E E N N

[y

(-1 2 0 > (-1 14 -1 0
Z“(loo) :>Z‘(7720)

(1) All extreme rays and extreme point of the initial matrices are not efficient
by Proposition 2 since there exists positive ray in objective space.
(2) Concerning the second matrices (Y2, Z2) we examine the extreme point
(0,77 by Proposition 3 and 4 as follows:

(21, 22) (‘71 e Rl G ELEYC e
0, then there exists z = 0, therefore, the extreme point (0,7) is efficient.

Next we examine the extreme ray (0,7)7 + ((3,1))7 by Proposition 3 as
follows:
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-1 1 -7 -13 -1 1 -1
(ZI,ZQ)( 7 _7 2 _14) é 0= (21,22)< 7 _7 9 ) g 07

then there exists z = 0, therefore, this extreme ray is efficient.
The third and fourth matrices are as follows:

0 0 21 31 0 0 21 21 31

-78 6 27 17 -36 6 9 27 17

~10.5 24 45 5 0 24 0 45 5

=>v3= 0 23 30 o0|l= Y*=| 7 23 0 30 o0
69 0 0 10 48 0 9 0 10

93 7 0 0 8 7 3 0 0

1 1 1 1 1 1 1 1 1

E E N N E E E N N

-3 0

s (117 14 0 —10 . (124 14 ~10
=72 = (23.1 7 0 20)32_ (18.2 7 21 0 20)

(3) In the third matrices (Y2, Z2), the extreme point (6.9,9.3) is efficient by
Proposition 5 and the extreme point (10,0) is not efficient by Proposition 2.
(4) The newly generated extreme point (4.8, 8.6) is efficient by Proposition 6
and (9, 3) is efficient by Proposition 5.

(5) Finally the extreme points (3, 8) and (6, 7) are efficient by Proposition 6.

0 0 6 21 21 31

o 2 0 0 4 5 E BB ENN
> v®=|13 23 5 0 30 o], 7= (13 14 8 -3 0 -10

AN G 4 7 19 21 0 2

8 7 7 3 0 0

1111 1 1

5 Conclusion

In this paper, we consider the properties of efficiency tests in objective space
in a new direction of efficient solution generation method. More considera-
tions about comparison between the proposed method and the conventional
pivoting methods are expected.
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Robust Efficient Basis of Interval Multiple
Criteria and Multiple Constraint Level Linear
Programming
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Abstract. In this paper we deal with interval multiple criteria and multiple con-
straint level linear programming. We define a robust basis for all possible pertur-
bation of coefficients within intervals in objective functions and constraints that
is regarded as secure and conservative solution under uncertainty. According to
the conventional multiple objective programming literature, it is required to solve
test subproblem for each basis. Therefore, in case of our interval problem excessive
computational demand is estimated. In this paper investigating the properties of
robust basis by combination of interval extreme points we obtained the result that
the robust basis can be identified by working with only a finite subset of possible
perturbations of the coefficients.

1 Introduction

Generally it is difficult to determine exactly the coefficients in mathematical
programming problems due to various kinds of uncertainties. However, it is
sometimes possible to estimate the perturbations of coefficients by intervals or
possibilistic distributions. For such decision making situations, interval math-
ematical programming or fuzzy mathematical programming with uncertain
coefficients have been investigated [1],(2],[3],[4]. In the setting of fuzzy multi-
ple objective programming with possibilistic coefficients two kinds of efficient
solution sets are defined as fuzzy sets. In the interval case where all possibilis-
tic coefficients degenerate into interval coefficients, important results for two
kinds of efficiency tests were obtained [5],[6],[7], i.e., efficient solutions can be
identified by finite subsets of the possible perturbations of the coefficients in
the interval matrix.

In this paper more general results are obtained in the framework of in-
terval multiple criteria and multiple constraint level linear programming. We
define a robust potential basis for all possible perturbation of coefficients
within intervals in objective functions and constraints that is regarded as
secure and conservative solution under uncertainty. Investigating the theo-
retical aspects of robust potential basis We discuss that the robust basis can
be identified by working with only a finite subset of possible perturbations
of the coefficients.
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2 Multiple criteria and multiple constraint level linear
programming

A multiple criteria and multiple constraint level linear programming is defined
as follows (e.g., [8]):
Definition 1 (P1).
Minimize Cx (1)
subject to Az > D, 20 (2)
where C is a p X n matrix, A is a m X n matrix, and D is a m X ¢ matrix.

A potential solution for this problem is defined as follows:

Definition 2. We call z a potential solution that is an optimal solution for
the following linear programming problem with g > 0 and v > O:

minimize v*Cz (3)
subject to Az 2Dy, x 20, v>0, u>0 (4)
where inequality > means at least one strict inequality.

Inequality in constraint condition of this problem is rewritten as
Az —X=Dy (5)

Similarly inequality in condition of the dual problem for this problem, dual
feasibility, can be represented as the following equation.

pu+ ATy =CcTv (6)

By using the property of linear programming problem we can represent
the optimality condition for our problem.

Proposition 1. x (y) is a potential solution for the problem (P1) if it sat-
isfies the following conditions:

(A, ~Inxm)v=Du, v20, p>0 (7
(Inxn, ANy w =CTv, w20, v >0 (8)
v-w=20 (9)
Where'v:(J’Ia"‘,il/'m)\l,"‘,/\m);wz(lll,"‘,ﬂn,yl,"',ym) and I is an

identity matriz.

We discuss a potential basis for our problem in basic form. Let B be an m-
tuple of integers from {1,...,m+n} called basis, and N = {1,...,m+n}\B.
Let v = (vB,vn) and w = (wn,wB), where vp = {v; | i € B}, vy = {v; |
i € N}, wy = {w; | i € B}, wp = {w; | i € N}. Then we represent a
potential basis in a basic form.
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Proposition 2. Basis B is a potential basis if the following conditions are
satisfied:

Avp =Dp, p>0 (10)
Aswp = CTU, v>0 (11)
vp20, w20, vyny=wny=0 (12)

where A, is a matriz with the column vectors from (A, —Lnxm) corresponding
to vg, and Ag is a matriz with the column vectors from (Inxn,AT) corre-
sponding to wg.

3 Interval coefficient problem

From a practical point of view due to various kinds of uncertainties it is
usually difficult to specify the coefficients of the objective functions and con-
straints. However, there exist some cases where coefficients can be specified
by possible ranges represented by intervals.

In this paper regarding the uncertainties represented by intervals, we con-
sider interval multiple criteria and multiple constraint level linear program-
ming problems.

Definition 3.
Minimize Cz (13)
subject to Az 2D, x 20 (14)
where C' is an element of a set of p x n criteria matrix with elements ¢;; €
[Qijaaij] (7: L...,p, j= 11---1”) :
e, en] oo [e1nsCin]
Ce : : ; (15)
[Qpliaﬁl] e [me Elm]
A is an element of a set of m x n matrix with elements a;; € [ a;;,@;; ] (i =
1l,...,m, j=1,...,n):
la11,811] .- (15, 81n)]
ael S (16)
[les Eml] tee [ans a‘rm’l]

and D is an element of a set of m X q matrix with elements d;; € [ d;;, di; ] (i =
1,...,m, 3=1,...,9):

[di,du] ... [digrdiq)

De : : 17)

[dmlia'nl] e [(—lmqi(_]'mq]
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This problem can be regarded as a set of multiple criteria and multiple
constraint level linear programming problems each of which has a matrix C,
A, and D in the interval matrices respectively.

For this kind of interval coefficient problems, two kinds of solution con-
cepts, i.e., optimistic and pessimistic solutions, have been investigated [1],[5],[6].
In this paper we define a robust potential basis as pessimistic or secure solu-
tion.

Definition 4. We call B a robust potential hasis, if it is a potential basis
for all cx; € [ ¢y;,Crj 1> @i5 € [ 855,85 | and diy € [ dy,dy .

4 Main results

According to Proposition 2 we can represent a robust potential basis in a
basic form.

Propaosition 3. Basis B is a robust potential basis if the following conditions

are satisfied for all cx; € [ ¢;;,Crj |, aij € [ a;5,8i; | and diy € [ dyy, dir ):

Ayvg=Du, p>0 (18)
Awg=C"v, v>0 (19)
vp20, w20, vy =wy =0 (20)

Unfortunately the cardinality of this subset, combination of lower and
upper hound of intervals is 2P7tmntan,

Now we define the following two matrix sets:

Definition 5 (Matrix set M;). We denote a subset by My for (41, D)
having all elements of each row at the upper bound or at the lower hound.
Hence, if (A1, D) € My, for j = 1,...,m either Ay;. = Ay, D = D;, or
Ay;. = Aq;., Di. = D;.. The maximum number of elements of M; is 2™.

Definition 6 (Matrix set M;). We denote a subset by M, for (As,C)

having all elements of each column at the upper bound or at the lower bound.
Hence, if (A2,C) € Ma, for i = 1,...,n either Ay ; = &.j, Cj;=C;or

As.; = A4, Cj = C.j. The maximum number of elements of M, is 2".
Then finally we obtain the following Theorem:

Theorem 1. Basis B is a robust potential basis if the following conditions
are satisfied for every (A1, D) € My and every (A2,C) € Ma:

Ajop=Dup, n>0 (21)
Aywp =CTv, v>0 (22)
vp20, w20, vy =wn =0 (23)
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Proof. By the theorem of alternative (Motzkin’s theorem [9]) occurrence
of the event of equation (21) and the event of following inequalities (24) is
exclusive.

AT¢=20 D'¢>o0 (24)

If A; with elements of a;; € [ a;;,@i; ] and D with elements of dy € [ dy, dir ]
satisfy the inequalities (24), then by the definition of M; there exist matrices
(A3, D*) € M, such that

ATe> A47T¢20, D*"¢2D"¢>0 (25)

Therefore, it is sufficient to consider the matrix set M;. Similarly we can
discuss the equation (22) with the matrix set M.

The cardinality of combination of these subsets is 2™+7. This theorem can
be regarded as an extension of the past results for the problem with interval
coefficients [5],(6].

5 Conclusion

In this paper considering the optimality condition in linear programming
problem we investigated the properties of robust basis for multiple criteria
and multiple constraint level linear programming with interval coefficients. By
means of the obtained Theorem 1, robust potential basis can be identified by
working with only a finite subset of possible perturbations of the coefficients.
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An Interactive Satisficing Method through the
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Random Multiobjective Linear Programming
Problems
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Abstract. In this paper, we consider a multiobjective linear programming prob-
lem involving fuzzy random variable coefficients. Introducing a fuzzy goal for each
objective function, we focus on a degree of possibility that each objective func-
tion satisfies the corresponding fuzzy goal. Since the degree of possibility varies
randomly, we formulate the multiobjective problem to minimize the variances of
degrees of possibility based on stochastic programming. In order to find a satisficing
solution for a decision maker, we propose an interactive satisficing method based
on the reference point method.

1 Introduction

In classical mathematical programming, the coefficients of objectives or con-
straints in problems are assumed to be completely known. However, in real
systems, they are rather uncertain than constant. In order to deal with such
uncertainty, stochastic programming (1] and fuzzy programming [2,3] were
considered. They are useful tools for the decision making under a stochastic
environment or a fuzzy environment, respectively.

Most researches in respect to mathematical programming take account
of either fuzziness or randomness. However, in practice, decision makers face
with the situations where both fuzziness and randomness exist. For instance,
in the case where some expert estimates coefficients of objective functions or
constraints with uncertainty, they are not always given as random variables
or fuzzy sets but as the values including both fuzziness and randomness.
Fuzzy random variables [4,5] are one of the mathematical concepts dealing
with fuzziness and randomness simultaneously. Recently, several authors con-
sidered linear programming problems involving fuzzy random variables [6-8].
In our previous research, we considered multiobjective fuzzy random linear
programming problem[9] using the concept of possibility measures[10] and
the expectation model, which is maximize the expectation of degrees of pos-
sibility that the objective function values satisfy fuzzy goals. In this research,
we consider the problem based on the V-model in stochastic programming(4]
and propose an interactive satisficing method in order to obtain a satisficing
solution for a decision maker.
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2 Formulation

In this paper, we consider the following multiobjective linear programming
problem:

min &e, i=1,...,k (1)
s.t. Az <b, >0
where & = (z1,...,z,)! is a decision vector and & = (y1,...,Gin) is a

coefficient vector. Let A be an m x n matrix and b an m x 1 vector. Each ¢;;
is a fuzzy random variable with the following membership function:

) :ma.x{O,l—M}, i=1,...,k j=1...,n (2
ij «; ,7

where &;; denotes a random variable (or a scenario variable) whose realization
under the scenario s; is ¢;j4;, and the number of scenarios s; corresponding to
the ith objective function is S;. Let p;s, be the probability that each scenario
s; occurs. We assume that Zizl Pis; = 1 holds. Each a;; denotes the spread
of a fuzzy number. This type of fuzzy random variable is equivalent to a
hybrid number, which was introduced by Kaufman and Gupta [12].

Since the coefficients of objective functions are the symmetric triangular
fuzzy random variables, each objective function also becomes the same type

of fuzzy random variable Y; with the following membership function:

py (y) = max {0, 1- ,i=1,... k. 3)

Considering the imprecision or fuzziness of the decision maker’s judgment,
for each objective function of problem (1), we introduce the fuzzy goal G
with the membership function expressed as

0, y>h!
y—h? 1 0
pa,(y) = B0 hi <y<h (4)

1, y<hl, i=1,...,k

Since the membership function ug is regarded as a possibility distribution,
the degree of possibility 11 (éz) that the objective function value satisfies
the fuzzy goal G; is

1 (G;) = supmin {,u;,i(y), 1, (y)} Li=1,... k. (5)
K
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Accordingly, we consider the following multiobjective problem:

max IT; (G;), i=1,...,k
s.t. Az <b, >0

(6)

In this research, taking account of all scenarios, we set h? and h} as the
following form:

n
0
h; = max max Cijs;Tj, t=1,...,k,
8i ®E X 4
Jj=1
n
1 . . .
h; = min min E Cijs; i, t=1,...,k,
8; € X 4 1
=

where X 2 {z|Az < b, x > 0}. By using (3) and (4), the degree of possibility
is represented as follows:

> {euj — &tz + by
Ci=1,... .k

3| -

QT — hzl + h?

<.
Il
—

Since the degree of possibility in problem (6) varies randomly, the problem
is regarded as a stochastic programming problem. Katagiri et al.[9] proposed
a fuzzy random multiobjective linear programming model, which is to maxi-
mize the expected degree of possibility that objective function values satisfy
the respective fuzzy goals. This model is useful for decision making under
fuzzy stochastic environments; however, in the obtained solution based on
this model, there is a possibility that the degree of possibility corresponding
to a certain scenario is fairly small because the variance of the degree of pos-
sibility is unconsidered. Therefore, in this research, we propose the model to
minimize the variances of degrees of possibility. Fori = 1,... , k, the variances
of degrees of possibility are calculated as follows:

~ 1 LA
VI (Gi)] = 2 V| e

n .
( oz — b} + h?) =
=1

Let V; denote the variance-covariance matrix of &é;. Then the problem to
minimize the variances of degrees of possibility is formulated as

. 1 ,
min 2:1:TVia:,z:1,‘..,k

(,nl ai;zj —hi + h?) ()
=

s.t. Az <b, >0
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The variance-covariance matrix is expressed by

vll 'U1'2 e 'Uln
Uy Usp - Uy
Vi=1 .o .. |, i=1,...,k
Uni Un2 " Unn
where
s; S 2
i __ <] — 2 s
Vi = Ve, = E Pis; {Cijss }* — E Pis;Cijs; ¢, J=1,...,n
8i=1 3i=1
vl = Cov(eyj,éq] = Elij,cu) — Elciz]Elea], j#1, 1=1,...,n
and
Si
E[Eijyé’il] = g Dis; Cijs; Cils; -
8;=1

In (7), since

n
Zaijxj - hzl + h? > 0.
=1

and 7V, > 0, an optimal solution of the following problem is equivalent to
that of (8).

(8)

min z(z) £ [V (Go), i=1,...,k
s.t. Az <b, >0

In the next section, we consider a method for solving problem (8).

3 Interactive Decision Making Using the Variance
Minimization Model Based on a Possibility Measure

Since problem (8) has several objective functions, there does not generally
exist the solution optimizing all functions. Therefore, in this section, we dis-
cuss the interactive decision making based on the reference point method [13]
to obtain a Pareto optimal solution.

For each of the multiple conflicting objective functions, assume that the
decision maker can specify the so-called reference point ®# = (71,... ,7k)
which reflects in some sense the desired values of the objective functions of
the decision maker. Also assume that the decision maker can change the ref-
erence point interactively due to learning or improved understanding during
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the solution process. When the decision maker specifies the reference point
# = (@1,...,7k), the corresponding Pareto optimal solution, which is, in
the minimax sense, nearest to the reference point or better than that if the
reference point is attainable, is obtained by solving the following minimax
problem:

min max {zi(z) — 7:} } ©)
s.t. Az <b, x>0

For simplicity, we define N; and Q; as
\/a:t—V,-a:—ﬁi Zaijxj—h}+h?
j=1 AN N,(a:)

z,(a:) — T = - =
Y iz — hi + b (=)
j=1

Then, in minimax problem (9), the numerators of objective functions are
all convex functions and the denominators are all affine functions. Hence, it
follows that all objective functions in (8) are quasi-convex functions. Accord-
ingly, the problem is solved by the method of Borde et al.[14], which is an
extended version of Dinkelbach-type algorithm.

From the above discussion, an algorithm for obtaining a satisficing solu-
tion of a decision maker through interaction is described as follows:

[An interactive satisficing method for fuzzy random multiobjective
linear programming problems]

Step 1: Set the initial reference values ;, i = 1,... ,k to Os.
Step 2: Set A\ «— 0 and find a feasible solution. Let the solution be x*.
Step 3: Calculate ¢* defined by

and solve the following problem:
min Z
s.t. ﬁr)'{Qt(w)—q/\Nl(w)} <Z,i=1,... K, (10)
z € X.
Let an optimal solution of (10) be 2. Go to Step 4.
Step 4: If Z = 0, then go to Step 5. Otherwise, set * «— ¢, A — A+ 1 and
return to Step 3.

Step 5: If the decision maker is satisfied with the current solution ¢, then
terminate. Otherwise, update &, i = 1,... ,k and return to Step 2.

It should be noted that an optimal solution of (9) is at least a weak Pareto
optimal solution of (8).
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4 Conclusion

In this paper, we have proposed the model to minimize the variances of
of degrees of possibility for a multiobjective linear programming problem
including fuzzy random variable coefficients. After transforming the formu-
lated problem into the deterministic equivalent multiobjective quasi-convex
programming problem, we proposed an interactive satisficing method and
considered a solution procedure based on an extended version of Dinkelbach-
type algorithm. Although we dealt with only a degree of possibility in this
paper, we can also consider the model to minimize the variances of degrees of
necessity in similar manner. In future, we will try to consider another model
or apply the proposed model to the combinatorial optimization.
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Abstract. This paper is concerned with existence theorems for cone-saddle points
of vector-valued functions in finite dimensional Euclidean spaces. By means of vec-
tor variational-like inequalities, we first characterize a vector saddle point problem
and obtain the existence result under some conditions on the subdifferentiable of the
vector-valued function. The continuity and convexity assumptions on the objective
function are then relaxed.

1 Introduction

Studies on vector-valued minimax theorems or vector saddle point problems
have been extended widely; see [9] and references cited therein. Existence
results for cone saddle points are based on some fixed point theorems or
scalar minimax theorems; see [8]. In 2000, this kind of problems was solved
by a different approach in [4], where the connection to a vector variational
inequality problem in a finite dimensional vector space was established. In
[6], we have extended it into a generalized version under the setting of a
normed space, and then presented another generalization to vector problems
involving the concept of cone invexity in the general setting of a normed
space in The 5th International Conference on Optimization: Techniques and
Applications. In this paper, under the restriction to only finite dimensional
Euclidean spaces we obtain a new existence result which extends our recent
results by relaxing the continuity and convexity assumptions.

2 Preliminary and terminology

Let X and Y be nonempty subsets of finite dimensional spaces R™ and R™,
respectively. Given a vector-valued function L : X X Y — RP, the Vector
Saddle-Point Problem, (P) for short, is to find zg € X and yo € Y such
that

L(zo,Y0) — L(z,y0) ¢ int R}, Vz € X, (1a)
L(zo,y) — L(zo, y0) ¢ int R, Vy € Y. (1b)

A solution (g, yo) of (P) is called a weak R -saddle point of function L.
Suppose that 7 is a vector-valued function from X x X to R™.



178 K. Kimura, E. M. Kalmoun, and T. Tanaka

Definition 1. For any given R -convex function f : X — RP, the vector
subdifferential of f at a € X with respect to # is a set of linear operators
from R™ to RP denoted by

0f(a) :={ A€ LR, R") | f(z) - f(a) - (A,n(z,a)) € RE. Vz € X }. (2)
If 8f(a) is nonempty for every a € X then f is subdifferentiable in X.

For each 2y € X, we define a maximal solution set of L(zg, Y) with respect
to int RY. as follows:

T(xo) :={y €Y | L(zxo,v) — L(zo,y) ¢ int R, , Vv € Y }. 3)

For each zy € X, it follows from the nonemptyness and compactness of
Uyey L(xo,v) and the correctness of RY that T'(zo) is nonempty; see Theo-
rem 2.6 in [5]. Letting f(-) = L(-,yo) for a fixed yo in (2), we consider the
vector subdifferential OL(+, yo) and then the following Vector Variational-like
Inequality Problem, (Q) for short, is to find zy € X and yo € T(zo) such
that

(A, n(z,z0)) ¢ —int R, , Vz € X for some A € dL(zo, yo). (4)

Definition 2. A multifunction F : X — 27 is called upper-semicontinuous,
u.s.c. for short, if for every z € X and Up(,) C RP, a neighborhood of F(z),
there exists V; C X, a neighborhood of = such that F(y) C Up(y) for all
y e V.

Definition 3. Let X and Y be two metric spaces. A set-valued map F :
X — 27 is said to be closed at xq if for any sequences {z,} with z,, — xo
and {y,} with y, € F(z,), yn — yo for some yo € Y implies that yo € F(zo).

Theorem 1. (See Theorem 2.3 in [5]) For each zo € X, T(zo) is closed.

3 Existense results of cone saddle points

Theorem 2. Suppose that X is convex and L is vector subdifferentiable with
respect to 1 in the first argument. Then the solution set of (Q) is included in
that of (P).

Theorem 3. (Fan-KKM Theorem, see Lemma 1 in [2]) Let Y be a subset
of the topological vector space X. For each z € Y, let a closed set F(zx) in
X be given such that F(x) is compact for at least one x € Y. If the convex
hull of every finite subset {z1, ... ,z,} of Y is contained in the corresponding

union J;_; F(x:), then N,y F(2) # ¢.

Based on Theorem 3, we obtain our existence results. The mapping F :
Y — 2Y is called the KKM-map if conv{zs, ... ,z,} C Uj_; F(z:) for every
finite subset {z1,...,2,} of Y, where conv D denotes the convex hull of the
set D.
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Theorem 4. Let X and Y be nonempty closed convex subset and nonempty
compact in R™ and R™, respectively. Assume that the vector-valued function
L is subdifferentiable with respect to n in the first argument, where n : X X
X — R™ satisfies the following three conditions: for all x € X,

(i) n(-,z) s affine,

(%) n(z,-) is continuous, and
(13) n(z,x) =0.

Assume that OL(z,y) is u.s.c. in both = and y. If there exrist a nonempty
compact subset B of RP and zg € (BN X) such that for anyz € (X\B), y €
T(z), A € 0L(z,y)

(A,n(x0,z)) € —int R,
then problem (P) has at least one solution.
Proof. Define a multifunction F : X — 2X by

F(u) i= {z € X | (An(u,2)) ¢ —int B,
for some y € T(z) and A € 0L(z,y)}, ue X.

In order to prove the theorem, it is sufficient to show by Theorem2 that
problem (Q) has at least one solution pair (zo,yo) € X x T(zg). So we
should show, by Fan-KKM Theorem, the following three points:

(a) F is a KKM-mabp;
(b) F(z) is closed for each z € X; and
(c) there exists £ € X such that F(Z) is compact.

First, we prove condition (1). Suppose to the contrary that there exist
T1,Z%2,... , T, and ai,as,... , o, such that

m m m
z:.= Zaizigé UF(mi), Zaizl.
i=1 i=1 i=1
Then, £ ¢ F(z;) for all ¢ = 1,...,m, and hence for any y € T'(Z), A €
OL(2,y),
(A,n(zi, &)) € —int R,
for alli =1,...,m. Since int R% is convex, we have

> ai(A,n(=i,#)) € —intRE.

i=1

Since A is a linear operater and 7 is an affine operater, we have

<A,77 (i aimi,iaiﬁr>> € —int R
i=1 i=1
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Therefore
(A,n(2,%)) =0 € —int RY,

which is inconsistent. Thus, we deduce that

m
conv{zi,z2,... ,Tm} C U F(x;).

i=1

Next, we show that the condition (b) holds. For each u € X, let {z,,} C
F(u) such that z, — z € X. Since z,, € F(u) for all n, there exist y,, € T(z,,)
and A,, € dL(z,,yn) such that

(An,n(u, 2,)) € W,

where W := RP\(~int R}). As {y,} C Y, without loss of generality, we
can assume that there exists y € Y such that y,, — y. Now T is closed, by
the reason of Theorem 1, so y € T'(z). Because of the closedness of W, the
upper semicontinuity of 8L and (A,,n(u,z,)) € W for all n, there exists
A € OL(z,y) such that

(A, n(u,z)) e W.

Hence z € F(u). As a result the condition (b) holds.

Finally in order to prove the condition (c). Since F(Z) is closed and B is
compact, it is sufficient to show that F(Z) C B. Suppose to the contrary that
there exists £ € F(Z) such that & ¢ B. Since & € F(Z), there exist § € T(%)
and A € L(#,§) such that

(A, n(z,%)) ¢ —int RP. (5)
Since £ ¢ B, by the hypothesis, for any y € T(%) and A € 8L(%, y),
(A7 77(»’737 i)) € —int Rg-y

which contradicts condition (1). Hence F(Z) C B. Since B is compact and
F(Z) is also closed, F(Z) is compact, that is the condition (c) holds. Con-

sequently by Fan-KKM Theorem, it follows that {7} F(z) # ¢. Thus, there
zeX
exists zo € X and yo € T'(yo) such that

(A, n(z,x0)) ¢ —int RY,
for all x € X. As a result there exists at least one solution of (P).

Definition 4. Suppose we are given vector-valued functions f and h, which
consist of p real-valued functions fi,...,f, and hy,... ,h, on X x Y, re-
spectively. h is said to be a vector convex envelope of f if h; is the convex
envelope of f; for every i € {1,...,p}.
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Assuption A. For f : X — RP and its vector convex envelope h, the
following condition holds:

{z e X | h(z)—h(y) ¢ intRE Vy e X}
c{zeX| f(z)— f(y) ¢ intRE Vy e X }.

Corollary 1. Let X and Y be nonempty closed convex and nonempty com-
pact in R™ and R™, respectively. Suppose that a vector-valued function H :
X XY — RP is the convex envelope of L : X XY — RP in the first argument
and that H satisfies the conditions on L in Theorem 4. If h(z) := H(z,y)
and f(z) := L(z,y) satisfy Assumption A for each y € Y and L is continu-
ous with respect to the second argument, then problem (P) has at least one
solution.

Proof. In the definition of F' in the proof of Theorem 4, we replace OL(z,y)
by OH (z,y). Then we see there exist o € X, yo € T(xo) and A € OH(zg, yo)
such that

(A,n(z,z0)) ¢ —int R Vr e X.

Assumption A leads to

L(zo,y0) — L(z,y0) ¢ int RY, Vze X
and yo € T'(zo) leads to

L(xo,y) — L(zo,y0) ¢ int R, VyeY.

Which means there exists at least one solution of (P).
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An Application of Fuzzy Multiobjective
Programming to Fuzzy AHP
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Abstract. In the real world, we encounter many subjective evaluation problems.
For some class of them, we can give the numerical evaluation by means of Analytic
Hierarchy Process (AHP) approaches. Moreover, we can even identify the \-fuzzy
measure as the subjective evaluation by using AHP result. Although the original
problem includes subjective estimates, this identification process has no vagueness.
So, in this article, we discuss the identification process with vagueness. That is, fuzzy
multiobjective programming techniques are applied to an identification problem for
the parameter of A-fuzzy measure.

1 Introduction

On a decision making problem, we select the most appropriate alternative
among all admissible ones based on an evaluation criterion. In the case that
the criterion and alternatives are presented by mathematical models, it is ef-
fective for us to approach them using mathematical programming techniques.
However, it is not rare that there are plural evaluation criteria on a problem
in the real world. In addition, it is even improper to express the criteria by
mathematical expressions, that is, subjective evaluation criterion. For exam-
ple, design and sense. For some class of subjective evaluation problems, we can
give the numerical evaluation by means of Analytic Hierarchy Process(AHP)
developed by T.L. Saaty(e.g. [4]). By applying AHP, we are able to evaluate
the alternatives based on the decision maker’s intuitive and/or experiential
judgment, and derive a numerical evaluation values for each alternative.
Fuzzy measure and fuzzy integrals(e.g. [6]) are is also known as models
of the subjective evaluation. A-fuzzy measures [5] are especially useful for
evaluating alternatives with a sort of mutual relations. However, it is difficult
to decide a parameter of the A-fuzzy measure. For the sake of overcoming
such difficulty, we are able to utilize AHP techniques. In other words, we can
decide the parameter of the A-fuzzy measure as the subjective evaluation by
using AHP techniques. Then, the A-fuzzy measure is identified, and assigns a
numerical evaluation value for any subset of the set containing all alternatives.
In this article, we discuss an extension of the above method for a subjec-
tive evaluation on the power set of all alternatives. Namely, we introduce a
subjective evaluation function (called A-fuzzy measure type evaluation func-
tion) with a fuzzy parameter, and formulate the identification problem as
a fuzzy multiobjective programming problem by using the results of AHP.
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Therefore, the evaluation values are given as fuzzy numbers. Then, decision
maker obtains his own subjective evaluation for each subset of the set of all
alternatives, i.e. his own subconscious evaluation for mutual relations among
all alternatives.

2 Preliminaries

In this section, we recall basic definitions and properties concerned with \-
fuzzy measures, fuzzy sets and the index of ranking fuzzy numbers based on
Possibility Theory. Throughout this article, N = {1,2,...,n} denotes a set
of all alternatives, and 2V is the power set of N.

2.1 A-fuzzy measures

For a fixed parameter —1 < A < oo, a function gy defined on 2V to the unit
interval [0, 1] is called a A-fuzzy measure (Sugeno measure) , if and only if it
satisfies gx(V) = 1, ga(@) = 0 and

1 i .
" X H(lﬂ'gA(Ej))—l , ifA#£0,
[3) UEJ = n j=1
j=1

where {FE1,--- , E,} is any family of disjoint subsets of N. As well-known, if
E, F € 2V are disjoint sets then g\(EUF) = gx(E)+gx(F)+A-gx(E)-gA(F).
Concerning A-fuzzy measures you can find further details in [5,6], for example.

2.2 Fuzzy sets

a denotes a fuzzy set on an m-dimensional Euclidean space R™ with its
membership function pg : R™ — [0,1]. (For details, refer to [3,7]) The a-
level set, 0 < a < 1, of @ is defined as [a]* = {z € R| pz(z) > a} for
a € (0,1], and [@]° = cl (Up<a<1 [d]%), where “cl” denotes the closure of the
set. A fuzzy set @ on R is a symmetric triangular fuzzy number, if and only
if the membership function is defined by uz(z) = max {|z — a|/o,, 0}, where
a is the center, o, > 0 is the spread and we write @ = (a,0,) 7.

According to Dubois and Prade’s results [1], for @ = (a, o4)T, b = (b, 0%)7
and a scalar p € R, the following are valid:

va = (va,vo,)r, (1a)
G+b=(atbo,+0b)p, (1b)
@b (ab,|aloy + |boa)y, (1c)
1/a~ (1/a,00/a%),, (a#0). (1d)

where “~” denotes an approximate equation.
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2.3 Ranking fuzzy numbers

Possibility measure([8]) is defined by IF;(¢) = sup, min {uz(x), pz(x) }, where
bisa fuzzy number and ¢ is an arbitrary fuzzy set on R. Applying this concept
and necessity measure, Dobuis and Prade proposed four indices of ranking
fuzzy numbers based on Possibility Theory in [2]. The following is one of
them:

Pos(ﬁ < 5) = I([a, 00)) = sup min {5 00) (z), pz(2) } (2)

where a fuzzy interval [a, 00) is characterized by the membership function
K&,00) (¥) = SUP4.z<, Ha(). They explained that Pos (6 < Z) yields the grade

of possibility of “a < b Besides, they defined the grade of possibility of
“’d’ — b”;

Pos(&:g) = min {Pos(ESZ) , Pos(azz)}. (3)
By the above Equations (2) and (3), the next assertion is valid.

Proposition 1. Let a be a triangular fuzzy number, and let b be a real num-
ber. Then, the condition Pos(@=0b) > o, (0 < a < 1) is equivalent to
bela]”.

3 Subjective evaluation

First of all, we should make sure of our purpose. It is to propose a subjective
evaluation method based on AHP and A-fuzzy measure. The evaluated objects
are subsets of the set of all alternatives, assuming that there are some mutual
" relations among them and the decision maker perceives the interaction but
his perception is not clear.

Our proposing method is constructed from two steps. In Step 1, the de-
cision maker applies AHP techniques to his problem. In Step 2, he identifies
his own subjective evaluation function.

Step 1.

The decision maker evaluates S € 2¥ by AHP in advance, i.e. calculates
the importance for every nonempty subset S. In the rest of this article, the
pairwise comparison matrix A = (asr) € RE"-Dx(2"~1) and the vector
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w = (ws) € R"~1) denote

a{l}y{l} a{l}v{Z} a‘{l},{l,2} a{l}vN
@{2},{1} G{2},(2} --- @{2},{1,2} --- O{2},N

a{172}7{1} a{172}7{2} a’{l,?},{l,2} a{172}7N

aN {1y AN({2} --- ON({1,2} --- ONN
w = (W{l} W2y --- W{1,2} --- wN) s
respectively.
For our purpose, we should modify A-fuzzy measure as follows.
Definition 1. Let 0 < o < 1 be a fixed grade, And let g be a fuzzy set-
valued map on 2V, ie. g : 2V — F(R), where F(R) denotes the set of all

fuzzy set on R. Then, g is a A-fuzzy measure type evaluation function with a
fuzzy parameter A > 0, if g satisfies the following conditions:

1. g(8) =0,
2. g({i}) = wyyy for alli € N,
1 T ,
3. 9(8)== {HiES (1 +A- g({z})) - 1} forall S €S,
4. Pos(g(S) =wg) >aforal Ses,
where S denotes 2V \ {0, {1}, {2}, ..., {n}}.

We write the above g by g5 , or simply g5 in order to exhibit parameters.

Remark 1. Properly speaking, g(S) should be calculated by Zadeh’s exten-
sion principle for each S € S in Definition 1. However, this way gives rise
to computational trouble. So, we may calculate them by composition of four
operations (la), (1b), (1c) and (1d).

Step 2.

Based on results of Step 1, the decision maker identifies his A-fuzzy mea-
sure type evaluation function g5. Then, if we restrict the parameter A with
symmetric triangular fuzzy numbers, images of the evaluation function are
also approximate symmetric triangular fuzzy numbers by above mentioned
Dubois and Prade’s results. So, we assume that he selects an appropriate
fuzzy parameter A = (A, o), > 0. Therefore, he has the following problem:

Find A= (A o)
such that g5(0) =0,
95({i}) = wyqy, Vi €N,
1 ~ .
5(8) =3 {Mies (1+X-g3(ih) ~ 1}, ¥S €35,
~Pos(g;(S) =wg) >a, VSES,
A= (Ao)p>0.
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The above problem is able to formulated as a substitutive fuzzy multiobjec-
tive programming problem

maximizey o Pos(ws = g5(S)), S€S,

maximizey A , (P1)

subject to A= (A, 0); > 0.

Problem P; is equivalent to the following problem by Proposition 1.
maximize o,
maximize — ,
subject to :uTJs €[g(8)]%, Se2V,
A=(Ao)p>0.

(P2)

Obviously, the above fuzzy multiobjective problem P; (or P2) has some
Pareto optimal solutions, however they may be not always reasonable.

Avoiding irrationality, we assume that the decision maker gives an aspi-
ration level 0 < & < 1. Then, his problem is the following.

maximize — ,
ect to & . v (Ps)
subject to ws € [ g5(S) |7, Se2N, 3
A>0>0.

If there exists an optimal solution (A*, 0*) for P3, then the triplet (\*,o*, @)

is a Pareto optimal solution for P3. Then, by setting X(a) = (A*,0%)7, we
obtain that the decision maker’s A-fuzzy measure type evaluation function

Ix(a)

4 A numerical Example

To illustrate our subjective evaluation method, we consider the set of all
alternatives N = {1,2,3}. Then S = {{1, 2}, {2,3}, {1,3}, N} C 2". Suppose
that the decision maker decides his pairwise comparison matrix

1 1/71/71/91/91/71/9

7 1 11/31/7 1 1/5
7 1 1 1/31/31/51/5
A=]|9 3 3 11/51 1/5
9 7 3 5 1 5 1/7
7 1 5 11/51 1/5
9 5 6 5 7 5 1

with two levels hierarchical structure constructed from a criterion and alter-
natives. Then, we get the following normalized importance vector:

w = (0.035 0.124 0.117 0.211 0.513 0.201 1.000) .



188 Hiroaki Kuwano

Next we calculate g3(S) for each S € S.

g({1,2}) = <0.159 +0.004), 3(0.319 + 0.013,\)) ,

T

g5({2,3}) = <0.241 + 0.015), é(0.482 + 0.044/\)> ,
4 T

g5({1,3}) = (0.152 + 0.004), 10\-(0.303 + 0.012)\)> ,
T

A
g5(N) = (0.276 +0.023 + 0.001A%,  (0.552 + 0.069A + 0.002,\2)>
T

Now, suppose that the decision maker gives an aspiration level a = 0.7. We
formulate the identification problem:
max —,
g
s.t. 0.211 €
0.513 €

(0.159 +0.004), 2(0.319 + 0.013))),.]”,
(0.241 +0.015), 2(0.482 + 0.0441)) . ]°7,
0.201 € [(0.152 + 0.004), 2(0.303 + 0.012))),.]°7,
1.000 € [(0.276 +0.023 -+ 0.001A2, 2(0.552 + 0.069X + 0.002A%)),.]*”,

A>0>0.

—r—r——

This problem has an optimal solution (A*,o*) = (18.493, 3.104). Therefore,
the decision maker obtains his own subjective evaluation for each subset of
the set of all alternatives as following:

Iy @ =0, I3y ({1}) = 0.035,

I3 ({2}) = 0.124, I3y ({3}) = 0.117,
O3 ({1,2)) = (0.240,0.008)7, g5, ({2,3}) = (0.509,0.216)1,
I3y ({1,3}) = (0.227,0.089) 7, Iy (V) = (0.873,0.423).

5 Conclusions

In this article, we introduced a fuzzy evaluation system on the power set.
In the process of identification of the decision maker’s evaluation function, a
fuzzy multiobjective programming problem is used. By this evaluation func-
tion, the decision maker can evaluate the objects subjectively.
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On Affine Vector Variational Inequality

Gue Myung Lee and Kwang Baik Lee
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608-737, Korea

Abstract. The concept of vector variational inequality was introduced by Gian-
nessi ([3]) in 1980. Since then, various vector variational inequalities and their
applications to multiobjective (vector) optimization problems have been studied.
Very recently, many authors ([1,4,9,10,11]) have investigated the connectedness of
solution sets of vector variational inequalities.

In this paper, we study the connectedness of solution sets for affine vector
variational inequalities with 2 X 2 monotone matrices. Moreover, we give examples
to clarify our result on the connectedness.

Key words and phrases: affine vector variational inequality, boundedness, connect-
edness.

1 Introduction and Preliminaries

Let A={¢=(£,6) €R2|&20,i=12 Y2 &=1},and A= {£ =

(€1,6) € R? | £ >0,i=1,2, 3> & = 1}. Let A = {x € R® | Az = b},

where A € IR™*? and b € IR™. Let (-,-) denote the inner product on IR
Assume that A # (0. Let M; € IR?*? and ¢; € IR? ,i=1,2.

Consider the following affine vector variational inequalities:

(VVI) Find £ € A such that

(Miz+q1, £ —Z),(MaZ + g2, = — T)) ¢ —IR% \ {0} Vz €A,
(VVI)” Find Z € A such that

(MiZ + q1, T —Z),(M2Z + g2, T — T)) € —intIR%  Vz € A,

where R2 = {z := (z1,22) € R? | z; 2 0, © = 1,2} and int/R? is the
interior of IR2, and consider their related scalar variational inequality: let

§= (51762) e A

(VI); Find z € A such that

2 2
<Z£iMia_7+Z£iQi, :v—57> 20 VzeA.

i=1 =1
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We denote the solution sets of (VVI), (VVI)* and (VI), by sol(VVI),
sol(VVI)® and sol(VI),, respectively.
It is clear that sol(VVI) C sol(VVI)™.

From Theorem 2.1 in (Lee, Kim, Lee and Yen [4]) and Theorem 2.1 in
(Lee, Yen [5]), we can obtain the following proposition:

Proposition 1.

sol(VVI) = | ] sol(VI); C sol(VVD)* = | J sol(VI),.

56;1 geA

Now we give some well-known results for multifunctions, which will be
used for the proof of our main result.

Let X,Y be two topological spaces and G : X — 2Y a multifunction.

Definition 1. The space X is said to be connected if there do not exist
nonempty open subsets V; C X, i = 1,2, such that

VinVo=0 and VUV, =X.

Definition 2. (i) The multifunction G is said to be closed if its graph,
{(z,y) e X xY |y e G(z)},is closed in X x Y.

(ii) The multifunction G is said to be upper semicontinuous (shortly u.s.c.) if
for every a € X and every open set {2 C Y satisfying G(a) C £2, there exists
a neighborhood U of a such that G(a¢’) C 2 Vd’' € U.

Lemma 1. (Warburton [8], Theorem 3.1) Assume that X is connected.
If for every x € X, the set G(x) is nonempty and connected, and G is upper
semicontinuous, then the set G(X) := UzexG(z) is connected.

In general, if sol(VVI)” is bounded, then sol(VVI) and sol(VVI)* are
connected. However, the boundedness of sol(VVI) may not imply the bound-
edness of sol(VVI)" (see Example 2.1). So, we can raise one question: when
sol{VVI) is bounded, are sol(VVI) and sol(VVI)" connected ?

In this paper, we show that we can give a positive answer for the ques-
tion about affine vector variational inequalities for monotone 2 X 2 matrices.
Furthermore we give examples to clarify our result on the connectedness.

2 Main Result

Now we give our main result:

Theorem 1. Suppose that M;, M are monotone on A\, that is, for each
i=12 (z-y, Mi(x—y))20Vz,y €A, and that V¢ € A, sol(VI); # 0.
If sol(VVI) is bounded, then sol(VVI) and sol(VVI)" are connected.
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Proof. Let G : A — 2R’ be a multifunction defined by V¢ € 4, G(¢) =
sol(VI);. Then it follows from Proposition 1 that G(;l) = sol(VVI) and

G(A) = sol(VVI)™. Since Z?zl & M; are monotone on A, by Minty lemma
([6]), G(£) is connected. Let £ = (1,0). Suppose that G is not u.s.c. at £&. Then
we can find an open subset {2 of IR?, a sequence {§’°} in ;1 and a sequence
{z*} in A such that G(€) C £2, & — £ z*¥ € G(¢%) and z* ¢ 0. Since
G(&*) C sol(VVI) and sol(VVI) is bounded, the sequence {z*} is bounded.
So, without loss of generality, we may assume that ¥ — Z for some Z € A.
Since G is a closed multifunction, Z € G(§) C 2, However, since z* ¢ §2 for
all k and £2 is open, & ¢ £2. This is a contradiction. Thus G is u.s.c. at £&. By
the same (above) argument, we can check that G is u.s.c. at £ € A\ {(1,0)}.
Hence G is u.s.c. on A. So by Lemma 1, sol(VVI) and sol(VVI)" are con-
nected.

Now we give examples to clarify our main result.

Ezxample 1. Let

10 00 0
MI:(OO)a M2:(01)7 91:‘12:<0),

and A = {(z1,z2) € R? | z1 = 0,z2 = 0}.

We consider (VVI), (VVI)* and (VI), ¢, for the above M;, i = 1,2,
gi, 1 = 1,2, and A. Then V(&1,&2) € 4,801(VI), () # § and sol(VVI) =
{(0,0)}. So by Theorem 2.1, sol(VVI)" is connected. Actually,
sol(VVD)” = {(z1,0) | z1 = 0} U{(0,z2) | z2 = 0}.

Ezxample 2. This example illustrates that the monotonicity assumption in
Theorem 2.1 is essential. This example is slightly modified from the one of

Robinson ([7]).
10 -1
M1:M2:(0_1)) 111=‘I2:<O),

Let
and A = {(z1,72) € IR? | 1 — 2x2 = 0,1 + 222 = 0}.
Then My and M3 are not monotone on A, V(£1,82) € A,50l(VI)¢, ¢y =

{(la 0)» (%? %)’ (%» _g)}’ and SOI(VVI) = SOI(VVI)w = {(1’ O)a (%7 %)v (%v _§)}
Thus sol(VVI) is bounded, but sol(VVI) and sol(VVI)” are not connected.

Ezample 3. This example shows that the boundedness of sol(VVI) is essential
in Theorem 2.1. This example is modified (came from) from the one of Choo
and Atkins ([2]).

Let
0-1 01 0 0
M1:(1 0)7 M2_(_10)y 91—(1),Q2Z<_3)»
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and A = {(z1,72) € R? | 71 22,0 Sz < 4},
Then M; and My are monotone on A and

{(2,4)} if 0S¢ <1

ol(VI),, . =4 tEud 2o, i 4=
(&1,€2) {(.’1:1,0) | 21 2 35_%%} if _;_ <& < %
{e,0)|2S 1) it 2SéSI

By Proposition 1, we have

sol(VVI) = U sol(VI)¢, ¢,
(€1,62)€4
= | sol(VD), e
(61,€2)€4
= sol(VVI)"
={(z1,0) 2=z} U{(z1,4) [2S @1}
So, sol(VVI) is not bounded, and sol(VVI) and sol(VVI)" are not connected.

It is worth while noticing that the multifunction (&;,&2) € A — sol(VI) (€1,62)
is not u.s.c. at £ = 3.

The converse of Theorem 1 may not be true.

00 0
T B R

and A = {(zl,m) € IR? I T 2 0, z2 2 O}

Then M, and M, are monotone on A, V(£1,&2) € A, sol(VI), ..
{(0,z2) € R? | z2 = 0}, and sol(VVI) = sol(VVI)”<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>