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Preface 

This volume constitutes the proceedings of the Fifth International Conference 
on Multi-Objective Programming and Goal Programming: Theory & Appli­
cations (MOPGP'02) held in Nara, Japan on June 4-7, 2002. Eighty-two 
people from 16 countries attended the conference and 78 papers (including 9 
plenary talks) were presented. 

MOPGP is an international conference within which researchers and prac­
titioners can meet and learn from each other about the recent development 
in multi-objective programming and goal programming. The participants are 
from different disciplines such as Optimization, Operations Research, Math­
ematical Programming and Multi-Criteria Decision Aid, whose common in­
terest is in multi-objective analysis. 

The first MOPGP Conference was held at Portsmouth, United Kingdom, 
in 1994. The subsequent conferenes were held at Torremolinos, Spain in 1996, 
at Quebec City, Canada in 1998, and at Katowice, Poland in 2000. The fifth 
conference was held at Nara, which was the capital of Japan for more than 
seventy years in the eighth century. During this Nara period the basis of 
Japanese society, or culture established itself. Nara is a beautiful place and 
has a number of historic monuments in the World Heritage List. 

The members of the International Committee of MOPGP'02 were Dylan 
Jones, Pekka Korhonen, Carlos Romero, Ralph Steuer and Mehrdad Tamiz. 
The Local Committee in Japan consisted of Masahiro Inuiguchi (Osaka Uni­
versity), Hiroataka Nakayama (Konan University), Eiji Takeda (Osaka Un­
viersity), Hiroyuki Tamura (Osaka University), Tamaki Tanaka (Niigata Un­
viersity) - co-chair, Tetsuzo Tanino (Osaka University) - co-chair, and Ki­
ichiro Tsuji (osaka University). We would like to thank the secretaries, Keiji 
Tatsumi (Osaka Unviersity), Masayo Tsurumi (Tokyo University of Science), 
Syuuji Yamada (Toyama College) and Ye-Boon Yun (Kagawa University) for 
their earnest work. 

We highly appreciate the financial support that the Commemorative As­
sociation for the Japan World Exposition (1970) gave us. We would also 
like to thank the following organizations which have made helpful supports 
and endorsements for MOPGP'02: The Pacific Optimization Research Ac­
tivity Group (POP), the Institute of Systems, Control and Information En­
gineers (ISCIE) and Japan Society for Fuzzy Theory and Systems (SOFT). 
We are grateful, last but not least, to Nara Convention Bureau for several 
supports. Particulary, without the devoteful help by Mrs. Keiko Nakamura 
and Mr. Shigekazu Kuribayashi, this conference would not had been possible. 

This volume consists of 61 papers. Thanks to the efforts made by the 
referees, readers will enjoy turning the pages. 

Osaka and Niigata, 
December, 2002 

Tetsuzo Tanino 
Tamaki Tanaka 
Masahiro Inuiguchi 
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Abstract. In this paper we take the reader on a very brief guided tour of mul­
tiobjective combinatorial optimization (MOCO). We point out the increasing im­
portance of consideration of multiple objectives in real world applications of com­
binatorial optimization, survey the problem context and the main characteristics 
of (MOCO) problems. Our main stops on the tour are for overviews of exact and 
heuristic solution methods for MOCO. We conclude the presentation with an out­
look on promising destinations for future expeditions into the field. 

1 Importance in Practice 

The importance of multiobjective combinatorial optimization for the solu­
tion of real world problems has been recognized in the last few years. We 
present a number of examples. Trip organization (for tourism purposes) in­
volves minimizing transport, activity, and lodging cost while at the same time 
maximizing attractivity of activities and lodging. This problem has been for­
mulated as a preference-based multicriteria TSP and heuristic methods have 
been applied for its solution (39]. In airline crew scheduling the classical ob­
jective is to minimize cost. However, minimal cost crew schedules might be 
sensitive to delays. Therefore the additional consideration of maximization 
of robustness should be taken into account. The resulting (large scale) bicri­
teria set partitioning problems can be solved by exact methods using state of 
the art integer programming techniques (4]. The planning of railway network 
infrastructure capacity has the goals of maximizing the number of trains that 
can use the infrastructure element (e.g. a station) and to maximize robustness 
of the solution to disruptions in operation. This problem can be modelled as 
(again large scale) set packing problem with two objectives (19]. Heuristic 
methods are currently used for its solution. Other recent applications include 
exact and heuristic methods for portfolio optimization, e.g. (7], a heuristic 
method for multiobjective vehicle routing problems (29], telecommunication 
networks (81] and timetabling problems (9]. 
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2 Definitions 

A multiobjective combinatorial optimization problem can be defined as fol­
lows. Given a finite set A = { a 1 , ... , an} a subset X <;;; 2A defines a fea­
sible set with a combinatorial structure. Objective functions are obtained 
from weight functions w1 : A --> 7L, j = 1, ... , Q by defining for S E X 
z1(S) = L:aESw1(a) (sum objective) or z1(S) = maxaEsw1(a) (bottleneck 
objective). A multiobjective combinatorial optimization problem is then 

"min"(z1 (S), ... ,zQ(S)). 
SEX (MOCO) 

The definition of "min" and thus the definition of an optimal solution 
of (MOCO) depends on the order of IRQ. In Pareto optimality (efficiency) 
S E X is called Pareto optimal (efficient) if there is no S' E X with z1 ( S') <:::; 

z1(S), j = 1, ... , Q and zq(S') < zq(S) for some q. In this case z(S) = 
(z1 (S), ... , zQ(S)) is called efficient (non-dominated) and the set of Pareto 
optimal (efficient) solutions is denoted by E. Lexicographic optimality is de­
fined with respect to the lexicographic order z(St) <zex z(S2) if z1(S1) < 
z1(S2) and j is the smallest index such that z1(S1) =I z1(S2). It is possi­
ble to consider lexicographic optimality with respect to one or all permuta­
tions of the objective functions z1. For max-ordering optimality the goal is to 
minimize the worst objective function, i.e. minsEX maxj=l, ... ,Q z1(S). Lex­
icographic max-ordering optimality considers the vectors of objective values 
z(S) reordered non-increasingly and compares these reordered vectors lexico­
graphically. Because of the combinatorial structure a feasible solution S E X 
can be represented as a binary vector x E {0, 1}n by defining Xi = 1 if and 
only if ai E S, and 0 otherwise. Thus, (MOCO) is a discrete optimization 
problem, with n variables Xi, i = 1, ... , n, m constraints of specific structure 
defining X, Q objectives z1, j = 1, ... , Q, and an order of IRQ to define opti-
mality. In this paper we will be mainly concerned with the Pareto optimality 
concept. 

3 Characteristics of MOCO Problems 

3.1 Supported and Nonsupported Efficient Solutions 

The most important property of (MOCO) can be explained via scalarization 
using convex combinations of objectives. A multiobjective linear programme 
(MOLP) is the problem min{Cx : Ax = b,x :;::: 0}, where Cis a Q x n 
objective function matrix. A fundamental result in multiobjective linear pro­
gramming is that E is the set of solutions of parametric linear programmes 
min{I:j=l, ... ,Q >.1dx: Ax= b,x 2: 0} with 0 < >.1 < 1 and I:'f=1 >.1 = 1. 
The non-convexity of the feasible set of aMOCO problem, however, implies 
that supported efficient solutions SE (solutions of parametric problems, as in 
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(MOLP)), as well as nonsupported efficient solutions N E exist. This is even 
true for problems in which the convex hull of feasible solutions coincides with 
the feasible set of the LP relaxation (implying that total unimodularity is not 
as useful for MOCO as it is in single objective combinatorial optimization). 
Adding to the difficulty is the number of efficient solutions. Theoretical re­
sults show that E might be exponential in problem size, in fact every feasible 
solution might be efficient. Such problems are clearly intractable in terms 
of polynomial time algorithms. Problems for which this behaviour has been 
shown include spanning tree [42], shortest path [45], travelling salesperson 
[30]. Even the set of supported solutions SE can be exponential in problem 
size (network flow problems [70]). Experimental solutions reveal a more differ­
entiated picture. For knapsack problems the number of supported solutions 
grows linearly, the number of nonsupported solutions grows exponentially 
[87]. It also seems to be the case that the numerical values of the objectives 
have an impact on the number of efficient solutions and the size of SE/NE 
[18]. The situation is better for bottleneck objectives, see e.g. [62]. 

3.2 Computational Complexity 

The existence of nonsupported efficient solutions already indicates that MOCO 
problems are hard. For a more thorough investigation we have to define a de­
cision problem related to (MOCO): Given k1 , ... , kQ E 7Z does there exist 
some S E X such that zi ( S) ~ ki, j = 1, . . . , Q ? Closely related is the count­
ing problem: How many S E X satisfy zi (S) ~ ki, j = 1, ... , Q? Research 
results indicate that decision versions of MOCO problems are "always" JNP­
complete and the counting versions often #P-complete. The following prob­
lems are among those known to be JNP-complete: the unconstrained (MOCO) 
[20], multiobjective shortest path [74], multiobjective spanning tree [10] and 
multiobjective assignment [74]. The proofs show that knapsack or partition 
structures are present in these problems. In addition, all single objective JNP­
hard problems are obviously JNP-hard in the multiobjective case. We briefly 
summarize results for other optimality concepts. The max-ordering problem 
with sum objectives is JNP-hard in general [11]. The max-ordering problem 
with bottleneck objectives is as easy or difficult as the single objective coun­
terpart [21]. Lexicographic problems are often easy (for a given permutation 
of the objectives), because the lexicographic order is a total order. 

4 Exact Solution Methods 

4.1 Weighted Sums Method 

The most popular albeit not really appropriate method for solving (MOCO) 
problems and multiobjective programmes in general is the weighted sums 
method. The scalarized problem 
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has to be solved for all A E IRQ with 0 S Aj s 1 and 2::7=1 Aj = 1. The 
method finds all supported efficient solutions, but of course no unsupported 
ones. In early papers on MOCO it is striking that nonsupported efficient 
solutions have not been considered, presumably because their existence was 
not known. The weighted sums method is most often used when Q = 2, a 
generalization for Q ~ 3 is not straightforward and no general technique is 
known. Applications include assignment [17), knapsack [69), shortest path 
[88), spanning tree [42), etc. 

4.2 Compromise Programming 

The idea of compromise programming is to minimize the distance to the ideal 
point z1 defined by zJ := minxEX zi(x). Most often a Tchebycheff norm is 
used as distance measure, so that the compromise program becomes 

(CP) 

With appropriate choices of A all efficient solutions can be found. The 
drawback, however, is that (CP) is usually .BVP-hard (shortest path [64)). 
Note that if the Tchebycheff norm is replaced by the h norm (CP) coincides 
with (PA)· With the lp norm, 1 < p < oo, (CP) has a nonlinear objective, a 
problem which is hardly ever considered, a rare exception is [85). Also note 
that because problems of similar form as (CP) are often used in interactive 
methods, the .BVP-hardness results cast some shadow on the effectiveness of 
interactive procedures in multiobjective combinatorial optimization. 

4.3 e-Constraint and Elastic Constraint Method 

The main idea of these methods is to minimize only one of the objectives 
whilst imposing constraints on the others. The scalarization used in the e­
constraint method is 

(eC) 

It is possible to find all Pareto optimal solutions, but in a (MOCO) context 
the problem (eC) where zi(x) are sum objectives is often .BVP-hard because 
of the (knapsack) constraints on the objectives. In the literature it is mostly 
used for bottleneck objectives, e.g. for assignment, knapsack, spanning tree, 
TSP [62). In this case it is a very effective method. 



Multiobjective Combinatorial Optimization 7 

The elastic constraints method can be seen as a modification of the origi­
nal s-constraint method based on the idea to reduce the computational diffi­
culties created by the constraints by making them elastic, i.e. the scalarization 
becomes 

where slj and SUJ are slack and surplus variables for the constraints on the 
objectives. The method is also able to find all Pareto optimal solutions and in 
addition shows computationally superior performance in hard but structured 
combinatorial problems (set partitioning in [4]). Interestingly, the method is a 
common generalization of both the weighted sums and s-constraint methods. 

4.4 Ranking 

In combinatorial optimization the ranking of solutions, or the computation 
of K-best solutions, has received considerable attention. This concept can be 
exploited for finding efficient solutions of (MOCO) problems. For problems 
with two objectives the Nadir point zN is defined as zf := minxEX {zJ(x): 
zi(x) = zf, i =/= j}. Then, because z1, zN are lower and upper bounds 
on efficient solutions the following procedure is possible: Start by finding a 
solution with z1(x) = z{ and continue to find second best, third best, ... , 
K-best solutions with respect to z1 until the value zf is reached. Algorithms 
based on this idea have been used to solve shortest path [60] problems. The 
idea of ranking is also useful for max-ordering even in the general case of 
Q > 2 [26,42]. To properly generalize the ranking approach to more than 
three objectives the consideration of level sets of the objectives is currently 
under investigation [28]. 

4.5 Specific Methods 

Researchers have also pursued the path of generalizing specific methods for 
solving particular single objective combinatorial problems to the multicriteria 
case. These efforts resulted in work on multiobjective dynamic programming 

which is based on a recursion formula min (gN(xn) + I:.f=-01 gk(Xk, uk)) with 
a vector cost function g, state variables Xk, and control variables Uk· Natu­
rally, this research has focused on problems for which dynamic programming 
formulations have been successfully applied in the single objective case, such 
as shortest path problems, e.g. [54] and knapsack problems, e.g. [52]. Other 
specific methods include label correcting methods for shortest path problems 
[59] and greedy algorithms for spanning tree problems [1]. 
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4.6 Two Phases Method 

To conclude this section, we describe a method that is generic for the MOCO 
area. Its name illustrates the main idea: In Phase 1, find all supported effi­
cient solutions and use this information in Phase 2 to generate nonsupported 
efficient solutions. This information can be reduced costs, bounds etc. The 
method performs particularly well if the single objective counterpart is poly­
nomially solvable, so that solution of each (PA) problem is "easy". So far 
it has been applied to a number of biobjective problems: network flow [55], 
assignment [84], spanning tree [67], knapsack [87]. A generalization to more 
objectives is still an open question, due to the same reasons the weighted 
sums approach for Q ~ 3 is still not definitively settled. 

5 Heuristic Solution Methods 

5.1 Approximation in a Multiobjective Context 

The challenge for heuristic methods in multiobjective programming is that 
rather than finding one "good" solution the objective value of which approxi­
mates the optimal solution value of the problem, we have to approximate the 
unknown set E. Multiple objective heuristics (MOH) methods have to provide 
a good tradeoff between the quality of the set of potential efficient solutions E 
and the time and memory requirements. When the method refers to a meta­
heuristic one talks about multiple objective metaheuristic (MOMH). From a 
historical perspective, metaheuristic techniques for the solution of multiob­
jective problems have appeared since 1984, in the following order: Genetic 
Algorithms (1984) [73], Neural Networks (1990) [58], Simulated Annealing 
(1992) [75], and Tabu Search (1996) [35]. Even though it was easy to clas­
sify the pioneer methods as either evolutionary algorithms or neighborhood 
search algorithms, they are often hybridized today. A central question con­
cerns the quality of a set of potential efficient solutions. Various researchers 
have contributed to the discussion of how to measure it. These contributions 
can be divided into those that consider the case when E is known [83] and 
include criteria of coverage, uniformity, and cardinality [71] or integrated 
convex preference [51]. The other broad group are those that consider com­
parison of approximations, such as evaluations of approximations [43] and 
metrics of performance [89] or the comparison with bounds and bound sets 
[23]. Considering the number of recent publications, approximation methods 
in multiobjective programming receive more and more attention. The follow­
ing discussion is restricted to MOMH designed to identify sets of potential 
efficient solutions E for MOCO problems. 

5.2 Evolutionary Algorithms 

Evolutionary methods manage a population of solutions rather than a single 
feasible one. In general, they start from an initial population and combine 
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principles of self adaptation, i.e. independent evolution, and cooperation, i.e. 
the exchange of information between individuals, for improving solution qual­
ity. Thus, they develop a parallel process where the whole population con­
tributes to the evolution process to generate E. The first multiobjective evo­
lutionary algorithm (MOEA) was the Vector Evaluated Genetic Algorithm 
(VEGA) by Schaffer [72]. For each generation three stages are performed. The 
population is divided into Q subpopulations sq according to performance in 
objective q. Subpopulations are then shuffled to create a mixed population. 
Genetic operators such as mutation and crossover are applied producing new 
potential efficient individuals. This process is repeated for Ngen iterations. 
The approximations achieved with VEGA typically showed good performance 
towards the extremes (close to optimality for individual objectives) but poor 
quality for areas of E corresponding to compromise solutions. Methods of 
ranking, niching and sharing have been proposed later to have a uniform 
convergence an distribution of individuals along the efficient frontier. The 
idea of ranking methods [40] is to subdivide the population into groups of 
different ranks according to their quality. Niches are neighbourhoods of solu­
tions in objective space centered at candidate solutions and with some radius 
ash· Based on the number N of solutions in these niches the selection of indi­
viduals can be influenced to areas in which niches are sparsely populated to 
aim at greater uniformity of distribution along the efficient frontier. Anum­
ber of important implementations of MOEA have been published in recent 
years, there are even a number of surveys on the topic (see [12,13,33,50]). 
Here we describe the methods which have been used for (MOCO). 

• Pioneer MOEAs: Vector Evaluated Genetic Algorithm by Schaffer, 1984 
[72]; Multiple Objective Genetic Algorithm by Fonseca and Fleming, 1993 
[32]; Nondominated Sorting Genetic Algorithm by Srinivas and Deb, 1994 
[77]; Niched Pareto Genetic Algorithm by Horn, Nafpliotis and Goldberg, 
1994 [47]. 

• Multiple Objective Genetic Algorithm (MOGA) by Murata and Ishibuchi, 
1995 [63]. This method is based on a weighted sum of objective functions 
to combine them into a scalar fitness function using weight values gener­
ated randomly in each iteration. Later they coupled a local search with 
genetic algorithm, introducing the memetic algorithm principle for mul­
tiobjective problems. 

• Morita's method (MGK) by Morita, Gandibleux and Katoh, 1998 [36]. 
Seeding solutions, i.e. greedy or supported solutions, are put in the ini­
tial population to initialise the algorithm with good genetic information. 
The biobjective knapsack problem is used to validate the principle. It 
becomes a memetic algorithm when a local search is performed on each 
new potential efficient solution [37]. 

• Strength Pareto Evolutionary Algorithm (SPEA) by Zitzler and Thiele, 
1998 [90]. SPEA takes the best features of previous MOEAs and includes 
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them in a single algorithm. The multiobjective multi-constraint knapsack 
problem has been used as benchmark to evaluate the method [91]. 

• Multiple Objective Genetic Local Search (MO-GLS) by Jaszkiewicz, 2001 
[49]. This method hybridizes recombination operators with local improve­
ment heuristics. A scalarizing function is drawn at random for selecting 
solutions, which are recombined and their offspring are improved using 
heuristics. 

• Multiple Objective Genetic Tabu Search (MOGTS) by Barichard and 
Hao, 2002 [4]. Another hybrid method where a genetic algorithm is cou­
pled with a tabu search. MOGTS has been evaluated on the multi­
constraint knapsack problem. 

5.3 Simulated Annealing Based Metaheuristics 

In 1992, Serafini has published the first ideas about multiobjective simu­
lated annealing [75] in a multiobjective context. At the same time, Ulungu 
introduced MOSA [83], one of the most popular simulated annealing based 
methods. It is a direct derivation of the simulated annealing principle to deal 
with multiple objectives. Starting from an initial solution xo and a neigh­
bourhood structure N(x0 ), MOSA computes approximations using a weight 
set A defining search directions .X E A and a local aggregation mechanism 
S(z(x), .X) together with a cooling schedule to accept deteriorations in values 
with decreasing probability. Like all neighbourhood search based methods, 
MOSA combines several sequential processes in the objective space Z. For 
each .X in a set of weights A it starts with a randomly generated solution x. 
Then a solution in the neighbourhood of x is generated and accepted if it is ei­
ther better (dominates x) or based on a probability dependi~ on the current 
"temperature". Next the set of potential efficient solutions E;.. in direction .X 
and other parameters are updated. The search stops after a certain number of 
iterations or when a predetermined temperature is reached. Finally the sets 
E;.. are merged. Multiobjective metaheuristics based on simulated annealing 
published in the literature are the following. 

• Multiobjective Simulated Annealing (MOSA) by Ulungu, 1993 [83]. 
• Engrand's method, 1997 [31] revised by Park and Suppapitnarm [66]. 

The method uses only the non-domination definition to select potential 
efficient solutions, avoiding the management of search direction and ag­
gregation mechanism. 

• Pareto Simulated Annealing (PSA) by Czyzak and Jaszkiewicz, 1998 [15]. 
PSA also uses a weighted sum. However, a sample set of initial solutions 
S C X is combined with an exploration principle exploiting interaction 
between solutions to guide the generation process through the values of 
.X. 

• Nam and Park's method, 2000 [65]. Another simulated annealing based 
method. The authors show good results on comparison with MOEA. 
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• Other simulated Annealing based methods. Bicriteria scheduling prob­
lems on a single machine [53); Interactive SA-TS hybrid method for 0-1 
multiobjective problems [3); Trip planning problem [39); Aircrew rostering 
problem [57); Assembly line balancing problem with parallel workstations 
[61); Analogue filter tuning [82). 

5.4 Tabu Search Based Metaheuristics 

Extensions of tabu search to multiobjective programming are recent in com­
parison with other classical metaheuristics. The first methods use a tabu 
process guided automatically by the current approximation obtained [35) or 
by a decision-maker in an interactive way [78). These methods start from 
an initial solution x0 , use a neighbourhood structure N(z(x0 )) and search 
directions A. The tabu process with its memory structure is applied with a 
local aggregation mechanism s( z ( x), zu, A) that involves a reference point zu 
to browse the objective space. Hybrid methods appeared a short time later, 
trying to improve the diversification of solutions along the efficient frontier. 
Ideas come from MOEA, like the use of a population [44), or a combina­
tion of tabu search with genetic algorithms [1). Multiobjective tabu search 
procedures have been applied mainly on MOCO problems, especially on the 
knapsack problem. In the literature one can find the following MOMH based 
on tabu search. 

• "False MOMH" using tabu search. They are not designed to reach a 
(sub)set of potential efficient solutions. (MOCO) is solved through a se­
quence of Q single objective problems with penalty terms [46), or through 
solution of (P.~) [16). 

• Multiobjective Tabu Search (MOTS) by Gandibleux, Mezdaoui and Freville, 
1997 [35). The method has been tested on an unconstrained permutation 
problem, and later on the biobjective knapsack problem [34) using bounds 
to reduce the search space. 

• Sun's method, 1997 [78). This is an interactive procedure using a tabu 
search process as solver of combinatorial optimization subproblems. The 
components used to design the tabu search process are almost the same 
than in MOTS [35). The method has been used for facility location plan­
ning [2). 

• Multiobjective Tabu Search (MOTS*) by Hansen, 1997 [44). This method 
uses a generation set (i.e. a number of solutions rather than one, each of 
which has its own tabu list) and a drift criterion. Results are available 
for the knapsack problem, and also for the resource constrained project 
scheduling problem [86). 

• Ben Abdelaziz, Chaouachi and S. Krichen's hybrid method, 1999 [1). 
The authors present a mutiobjective hybrid heuristic for the knapsack 
problem. The method is a mix of tabu search and a genetic algorithm. 
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• Baykasoglu, Owen and Gindy's method, 1999 [6]. Another tabu search 
based method designed to handle any type of variable. The method has 
been also used for goal programming problems [5]. 

• Other tabu search based methods have been developed for scheduling 
problems [56] and the trip planning problem [39]. 

5.5 Other Methods 

Besides these multiobjective versions of now classical metaheuristic methods 
there exist other MOMH. We are aware of Artificial Neural Networks ANN 
[58,79,80], Greedy Randomized Adaptive Search Procedure GRASP [38], Ant 
Colony Systems ACO [41,48,76], and Scatter Search [8]. 

6 Directions of Research and Resources 

The state of the art in multiobjective combinatorial optimization indicates 
a number of directions of research that are promising and should be consid­
ered to make substantial progress in the field. We list some of these here, 
divided into theory, methods, and applications. In the theory of MOCO an 
interesting question is which results in single objective combinatorial opti­
mization are still valid when Q > 1? E.g. the Martello and Toth bound for 
knapsack problems is not valid when Q = 2. Further investigation into bound 
sets (started in [23]) and Nadir points (see [27]) can be expected to lead to 
better methods. In terms of the hardness of MOCO problems the question of 
whether there are easy and hard problems in MOCO in a sense other than 
1\IP-hardness arises. The quality of approximations and the representation 
of Pareto sets by smaller subsets are exciting topics for research. As far as 
methods are concerned we point out that exact methods for Q ::::: 3 objectives 
are not available. A closer look at the two phases method for Q = 2 when the 
single objective problem is 1\IP-hard should provide better understanding of 
MOCO. In the area of heuristics a fundamental question is the performance 
of generic MOMH versus problem specific MOMH. Also, the effectiveness of 
MOMH for different problems should be considered, or the use of semi-exact 
methods that may use bounds to reduce search space as in [34] is promising. 
For applications there is the general question of the choice between meth­
ods that generate the efficient set as opposed to interactive methods. Can 
guidelines for this choice be developed? The study of real world problems as 
MOCO models is becoming increasingly important. In this context we note 
that practical MOCO problems should not be treated as single objective 
problems, as has often been the case in the past. For further references and a 
more detailed exposition of the topics of this paper we refer to the publications 
[22,24]. Also, a library of numerical instances of MOCO problems is available 
on the internet. At the time of printing the library includes instances for the 
multiobjective assignment, knapsack, set covering, set packing, and traveling 
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salesman problems, as well as test Problems for multiobjective optimizers. 
The library is located at www. terry. uga. edu/mcdm/. 

References 

1. F. Ben Abdelaziz, J. Chaouachi, and S. Krichen. A hybrid heuristic for mul­
tiobjective knapsack problems. In S. Voss et a!., editors, Meta-Heuristics: 
Advances and Trends in Local Search Paradigms for Optimization, pages 205-
212. Kluwer, Dordrecht, 1999. 

2. P. Agrell, M. Sun, and A. Starn. A tabu search multi-criteria decision model 
for facility location planning. In Proceedings of the 1997 DSI Annual Meeting, 
2:908-910. Atlanta, 1997. 

3. M.J. Alves and J. Climaco. An interactive method for 0-1 multiobjective 
problems using simulated annealing and tabu search. J. Heuristics, 6(3):385-
403, 2000. 

4. V. Barichard and J.K. Hao. Un algorithme hybride pour le probleme de sac a 
dos multi-objectifs. Huitiemes Journees Nationales sur Ia Resolution Pratique 
de Problemes NP-Complets JNPC'2002, Nice, France, 27-29 May 2002. 

5. A. Baykasoglu. MOAPPS 1.0: Aggregate production planning using the mul­
tiple objective tabu search. Int. J. Prod. Res., 39(16):3685-3702, 2001. 

6. A. Baykasoglu, S. Owen, and N. Gindy. A taboo search based approach to 
find the Pareto optimal set in multiple objective optimisation. J. Eng. Optim., 
31:731-748, 1999. 

7. J.E. Beasley, T.J. Chang, N. Meade, and Y.M. Sharaiha. Heuristics for car­
dinality constrained portfolio optimisation. Comput. Oper. Res., 27(13):1271-
1302, 2000. 

8. R. Beausoleil. Multiple criteria scatter search. In MIC'2001 -4th Metaheuris­
tics International Conference, pages 539-543. Porto, Portugal, July 16-20, 
2001. 

9. E.K. Burke, Y. Bykov, and S. Petrovic. A multi-criteria approach to exami­
nation timetabling. In E.K. Burke and W. Erben, editors, The Practice and 
Theory of Automated Timetabling III, Lect. Notes Comput. Sci. 2079:118-131. 
Springer, Berlin, 2000. 

10. P.M. Camerini, G. Galbiati, and F. Maffioli. The complexity of multi­
constrained spanning tree problems. In L. Lovasz, editor, Theory of Algo­
rithms, pages 53- 101. North-Holland, Amsterdam, 1984. 

11. S. Chung, H.W. Hamacher, F. Maffioli, and K.G. Murty. Note on combinato­
rial optimization with max-linear objective functions. Discrete Appl. Math., 
42:139-145, 1993. 

12. C.A. Coello. A comprehensive survey of evolutionary-based multiobjective 
optimization techniques. Knowledge and Information Systems, 1(3):269-308, 
1999. 

13. C.A. Coello. An updated survey of GA-based multiobjective optimization 
techniques. ACM Computing Surveys, 32(2):109-143, 2000. 

14. H.W. Corley. Efficient spanning trees. J. Optim. Theory Appl., 45(3):481-485, 
1985. 

15. P. Czyzak and A. Jaszkiewicz. Pareto simulated annealing- A metaheuristic 
technique for multiple objective combinatorial optimization. J. Multi-Criteria 
Decis. Anal., 7(1):34-47, 1998. 



14 Matthias Ehrgott and Xavier Gandibleux 

16. G. Dahl, K. Ji:irnsten, and A. Lokketangen. A tabu search approach to the 
channel minimization problem. In Proceedings of the International Conference 
on Optimization Techniques and Applications (ICOTA '95}, 369-377. World 
Scientific, Singapore, 1995. 

17. H.M. Dathe. Zur Li:>sung des Zuordnungsproblems bei zwei Zielgri:i6en. Z. 
Oper. Res., 22:105-118, 1978. 

18. F. Degoutin and X. Gandibleux. Un retour d'experience sur la resolution de 
problemes combinatoires bi-objectifs. Programmation Mathematique Multi­
Objectif PM20 V Meeting, Angers, France, 17 May 2002. 

19. X. Delorme, J. Rodriguez, and X. Gandibleux. Heuristics for 
railway infrastructure saturation. In ATMOS 2001 Proceedings. 
Electronic Notes in Theoretical Computer Science 50:41-55. URL: 
http:/ /www.elsevier.nl/locate/entcsjvolume50.html. Elsevier Science, 
Amsterdam, 2001. 

20. M. Ehrgott. Approximation algorithms for combinatorial multicriteria opti­
mization problems. Int. Transac. Oper. Res., 7:5-31, 2000. 

21. M. Ehrgott. Multiple Criteria Optimization- Classification and Methodology. 
Shaker, Aachen, 1997. 

22. M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of 
multiobjective combinatorial optimization. OR Spektrum, 2000. 

23. M. Ehrgott and X. Gandibleux. Bounds and bound sets for biobjective com­
binatorial optimization problems. In M. Ki:iksalan and S. Zionts, editors, 
Multiple Criteria Decision Making in the New Millenium, Lect. Notes Econ. 
Math. Syst. 507:242-253. Springer, Berlin, 2001. 

24. M. Ehrgott and X. Gandibleux, editors. Multiple Criteria Optimization -
State of the Art Annotated Bibliographic Surveys, volume 52 of Kluwer's In­
ternational Series in Operations Research and Management Science. Kluwer, 
Norwell, 2002. 

25. M. Ehrgott and D.M. Ryan. Constructing robust crew schedules with bicri­
teria optimization. J. Multi Criteria Decis. Anal. in print, 2003. 

26. M. Ehrgott and A.J.V. Skriver. Solving biobjective combinatorial max­
ordering problems by ranking methods and a two-phases approach. Eur. J. 
Oper. Res., in print, 2003. 

27. M. Ehrgott and D. Tenfelde-Podehl. Computation of ideal and Nadir values 
and implications for their use in MCDM methods. Eur. J. Oper. Res., in print, 
2003. 

28. M. Ehrgott and D. Tenfelde-Podehl. A level set method for multiobjective 
combinatorial optimization: Application to the quadratic assignement prob­
lem. Technical report, Universitat Kaiserslautern, 2002. 

29. N. El-Sherbeny. Resolution of a vehicle routing problem with a multi-objective 
simulated annealing method. PhD thesis, Universite de Mons-Hainaut, 2001. 

30. V.A. Emelichev and V.A. Perepelitsa. On cardinality of the set of alternatives 
in discrete many-criterion problems. Discrete Mathematics and Applications, 
2(5):461-471, 1992. 

31. P. Engrand. A multi-objective approach based on simulated annealing 
and its application to nuclear fuel management. In Proceedings of the 5th 
ASME/SFEN/JSME International Conference on Nuclear Engineering. leone 
5, Nice, France 1997, pages 416-423. American Society of Mechanical Engi­
neers, New York, 1997. 



Multiobjective Combinatorial Optimization 15 

32. C.M. Fonseca and P.J. Fleming. Genetic algorithms for multiobjective op­
timization: Formulation, discussion and generalization. In S. Forrest, edi­
tor, Proceedings of the Fifth International Conference on Genetic Algorithms, 
pages 416-423. Morgan Kaufman, San Francisco, 1993. 

33. C.M. Fonseca and P.J. Fleming. An overview of evolutionary algorithms in 
multiobjective optimization. Evolutionary Computation, 3(1):1-16, 1995. 

34. X. Gandibleux and A. Preville. Tabu search based procedure for solving the 
0/1 multiobjective knapsack problem: The two objective case. J. Heuristics, 
6(3):361-383, 2000. 

35. X. Gandibleux, N. Mezdaoui, and A. Preville. A tabu search procedure to solve 
multiobjective combinatorial optimization problems. In R. Caballero, F. Ruiz, 
and R. Steuer, editors, Advances in Multiple Objective and Goal Programming, 
Lect. Notes Econ. Math. Syst. 455:291-300. Springer, Berlin, 1997. 

36. X. Gandibleux, H. Morita, and N. Katoh. A genetic algorithm for 0-1 multiob­
jective knapsack problem. In International Conference on Nonlinear Analysis 
and Convex Analysis (NACA98} Proceedings, July 28-311998, Niigata, Japan, 
4 pages, 1998. 

37. X. Gandibleux, H. Morita, and N. Katoh. The supported solutions used as a 
genetic information in a population heuristic. In E. Zitzler et a!., editors, First 
International Conference on Evolutionary Multi-Criterion Optimization, Lect. 
Notes Comput. Sci., 1993:429-442. Springer, Berlin, 2001. 

38. X. Gandibleux, D. Vancoppenolle, and D. Tuyttens. A first making use of 
GRASP for solving MOCO problems. Technical report, University of Valen­
ciennes, France, 1998. 

39. J.M. Godart. Problemes d'optimisation combinatoire a caractere economique 
dans le secteur du tourisme (organisation de voyages). PhD thesis, Universite 
de Mons-Hainaut, 2001. 

40. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine 
Learning. Addison-Wesley, Reading, 1989. 

41. M. Gravel, W.L. Price, and C. Gagne. Scheduling continuous casting of alu­
minium using a multiple-objective ant colony optimization metaheuristic. Eur. 
J. Oper. Res., 143(1):218-229, 2002. 

42. H.W. Hamacher and G. Ruhe. On spanning tree problems with multiple 
objectives. Ann. Oper. Res., 52:209-230, 1994. 

43. M. P. Hansen and A. Jaszkiewicz. Evaluating the quality of approximations 
to the non-dominated set. Technical report IMM-REP-1998-7, Technical Uni­
versity of Denmark, 1998. 

44. M.P. Hansen. Tabu search for multiobjective combinatorial optimization: TA­
MOCO. Control and Cybernetics, 29(3):799-818, 2000. 

45. P. Hansen. Bicriterion path problems. In G. Fandel and T. Gal, editors, 
Multiple Criteria Decision Making Theory and Application, Lect. Notes Econ. 
Math. Syst., 177:109-127. Springer, Berlin, 1979. 

46. A. Hertz, B. Jaumard, C. Ribeiro, and W. Formosinho Filho. A multi-criteria 
tabu search approach to cell formation problems in group technology with 
multiple objectives. RAIRO - Rech. Oper., 28(3):303-328, 1994. 

47. J. Horn, N. Nafpliotis, and D.E. Goldberg. A niched Pareto genetic algorithm 
for multiobjective optimization. In Proceedings of the First IEEE Confer­
ence on Evolutionary Computation, 1 :82-87. IEEE Service Center, Piscataway, 
1994. 



16 Matthias Ehrgott and Xavier Gandibleux 

48. S. Iredi, D. Merkle, and M. Middendorf. Hi-criterion optimization with multi 
colony ant algorithms. In E. Zitzler et al., editors, First International Con­
ference on Evolutionary Multi-Criterion Optimization, Lect. Notes Comput. 
Sci., 1993:359-372. Springer, Berlin, 2001. 

49. A. Jaszkiewicz. Multiple objective genetic local search algorithm. In 
M. Koksalan and S. Zionts, editors, Multiple Criteria Decision Making in 
the New Millennium, Lect. Notes Econ. Math. Syst., 507:231-240. Springer, 
Berlin, 2001. 

50. D. Jones, S.K. Mirrazavi, and M. Tamiz. Multi-objective meta-heuristics: An 
overview of the current state-of-the-art. Eur. J. Oper. Res., 137(1):1-9, 2002. 

51. B. Kim, E.S. Gel, W.M. Carlyle, and J.W. Fowler. A new technique to 
compare algorithms for hi-criteria combinatorial optimization problems. In 
M. Koksalan and S. Zionts, editors, Multiple Criteria Decision Making in the 
New Millenium, Lect. Notes Econ. Math. Syst., 507:113-123. Springer,Berlin, 
2001. 

52. K. Klamroth and M. Wiecek. A time-dependent single-machine scheduling 
knapsack problem. Eur. J. Oper. Res., 135:17-26, 2001. 

53. E. Koktener and M. Koksalan. A simulated annealing approach to bicriteria 
scheduling problems on a single machine. J. Heuristics, 6(3):311-327, 2000. 

54. M.M. Kostreva and M.M. Wiecek. Time dependency in multiple objective 
dynamic programming. J. Math. Anal. Appl., 173(1):289-307, 1993. 

55. H. Lee and P.S. Pulat. Bicriteria network flow problems: Integer case. Eur. 
J. Oper. Res., 66:148-157, 1993. 

56. T. Loukil Moalla, J. Teghem, and P. Fortemps. Solving multiobjectiveschedul­
ing problems with tabu search. In Workshop on Production Planning and 
Control, pages 18-26. Facultes Universitaires Catholiques de Mons, 2000. 

57. P. LuCie and D.Teodorovic. Simulated annealing for the multi-objective air­
crew rostering problem. Transportation Research A: Policy and Practice, 
33(1):19-45, 1999. 

58. B. Malakooti, J. Wang, and E.C. Tandler. A sensor-based accelerated ap­
proach for multi-attribute machinability and tool life evaluation. Int. J. Prod. 
Res., 28:2373, 1990. 

59. E.Q.V. Martins. On a multicriteria shortest path problem. Eur. J. Oper. Res., 
16:236-245, 1984. 

60. E.Q.V. Martins and J.C.N. Climaco. On the determination of the nondomi­
nated paths in a multiobjective network problem. Methods Oper. Res., 40:255-
258, 1981. 

61. P.R. McMullen and G.V. Frazier. Using simulated annealing to solve a multi­
objective assembly line balancing problem with parallel workstations. Int. J. 
Prod. Res., 36(10):2717- 2741, 1999. 

62. 1.1. Melamed and I.K. Sigal. A computational investigation of linear 
parametrization of criteria in multicriteria discrete programming. Camp. 
Math. Math. Phys., 36(10):1341-1343, 1996. 

63. T. Murata and H. Ishibuchi. MOGA: Multi-objective genetic algorithms. 
In Proceedings of the 2nd IEEE International Conference on Evolutionary 
Computing, pages 289-294. IEEE Service Center, Piscataway, 1995. 

64. I. Murthy and S.S. Her. Solving min-max shortest-path problems on a net­
work. Nav. Res. Logist., 39:669-683, 1992. 



Multiobjective Combinatorial Optimization 17 

65. D. Nam and C.H. Park. Multiobjective simulated annealing: A comparative 
study to evolutionary algorithms. International Journal of Fuzzy Systems, 
2(2):87-97, 2000. 

66. G. Parks and A. Suppapitnarm. Multiobjective optimization of PWR reload 
core designs using simulated annealing. In Proceedings of the International 
Conference on Mathematics and Computation, Reactor Physics and Environ­
mental Analysis in Nuclear Applications, 2:1435-1444, Madrid, 1999. 

67. R.M. Ramos, S. Alonso, J. Sicilia, and C. Gonzalez. The problem of the 
optimal biobjective spanning tree. Eur. J. Oper. Res., 111:617-628, 1998. 

68. C. Reeves. Modern Heuristic Techniques for Combinatorial Problems. Mc­
GrawHill, London, 1995. 

69. M.J. Rosenblatt and Z. Sinuany-Stern. Generating the discrete efficient fron­
tier to the capital budgeting problem. Oper. Res., 37(3):384-394, 1989. 

70. G. Ruhe. Complexity results for multicriteria and parametric network flows 
using a pathological graph of Zadeh. Z. Oper. Res., 32:59-27, 1988. 

71. S. Sayin. Measuring the quality of discrete representations of efficient sets 
in multiple objective mathematical programming. Math. Prog., 87:543-560, 
2000. 

72. J.D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic 
Algorithms. PhD thesis, Vanderbilt University, Nashville, 1984. 

73. J.D. Schaffer. Multiple objective optimization with vector evaluated genetic 
algorithms. In J.J. Grefenstette, editor, Genetic Algorithms and their Appli­
cations: Proceedings of the First International Conference on Genetic Algo­
rithms, pages 93-100. Lawrence Erlbaum, Pittsburgh, 1985. 

74. P. Serafini. Some considerations about computational complexity for multi 
objective combinatorial problems. In J. Jahn and W. Krabs, editors, Recent 
advances and historical development of vector optimization, Lect. Notes Econ. 
Math. Syst., 294:222-232. Springer, Berlin, 1986. 

75. P. Serafini. Simulated annealing for multiobjective optimization problems. In 
Proceedings of the 1Oth International Conference on Multiple Criteria Decision 
Making, Taipei-Taiwan, I:87-96, 1992. 

76. P.S. Shelokar, S. Adhikari, R. Vakil, V.K. Jayaraman, and B.D. Kulkarni. Mul­
tiobjective ant algorithm for continuous function optimization: Combination 
of strength Pareto fitness assignment and thermo-dynamic clustering. Found. 
Comp. Decis. Sci., 25(4):213-230, 2000. 

77. N. Srinivas and K. Deb. Multiobjective optimization using non-dominated 
sorting in genetic algorithms. Evolutionary Computation, 2(3):221-248, 1994. 

78. M. Sun. Applying tabu search to multiple objective combinatorial optimiza­
tion problems. In Proceedings of the 1997 DSI Annual Meeting, 2:945-947. 
Atlanta, 1997. 

79. M. Sun, A. Starn, and R. Steuer. Solving multiple objective program­
ming problems using feed-forward artificial neural networks: The interactive 
FFANN procedure. Manage. Sci., 42(6):835-849, 1996. 

80. M. Sun, A. Starn, and R. Steuer. Interactive multiple objective programming 
using Tchebycheff programs and artificial neural networks. Comput. Oper. 
Res., 27:601-620, 2000. 

81. B. Thiongane, V. Gabrel, D. Vanderpooten, and S. Bibas. Le probleme de Ia 
recherche de chemins efficaces dans un n§seau de telecommunications. Francoro 
III, Quebec, May 9-12, 2001. 



18 Matthias Ehrgott and Xavier Gandibleux 

82. M. Thompson. Application of multi objective evolutionary algorithms to ana­
logue filter tuning. In E. Zitzler et a!., editors, First International Confer­
ence on Evolutionary Multi-Criterion Optimization, Lect. Notes Comput. Sci., 
1993:546-559. Springer, Berlin, 2001. 

83. E.L. Ulungu. Optimisation combinatoire multicritere: Determination de 
/'ensemble des solutions efficaces et methodes intemctives. PhD thesis, Uni­
versite de Mons-Hainaut, 1993. 

84. E.L. Ulungu and J. Teghem. The two-phases method: An efficient procedure 
to solve hi-objective combinatorial optimization problems. Found. Comput. 
Decis. Sci., 20(2):149-165, 1994. 

85. A. Vainshtein. Vector shortest path problem in lp norm. In Simulation and 
Optimization of Complex Structure Systems, pages 138-144. Omsk, 1987. 

86. A. Viana and J. Pinho de Sousa. Using metaheuristics in multiobjective 
ressource constrained project scheduling. Eur. J. Oper. Res., 120(2):359-374, 
2000. 

87. M. Visee, J. Teghem, M. Pirlot, and E.L. Ulungu. Two-phases method and 
branch and bound procedures to solve the bi-obective knapsack problem. J. 
Glob. Optim., 12:139-155, 1998. 

88. D.J. White. The set of efficient solutions for multiple objective shortest path 
problems. Camp. Oper. Res., 9(2):101-107, 1987. 

89. E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary 
algorithms: Empirical results. Evolutionary Computation, 8(2):173-195, 2000. 

90. E. Zitzler and L. Thiele. An evolutionary algorithm for multiobjective op­
timization: The strength Pareto approach. Technical report 43, Computer 
Engineering and Communication Networks Lab (TIK), Swiss Federal Insti­
tute of Technology (ETH), Ziirich, Switzerland, 1998. 

91. E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A compar­
ative case study and the strength Pareto approach. IEEE Transactions on 
Evolutionary Computation, 3(4):257-271, 1999. 



Analysis of Trends in Distance Metric Optimisation 
Modelling for Operational Research and Soft 
Computing 

D.F. Jones, M.Tamiz 

Department of Mathematics, University of Portsmouth UK 

Dylan.Jones@.port.ac.uk, Mehrdad.Tamiz@.port.ac.uk 

Abstract 
This paper provides a commentary and some analysis on recent advances in the field of 
distance metric optimisation, with particular reference to the place of distance metric 
optimisation within the overall disciplines of operational research and soft computing. The 
trend of integration and combination with other techniques is examined, with particular 
reference to the analytical hierarchy method, meta-heuristic methods, and data mining. 
Finally, some further thoughts on good modelling practice for distance metric optimisation 
models are offered. 
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1. Introduction 

Distance metric optimisation is characterized by the minimization of some distance function 
between the achieved levels of a set of objectives and either an ideal level or a decision 
maker desired level measured in terms of the same set of objectives. The well-known multi­
objective techniques that fall into the category of distance metric optimization include goal 
programming, compromise programming, the reference-point method, and some interactive 
extensions of the previous methods. Mathematically speaking, the non-lexicographic 
distance metric optimisation minimisation function can be defined as: 

[ q [ lp]y, Minz= ~ u;n; ~V;P; 

with an associated set of goals or objectives: 
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i = l, .... ,q 

and optional set of hard constraints: 

XEF 

where X is the set of decision variables,/; (x) is a mathematical expression defining the 

achieved value of the i'th goal or objective, U; and V; are the weights associated with the 

penalization of the deviations (n;, Pi respectively) from the desired or ideal level (b;) of 

the i 'th objective. A weight of zero associated with a deviation indicates the minimization 
of that deviation is unimportant to the decision maker. The term p is the distance metric 
used to measure the distance between the achieved and the desired or ideal levels of the set 
of objectives. Varying p between its end-point values of I and oo produces a range of 
solutions that vary between a ruthless optimization approach (p = 1 ) and a balanced 

approach that produces as equilibrated a solution as possible (p = oo ). The term k; is a 

normalisation constant included to overcome incommensurability and hence to allow the 
deviations from the objectives to be compared directly. The traditional choice for the 
normalisation constant in compromise programming is the distance between the ideal and 
the nadir value for that objective, thus scaling all objectives onto a zero-one range. The anti­
ideal value of the objective is sometimes used as a surrogate for the nadir value if the latter 
is too computationally difficult to compute. Popular normalisation methods for the goal 
programming model include the percentage, zero-one, and Euclidean methods. These are 
analysed by Tamiz and Jones [23] who also present an algorithm for measuring the level 
incommensurability and hence suggesting or automatically applying an appropriate 
normalisation technique. 

This model covers all non-lexicographic distance metric optimisation techniques. This is 
sufficient to model compromise programming and non-pre-emptive (weighted) goal 
programming models. In order to extend the theory to other methods a lexicographic order 
must be introduced. This leads to the following algebraic formulation of the achievement 
function: 

[ 
q [ (I) (I) ]PI]~! [ q [ (2) (2) ]P2lfp2 w _ ~ U; n; +v; Pi ~ U; n; +v; Pi 

1v1zna- £.J , £.J , 
i=l k; i=l k; 

·······{ ~[u!L)n;:,v!L)Pi r t 
where the commas represent the distinction between the L pre-emptive priority levels in the 

model. The distance metric used in the l'th priority level is given by Ptand the weights 



Analysis of Trends in Distance Metric Optimisation Modelling 21 

associated with penalisation of the negative and positive deviational variables of the i'th 

objective in the l'th priority level are given by u~l) and v~l) respectively. With the 

possibility of negative and zero weights, this model allows the lexicographic based distance 
optimisation models such as lexicographic goal programming and the reference p>int 
method to be modelled. Variations or partial variations of this model to allow various linear 
programming and distance-metric models to be formulated under a common framework are 
given by Romero [17], lgnizio [9], and Uria et el [24]. Romero, Tamiz, md Jones [18] 
propose further theoretical connections between the major techniques of distance metric 
optimisation. This topic is further developed by Ogryczak [16] and Ganjavi eta!. [6]. 

The fundamentals and algebraic formulation of distance metric optimisation models 
have been outlined above. The remainder of this paper concentrates on the integration and 
combination of distance metric models with some other techniques within the Operational 
Research and Soft Computing disciplines. Section 2 details the interface of meta-heuristic 
methods and distance metric optimisation, section 3 of distance metric optimisation and the 
analytical hierarchy process, section 4 details the role of distance optimisation models in 
pattern classification, and section 5 offers some further thoughts and suggestions about good 
modelling practice in goal programming. The final section draws conclusions. 

2. Distance Metric Optimisation and Meta Heuristic Methods 

A meta-heuristic method draws on ideas and methodology from disciplines outside of 
artificial system optimization to provide algorithms for the solution of artificial system 
optimization models. Well-known meta heuristics include genetic algorithms, simulated 
annealing, and tabu search which draw on ideas from genetics, }itysics, and the social 
concept of Taboo respectively. Meta-Heuristic methods can be classified within the field of 
soft computing. The interface between meta-heuristic methods and the wider field of multi­
objective programming, and in particular the use of genetic algorithm techniques for 
efficient frontier calculation, has been considerable. This can be traced to the fact that both 
genetic algorithms and Pareto frontier generation require a population of spaced solutions in 
order to work efficiently. A recent survey by Jones, Mirrazavi, and Tamiz [13] found that 
90% of the journal articles related to multi-objective meta-heuristics are based around 
techniques for the calculation ofthe efficient set. The next most popular technique was goal 
programming, accounting for 7% of the articles, with compromise programming and 
interactive methods making up the remaining 3%. These statistics show that either the 
interface between distance metric optimization of meta-heuristics is non-existent in the 
sense of being of little benefit or is of practical benefit but has yet to be realized or 
developed. The discussion in the following paragraphs will argue in favour ofthe latter state 
of affairs. 

In analyzing future developments in the interface between distance metric optimization 
and meta-heuristic methods three possible directions are apparent at this point in time. 
Firstly distance optimization techniques could be used to enhance the internal workings of 
the meta-heuristic method. This seems a possibility as there are various internal mechanisms 
in meta-heuristic techniques that rely on concepts of distance and deviation. The use of 
penalty functions [14] and of niching [8] in genetic algorithms fall into this category. 
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The second possible direction is to use the benefits of the meta-heuristic methods to 
provide enhanced or computationally faster solutions to certain distance metric optimization 
techniques. For example, genetic algorithm techniques have the potential to produce 
estimations of the compromise set in compromise programming in an analogous way to the 
methods that produce estimations of the efficient set in multi-objective programming. The 
commonality between the two methods would be the exploitation of the population-based 
nature of the genetic algorithm. 

The third possible direction is the use of meta-heuristic methods to solve models that are 
too computationally complex or loosely defined to be modeled and solved using 
conventional means. This approach has proved very successful in the areas of single 
objective optimization and combinational optimization and the concepts can be transferred 
or modified to the distance optimization techniques. This is the most developed direction of 
the interface between meta-heuristic methods and distance metric optimization, particularly 
in respect to goal programming models. A recent goal programming survey [12]lists both 
simulated annealing and genetic algorithms as a solution tool for non-linear models in the 
field of engineering, and algorithms combining goal programming and Taboo search 
methods are available in the literature [l]. Mirrazavi, Jones, and Tamiz [15] present a 
decision support system capable of solving a wide variety of distance metric models by 
genetic algorithm means. 

3. Distance Metric Optimisation and the Analytical Hierarchy 
Process 

The analytical hierarchy process (AHP), developed by Saaty [19], has been one of the most 
widely used techniques in the field of decision analysis. The AHP framework allows for the 
determination of a set of priority weights from a matrix of pair-wise comparisons over the 
set of objectives given by the decision maker. These comparisons are made on a nine-point 
scale ranging from equal importance (l) to absolute importance (9). 

The interface between distance metric optimisation and the analytical hierarchy process 
has been developed in two major directions. The first direction involves the use of a distance 
metric model as a surrogate to the standard Eigenvalue method in Saaty's original 

formulation. The earliest models of this type used the L2 distance metric and were known 
as the least squares (LSM) and logarithmic least squares (LLSM) models, depending on 
whether the minimisation uses the logarithm of the matrix entries or not. The LLSM equates 
to the calculation of the geometric mean and hence demonstrates some good theoretical 

properties. Models based around the Logarithmic L1 metric [2] and the L~metric [5] have 

also been proposed. Islam, Biswal, and Alam [10] give an L1 based method that 

incorporates interval judgements. Distance metric theory suggests that these solutions all 
form points in a compromise set corresponding to the metrics L1, L2 , and L~ [25]. There 

is no reason why the intermediate distance-metric solutions corresponding to values of p 
other than l ,2, and oo should not also be considered. 

The second direction in which the interface between distance metric optimisation and 
the AHP has been developed is that of the use of the AHP to set weights in a non pre-
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emptive goal programming model. This concept benefits both approaches as it quantifies the 
subjective weight setting of goal programming and provides an additional stage of analysis 
in a mathematical programming framework for the AHP. Gass [7] describes an early use of 
this approach in the context of large scale military planning. Jones and Tamiz [12] detail a 
range of reported applications of this combined method in computing and information 
technology, energy planning and production, environmental and waste management, health 
planning, management and strategic planning, and production planning. 

4. Distance Metric Optimisation and Data Mining 

Another area that has been a field of application of distance metric models is that of data 
mining. This field roughly involves the extraction and analysis of information from sets of 
data and falls into the general area of soft computing. The use of distance metric 
optimization in this field has concentrated around the use of constrained regression, 
regression with underlying distance metrics other than the standard p = 2 metric, and 

pattern classification and discriminant models. It is worth remembering that the original goal 
programming model [3] was introduced in the context of constrained regression in the 
context of an executive compensation model. Since then the theory of constrained regression 
has been developed, with the beneficial properties of least absolute value (LA V) regression 
being detailed by Sueyoshi and Sekitani[21]. This type of regression utilizes the p = 1 
metric and therefore shows less sensitivity towards outliers than the other distance-metric 
models. Cooper, Lehs, and Sueyoshi [4] present an application of LAY regression to 
finance and further develop the theory to include the use of dual variables in the underlying 
goal programming model. The generalized regression model, using metrics from the 
compromise set from p = 1 through to p = oo is a possible future research direction, as it 

offers possibilities of a range of models with a parameter allowing the analyst to increase or 
decrease outlier sensitivity as necessary. 

The area of pattern classification differs from regression analysis in that the task involved 
is to classify a set of observations into a number of well-defined groups based on their 
characteristics. The underlying problem here again involves a minimization of a form of 
distance function pertaining to either the number or amount of misclassifications across the 
set of observations [20]. The 'distance' of misclassification for an observation is that from 
the discriminant line that divides the classes in decision space and the multi-objective 
aggregation of the misclassified distances can be carried out using any metric from the 
compromise set between p = 1 and p = oo. The case of using the number ofmisclassified 

observations as the measure of performance requires the use of mixed-integer programming 
techniques and is sometimes referred to as the p = 0 metric. A review of these so-called 

'lp norm methods' for pattern classification is given by Starn [20]. 
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5. Some Further Observations on Goal Programming Modelling 
Practice 

The traditional goal programming model is defined as having an achievement function 
comprised entirely of deviational variables[9]. This may take the form of a single weighted 
sum in weighted goal pro grarnming) or of a number of priority levels in lexicographic goal 
programming. In compromise programming models the normalised difference of the 
difference between the ideal and achieved values is minimized, this difference can be 
expressed as a deviational variable[l8]. With the growing range of distance-metric model 
applications and integrations, there is more possibility of a mixed achievement function 
occurring. This case is defined by Jones [II] as a combination of decision and deviational 
variables in the achievement function. Assuming that the deviational and decision variables 
terms are separable then the weighted goal programming model achievement function can 
be written as: 

q 
u· ~ u;n; +v;p; f( ) mmz= ~ + x. 

i=I k; 

This may cause problems with various types of solution and analysis such as Pareto 
efficiency detection and restoration [22] and also cause incommensurability in the model. In 
this case the following transformation is recommended: 

~I U·n· +V·P· Minz= I I I I 

i=I k; 

with the added constraint: 

f(x)+nq+I- Pq+I =0 

where Uq+I = 0, v q+I is set to represent the relative importance of the minimisation of 

the term f(x) to the decision maker, and kq+I is set in order to give appropriate scaling to 

the term f (X) . The actual value of k q+I is dependent on the type of normalisation used for 

the other objectives in the model, but one possibility is the Euclidean Norm of the 
coefficients off (x) [23]. 

This model can be considered better than the original formulation as it is more elegant 
and correct from a theoretical point of view; gives no hindrance to the use of solution and 
analysis techniques, and allows for correct scaling of all objectives in the model. It is also 
more convenient for integration with the other Operational Research and Soft Computing 
techniques described in this paper to have the goal programme expressed in standard form. 
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Hence it is recommended that any models with mixed achievement functions are 
transformed in this way. 

6. Conclusions 

This paper has analyzed some of the recent trends and applications in distance metric 
optimization. It has been shown that the subject, now approaching its fiftieth birthday since 
the conception of the goal programming model [3], continues to be relevant and applicable 
to the modern techniques being developed within the fields of operational research and soft 
computing. A substantial amount of change and development in order to apply the 
techniques of distance metric optimization to new and emerging application areas has taken 
place and needs to continue to take place. The distance metric framework laid down in the 
context of compromise programming by Yu [25] continues to offer a spectrum of possible 
solutions ranging between the pure optimization and balanced approaches, characterized by 
the p = 1 and p = oo metrics respectively, to each of these areas. This paper has been 
somewhat speculative in suggesting possible new research directions for each of these areas. 
The suggestions are not intended to be either definitive or exhaustive in terms of advances in 
distance metric optimization and its interface with the techniques detailed in the paper. They 
are, however, intended to demonstrate the fact that the area remains relevant and one in 
which there exist many avenues and interesting areas yet to be developed that should be of 
interest to both established and younger researchers with the field of multiple criteria 
decision making. 
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Abstract. Recently, data mining is attracting researchers' interest as a tool for get­
ting knowledge from data bases on a large scale. Although there have been several 
approaches to data mining, we focus on mathematical programming (in particu­
lar, multi-objective and goal programming; MOP /GP) approaches in this paper. 
Among them, Support Vector Machine (SVM) is gaining popularity as a method 
for machine learning. In pattern classification problems with two class sets, its idea 
is to find a maximal margin separating hyperplane which gives the greatest separa­
tion between the classes in a high dimensional feature space. This task is performed 
by solving a quadratic programming problem in a traditional formulation, and can 
be reduced to solving a linear programming in another formulation. However, the 
idea of maximal margin separation is not quite new: in 1960's the multi-surface 
method (MSM) was suggested by Mangasarian. In 1980's, linear classifiers using 
goal programming were developed extensively. 

This paper presents a survey on how effectively MOP /GP techniques can be 
applied to machine learning such as SVM, and discusses their problems. 

1 Introduction 

One of main purposes in data mining is to discover knowledge in data bases 
with very large scale. Usually, machine learning techniques are utilized for 
this knowledge acquisition. Typical approaches to machine learning are 1) to 
find an explicit rule as if-then rule and 2) to judge newly observed data by an 
implicit rule which is usually represented as a nonlinear function. Well known 
ID3 (recently C5.0) and CART belong to the former category. On the other 
hand, artificial neural networks and mathemtical programming approaches 
belong to the latter category. In this paper, we focus on the latter category. 

For convenience, we consider pattern classification problems. Let X be a 
space of conditional attributtes. For binary classification problems, the value 
of + 1 or -1 is assigend to each data Xi according to its calss A or B. The 
aim of machine learning is to predict which class newly observed data belong 
to on the basis of the given data set (xi, Yi) (i = 1, ... , l), where Yi = +1 or 
-1. 

For such a pattern classification problem, articial neural networks have 
been widely applied. However, the back propagation method is reduced to 
nonlinear optimization with multiple local optima, and hence difficult to 
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apply to large scale problems. Another drawback in the back propagation 
method is in the fact that it is difficult to change the structure adaptively 
according to the change of environment in incremental learning. Rcently, Sup­
port Vector Machine (SVM, in short) is attracting interest of researchers, in 
particular, people who are engaged in mathematcal programming, because 
it is reduced to quadratic programming (QP) or linear programming (LP). 
One of main features in SVM is that it is a linear classifer with maximal 
margin on the feature space. The idea of maximal margin in linear classifier 
has a long history in mathematical programming and goal programming. In 
the following in this paper, we review it in brief and try to explain how ef­
fectively techniques in multi-objective programming and goal programming 
(MOP jGP) can be applied. 

2 Multisurface Method (MSM) 

Suppose that given data in a set X of n-dimensional Euclidean space belong 
to one of two categories A and B. Let A be a matrix whose row vectors denote 
points in the category A. Similarly, let B be a matrix whose row vectors 
denote points in the category B. For simplicity of notation, we denote the 
set of points of A by A. The set of points of B is denoted by B similarly. 
MSM suggested by Mangasarian (1968) finds a piecewise linear discrimination 
surface separating two sets A and B by solving linear programming problems 
iteratively. The main idea is to find two hyperplanes parallel with each other 
which classify as many given data as possible: 

g(w)=xTw=a 

g ( W) = XT W = {3 

This is performed by the following algorithm: 

Step 1 . Solve the following linear programming problem at k-th iteration 
(set k = 1 at the beginning): 

(MSM) Maximize r/Ji(A, B) = a - f3 
subject to 

Aw~a1 

Bw s /31 
-1 ~ w s 1 

pfw ~ ~ (~ +P[Pi) (1) 

wherepiisgivenbyoneofpf = (~,0, ... ,0), pr = (- ~,0, ... ,O),···Prn = 
(0, ... ,0,-~). 
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Here the constraint (1) is introduced in order to avoid a trivial solution 
w = 0, a = 0, (3 = 0 from a linear approximation of wT w ~ ~. Namely, 

1 
wTw~pTp+2pT(w-p) ~ 2" 

After soving LP problem (MSM) for each i such that 1 s i s 2n, we take a 
hyperplane which classify correctly as many given data as possible. Let the 
solution be w*, a*, (3*, and let the corresponding value of objective function 
be ¢*(A, B). 

If ¢*(A, B)> 0, then we have a complete separating hyperplane g(w*) = 
(a* + (3*)/2. Set flk = {x E XI g(w*) ~ (a*+ (3*)/2} and f3k = {x E 
XI g(w*) < (a* + (3*)/2}. flk and f3k include the sets A and B in X, 
respectively, which is decided at this stage. Go to Step 3. 

Otherwise, go to Step 2. 

Step 2 . First, remove the points such that xT w* > (3* from the set A. 
Let Ak denote the set of removed points. Take the separating hyperplne as 
g(w*) = ((3* + ~)/2 where ~ = Min {xTw*l x E Ak}. Let flk = {x E 

XI g(w*) > ((3* + ~)/2}. The set flk denotes a subregion in the category A 
in X which is decided at this stage. Rewrite X\fik by X and A\Ak by A. 

Next, remove the points such that xTw• < a* from the set B. Let Bk 
denote the set ofremoved points. Take the separating hyperplne as g(w*) = 

(a*+ ii.)/2 where a= Min {xTw*l X E Bk}. Let jjk = {x E XI g(w*) < 
(a*+ ii.)/2}. The set f3k denotes a subregion in the category B in X which 
is decided at this stage. Rewrite X\Bk by X and B\Bk by B. 

Set k = k + 1 and go to Step 1. 

Step 3. Construct a piecewise linear separating hypersurface for A and B 
by adopting the relevant parts of the hyperplanes obtained above. 

Remark At the final p-th stage, we have the region of A in X as A1 U 
A2 U ... U AP and that of Bin X as B1 U B2 U ... U BP. Given a new point, 
its classification is easily made. Namely, since the new point is either one 
of these subregions in X, we can classify it by checking which subregion it 
belongs to in the order of 1, 2, ... ,p. 

As stated above, if ¢*(A, B) > 0, then the given data set can be linearly 
separated. Then, note that the parallel hyperplanes g( w*) = a* and g( w*) = 
(3* solving LP problem (MSM) provides a maximal margin. 

3 Goal Programming Approaches to Pattern 
Classification 

MSM often provides too complex discrimination boundaries, which results in 
a poor ability of generalization. In 1981, Freed-Glover suggested to get just a 
hyperplane separating two classes with as few misclassified data as possible 
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by using goal programming (Freed-Glover (1981)). Let ei denote the exterior 
deviation which is a deviation from the hyperplane of a point Xi improperly 
classified. Similary, let 'f/i denote the interior deviation which is a deviation 
from the hyperplane of a point Xi properly classified. Some of main objectives 
in this approach are as follows: 

i) Minimize the maximum exterior deviation (decrease errors as much as 
possible) 

ii) Maximize the minimum interior deviation (i.e., maximize the margin) 
iii) Maximize the weighted sum of interior deviation 
iv) Minimize the weighted sum of exterior deviation 

Although many models have been suggested, the one considering iii) and 
iv) above may be given by the following linear goal programming: 

Minimize l:.:~(hiei- ki'f/i) 

subject to xf w + b = 'f/i - ei, i E lA 

xfw + b = -'Tli + ei, i E lB 

ei, 'f/i ~ 0 i E lA U lB 

Here, hi and ki are positive constants. It should be noted that the above 
formulation may yield some unacceptable solutions such as w = 0 and un­
bounded solution. In order to avoid these unacceptable solutions, several 
normalization conditions have been suggested. For example, for some s 

If the classification problem is linearly separable, then using the normal­
ization !lwll = 1, the separating hyperplane H = {x E Rml wTx + b = 0} 
with maximal margin can be given by 

(GP) Maximize 

subject to Aw + bl ~ 'f/l 

Bw+bl ~ -'f/1 

llwll = 1 

4 Revision of MSM by MOP /GP 

One of drawbacks in MSM is the fact that it yields sometimes too complex dis­
crimination boundaries which cause poor genealizaiton ability. In Nakayama­
Kagaku (1998), several modifications of MSM are suggested. One of them 
introduces interior deviations as well as exterior deviations in MSM. This is 
formulated as a multi-objective programming problem. If only exterior devi­
ations are considered, this is reduced to a goal programming problem, which 
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is the same as the one suggested by Benett-Mangasarian (1992) called RLPD 
(robust linear programming discrimination). Applying these MOP /GP ap­
proaches to MSM, we can obtain smoother discrimination boundary than 
the original MSM. 

Furtheremore, Nakayama-Kagaku (1998) applied a fuzzy programming 
technique to MSM, because it is more natural to regard the constraints AT w+ 
bl ;:;; 0 and BT w + bl ~ 0 as those which are to be satisfied approximately. 
This approach yields gray zones for discrimination boundaries, in which the 
data are not decided clearly as of A or B. However, this is rather natural, 
because we usually require further investigation on those data as in cases of 
medical diagnosis. 

5 Support Vector Machine 

Support vector machine (SVM) is developed by Vapnik et al. (1995), and its 
main features are 

1) SVM is based on linear classfiers with maximal margin on the feature 
space, 

2) SVM uses kernel representation preserving inner products on the feature 
space, 

3) SVM provides an evaluation of the generalization ability using VC di­
mension. 

In cases where training data set X is not linearly separable, we map the 
original data set X to a feature space Z by some nonlinear map ¢. Increasing 
the dimension of the feature space, it is expected that the mapped data set 
is linearly separable. We try to find linear classifiers with maximal margin 
in the feature space. Instead of maximizing the minimum interior deviation 
in (GP) stated above, we use the following equivalent formulation with the 
normalization wT z + b = ±1 at points with the minimum interior deviation: 

(SVM) Minimize llwll 
suchthat Yi(wTzi+b)?:1, i=1, ... ,l 

where Yi is +1 or -1 depending on the class of Zi· Several kinds of norm are 
possible. When !!w!!2 is used, the problem is reduced to quadratic program­
ming, while the problem with llwll 1 or llwlloo is reduced to linear program­
ming (see, e.g., Mangasarian (2000)). 

Dual problem of (SVM) with llw!!2 is 

Min 

Subject to 

l 1 l 

I:O·:i- 2 L aiaiYiYi¢(xif ¢(xi) 
i=l i,j=l 

ai?: 0, (i=1, ... ,l) 
l 

L:aiYi = 0 
i=l 

(2) 
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Using the kernel function K(x, x') = <f>(x)T <f>(x'), the problem (2) can be 
reformulated as follows: 

Min 

Subject to: 

l 1 l 

"'o:·-- "'o:·o: ·y·y·K(x· x ·) L.....t ' 2 L.....t ' J ' J ., 3 
i=l i,j=l 

O:i ::2: 0' (i = 1, ... ,l) 
l 

LO:iYi = 0 
i=l 

(3) 

Several kinds of kernel functions are possible: among them, q-polynomial 

K(x, x') = (xT x' + 1F 
and Gaussian 

are most populary used. In applying the Gaussian kernel, it is important 
to decide the parameter r. The author and his coresearchers have observed 
through their numerical experiments that the value of r may be effectively 
determined by the simple estimate modifying the formula given by Haykin 
(1994) slightly, 

where dmax is the maximal distance among the data; n is the dimension of 
data; l is the number of data. 

Unlike MSM, SVM can provide smooth nonlinear discrimination bound­
aries in the original data space which result in better generalization ability. 
However, it can be expected that many devices in MSM and MOP /GP ap­
proaches to linear classifiers can be applied to SVM. 

Hard Margin and Soft Margin 
Separating two sets A and B completely is called the hard margin method, 

which tends to make overlearning. This implies the hard margin method is 
easily affected by noise. In order to overcome this difficulty, the soft margin 
method is introduced. The soft margin method allows some slight error which 
is represented by a slack variable (exterior deviation) ~i (i = 1, ... , l). Now, 
we have the following formulation for the soft margin method: 

(SVMsort) 
l 

Minimize wT w + L ~i 
i=l 

subject to Yi (wTxi +b) ;;:; 1- ~i 

~i ;;:; 0, i = 1, ... 'l 
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Using a kernel function in the dual problem yields 

Minimize 

Subject to 

l 1 l 

2:::0~i- 2 L aiaiYiYiK(xi, x3) 
i=l i,j=l 
C 2: ai 2: 0 , (i = 1, ... , l) 

l 

L:aiYi =0 
i=l 

(4) 

It can be seen that the idea of soft margin method is the same as the 
goal programming approach to linear classifiers. Not only exterior deviations 
but also interior deviations can be considered in SVM. Such MOP fGP ap­
proaches to SVM are discussed in the author and his coresearchers paper 
(Asada-Nakayama (2001),(2002), Yoon-Nakayama-Yun (2002)). In this event, 
note that each interior deviation represents how far the sample is from the 
separating hyperplane, but does not imply the exact distance between the 
sample and the hyperplane itself. This is a little confusing. Putting the nor­
malization that wT z + b = ±1 at support vectors (the samples closest to 
the separating hyperplane), the corresponding interior deviation indicates 
the distance between the sample and the hyperplane. However, maximizing 
'f/i subject to Yi(wT Zi +b) ~ 1 + 'f/i may yiels unbounded solution, because 'f/i 
can increase as much as possible as Yi ( wT Zi +b) = 1 tends to the separating 
hyperplane wT Zi + b = 0. 

Example 
Let z1 = ( -1, 1), Z2 = (0, 2) E A and z3 = (1, -1), z4 = (0, -2) E B. 

Constraint functions of SVM are given by 

z1: wl(-1)+w2(1)+b~ 1 
Z2 : W1 (0) + W2(2) + b ~ 1 
za: w1(1)+w2(-1)+b~ -1 
z4: w1(0)+w2(-2)+b~-1 

(5) 

Since it is clear that the optimal hyperplane has b = 0, the constraint 
functions for z3 and z4 are identical to those for z1 and z2 • The feasible 
region in (w1,w2)-plane is given by w2 ~ w1 +1 and w 2 ~ 1/2. Minimizing the 
objective function ofSVM yields the optimal solution (w1, w2) = ( -1/2, 1/2) 
for the QP formaulation. Similarly, we have a solution among the line segment 
{ w2 ~ w1 + 1} n { -1/2 ~ w1 ~ 0} depending on the initial solution for the 
LP formulation. 

Now consider the goal programming formulation with the objective func­
tion consisting of e and 'f/· Here, it is clear that e = 0 at the optimal solution. 
The constraints include 'fJ added in the right hand side. Note that the feasible 
region in this formulation moves to the north-west by increasing 'f/· Maxi­
mizing 'fJ yields unbounded optimal solution unless any further constraint in 
w are added. In MOP /GP approach, therefore, some appropriate normality 
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condition must be imposed on w in order to provide a bounded optimal solu­
tion. One of such normality conditions is llwll = 1. However, this normality 
condition makes the problem to be of nonlinear optimization. Note that the 
SVM formulation with the objective function minimizing llwiJ can avoid this 
unboundedness handily. 

If we add the term of 1J in the objective function of SVM, either an un­
bounded optimal solution or a bounded optimal solution is possible depending 
on the trade-off ratio between minimizing llwJI and maximizing '17· Since it 
is difficult to decide an appropriate value of the trade-off ratio in practice 
in advance, some kind of normality condition on 11 should be imposed. This 
subject is on-going by the author and his coresearchers. 

6 Concluding remarks 

A brief survey of linear classifiers using mathematical programming was pre­
sented in this paper. In particular, SVM was discussed from a veipoint of 
MOP /GP. It has been observed that MOP /GP techniques can be effectively 
applied to these classifiers. However, there remain many problems in question, 
which will be future subjects. 
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Abstract. In this paper we argue for the recognition of criteria beyond risk and 
return in portfolio theory in finance. We discuss how multiple criteria are logical 
and demonstrate computational results consistent with the existence of multiple 
criteria in portfolio selection. With the efficient frontier becoming an efficient sur­
face, the paper considers that what is the modern portfolio theory of today is best 
interpreted as a projection onto two-space of the real multiple criteria portfolio 
selection problem in higher dimensional space. 

1 Introduction 

At the foundation of modern portfolio theory (Elton and Gruber 1995 is a 
representative reference), there is the famous Markowitz portfolio selection 
model. Today, with little in the way of differences from when it was intro­
duced (Markowitz 1952), the Markowitz portfolio selection model is described 
as follows. Assume n securities, a initial sum of money to be invested, the be­
ginning of a holding period, and the end of the holding period. Let x 1 , ... Xn 

denote the investment proportion weights. These are the proportions of the 
initial sum to be invested at the beginning of the holding period in the n 
securities. Also, let ri be the random variable for the percent return realized 
on security i at the end of the holding period. Then rp, the random variable 
for the percent return realized on a portfolio at the end of the holding period, 
is the payoff and, as a function of the Xi, is given by 

n 

rp = :L:riXi 
i=l 

The difficulty is that the realizations of the ri, 1 ::::; i ::::; n, are not known at 
the beginning of the holding period (i.e., at the time the Xi are to be chosen). 
However, the ri random variables are assumed to have known expected values 
E{ri}, variances aii, and covariances O"ij· In this way, the expected value of 
r P is given by the linear function 

n 

E{rp} = LE{ri}Xi 
i=l 
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and the predicted standard deviation of r P is given by the square root of a 
quadratic function 

n n 

a{rp} = LLXiO"ijXj 

i=l j=l 

In pursuit of a set of Xi investment proportion weights that will result in a 
desirable realization of rp, Markowitz theory assumes that investors will only 
fix upon both expected portfolio return E{rp} and predicted portfolio stan­
dard deviation a{rp} to control the process. Furthermore, Markowitz theory 
is based upon the assumption that investors like expected portfolio return 
E{rp}, but dislike predicted portfolio standard deviation a{rp}· They dislike 
predicted portfolio standard deviation because standard deviation is believed 
to capture adequately risk, the likelihood that an undesirable realization of r P 

might occur. In this way, investors will prefer vectors of investment propor­
tion weights that cause the resultant portfolio to have the smallest predicted 
standard deviation (i.e., least amount of risk) for any given level of expected 
return, and investors will prefer vectors of investment proportion weights that 
cause the resultant portfolio to have the highest expected return for any given 
level of predicted standard deviation (risk). Thus, the problem is to compute 
all of the model's feasible (a{rp}, E{rp}) nondominated combinations and 
then select from them the most preferred. By taking the inverse image of 
the investor's most preferred nondominated combination, we will then have 
the Xi investment proportion weights that produce the Markowitz model's 
"optimal" portfolio. 

With regard to the issue of feasibility, L:~=l Xi = 1 is always a constraint. 
When this is the only constraint, we have the short-sales-allowed model. Be­
cause the boundary of the region of all feasible (a{rp}, E{rp}) combinations is 
a hyperbola, the short-sales-allowed model has very nice mathematical char­
acteristics. That is, virtually all information that anyone would ever want to 
know about the feasible region in (a{rp}, E{rp}) space is available in closed­
form. One of the places relevant formulas can be found is in (Roll 1977, 
Appendix A). 

For the short-sales-allowed model, the region of all feasible (a{rp}, E{rp}) 
combinations is demonstrated in Figure 1 (left) in which 

a. the set of all feasible (a{rp}, E{rp}) combinations is unbounded. 
b. the dots represent the (a{ri}, E{ri}) combinations for the individual 

securities considered, 1 ~ i ~ n. 
c. the upper half of the hyperbola boundary is the set of all nondomi­

nated combinations, referred to in finance as an efficient frontier. 

A shortcoming of the short-sales-allowed model in which L:~=l Xi = 1 is 
the only constraint, is that there is nothing to stop the Xi from taking on neg­
ative values. When an Xi is negative, this means that money is raised from 
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Fig. 1. Short-sales-allowed feasible boundary (left) and short-sales-prohibited effi­
cient frontier (right) 

the security. This can only be accomplished by selling short. The problem 
here is that the constraint imposes no limit on the extent to which a stock 
can be sold short (because the weights can still always be made to sum to 
one). This is why the feasible region is unbounded. The type of short selling 
implied by the model is that it is possible to sell a security you don't own 
to an unlimited extent and use as collateral the stock you are able to buy 
with the proceeds and the other money you have. While this is possible to 
a limited extent, carrying it too far will inevitably run into margin require­
ment difficulties, violate security laws, and not be feasible in reality (despite 
its theoretical feasibility in the model). Consequently, the region of feasible 
(a{rp}, E{rp}) combinations in the short-sales-allowed model is not nearly 
as large as commonly portrayed in graphs such as in Figure 1 (left). 

In contrast to the short-sales-allowed model, we have the short-sales­
prohibited model. This model is the same as the short-sales-allowed model 
but also imposes nonnegativity restrictions on the weights thus "prohibit­
ing" short selling. The inclusion of nonnegativity restrictions might seem in­
nocuous, but they destroy the closed-form solution possibilities of the model 
and require mathematical programming to be thought of as the solution 
technique. As a result, a common way to compute the set of all feasible 
(a{ rp}, E{ rp}) nondominated combinations of the short-sales-prohibited model 
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is to form the mathematical programming problem 

n n 

min { L LXWijXj = a 2 {rp}} 
i=l j=l 

n 

s.t. LE{ri}Xi::::: p 
i=l 

i=l 

all Xi ::::: 0 

and then solve it repetitively for different values of p, that is, for different 
lower bound values on the expected portfolio return. With a quadratic ob­
jective and linear constraints, this is a formulation for which highly effective 
quadratic/LP solvers are available. In this paper we used, within Excel, the 
Standard LP /Quadratic solver in Premium Solver Platform V3.5, a Solver up­
grade from Frontline Systems (2000). This produces a series of (a{rp}, E{rp}) 
observations which when connected produce the model's "efficient frontier" 
as in Figure 1 (right). In this case we note that the efficient frontier is not a 
segment of a hyperbola and that the efficient frontier is not unbounded (hav­
ing as its rightmost endpoint the security with the highest expected return). 

2 Different Perspectives 

While anyone with a multiple criteria background would immediately recog­
nize the risk-return portfolio problem as a multiple criteria problem (albeit 
with only two objectives), mainstream finance does not look at the problem 
through the same prism and to date has shown no interest in viewing portfolio 
selection from within a more generalized multiple criteria framework. From 
their perspective, they feel that they have all that they need. To indicate how 
portfolio selection is motivated, the following are excerpts from a sampling 
of top-selling textbooks in finance. 

"The ultimate goal of an investor is an efficient portfolio ... Such port­
folios aren't necessarily obvious: Investors usually must search out 
investment alternatives to get the best combinations of risk and re­
turn." (Gitman and Joehnk 1999, p. 631) 

"The goal of investors is to maximize wealth. There is a chance that 
this goal will not be achieved, however, because most investments are 
risky ... To include risk aversion in the decision of security selection, 
we turn to the mean-variance criterion." (Levy 1999, pp. 193 & 202) 
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"In Chapter ... we learned that risky assets should be evaluated on 
the basis of the expected returns and risk, as measured by the stan­
dard deviation... Markowitz portfolio theory provides the way to se­
lect optimal portfolios based on using the full information set about 
securities." (Jones 2000, pp. 511 & 526) 

"Portfolio theory is built around the investor seeking to construct 
an efficient portfolio that offers the highest return for a given level 
of risk or the least amount of risk for a given level of return. Of 
all the possible efficient portfolios, the individual investor selects the 
portfolio that offers the highest level of satisfaction or utility." (Mayo 
2000, p. 163) 

"Even with identical attitudes toward risk, different households and 
institutions might choose different investment portfolios because of 
their differing circumstances ... These circumstances impose constraints 
on investor choice. Together, objectives and constraints determine ap­
propriate investment policy." (Bodie, Kane and Marcus 2001, p. 131) 

The first quote is indicative of the difficulties many books have in sepa­
rating the portfolio selection problem from single-criterion ways of thinking. 
The second quote shows the veering off from a multiple objective conceptu­
alization by use of the frequently employed term "mean-variance criterion." 
The third and fourth quotes are representative of books that more clearly rec­
ognize risk and return as distinct criteria, but typically present the material 
in a rather dogmatic, this is the only way, fashion. The fifth quote is inter­
esting because it recognizes "differing circumstances" but instructs that if 
present they be taken into account as constraints. Finance is in denial about 
multiple criteria, but what is more perplexing is that mainstream finance 
appears to be annoyed by even having to hear about new ideas in portfolio 
theory. To them, all avenues in portfolio theory have been exhausted years 
ago and there is nothing new to be found. Consequently, finance has now 
moved enmasse to other foraging areas such as econometrics-based empir­
ical studies and stochastic asset pricing studies where a person's research 
future in mainstream finance is more promising. However, portfolio theory is 
in need of a serious second look as multiple criteria procedures, unbeknownst 
to mainstream finance, are now abundantly available. 

It is the position of this paper that multiple criteria have always been 
present in portfolio selection and have consistently manifested themselves in 
the data of financial research, but have only been recognized as such mostly 
by people who have benefited from also having backgrounds in other fields 
(for example Ballestero 2000, Chang, Meade, Beasley and Sharaiha 2000, 
Ehrgott 2003, Hallerbach and Spronk 2000, Hurson and Zopounidis 1994, Jog, 
Kaliszewski and Michalowski 1999, Konno and Suzuki 1995, and Mansini, 
Ogryczak and Speranza 2002). 



40 Ralph E. Steuer and Yue Qi 

In multiple criteria there is always a line that must be drawn between 
what is most appropriately modelled as an objective and what is most ap­
propriately modelled as an constraint, but in mainstream finance the line 
has most likely been drawn too soon. Rather than ignoring, or treating as 
insignificant, criteria beyond risk and return, an investor could easily face a 
situation in which his or her optimal portfolio involves an important balance 
among criteria such as the following six. 

max {return} 
min {risk} 
max {dividends} 
max {social responsibility} 
min {number of securities in a portfolio} 
min {short selling} 

These criteria are not unreasonable. Beyond risk and return it is very 
plausible that an investor might have criterion concerns about dividends (for 
providing at least a minimal liquidity stream or for corroborating the health 
of a security), social responsibility (to favor securities involved in environmen­
tally or socially preferable activities), the number of securities in a portfolio 
(to minimize the time, headache and distraction involved in monitoring and 
managing a portfolio), and short selling (to avoid problems with the spouse). 
It is important that these be modelled as objectives so that investor can ex­
plore the trade-offs among the concerns before deciding upon the portfolio 
that provides the greatest preference. 

3 Computational Investigations 

If it is true that meaningful multiple (that is, beyond two) criteria exist in 
portfolio selection, then what is presented as risk-return portfolio selection in 
traditional finance is merely a two-dimensional projection of the real portfolio 
selection problem in higher dimensional space. What evidence might there 
be for such a claim? We can start with the concept of the "market portfolio." 
The market portfolio (Bodie, Kane and Marcus 2001, p. 233) is at the heart 
of equilibrium theory in portfolio analysis and is the portfolio for which each 
security is held in proportion to its market value. The market portfolio is sup­
posed to be everyone's optimal portfolio and is to be on the efficient frontier. 
But in practice it has been found consistently to be deep below the efficient 
frontier, in fact, so deep below that this cannot be explained by chance varia­
tion. Nevertheless, traditional finance has moved onward essentially agreeing 
not to be bothered by this anomaly that it has never been able to reconcile. 

The impact of multiple criteria in the modelling of portfolio selection is 
that the efficient frontier becomes an efficient surface. Thus, if an optimal 
portfolio is in the middle of the efficient frontier in risk-return finance, than 
it may not be unreasonable for an optimal portfolio to be in the middle of 
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the efficient surface in multiple criteria finance. We have been computing a 
long line of experiments that will be reported elsewhere, but will only report 
on the most dramatic here to make our point. 

In a risk-return portfolio problem, let us assume that the feasible region is 
an ellipse in two-space as in Figure 2. In this case, the efficient frontier is the 
portion of the periphery of the ellipse in the second quadrant positioned at the 
center of the ellipse. Correspondingly, in a k-criteria portfolio problem (with 
objectives beyond risk and return), let us assume that the feasible region is 
an ellipsoid in k-space. In this case, the efficient surface is the portion of the 
surface of the ellipsoid in an orthant positioned at the center of the ellipsoid. 
Now let us assume that the market portfolio, which by theory is efficient, is 
in the middle of the efficient set. If this is the case, then the market portfolio 
would be at z2 on the ellipse. However, if (a) there is a third objective, (b) 
the feasible region is ellipsoidal in three-space, and (c) the market portfolio is 
in the middle of the efficient surface in R3 , then the market portfolio would 
project onto risk-return space at z3 • Now if (a) there is a fourth objective, (b) 
the feasible region is ellipsoidal in four-space, and (c) the market portfolio is 
in the middle of the efficient surface in R4 , then the market portfolio would 
project onto risk-return space at z4 • With five objectives, then the market 
portfolio would project onto risk-return space at z5 , and so forth, becoming 
deeper and deeper. 

return 

risk 

Fig. 2. An ellipsoidal feasible region projected onto two-dimensional risk-return 
space 

To further illustrate, let us look at a 5 objective, 40 constraint, 20 vari­
able multiple objective linear program (MOLP). The problem was created by 
the random problem generator in ADBASE and then solved for all nondomi­
nated vertices in criterion space. Projecting the MOLPs 5,365 nondominated 
vertices onto the space of any two objectives results in graphs as in Figure 
3. Here we can see how a nondominated vertex picked randomly to represent 
the market portfolio can easily project deep into the interior of the projection 
of the feasible region onto two-space. Hence, with the empirical results from 
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traditional finance about the "buried" nature of the market portfolio, logical 
arguments about multiple objectives in portfolio selection, and the projec­
tion situation as shown above, there is evidence that the portfolio selection 
problem would be better modelled within a more generalized multiple crite­
ria framework. Thus, with the efficient frontier becoming an efficient surface, 
multiple criteria optimization solution procedures as in (Sawaragi, Nakayama 
and Tanino 1985) would then be more appropriate for searching for optimal 
portfolios in the new world of multiple criteria portfolio selection. 

Fig. 3. Projections of the nondominated vertices of a representative MOLP onto 
two-space 

4 Concluding Remarks 

Maybe the reader has noticed that the word optimal in Section 1 was enclosed 
in quotes. What is optimal depends upon the model. Consider the literal 
model as follows. If an investor's objective is "literally" to maximize the 
value of rp at the end of the holding period, then the set of all Xi weighting 
vector contenders for optimality would only include all n unit vectors in Rn. 
Barring ties, this is because only one of the n securities will have the highest 
rate of return at the end of the holding period. Thus, to maximize the payoff 
rp = l::~ 1 riXi at the end of the holding period, one would only have to have 
invested in that security alone at the beginning of the holding period. This 
is in contrast to the Markowitz approach in which we attempt to balance 
expected portfolio return with predicted portfolio standard deviation, but 
this comes at a price. 

To see this, on the issue of contenders for optimality, let us now discuss the 
differences between the short-sales-allowed and short-sales-prohibited mod­
els and the literal model. In the short-sales-allowed model, the xi weighting 
vector contenders for optimality are those that produce the nondominated 
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(a{rp}, E{rv}) combinations along the (unbounded) efficient frontier. How­
ever, there are likely no Xi weighting vector contenders for optimality in this 
model that are in common with the literal model. With regard to the short­
sales-prohibited model, there is likely only one Xi weighting vector contender 
for optimality in this model that is in common with the Xi weighting vector 
contenders for optimality in the literal model. This is the unit vector in Rn 
corresponding to the security of highest expected return. The reason for the 
major differences in the sets of weighting vectors of contenders is that, un­
fortunately, the literal model's weighting vectors of contenders also contain 
the weighting vector that minimizes the payoff rv = L:~=l rixi at the end of 
the holding period. While the Markowitz approach eliminates the possibil­
ity of constructing a portfolio that would result in the minimum payoff, its 
disadvantage is that it eliminates the possibility of maximizing the payoff. 
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Abstract: The focus of this paper is some behavioral (or descriptive) models of indi­
vidual decision making and group decision making as follows: 1) A model to explain 
the violations of expected utility models for the individual decision making; 2) A model 
to describe the ethical consensus formation process among multi-agent conflicting deci­
sion makers. Some applications to public sectors are mentioned. 

1. Introduction 

The expected utility model has been widely used as a normative model of deci­
sion analysis under risk for modeling individual decision making. But, various 
paradoxes [l ,2] have been reported for the expected utility model, and it is ar­
gued that the expected utility model is not an adequate behavioral (descriptive) 
model. In this article some behavioral models are shown to resolve expected 
utility paradoxes. Some realistic applications to public sectors are mentioned. 

In multi-attribute utility analysis Keeney and Raiffa 's [3] additive/utility in­
dependence has been widely used. If we try to deal with consensus formation 
process under multiple conflicting agents based on the additive/utility inde­
pendence, we could only model selfish/stubborn agents. To resolve this restric­
tion, we try to model ethical preference [ 4] of each agent based on the property 
of convex dependence [5]. 

2. Behavioral Models to Resolve Expected Utility 
Paradoxes 

In this section a descriptive extension of the expected utility model to account 
for various paradoxes is shown using the concept of strength of preference. 

2.1 Measurable Value Function Under Risk 

Let X be a set of all consequences, x E X, and A be a set of all risky alterna­
tives; a risky alternative f E A is written as 



46 Hiroyuki Tamura 

(1) 

which yields consequence X; EX with probability pi' i = 1 ,2, ... ,n 

where LP; = 1. 

Let A* be a nonempty subset of A xA, and :;: and:;:* be binary relations 

on A and A*, respectively. Relation :;: could also be a binary relation onX. We 

interpret £1 t R. 2 (R. 1 , R. 2 E A) to mean that R. 1 is preferred or indifferent to R. 2 , 

and £1£2 t* £3£4 (£ 1 ,£2,£ 3,£4 E A) to mean that the strength of preference for 

R. 1 over R. 2 is greater than or equal to the strength of preference for R. 3 
over£4 . 

We postulate that (A, A*, t *) takes a positive difference structure that is 

based on the axioms described by Kranz et al. [6]. The axioms imply that there 

exists a real-valued function F on A such that for all R.l'£2,£3,£4e A, if 

£1 :;: R. 2 and R. 3 :;: R. 4 , then 

l1l2 !:- * £3£4 ¢:::> F{£1)- F{£2) ~F(£3)-F(£ 4 ). (2) 

Since F is unique up to a positive linear transformation, it is a cardinal func­
tion. It is natural to hold for £1' £2, R. 3 E A that 

(.1£3 ::* (.2£3 ¢:::> (.I:: (.2. (3) 

Then from eqn.(2) we obtain 

l1 t£2 ¢:::> F(R.~)~F(£ 2 ). (4) 

Thus, F is a value function on A and, in view of eqn.(2), it is a measurable 
value function. 

We assume that the decision maker will try to maximize the value (or util­
ity) of a risky alternative R. E A, which is given by the general form as 

maxF(R.)=maxi,J(x;,p;) (5) 
leA lx.A . 

I 

where f(x,p) denotes the value (strength of preference) for a consequencex 
which comes out with probability p. This function is called the measurable 
value function under risk. The main objectives here are to give an appropriate 

decomposition and interpretation of f(x ,p) and to explore its descriptive im­
plications to account for the various paradoxes. 

The model eqn.{5) is reduced to the expected utility form by setting 

f(x,p)= pu(x) (6) 

when u(x) is regarded as a von Neumann-Morgenstem utility function. The 
prospect theory ofKahneman and Tversky [7] is obtained by setting 

f(x,p)=1t'(p)v(x) (7) 

where 1t' (p) denotes a weighting function for probability and v(x) a value 
function for consequence. In this model the value of each consequence is mu 1-
tiplied by a decision weight for probability (not by probability itself). 

Extending this Kahneman-Tversky model we obtain a decomposition form 
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f(x,p) = w(p lx )v( x) (8) 

( I ,\=J(x,p) 
w X PJ- ( ) , f x,l 

(9) 

and x* denotes the best consequence. The expected utility model, eqn.(6), and 
Kahneman-Tversky model, eqn.(7), are included in our model, eqn.(8), as a 
special case. Second equation in eqn.(9) implies that v(x) denotes a measurable 
value function under certainty. Therefore, our model, eqn.(8), also hcludes 
Dyer and Sarin's model [8] as a special case. The model eqn.(8) could also be 
written as 

f(x,p)=w(p)l(xlp), w(p)=w(plx*). (10) 

We assume that 

f(x,O) =0, Vxe X; f(.! ,p) = 0, Vpe [0,1) (11) 

where xR EX denotes the reference point (e.g. status quo). The better region 
on X compared with xR is called the gain domain and the worse region the 
loss domain. We also assume that 

J(x ,p) ~ 0 in the gain domain; f(x ,p) < 0 in the loss domain. 
It will be shown that the conditional weighting function w(p I x) describes 

the strength of preference for probability under the given conditional level of 
consequence, and v (xI p) describes the strength of preference for conse­
quence under the given conditional level of probability. 

For interpreting the descriptive model f(x ,p) we need to interpret F such 
that eqn.(2) holds. For all x"x2,x3,x4 EX, ae[O,l], and ye X such 
thatx1 ~ x2 ~ x3 ~ x4 , we consider four alternatives: 

£, =(Xj,y;a,l-a), £2 =(x2,y;a,l-a), 
£3 =(~,y;a,l-a), £4 =(x4 ,y;a,l-a). 

In this case we obtain 

(12a) 

(12b) 

f/- 2 t* £3£4 ¢:::> f(x,,a)- t(x2,a) ~!(~.a)- f(x4,a) (13a) 

¢:::> v(x,la)-v(x2 la)~v(x3 la)-v(x4 la) (13b) 

Therefore, the value function v( xi p) defined in eqn.(9) represents the 

strength of preference for the risky four alternatives in eqn.(l2). 

On the other hand, for all a1,a2,a3 ,a4 E [0,1], xE X and xR EX, we con­

sider four alternatives: 

£1 '=( x,xR;a1,l-a1), £2 ' =(x,f;a2,l-a2), (14a) 

£3 '=(x,xR;a3,l-a3 ), £4 ' =(x,xR;a4 ,l-a4 ). (14b) 

Then we obtain 

£,'£2 '>:.*£ 3 '£ 4 ' ¢:::> f(x,a,.)-f(x,~)~f(x,CX:J)-f(x,a4 ) (15a) 

¢:::> w(a,. I x)-w( ~ I x) ~ w(a3 l x)- w(a4 1 x) (15b) 
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Therefore, the weighting function defined in eqn.(9) represents the strength of 
preference for the four risky alternatives in eqn.(14). 

The above discussions assert that the descriptive model f(x ,p) represents 
the measurable value function under risk to evaluate the consequence X E X 
which comes out with probability p. 

The Kahneman-Tversky model of eqn.(7) could explain a so-called cer­
tainty effect to resolve the Allais paradox [1]. Our descriptive model f(x ,p) 
could also resolve the Allais paradox. 

It is well known that the expected utility model is not an appropriate model 
for modeling extreme events with low probability and high consequence. In [9] 
it is shown that our descriptive model could resolve such paradox in the appli­
cation to public sector. 

2.2 Measurable Value Function under Uncertainty 

In this section we deal with the case where probability of occurence for each 
event is unknown. When we describe the degree of ignorance and uncertainty 
by the basic probability of Dempster-Shafer theory [10] the problem is how to 
represent the value of a set element to construct a measurable value function 
under uncertainty based on this concept. 

In Dempster-Shafer theory of probability let Jl {A;) be basic probability 

which could be assigned by any subset A, of 9, where 9 denotes a set con­
taining every possible element. The basic probability Jl (A;) can be regarded 

as a semimobile probability mass. Let A = 29 be a set containing every subset 

of9 . Then, the basic probability Jl (A;) is defined on A and takes a value 

contained in [0, 1 ]. When Jl {A;) >0, A, is called the focal element or the set 

element and the following conditions hold: 

J.L(~)=O, LJ1(Ai)=1 
A,EA 

where ~ denotes an empty set. 

Let the value function under uncertainty based on this basic probability be 

f*(B,J.L)=w'(J.L)v*(BIJ.L) (16) 

where B denotes a set element, Jl denotes the basic probability, w'denotes the 

weighting function for the basic probability, and v* denotes the value function 
with respect to a set element. The set elementS is a subset ofA = 29 • Equation 
(16) is an extended version of the value function, eqn.(10), where an element is 
extended to a set element and the Bayes' probabilty is extended to the 
Dempster-Shafer basic probability. 

For identifying v*, we need to find the preference relations among set 
elements, which is not an easy task. If the number of elements contained in the 
set 9 is getting larger, and the set element B contains considerbale number of 
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element it is not practical to find v* as a function of B. To cope with this 
difficulty we could use some appropriate axiom of dominance. 

Our descriptive model f * ( B,Jl) could resolve Ells burg paradox [2] by 
restricting a set element B to 

Q ={(m,M)E E>xE>: mj M} 
where m and M denote the worst and the best consequence in the set element 
B, respectively. In this case eqn.(16) is reduced to 

f*(O,Jl) =w'(J.L)v*(OIJ.L). 
Incorporating the Dempster-Shafer probability theory in the descriptive 

model f*(O,Jl) of a value function under uncertainty, we could model the 
lack of belief which could not be modelled by Bayes' probability theory. As 
the result our descriptive model f * ( O,Jl) could resolve the Ells burg paradox 
[2]. 

This descriptive model could be applied to modeling some public sector 

problems such as cancer risk problems, global environmental problems, etc. 
under uncertainty in which probability for each event is not known but 

probability for some set of events is known. 

3. Behavioral Models to Resolve Restrictions of 
Additive/Utility Independence in Consensus 
Formation Process 

Ethical consensus formation process among multi-agent conflicting decision 
makers is modeled in this section. 

3.1 A Group Disutility Function for Multi-agent Decision Making 

Let D1 xD2 be a two-attribute space of disutility levels and d1 E Dl' d2 E D2 
denote the disutility levels of decision maker (DM) 1 and DM2, respectively. 

For a given d1 E D1 and d2 E D2, a group disutility function on D1 xD2 
space is refined as g( ~, ~) . Let us assume that d1° and d 2° denote the 

worst levels of disutility of DMI and DM2, respectively, and d1 * and d 2 * 
denote the best levels of disutility of DMI and DM2, respectively. Given an 
arbitrary d 2 E D2 a normalized conditional group disutility function (NCGDF) 

ofDMI is defined as 

(d ld )= g(dl,d2)-g(dl*,d2) 
gl I 2 g(dlo'd2 )-g( dl *,d2) 

(17) 
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where it is assumed that 

g(dlo'd2) > g(dl*,d2) • 

It is obvious that 

(18) 

that is, NCGDF is normalized and is a single-attribute group disutility func­
tion. Hence it is easily identified. 

The NCGDF for DM2, that is, g2 ( d2 1 d1 ) can also be defined similarly as 

g2(d21t4)= g(dlld:)-g(~,d2*} (19) 
g ( t41 d2 )- g( di' d2 ) 

The NCGDF g1 (d1 1 d 2) represents DM1's and g2 ( d2 1 dd represents DM2's 

subjective preference for the group disutility as a function of his own disutility 

level, under the condition that the disutility level of the other DM is given. 

IfNCGDF g1 ( d1 I d 2 ) does not depend on the conditional level d2 , then at­

tribute D1 is utility independent [3] of attribute D2 . If attributes D1 and D2 
are mutually utility independent, the two-attribute dis utility function g ( d1, d2) 

can be described as either a multiplicative or additive form [3]. 

Suppose 

(20) 

for some d 2 E D2 , that is, utility independence does not hold between two at­

tributes D1 and D2 . In this case we can use a property of convex dependence 

[5] as a natural extension of utility independence. 

The property of convex dependence is defined as follows: attribute D1 is m­

th order convex dependent on attribute D2, denoted~ ( CDm) D2, if there exist 

distinct d 2°,d2\ ... ,d2m eD2 and real functions ),,~,-··,Am on D2 such that 

NCGDF g1 ( d 1 1 d 2) can be written as 

gl ( dl 1 d2) = t A; ( d2 )g I ( d ~~ d n . (21) 
i=O i=() 

for all d1 E D1 and d2 E D2 , where m is the smallest non-negative integer for 

which this relation holds. 

This definition says that, if~ ( CDm)D2, then any NCGDF on D1 can be 

described as a convex combination of (m+ 1) NCGDFs with different condi­

tional levels where A; ( d2 ) s are not necessarily non-negative. Especially, 

when m = 0 and D1 ( CD0 ) D2 , attribute D1 is utility independent of attrib­

uteD2. 
The algorithm for constructing a two-attribute group disutility function is as 

follows [11]: 
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Step 1. NCGDFs g1 (d,ld2°), g1 (d1 ld2 *)and g 1(d,ld2°·5 ) are assessed, 

where d 2°"5 denotes the i:J.termediate level of attribute D2 between the 

worst level d2° and the best leveld2 * . 

Step 2. If these NC GDFs are almost identical, D1 ( CD0 ) D2 holds. Otherwise, 

go to Step 3. 

Step 3. If the convex combination of g1 ( d1 I d2°) and g1 ( d1 I d2 *) is almost 

identical with g 1 ( d,l d2°·5 ), D. (CD1 )D2 holds. Otherwise, higher order 

convex dependence holds. Once the order of convex dependence is found, 

the decomposition form [5] for two-attribute disutility function can be ob­

tained. Single-attribute NCGDFs play a role of basic elements in the two­

attribute group disutility function. 

Step 4. By assessing the comer values of a group disutility function in two­

attribute space, coefficients of linear terms in the two-attribute group dis­

utility function are obtained [6]. As a result a two-attribute group disutility 

function is obtained. 

In modeling multi-agent decision making with conflicting DMs, NCGDF 
plays the most important role as it can model various patterns of a DM's pref­
erence who is self-centered and selfish or flexible and cooperative, and so 
forth . 

3.2 Consensus Formation Modeling for Multi-agent Decision 
Making 

How to Solve Social Dilemma? 

DM2 Local 
Government 

DMt 

Fig. I. Consensus formation process between DMI and DM2. 
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Let DMl and DM2 be 
DMl: representative of the regional inhabitants; 
DM2: representative of the enterpriser who is planning a public project. 

Fig. 1 shows a consensus formation process between DMl and DM2 where lo­
cal government plays a role of mediator between them. 

Suppose the disutility level d1 for DMl evaluates environmental impact 

from the public project and the disutility level d2 for DM2 evaluates the cost 

to realize various countermeasures of the public project. These disutility func­
tions are constructed by questioning the environmental specialists about each 
situation ofDMI andDM2. 

We construct the NCGDFs by again questioning the environmental special­
ists about each situation of DMI and DM2. Consequently, suppose we ob­
tained three types of models as follows: 

Modell: Mutual utility independence holds. 
Fig. 2 shows the shape ofNCGDF for Modell. Both DMI and DM2 do not 

think that group disutility is small unless their own disutility is also small. In 
this case both DMI and DM2 are selfish and strongly insist upon their own 
opinion. This situation shows the initial phase of planning a new project, when 
the plan has just been presented to the regional inhabitants. 

(a) DMI (b) DM2 

Fig. 2. NCGDF ofModell. 

Model 2: Utility independence holds for DMI and first order convex depend­
ence holds for DM2. 

Fig. 3 shows the shape ofNCGDF for this Model2. The attitude ofDMI is 
almost the same as in Model 1, however, DM2 is becoming more flexible to­
wards obtaining consensus of DMI. In this case DMI does not have enough 
information on the project, however, DM2 has obtained various information. 
This situation corresponds to the second phase of the consensus formation 
process. 
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(a) DMl (b)DM2 

Fig. 3. NCGDF of Model 2. 

Model3: Mutual first order convex dependence holds. 
Fig. 4 shows the shape of NCGDF for this Model 3. The attitude of both 

DMl and DM2 is getting more flexible and cooperative. In this case both DMs 
have obtained sufficient information about planning the public project and the 
countermeasures for preventing environ-mental impacts from the project, and 
thus, show a mutual concession taking into account ethical consideration with 
each other. This situation corresponds to the final phase of the consensus for­
mation process between DMl and DM2. 

d2 

(a) DMI (b) DM2 

Fig. 4. NCGDF ofModel3. 

Suppose the minimum value of group disutility is obtained for Model 3. 
This implies that the most impartial consensus formation is obtained under the 
situation of Model 3, which is based on convex dependence between two con­
flicting DMs. 

As seen from the consensus formation model described above it may be used 
as a fundamental material for discussion when the regional inhabitants and the 
enterpriser of a public project regulate and adjust their opinion of each other. 
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4. Concluding Remarks 

Behavioral models of decision analysis both in individual decision making and 
group decision making are described. In the model of the first category cons e­
quence dependent non-additive probabilities are introduced as a measurable 
value function under risk where probability of occurring each event is postu­
lated to be known. The effective application of this approach to public sectors 
is mentioned in modeling risks of extreme events with low probability and high 
consequence. Measurable value function under uncertainty is also described 
where basic probability for a set of events is known but probability of occur­
ring each event is not known. It is shown that Ellsburg paradox is consistently 
resolved by using this model. Potential applicability of measurable value func­
tion under uncertainty to cancer risk problems and global environmental prob­
lems is also mentioned. 

The model of the second category is described as a group disutility function 
as a function of normalized conditional group disutility function based on the 
property of convex dependence among multiple agents. The application of this 
approach to public sectors is shown in modeling environmental assessment 
with public partie ipation. It is shown that by using this group disutility model 
we could model fleXIble decision makers who could change their attitude m 
the preference depending upon the disutility level of the other conflicting deci­
sion makers. As the result the ethical consensus formation process could be 
modelled. The consensus formation model described in this paper is expected 
to be used as a fundamental material for discussion when the enterpriser of a 
public project and the regional inhabitants regulate and adjust their opinion 
with each other for realizing better social welfare. A systems method of ethical 
conflict resolution described in this paper may help to realize a safe, secure and 
reliable (SSR) megacity. 

This research was supported in part by the Japan Society for the Promotion 
of Science under Grant-in-Aid for Creative Scientific Research (Project No. 
l3GS0018). 
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Abstract. A five year JSPS (Japan Society for Promotion of Science) re­
search project titled as "Distributed Autonomous Urban Energy Systems for 
Mitigating Environmental Impact" was just finished at the end of March 2002. 
Various types of mathematical optimization models have been developed dur­
ing the course of the study. Multi-objective optimization models played a ma­
jor role and many models ended up with mixed integer optimization problems. 
For solution procedure some of them used commercially available 
GAMS/Cplex, some of them used decomposition method and the other used 
heuristic approach such as particle swarm method. These models will be d:­
scribed briefly and also some findings from the project will be shown. 

1 Introduction 

In Japan energy demand in industry sector has leveled off but in both business 
and commercial sector and residential sector it is still increasing. The general shift 
toward tertiary industry and an increase of households have contributed to the in­
crease of energy demand in these sectors. On the other hand, the Kyoto Protocol in 
1997 claims 6% reduction in C02 emission from Japan around the year 2010, and 
therefore it becomes evermore important to consider efficient use of energy and 
energy saving in these sectors. As one of the effective means of achieving this, the 
author proposed the concept of integrated energy service system for specific areas 
in which electric and thermal energy delivery systems are optimized at the same 
time. An image of the proposed system is illustrated in Fig. I. Advance of dis­
persed generation sources and apparatus such as photovoltaic generators, co­
generation for individual buildings, heat pump systems and district heating and 
cooling systems have created a class of problems to search for the best combina­
tion according to a set of objectives. 

A five-year JSPS research project titled as "Distributed Autonomous Urban En­
ergy Systems for Mitigating Environmental Impact" was carried out in which the 
integrated energy service system was explored in detail [1][2]. A number of 
mathematical programming models have been developed during the course of the 
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project. This paper describes some of these models and some findings from the 
project will be shown. 

2 Optimization Problems in Integrated Energy Service 
System 

In the concept of integrated energy service system, a desirable energy supply 
system including thermal and electric energy delivery networks is searched for a 
small specific area (e.g., 2km by 2km). Under these circumstances, the following 
hierarchical optimization approach has been adopted. 

r<::==== Target Area (e.g. 2km X 2km) ~ i 
Energy Supply by ; Individual Energy 
CHP (DHC) Plant l Systems 

¢:::::1! c::::> 
Apartment ; 

; 
Detached Horse 

Fig. 1 An image of integrated energy service system 

The first problem is to optimize energy systems as a whole for the specific area. 
The major aim is to look for the best combination of various types of energy sys­
tems according to the specific objectives such as C02 emission from the area, 
primary energy consumption in the area and cost. C02 emission versus cost and 
also primary energy consumption versus cost are two major conflicting pairs of 
objectives that should be explored by energy system planners for the area. An im­
portant decision output at the end of this optimization is the scale of the area cov­
ered by a DHC (District Heating and Cooling) system. 

The second problem is an optimization with respect to the DHC system itself. 
The optimization is carried out over the capacities of each apparatus in the co­
generation plant as well as over network configuration (routing). Here the blocks 
that are to be connected to the DHC system are predetermined, for example, by the 
first optimization model above. 

The third problem is to optimize electric energy delivery network. In the inte­
grated energy service system, a completely new concept of electric distribution 
system referred to as FRIENDS (Flexible, Reliable and Intelligent Electric eNergy 
Delivery System) proposed by Hasegawa and Nara[3] is taken into account. 
FRIENDS assumes electric power delivery service differentiated by power quality 
and for this purpose the system includes a number of special facilities called Qual-
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ity Control Center (QCC). QCC's are connected to each other by high voltage 
(20kV) distribution line. Customers will be connected to a QCC through low volt­
age distribution line. On the low voltage side of the QCC, the quality of power 
will be controlled according to the level of service required. Thus a number of op­
timization problems will arise that are related to l) the size of QCC, 2) the loca­
tion ofQCC's, and 3) the distribution network routing. 

3 Energy System Optimization for Specific Area 

Here the first optimization problem is described in some detail. More concrete 
description is given in [4]. 

3.1 Optimization problem 

Description of energy systems would be quite complex even for a small spe­
cific area because it involves so many factors that must be taken into account. The 
approach taken here is summarized as follows: 

I) The specific area is represented by a number of blocks surrounded by roads 
and streets. 

2) Urban facilities are represented for each block by floor areas for a number of 
representative buildings category such as office, hotels, retail stores, etc. 

3) Energy systems are expressed by a number of alternatives (the structure of 
each alternative is fixed and is not the object of optimization) for each category of 
buildings. 

4) Energy demand is given for each category of buildings in terms of hourly 
end-use energy demand (space heating, cooling, heated water supply, cooking, 
etc.) corresponding to a number of representative days. 

5) District heating and cooling (DHC) system is among the energy system al­
ternatives. The decision whether DHC is introduced or not is based on blocks, i.e., 
each block will determined whether it is to be connected to the DHC thermal en­
ergy delivery network. Once a block decides to be connected to the DHC, then 
every building in the block is supposed to be connected to the DHC network. 

6) The optimization over thermal delivery network is based on a simplified as­
sumption that a block is directly connected to the DHC plant by a straight line. 

7) The configuration of the DHC co-generation plant is fixed and optimization 
is carried out only over operational strategies. Energy balance equations and limits 
on operational variables are the major constraints. 

8) The major decision variables for optimization are i) the share of energy sys­
tem alternatives in terms of floor area and ii) the 0-1 decision variables that repre­
sent whether or not a block is connected to the DHC network. 

9) Objectives explicitly considered in the model are the cost (fixed and variable 
costs), C02 emission and primary energy consumption in the specific area. The 
multi-objective optimization problem is solved by either weighting method ore-
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constraints method. A reference scenario is pre -determined and the set of non­
inferior solutions (tradeoff curves) are examined by comparing them with the ref­
erence. The information of the tradeoff curves and associated energy system 
shares is the major outputs of the developed model. 

3.2 Issues relevant to optimization 

The developed model can be used for various purposes. 
I) Tradeoff analysis: The major purpose of the use of the developed model is to 

analyze the tradeoff between the cost and C02 emission, or between the cost and 
primary energy consumption. Figs.2-4 illustrate an example of the analysis. Fig.2 
is the tradeoff curve and the variation of energy system configuration in residential 
sector according to the level of C02 reduction rate and Fig.3 is the same for the 
case of primary energy reduction rate. Fig.4 is an image of the specific area under 
investigation. It was found that the set of Pareto optimal solutions and the associ­
ated energy system configurations are different each other. The former case the 
variation is from electrification system to fuel cell and then to solar energy utiliza­
tion system, whereas the latter case the DHC system plays an important role. 
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Fig.4 Image of the specific area under study 

2) Break even cost analysis for new technologies: There are a number of tech­
nologies that are energy efficient but still expensive such as fuel cells, micro GT 
(Gas Turbine), photovoltaic generation, high COP (Coefficient of Performance) 
heat pump, solar water heater, wind turbine, etc. The developed model can be used 
to determine the level of cost that allows a technology to be introduced in the set 
of non-inferior solutions. 

4 Optimization of DHC System[S] 

The configuration of the co-generation plant under consideration is shown in 
Fig.S. This is a gas turbine (GT) co-generation system in which the heat (steam) 
extracted from GT is used for producing cold water by an absorption refrigerator 
(RS). If the cold water is insufficient then electric turbo refrigerator (RE) is used 
to produce required amount of cold water. During wintertime, the heat from GT is 
used for space heating purposes. Electricity can either be drawn from the utility 
grid or injected back to the grid. The decision variables in this plant is the capacity 
of GT in terms of electricity output and thermal output, RS, RE, pump, heat ex­
changer (HEX) and auxiliary gas boiler (GB). 

Fig.6 illustrates the optimization of thermal energy delivery network routes. 
Here it is assumed that the heat demand is concentrated at the geometrical center 
of gravity for each block and the thermal energy is delivered only to one of the 
nodal point for each block. The possible routes are thus predetermined along the 
streets and roads ofblocks. A 0-1 decision variable is allocated to each of the can­
didate routes expressing whether a pipe should be constructed along the route or 
not. Constraints are energy balance at each node and limit on thermal transfer for 
each route. Thermal loss and pressure loss are also taken into account. The cost 
includes plant equipment, pipes, utility demand and energy. C02 emission and 
primary energy consumption can be incorporated. 
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Electricity 
reversed 

Electricity 
demand 

Fig.5 Configuration of cogeneration plant in DHC 

D Area where heat is supplied 
by cogeneration system 

D Area where heat is supplied 
independently 

• Cogeneration system 
o Candidate for node 
o Node 

-- Candidate for conduit 
--Conduit 
- Heat supply to area 

Fig.6 Concept of thermal energy network optimization 

The resulting optimization problem is a multi-objective mixed integer program­
ming problem. The size ofthe problem depends on the scale of the DHC area. The 
typical size of a block is about 80 meters by 80 meters, therefore if the DHC area 
is l km2 then the number of 0.1 variables will become the order of l 00. More­
over, the explicit accounts for thermal and pressure loss makes the problem quite 
difficult to solve. A decomposition technique is used for solution, but it takes 
sometimes more than several minutes on a modern fast computer, and tradeoff 
curves are not easy to obtain. Fig. 7 is an example of optimized thermal network. 

5 Optimization of Electric Power Distribution Network[6] 

Once the DHC area, the size of the DHC plant and the optimal energy system 
configuration are determined, then electricity demand for each block is completely 
determined. Under this circumstance, it is possible to consider optimization prob­
lem for electricity delivery network. Optimization problems here are twofold. One 
is the QCC allocation problem and the other is high voltage distribution network 
design. 

The objective of allocating QCC's can be considered in a number of different 
ways. The approach here uses an evaluation index in which the volume of copper 
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Fig. 7 Example of optimized thermal network 

required between each QCC and its customers. Voronoi diagram[6] is used to 
generate initial allocation of the QCC's and then the allocation is modified to 
minimize the volume of cupper of low voltage distribution line. Different <p­
proach may be to determine the location so as to equalize the size of QCC's. 

Now the second problem is how to connect each QCC by high voltage distribu­
tion lines. Here non-linearity comes in because the circuit equations describing 
electric power flows for each possible line are non-linear. Any QCC can be 
equipped with generators and energy storage apparatus such as batteries, so these 
factors must be taken into consideration as well. Also interruption of electric 
power must be under prescribed value. The objective function here is taken to be 
the minimization of distributed generation cost, distribution line construction cost 
and the loss in the distribution lines. The resulting programming problem is a large 
scale mixed integer non-linear problem. Conventional approach is not feasible and 
some heuristic approach must be employed. Here tabu search procedure is incor­
porated and an optimized solution was found at the expense of several hours of 
calculation time. Either a better formulation or a better solution procedure is 
needed and it remains as one of the future research topics. Fig.8 is an example of 
the results of optimization on QCC location and high voltage distribution network. 

6 Concluding Remarks 

Optimization problems for urban energy planning appeared in the JSPS e­
search project have been described. Some conclusions are as follows: 

I) Some of them are multi-objective and tradeoffs among C02 emission, pri­
mary energy consumption and cost have been discussed. 

2) Many problems have been formulated as mixed integer programs: Solution 
time for large-scale problems is still large. 
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3) Application to real assessment suggests the importance of real data and also 
the necessity of computer supported planning systems. 
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Abstract 

Since Kuhn and Tucker (1951) originally proposed the concept of proper noninfe­
rior solution solving nonlinear programming problems and it was later modified 
by Geoffrion (1967), Yu (1973) further introduce compromise solution method to 
cope with multicriteria decision-making problems. In addition, Chames (1955) 
presented goal programming method, and Bellman and Zadeh (1970) proposed the 
concepts of decision-making in fuzzy environment, many distinguished work 
guide person study in this field. This paper review some methods concerning basic 
mathematical concepts of models applied on multiple objective decision making 
problem including fuzzy multiobjective linear programming (FMOLP), fuzzy goal 
programming (FGP), two-phase method, achievement function, data envelopment 
analysis(DEA), and De Novo Programming. 

1. Introduction 

Since Kuhn and Tucker (1951) published multiple objectives using vector optimi­
zation concept, and Yu (1973) proposed compromise solution method to cope with 
multicriteria decision-making problems, there have abundant work for applica­
tions such as in transportation investment and planning, econometric and devel­
opment planning, financial planning, business conducting and investment portfolio 
selecting, land-use planning, water resource management, public policy and envi­
ronmental issues, and so on. After Bellman and Zadeh (1970) proposed the con­
cepts of decision-making in fuzzy environment, many distinguished work guide 
person study in this field such as Hwang and Yoon (1981), Zimmermann (1978), 
Sakawa ( 1983; 1984a,b ), Lee and Li ( 1993 ), and so on. 

FMOLP formulates the objectives and the constraints as fuzzy sets, character­
ized by their individual linear membership functions. The decision set is defined 
as the intersection of all fuzzy sets and the relevant hard constraints. A crisp solu­
tion generated by selecting the optimal solution, such that it has the highest degree 
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of membership in the decision set. For further discussions refer to Zimmermann 
(1978), Werners (1987), Martinson (1993). 

This paper organized as follows, the FMOLP model highlighted in Section 2. 
The FGP model presented in Section 3. The fuzzy goal and fuzzy constraint pro­
gramming model presented in Section 4. Two phase approach for solving FMOLP 
problems illustrated in Section 5. Three models of goal programming with 
achievement function introduced in Section 6. We propose a new multiple objec­
tives programming approach to DEA in Section 7. De Novo programming method 
in multi-criteria optimal system design presents in Section 8. Finally we summa­
rize most of the methods for multiple objective decision making problems and 
point out the future direction of our research. 

Vector ---... Optimiution 
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Fig. 1 Development of Multiple Objective Decision Making 
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2. Fuzzy Multiple Objectives Linear Programming 

FMOLP problems usually has the following format: 

max z. = "I,c*ixi, k =I, 2, ... , q1 
j=l 

min wk = fckjxj' k = q, + 1, ... ' q 
j=l 

s.t. faiJx1 -5:hi' i=l,2, ... ,m1; "I,aiJx1 2hi' i=m1 +l, ... ,m2 
)=I }=I 

"I,aijx1 =hi' i=m2 +l, ... ,m; x1 20,j=l, 2, ... ,n 
)=I 

(I) 

where ckj is the j-th fuzzy coefficient of the k-th objective, iiij is the j-th fuzzy co­

efficient of the i-th constraint and E, is the fuzzy right hand side of the i-th con­
straint. Problem (I) can solve by transferring it into a crisp model shown as (2). 

max (zk)a =I (c*i)~ xi, k =I, 2, ... , q1 
)=I 

min (wk)a=I(c*)!xi,k=q 1 +1, ... ,q 
)=1 

s.t. I (au)! xis (b,)~, i =I, 2, ... , m1, m 2 + 1, ... , m 
J=l 

I<au)~xi?.(b,)~. i=m,+l, ... ,m2 ; xi?.O,j=l, 2, ... ,n 
I= I 

(2) 

where (c*i)~ and (c*i)~ , (aij)~ and (aij)~ and (b,)~ and (b,)~ are upper and lower 

bound of fuzzy number ckj, iiij and E,, respectively, by taking a -level cut. Prob­

lem (2) can be solved by fuzzy algorithm interactively. For details, see 
Zimmermann (1978), Lee and Li (1993), Sakawa (1993,1995), Shibano et al. 
(1996), Shih et al. (1996), Ida and Gen (1997), Shih and Lee (1999) etc. 

3. Fuzzy Goal Programming 

In most FGP problems can mathematically be represented as: 
max Lft (x),];(x),- · ·J* (x)] 

s.t. Axsb; x?.:O 
(3) 

where x, b are vector of variables and right hand side (Yu 1973; Lai et al., 1994) 
defined the membership function of fuzzy goal as follows: 

1
1, J;(x) > J;'(x) 

J.l (x)= 1- J;'(x)-J;(x) •-(x)s •.(x)s ''(x) 
•· J;'(x)- J;-(x)' J; J; J; 

0, J;(x) < J;-(x) 

(4) 
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where J;'(x) and ;;-(x) represent the positive ideal solution and negative ideal so­

lution, respectively. We can transfer (3) to A expression method as follows: 
max A 

X 

s.t. A,.:; J;.(x)- ;;-(x), i = l, ... ,k 
J; (x)- ;;- (x) 

Ax:'> b; x ~ 0 

We also can employ max-min method to transfer (3) as follows: 
maxmin A 

s.t. Ax:'>b 

x~O 

4. Fuzzy Goal and Fuzzy Constraint Programming 

(5) 

(6) 

The fuzzy goal and fuzzy constraint programming problems can be represented as: 
max Li;(x),j;(x),···.Jk(x)] 

s.t. Ax:'>b (7) 
x~O 

where x is the vector of variables and b is vector of fuzzy right hand side. First, 
we define the membership function offuzzy goal as follows: 

(X) = 1- ;; (x) J;(x) .-( ) < '( ) < r'( ) 1
1, • _ J;(x) > J;' (x) 

Jlg, J;'(x)- ;;-(x)' J; X -J; X -J; X 

0, J;(x) < ;;-(x) 

1
1, (Ax)j<bj 

(Ax).-b. 
Jlc(x)= 1- 1 1 , bj<:;,(Ax)j<:;,bj+pj 

' pj 

0, (Ax)j>bj+pj 

In this case, we can transfer (7) to A expression method as follows: 
max A 

s.t. A5,1- J;(x)-J;-(x) i=12 ... k 
J;'(x)- ;;-(x)' ' ' ' 

_ (Ax)j-bj ._ . > A5,1 , j-1,2, ... ,m, x_O 
pj 

We also can employ max-min method to transfer (4) as follows: 
maxmin A 

(8) 

(9) 

(10) 

i,j (11) 
s.t. x~ 0 
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5. Two Phase Approach for Solving FMOLP Problem 

Usually there are two or more goals in FMOLP problems, here we illustrate two 
phase approach for solving the following mathematical programming: 

max rA<c,,x).h<c2,x),···,.ft, <ck, ,x)J 

m}n rh,+,(ck,wx),.ft,+2(ck,+2•x),···,.ft<ck,x)] 

sJ. Axfl b; x~O 

where "ft " represents binary relation and defined as follows: 
{fl}={>}v{~}v{::s;}v{<}v{=}, "v "means "or". 
First, we consider crisp MOLP problems as following programming: 

max rA<c\~ ,x),h<c~ ,x),·· ·.h, (c~a ,x)J 
- -L - -L - -L 

min Lft,+1(Ck,+I,a ,x),ft,+2(Ck,+2,a ,x),- ··,fk(C~<n ,x)] 

sJ. (A); X::::; (b)~ 

(A)~x~(b); 

x~O. xeXa 

(12) 

(13) 

Zimmermann (1978) indicated that two important relation between a and p : 
(1) Optimal level of a and p , that is a= p ; 
(2) Having trade-off relation between a and p . 

Then the mathematical programming (13) become as follows: 
max p 

X 

sJ. P ::::; J.lg,_, (x) 

p ~ Jlg,,..,, (x) 

xeXa 

where 

( ) = J;(max)(C,~,x)- J;(-.p. ·=1 2 k 
J.lgl(mn) X I"* _ 1"- 'l ' , ... , 1 

J i(max'p. Ji(max'p. 

(x) = J;(minp.- J;<•'•>(c,; ,x) i = k +I k + 2 ... k 
Jlg,(lnBJ 1"- _I"* ' 1 ' I ' ' Ji(min'p. J i(min'p. 

(14) 

Furthermore, using iteration procedure to find the optimal solution, when 
a= p , then stop. That is, only to find A. in second phase, such that: A.= min{a,p} 

Lee and Li ( 1993) proposed algorithm for this problems as follows: 
Step 1. Setting tolerable error t , step width e and initial a -cut (a = 1.0 }, itera­

tive frequency t = l; 
Step 2. Putting a =a -IB , solve c-LP problem, then obtained p and x; 
Step 3. If Ia- p l::s;t, let A.= min{a,p}, go to step 4; otherwise, go back step 2. If 

width e is too large, let e = e I 2 and t = l, go back step 2; 

Step 4. Obtained A.,a, p and x; end. 



70 Gwo-Hshiung Tzeng 

Therefore, we can solve c-LP2 problems as above two phases algorithm. More­
over, Ida and Gen (1997) proposed following programming to solve this problems: 

l k 

max If =-LP, 
k i=l 

A <A < f.(max)(C,~ ,X)- /,(max)« · = l 2 k s.t. ..., _ P; _ • _ , 1 , , ... , 1 

f.(max)a. - f.(max)a. (15) 

A<A <f.(mm)a-J;(nin)(C(:,_,x) "=k+lk+2 k 
P - t-'; - - • 'l l ' I , .•. , 

f.(mm)a. - f.(mm)a. 

6. Goal Programming with Achievement Functions 

Goal programming (GP) is an analytical approach devised to address decision­
making problems where targets have been assigned to all the attributes and where 
the decision-maker is interested in minimizing the non-achievement of the corre­
sponding goals (Romero, 200 I). 

Initially conceived as an application of single objective linear programming by 
Charnes and Cooper (1955, 1961), goal programming gained popularity in the 
1960s and 70s from the works of ljiri (1965), Lee (1972), and Ignizio (1976). A 
key element of a GP model is the achievement function that represents a mathe­
matical expression of the unwanted deviation variables. Each type of achievement 
function leads to a different GP variant. Tamiz and others (1995) show that around 
65% of GP applications reported use lexicographic achievement functions, 21% 
weighted achievement functions and the rest other types of achievement functions, 
such as a MINMAX structure in which the maximum deviation is minimized. 

The weighted achievement model lists the unwanted deviation variables, each 
weighted according to importance, the progmmming shown as (Ignizio 1976): 

Min L(a,d,- + P,d,+) 

sJ. f(x)+d,--d,+=g1 (16) 
d,-·d,+=O 

d,- ~ 0, d,+ ~ 0 

where 
a,= w,jk, if d,- is unwanted, otherwise a,= 0; 

p, = w,jk, if d,+ is unwanted, otherwise p, = 0. 

The pammeters w, and k1 are the weights reflecting preferential and normaliz­

ing purposes attached to achievement of the i-th goal. 
The second model, lexicogmphy achievement model, is made up of an ordered 

vector whose dimension coincides with the Q number of priority levels established 
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in the model. Each component in this vector represents the unwanted deviation 
variables of the goals placed in the corresponding priority level (Ignizio 197 6). 

Lex Min a= [L(a,d,- + P,d,+ ), ... , L(a,d,- + P,d,• ), ... , L (a,d,- + P,d,• )] 
ieh1 ieh,.. ieJro 

s.t. f,(x)+d,--d,+=g1 ie{l, ... ,q} ieh, re{l, ... ,Q} (17) 

X E F' d,- ~ 0, d,+ ~ 0 

where h, represents the index set of goals placed in the r-th priority level. Lexi­

cographic achievement functions imply a non-compensatory structure of prefer­
ences. In other words, there are no finite trade-otis among goals placed in differ­
ent priority levels (Romero 1991 ). 

The third model, minmax achievement model, seeks for the minimization of the 
maximum deviation from any single goal. If we represent by D this maximum de­
viation, the mathematical programming of a LGP model is the following (Flavell 
1976): 

Min D 
X 

s.t. a.,d,- + Jl,d,• s D 
f,(x) + d,-- d,• = g,, i e {l, ... ,q} 

X E F. d,- ;:: 0, d,· ;:: 0 

(18) 

This model implies the optimization of a utility function where the maximum 
deviation is minimized. It provides the most balanced solution among the 
achievement of different goals. Thus is, it is the solution of maximum equity 
among the achievement of the different goals(Tamiz and others 1998). 

7. Multiple Objective Programming with DEA 

Data Envelopment Analysis (DEA) was developed by Charnes, et al. (1978)(CCR 
model) and extended by Banker et al. (l984)(BCC model), is a non-parametric 
programming method for estimating production frontiers and evaluating the rela­
tive efficiency of decision making units (DMUs), with multiple outputs and multi­
ple inputs. In CCR model, solving the relative efficiency of DMU k as follows: 

Max h, = i:,u1y1, 
j=l 

s.t. f v,x,, = 1, fork= l, ... ,n 
i=l 

i:,u1y1,-f v,x,, s 0, fork= l, ... ,n 
J::sl i=l 

v1 ~8 >0, i=l, ... ,r; u1 ~6 >0, j=l, ... ,s 

(19) 

The objective here is to find the largest sum of weighted outputs of DMU k 

while keeping the sum of its weighted inputs at unit value and forcing the ratio of 
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the sum of weighted outputs to the sum of weighted inputs for any DMU to be less 
than one. Transferring the problem to dual program can then find a minimal value 
for an intensity factor e k that indicates the potential of a proportional reduction in 

all the inputs of DMU k • 

In BCC model adds another restriction to the envelopment requirements. It re­
quires that the reference point on the production function for DMUk will be a 

convex combination of the observed efficient DMUs. The primal formulation for 
DMU k is written as: 

Max hk = :tujyjk -uk 
j=l 

sJ. t v1x10 =I 
1=1 

:tujyjk-t V1X1k- uk ~ 0, fork= I, ... ,n 
j=l i=l 

v1 ~E >O,i=I, ... ,r 

uj ~E >O,j=I, ... ,s 

(20) 

The corresponding primal has a slightly different objective from (19) 
Furthermore, considering in CCR model, the efficiency ratio of each DMU is 

calculated by its own best multipliers, not by the common multipliers for all 
DMUs. Thus, this model often results in too many DMUs may be identified as ef­
ficient. We applied the concept of multiple objectives programming to CCR model 
to find the common multipliers that could cause the efficiency ratio for all DMU 
as large as possible. We consider the efficiency ratio of all DMUs rather than k-th 
DMUk in CCR model and then establish the following model: 

l-~U,·y,1 _ ~U,·y,2 ~U,·y,.l 
Max zt- m ,z2- m , ••• ,zn ~m --

~)'; ·X11 LV. ·X12 LV. ·x,. 
i=l i=l i==I 

s.t. 
:tu, ·yrj 
r=l ::;; l, j = l, ... ,n 

fV;·xij 

(21) 

i=l 

U, ~ E > 0, r = l, ... ,s 

V, ~E >O,i=l, ... ,m 

We further transfer (19) to one objective programming using membership func­
tion with fuzzy multiple objectives linear programming approach (Sakawa & Yu­
mine 1983; Sakawa & Yano 1985; Ohta & Yamaguchi 1995), we then conduct the 
common multipliers to calculate the efficiency achievement for all DMUs, the de­
tail procedure can refer to Chiang & Tzeng(2000). 
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8. De Novo Programming Method in MODM 

Dealing with a MODM problem, we usually confront a situation that is almost im­
possible to optimize all criteria in a given system. This property is so-called trade­
o.ffs, which means that one cannot increase the levels of satisfaction for a criterion 
without decreasing that for another criterion. Zeleny ( 1981, 1986) developed a De 
Novo programming for designing optimal system by reshaping the feasible set. He 
suggested that trade-otis are properties of inadequately designed system and thus 
can be eliminated through designing better, preferably optimal system. Zeleny 
(1995) proposed the concept of optimal portfolio of resources which is design of 
system resources in the sense of integration, so that there are no trade-otis in a 
new designed system. 

For example, when the budget of designing a new optimal system is higher than 
total avail budget, Zeleny (1995) suggested an optimum-path ratio to contract the 
budget to available budget along the optimal path. Along this line, Shi (1995) dis­
cussed different budgets from different point of views and define six type opti­
mum-path ratios to find alternatives for optimal system design. 

However, since the ideal point used in the De Novo programming is not the 
ideal point in the ordinary system, the budget for the redesigned system is always 
larger than the total available budget. Consequently, no matter what optimum-path 
ratio is used, it only can provide a certain path to locate a solution in the decision 
space of the new system. 

Assuming a MODM problem can be described as follows (Yu, 1985) 
Max Cx 

s.t. Ax:s;b 

x~O 

(22) 

where C=Cqx• and A=Amxn , b=(bw··•bmt ERm, and x=(xw .. ,xj' ... ,x.r ER". 

Let the kth row ofC be denoted by ct =(c:, ... ,cJ, ... c!)ER", so that ctx,k=l, ... ,q, 

is the kth criteria or objective function. 

Assume that X = {X E R"IAx :-;; b, b ~ o} ' the ideal point of (22) is 

f'=(ft', ... .J;r, where .t;,'=sup{CkxjxEX} for k=l, ... ,q. If there exists a 

x" =(x;, ... ,x:f ER" , such that ex' =(C'x', ... ,cqx'f =(!.;, ... ,~·r , then the x' 

called the ideal solution. 
Because the components of b in (22) are determined in advance, an ideal point 

usually is not attainable for the properties of trade-otis among multiple criteria. 
When the purpose is to design an optimal system rather than optimize a given sys­
tem, it is of interest to consider following problem: 

Max Cx 

s.t. Vx :s; B (23) 

x~O 
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Then, we find the Min Vx for achieving ideal point, i.e., 

MinVx 

s.t. Ckx~fk*, k=1, ... ,q 

where V=pA=(v;, ... ,V.)ER", p=(PI'"··•Pm)ERm and BER present the unit 

prices of resources and total available budget respectively. Formulation (23) im­
plies that given the unit prices of resources and total available budget allocate the 
budget, so that the resulting portfolio of resources maximizes the values of the ob­
jective functions. There are three methods of De Novo programming for locating a 
solution while dealing with multi-criteria optimal system design problem: A syn­
thetic-optimal budget, meta-optimal budget, and flexible-constraint meta-optimal 
budget. For further discussion can refer to Shi (1995). 

9. Summary 

We have briefly sketched seven important topics of MODM problems, Being 
space limit, it is difficult to list and discuss many other methods adopted on 
MODM programming such as fuzzy regression analysis, multiobjective possibilis­
tic/necessity programming, intemctive programming methods, two-level/multi­
level/multi-stage multiobjective programming, Habitual Domain, Genetic Algo­
rithms and Evolutionary Computing on MODM. We would like to introduce these 
methods and its applications in near future. 
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Abstract 

There exists a behavior mechanism which continuously allocates our 
attention to various events. Broadly classified, there are seven goals in our life: 
survival and security, perpetuation of the species, feelings of self-importance, 
social approval, sensuous gratification, cognitive consistency and curiosity, and 
self-actualization. For each goal, there is an ideal value or equilibriumpoint to 
pursue and/or maintain. If there is a significant discrepancy of current status from 
the ideal or equilibrium point, a charge (mental pressure) will be produced. At any 
moment, the totality of all charges created by all goals from all events is called 
"the charge structure" at that moment. Our mind will try to allocate the attention 
and resources to reduce the charge to a minimum level. The goals that catch our 
attention are awakened; otherwise unawakened. The priority for the goals to get 
our attention follows a dynamic scheme of multiple goals optimization. In this 
paper, we shall describe and illustrate the dynamic multiple goals optimization, a 
basic framework of behavior mechanism. Applications to vast decision making 
problems, especially the challenging ones, will also be mentioned. The mechanism 
will open up our minds as to make decisions more effectively. 
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1. Introduction 

Human behaviors are undoubtedly dynamic, evolving, interactive and 
adaptive processes. These complex processes, which evolve dynamic changes of 
multiple goals, have a common denominator resulting from a common behavior 
mechanism. 

In order to illustrate this dynamic mechanism, let us consider the following 
example. 

Example: First Dating with Motorcycle 
John, a college man in Taiwan (where motorcycles are common vehicles), 

was pretty excited to have his first date at 6:30 PM with his girl friend. At 6 PM, 
his fantasy of having good time (an important goal), including his girl friend 
holding him from the back seat, really made him restless. When he arrived at the 
parking lot for his motorcycle, he was shocked that his motorcycle was locked and 
he could not unlock it. He called a "taxi" to go to their dating place. When he 
arrived at the destination he could not find his wallet. The taxi driver was very 
upset and shouted menacingly, "Shame on you! Young man, there is no free 
lunch ... ". John was threatened. How to get out of this situation became his 
primary concern. Fortunately, he could use cellular phone to call his girl friend to 
help. John felt extremely embarrassed and his first date was not as excited as he 
had expected, because he constantly worried about losing his wallet and ID cards 
therein. After the "date", John went to the parking lot. Surprisingly, he found his 
motorcycle unlocked and his wallet was still in the compartment under the 
motorcycle's seat. Because most motorcycle looks the same, John rationalized that 
his motorcycle might be locked by mistake by the owner of the motorcycle parked 
next to his. In any event, what a relief to him! 

The above example illustrated the dynamic changes of our goals and 
behaviors. Indeed our behavior and multi-goal optimization are dynamic, 
interactive and changing with time and situations. The process can be depicted as 
in Figure I. The Figure is self-explanatory. The reader can use the above example 
and imagination to understand it. 

In the next four sections, based on [1-4] we will discuss goal setting and 
state evaluation, charge structure and attention allocation, least resistance principle 
and external information input sequentially. Section 6 is for a conclusion. 
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2. Goal Setting and State Evaluation 
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Each human being has a set of goals to reach and maintain. Based on 
psychology literature, we may summarize these possible goals as listed below: 

(1) Survival and Security: physiological health (correct blood pressure, body 
temperature and balance of biochemical states); right level and quality of 
air, water, fuod, heat, clothes, shelter and mobility; safety; acquisition of 
money and other economic goods; 

(2) Perpetuation of the Species: sexual activities; giving birth to the next 
generation; family love; health and welfare; 

(3) Feelings of Self:.Importance: self-respect and self-esteem; esteem and 
respect from others; power and dominance; recognition and prestige; 
achievement; creativity; superiority; accumulation of money and wealth; 
giving and accepting sympathy and protectiveness; 

(4) Social Approval: esteem and respect rom others; friendship; affiliation 
with (desired) groups; conformity with group ideology, beliefs, attitudes 
and behaviors; giving and accepting sympathy and protectiveness; 

(5) Sensuous Gratification: sexual; visual; auditory; smell; taste; tactile; 
(6) Cognithe Consistency and Curiosity: consistency in thinking and 

opinions; exploring and acquiring knowledge, truth, beauty and religion; 
(7) Self-Actualization: ability to accept and depend on the self, to cease from 

identifying with others, to rely on one's own standard, to aspire to the 
ego-ideal and to detach oneself from social demands and customs when 
desirable. 

The following is a summary of human behavior, called goal setting and state 
evaluation hypothesis: 

Each one of us has a set of goal functions and for each goal 
function we have an ideal state or equilibrium point to reach 
and maintain (goal setting). We continuously monitor, 
consciously or subconsciously, where we are relative to the 
ideal state or equilibrium point (state evaluation). Goal 
setting and state evaluation are dynamic, interactive and are 
subject to physiological forces, self-suggestion, external 
information forces, current data bank (memory) and 
information processing capacity. 

This hypothesis implies the following points: 

(I) There exists a set of goal functions in our internal information processing 
which are used to measure the many dimensional aspects of life. A 
probable set is given as above. Goal functions can be mutually associated, 
interdependent and interrelated. 

(2) The goal setting and state evaluation of each goal function are dynamic, 
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interactive, and subject to physiological forces, self-suggestion, and 
external information as well as to the current data bank (memory) and 
information processing capacity. 

(3) The influence of self-suggestion can be very pervasive and important to 
goal setting and state evaluation, and to consequential behavior and 
decisions. Because of its direct access, self-suggestion can exert its 
influence on the internal information processing. It can create new 
perceptions and goal state variables, and can cause restructuring of the 
data bases in the internal information processing center. 
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3. Charge Structures and Attention Allocation 

Let us first summarize as an important aspect of behavior mechanism as 
follows: 

Each event is related to a set of goal functions. When there is 
an unfavorable deviation of the perceived value from the ideal, 
each goal function will produce various levels of charge. The 
totality of the charges by all goal functions is called the charge 
structure and it can change dynamically. At any point in time, 
our attention will be paid to the event which has the most 
influence on our charge structure. 

The above is known as charge structure and attention allocation hypothesis. 
Note that attention allocation is based on dynamic optimization principle. This 
hypothesis embodies the following details: 

(1) Depending on the deviation of the perceived value from the ideal value, 
various levels of charge for each goal function can occur. The higher 
level is preemptive over the lower level in obtaining attention. 

(2) The collection of the charges on all goal functions created by all current 
events at one point in time is the charge structure at that moment of time. 
The charge structure is dynamic and changes (perhaps rapidly) over time. 
Note, the charge structure can be ordered according to lexicographical 
ordering to determine its level or strength. For instance, suppose that we 
have seven goals of concerns as listed above. Two charge structures are 
given as: A=(5, 2, 5, 4, 3, 2, 1) and B=(2, 3, 5, 5, 4, 2, 1, 3). We could 
reorder A and Bin monotonically decreasing order as A'=(5, 5, 4, 3, 2, 2, I) 
and B' = (5, 5, 4, 3, 3, 2, 2, I). As B' is lexicographical graphically larger 
than A', B has a higher level of charge structure than A. 

(3) Each event can involve many goal functions. Its significance on the 
charge structure is measured in terms of the extent of which its removal 
will reduce the levels of charges. Given a fixed set of events, the priority 
of attention to events at a moment in time depends on the relative 
significance of the events on the charge structure at that moment in time. 
The more intense the remaining charge after an event has been removed, 
the less its relative significance and the lowerits relative priority. 

(4) For a given set of decision problems with uncertainty, the smaller the 
decision maker's stake and the greater the decision maker's confidence in 
obtaining a satisfactory solution within the imposed time limitations, the 
less the significance of the problems on the charge structures and, 
consequently, the lower their priority for attention. 
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4. Least Resistance Principle 

In the previous section we described how attention is allotted to various 
events or decision problems according to the dictates of the charge structure. 
The event or decision problem with the most significant charge commands our 
attention at any given moment. Charge structures change quickly as events occur 
requiring attention to be redirected. 

How does our information processing capacity work once attention is 
allotted to an event? Our information processing function can be characterized by 
having two modes: (1) active problem solving or (2) avoidance justification. 
The former tries to work actively to move the perceived states closer to the ideal 
states; while the latter tries to rationalize the situations so as to lower the ideal 
states closer to the perceived states. When operating in either of these modes our 
information processing function will follow the least resistance principle as 
described below: 

To release charges, we tend to select the action which yields the 
lowest remaining charge (the remaining charge is the resistance 
to the total discharge) and this is called the least resistance 
principle. 

Note that the least resistance principle is a dynamic optimization principle. 
The following points should be noted: 

( 1) Given the charge structure and the set of alternatives at timet, the selected 
alternative for discharge will be the one that can reduce the residual 
charge to the lowest level (the least resistance principle). 

(2) The majority of daily decision problems that are often repetitive with low 
stakes and satisfactory solutions are usually readily available for 
discharge. 

(3) When the decision problem involves high stakes and/or uncertainty, active 
problem solving or avoidance justification can be activated depending on 
whether or not the decision maker has adequate confidence in finding a 
satisfactory solution in due time. Either activity can restructure the charge 
structure and may delay the decision temporarily. 

(4) When one is caught unprepared or by surprise (a decision problem 
involving high stakes and a short time frame for its solution), he/she may 
act quickly and perhaps unwisely because of time pressures and high 
levels of charges (refer to the flooded situations of Section 3.2 of[4]). 

5. Information Input 

Human beings live in a world in which continuous interaction with external 
events is unavoidable. It can even be suggested that interaction with external 
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events is essential for gaining the information and resources to attain life goals. 
This interaction with the external world stimulates our information processing 
mechanism. On the one hand, scanning the external world warns us of 
forthcoming events that will interfere with our goal attainment. On the other 
hand, external information is required to confirm or measure our perceived goal 
states. 

We have the following Information Input Hypothesis: 

Humans have innate needs to gather external information. 
Unless attention is paid, external information inputs may not be 
processed. 

6. Conclusion 

We have briefly described a behavior mechanism and showed that our daily 
decision problems and behavior are solved or based on a dynamic optimization of 
a set of goals. Charge structure, attention allocation and arriving information can 
change the priority of our goals, alternatives and our decisions. 

Fortunately, these charge structures, attention allocation and priority over 
goals can be stabilized and form habitual domains [14]. Thus many human 
behaviors can become predictable. To avoid being trapped by habitual domains. 
Let us be reminded by Maslow who said, "If the only tool you have is a hammer, 
you tend to see each problem as a nail." 

Let us also face up the challenge that real nontrivial decision problems are 
dynamic. The optimal solution is a dynamic function of the charge structure, 
attention allocation and situations of the decision makers. 

How to create charges and catch attention by changing situations and 
sending out information become an important part of forming winning strategies 
in conflicts, and in solving challenging decision problems. Being limited by space, 
the interested reader is referred to [2, 4] for further discussions. 
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Abstract. In real-world optimization problems involving multiple objectives, the 
weights of the objectives may not be specified, whereas example solutions, i.e., the 
solutions for real instances prepared by human experts, are usually available. This 
paper proposes a method for determining the objective weights by using example 
solutions as the training set so that a search algorithm can find reasonably good 
solutions for all the instances. Our proposed method generates neighborhood so­
lutions defined by the search algorithm for each example solution, and determines 
the weight settings. The method was successfully applied to a scheduling problem 
in the steel manufacturing industry. 

1 Introduction 

In real-world optimization problems, system developers often encounter a 
situation where they can not design the objective function easily. Of course 
they have the specification, but the constraints specified are so restrictive 
that most of the real-world instances can not have solutions which satisfy all 
the constraints. Thus they have to determine how much violation is allowed 
for each constraint or which constraints are more important than other con­
straints and design the objective function that takes account of the trade-off 
between each constraint and each objective. 

To determine the trade-off, the most effective method seems to be to ask 
human experts. However, this might be difficult for various reasons, e.g., the 
system developers and human experts work for different companies, and so 
on. To make matters worse, even if we can ask the human experts, they might 
not be able to evaluate the trade-off quantitatively. As a result, it takes very 
long time to develop the final systems. 

To reduce the development period, there are some clues available, the 
example solutions for real instances prepared by human experts. Thus what 
we hope to do is to extract the maximum amount of information from the 
example solutions and thus design the objective function used in our system. 
In this paper, we propose a method for determining the weight setting when 
we fix the objective function in the form of a weighted sum of the objectives, 
and apply our method to a scheduling problem in the steel manufacturing 
industry. 
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However, determining the weight setting by using example solutions has 
some difficult aspects. For example, human experts are not perfect because 
the example solutions by human experts are taken as good solutions but 
it almost cannot happen that the solutions are any of the Pareto optimal 
solution. Moreover, the evaluation criterion of human experts is not always 
consistent for all of the example solutions. 

Our approach for the problem which we focus on is based on the following 
conjecture: "If the human expert did the best to find the example solution, 
the solution is the best solution which he found." When this conjecture is 
rephrased into the terms of combinatorial optimization, "the example solution 
is a local optimal solution for the neighborhood structure which the human 
expert can find," where neighborhood structure means the search space for 
a solution. Our approach is shown in Section 2 in detail. 

We applied our method to a scheduling problem in the steel manufactur­
ing industry [1 ,2]. In this area, scheduling problems tend to be so complicated 
and involve conflicting objectives, and many scheduling tasks are still done 
by skilled human experts. Therefore, it is a challenge for multi-objective pro­
gramming to emulate the skilled experts. 

This paper has the following organization. In Section 2, we show our 
method to design the objective function (as a weighted sum of the objectives). 
In Section 3, we give the numerical experiment results by our method and 
compare the solutions obtained by some variations of our method. In Section 
4, we present our conclusions. Due to lack of the space, we omit the detailed 
explanations and describe them in the full version of this paper [3]. 

2 Our Learning Approach 

In this section, we describe our method that finds the weight settings from 
example solutions from human experts. Suppose that the objective value of 
the ith objective is fi(s) for solutions. The objective function F(s) is defined 
as 

F(s) = L wdi(s), 

where Wi is the weight for the ith objective. As mentioned before, our ap­
proach is based on the idea, "Example solutions are local optimal solutions 
for the neighborhood structure which human experts can find." 

First, we have to define the neighborhood structure of a solution which 
human experts can find. In this stage, stronger neighborhoods should not 
be used, because such neighborhoods do not seem to reflect the neighbor­
hoods whose solutions are found by human experts. For example, consider a 
scheduling problem whose solution is represented as a sequence of jobs sorted 
in the processed order. The solutions obtained by moving one subsequence to 
another position will be able to be found by human experts, but the solutions 
obtained by moving ten subsequences to other positions at a time will not. 
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Next, we generate inequalities by using the defined neighborhood struc­
ture and the example solution. Let s be the example solution and N(s) be 
the set of the neighborhood solutions of s. Then, if the example solution is 
better than the neighborhood solutions, the inequality, F(s) :S: F(s'), should 
hold for s' E N(s). However, this is not always correct because the example 
solution is not always better than the neighborhood solutions, that is, there 
may exist a solution s' which dominates solution s. It might be better if, 
as a preprocess, we change the example solution until the solution becomes 
the non-dominated solution for the defined neighborhood structure. However, 
this change may increase the inconsistency between human experts' criterion 
and the generated inequalities regarding the obtained solution because the 
changed solution is not the solution made by human experts anymore. We 
will experiment with both cases, i.e., with preprocessing and without prepro­
cessing, and compare the results. We call both the example solution without 
preprocessing and the non-dominated solution obtained by preprocessing the 
base solutions. 

Finally, we find the weight setting such that they maximize the number 
of satisfiable inequalities for the set of inequalities generated by the above 
procedure. This problem can be formalized as a minimization problem for 
MIP. Let C be a sufficiently large constant, M be the number of inequalities 
generated, and the neighborhood solution which corresponds to jth inequality 
be Sj (1 :::; j :::; M). Then this problem is formalized as 

min "2:~ 1 xj 
subject to: "LJfi(s) -fi(sj)) · Wi :S: C · Xj 

Li Wi = 100 
WiEIR+, XjE{O,l}. 

If the jth inequality is not satisfiable, it is easy to see that Xj = 1. There­
fore the objective function equals the number of inequalities which are not 
satisfiable. The second constraint means that the sum of weights is constant. 
Since the weights are just measures of relative importance, adding the equa­
tion does not sacrifice generality. This problem is known to be NP-hard [4]. 
Therefore it is hard to find the optimal solution unless P = N P. We solved 
this problem by using the IBM OSL [5] and limited the number of nodes for 
branch-and-bound to obtain a solution within a practical amount of time. 
Furthermore, to reduce the problem size (the number of inequalities), we 
delete the neighborhood solutions which are infeasible solutions (the solu­
tions with extremely large violations), or which are dominated by the base 
solution. 

We explained the basic procedure above. The basic procedure is not as­
sumed that we have a priori knowledge that some objectives are more impor­
tant than the others, but in real situation, we often have it. If so, the objective 
function is slightly modified and the procedure is also modified. Suppose that 
the objectives are divided into two sets, A and B, and the objectives in A are 
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more important than the objectives in B. Then the objective function consists 
of two parts; one consisting of the objectives in A, F1(s) = LiEA Wi ·fi(s), 
and the other consisting of the objectives in B, F2(s) = LiEB Wi ·/i(s). The 
objective function is defined as 

F(s) = C · F1 (s) + F2(s), 

where Cis a sufficiently large constant. Moreover, the procedure to find the 
weight setting is performed twice. First, the basic procedure is performed for 
the weights of objectives in A. Second, the basic procedure is performed for 
the weights of objectives in B by generating inequalities for neighborhood 
solutions whose objective values for the objectives in A are the same as the 
base solution's ones. Even if the objectives are divided into three sets or more, 
its objective function and its learning procedure are performed in the same 
way. 

3 Numerical Experiments 

In this section, we present the results obtained by applying our method to a 
scheduling problem in steel manufacturing industry. The detailed explanation 
of the scheduling problem is shown in full version of this paper [3]. 

3.1 Experimental setting 

In all there are m = 8 objectives. We tried six variations of our methods 
shown in Table 1. These methods are divided into two types for preprocessing 
((2), (4), and (6) in Table 1) or no ((1), (3), and (5)), and divided into three 
types depending on the degree of a priori knowledge. The methods (1) and 
(2) do not have any a priori knowledge. The methods (3) and ( 4) have a 
priori knowledge that the seven objectives are more important than the other 
objectives. The methods (5) and (6) have a priori knowledge that the four 
objectives are the most important, the three are the second, and the one is 
the least. 

Table 1. Six methods examined 

(1) no preprocess, no a priori knowledge. 
(2) preprocess, no a priori knowledge. 
(3) no preprocess, a priori knowledge, seven objs, one obj. 
(4) preprocess, a priori knowledge, seven objs, one obj. 
(5) no preprocess, a priori knowledge, four objs, three objs, one obj. 
(6) preprocess, a priori knowledge, four objs, three objs, one obj. 
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3.2 Result 

We found the weight settings by using the IBM OSL with limiting the number 
of nodes for branch-and-bound to 20,000 nodes and evaluated the solutions 
of the problem obtained by using the weight settings found. Since our goal 
is to find the superior solutions for every objectives, we use the sum of step 
function as the evaluation function. The evaluation function for solution s(I) 
is defined as 

m 

eval(s(I)) = L step(fi(s(I)), /i(se(I))), 
i=l 

where the step function is defined as 

step(x, y) = { ~: if X~ y 
if X> y, 

se(I) denotes the example solution for instance I, and /i(se(I)) denotes the 
ith objective value of se(I). Suppose that s(Ik) is the solution of instance h 
(1 ~ k ~ K) obtained with the weight setting W. Then the evaluation value 
for the weight setting W is defined as 

1 K 

eval(W) = K L eval(s(h)) 
k=l 

(1) 

and the evaluation value for the ith objective is defined as 

1 K 

eval(obji) = K "L:.step(fi(s(I)),/i(se(I))). 
k=l 

(2) 

This is the procedure we used for evaluating solutions. The number of 
instances used is 12. We performed each instance ten times for each weight 
setting. The average results for the solutions are shown in Fig. 1. The data 
"total" corresponds to the total evaluation value (Eq. (1)), the data "A" 
corresponds to the sum of the evaluation values for the most important four 
objectives, and the data "B" corresponds to the sum of the evaluation values 
for the second important three objectives. From Fig. 1, it is easy to see that 
preprocessing is useful. We can also see that the total evaluation value of the 
method (4) is the best. However, this does not strongly support the conclusion 
that the weight for the method (4) is the best because the superiority of the 
method (4) appears to come from the better objective values regarding the 
B. On the other hand, the A's values for the methods (5) and (6) are better 
than the ones for the method ( 4), so the B's values in the methods (5) and (6) 
contribute to the better A's values. Therefore, if a priori knowledge should be 
respected, the weight setting from the method (5) would be the best weight 
setting, otherwise the one from the method (4) would be the best one. 
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method 
Fig. 1. Evaluation values for weight settings 

4 Concluding Remarks 

(5) 
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In this paper, we discussed a method to design an objective function by 
learning from the example solutions from human experts and applied our 
method to a scheduling problem in the steel manufacturing industry. As a 
result, we were able to find the good weight settings automatically for the 
instances used for learning the weight settings. 

We offer these observations about our method. First, our method depends 
on the ability of human experts. If the example solutions from human experts 
are not good solutions or if the evaluation criterion of the human experts is 
extremely inconsistent, our method will fail. Second, our method depends 
on the objective function model. If the objective function does not include 
the necessary objectives or if the objective function includes irrelevant ob­
jectives, such an objective function will not be well fitted to the example 
solutions. Third, we verified that our weight settings performed very well for 
the instances used for learning, but not that they perform well for the other 
instances also. This will be future work. 

Finally, the problem we are attacking is very ambiguous and there might 
not exist a 100% right method, but this is a very common situation in real­
world optimization. It seems that this kind of problems should be more fo­
cused on for the practical use of optimization. 
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Abstract. Support Vector Machines are now thought as a powerful method for 
solving pattern recognition problems. In general, SVMs tend to make overlearn­
ing. In order to overcome this difficulty, the notion of soft margin is introduced. 
In this event, it is difficult to decide the weight for slack variables reflecting soft 
margin. In this paper, Soft margin method is extended to Multi Objective Linear 
Programming(MOLP). To solve MOLP, Goal Programming method is used. 

1 Principle of SVM 

SVMs are usually formulated as Quadratic Programming (QP). However it 
takes an expensive computation time to solve when the size of data is large. 
In order to overcome this difficulty, SVMs are reformulated as Linear Pro­
gramming (LP). 

We consider two given sets A and B in n-dimensional real space ~n. Set 
Yi = +1 for Xi E A, and set Yi = -1 for Xj E B. When A and B are 
not linearly separable, the original problem is considered in a feature space 
usually with a high dimension mapped by some non-linear mapping <p : x r-> 

z ( x E {original space} , z E {feature space}). Using this mapping, the 
dataset A and B are expected to be separated linearly. Thus, the separating 
hyperplane can be expressed 1 as 

(1) 

and we can lead the Generalized Support Vector Machines [4): 

m 

[GSVM) Minimize llwllq + cL:ei 
i=1 (2) 

s.t. (i = 1, ... , m), 

where Zi = <p (xi), m is the number of data, C is a weight parameter for 
E {i, and {i is a slack variable which reflects the distance between separation 

1 When A and B are linearly separable in the dataset, the separating hyperplane 
can be expressed as w T x + b = 0. 
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Fig. 1. Example to categorize circles and squares. 

hyperplane and misclassified data. Using £1-norm or £00-norm to measure 
the distance, the problem (2) becomes LP. In this paper, for instance, we use 
£00-norm which yields the following formulation: 

m 

[LPSVM] Minimize llwlll + cr:~i 
i=l (3) 

s.t. (i = 1, ... , m) 

By the way, the separating hyperplane (1) can be expressed by 
f(x) = I:::1 YiCJ.iK (xi,x) + b = 0, where K(·, ·)is a kernel function which 
satisfies Mercer's theorem and defined as K (xi, Xj) = z[ Zj = cp (xi) T cp (xi) 
[4]. In this paper, Gauss function K (x, y) = exp { -llx- YIIVr2 } is used as 
a kernel function. It is important to select an appropriate value of r. From 
our experience, the formula r = dmax/ y'nm has been observed to give a good 
estimate. Here, n is the dimension of dataset, m is the number of data, and 
dmax is the maximum distance between the data. 

2 Multi Objective Programming formulation 

2.1 Maximizing the surplus 

Let us consider the example to categorize circles and squares shown in Fig.1 
(a). There are 12 circle data and 6 square data. Define the point X as (0.5125, 
0.7625) indicated as a black square in Fig.1 (a). The classification results for 
Fig.1 (a) using formulation (3) is given in Fig.2. Fig.2 (h) is the result by 
the hard margin method which gives a perfect separation. It can be seen in 
this example that even though the point X is an outlier, a perfect separation 
is attained by the hard margin method. On the other hand, the soft margin 
method (3) which allows some misclassified data can discard the point X as 
an outlier by controlling the weight of slack variable C. However, it is difficult 
to select an appropriate value of C. When C is small, soft margin method 
provides a separating hyperplane which takes into account the influence of 
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noise, shown in Fig.2 (a)-( d). As the value of C increases, a slight change of 
C brings a big change of separating hyperplanes shown in Fig.2 (d)-(e). This 
phenomenon implies that soft margin method is sensitive to the value C. To 
overcome this problem, Multi Objective Programming(MOP) is introduced. 

Surplus variable 11 is introduced in addition to slack variable~- Surplus 
variable reflects the distance between separating hyperplane and correct data 
recognized correctly. In order to improve discrimination ability, 11 should be 
maximized. And in order to control the noise effect, ~ should be minimized. 
Now the following problem is introduced: 

[MOPSVM] Minimize 
i=l 
m 

Maximize (4) 

s.t. Yi(wTzi+b)=1-~i+rli 
~;:::: 0, 11;:::: 0 (i = 1, ... , m) 

One method for solving MOPSVM is Compromise Programming. Intro­
ducing the ideal points C and 'f/*, the compromise programming can be ex­
pressed as follows [1] [2] [7]: 

[MOPSVM-CP] Minimize 

s.t. Yi ( W T Zi + b) = 1 - ~i + 'f/i 
c - E~1 ~i + dt - dz = o 
"'* - E~1 'f/i + d~ - d;J = o 

dt,dz,d~,d;;;:::: o 
~;:::: 0, 11;:::: 0 (i = 1, ... , m) 

(5) 

Fig.3 is the result by MOPSVM-CP for the example given in Fig.1 (a). The 
discrimination boundaries are similarly horizontal separating hyperplanes. 
However, the areaS for the category B (of square data) with fewer data be­
comes too small depending on the ideal points. This implies that the method 
may have a poor classification for the category B with fewer number of data. 
Moreover, in Fig.3, these horizontal separating hyperplanes treat the isolated 
data X as an outlier. However, if several new square data appear around the 
point X as the time passes (e.g., Fig.1 (b)), the point X should be considered 
as an important data rather than an outlier. 

2.2 Minimizing the surplus 

The discriminant boundary provided by MOPSVM-CP is not change sud­
denly depending on the ideal points, however, the area S becomes too small. 
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(a) C = 1.0 (b) c = 2.5 (c) C = 5.0 

(e) C = 5.9 (f) c = 7.5 (g) c = 10.0 

Fig. 2. The result of LPSVM for the example in Fig.l (a). 
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Fig. 3. The result of MOPSVM-CP for the example in Fig. I (a). 

In addition, the point X, which may be important data in the future, is 
considered as an outlier. In order to overcome the difficulties stated above, 
L:7:1 'f/i is minimized, and the areaS becomes larger than the one obtained by 
MOPSVM-CP. Now the following mathematical programming is introduced: 

m m 

[MOPSVM-pt] Minimize llwll1 + C1 L~i + C2 2::: 'f/i 
i=l i=l 

(6) 
s.t. Yi(wTzi+b)=l-~i+'f/i 

~ ;:::: 0, 'T1 ;:::: 0 (i = 1, ... , m) 

Fig.4 is the result by MOPSVM-pt for the example given in Fig.l (a). 
This figure shows that MOPSVM-pt makes various separating hyperplanes 
depend on the parameters C1 and C2 . This implies that MOPSVM-pt is 
able to provide the discriminant boundary depending on the environment 
by controlling C1 and C2, e.g., in Fig.4, MOPSVM-pt considers the isolated 
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c1 = 1.0 c1 = s.o c1 = w.o 

Fig. 4. The result of MOPSVM-pt for the example in Fig.l (a). 

point X as important data when C1 = 10.0, C2 = 10.0, and it considers X 
as an outlier when cl = 1.0, c2 = 1.0. 

3 Application to Stock Investment problem 

In this section, SVM is applied to incremental learning. Incremental learning 
updates the rule when the knowledge is added. The environment in stock 
investment tends to change suddenly, therefore incremental learning is ex­
pected to yield good results under this situation. The dataset consists of the 
monthly stock price of some companies from January 1985 to November 1994. 
It has a seven dimensional economic index. Training data are of the first 49 
periods, and test data are of the left 70 periods. 

The result using incremental learning is shown in Table 1. In comparison, 
C = 10.0 is used for LPSVM, e* = 1.0, 'f/* = 10.0 used for MOPSVM-CP, 
and C1 = 5.0, C2 = 10.0 used for MOPSVM-pt. Training data "buy" is 
more than "not to buy", while test data has a reverse situation. Therefore 
this problem has a difficulty in treating a sudden change of situation. Existing 
methods tend to overfit to only one category. LPSVM seems to bring better 
correctness only for the data not to buy, while MOPSVM-CP brings a reverse 
result. On the other hand, MOPSVM-pt seems to make better correctness 
for both category. 

4 Conclusion 

Soft margin method (3) is sensitive to the value C, while the discrimination 
boundary decided by MOPSVM-CP is not so much sensitive to the ideal 
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Table 1. Comparison among LPSVM, MOPSVM-CP and MOPSVM-pt in terms 
of rate of correctness for test data. 

II correctness I 
Total 70.00% 

LPSVM to buy 35.29% 
not to buy 81.13% 

Total 33.33% 
MOPSVM-CP to buy 94.12% 

not to buy 13.46% 
Total 77.14% 

MOPSVM-pt to buy 35.29% 
not to buy 90.57% 

points C and "'*. However, when the dataset has some unbalance in the 
number of data, the soft margin method or MOPSVM-CP may give a poor 
ability of classification for the category with fewer data. On the other hand, 
MOPSVM-pt seems to work well for each category by controlling the values 
C1 and C2. The decision of C1 and C2 from the dataset, i.e., self-tuning of 
cl and c2 should be subject to a future research. 
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Abstract DEA inefficiency can be characterized by scale and congestion 
components. We show that the scale and congestion depend on the different 
technology assumption. The scale component and congestion component depend 
on the input disposability and returns to scale (RTS) assumptions, respectively. It 
is also shown that the congestion is associated with the non-zero slack values. 

Key words: data envelopment analysis (DEA), efficiency, congestion. 

1. Introduction 

Byrnes, Fiire and Grosskopf (1984) provide a decomposition of Data 
Envelopment Analysis (DEA) inefficiency into scale and congestion components. 
McDonald (1996) argues that the decomposition may be sensitive to the order in 
which the two components are calculated, and consequently, use of the 
decomposition can result in misleading s~nals being given to management. 
However, McDonald (1996) does not notice that different technologies are 
employed in his two proposed decompositions. As a result, different outcomes of 
scale and congestion measures should be expected. 

By generalizing the definitions of scale and congestion, we show that the 
scale and congestion component are dependent upon the i:J.put disposability and 
returns to scale (RTS) assumptions without benefit of this insight. McDonald 
(1996) erroneously concludes that the decomposition is arbitrary. Finally, we 
characterize congestion in terms of non-zero slack values. 

1 Joe Zhu wants to thank the financial support from the Japan Society for Promotion of 
Science (JSPS). The paper was finished while Joe Zhu was visiting the Osaka University 
under the JSPS Invitation Research Fellowship. 
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2. Scale and Congestion Components 

On the basis of two different returns to scale (RTS) assumptions and two 
different input disposability assumptions, one can obtain four different efficiency 
measures as listed in Table 1. 

Table 1. Efficiency measures under different technologies. 

Efficiency measures Returns to Scale (RTS) 

CS Constant Returns to Scale (CRS) 

CW Constant Returns to Scale (CRS) 

VS Variable Returns to Scale (VRS) 

VW Variable Returns to Scale (VRS) 

Input Disposability 

Strong 

Weak 

Strong 

Weak 

Only three of these efficiency measures (CS, VS and VW) were defined and 
used by Byrnes eta/. (1984) to define a specific scale component and a specific 
congestion component. Within our more general framework a scale component 
can be obtained by comparing CRS and VRS technologies, and a congestion 
component can be obtained by comparing strong and weak input disposability 
technologies. Thus, one could define 
Definition 1: (i) (Strong) Scale = CSNS and (ii) (VRS) Congestion = VSNW 

Obviously, in the above definition, the scale component is based on strong 
input disposability and the congestion component is based on VRS. On the other 
hand, one could define: 
Definition 2: (i) (Weak) Scale= CWNW and (ii) (CRS) Congestion= CS/CW 
where the scale component is based on weak input disposability and the 
congestion component is based on CRS 

Table 2. Three DMUs with two inputs and one output. 

Input l 

Input 2 

Output3 

DMUl 

2 

DMU2 

2 

1 

4 

DMU3 

2 

2 

3 

Consider the three DMUs example of McDonald (1996) given in Table 2. 
Table 3 provides the efficiency results for DMU3 under the different efficiency 
measures. 

From Zhu and Shen (1995) and Seiford and Zhu (1999), DMU3 exhhits 
strong scale efficiency (CRS) since CS=VS, but weak scale inefficiency 
(decreasing returns to scale (DRS)) since CW:~:VW. Alternate methods for 
determining scale efficiency (Fare, Grosskopf and Lovell, 1994 and Banker and 
Thrall, 1992) yield identical results. (Fiire, Grosskopf and Lovell (1994) compute 



On the Decomposition of DEA Inefficiency I 0 I 

CS/VS =I and CW/VW < I, while the Banker and Thrall (1992) approach relies 
on a CS solution with I, A.;= I and a unique CW solution with I, A.; > 1.) 

_I?EA ~~_s-~~---~ntensity ~ector·---·M=---Radi~~_co~!i~~_'--.=_ ____ §'~~ 

cs 

cw 

vs 
vw 

X1 =1.5 or S2 =0 
e· =0.75 X2 =0.75 or 82 =0.75 

1 • 1 • s2 =0.5 
~~,. 1 = ~~,. 2 =0.5 

XI =1.5 

XI = x2 =0.5 

X~=l 

e· =0.75 

e· =0.75 

no slack 

no slack 

no slack 

--;============::::;------~-~-~----

c .* .... 
' 

·--~~-T--~--~-; 
0 

Fig. 1. Congestion at point C and No Congestion at point C 

The above RTS estimation demonstrates that different input disposability 
assu!l1'tions may lead to different RTS results for the same DMU. Consequently, 
the different results for the scale component in definitions I and 2 should not be 
unexpected. In fact, we have (strong) scale =I and (weak) scale= 0.75. The latter 
scale inefficiency is due to DRS. i.e., the assumption of weak input disposability 
causes scale inefficiency. Thus, the scale component is dependent upon the 
disposability assumption. 

Next, note that the two congestion components which McDonald (1996) 
compared were computed under two different RTS assumptions. In order to 
further illustrate this point, we first examine the nature of congestion. Figure l 
plots an input isoquant. Input congestion is presented at C in the left Figure l, but 
absent at C in the right Figure l because of the presence of the weakly efficient 
point D (a frontier point with non-zero slacks). The shaded regions indicate the 
presence of input congestion. Because of weak input disposability, the isoquant 
bends at point A in the left Figure l and similarly at point D in the right Figure I. 
Furthermore, note that ifthe efficient reference set consists of A, point C will have 
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a positive slack value for the second input x2. However, for the efficient reference 
set consisting of points A and D, point C will not have slack values. Thus, we 
obtain the following theorem: 
Theorem: VRS (CRS) input congestion is not presented at DMU0 if and only 
if there exist some referent frontier DMUs such that non-zero input slack values 
are not detected for the VRS (CRS) strong disposability DEA measure. 
[Proof]: We prove this theorem under definition I, i.e., VRS. The proof under 
definition 2, i.e., CRS, is similar. 
The VS measure is 

e· =min(} 
n 

s.t. ~).jxij :5: Bx;o i = 1, ... ,m; 
j~l 

iA-jylj :2: Yro r = 1, ... ,s; 
j~l 

~A- =1· £.... J , 

j~l 

A,j :2: 0 and 8 free 

The VW measure is 

f =min cfJ 

s.t. !, Ajxij = l/Jx;o i = 1, ... , m; 
j~l 

!, A,jy lj :2: y ro r = 1, ... , s; 
j~l 

j~l 

A,j :2: 0 and cfJ free. 

(VS) 

(VW) 

The only difference between (VS) and (VW) is that the input inequalities are 
changed to equalities. The referent frontier DMUs are those in the basis when 
calculating the strong disposabi1ity model, say (VS). If we have some referent 
DMUs such that no non-zero input slack values are detected for DMU0 , then we 
have, at optimality, 

I Xjxij = e* X;o 
jEB 

where B represents the set of referent DMUs, B={ji A~ >0}. Obviously, A~ and 

()* are also optimal for VW, therefore ()* = l/J*. Thus no input congestion 

occurs. This completes the if part. 
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To establish the only if part, we note that if no input congestion occurs, then at 

optimality, there exists a basis B' such that LA_*Jxij = q/ xio = 8*xio. This 
}EB' 

indicates that there exist some referent DMUs such that the input constraints are 
binding in (VS). Therefore no non-zero input slack values are detected by 
reference to those DMUs in B'. 
[Remarks): The input slacks in (VS) do not necessarily represent DEA slack 
values (Banker et at. 1984). However, if all frontier DMUs are extreme efficient, 
e.g., A and B, in Figure 1.A, then the input slacks are the same as the DEA slack 
values. In the right Figure 1, because C can be compared to a convex combination 
of D (weakly efficient) and A, no input slack is announced. (With a DEA model, 
the same DEA slack should be obtained in either the left or right Figure 1.) See 
Cooper, Seiford and Zhu (2000) for discussions on congestion measures based 
upon slacks. 

It is well know that in the single input and the single output situation, no input 
or output slack will occur for CRS measures, whereas, non-zero slack values may 
occur for VRS measures. That is to say, congestion will never occur with CRS but 
can possibly happen with VRS. Clearly for the single input - single output case, 
the congestion component depends upon the RTS assumption. Thus, in general 
one should not be surprised to obtain different congestion results from different 
RTS assumptions. 

In the authors' experience that the DEA efficient frontiers of most real world 
data sets are composed solely of extreme efficient DMUs. Therefore, we readily 
have the following: 
Corollary: If the efficient frontier is only composed of extreme efficient DMUs, 
then congestion occurs if and only if non-zero slack values are detected. 
Furthermore, the factors responsible for the congestion are those with non-zero 
slack values. 

Fiire et at. ( 1994) introduced a procedure for detecting the factors responsible 
for the congestion. By the above results (non-zero slack values), one can easily 
find and identify congestion and its sources without the need for calculating 
another corresponding DEA measure satisfying weak disposability. 

Finally to address McDonald's ( 1996) concern, as to the order of computation 
of the scale and congestion components, we have that 

Decomposition 1 (definition 1): 
cs cs vs 
vw 
cs 

Decomposition 2 (definition 2): 
vw 

vs vw 
cw cs 
vw cw 

vs cs 
vw vs 
cs cw ----
cw vw 

It is obvious from the above two equations that the outcomes have nothing to do 
with the computation orders but rather reflect the different technologies upon 
which the computations are based. 
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3. Conclusion 

We have examined the decomposition of inefficiency into scale and 
congestion components and have shown that those two components depend upon 
both disposability and RTS assumptions. Caution should be exercised when 
discussing a particular decomposition. McDonald (1996) proposes two different 
decompositions and obtains dramatically opposite outcome. He erroneously 
concludes the decomposition is arbitrary and misleading. In fact, the different 
outcomes of scale and congestion measures should be expected because different 
technologies were assumed. 

In closing, we note that the resuhs and framework of his paper can be further 
extended in several obvious directions. Scale component could also be defined 
under different output disposability assumptions. Congestion measures could be 
defined under other RTS assumptions such as nonincreasing or nondecreasing 
returns to scale. Again different should be expected from those new technologies. 

Finally, we limited our discussion of decomposition to the input-oriented 
DEA measures. Similar remarks can be made for the output-oriented DEA 
measures. 
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Abstract: Constrained facet analysis is used to evaluate decision making units 
(DMUs) which have non-zero slacks in data envelopment analysis (DEA) by 
requiring a full dimensional efficient facet (FDEF). The current paper shows that 
the FDEF-based approach may deem those extreme efficient DMUs which are not 
located on any FDEF as inefficient. Using strong complementary slackness 
condition (SCSC) solutions, this paper develops an alternative method for the 
treatment of non-zero slack values in DEA. The newly proposed method can deal 
with the situation when FDEFs do not exist. 

Keywords : Data Envelopment Analysis (DEA); Efficient; Slack; Strong 
Complementary Slackness Condition (SCSC). 

1. Introduction 

Experience with the application of data envelopment analysis (DEA) shows 
that two inefficient decision making units (DMUs) may have the same efficiency 
score, but one may have larger amount of underutilized resources or unachieved 
outputs, i.e., non-zero slacks, than the other. Those non-zero slacks are treated by 
an infinitesimal (e) Chames et al. (1979) (CCR), or by extrapolated efficient facets 
in Bessent et al. (1988) and Chang and Guh (1991). 

The constrained facet walysis by Bessent et al. (1988) fails to work when 
extreme efficient DMUs span a non full dimensional efficient facet (FDEF). A 
FDEF refers to an efficient facet withm+s-1 dimension under CCR model, where 
m and s are the numbers of inputs and outputs, respectively. Green et al. (1996) 

1 Joe Zhu wants to thank the financial support from the Japan Society for Promotion of 
Science (JSPS). The paper was finished while Joe Zhu was visiting the Osaka University 
under the JSPS Invitation Research Fellowship. 
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develop a mixed-binary linear programming problem to treat the non-zero slacks. 
Green et al. (1996) claim that a basic requirement for their implementation is that 
there must be at leastm+s-l CCR extreme efficient DMUs. HoV\ever, m+s-1 CCR 
extreme efficient DMUs do not necessarily span a FDEF, and they may span 
several non-FDEFs. Particularly, some extreme efficient DMUs which are not 
located on any FDEF may be termed as inefficient by the mixed-binary linear 
programming problem even the number of extreme efficient DMUs is greater than 
m+s-l. This indicates that Green et al.'s (1996) new implementation also requires 
the existence of FDEFs, rather than the existence of at least m+s-l extreme 
efficient DMUs. But this condition rmy not be satisfied in real world applications 
(see Bessent et al. 1988). 

The current paper places lower bounds that are obtained by strong 
complementary slackness condition (SCSC) solution pairs for extreme efficient 
DMUs. It is shown that our method does not change the efficiency ratings for 
those DMUs which do not have non-zero slacks. 

2. Determination of the lower bounds 

Suppose we haven decision making units (DMUs). Each DMUi j = 1, 2, ... , n 

produces s different outputs Yrj (r = l, 2, ... , s) using m different inputs X;j (i = 1, 
2, ... , m). Then the Chames et al. (1978, 1979) (CCR) model with infinitesimal e 
can be expressed as: 

' 
max L U,Yro 

r==l 

s.t. f u,y,1 - f v,x,1 :s; 0 
r=l i=l 

m 

L, v,x,. = 1 
j::l 

u,,V;~E. 

(1) 

j = l, ... ,n; 

The above CCR model is equivalent to the following fractional programming 
model: 

iJ.l,Ym 
max h = -''-1 --

o ! W;X;o 

1=1 

iJ.l,Y.; 
s.t. h; =~S I j=l,2, ... ,n 

L,w;x;i 
l=l 

_J.l_,_> e _w_,_> e 
i w,x,. - 't w,x,. - . 
i=l i=l 

(2) 
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On the basis of eeR model (1), all n DMUs can be partitioned into six classes 
E, E', F, NE, NE', and NF (ehames et al. 1991). The first two are efficient, F class 
is frontier but has non-zero slacks, and the last three are DEA projections in E, E', 
F, respectively. 

DMUs in class E determine the efficient facets. An efficient facet can be either 
a FDEF spanned by m+s-1 eeR extreme efficient DMUs, or a non-FDEF spanned 
by some eeR extreme efficient DMUs whose number is less than m+s-1. Here we 
need a regularity condition that every subset of m+s-1 extreme efficient DMUs is 
linearly independent. Otherwise, if a subset of m+s-1 extreme efficient DMUs is 
linearly dependent, then the dimension of this efficient face will be strictly less 
than s+m-1. 

Note that the purpose of introducing non-Archimedean e is to impose the 
positivity on DEA multipliers. The non-zero slacks are relative to the zero optimal 
values of multipliers. If we can determine the positive lower bound on each 
multiplier, then by the complementary slackness condition oflinear programming, 
we can suppress the non-zero slacks and consequently obtain a comparable overall 
efficiency score for each DMU. 

Note that there must exist a non-zero optimal multiplier solution for a DMU in 
set E. But we cannot conclude that for a DMU in set E, the optimal multipliers are 
always positive after running the DEA model without e. Because of the multiple 
optima, zero optimal multipliers are likely to occur. In order to deal with this 
situation, we use the solutions that satisfY strong complementary slackness 
condition (SeSe) which states that there exists an optimal solution (.r_, 9 +, 

J r 

s; u;, v;, t;) for which, in addition to complementary slackness condition, we 

have s;+u; > 0 (r = 1, ... , s), s;+v;· > 0 (i = 1, ... , m), ;.;+ t; > 0 (j = 1, ... , 

n), where ( = _ ~ u v. + ~ v.x .. · 
J ~ rJrj ..t..J 1 y 

r=l i=l 

Lemma 1: For a specific DMU., let s; ,s; ,u; and v; be an optimal solution. If 

this optimal solution satisfies sese, then u; and v; are all positive. 

On the basis of Lemma 1, we can find a set of positive optimal dual multipliers 
for each DMU in set E. As stated in ehames et al. (1991), the procedure for 
computing sese solution is well adapted for DMUs in set E. But first we need to 
find out DMUs in set E. By the resent results of Thrall (1996), we solve the 
following modified DEA model (see Seiford and Zhu (1999) for a detailed 
discussion on this type ofDEA IJDdels): 

s s 

s.t. L,u,yif-L,v;xu:5;0 j::Fo; 
r=l i=l 

m 

L,vixio =1 
i=l 

(3) 
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The DMU. under evaluation is excluded from reference set. Then DMU. e E 

if and only if the optimal value to (3) is greater than one, or (3) is infeasible. 
Next, since we only interest in positive multipliers, we find a SCSC solution for 

a specific DMU. e E by the following model: 

maxL,tj+ 't,u,+ ~:Vi 
j'#J r=l i=l . . 

s.t. - L,u,y,j + L,v,.xif =tj 
r=l i=l 

(4) 

i=l 

u,, vi, tj 2: 0. 

We solve (4) and remove positive tb u,, and v;, then re-run (4) until the optimal 
value is zero, i.e., all tj, u, and v; are removed from the objective function. An 
optimal multiplier solution pair (u;' v;) that satisfies sese is the average of all 

(u, v;) in each step. 
Now for convenience, let first Q DMUs be those in set E, i.e., DMU eE for q 

q 

=1, 2, ... , Q. Denote SCSC solution for each DMUq as u; and vj 

Then we have the following algorithm: 
Step 1: Find out all extreme efficient DMUs by (3). 
Step 2: Compute SCSC solution for each DMU in set E by ( 4). 
Step3: Let u: = min {u;} and v; = min {vi}. 

q~l •...• Q q~l •...• Q 

Step 4: Denote set I= {i 1 x .. has zero slack valre DMU. e For NF} and set 
I) ' 1 

R = {rl y,j has zero slack value,DMUj e For NF}. 

Step 5 Add the constraints v; ;;::: v; i e I and u, ;;::: u: re R into the 

unbounded ( e = 0) DEA fractional programming model: 

't,JL,Y,. 
max-"~=:::.'-­

m 

s.t. 

LW;X;o 
i=I 

't,JL,Yrj 
r=l ~ 1 
m 

L,wixif 
i=l 

j = 1,2, ... , n 

JL, 2: u;,re R;w; 2:v;,ie I. 

Step 6: Run the DEA model ( 5) with lower weight bounds. 

(5) 
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Note that the lower bound DEA model (5), is a fractional programming 
problem. By the Chames-Cooper transformation in Chames and Cooper (1962), 
we can obtain the following equivalent linear multiplier DEA model. 

root 

r=l i=l 

m 

L,vixio = 1 
i=l 

- u, + t ou; :o; 0 r E R 

-v1 +f0 V; :o; 0 ie I 

u, ~ O,r ~ R; v1 ~ O,i ~I. 

(6) 

in which 1 = ({' wx )-t>O is the transformation factor for DMU0 (see also Roll 
0 ~I 10 

i=! 

et a!. 1991 ). It is easy to show the following. 
Lemma 2: Suppose u~ and v; is an optimal solution to (I) withe= 0, then it 
is also an optimal solution to (2) with e = 0. 
Theorem: (i) If DMU E E, orE', orNE, orNE' under the DEA model without t; 
then the efficiency cla;sification of this DMU remains the same under the DEA 
model with lower weight bounds of u' and o v~, (ii) If DMU E F or NF under 
the DEA model without e, then the efficiency ~core of DMU 0 will be changed 
under the DEA model with lower weight bounds of u' and v' .0 

The above theorem indicates that (i) the approa~h described here not only 
allows the weight flexibility in original DEA model, but also imposes positivity of 
multipliers so that we obtain an efficient frontier rather than a \\eakly efficient 
frontier, and (ii) our approach does not require the existence ofFDEF. 

The proposed technique is demonstrated by seven DMUs given in Chang and 
Guh (1991) (see Figure 1). 

P, 

--
BY 

P, 
0 

--
10 

Fig. 1. Hypothetical Efficient Facet 

P, P, 

output I, y : I 

inputl,x1 : I 2 

input 2, x, : 4 2 

12 

P, P.,P, P, P, 

I I I I 

4 5 3 2 9 

2 3 2 

We have that E={PJ, Pz, P3}, NE'={Ps, P6}, F={P4} and NF={P7 }. The SCSC 
solutions for P1, Pz, and P3 are (1,0.60, 0.10), (1, 0.25, 0.25), and (1, 0.10, 0.60), 

respectively 
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Thus u· = l,v~ =0.1, v; = 0.1 and I= {1} and R = 0. Then we have the lower 

bounds of w1 ;;:: 0.1 in model (7). Now we obtain the adjusted efficiency scores 

10/11 and 10/21 respectively for P4, and P7• 

However, we should note that our approach is dependent of the choice ofSCSC 
solutions. As a matter of fact, the lower bounds (SCSC solutions) introduce some 
hypothetical efficient facets at the end of original efficient facets. These kinds of 
facets are part of different supporting hyperplanes at DMUs in set E. Thus, if we 
choose a different set of sese solutions, the lower bounds will be changed and 
consequently, the adjusted efficiency score for a DMUe F or NF may be different. 
For example, the lower bound in the above example introduce a new point X 
(10,0) and P:JX becomes our hypothetical extended efficient facet for measuring 
the efficiency ofP4 and P7 which have non-zero slack onx1 (see Figure 1). Ifthere 
exists a FDEF near the area of P4 and P5, say P2 P3, then P3 Y is the extrapolated 
efficient facet by Chang and Guh (1991) and Bessent et al. (1988). Different 
sese solutions may establish different hypothetical efficient facets in the region 
below ray P3 P4 and above P3 Y. In fact, the infinitesimal E constructs a 
hypothetical efficient facet with norm ( £, 1) in that region for P 4 and P7• 
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Abstract 

In this paper we propose an extended method nr multicriteria optimization and 
compromise solution to solve multiple objective decision making (MODM) prob­
lems. This method assumes that optimal compromise solution should have the 
shortest distance from the positive ideal solution (PIS) as well as the longest dis­
tance from the negative ideal solution (NIS). We use the membership function of 
fuzzy set theory to express the satisfaction level, and use max-min operation for 
this hi-objective programming problem To illustrate this procedure, prequalifica­
tion for the project bidding process of an outsourcing partner for semiconductor 
enterprise in Taiwan is solved by use of our procedure. 

Keywords: compromise solution, fuzzy set theory, max-min operation, semicon­
ductor, prequalification 

1. Introduction 

Kuhn and Tucker (1951) published one of earliest considerations of multiple 
objectives using vector optimization concept, followed by Yu (1973) who pro­
posed a compromise solution method for coping with multicriteria decision­
making (MCDM) problems. Subsequently, there have many works using MCDM 
for applications such as transportation investment and planning, econometric and 
development planning, capital budgeting, investment portfolio selecting, health 
care planning, forest management, public policy and environmental issues, etc. 

Dealing with MCDM problems decision makers have more than one objective 
or goal in selecting a course of action, while satisfying the constraints dictated by 
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environment, process and resources. Mathematically, these problems can be repre­
sented as: 

maximin [.ft(x),};(x), ... ,f,(x)] 

s.t. XE X ,X={ xl g;(x) ~ 0, i= 1,2, ... , m} 
(l) 

where x is ann-dimensional vector of decision variables, that consists of m con­
straints andk objectives. Any or all of the functions may be nonlinear. 

On account of incommensurability and conflicting nature of the multiple crite­
ria, Yu (1973) proposed compromise solution methods. Hwang and Yoon (1981) 
proposed TOPSIS using the concept of optimal compromise solution. Lai et al. 
(1994) further utilized the Euclidean distance to drive the TOPSIS approach for 
MODM problem. In addition, Opricovic (1998) proposed a new approach called 
VIKOR to solve the MODM problem. However, the VIKOR method considered 
only the shortest distance of LP -metric from PIS. 

In this paper we extend both VIKOR and the compromise solution method, also 
considering the optimal compromise solution that satisfies both the shortest dis­
tance from PIS and the longest distance from NIS. We also use membership func­
tions to express the satisfaction level and employ max-min operation for this hi­
objective programming problem. To illustrate this procedure, the selection of an 
outsourcing partner fora Taiwan semiconductor enterprise is solved by use of this 
procedure. 

Follows, the concept of multicriteria ranking and compromise solution with dis­
tance ofMinkowski's LP -metric is reviem!d in Section 2; the evaluation model of 

this study is presented in Section 3; an illustrative example shown in Section 4 
demonstrates this model in practice; the conclusions are summarized in Section 5. 

2. The Multicriteria Metric for Compromise Ranking 
Methods 

With a given reference point, the MODM problem can then be solved by locating 
decision points that are the closest to the reference point. Generally, the global cri­
teria method measures the distance using Minkowski's LP -metric, \\hich defines 

the distance between two points, f and r ink-dimensional space as follows 

{ k }VP 
LP = ~((;*- JY , where p ~1 (2) 

where f* is the reference point, and distance LP decreases as p increases, i.e., 

L1 ~ L2 ~ • • • ~ L~ . Specifically, L.,, called the Manhattan distance and L2 , called 
the Euclidean distance are the longest and the shortest distances in the geometrical 
sense, respectively, whereas L~ , called the Tchebycheff distance, is the shortest 

distance in the numerical sense, that is, 
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(3) 

With the concept of compromise solution, we then transfer Eq.(l) to the follow­
ing hi-objective problem, 

min LP18(x) 
p 

max LZ18 (x) (4) 

s.t. xe X 

where p = 1,2, ... ,oo, z::s and L~s represent the distance of LP -metric from PIS 

and from NIS, respectively. Since there are usually conflicts with each objective, 
it is difficult to simultaneously obtain their individual optirm. Thus, we utilize the 
membership functions 1-lJ ( x) and J12 (x) to represent the satisfactory level of hi­

objective functions and use the mu-min cperation (Bellman and Zadeh 1970, 
Zimmermann 1978) to drive the equivalent model giving the same values of a : 

max a 
s.t. J11(x):?.a and J1 2(x):?.a 

xeX 

(5) 

where a= min(J11 ,J12 ) is the minimal satisfactory level for both objectives, and in 

practice the parameter a is generally subjectively selected by DM. 

3. The Extended Compromise Ranking Approach 

In this study, we consider that the optimal compromise solution should have the 
shortest distance from PIS as well as the longest distance from NIS. Firstly, we 
employ normalization by reference point to remove the effects of the incom­
mensurability nature, and then establish the algorithm as following steps: 
1. Determine the best value ~;· and the worst value ~;- of all criterion functions, 

where !y is the value of i-th criterion function for the j-th alternative, respec­

tively, for criteria i= 1, ... ,k, we have 

J/ = maxJ;., J;- =min J;. 
I j 9 j 9 

2. Compute the values of SJI8 , sts, Jt;JS , and Rf18 for j = 1, ... , J. The first two 

represent the LP -metric for p = 1 and the last two represent the LP -metric for 

p = oo from PIS and from NIS, respectively. 
k r•_r 

sPJS = ~ . Ji Ju • 
i ~w; • -' 

i=1 J; - J; 
(6) [ ~;·-h·] R~1s =max w. · 1 9 • 

J ; '!/-/;-' 
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where w; represents the relative weight of i-th criterion. 

3. Compute the values Qrs and QfJS for j = 1, ... , J which is defined as 

sPJs -<sPJsr RP/S -<RP/Sr 
QPIS = V . 1 + (1-V )·--:-:' ;:;-:----:::;:--

j P (SPIS )" _ (SPIS r P (RPIS )" _ (RPJS )-

s·-~-r R~-~-r 
QNis -v . 1 +(1-v )·-7::1 ::-:----:-:::::--

1 - N (SNIS)" -(SNISr N (RNJS )* _ (RNISr 

(7) 

where O~vP ~1, O~vN~l,and 

(sPry = max sPIS; ( sns)- = min sPIS; ( RPIS )" =max R;rs; ( RPIS)- =min RPIS ; 
j1 j1 1 j1 

(s•)· = maxs• ·(SNIS)- = minSNIS ·(RNIS). =maxRNIS •(RNIS)- =min RNIS 
11' 11' jj' jj" 

4. The objective of our approach is to solve following mathematic programming: 
min QPIS(X)-QNIS(X) 

1 J 

s.t. XEX 
(8) 

where X is the set of feasible solutions, and setting the same importance for the 

values Q;rs and QfJS in this study. 

4. Illustrative Example 

Project mangers are faced with decision environments in complex projects. The 
elements ofthe problems are numerous; the interrelationships among the elements 
are extremely complicated; and human value and judgment systems are integral 
elements of project problems (Lifson and Shaifer, 1982). Therefore, the ability to 
make sound decisions is very important to the success of a project. 

Prequalification is defined by Stephen (1984), Moore (1985) and Clough 
(1986) as the screening of construction contractors by project owners or their rep­
resentatives according to a predetermined set of criteria deemed necessary for suc­
cessful project performance. Thus, prequalification means that the contracting 
firm wishing to bid on a project needs to be qualified before it can be issued bid­
ding documents on which it can submit a proposal. Prequalification can aid public 
and private owners in achieving successful and efficient use of their funds by en­
suring that only qualified contractors will bid on the project. 

A simplified project example of contractor prequalification is presented here 
for demonstration purposes. To simplify calculations, the seven factors that are 
considered to evaluate this project example for prequalification are experience, fi­
nancial stability, capital assets, quality performance, manpower resources, 
equipment resources and current workload. 

Table 1 presents a project example for which contractors A, B, C, D and E wish 
to prequalify. In order to evaluate these participating contractors, we first employ 
AHP to aggregate the judgment of group decision-making behavior. After deriv­
ing the relative weight among considered criteria shown as Table 2. 
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Furthermore, we utilize the extended compromise ranking method step by step 
in Section 3, where there are two minimal criteria, financial stability and current 
workload. For both of these, smaller values are better, while other criteria seek 
maximal values; here we pick vP = vN = 0.5 in general. Finally we can conduct 

the Q;1s and Qt by Eq.(7), and obtain the preference order of participating con­

tractors by Eq.(8), as shown in Table 3: E >- C >- D>- B>- A, where E >- C indi­
cates the prequalification result of contractor E being superior to contractor C. 
This has almost the same preferential order with VIKOR method, except for con­
tractor C and contractor D. It seems that these two contractors are not comparable 
because their difference in Qvalue (Opricovic 1998) does not exceed 0.25. 

Table 1. Qualification of participating contractors in project bid 

Contractor A B c D E 
Experience 5 years 7 years 8 years lOyears 15 years 
Financial High growth rate $5.5 M liabilities $6 M liabilities $4 M liabilities $1.5 M liabilities 
Stability no liability 
Capital Asset $7 M assets $10M assets $14M assets $11 Massets $6Massets 

Quality Good 
Perfunnance 

Medimn Good Good Weak 

Manpower 
150 laborers 100 laborers 120 laborers 90laborers 40 laborers 

Rerources 
Equipment 4mixer 6mixer !mixer 4mixer 2mixer 
Resoun:es machines machines machines machines machines 
Current 2 project in mid 2 projects ending 1 rnediwn 1 medimn 2 small projects 
Worldoad and 1 big project project started project in mid started and 3 

ending and2 projects and2big projects ending 
ending mYiectsenQ!ng 

Table 2. The weight of considered criteria by AHP 

Financial Capital Quality Manpower Factor Experience 
Stability Assets Performance Resources 

Equipment Current 
Resources Workload 

weight 0.372 0.204 0.102 0.148 0.053 0.039 0.082 

Table 3. The compromise solutions' distance from PIS and NIS w.r.t. each contractor 

Contractor A B c D E 
QPIS Value of j 1.00000 0.73858 0.31201 0.27693 0.00000 

Value of QjMS 0.07088 0.09535 0.50976 0.45157 1.00000 
QPJS -QNJS 

J J 0.92912 0.64323 -0.19775 -0.17465 -1.00000 

Preferential order 5 4 2 3 
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5. Conclusion 

Project management involves complex decision-making situations that require 
discerning abilities and methods to make sound decisions. This paper has success­
fully demonstrated the revised compromise ranking method using LP -metric dis-

tance family to find optimal solutions that have shortest distance from positive 
ideal solution, as well as has longest distance from negative ideal solutions. 

In addition, this compromise solution is stable within different decision-making 
processes, whether they be "voting by majority rule" when either vP > 0.5 or 

vN > 0.5 is needed, or "by consensus" with either vP "'0.5 or vN "'0.5, or "with 

veto" with either vP < 0.5 or vN < 0.5 . Both vP and vN are the weights of deci­

sion making strategy with the majority of criteria. 
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Abstract. We consider scalarization techniques for multiobjective combinatorial 
optimization. We briefly discuss the problems occurring in known methods and 
show that a new method of elastic constraints can overcome these. The method 
is a generalization of both the weighted sum method and the e:-constraint method 
and generates all Pareto optimal solutions. We show an application of the method 
in airline crew scheduling, where we optimize cost and robustness of solutions. 
Numerical results on real world instances are given. 

1 Multiobjective Combinatorial Optimization 

A multiobjective combinatorial optimization problem (MOCO) is the follow­
ing mathematical program: 

· ( T T ) mm c1 x, ... ,cQx 

subject to Ax ~ b (1) 

x ;::: 0, integer. 

Here Cj E mn' j = 1, ... 'Q are Q objective vectors, X E mn is a vector of 
variables, A E mmxn is a constraint matrix and b E JRm a right hand side 
vector. It is therefore an integer programming problem with n variables Xi 

(these are usually binary), m constraints, and Q linear objective functions. 
The feasible set X = { x : Ax ~ b; x ;::: 0; x integer} is finite and represents a 
combinatorial structure, e.g. the set of perfect matchings of a graph. We un­
derstand the minimization in the sense of Pareto optimality (efficiency). For 
a survey on the state of the art in multiobjective combinatorial optimization 
see [2]. 

MOCO problems are usually solved using scalarization techniques. The 
most popular one of weighted sum scalarization is 

Q 

minLAicfx, 
xEX 

i=l 

(2) 

which uses a weighting vector ).. E JR~ with L::~ 1 Ai = 1. It has the drawback 
that it cannot find all Pareto optimal solutions, due to the feasible set X not 
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being convex. On the other hand, it preserves the structure of the problem 
and the computational effort for solving the scalarized problem is exactly the 
same as for the single objective version of the problem under consideration. 

The situation is completely different for the ~::-constraint method, which 
is based on the scalarization 

mincfx 
xEX 

subject to cJ x ~ C:j, j =F i, 
(3) 

where the C:j denote bounds on the objectives c] x. Using this, all Pareto 
optimal solutions can be generated. However, the knapsack constraints that 
have been added imply that the scalarized problem is often NP-hard, even 
if the single objective version of the problem is polynomially solvable, see 
references in [2). In addition, the constraints also tend to make NP-hard 
problems even harder, as we shall see below. 

Similar comments apply for other methods, such as the augmented weight­
ed Chebychev method, or Benson's method. The reason is that the scalar­
izations used in these methods are essentially models in which constraints on 
the objectives are present. 

2 The Method of Elastic Constraints 

From the above observations the challenge is then to find a solution method 
for MOCO problems in which the scalarizations do not introduce too much 
additional difficulty, like the ones based on constraints, and which are able 
to generate the whole set of Pareto optimal solutions. 

Such a technique is the method of elastic constraints. The idea is to allow 
the constraints on objective values in (3) to be violated, but to penalize that 
violation in the objective function. Thus the scalarization becomes 

mincf x + LPJSUJ 
xEX j#i 

subject to cJ x + slJ -sui = C:J j =F i. 
(4) 

Slj, SUj ;::: 0 j =I i 

Here the constraints of (3) are relaxed by introducing a slack variable sli 
and a surplus variable sui for each of the constraints on objective values. 
Parameters Pi penalize positive values of sui, i.e. constraint violation. The 
following theorem is the main result about this method. 

Theorem 1. 1. An optimal solution of (4) is a Pareto optimal solution of 
(1}, if Pi > 0 for all j =F i. 

2. Let x* be a Pareto optimal solution of (1}. Then there is some c: E IRQ 
and for each i = 1, ... , Q a vector pi E JRQ-l such that x* defines an 
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optimal solution of (4) for this i for all penalty vectors p E IRQ with 
Pi :2:: P~,j-/= i. 

Note that the first part is trivial. For the second it is sufficient to consider 
_ ( T * T *) d i _ ( ( T * T l)j( T * c:- ci X , ••• , CqX an pi -max max{l:cfx'~cfx•} ci X - ci x ci x -

cJ x1), 0), where xi, ... , x1, ... , xL are all Pareto optimal solutions of (1). 
We give a small example to illustrate the method. 

min(xi,X2) 

subject to 2xi + 3x2 :2:: 11 

Xi,X2:::; 4 

Xi, x2 :2:: 0, integer 

This problem has Pareto optimal solutions (0,4), (1,3), (3,2), and (4,1), of 
which (3,2) is unsupported, i.e. not optimal for (2) for any choice of A. To 
identify (3,2) as an optimal solution of an elastic constraint problem (4), we 
choose i = 2, C:i = 3 to get 

minx2 + PiSUi 
xEX 

subject to Xi + sh - sui = 3 

X EX. 

It is easy to see that for all Pi > 1 (3,2) is a unique optimal solution of the 
problem. Indeed, there is a whole range of parameters that yield (3,2) as 
optimal solution. 

It is interesting to note two special cases. First consider c:i = min{ cJ x : 
x E X}, j -1= i. This implies that all slack variables sli are zero and thus 
the scalarized problem is equivalent to a weighted sum problem. Secondly, 
consider Pi = oo, j -1= i. Here, all surplus variables sui must be zero and 
the problem is equivalent to an c:-constraint problem. The method of elastic 
constraints is therefore a common generalization of the weighted sum and the 
c:-constraint method. In contrast to other such methods with this property, 
e.g. [5], our scalarized problem does not retain the "hard" form of the con­
straints present in (3), which turns out to be its major advantage, as will be 
shown below. Further discussion of the method can be found in [3]. 

3 Bicriteria Airline Crew Scheduling: Cost and 
Robustness 

Airline crew scheduling consists of two distinct problems. The tour of duty 
(ToD) or pairings planning problem, which involves the construction of tours 
of duty, and the rostering problem, which means the allocation of ToDs to 
individual crew members. Here we consider the ToD planning problem. A 
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tour of duty consists of sequences of flights and rest periods that can be 
operated by a crew member. This problem can be formulated as a gener­
alized set partitioning model, in which the variables are all legal ToDs and 
the constraints guarantee that each flight in the flight schedule is covered by 
exactly one ToD. Additional base constraints with non-unit right hand sides 
are included to take into account the available crew at each base. The objec­
tive is to minimize cost. These problems are solved using LP relaxations and 
branch and bound. Column generation techniques are used to accommodate 
the huge number of possible variables. The branching process is specifically 
designed for the model using so-called constraint branching. An overview on 
optimization techniques for airline crew scheduling can be found in [1]. 

Statistical delay information from airline operation indicates that min­
imal cost sets of ToDs can contribute to increasing delays throughout the 
day because crew are sometimes required to change aircraft. If in that case 
insufficient ground time is scheduled a delay of the aircraft on which the 
crew member arrives might cause a delay for the aircraft on which that crew 
member departs. Our goal was to find solutions of the ToD planning prob­
lem which do avoid this behaviour as far as possible while at the same time 
remaining cost effective. We developed a linear objective function that mea­
sures the vulnerability of a solution to disruptions (i.e. the non-robustness of 
a set of ToDs, see [4]). This yields a bicriteria tour of duty planning model: 

min[rT x, cT x] 

subject to A1x = e 

A2x = b 

xE{0,1}. 

Here A1x = e, where e = (1, ... , 1)T are the flight constraints (each flight is 
in exactly one ToD) and A2x = b are the so-called base constraints mentioned 
earlier. The elastic constraint reformulation of the problem is as follows. 

minrTx+psu 

subject to cT x + sl- su = r:: 

A1x=e 

A2x=b 

xE{0,1}, 

where r:: is a desired cost level that can be given as a certain percentage 
increase over the optimal integer solution of the single objective problem of 
minimizing cost alone. 
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4 Numerical Results 

We implemented the weighted sum method, the c--constraint method and the 
method of elastic constraints and solved real world ToD planning problems 
for technical (pilot and first officer) and cabin crew. 

The results show that the weighted sum method finds too few solutions, 
and also that the intervals of the parameter .A that yield some of these so­
lutions when the weighted sum objective min cT x + .ArT x is used are very 
small. This shows that the solution is very sensitive to small changes of .A. It 
is therefore not useful in practice. The c--constraint method needed unaccept­
able computation times, sometimes exceeding the node limit of 1000 nodes 
before finding an optimal solution. 

For the elastic constraint method the computation times did strongly 
depend on the value of p: The smaller p, the quicker the problem was solved. 
Note that larger values of p yield problems that approach the c--constraint 
scalarization with its computational difficulties. 

Below we show the solutions found on two problem instances for technical 
crew (Fig. 1) and cabin crew (Fig. 2). Here we increased the value of c in steps 
of 0.5% over the cost optimal solution until the optimal value of robustness 
was reached. The penalty was chosen to be the slope of the efficient frontier 
of the LP relaxation (the piecewise linear curve shown in Figs. 1 and 2) at 
the chosen right hand side value of the cost constraint and bound gaps of 
0%, 2%, and 20% were used. In both figures the vertical line indicates the 
optimal cost when solving the single objective problem. The non-robustness 
objective coefficient r3 for a ToD was computed as a sum of a penalty value 
that reflects the non-robustness caused by any pair of subsequent flights in 
a ToD. This penalty is either 0 if both flights are on the same aircraft or 
the ground duty time plus the expected delay of the incoming flight plus two 
times the variance of that delay minus the scheduled ground time between 
the flights, if that number is positive. More detailed results are given in [4). 

5 Conclusion 

We have shown that well known methods for solving multiobjective optimiza­
tion problems fail to solve large scale multiobjective combinatorial optimiza­
tion problems that appear in real world applications. As a consequence we 
developed the method of elastic constraints which combines the advantages of 
the weighted sum and c--constraint methods but avoids their disadvantages. 
The method was used in a real world application to solve airline crew schedul­
ing problems. The numerical results illustrate the potential of the method of 
elastic constraints to solve MOCO problems of practically relevant sizes, i.e. 
large scale problems. 
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Fig. 1. Set of solutions for technical crew. 
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Fig. 2. Set of solutions for cabin crew. 
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Abstract. We propose a new approach for obtaining two interval efficiency values 
with interval data as an extension of DEA. We deal with interval data that can 
reflect uncertainty in real situations. The two interval efficiency values are obtained 
from the optimistic and pessimistic viewpoints. Their upper and lower bounds are 
obtained by two different extreme values in the given interval data respectively. 
Thus, we formulate four types of efficiency values from two viewpoints with two 
extreme values in the given interval data. Our emphasis is to obtain two interval 
efficiency values reflecting uncertainty of the given data. Thus our approach can 
be described as a kind of interval data analysis. A numerical example is shown to 
illustrate our proposed approach. 

1 Introduction 

DEA (Data Envelopment Analysis) is a non-parametric technique for mea­
suring the efficiency of DMUs which stand for Decision Making Units with 
common input and output terms [1]. In DEA, the ratio of weighted sum 
of output data to that of input data is assumed to be the efficiency of the 
DMU. The input and output weights are variables that are determined so as 
to maximize the analyzed DMU's ratio subject to the condition concerning 
every DMU. Therefore, the efficiency value obtained by the optimal weights 
is regarded as the relative evaluation value from the optimistic viewpoint. 
This is so-called DEA generally. 

We have already formulated the efficiency value from the pessimistic view­
point in [4] where the input and output weights are determined to minimize 
the ratio of the analyzed DMU to the other DMUs. Thus, the efficiency is 
estimated as an interval value constituted of the optimistic and pessimistic 
efficiency values. 

In this paper, we deal with interval data that reflect uncertainty in real 
situations. Since there is no doubt that real problems contain some uncer­
tainty, uncertain phenomena need to be handled. Various studies [2] [5] have 
been discussed on uncertainty in real problems. For instance monthly sales 
change every month depending on such as economic situations, seasons and 
so on. Thus monthly sales can be regarded as an interval value including 
all the given possible values. We have to deal with interval data reflecting 
uncertainty in real problems. 
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The aim of this study is to obtain two interval efficiency values. They 
are formulated by four types of efficiency values as [max min, max max] and 
[min min, min max] where [] denotes an interval value. Each of the inner 
operations, max or min, is based on the optimistic or pessimistic viewpoint re­
spectively. Each of the outer operations, min or max, is based on the extreme 
values in the given interval data. The former and latter interval efficiency val­
ues are called the optimistic and pessimistic approximations of efficiency. We 
put our emphasis on interval efficiency values from two different viewpoints. 
Our results obtained by our proposed approach might be adequate for real 
situations. 

Lastly, a numerical example is shown to illustrate the proposed approach. 

2 Relative Efficiency Value 

The relative efficiency value of the analyzed unit DMU0 is denoted as follows. 

(1) 

where Xj and Yi are the given input and output vector of DMUi whose 
elements are all positive, and v and u are the weight variables. The numbers 
of input and output data and DMUs are m, k and n, respectively. The ratio 
of weighted sum of output data to that of input data for DMUo is compared 
to the maximum ratio of all DMUs. 

By maximizing or minimizing ( 1) with respect to the weight variables, 
v and u, Bo is approximated by two kind of values, B~ and 80 *. They are 
the extreme values of the relative efficiency values from the optimistic and 
pessimistic viewpoints for DMU0 • 

The problem to obtain B~ is formulated as follows. 

u•yo 

B~ = max v(~•y.) u,v max· ~ 
1 v•x; 

s.t. u ~ 0, v ~ 0 

(2) 

The weight variables are determined to maximize the relative efficiency 
value 80 • Then we call B~ optimistic approximation of 80 • 

On the other hand, by minimizing 80 with respect to the weight vriables, 
Bo* is obtained by the following problem. 

u•yo 
B . v•x 

o* =min (~•y.) u,v max· ~ 
J V X; 

(3) 

s.t. u ~ 0, v ~ 0 
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eO* is called pessimistic approximation of eo, since the relative ratio eo is 
minimized. 

The relative efficiency value and two approximations by (2) and (3) have 
the inequality relation eO* ~eo ~ e~. The efficinecy value measured relatively 
is smaller than the optimistic approximation and greater than the pessimistic 
one. We use two extreme values obtained from the optimisitc and pessimistic 
viewpoints to approximate and denote the relative efficiency value. In the 
previous study [4], the relative efficiency value is defined as an interval value 
[eO*, e~] based on the possibility concept. 

3 Approximations of Relative Efficiency Value with 
Interval Data 

In real situations, there are cases that uncertain phenomena need to be han­
dled. Considering the possibility of all the observations, the input and output 
data are given as interval values. The interval input and output data are de­
noted as follows with their upper* and lower* bounds. 

input data 
Xjr E [Xjr*,XJrJ 

* ( * * )t xj = xj1 , ... , xjm 

Xj* = (xjh, ... ,Xjm*)t 

These interval values are determined so as to include uncertainty of the 
given data based on the possibility concept. Using the given interval input 
and output data, the problems to obtain the extreme values that approximate 
the relative efficiency value are discussed in this section. 

3.1 Optimistic Approximation 

The optimistic approximation of the relative efficiency value is obtained as 
the similar formulation to (2). The given data Xj and Yj in (2) are extended to 
interval values. Therefore the optimistic approximation <9~ is also obtained 
as interval value as <9~ = [~, o:J defined below. When the given data are 
extended to interval values, the optimistic approximation that is the extreme 
value from the optimistic viewpoint is also extended to an interval value. 

The problem to obtain the upper bound of the interval optimistic approx­
imation <9~ can be defined as 

(4) 
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When the data are the optimistic ones for DMU0 , which means that the 
input data are X0 * and xj(j i- o) and the outuput data are y~ and Yi*(j i- o), 
the relative ratio is maximized. Instead of maximizing the relative ratio with 
respect to the given interval data, using these chosen input and otuput data 
( 4) can be written as 

u•y· 
-* vtreo0• 
() 0 = max ---':.....:=:.!7:,.,..--.,..-

u,v maxi(~:~}*) (5) 

s.t. u :::: 0, v :::: 0. 

The lower bound of the interval optimistic approximation e~ is obtained 
as follows. 

u•yo 
()* . v•xo 
=-<> = max min (u•y ) 

U,V X;,Y; max· ~ 
J v•x; 

(6) 

s.t. Xj* ::::; Xj ::::; xj, Yi* ::::; Yj ::::; yj, U:::: 0, V:::: 0 

Instead of minimizing the relative ratio with respect to the given interval 
data, the pessimistic data for DMUo are chosen in the given interval data. 
With the chosen input data, x~ and xi*(j i- o), and the chosen output data, 
Yo* and yj(j i- o), (6) can be written as 

u•ye• 
* _ vtx~ 

flo - max ( u•y~ ) u,v max· ...:..:.....2.. 
J v•x;. 

(7) 

s.t. u :::: 0, v :::: 0. 

3.2 Pessimistic Approximation 

The pessimistic approximation of the relative efficiency value eO*= [flO*' Oo*] 
is formulated in the same way as in (3) with interval input and output data, 
Xj and Yj· The problem to obtain the upper bound of the interval pessimistic 
approximation eO* iS as follOWS. 

u•ye 
- . v•xo 
()0 * = mm max (u•y.) u,v x3•Y; max· ~ 

J V X; 

s.t.xi*:s;xi:s;x;, Yi*::::;yi::=:;yj, u::::o, v::::o 
(8) 

The optimistic data for DMU0 that are chosen in the same way as in 
the optimistic approximation model (5) are used. Without taking the max 
operation with respect to the given interval data, (8) can be written as 

u•y· 
-() . ~ 
o*=min (u•y.) u,v max· -= 

J v•x; 
(9) 

s.t. u :::: 0, v :::: 0. 
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Although in the optimistic approximation model (5) the ratio is maxi­
mized with respect to the weight variables, in the pessimistic approximation 
model (9) it is minimized. Then the relation of upper bounds of both approx­
imations, Bo• ::;; o:, is easily found from (5) and (9). 

The problem to obtain the lower bound of the interval pessimistic approx­
imation eo. is as follows. 

(10) 

The chosen data are the same as ones in the optimistic approximation 
model (7). With the pessimistic data for DMU0 (10) can be written as 

U'Yo• 
. ~ 

flo• = min ( U'Y* ) u,vmax· ~ 
J V'X1• 

(ll) 

s.t. u:;:: 0, v:;:: 0. 

From (7) and (ll), the lower bounds of both approximations have the 
relation flo• ::;; ~- Therefore, the interval optimistic and pessimistic approx­
imations satisfy the inequality relation Bo• = [flo.,Bo.]::;; e~ = [~,0:]. The 
pessimistic approximation is smaller than the optimistic one in a sense of 
interval order relation in [3], where A = [~h a] ::;; B = [.Q, b] holds if and only 
if Q ::;; Q and a ::;; b. 

In rough set theory[6], X is approximated with the upper and lower ap­
proximations, A*(X) and A.(X), that satisfy the inclusion relation A.(X) C 
A*(X). The lower approximation is included in the upper one. The inclusion 
relation in rough set theory corresponds to the inequality relation in this 
study. 

4 Numerical Example 

All the given input data are normalized to 1 and two kinds of output data 
are interval values including uncertainty of the given data in Table 1. Using 
the data we calculate the interval optimistic approximation by (5) and (7) 
and the interval pessimistic approximation by (9) and (ll). 

5 Conclusion 

The relative efficiency value is approximated by two extreme values from the 
optimistic and pessimisitic viewpoints with optimistic and pessimisitic data 
for the analyzed unit DMU0 • The pessimistic approximation is always smaller 
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Table 1. Interval data and interval approximations 

input output1 output2 optimistic approximation pessimistic approximation 

A 1 [0.8,1.2] [7.5,8.5] [1.000, 1.000] [0.110, 0.179] 

B 1 [1.8,2.2] [2.4,3.6] [0.416, 0.634] [0.247, 0.328] 

c 1 [1.7,2.3] [5.7,6.3] [0. 729, 0.923] [0.233, 0.343] 

D 1 [2.5,3.5] [2.7,3.3] [0.525, 0.786] [0.318, 0.440] 

E 1 [2.8,3.2] [6.7,7.3] [0.964, 1.000] [0.384, 0.477] 

F 1 [3.8,4.2] [1.8,2.2] [0.614, 0.782] [0.212, 0.293] 

G 1 [3.4,4.6] [4.6,5.4] [0.801, 1.000] [0.466, 0.687] 

H 1 [4.7,5.3] [1.5,2.5] [0.702, 0.962] [0.176, 0.333] 

I 1 [5.6,6.4] [1.7,2.3] [0.829, 1.000] [0.200, 0.307] 

J 1 [6.7,7.3] [0.8,1.2] [1.000, 1.000] [0.094, 0.160] 

than the optimistic one. The case that the input and output data are given 
as interval values has been dealt with in this paper. Interval data including 
all the observations are suitable to reflect uncertainty in real situations. Then 
the interval optimistic and pessimistic approximations of a DMU are obtained 
to reflect uncertainty in real situations. 

What we have done with the given interval data is to denote the rela­
tive efficiency values of DMUs by their interval optimistic and pessimistic 
approximations. The interval efficiency values are useful information for the 
analyzed DMUs. The order relation over DMUs with them is not discussed 
in this paper, but it might depend on a decision maker's attitude toward the 
problem. 
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Abstract. Dominance-based rough set approach is an extension of the basic rough 
set approach proposed by Pawlak, to multicriteria classification problems. In this 
paper, the dominance-based rough set approach is considered in the context of 
vague information on preferences and decision classes. The vagueness is handled by 
possibility and necessity measures defined using modifiers of fuzzy sets. Due to this 
way of handling the vagueness, the lower and upper approximations of preference­
ordered decision classes are fuzzy sets whose membership functions are necessity 
and possibility measures, respectively. 

1 Introduction 

The rough set theory has been proposed by Z. Pawlak [5] to deal with in­
consistency problems following from information granulation. The original 
rough set idea has proved to be particularly useful in the analysis of multiat­
tribute classification problems; however, it was failing when attributes whose 
domains are preference-ordered (criteria) had to be taken into account. In­
deed, in many real problems it is important to consider the ordinal properties 
of the considered criteria. For example, in bankruptcy risk evaluation, if the 
debt index (total debt/total activity) of firm A has a modest value, while 
the same index of firm B has a significant value, then, within the rough set 
approach, the two firms are merely discernible, but no preference is given 
to one of them with reference to the attribute "debt ratio". In reality, from 
the point of view of the bankruptcy risk evaluation, it would be advisable to 
consider firm A better than firm B, and not simply different (discernible). 
Therefore, the attribute "debt ratio" is a criterion. Consideration of criteria 
in rough set approximation can be made by replacing indiscernibility or sim­
ilarity relation by the dominance relation, which is a very natural concept 
within multicriteria decision making. 

In order to deal with problems of multicriteria decision making (MCDM), 
like sorting, choice or ranking, a number of methodological changes to the 
original rough set theory were necessary [2]. The main change is the substitu­
tion of the indiscernibility relation by a dominance relation (crisp or fuzzy), 



130 S. Greco, M. Inuiguchi and R. Slowhiski 

Table 1. An example of Qt i = 1, 2, mh and Mh 

Modifier 0 ---> h ---> 1 

Qt. most weakly more or less normally very most strongly 
Q~ most weakly more or less normally very most strongly 
mh most strongly very normally more or less most weakly 
Mh most weakly more or less normally very most strongly 

which permits approximation of ordered sets in multicriteria sorting. In this 
paper we propose a fuzzy extension of the rough approximation by dominance 
relation based on the concepts of necessity and possibility. In particular, we 
are considering a special definition of necessity and possibility measures in­
troduced in [4]. For an alternative fuzzy extension of rough approximation by 
dominance relation see [2,3]. The paper is organized as follows. Section two 
recalls necessity and possibility measures. Section three presents basic idea 
of rough approximation by fuzzy dominance. Conclusions are grouped in the 
last section. 

2 Possibility and Necessity Measures 

Possibility and necessity measures are defined by 

JI(BjA) = supC(JLA(x),JLB(x)), N(BjA) = inf I(JLA(x), JLB(x)), 
"' 

X 

where A and Bare fuzzy sets with membership functions JLA and JLB· C and 
I: [0, 1] x [0, 1] --> [0, 1] are conjunction and implication functions such that 

C1) C(O, 0) = C(O, 1) = 0(1, 0) = 0 and 0(1, 1) = 1, 
11) I(O,O) = I(O, 1) = I(1, 1) = 1 and I(1,0) = 0. 

We often use monotonic conjunction and implication functions C and I which 
satisfy 

C2) C(a,b) ~ C(c,d) if a~ c and b ~ d, 
I2) I(a,b) ~ I(c,d) if a;::: c and c ~d. 

If C and I satisfies C2) and I2) then we have the following properties, re­
spectively: 

In the following we use also a negation function neg: [0, 1] --> [0, 1], such 
that neg(O) = 1, neg(neg(a)) =a and neg is a non-increasing function. 

Since there exist many conjunction and implication functions, we have also 
many possibility and necessity measures. Thus there is a question, how we 
select possibility and necessity measures. To answer this question, in [4] the 
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level cut conditioning approach has been proposed. In this approach, we can 
specify possibility and necessity measures based on the following equivalences: 

ll(BIA) ~ h if and only ifQ~(A) ~ (Q~(B)r, 
N(BIA) 2:: h if and only if mh(A) ~ Mh(B), 

(1) 
(2) 

where Ac is the complement fuzzy set of A and inclusion relation A ~ B is 
defined by J.l-A ~ J.l-B· Qi, i = 1, 2, mh and Mh are modifiers varying with 
a parameter h E (0, 1). An example of Qi, i = 1, 2, mh and Mh is given in 
Table 1. As h becomes large, condition Qk(A) ~ (Q~(B)r becomes weak 
while condition mh(A) ~ Mh(B) becomes strong. 

In order to proceed with calculations, Qi(A), i = 1, 2, mh(A) and Mh(A) 
are defined by the following membership functions: 

From the properties of modifiers Qi, mh and Mh, modifier functions g~, 
gm and gM should satisfy the following requirements: q 1) g~ (a, ·) is lower 
semi-continuous for all a E (0,1], q2) g~(l,h) = 1 and g~(O,h) = 0 for all 
h < 1, q3) g~(a, 1) = 0 for all a E (0, 1], q4) g~(a, ·)is non-increasing for all 
a E (0, 1], q5) g~(·, h) is non-decreasing for all hE (0, 1], q6) g~(a, 0) > 0 for 
all a E (0, 1), g1) gm(a, ·) and gM (a,·) are lower and upper semi-continuous 
for all a E (0, 1], respectively, g2) gm(1, h) = gM (1, h) = 1 and gm(o, h) = 
gM(O,h) = 0 for all h > 0, g3) gm(a,O) = 0 and gM(a,O) = 1 for all 
a E (0, 1], g4) gm(a, ·) is non-decreasing and gM (a,·) is non-increasing for 
all a E (0, 1], g5) gm(·, h) and gM (·,h) are non-decreasing for all h E (0, 1] 
and g6) gm(a, 1) > 0 and gM(a, 1) < 1 for all a E (0, 1). 

Given modifier functions g~ (i = 1, 2), gm and gM, it is shown that 
possibility and necessity measures are obtained as (see (4]) 

liL(BIA) = i~f{h E (0, 1]1 Q~(A) ~ (Q~(BW} = s~pCL(J.J-A(x),p,n(x)), 

NL(BIA) = sup{h E (0, 1]1 mh(A) ~ Mh(B)} = inf JL(J.J-A(x),p,n(x)), 
h X 

where conjunction function CL and implication function JL are defined by 

CL(a,b) = inf{h E (0, 1]1 g~(a,h) < neg(g~(b,h))}, 
h -

IL(a, b) = sup{h E (0, 1]1 gm(a, h) ~ gM (b, h)}. 
h 

Conjunction and implication functions cL and JL satisfy C2) and I2), respec­
tively. It is shown that many famous conjunction functions and implication 
functions are obtained from modifier functions g~ (i=1,2), gm and gM. Prop­
erties of CL and JL are investigated in (4]. 
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3 Approximations by Means of Fuzzy Dominance 
Relations 

Let us remember that formally, by an information table we understand the 
4-tuple S = (U, Q, V, !}, where U is a finite set of objects, Q is a finite 
set of attributes, V = UqEQ Vq and Vq is a domain of the attribute q, and 
f: U x Q --4 Vis a total function such that f(x,q) E Vq for every q E Q, 
x E U, called an information function ( cf. [5]). 

Furthermore an information table can be seen as decision table assuming 
that the set of attributes Q = K U D and K n D = 0, where set K contains 
so-called condition attributes, and D, decision attributes. In the dominance­
based rough set approach we are considering attributes with preference­
ordered domains - such attributes are called criteria. 

In this section we refine the concept of dominance-based rough approx­
imation recalled in section 2, by introducing gradedness through the use of 
fuzzy sets. In the following we shall use the concepts ofT-norm T and T­
conorm T* defined as follows: T : [0, 1] x [0, 1] --4 [0, 1] such that for each 
a, b, c, d E [0, 1], T(a, b) ~ T(c, d) when a ~ c and b ~ d, T(a, 1) = a, 
T(a, b) = T(b, a) and T(a, T(b, c)) = T(T(a, b), c); T* : [0, 1] x [0, 1] --4 [0, 1] 
such that for each a, b, c, dE [0, 1], T*(a, b)~ T*(c, d) when a~ c and b ~ d, 
T*(a, 0) =a, T*(a, b) = T*(b, a) and T*(a, T*(b, c)) = T*(T*(a, b), c)). 

Let Sq be a fuzzy outranking relation on U with respect to criterion 
q E K, i.e. Sq : U x U --4 [0, 1], such that Sq(x, y) represents the credibil­
ity of the proposition "x is at least as good as y with respect to criterion 
q". It is natural to consider Sq as a fuzzy partial T-preorder, i.e. reflex­
ive (for each x E U, Sq(x,x) = 1) and T-transitive (for each x,y,z E U, 
T(Sq(x,y),Sq(y,z))::; Sq(x,z)). Fuzzy outranking relation Sq can be build 
from another fuzzy complete T-preorder defined on domain Vq of criterion 
q E K, i.e. Svq: Vq x Vq --4 [0, 1] such that Sq(x,y) = Svq(f(x,q),f(y,q)). 

Using the fuzzy outranking relations Sq, q E K, a fuzzy dominance rela­
tion on U (denotation Dp(x,y)) can be defined for each P ~ K as follows: 

Dp(x,y) = T Sq(x,y). 
qEP 

Given (x, y) E U x U, Dp(x, y) represents the credibility of the proposition 
"x outranks y on each criterion q from P". Let us remark that from the 
reflexivity of fuzzy outranking Sq, q E K, we have that for each x E U 
Dp(x,x) = 1, i.e. also Dp is reflexive. 

Since the fuzzy outranking relations Sq are supposed to be partial T­
preorders, then also the fuzzy dominance relation Dp is a partial T-preorder. 
Furthermore, let Cl = {Clt, t E H}, H = {1, ... , n}, be a set of fuzzy classes 
in U, such that for each x E U, Clt(x) represents the membership function 
of x to Clt. We suppose that the classes of Cl are ordered according to 
increasing preference, i.e. that for each r, s E H, such that r > s, the elements 
of Clr have a better comprehensive evaluation than the elements of Cl8 • 
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For example, in a problem of bankruptcy risk evaluation, Ch is the set of 
unacceptable risk firms, Cl2 is a set of high risk firms, Ch is a set of medium 
risk firms, and so on. 

On the basis of the membership functions of the fuzzy class Clt, we can 
define fuzzy membership functions of two merged fuzzy sets: 

1) the upward merged fuzzy set Cl(, whose membership function Clt(x) 
represents the credibility of the proposition "x is at least as good as the 
objects in Clt'', 

cz?.(x) = { 1 if 3s E H: Cl 8 (x) > 0 and s > t 
t Clt(x) otherwise, 

2) the downward merged fuzzy set Clt, whose membership function Clt (x) 
represents the credibility of the proposition "x is at most as good as the 
objects in Clt'', 

cz<Oo(x) = { 1 if 3s E H: Cls(x) > 0 and s < t 
t Clt(x) otherwise. 

We say that the credibility of the statement "x belongs without ambiguity 
to Clt" is equal to the degree of necessity of the statement "all objects y E U 
dominating x belong to Clt". Furthermore, we say that the credibility of the 
statement "x possibly belongs to Clt" is equal to the degree of possibility 
of the statement "some object y E U dominated by x belongs to Clt". 
Analogous statements can be formulated for inclusion of x in Clt. 

Therefore, the P-lower and the P-upper approximations of Clt with re­
spect toP<;;; K are fuzzy sets in U, whose membership functions (denotation 

> - > E[Clt(x)] and P[Clt(x)], respectively) are defined as: 

E[Clt(x)] = N(CltiD%(x)) = inf I(Dp(y,x),Clt(Y)), 
yEU 

P[Clt(x)] = II(CltiD;(x)) = supC(Dp(x,y),Clt(Y)), 
yEU 

where D%(x) is a fuzzy set of objects y E U dominating x with respect to 
P <;;; K and D;(x) is a fuzzy set of objects y E U dominated by x with respect 
toP<;;; K. The membership functions of Dj;(x) and D;(x) are defined as: 

p,(y,D;(x)) = Dp(x,y). 

The P-lower and P-upper approximations of Clt with respect to P <;;; K 
< - < (denotation E[Clt(x)] and P[Clt(x)]) can be defined, analogously. 

Greco, lnuiguchi and Slowinski proved that the basic properties of rough 
set theory hold for the above definitions of lower and upper approximations 
subject to some conditions [1]. 
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4 Conclusion 

We introduced fuzzy rough approximation using fuzzy dominance to deal 
with multicriteria sorting problems. We proved that our extension of rough 
approximation maintains the same desirable properties of classical rough set 
approximation within fuzzy set context. Given the rough approximations of 
fuzzy decision classes being merged according to the preference order, one is 
able to induce certain and possible decision rules from these approximations. 
Each certain rule is characterized by a necessity degree, and each possible 
rule, by a possibility degree, corresponding to rule credibility. For example, 
in the context of credit analysis a decision rule can have a syntax like "if 
the debt ratio is not larger than 3 and the return on investment not smaller 
than 10%, then the firm is at most a medium risk firm; the credibility of this 
implication being equal to 75%." 
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Abstract. A new algorithm called Simplex Coding Genetic Algorithm (SCGA) 
is proposed for solving nonlinear global optimization problems. This algorithm is 
obtained by hybridizing genetic algorithm and simplex-based local search method 
called Nelder-Mead method. The efficiency of SCGA is tested on some well known 
functions. Comparison with other meta-heuristics indicates that the SCGA is promis­
ing. 

1 Introduction 

Global optimization has drawn much attention recently [5,9], because of a 
very broad spectrum of applications in real-world systems. In this paper, we 
focus on the case of unconstrained minimization, i.e., the problem is 

min f(x), 
X ERn 

where f is a generally nonconvex, real valued function defined on Rn. Meta­
heuristics contribute to a reasonable extent in solving global optimization 
problems, mainly combinatorial problems [10]. Genetic algorithms (GAs) are 
one of the most efficient meta-heuristics [7], that have been employed in a 
wide variety of problems. However, GAs, like other meta-heuristics, suffer 
from the slow convergence that brings about the high computational cost. 

Recently, several new approaches have been developed to furnish meta­
heuristics with the ability to simulate the fast convergence of local search 
methods. Most of these approaches hybridize local search methods with meta­
heuristics to obtain more efficient methods with relatively faster convergence. 
This paper pursues in that direction and proposes a new hybrid method that 
combines GA with a local search method called Nelder-Mead method [9]. In 
the combined method, called the simplex coding genetic algorithm (SCGA), 
we consider the members of the population to be simplices, i.e., each chromo­
some is a simplex and the gene is a vertex of this simplex. Selection, crossover 
and mutation procedures are used to improve the initial population. More­
over, Nelder-Mead method is applied to improve the population in the initial 

* This research was supported in part by a Grant-in-Aid for Scientific Research 
from the Ministry of Education, Science, Sports and Culture of Japan. 
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stage and every intermediate stage when new children are generated. In the 
SCGA, we use the linear ranking selection scheme [1] to choose some fit par­
ents to be mated. Then, using a new scheme of a multi-parents crossover, new 
children are reproduced and a few of them are mutated. Applying Kelley's 
modification [6] of Nelder-Mead method on the best point visited is the final 
stage in the SCGA to accelerate the search and to improve this best point. 

There have been some attempts to utilize the idea of hybridizing local 
search methods with GA. Simple hybrid methods use the GA or local search 
methods to generate the points for the new population and then apply the 
other technique to improve this new population. Other hybrid methods do 
some modifications in the GA operations; selection, crossover and mutation 
using local search methods [11]. 

The description of the proposed method is given in the next section. Sec­
tion 3 discusses the experimental results along with the initialization of some 
parameters and the setting of the control parameters of the proposed method. 
The conclusion follows the experimental results and makes up Section 4. 

2 Description of SCGA 

In this section, we describe the proposed method SCGA. The SCGA uses the 
main functions of the GA; selection, crossover and mutation, on a popula­
tion of simplices to encourage the exploration process. Moreover, the SCGA 
tries to improve the initial members and new children by applying a local 
search method to enhance the exploitation process. This kind of exploration­
exploitation procedure is sometimes called "Memetic Algorithm", see [8]. 
Finally, the SCGA applies an effective local search method on the best point 
reached by the previous exploration-exploitation procedure. The purpose of 
this local search is to accelerate the final stages of the GA procedure. This 
strategy is expected to be effective because the GA has a difficulty in ob­
taining some required accuracy although the GA may quickly approach the 
neighborhood of the global minimum. 

2.1 Initialization 

The SCGA starts with the following initialization procedure: 

1. Generate the initial population Po that consists of M chromosomes (sim­

plices), i.e., Po= { Si: Si = {xi,i} ~:11 ; xi,i ERn, j = 1, ... , M}. 
2. Order the vertices of each simplex Si, j = 1, 2, ... , M, so that 

(1) 

3. Apply a small number of iterations of the Nelder-Mead method with 
each Si as an initial simplex to improve the chromosomes in the initial 
population Po. 
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4. Order the simplices Si 
population P0 so that 

{ j i}n+l ' 1 M ' h ' d x ' i=l , J = , ... , In t e Improve 

f(xl,l)::::; f(x2,1)::::; ... ::::; f(xM,l). (2) 

2.2 GA loop 

While the stopping conditions are not satisfied, repeat the following proce­
dures; selection, crossover and mutation, and reduction of the population. 
Selection. We describe how we select the set Q ~ P of the members that 
will be given the chance to be mated from the current population P. The 
number of members in each P or Q stays constant but more fit members 
in Pare chosen with higher probability in Q. We use Baker's scheme called 
"linear ranking selection" [1] to select the new members in Q. 
Crossover and mutation. Choose a random number from the unit interval 
[0, 1] for each chromosome in Q. If this number is less than the predertermined 
crossover probability Pc, then this chromosome is chosen as a parent. Repeat 
the following steps until all parents are mating. 

1. Select a number nc from the set { 2, ... , n + 1} randomly to determine 
the number of parents chosen to be mated together. 

2. Compute new children Ci = {x~·k};~~, i = 1, ... ,nc by 

(3) 

where ri, i = 1, ... , nc, are random vectors of length less than 1, dis the 
maximum distance between pairs of parents and a;k is the average of the 
kth vertices of all parents, i.e., 

-k 1 nc i k 
x =-LX', k= 1, ... ,n+l. 

nc i=l 

(4) 

Figure 1 shows an example of crossover in two dimensions. In Figure 
1(a), we use Equations (4) to compute the dotted simplex whose vertices 
are the average of the vertices of the parents S1, S2 and S3 . By using 
Equations (3), we move this dotted simplex randomly inside the circle to 
create the children C 1 , C2 and C3 , as in Figure 1 (b). 

3. Choose a random number from the unit interval [0, 1] for each child 
Ci, i = 1, ... , nc. If this number is less than the predertermined mu­
tation probability Pm, then this child is mutated. Let Im be the index set 
of those children who are mutated. 

4. Apply the following procedure for each child Ci = {x~k};~~, i E Im. 
Select a number ni from the set {1, 2, ... , n + 1} randomly to determine 
the vertex that is reflected as a mutation. Compute the mutated child (ji 
= {xi,k }n+l by 

m k=l 

x:;.k = x~·k, k = 1, ... , ni- 1, ni + 1, ... , n + 1, 
x:;.n• = x + u (x- x~·n•), 
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where u is a random number in the interval [0.5, 1.5] and x is the average 
of vectors x~· 1 , ... , x~,n;- 1 , x~·n'+ 1 , ... , x~,n+ 1 . Replace the child Ci by 
the mutated one Ci. Figure 1(c) shows an example of mutation in two 
dimensions, where the mutated simplex consists of the vertices x~1 , x~2 

and x~3 , where the vertex x~2 is randomly chosen on the line segment 
P1P2· 

xa 
... :·xl 

i;'i [&2 d 

(a) 

(c) 

Fig. 1. An example of SCGA crossover and mutation in two dimensions 

5. Apply a small number of iterations of the Nelder-Mead method with each 
child Ci, i = 1, ... , nc as an initial simplex to improve the chromosomes. 

6. The population in the next generation consists of the M best ones from 
the set P U { Ci} ::1 . Re-order the chromosomes in the new population 
so that (1) and (2) hold. 

Reduction of the population. After every predetermined number of gen­
erations, remove some of the worst members in the population P. 
Acceleration in the final stage. From the best point obtained by the above 
procedures, construct a small simplex. Then, apply Kelley's modification [6] 
of the Nelder-Mead method on this simplex to obtain the final solution. 

3 Experimental Results 

GA loop parameters. The steps of the GA loop have been described in the 
previous section. Here we specify the values of the parameters used in this 
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loop. The control parameter 'f/max in the selection procedure is chosen to be 
1.1 according to the original setting in [1]. The crossover probability Pc and 
the mutation probability Pm are set equal to 0.6 and 0.1, respectively. The 
number of Nelder-Mead iterations in the local search for the new children 
is fixed at 2. At every 3n generations, we remove then worst chromosomes 
from the population unless the number of its chromosomes is less than 2n. 
Termination criteria. The SCGA is terminated when the function values 
at all vertices of the simplex that contains the best point become close to 
each other. In order to limit the computations whenever this termination 
condition cannot be achieved, we terminate the algorithm if the number of 
generations exceeds the predetermined number set equal to min (10n, 100). 
Numerical results. The performance of the SCGA was tested on a number 
of well known functions [2,3,4]. For each function we made 100 trials with 
different initial populations. The SCGA algorithm was programmed in MAT­
LAB and was run on a personal computer running at 733 MHz. To judge the 
success of a trial, we used the condition: If*- J1 < ~: 1 1!*1 +~:2 , where J refers 
to the best function value obtained by SCGA, f* refers to the known exact 
global minimum, and E1 and E2 are small positive numbers. We set ~: 1 and ~:2 
equal to w-4 and 10-6 , respectively. The results are shown in Table 1, where 
the average number of function evaluations is related to only successful tri­
als. Table 1 shows that the SCGA reached the global minima in a very good 
successful rate for the majority of the tested functions. In this Table, we also 
compare the results of the SCGA with those of three other meta-heuristic 
methods. These methods are Real-value Coding Genetic Algorithm (RCGA) 
[2], Continuous Genetic Algorithm (CGA) [3] and Direct Search Simulated 
Annealing (DSSA) [4]. The figures for these methods in Table 1 are taken 
from the original references. The comparison given in Table 1 shows the DSSA 
outperforms the other GA methods for the majority of test functions. 

4 Conclusion 

In this paper, we have introduced a simplex coding genetic algorithm that 
uses a set of simplices as the population. Applying the Nelder-Mead local 
search method on these simplices in addition to the ordinary GA operations 
such as selection, crossover and mutation enhances the exploration process 
and accelerates the convergence of the GA. We also have introduced a new 
kind of multi-parents crossover that gives the chance to more than two parents 
to cooperate in reproducing children and exploring the region around these 
parents. Moreover, using a local search method again in the final stage helps 
the GAin obtaining good accuracy quickly. Finally, the computational results 
show that the SCGA works successfully on some well known test functions. 
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Table 1. Average number of function evaluations 

Function SCGA RCGA [2] CGA [4] 
Branin 173 490 620 
Easom 715 642 1504 
Goldstein 191 270 410 
Shubert 742 (98%) 946 575 
Michalewicz 179 452 

DSSA [8] 
118 
1442 (93%) 
261 
457 (94%) 

Rosenbrock (R2) 222 596 960 306 
Zakharov (Z2) 170 437 620 186 
De Joung 187 395 750 273 
Hartmann (H3,4) 201 342 582 572 
Shekel (S4,5) 1086 (79%) 1158 (62%) 610 (76%) 993 (81 %) 
Shekel (S4,7) 1087 (81%) 1143 (70%) 680 (83%) 932 (84%) 
Shekel (84,10) 1068 (84%) 1235 (58%) 650 (81%) 992 (77%) 
Rosenbrock (Rs) 3629 (90%) 4150 (60%) 3990 2685 
Zakharov (Z5 ) 998 1115 1350 914 
Hartmann (H6,4) 989 (99%) 973 970 1737 (92%) 
Rosenbrock (Rw) 6340 (90%) 8100 (70%) 21563 (80%) 16785 
Zakharov (Zw) 1829 2190 6991 12501 
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Abstract. The paper is concerned with a multicriteria game whose payoff takes 
its values in an ordered vector space. As compare with usual single-criterion games, 
useful results in such classical games do not always hold as to multicriteria games. 
For example, minimax and maximin values are coincident under certain conditions 
in usual single-criterion games, but their values are not always coincident under 
similar conditions in multicriteria games. Therefore, in this paper, we propose a 
certain coincidence condition on minimax and maximin values under suitable set­
ting in multicriteria games. 

1 Introduction 

Game theory started from famous minimax theorem and has been developed 
widely. In game theory for single-criterion, several kinds of solution concepts 
and their useful properties have been analyzed and used; see [4] and refer­
ences cited therein. One of unsolved problems in game theory is whether 
games with multiple non-comparable criteria have an acceptable theory sim­
ilar to standard results for single-criterion games. In general, such kind of 
games is called "multicriteria game", and it has been studied as strategic 
forms in [1,5,6] and references cited therein. Optimal strategies of a multi­
criteria game are characterized by a plural number of incomparable optimal 
solutions, denoted by a set of efficient (or Pareto, or nondominated) points. 
In single-criterion games, it is well-known that minimax and maximin values 
are coincident with the saddle value under some conditions, but its analogy 
for multicriteria games can not be expected in general. Therefore, the aim of 
this paper is to examine what kind of condition is sufficient for minimax and 
maximin values to be coincident with each other in multicriteria games. 

2 Multicriteria two-person zero-sum game 

First, we define a partial ordering for vector-values instead of the total or­
dering for real-values. 

Definition 1. For any two vectors x andy, 

X ~C y <¢===> y - X E C, 
x ic y <¢===> y - x rj_ C, 

x <c y <¢===> y- x E C\{0} 
x 1-cY <¢===> y- x rj_ C\{0} 
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where Cis a solid pointed convex cone, i.e., intC =1- 0, C n (-C) = {B}. 

Next, we introduce concepts of C-minimal and C-maximal points of a set 
with respect to the ordering defined by a cone C, i.e., concepts of lower and 
upper efficient points. Throughout this paper, let Z be an ordered vector 
space with an ordering .:::,c. 

Definition 2. z0 E A c Z is said to be a C-minimal point of A if An (zo -
C)= {z0 }, and a C-maximal point of A if An (zo +C)= {z0 }, respectively. 
We denote the set of such all C-minimal (resp. C-maximal) points of A by 
MinA (resp. MaxA). 

Under these definitions, we consider a gamer= (X, Y,-J, !), where X 
and Y are nonempty sets, and f : X x Y ~ Z. The set X (resp. Y) is 
the set of strategies of Player 1 (resp. Player 2), and the mapping -! (resp. 
f) is the payoff function of this player. We call this game "multicriteria two­
person zero-sum game", and we can consider the following idea of equilibrium 
strategies in the same manner as single-criterion games. 

Definition 3. In multicriteria two-person zero-sum games, a point (x0 , y0 ) 

is said to be an equilibrium optimal response strategy pair of the game if 
f(x,yo) <f.cf(xo,Yo) and f(xo,Yo) </.0 f(xo,y), Vx EX, y E Y. 

Above definition is equivalent to the following one. 

Definition 4. Let f : X x Y ~ Z be a vector-valued function. A point 
(xo, Yo) is said to be a C-saddle point off with respect to X x Y if f(x0 , y0 ) E 
Maxf(xo, Y) n Minf(X, Yo). 

The set of C-saddle values is denoted by SV(f). Let 

D1 = { (xo, Yo) EX x Y I f(xo, Yo) E Maxf(xo, Y)} and 
D2 = { (xo, Yo) E X x Y I f(xo, Yo) E Minf(X, Yo)}, 

D 1 n D2 is the set of all C-saddle points of j, and f(D1 n D2) = SV(f). By 
calculating D 1 and D2 , we can easily obtain the set SV(f); see Example 1. 

Moreover, by using concepts of C-minimal and C-maximal points, we can 
define the following subsets of Z as analogues of minimax and maximin values 
in single-criterion games. 

Definition 5. In multicriteria two-person zero-sum games, subsets of Z 

Minimax!:= Min U Maxf(x, Y) and Maximin! :=Max U Minf(X, y) 
xEX yEY 

are the set of all minimax values for f and the set of all maximin values for 
f, respectively. 

Note that these three sets SV(f), Minimax! and Maximin! are not coinci­
dent in general. 
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Example 1. Let Z and C be a 2-dimensional Euclidean space and its positive 
orthant of Z, respectively. We consider the following gamer= (X, Y,-J, !). 
X and Y are sets of mixed strategies in another 2-dimensional Euclidean 
space, i.e., co{(1, o)t, (0, 1)t}. We consider the following matrix type payoff 
function f(x,y) = (xtAy, xtBy)t where 

A=(~~), B=(~i)-
This example is given by Corley [1]. Then, we get the set of C-saddle values 

SV(f) = {!(x,y) I (x,y) ED} 

= { (u, v)t I u = YI, v = -y1 + 1, 0::; Yl ::; ! } 
U {cu,v)t lu =Xi +~1-; 2X1Yl, V = -yl +x1y1 + 1,}' 

0 :S X1 < 2, 2 < Yl :S 1 

where x = (xt, 1- x1Y, y = (y1, 1- yi)t and 

D := D1 nD2 

= { (x, y) I X1 = 0, 0::; Yl ::; ! } U { (x, y) I 0::; X1 < !, ! < Yl ::; 1}. 

Minimax/ and Maximin/ for this example are as follows; (see Fig. 1.) 

Minimax/= {(u, v)t I u = Yl, v = 1- YI, 0::; Yl ::; 1}, 
M . . f _ {c )t I u2 + 4v2 - 6u- 8v + 4uv + 5 = 0, } 

aximm - u, v ! < u::; 1, 0::; v < i . 

v 

Minimax/---+--' 

Fig. 1. Minimax! and Maximin! in Example 1. 
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3 Coincidence condition 

In multicriteria two-person zero-sum games, we consider the following setting. 
Let Z and C be an n-dimensional Euclidean space and its positive orthant 
of Z, respectively. Strategy sets X and Y are convex hulls generated by 
(1, O)t and (0, l)t in 2-dimensional Euclidean space, i.e., co{(l, o)t, (0, l)t}. 
The payoff function f is a bilinear function with respect to x andy. 

We introduce a dominance property that is important in the problem of 
efficient points. 

Lemma 1. (See Lemma 5.2 in {5}) Let Z be an ordered vector space with an 
ordering defined by a solid pointed convex cone C, and A a subset of Z. If 
the convex cone C of Z satisfies the condition 

clC + (C\{0}) c C 

and if A is nonempty and compact, then MirrA =f 0, A c MirrA + C and 
MaxA =f 0, A c MaxA- C. 

As to dominance property, more complex one has been proposed. The first 
condition in the dominance property is 

clC + (C\L) c C 

where L is the maximal subspace included in C, i.e., L = C n (-C), in 
general; see [2,3]. When C is pointed, this condition is coincident with one 
of Lemma 1. It is sufficient with this lemma in our setting because Z is the 
finite-dimensional vector space. By using the dominance property, we can get 
the following theorem. 

Theorem 1. We assume that SV(f) =f 0 and Minimax!, Maximin! c 
SV (f). Minimax! = Maximin! if one of the following statements holds: 

(i) 'Vx EX, dx E CU (-C) 
(ii) 'Vy E Y, dy E C U (-C) 

where dx = f(x, (l,O)t)- f(x, (0, l)t) and dy = f((l,O)t,y)- f((O, l)t,y), 
which are called "direction vector". 

Proof. We assume that dx E CU( -C) for any x EX. For any z E Minimax!, 
there exist xo EX and Yo E Y such that z = f(xo, Yo) and 

z' 1-c z and z 1-c f(xo, y), 'Vz' E Maxf(x, Y), x EX, y E Y. 

Therefore, we have z E Maxf ( xo, Y). Since we assume that the set of minimax 
values is a subset of SV (f), 

z = f(xo, Yo) E Maxf(xo, Y) n Minf(X, Yo), 
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i.e., f(x, Yo) </0 z, Vx EX. Since dx0 E CU (-C), we obtain Maxf(xo, Y) = 
{ z}. Moreover, C satisfies the condition in Lemma 1 because C is a closed 
set, and f(x, Y) is a bounded closed set for each x E X, and then it is a 
compact set. Hence, f(xo, Y) C z -C by Lemma 1. Here, for given y E Y, let 
ZMin(y) be an element of Min/(X, y). We suppose that ZMin(y) E z + C\ {0}, 
then 

f(xo, y) '5,c z = f(xo, Yo) and z = f(xo, Yo) <c zMin(y)· 

Hence, we obtain f(xo,y) <c ZMin(y)· This is contradictory to ZMin(y) E 
Minf(X,y). Therefore, we have ZMin(y) f. z+C\{0}. Since z is also a saddle 
value, 

f(x, Yo) </0 z and z </0 ZMin(y)> VzMin(y) E Minf(X, y), x EX, y E Y. 

So, we obtain z E Maximin/ and hence Minimax/ C Maximin/. 
On the other hand, for any z E Maximin/, there exist xo and Yo such 

that z = f(xo, Yo) and 

f(x, Yo) </0 z and z </0 z', Vz' E Minf(X, y), x E X, y E Y. 

Therefore, we have z E Minf(X, y0 ). Since we assume that the set of maximin 
values is a subset of SV(f), we have 

z = f(xo, Yo) E Maxf(xo, Y) n Minf(X, Yo), 

i.e., z </0 f(xo, y), Vy E Y. Here, for given x EX, let ZMax(x) be an element of 
Maxf(x, Y). Then, from dx E CU (-C), we obtain Maxf(x, Y) = {zMax(x)}· 
Moreover, f(x, Y) is a compact set for each x EX so f(x, Y) C ZMax(x)- C 
by Lemma 1. We suppose that ZMax(x) E z- C\{0}, then 

f(x, Yo) '5,c ZMax(x) and ZMax(x) <c z = f(xo, Yo). 

Hence, we obtain f(x, Yo) <c z = f(xo, Yo). This is contradictory to z E 
Minf(X,yo). Therefore, we have ZMax(x) f. z- C\{0}. Since z is also a 
saddle value, 

ZMax(x) </0 z and z </0 f(xo, y), VzMax(x) E Maxf(x, Y), X EX, y E Y. 

So, we obtain z E Minimax/ and hence Minimax/ :J Maximin/. 
Consequently, we obtain 

Minimax/ = Maximin/. 

When we also assume that dy E C U (-C) for any y E Y, we can prove 
similarly. This completes the proof. D 

Note that Theorem 1 holds for the payoff function f + a as well, where a is 
a vector in Z. 
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Backtrack Beam Search for Multiobjective 
Scheduling Problem 
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Abstract. This paper proposes a new approximation method for the multi­
objective optimization problem. Proposal method is based on the beam search us­
ing the tree structure which is one ofthe approximate algorithms for combinatorial 
optimization. In this algorithm, not only finding a solution by search, but back­
tracking is also executed further, and quality of the solution is improved by using 
analyzed result of tentative solution. We apply this method to the multi-objective 
flow-shop problem in which it minimizes maximum completion time, total setup 
cost and etc. in order to demonstrate the effectiveness of this method by a numeri­
cal experiment. 

Keywords. Multiobjective Scheduling, Flow-shop, Beam search, Approximation 
Algorithm, Non-dominated Solution 

1. Introduction 

Most scheduling problems considered so far treat single objective function only. 
Scheduling problems of real productions have not a single but multiple criteria. 
Due to this reason, there is a need to study multiple objective problem;. 

Flowshop scheduling problems are one of the most well known problems in the 
scheduling problems. The makespan minimization is often employed as a criterion 
of flowshop scheduling problem. We treat the multiobjective flowshop problem to 
minimize two objective, average flow time, and total setup cost, etc. at the same 
time. As we know, there may not be a schedule that optimizes both criteria at the 
same time. Thus, we seek non-dominated schedules thereafter. 

In the multi-objective problem, it is easy to search only for the solution biased 
to a certain weight, but it is difficult to search for various solutions not biased. We 
propose the algorithm which searches for all directions and the solution by using 
various weights. We also apply our algorithm to the multiobjective flowshop 
scheduling problem. 

This paper is organized as follows. Section 2 defines the non-dominated so1u­
tion and formulates the problem discussed in this paper. In Section 3, we review 
the beam search which based on our method and propose our backtrack beam 
search method. Section 4 applies our method to scheduling problem. The comp u-
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tational experiments and results are given in Section 5. Finally, conclusion and 
further research problems are discussed in Section 6. 

2. Problem Formulation 

The definition and the assumption of the scheduling problem (permutation flow 
shop model) used by our research are shown as follows. 
-There are m machines (Mt. M2, ••. , Mm) and njobs (J1,J2, ..• .Jn) to be processed 

on these processors. 
-The processing time PiJ of job J; on machine M.i is given. 
-For each machine, two jobs or more can not be processed at the same time. 
-Each job is processed in the same order of machine, i.e. M 1,M2, ••• , Mm. 
- Preemption is not allowed. 
- The completion time of job J; on machine A1j is denoted by cy, makespan is de-

noted by C; = max cii = C;m • 
1 

-The average flow time is average completion time of all jobs. 
- The setup cost is required when changing the job on first machine. The setup 

cost is not related to time, and does not influence at completion time. The total 
setup cost is sum of costs between each job. 

- The objective function is minimization of makespan, minimization of average 
flow time, and minimization of total setup cost. 

- The purpose of this problem is to search non-dominated schedule. 
-We define schedule vector v" as a vector consisting two elements, i.e, J;" and 

fz" in some feasible schedule n . That is, v" = (J;" ,/2") • 

- For two schedule vectors v"' = (f;"' ,/2"' ) and v"2 = (J;" 2 ,fz"2 ) , we say v"' 

dominates v"2 when J;"' ~ J;' , J;"2 ~ J;2 and v"' * v"2 • 

- A feasible Schedule n is called to be non-dominated if and only if there exists 
no feasible schedule n' that dominates n . 

3. Search Method 

3.1. Back-track beam search method 

Beam search is a heuristic technique for solving optimization problems. It was 
adapted from the branch and bound method and was developed in the AI commu­
nity in the mid 1970's. Lowerre (1976) was the very first person to use this search 
technique for a speech recognition problem. This technique uses heuristic method 
to estimate k best promising nodes where k is beam width and hold these k nodes 
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and permanently pruning the rest. The running time of this method is polynomial 
in the size of the problem compared to exponential in the size of the problems for 
the branch and bound method. 

At each level (except for level 0), k promising nodes are selected for further 
branching and pruning the rest. The promising nodes are selected based on some 
evaluation function or criteria and normally related to objective function . 

In the beam search, if the accuracy of the evaluation value is not good, the node 
which contains a good solution might be pruned off. The node pruned off is not 
searched again. If the beam search is performed without pruned off a node so as to 
obtain a good solution, it is necessary to expand beam width greatly and search for 
a lot of nodes at the same time. Therefore, search for solution requires very long 
calculation time. 

In the backtrack beam search, the beam search for the past is performed first of 
all , evaluation value of the node is calculated and pruned node is stored. Backtrack 
to the promising node among stored nodes by u;ing the past result so far. The 
beam search is performed again from the backtracked node. While searching, all 
nodes pruned are preserved. The lower bound of each node is compared with the 
tentative solution whether the non-dominated solution exists or not, and the 
bounded operation is performed to the node without the possibility where non­
dominated solution exists . 

If backtracking keeps being performed without limitation, this method behaves 
as the branch and bound method, and a strict solution is obtained. In order to ob­
tain a strict solution, long calculation time is required in a large-scale problem, 
therefore the searching is stopped at a certain time. 

In the multiobjective optimization problem, it is difficult to find various non­
dominated solution by searching only at once in the beam search for the past. 
However, by using backtracking, various non-dominated solution can be found 
because it is possible to search many times while changing weight. Therefore, our 
proposal method may be effective in a multiobjective problem. 

Levei O 

Levell 

Level 2 

Level 3 

Level4 

Step1 : Traditional beam search 
<P 

Fig. 1. Search example of backtrack beam search method. 
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3.2. Lower bound 

In order to calculate the evaluation value of the node, lower bound is used. As the 
lower bound of the makespan, we adopt that of J.Carlier, 1995. As the lower 
bound of average flow time, we adopt that of S.P.Bansal, 1977. The total setup 
cost minimization is equivalent to TSP. The lower bound of TSP is given, by the 
result of J.D.C.Little, 1963. 

3.3. Evaluation value 

The evaluation value of the node of the beam search is calculated as follows. 

F = w, LBJ; + Wz LBf2 
w1 +w2 w1 +w2 

Where weight vectorw = ( w1, w2), the lower bound of objective function 1 is 

assumed to be LBfi, the lower bound of objective function 2 is assumed to be LBJi. 

3.4. Algorithms 

In a numeric experiment, search stops when the specified calculation time, the 
repetition search frequency, and the searched number of nodes are reached. Set of 
solutions at that time is output as an approximation solution. 

[Main Procedure] 
1. Let n be the number of jobs. Let m be the number of machines. Let r be the 

number of repetition times at initial phase. Let W be the beam width at initial 
phase. Let w = (w~o w2) be the weight vector at initial phase. N{O} is generated 
as the initial node, and added to the UnSearch list. Let L be the un-search node 
level, and set to L = 0. 

2. W nodes in level L with good evaluation value are taken out from among the 
list of UnSearch, and those nodes are moved to SearchList. 

3. SearchList is transferred to the function [Beam Search] 
4. If non-dominated solution set has been updated, the bounded operation is done 

to the list of UnSearch. 
5. If r = 0, go to StepS, otherwise go to Step6. 
6. Set r = r - 1. UnSearch is sorted. 
7. The node of the best evaluation value is taken out from among the list of Un­

Search, the node is moved to SearchList, and L is updated to the same level as 
the node. Go to Step3. 

8. Present phase end. It progresses to the next phase; the number of repetition 
times r, beam width W, and the weight vector w are updated. 

9. UnSearch is sorted. L is updated to the same level as the highest node. Go to 
Step2. 

IO.End of main procedure. 
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[Beam Search] 
1. Let node !istParentNode be the received node list Set L = L + l. 
2. Some node is taken out from among the list of UnSearch, the node is named N. 
3. N is transferred to the function [Expansion of node]. The result is stored in the 

node list ChildNode. 
4. If the number of node of ParentNode is jParentNodel > 0, go to Step2. Other­

wise go to StepS. 
5. If the number of node of ChildNode is IChildNodel = 0, go to Step II without 

updating the non-dominated solution. If!ChildNodel > 0, go to Step6. 
6. If the searching IevelL = n, go to SteplO. Otherwise go to Step?. 
7. If IChildNodel > W, node list of ChildNode is sorted. 
8. W nodes with good evaluation value in ChildNode are left, and the remainder is 

moved to UnSearch. 
9. All nodes in ChildNode are moved toParentNode. Go to Step!. 
tO. Tentative non-dominated solution is updated by using ChildNode. 

[Expansion of node] 
1. The received node list is namedN. 
2. The child node is generated with determine the partial job order from the set of 

un-scheduled job. 
3. All generated child nodes are compared with non-dominated solutions. Inferior 

child node to non-dominated solution is deleted. 
4. A remaining node is output as an expanded result set. 

4. Numerical Experiments 

We apply the proposed algorithm to permutation flow shop problem with hi­
criteria, and confirm the effectiveness of our algorithm by numerical experiment. 
The algorithm has been implemented using C language on an IBM Compatible-PC 
with 512MB memory and Celeron 533MHz. 

The processing time of each job on each machine and setup cost between jobs 
are randomly generated integer value among interval [0, 50]. 

Fig.2 shows the non-dominated schedules generated after each phases for the 
15 jobs 15 machines problem. This is the result of the transition of the solution 
among phases. The objective functions are makespan and average flow time. The 
beam width is l 0. The number of backtrackings of each phase is 20. In phase I, 
weight vector is (I, 0), this means the priority search of objective function l. It 
changes to the next phase after backtracking is perfomed 20 times. Next, the 
weight vector is (0, I) in phase 2 to search for objective function 2 by priority. The 
weight vector from phase 3 to 5 are (2, I), (I, 2), (I, I) to search for the balanced 
solutions. The result shows the effectiveness of the repeated search changing 
weight. 

Fig.3 shows the comparison result of Beam search (BS) and Backtrack beam 
search (BTBS). The objective functions are makespan and total setup cost. The 
number of jobs is 20. The number of machine is 20. We show 6 kinds of BS with 
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different weight and one BTBS. Calculation time is the nearly the same respec­
tively. At BS, a beam width is 800 to 1000. In BTBS, a beam width is changed be­
tween 5 and 150. Although the solution has been partially biased in BS according 
to the given weight, the balanced solution is obtained in BTBS. 

655 L_ _ __._ __ ..__ _ _._ __ ..___J 

890 910 930 950 970 

Makespan 

1----~====Weight 
550 -sso1. (1. o) 

'""':'~; "'8802, (0. 1) 
450 t=-....:....---I~BS03, (1, 5) 

! -BS04, (1,1) 
<> 350 Hl~t----I="'''",LBS05, (2. 1) 
~ ·· -BS06, (3, 1) 
" ~ 25o ..... BTBS01 

150 

1200 1250 1300 1350 1400 1450 1500 
Makespan 

Fig. 2. Non-dominated schedules after Fig. 3. Beam search vs. Backtrack 
each phase beam search 

5. Conclusion 

In this paper, we have introduced an approximation algorithm based on beam 
search method for multi-objective optimization problems. We have applyed our 
method for multi-objective flowshop problem which minimize makespan, average 
flow time and total setup cost. In the proposal algorithm, various solutions can be 
obtained by the repeated search with changing weight. As shown by the numerical 
examples, our proposal algorithm can obtain more balanced solution than the 
beam search method. In our method, t is necessary to give parameters of beam­
width, weight, and the number of backtracking, etc. before experiments. We will 
try the automation of these parameters in the future study. 
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Abstract. Theoretical and applied aspects of using convex polyhedral cones in 
multicriteria programming and decision making are explored. Pointed and non­
pointed cones are examined and applications of pointed cones to model decision 
maker's preferences in bicriteria programming are presented. 

1 Introduction 

A multicriteria program involves a feasible set of decisions evaluated by means 
of several real-valued criterion functions. As every feasible decision yields an 
attainable outcome, it is of interest to identify a subset of the feasible deci­
sions producing the best outcomes. In a vast majority of multicriteria prob­
lems reported in the literature, the best outcomes are those that outperform 
each other with respect to the Pareto concept of optimality. This concept has 
been generalized by many authors. Yu [6] introduced cones to define the best 
outcomes, which allows for viewing Pareto optimality as a special case of op­
timality with respect to a convex cone. This was followed by many theoretical 
and methodological studies on multicriteria programming with convex cones 
(e.g., [4], [5]). Applied sciences, however, did not follow on this research direc­
tion and did not make use of general convex cones in multicriteria problems. 
The authors of this paper are not aware of a real-life application of multicrite­
ria programming with convex cones. On the other hand, some scientists have 
undertaken an effort to describe relative importance of criteria with convex 
cones in order to more accurately model decision maker's preferences (e.g., 
[2], [3]). 

The goal of this paper is to further explore the applicability of convex 
cones to multicriteria decision making and bring it closer to prospective users. 
We first connect results by Yu [7] who assumed that the cone used for choosing 
the best outcomes is acute, and results by Weidner [5] who introduced a more 
general condition. We then present two applications of polyhedral cones to 
bicriteria decision making and demonstrate them on an engineering design 
problem. 

*This research was partially supported by the Automotive Research Center, a 
U.S. Army Center of Excellence for Automotive Research at the University of 
Michigan. 
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2 Problem Formulation 

The following notation is used throughout this paper. Let y1 , y2 E R" be two 
vectors. y1 2': y 2 denotes Yl 2': Yl for all i = 1, 2, ... , m but y1 =/= y2 . y 1 ~ y 2 

denotes Yl 2': Yl for all i = 1, 2, ... , m. Also let ~ = {y E R"jy ~ 0}. 

Definition 1. A set C c;;;: Rm is called a cone if y E C implies that >.y E C 
for all >. 2': 0. A cone C is called convex if y 1 E C and y 2 E C implies that 
y 1 + y 2 E C. A cone C is called pointed if y E C, y =/= 0 implies that -y tj. C. 

A polyhedral cone, C c;;;: R", can be represented in intersection form by 
{y E R"jAy ~ 0} where A is a p x m matrix. Define the nullspace of A as 
N(A) = {y E R"jAy = 0}. 

Let X c;;;: F be a set of all feasible decision vectors and let fi(x), i = 
1, 2, ... , m, be real-valued functions. Then f(x*) represents the attainable 
outcome vector [fl(x*), ... , fm(x*)J for the feasible decision vector x*. Define 
the set of all attainable outcome vectors as Y = {y E R"jy = f(x), x E 
X} c;;;: R". Also, define the multiplication of a set Y c;;;: R" by a p x m matrix 
A as A • Y = {z E lll'lz = Ay,y E Y} c;;;: Ill' and the algebraic sum of the 
sets Y and -Y as Y- Y = {y E R"jy = f(x1 ) - f(x2 ) for x\ x 2 EX}. 

Let C C R" represent a set of "attractive" directions to the decision 
maker and be referred to as a preference cone. A direction is considered 
"attractive" if traveling along it results in improvement of, or at least no 
change in, all criterion values with respect to the decision maker's preferences. 
Yu [6] models the decision maker's preferences with a so-called domination 
cone that contains all directions considered "unattractive" to the decision 
maker. 

Given the problem related to the triple (X, f, C) and following Yu [6], 
we define efficient decisions and nondominated outcomes with respect to a 
preference cone C. 

Definition 2. A feasible decision x* EX is said to be an efficient decision 
for (X, f, C) if there is no direction d E C, d =/= 0 and no x 1 E X such that 
f(x1 ) = f(x*) +d. An attainable outcome y* = f(x*) E Y is said to be 
a nondominated outcome for (X, f, C) if there is no direction dE C, d =/= 0 
and no y 1 = f(x1 ) E Y such that y 1 = y* +d. Let E(X,j,C) and N(Y,C) 
denote the set of efficient decisions and the set of nondominated outcomes, 
respectively. 

3 Pointed and Non-Pointed Cones in Multicriteria 
Programming 

Weidner [5] generalized the concept of pointedness by introducing the condi­
tion N(A)n(Y -Y) = {0} relating the cone to the set of outcomes. We follow 
on her results and extend them within the framework proposed by Yu [6]. 
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Proposition 1. If C is a pointed, convex polyhedral cone represented in in­
tersection form, then N(A) n (Y- Y) = {0}. 

Proof: C is pointed if and only if rank(A) = m which is equivalent to 
N(A) = {0}. By definition, 0 E (Y- Y) so N(A) n (Y- Y) = {0}. D 

Theorem 1. (Yu {7]) Let C be an acute, convex polyhedral cone represented 
in intersection form. Then y E N (Y, C) if and only if Ay E N (A • Y, ~). 

Theorem 2. (Weidner {5}} Let C be a convex polyhedral cone represented 
in intersection form. Then 

1. E(X,f,C) ~E(X,Af,~). 
2. If N(A) n (Y- Y) = {0}, then E(X,J,C) = E(X,Af,~). 

Proof: 
(1) Let a: E E(X,f, C) and assume that a: fj_ E(X,Af, IE~). Then there exists 

a direction dE ~' d =J 0 and an a:' E X such that Xt(x) + d = Af(x') 
which yields d = Af(x') - Af(x) = A(f(x') - f(x)). Since d :::0: 0, we 
know that A(f(x') - f(x)) :::0: 0 and by the representation of the cone C, 
it must be that f(x') - f(x) = d' E C. We know that d' =J 0 because 
Ad' =J 0. So there exists a direction d' E C, d' =J 0 and an a:' EX such that 
f(x) +d' = f(x'). This means that a: fj_ E(X, /,C) which is a contradiction. 
Therefore, a: E E(X, Af, ~). D 

(2) We show that E(X,Af,~) ~ E(X,f,C). Let a: E E(X,Af,~) and 

assume that a: ~ E( X, f, C). Then there exists a direction d E C, d =J 0 and 
an a:' EX such that f(x)+d = f(x') and also Af(x)+Ad = Af(x'). Since 
d = f(x')- f(x) then dE (Y- Y) and because N(A) n (Y- Y) = {0} it 
must be that d ~ N(A) and therefore Ad =J 0. However, since dEC, Ad~ 0 
or equivalently Ad E ~. Let d' = Ad. Now we have a direction d' E ~, 

d' =J 0 and an a:' E X -;uch that Af(x) + d' = Af(x'). This implies th~t 
a:~ E(X,Af,~) which is a contradiction. Therefore, a: E E(X,f,C). D 

Theorem 3. Let C be a convex polyhedral cone represented in intersection 
form. If N(A) n (Y- Y) = {0}, then y E N(Y, C) if and only if Ay E 
A • N(Y,C). 

Proof: (=>) Obvious. (<=) Let Ay E A • N(Y,C) and assume that y fj_ 
N(Y, C). Then there exists a y' E N(Y, C), y' =J y such that Ay = Ay' or 
equivalently A(y- y') = 0. This implies that y- y' E N(A) and because 
N(A) n (Y- Y) = {0}, it must be that y- y' ~ (Y- Y). However, y- y' E 
(Y- Y) by definition which is a contradiction. Therefore, y E N(Y, C). D 

Theorem 4. Let C be a convex polyhedral cone represented in intersection 
form. Then 
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1. A • N(Y,C) <;;: N(A • Y,li~J 
2. If N(A) n (Y- Y) = {0},-then A • N(Y, C)= N(A • Y, ~). 

Proof: 
(1) Let z E A • N(Y, C). Then there exists ayE N(Y, C) such that z = Ay. 
Assume that z (j. N(A • Y, ~).Then there exists a direction dE~' d =/= 0 
and a z' E A • Y such that z + d = z'. Since z' E A • Y, there exists a y' E Y 
such that z' = Ay' and d = z' -z = Ay' -Ay = A(y' -y). Since d 2: 0, we 
know that A(y'- y) 2: 0 and by the representation of the cone C, it must be 
that y'- y = d' E C. We know that d' =/= 0 because Ad' =/= 0. So there exists 
a vector d' E C, d' =/= 0 and a y' E Y such that y + d' = y'. This implies 
y (j. N(Y, C) which is a contradiction. Therefore, z E N(A • Y, ~). D 

(2) We show that N(A • Y, ~)<;;:A • N(Y, C). Let z E N(A • Y, ~).Then 
there exists ayE Y such that z = Ay. Assume that z ¢-.A • N(Y, C). Then 
it must be that y ¢-. N(Y, C) which implies that there exists a d E C, d =/= 0 
and a y' E Y such that y+d = y' and Ay+Ad = Ay'. Since d = y' -y then 
dE (Y -Y) and because N(A)n(Y -Y) = {0} it must be that d ¢-. N(A) and 
therefore Ad=/= 0. However, since dEC, Ad~ 0 or equivalently Ad E ~-

Let d' = Ad. Now we have a direction d' E ~, d' =/= 0 and a z' = Ay' E A• Y 
such that Ay + d' = Ay' or equivalently z + d' = z'. This implies that 
z ¢-. N(A • Y, ~)which is a contradiction. Therefore, z E A • N(Y, C). D 

4 Decision Making With Polyhedral Cones 

Pareto-based multicriteria programming uses the nonnegative (nonpositive) 
orthant to model the decision maker's preferences. Clearly a general convex 
cone may or may not contain the Pareto cone. From a practical point of view, 
no direction contained in the Pareto cone should ever be eliminated since 
every vector in this cone represents a direction in which all criteria increase 
(decrease) or remain unchanged for a maximization (minimization) problem. 
Therefore, the general cones we are most interested in using are polyhedral 
cones that contain the Pareto cone since they contain all the directions of the 
Pareto cone with some additional directions that in special circumstances 
may also be attractive to the decision maker. 

In the context of decision making, the requirement that the preference 
cone be pointed translates to the property that if a direction d is attractive to 
the decision maker then the direction -d should not be considered attractive. 

Now consider the bicriteria case and the (nonpositive) Pareto cone. As­
sume, additionally, that one criterion is relatively more important than the 
other so that the decision maker allows the value of the less important crite­
rion to decay to obtain an improvement in the value of the more important 
criterion. This relative importance (Rl) of the two criteria can be modeled by 
opening the Pareto cone into the second quadrant as illustrated in Figure 1. 
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All directions in the second quadrant model the decision maker's preference 
that criterion ft is relatively more important than criterion h so that it is 
of interest to improve ft even in the presence of decaying h. Consistently, 
the bicriteria problem related to the triple (X, f with Rl, Pareto cone) can 
be equivalently reformulated as the bicriteria problem related to the triple 
(X,/, C), where Cis an Rl-related cone. 

Another way of interpreting the general cone in bicriteria decision mak­
ing uses tradeoff information associated with every nondominated outcome. 
This tradeoff information contains two ratios that inform how much one cri­
terion must be allowed to decay to obtain a unit of improvement in the other 
criterion. In this sense, constraints may be placed upon the tradeoff infor­
mation of the nondominated outcomes. Assume that the decision maker is 
willing to a priori discard those nondominated solutions that do not satisfy 
certain tradeoff constraints (TOC). Since TOC work in the outcome space 
they can be used to modify the Pareto cone to a general cone. Consistently, 
the bicriteria problem related to the triple (X, f with TOC, Pareto cone) can 
be equivalently reformulated as the bicriteria problem related to the triple 
(X, f, C), where Cis a TOC-related cone. 

In view of Section 3, the efficient decisions of the bicriteria problems above 
can be found by solving related Pareto bicriteria problems for which there 
are many solution methods. 

5 Example 

Consider the design of a tractor trailer with two design variables, the height 
of the hitch (x1) and the wheelbase of the trailer (x2). Two criteria of interest 
in evaluating performance of a tractor trailer are lateral load transfer ratio 
(It) and rearward amplification ratio (h) which should both be minimized 
(see [1] for a detailed model). 

Now suppose that the decision maker considers ft relatively more impor­
tant than h and is willing to allow up to 2.3 units of decay in h to gain 
one unit of improvement in It. We could also say that the decision maker 
considers a tradeoff of at most 2.3 units "attractive". 

Alternatively, suppose that the decision maker imposes a TOC that every 
outcome with a tradeoff of at least 2.3 units is to be retained for consider­
ation. The Rl-preference and the TOG-preference of the decision maker are 
modeled by the obtuse cone in Figure 1, which results in the bicriteria prob­
lem related to the triple (X, f, C) where X= {(xt, x2) I x1 E [51.2, 76.8], x 2 
E [311.04,466.56]}, f = [ft(xt,X2),h(xt,X2)], C ={dE lR' I Ad~ 0} and 

A= [ _-;~3 ~1 ]. In this example Cis pointed so by Proposition 1 and The­

orem 2, E(X, f,C) = E(X, -Af, -lit) = E(X,Af,llt) = {(xt,x2)lx1 E 

[59.5, 76.8],x2 = 466.56}. We know th~t E(X,f,-~) == E(X,-f,~) = 
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(-1, 2.3) 

f, 

Fig. 1. Pareto cone, RI-related cone and TOC-related cone for the example 

{(xi.xz) I x1 E [51.2, 76.8],xz = 466.56} and we see that the set of efficient 
decisions is reduced by using the preference cone in Figure 1. 

6 Conclusion 

In this paper, we investigated the theoretical implications of using non­
pointed polyhedral cones in multicriteria programming. We also presented 
two approaches (relative importance of criteria and tradeoff constraints) to 
model the decision maker's preferences with pointed polyhedral cones. Prob­
lems with polyhedral cones are easily solvable since they can be reformulated 
as Pareto multicriteria problems. 
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Abstract. Solution for multiple objective linear programming is a set of all effi­
cient or Pareto optimal solutions. Hence development of useful solution generation 
method ha..'! been desired. We proposed efficient solution generation method ba..'!ed 
on extreme ray generation method that sequentially generates efficient points and 
rays by adding inequality constraints of the polyhedral fea..'!ible region. In the con­
ventional multiple objective programming researc.hes it is required to solve efficiency 
test subproblem. On the other hand in our method by investigating the properties of 
efficiency tests we can improve efficiency test process in solution generation method. 

1 Introduction 

Definition 1 (Multiple objective linear programming). 

maximize ci x 
(1) 

maximize c[ x 
subject to Ax ~ b, x ~ 0 (2) 

where c1 , ••• , c, are given vectors in JR.n, x is a decision variable vector in 
1Rn, A is a given m x n matrix, and b is a given vector in 1R.m. We denote 
l x n criterion matrix by C = (cl> ... , c,)T and the polyhedral feasible region 
by P = {a: I Ax~ b, x ~ 0}. 

Definition 2 (Efficiency). A point a:' E P is said to he efficient or Pareto 
optimal, if there doPA'l not exists another x E P such that Cx :;::: Cx', where 
:;::: means at least one strict inequality. 

In the pa.'!t three decades various simplex-like algorithms that sequentially 
enumerate efficient extreme points and efficient extreme rnys have been devel­
oped [1]. On the other hand a new direction of computational techniques in 
efficient solution generation method based on extreme my generntion method 
or non-pivoting method ha.'l been developed [2]. The purpose of this paper is 
to make progress in efficiency tests in objective space to improve the solution 
generation method. 
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2 Cone representation and efficiency test 

We denote a convex hull of a set S = { x 1 , ... , x"} and a cone generated by 
S as follows: 

1l u 

conv S = {L:>ixi I LAi = 1, Ai ~ 0 fori= 1, ... ,u} (3) 
i=l i=l 

1l 

coneS= {L/liXi I /li ~ 0 fori= 1, ... ,u} 
i=l 

(4) 

In the polyhedral theory the following proposition for polyhedral set P is 
stated [3]. 

Proposition 1. Any pointed polyhedml set P has a unique minimal repre­
sentation as 

P = conv U + cone V (5) 

where U = {u1 , ... , U 8 } is the set of exactly the all verlices, extreme points, 
of P, and V = { v 1 , ... , vt} is the set of nonzero representatives for the all 
extreme mys of the cone of P. 

In order to deal with efficiency condition in cone representation we utilize 
the following Proposition directly deduced from Definition 2: 

Proposition 2. A feasible solution x' E P is efficient iff 

cone{C(u1 - x'), ... , C(us- x'), Cvl, ... , Cvt} n lR~ = {0}. (6) 

Hereafter we use the symbol (vi) to denote the ray {Avi I A ~ 0} by 
nonzero representative vi. In the polyhedral feasible region we focus on the 
extreme fea.'lible solutions such that x' = u' or x' = u' + ( v'). 

Concerning to check efficiency condition by Proposition 2 we obtain the 
following effective efficiency test problems: 

Proposition 3 (Efficiency test). A feasible solution x' E P is efficient 
iff the maximum value of the following linear progmmming problem is gmter 
than zero: 

max {zo I z = {zo,zl, ... ,zz} E F} 
l 

F = {z E lR.1+1 I L zk(C(ui- x'))k ~ 0 
k=l 

foriE{1, ... ,s}\{i'IC(ui' -x')~O}, and 
l 

(7) 

L:zk(Cv3)k ~ 0 for j E {1, ... , t} \ {j' I Cv3' ~ 0} 
k=l 
and zo ~ 0, Zi ~ zo fori= 1, ... , l } (8) 
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(Proof) The event of Proposition 2 is equivalent to that there does not exist 
J.L = (p.t, ... , P.s+t) ~ 0 such that I:;=l P,iC(ui - x') + I:~=l P.s+jCvj 2': 
0. The alternative of this event is that there exists v = (vt, ... , 111) E ill.1 

such that I:~=tvk(C(ui - x'))k ~ 0 fori = 1, ... , s, L~=tvk(CvJ)k ~ 
0 for j = 1, ... , t, and llj > 0 for j = 1, ... , l. If there exists v ~ 0, then 
vk(C(ui - x'))k ~ 0 for {i' I C(ui' - x') ~ 0}, and similar to the case of 
extreme rays. 

In a similar way to Proposition 3 we obtain the following efficiency test. 

Proposition 4 (Efficiency test'). A feasible solution x' E P is efficient 
iff the maximum value of the following linear programming problem is grater 
than zero: 

max {zo I z = {zo,zt, ... ,zl} E F} (9) 

F = {z E m.'+t I L Zk(C(ui- x'))k ~ 0, 
kfi.St 

St = {k I (C(ui- x'))k > O,i = 1, ... ,s} 
fori E {1, ... ,s}, and 

L Zk(CvJ)k ~ 0, 
kf1S2 

s2 = {k I (Cvj)k > O,i = 1, ... ,t} 
for j E {1, ... , t} 

and zo ~ 0, Zi ~ zo for i = 1, ... , l } (10) 

Now concerning the extreme points of P we can state the following propo­
sition that is effective in efficiency test process. 

Proposition 5. If E( · · · E(P, kt), · · ·, km) has only one extreme point 
u' for kt, .. ·, km E {1, ... , l}, then u' is efficient. 

where E(S, k) is the solution set E(S, k) in a setS for one objective function 
CkX (k E {1, ... ,l}), i.e., E(S,k) = {x E m.n I X= arg maxxES CkX}, i.e., 
this proposition means that an optimal solution for each objective function 
is efficient. 

3 Efficient solution generation algorithm 

We consider the cone K as cone reprPA'lentation of the fea.<Jible region P. Let 
(w) = ((x,~)) is an e..xtreme ray of K. 

K = {w = (x,~) E m.n+tl (-A,b)w =-Ax +b~ ~ 0, w ~ 0} (11) 
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If~= 0, i.e., w = (x, 0), then (x) (= (v)) is an extreme ray of P, and if~> 0 
and we rewrite the ray as (w) = ((x/~, 1)), then x/~ (= u) is the extreme 
point of P. 

We concern ourselves with finding all the extreme rays of the form K = 
{w I Dw ~ 0, w ~ 0}, where Dis n1 x n2. Consider the matrix ( ¥) where 
I is n 2 x n 2 identity matrix. Extreme ray generation method gives a series 
of transformation of this matrix that generates all the extreme rays [4]. At 
any stage of the process we denote the old matrix hy Y = ( !J:), and the new 
matrix being generated denoted hy Y 

Now we can utilize the properties of efficiency in polyhedral representation 
given in Section 2 to improve the efficient solution generation method based 
on extreme ray generation method [2]: 

(Step 0) Set Y = ( -1 b). 
(Step 1) 

(1) If any row of U has all components negative, then w = 0 is the only 
solution of K. 

(2) If all the elements of U are nonnegative, then the columns of L are 
the edges of K, i.e., the ray (L-J) is an edge of K. 

(Step 2) 
(1) Choose the row of U, say row r, with at least one negative elements. 
(2) (a) Let P = { j I Yrj ~ 0} and v = ltPI ( i.e., the number of elements 

of P). Then the first v columns of the new matrix, Y, are Yj (j E 
tli). 

(h) If Y has only two columns and Yr1Yr2 < 0, adjoin the column 
IYdY1 + IYr1IY2 to theY matrix. Go to step 5. 

(3) LetS= { (8, t) I YrsYrt < 0, 8 < t}, i.e., the set of all (unordered) pairs 
of columns of Y whose elements in row r have opposite signs. Let / 0 

he the index set of all nonnegative rows of Y. For each (8, t) E S, find 
all i E /o such that Yis = Yit = 0. Call this set h (8, t). We now use 
some of the elements of S to create additional columns for Y: 
(a) If h (8, t) = 0, then Ys and Yt do not contribute another column 

to the new matrix. 
(h) If h =1- 0, check to see if there is au not equal to either 8 or t, such 

that Yiu = 0 for all i E h (8, t). If such au exists, then Ys and Yt 
do not contribute another column to the new matrix. If no such 
u exists, then choose 0!1, a2 > 0 to satisfy a1Yrs + a2Yrt = 0. 
(one such choice is a1 = IYrtl, a2 = IYrsl· ) Adjoin the column 
a1Ys + a2Yt to the new matrix. 

( 4) When all pairs in S have heen examined, and the additional columns 
(if any) have been added, we say that row r has been processed. Now 
let Y denote the matrix Y produced in processing row r. 

(Step 3) For each extreme rays L.j ofY at this stage, hy noting that Ln+l,j = 
0 means that the column Vj of L.j = (vi, 0) is the extreme ray of P and 
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Ln+l,j = 1 means that the column Uj of L.j = (ui, 1) is the extreme 
point of P, discriminate extreme rays { vl, ... , vq} and extreme points 
{ul' ... ,uP}. 

(Step 4) Check efficiency for L.j coressponding to each extreme ray or point. 
After checking efficiency for all extreme rays and points of L, go to (Step 
1). 

Finally we can obtain all efficient extreme points and rays of P. 
In each iteration in the algorithm obviously we can state about efficiency 

as follows: 

Proposition 6. If the pair of extreme mys ((x\e)) and ((x2 ,e)) of K 
such that x 1 and x 2 are efficient and one of them is eliminated in the row 
process step, then feasible solution x' of the newly genemted my (( x'' e)) 
from them is efficient. 

4 Numerical example 

(-1 2) 
C= 2 1 ' (-1 3) 

A= : ~ ' 

The initial matrix for this problem is denoted by Y1 . The objective values for 
each extreme ray are represented by corresponding column of the objective 
value matrix Z 1• Let E and N denote efficient and not efficient. 

1 -3 21 0 0 1 21 
-1 -3 27 -6 6 -1 27 
-4 -3 45 -15 24 -4 45 
-3 -1 30 -10 23 -3 30 
1 0 0 3 0 1 0 
0 1 0 1 7 0 0 
0 0 1 0 1 0 1 

N N N E E N N 

( ~1 2 ~) 0 ( -;1 
14 -1 ~) 7 2 

Z,= => z2 = 

(1) All extreme rays and extreme point of the initial matrices are not efficient 
by Proposition 2 since there exists positive ray in objective space. 
(2) Concerning the second matrices (Y2 , Z 2 ) we ~..xamine the extreme point 
(0, 7)T by Proposition 3 and 4 as follows: 

(z1,z2)(-;1 ~ -;1 -=._1;)~0=>(z,,z2)(-;1 -;1 )~0=>(-z,,-z2)~ 
0, then there exists z ~ 0, therefore, the extreme point (0, 7) is efficient. 

Next we examine the extreme ray (0, 7)T + ((3, 1))T by Proposition 3 as 
follows: 
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(z1,z2) ( -;1 ~7 -;7 =i~) ~ 0 =? (z1,z2) ( -;1 ~7 -;1) 5::. 0, 

then there exists z ~ 0, therefore, this extreme ray is efficient. 
The third and fourth matriceR are as follows: 

0 0 21 31 0 0 21 21 31 
-7.8 6 27 17 -3.6 6 9 27 17 

-10.5 24 45 5 0 24 0 45 5 
=} Y3 = 0 23 30 0 =} Y 4 = 7 23 0 30 0 

6.9 0 0 10 4.8 0 9 0 10 
9.3 7 0 0 8.6 7 3 0 0 
1 11 11111 

E ENN E EENN 

=} z3 = (11.7 14 o -1o) z4 = (12.4 14 -3 o -1o) 
23.1 7 0 20 =} 18.2 7 21 0 20 

(3) In the third matrices (Y2 , Z2 ), the extreme point (6.9, 9.3) is efficient by 
Proposition 5 and the extreme point (10, 0) is not efficient by Proposition 2. 
(4) The newly generated extreme point (4.8, 8.6) is efficient by Proposition 6 
and (9, 3) is efficient by Proposition 5. 
(5) Finally the extreme points (3, 8) and (6, 7) are efficient by Proposition 6. 

0 0 6 21 21 31 
0 6 0 9 27 17 E E E E N N 
9 24 0 0 45 5 c3 14 8 -3 0 -10) =} ys= 13 23 5 0 30 0 zs = 

14 7 19 21 0 20 
3 0 6 9 0 10 
8 7 7 3 0 0 
1 1 1 

5 Conclusion 

In this paper, we consider the properties of efficiency tests in objective space 
in a new direction of efficient solution generation method. More considera­
tions about comparison between the proposed method and the conventional 
pivoting methods are expected. 

References 

1. Steuer, R. E. (1986) Multiple Criteria Optimization: Theory, Computation, and 
Application. John Wiley and Sons 

2. Ida, M. (1998) Efficient Solution Generation for Multiobjective Linear Program­
ming based on Non-Pivoting Method. Transactions of the Society of Instrument 
and Control Engineers (Japanese), 34, 866-868 

3. Schrijver, A. (1986) Theory of Liner and Integer Programming. John Wiley and 
Sons 

4. Matheiss, T. H. and Rubin, D. S. (1980) A Survey and Comparison of Methods 
for Finding All Vertices of Convex Polyhedral Sets. Mathematics of Operations 
Research, 5, 167-185 



Robust Efficient Basis of Interval Multiple 
Criteria and Multiple Constraint Level Linear 
Programming 

Masaaki Ida 

National Institution for Academic Degrees, 3-29-1 Otsuka, Bunkyo, Tokyo 
112-0012, Japan 

Abstract. In this paper we deal with interval multiple criteria and multiple con­
straint level linear programming. We define a robust basis for all possible pertur­
bation of coefficients within intervals in objective functions and constraints that 
is regarded as secure and conservative solution under uncertainty. According to 
the conventional multiple objective programming literature, it is required to solve 
test subproblem for eac.h basis. Therefore, in case of our interval problem excessive 
computational demand is P~'ltimated. In this paper investigating the properties of 
robust ba.o;is by combination of interval extreme points we obtained the result that 
the robust ba.o;is can be identified by working with only a finite subset of possible 
perturbations of the coefficients. 

1 Introduction 

Generally it is difficult to determine P.xactly the coefficients in mathematical 
programming problems due to various kinds of uncertainties. However, it is 
sometimes possible to estimate the perturbations of coefficients by intervals or 
possihilistic distributions. For such decision making situations, interval math­
ematical programming or fuzzy mathematical programming with uncertain 
coefficients have been investigated [1],[2],[3],[4]. In the setting of fuzzy multi­
ple objective programming with possihilistic coefficients two kinds of efficient 
solution sets are defined as fuzzy sets. In the interval case where all possihilis­
tic coefficients degenerate into interval coefficients, important results for two 
kinds of efficiency tests were obtained [5],[6],[7], i.e., efficient solutions can he 
identified by finite subsets of the possible perturbations of the coefficients in 
the interval matrix. 

In this paper more general results are obtained in the framework of in­
terval multiple criteria and multiple constraint level linear programming. We 
define a robust potential basis for all possible perturbation of coefficients 
within intervals in objective functions and constraints that is regarded a."! 
secure and conservative solution under uncertainty. Investigating the theo­
retical a.c;pects of robust potential ha.c;is We discuss that the robust basis can 
he identified by working with only a finite subset of possible perturbations 
of the coefficients. 



166 Masaaki Ida 

2 Multiple criteria and multiple constraint level linear 
programming 

A multiple criteria and multiple conRtraint level linear programming is defined 
as follows (e.g., (8]): 

Definition 1 ( P1). 

Minimize Cx 

Rubject to Ax:;;:; D, x:;;:; 0 

(1) 

(2) 

where C is a p x n matrix, A is a m x n matrix, and D is a m x q matrix. 

A potential solution for this problem is defined as follows: 

Definition 2. We call x a potential solution that is an optimal solution for 
the following linear programming problem with JL z 0 and v z 0: 

minimize vTCx 

subject to Ax:;;:; DJL, x :;;:; 0, v z 0, JL z 0 

where inequality z means at lea.'lt one strict inequality. 

Inequality in constraint condition of this problem is rewritten as 

Ax-.X=DJL 

(3) 

(4) 

(5) 

Similarly inequality in condition of the dual problem for this problem, dual 
feasibility, can he represented as the following equation. 

(6) 

By using the property of linear programming problem we can represent 
the optimality condition for our problem. 

Proposition 1. x (y) is a potential solution for the problem ( P1) if it sat­
isfies the following conditions: 

(A, -lmxm)v = DJL, V:;;:; 0, J.l Z 0 

(/n.xn,AT)w = CTv, W:;;:; 0, V Z 0 

V·W=O 

(7) 

(8) 

(9) 

where v =(xi,··· ,xn,>.I, · · · ,>.m), w = (Jli, · · · ,Jln,Yb · · · ,ym) and I is an 
identity matrix. 

We diRcusR a potential haRis for our problem in ha.'lk form. Let B be an m­
tuple of integers from {1, ... ,m+n} called ha.'liR, and N = {1, ... ,m+n} \B. 
Let v = (vn,VN) and w = (wN,wn), where vn = {v; I i E B}, VN = {v; I 
i E N}, WN = {w; I i E B}, WB = {w; I i E N}. Then we represent a 
potential basis in a ha.'lk form. 
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Proposition 2. Basis B is a potential basis if the following conditions are 
satisfied: 

At VB= DJ,L, J.L ~ 0 

A2WB = cTv, v ~ 0 

VB~O, WB~O, VN=WN=0 

(10) 

(11) 

(12) 

where A 1 is a matrix with the column vectors from (A, -I m x m) corresponding 
to VB, and A2 is a matrix with the column vectors from (Inxn, AT) corre­
sponding to w B. 

3 Interval coefficient problem 

From a practical point of view due to various kinds of uncertainties it is 
usually difficult to specify the coefficients of the objective functions and con­
straints. However, there exist some cases where coefficients can he specified 
by possible ranges represented by intervals. 

In this paper regarding the uncertainties represented by intervals, we con­
sider interval multiple criteria and multiple constraint level linear program­
ming problems. 

Definition 3. 

Minimize Cx 

subject to Ax~ D, x ~ 0 

(13) 

(14) 

where C is an element of a set of p x n criteria matrix with elements Cij E 
[~ij,Cij] (i = 1, ... ,p, j = 1, ... ,n): 

( 
[~u,cn] 

CE : 

[~pl• Cpt] 

[~ln•.Ctn]) 
: , 

[~pn,Cpn] 

(15) 

A is an element of a set of m x n matrix with elements aij E [ !!ij, "li&j ] ( i = 
1, ... ,m, j = 1, ... ,n): 

[!!ln~ O:tn] ) 
: , 

[!!mn,limn] 

(16) 

and D is an element of a set of m xq matrix with elements dij E [ dij, dij ] ( i = 
1, ... ,m, j = 1, ... ,q): 

(17) 
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This problem can be regarded as a set of multiple criteria and multiple 
constraint level linear programming problems each of which ha..'l a matrix C, 
A, and D in the interval matrices respectively. 

For this kind of interval coefficient problems, two kinds of solution con­
cepts, i.e., optimistic and pessimistic solutions, have been investigated [1],[5],[6]. 
In this paper we define a robust potential basis as pessimistic or secure solu­
tion. 

Definition 4. We call B a robust potential basis, if it is a potential basis 
for all Ckj E [ fkj• Ckj ], aij E [ Qij• aij ] and dil E [ dil, dil ]. 

4 Main results 

According to Proposition 2 we can represent a robust potential basis in a 
ba..'lic form. 

Proposition 3. Basis B is a robust potential basis if the following conditions 
are satisfied for all Ckj E [ fkj, Ckj ] , aij E [ Qij, llij ] and dil E [ dil, dil ] : 

AlvB = DJL, JL 2:: 0 

A2wB = cT v, v 2:: o 
VB~O, WB~O, VN=WN=O 

(18) 

(19) 

(20) 

Unfortunately the cardinality of this subset, combination of lower and 
upper bound of intervals is 2Pn+mn+qn. 

Now we define the following two matrix sets: 

Definition 5 (Matrix set M1). We denote a subset by M1 for (A1,D) 
having all elements of each row at the upper bound or at the lower bound. 
Hence, if (A1,D) E M1, for j = 1, ... ,m either Ali-= A1i·' Di. = Di., or 
Ali- =Ali., Di. = Di .. The maximum number of elements of M1 is 2m. 

Definition 6 (Matrix set M2). We denote a subset by M2 for (A2 , C) 
having all elements of each column at the upper bound or at the lower bound. 
Hence, if (A2, C) E M2, for i = 1, ... , n either A2.j = A2.p C.j = Q.j or 

A2.j = A2.j, C.j = C.j. The maximum number of elements of M2 is 211 • 

Then finally we obtain the following Theorem: 

Theorem 1. Basis B is a robust potential basis if the following conditions 
are satisfied for every (A1, D) E M1 and every (A2, C) E M2: 

AlVB = DJL, JL 2:: 0 

A2wB = cT v, v 2:: o 
VB~ 0, WB ~ 0, VN = WN = 0 

(21) 

(22) 

(23) 
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Proof. By the theorem of alternative (Motzkin's theorem [9]) occurrence 
of the event of equation (21) and the event of following inequalities (24) is 
exclusive. 

(24) 

If At with elements of aij E [ !l!.ij, Uij ] and D with elements of dil E [ dil, d.;.1 ] 
satisfy the inequalities (24), then by the definition of M 1 there exist matrices 
(Ai, D*) E Mt such that 

(25) 

Therefore, it is sufficient to consider the matrix set M1 . Similarly we can 
discuss the equation (22) with the matrix set M 2 • 

The cardinality of combination of these subsets is 2m+n. This theorem c.an 
he regarded as an extension of the past results for the problem with interval 
coefficients [5],[6]. 

5 Conclusion 

In this paper considering the optimality condition in linear programming 
problem we investigated the properties of robust basis for multiple criteria 
and multiple constraint level linear programming with interval coefficients. By 
means of the obtained Theorem 1, robust potential basis can he identified by 
working with only a finite subset of possible perturbations of the coefficients. 
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Abstract. In this paper, we consider a multiobjective linear programming prob­
lem involving fuzzy random variable coefficients. Introducing a fuzzy goal for each 
objective function, we focus on a degree of possibility that each objective func­
tion satisfies the corresponding fuzzy goal. Since the degree of possibility varies 
randomly, we formulate the multiobjective problem to minimize the variances of 
degrees of possibility based on stochastic programming. In order to find a satisficing 
solution for a decision maker, we propose an interactive satisficing method based 
on the reference point method. 

1 Introduction 

In classical mathematical programming, the coefficients of objectives or con­
straints in problems are assumed to be completely known. However, in real 
systems, they are rather uncertain than constant. In order to deal with such 
uncertainty, stochastic programming (1] and fuzzy programming (2,3] were 
considered. They are useful tools for the decision making under a stochastic 
environment or a fuzzy environment, respectively. 

Most researches in respect to mathematical programming take account 
of either fuzziness or randomness. However, in practice, decision makers face 
with the situations where both fuzziness and randomness exist. For instance, 
in the case where some expert estimates coefficients of objective functions or 
constraints with uncertainty, they are not always given as random variables 
or fuzzy sets but as the values including both fuzziness and randomness. 
Fuzzy random variables (4,5] are one of the mathematical concepts dealing 
with fuzziness and randomness simultaneously. Recently, several authors con­
sidered linear programming problems involving fuzzy random variables (6-8]. 
In our previous research, we considered multiobjective fuzzy random linear 
programming problem(9] using the concept of possibility measures(lO] and 
the expectation model, which is maximize the expectation of degrees of pos­
sibility that the objective function values satisfy fuzzy goals. In this research, 
we consider the problem based on the V-model in stochastic programming(4] 
and propose an interactive satisficing method in order to obtain a satisficing 
solution for a decision maker. 
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2 Formulation 

In this paper, we consider the following multiobjective linear programming 
problem: 

min £;x, i = 1, ... , k} 
s. t. Ax s b, x 2': 0 (1) 

where x = (xl> ... , xn)t is a decision vector and £; (cil, ... , cin) is a 
coefficient vector. Let A be an m x n matrix and b an m x 1 vector. Each &j 
is a fuzzy random variable with the following membership function: 

( ) {0 1 It- Cijl} 0 1 k 0 1 f.Lc~ .. t =max , - ,~= , ... , ,J= , ... ,n 
'3 O.ij 

(2) 

where Cij denotes a random variable (or a scenario variable) whose realization 
under the scenario Si is Cijs;, and the number of scenarios Si corresponding to 
the ith objective function is Si. Let Pis; be the probability that each scenario 

...... s. 
Si occurs. We assume that Ls;=l Pis; = 1 holds. Each O.ij denotes the spread 
of a fuzzy number. This type of fuzzy random variable is equivalent to a 
hybrid number, which was introduced by Kaufman and Gupta (12]. 

Since the coefficients of objective functions are the symmetric triangular 
fuzzy random variables, e~h objective function also becomes the same type 
of fuzzy random variable Yi with the following membership function: 

{ ly-fCijXjl} 
J=l 0 

f.L-y)Y) =max 0, 1- n , ~ = 1, ... , k. 
L O.ijXj 
j=l 

(3) 

Considering the imprecision or fuzziness of the decision maker's judgment, 
for each objective function of problem (1), we introduce the fuzzy goal Gi 
with the membership function expressed as 

{ 

0, y > h? 

( ) Y - h? hl < ho f.La; Y = h~ _ h9, i s Y _ i 
• • 1 0-

1, y < hi' ~ - 1, 0 0 0 'k. 

(4) 

Since the membership function f.Ly; is regarded as a possibility distribution, 

the degree of possibility IIy.; (Gi) that the objective function value satisfies 

the fuzzy goal Gi is 

IIy.. (Gi) =sup min {My.. (y), f.LaJY)}, i = 1, ... , k. (5) 
' y ' 
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Accordingly, we consider the following multiobjective problem: 

maxiiy-,(Gi), i=1, ... ,k} 
s. t. Ax ::::; b, x ::::: 0 

(6) 

In this research, taking account of all scenarios, we set h? and hf as the 
following form: 

i = 1, ... ,k, 

n 

h l . . "' i = mm mm ~Cijs,Xj, 
Si "'EX 

j=l 

i = 1, ... ,k, 

where X ~ { x JAx ::::; b, x ::::: 0}. By using (3) and ( 4), the degree of possibility 
is represented as follows: 

Since the degree of possibility in problem (6) varies randomly, the problem 
is regarded as a stochastic programming problem. Katagiri et al.[9] proposed 
a fuzzy random multiobjective linear programming model, which is to maxi­
mize the expected degree of possibility that objective function values satisfy 
the respective fuzzy goals. This model is useful for decision making under 
fuzzy stochastic environments; however, in the obtained solution based on 
this model, there is a possibility that the degree of possibility corresponding 
to a certain scenario is fairly small because the variance of the degree of pos­
sibility is unconsidered. Therefore, in this research, we propose the model to 
minimize the variances of degrees of possibility. Fori = 1, ... , k, the variances 
of degrees of possibility are calculated as follows: 

1 [ n l V[IIy-, (Gi)] = ---------;;:2 v L CijXj 

c~l CiijXj _ hf + h?) j=l 

Let Vi denote the variance-covariance matrix of ci. Then the problem to 
minimize the variances of degrees of possibility is formulated as 

. 1 } 
mm 2 xTVix, i = 1, ... , k 

( :f- CiijXj - hf + h?) 
J=l 

s. t. Ax ::::; b, x ::::: 0 

(7) 
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The variance-covariance matrix is expressed by 

Vi= r 
. . '1 vh vb · · · vln 

vh v22 ... v2n 
. . . . ' . . . . . . .. 

v~1 v~2 · · · v~n 

i = 1, ... 'k 

where 

j = 1, ... ,n 

and 

s, 
E[cij' cu] = L Pis; Cijs; Cils;. 

8i=l 

In (7), since 

n 

l:.:aijXj- ht + h~ > 0. 
j=l 

and xTVix ~ 0, an optimal solution of the following problem is equivalent to 
that of (8). 

min zi(x) ~ Jv[II:y, (Gi)], i = 1, ... , k} 
s. t. Ax :::; b, x ~ 0 

In the next section, we consider a method for solving problem (8). 

(8) 

3 Interactive Decision Making Using the Variance 
Minimization Model Based on a Possibility Measure 

Since problem (8) has several objective functions, there does not generally 
exist the solution optimizing all functions. Therefore, in this section, we dis­
cuss the interactive decision making based on the reference point method [13] 
to obtain a Pareto optimal solution. 

For each of the multiple conflicting objective functions, assume that the 
decision maker can specify the so-called reference point ft = ( 1f'1, ... , Kk) 
which reflects in some sense the desired values of the objective functions of 
the decision maker. Also assume that the decision maker can change the ref­
erence point interactively due to learning or improved understanding during 
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the solution process. When the decision maker specifies the reference point 
ft = (7r1 , ... , 1rk), the corresponding Pareto optimal solution, which is, in 
the minimax sense, nearest to the reference point or better than that if the 
reference point is attainable, is obtained by solving the following minimax 
problem: 

min max {z;(x)- 7ri}} 
l:<:;i:<:;k 

s. t. Ax ::; b, x 2 0 

For simplicity, we define N; and Q; as 

yixtVix- if; (f. a;jXj- h} + h?) 
z;(x) -1r; = -----=-n _ __,_J=_l _____ ____:__ ~ N;(x) 

1 o Q;(x) I: O:ijXj- hi + h; 
j=l 

(9) 

Then, in minimax problem (9), the numerators of objective functions are 
all convex functions and the denominators are all affine functions. Hence, it 
follows that all objective functions in (8) are quasi-convex functions. Accord­
ingly, the problem is solved by the method of Borde et al.[14], which is an 
extended version of Dinkelbach-type algorithm. 

From the above discussion, an algorithm for obtaining a satisficing solu­
tion of a decision maker through interaction is described as follows: 

[An interactive satisficing method for fuzzy random multiobjective 
linear programming problems] 

Step 1: Set the initial reference values 7r;, i = 1, ... , k to Os. 
Step 2: Set >. +-- 0 and find a feasible solution. Let the solution be x.A. 
Step 3: Calculate q.A defined by 

.A- max { N;(x.A)} 
q - l:<:;i:<:;k Q;(x.A) 

and solve the following problem: 

min Z 

s.t. Qi(~X) { Qi(x) - q.A N;(x)} ::; Z, i = 1, ... , k, (10) 

xEX. 

Let an optimal solution of (10) be xc. Go to Step 4. 
Step 4: If Z = 0, then go to Step 5. Otherwise, set x.A +-- xc, >. +-- >. + 1 and 

return to Step 3. 
Step 5: If the decision maker is satisfied with the current solution xc, then 

terminate. Otherwise, update ft, i = 1, ... , k and return to Step 2. 

It should be noted that an optimal solution of (9) is at least a weak Pareto 
optimal solution of (8). 
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4 Conclusion 

In this paper, we have proposed the model to minimize the variances of 
of degrees of possibility for a multiobjective linear programming problem 
including fuzzy random variable coefficients. After transforming the formu­
lated problem into the deterministic equivalent multiobjective quasi-convex 
programming problem, we proposed an interactive satisficing method and 
considered a solution procedure based on an extended version of Dinkelbach­
type algorithm. Although we dealt with only a degree of possibility in this 
paper, we can also consider the model to minimize the variances of degrees of 
necessity in similar manner. In future, we will try to consider another model 
or apply the proposed model to the combinatorial optimization. 

References 

1. Vajda, S. (1972) Probabilistic Programming, Academic Press. 
2. Sakawa, M. (1993) Fuzzy Sets and Interactive Multiobjective Optimization, 

Plenum, New York. 
3. Inuiguchi M., Ramik, J. (2000) Possibilistic linear programming: a brief review 

of fuzzy mathematical programming and a comparison with stochastic pro­
gramming in portfolio selection problem, Fuzzy Sets and Systems 111, 3-28. 

4. Kwakernaak, H. (1978) Fuzzy random variable-1: definitions and theorems, 
Information Sciences 15, 1-29. 

5. Puri, M.L., Ralescu, D.A. (1986) Fuzzy random variables, Journal of Mathe­
matical Analysis and Applications 114, 409-422. 

6. Wang, G.-Y., Zhong, Q. (1993) Linear programming with fuzzy random variable 
coefficients, Fuzzy Sets and Systems 57, 295-311. 

7. Luhandjula, M.K., Gupta, M.M. (1996) On fuzzy stochastic optimization, 
Fuzzy Sets and Systems 81, 47-55. 

8. Katagiri, H., Ishii, H. (2000) Chance constrained bottleneck spanning tree prob­
lem with fuzzy random edge costs, Journal of the Operations Research Society 
of Japan 43, 128-137. 

9. Katagiri, H., Sakawa, M., Ishii, H. (2001) Multiobjective fuzzy random linear 
programming using E-model and possibility measure, Proceedings of Joint 9th 
IFSA World Congress and 20th NAFIPS International Conference, Vancouver, 
Canada, July 25-28, 2295-2300. 

10. Zadeh, L.A., Probability measure of fuzzy events, Journal of Mathematical 
Analysis and Applications 23, 421-427. 

11. Charnes, A., Cooper, W.W. (1959) Chance constrained programming, Manage-
ment Science 6, 73-79. · 

12. Kaufman, A., Gupta, M.M. (1985) Introduction to Fuzzy Arithmetic: Theory 
and Applications, Van Nostrand Reinhold Company. 

13. Wierzbicki, A.P. (1980) The use of reference objectives in multiobjective opti­
mization, in: G. Frande and T. Gal (eds.), Multiple Criteria Decision Making: 
Theory and Application, Springer-Verlag. 

14. Borde, J., Crouzeix, J.P. (1987) Convergence of a Dinkelbach-type algorithm 
in generalized fractional programming, Zeitschrift fur Operations Research 31, 
31-54. 



On Saddle Points of Multiobjective Functions 

Kenji Kimura1 , El Mostafa Kalmoun2 , and Tamaki Tanaka1 

1 Graduate School of Science and Technology, Niigata University, 
Niigata 950-2181, Japan 
E-mail: tamaki@m.sc.niigata-u.ac.jp 

2 University of Erlangen, Institute of Computer Science X, D-91058 Erlangen, 
Germany 

Abstract. This paper is concerned with existence theorems for cone-saddle points 
of vector-valued functions in finite dimensional Euclidean spaces. By means of vec­
tor variational-like inequalities, we first characterize a vector saddle point problem 
and obtain the existence result under some conditions on the subdifferentiable of the 
vector-valued function. The continuity and convexity assumptions on the objective 
function are then relaxed. 

1 Introduction 

Studies on vector-valued minimax theorems or vector saddle point problems 
have been extended widely; see [9] and references cited therein. Existence 
results for cone saddle points are based on some fixed point theorems or 
scalar minimax theorems; see [8]. In 2000, this kind of problems was solved 
by a different approach in [4], where the connection to a vector variational 
inequality problem in a finite dimensional vector space was established. In 
[5], we have extended it into a generalized version under the setting of a 
normed space, and then presented another generalization to vector problems 
involving the concept of cone invexity in the general setting of a normed 
space in The 5th International Conference on Optimization: Techniques and 
Applications. In this paper, under the restriction to only finite dimensional 
Euclidean spaces we obtain a new existence result which extends our recent 
results by relaxing the continuity and convexity assumptions. 

2 Preliminary and terminology 

Let X and Y be nonempty subsets of finite dimensional spaces Rn and Rm, 
respectively. Given a vector-valued function L : X x Y ----> RP, the Vector 
Saddle-Point Problem, (P) for short, is to find xo E X and Yo E Y such 
that 

L(xo, Yo) - L(x, Yo) f. int R~, 'Vx EX, 

L(xo, y)- L(xo, Yo) f. int R~, 'Vy E Y. 

(la) 

(lb) 

A solution (x0 , Yo) of (P) is called a weak R~ -saddle point of function L. 
Suppose that "1 is a vector-valued function from X x X to Rn. 
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Definition 1. For any given R~ -convex function f : X --+ RP, the vector 
subdifferential of f at a E X with respect to 17 is a set of linear operators 
from Rn to RP denoted by 

8f(a) := {A E L(Rn, RP) I f(x)- f(a) -(A, ry(x, a)) E R~ Vx EX}. (2) 

If of(a) is nonempty for every a EX then f is subdifferentiable in X. 

For each x 0 E X, we define a maximal solution set of L(x0 , Y) with respect 
to int R~ as follows: 

T(x0 ) := { y E Y I L(x0 , v)- L(x0 , y) tJ_ int R~, Vv E Y }. (3) 

For each x0 E X, it follows from the nonemptyness and compactness of 
UvEY L(xo, v) and the correctness of R~ that T(xo) is nonempty; see Theo­
rem2.6 in [5]. Letting f(·) = L(·,yo) for a fixed Yo in (2), we consider the 
vector subdifferentialfJL(·, y0 ) and then the following Vector Variational-like 
Inequality Problem, (Q) for short, is to find x 0 E X and y0 E T(x0 ) such 
that 

(A,ry(x,x0 )) tJ_ -intR~, Vx EX for some A E 8L(x0 ,y0 ). (4) 

Definition 2. A multifunction F : X --+ 2RP is called upper-semicontinuous, 
u.s.c. for short, if for every x EX and UF(x) c RP, a neighborhood of F(x), 
there exists Vx C X, a neighborhood of x such that F(y) C UF(x) for all 
y E Vx. 

Definition 3. Let X and Y be two metric spaces. A set-valued map F : 
X --+ 2Y is said to be closed at xo if for any sequences { Xn} with Xn --+ xo 
and {Yn} with Yn E F(xn), Yn --+Yo for some Yo E Y implies that Yo E F(xo). 

Theorem 1. (See Theorem 2.3 in [5]) For each xo EX, T(xo) is closed. 

3 Existense results of cone saddle points 

Theorem 2. Suppose that X is convex and L is vector subdifferentiable with 
respect to 17 in the first argument. Then the solution set of (Q) is included in 
that of (P). 

Theorem 3. (Fan-KKM Theorem, see Lemma 1 in [2]) Let Y be a subset 
of the topological vector space X. For each x E Y, let a closed set F ( x) in 
X be given such that F(x) is compact for at least one x E Y. If the convex 
hull of every finite subset { x 1 , ... , Xn} of Y is contained in the corresponding 
union u~l F(xi), then nxEY F(x) i- ¢. 

Based on Theorem 3, we obtain our existence results. The mapping F : 
y--+ 2y is called the KKM-map if conv{xl, ... 'Xn} c u~=l F(xi) for every 
finite subset { x 1 , ... , Xn} of Y, where conv D denotes the convex hull of the 
set D. 



On Saddle Points of Multiobjective Functions 179 

Theorem 4. Let X and Y be nonempty closed convex subset and nonempty 
compact in Rn and Rm, respectively. Assume that the vector-valued function 
L is subdifferentiable with respect to 1J in the first argument, where 1J : X x 
X ----> Rn satisfies the following three conditions: for all x E X, 

(i) rJ(·, x) is affine, 
(ii) rJ(x, ·) is continuous, and 

(iii) rJ(x,x) = 0. 

Assume that 8L(x, y) is u.s. c. in both x and y. If there exist a nonempty 
compact subset B of RP andx0 E (BnX) such that for any x E (X\B), y E 
T(x), A E 8L(x, y) 

(A, rJ(xo, x)) E -int R~, 

then problem (P) has at least one solution. 

Proof. Define a multifunction F : X ----> 2x by 

F(u) := { x EX I (A,rJ(u,x)) ¢. -intR~, 
for some y E T(x) and A E 8L(x, y) }, u EX. 

In order to prove the theorem, it is sufficient to show by Theorem 2 that 
problem (Q) has at least one solution pair (x0 , y0 ) E X x T(x0 ). So we 
should show, by Fan-KKM Theorem, the following three points: 

(a) F is a KKM-map; 
(b) F(x) is closed for each x EX; and 
(c) there exists x EX such that F(x) is compact. 

First, we prove condition (1). Suppose to the contrary that there exist 
X1,x2,··· ,xm and a1,a2,··· ,am such that 

m m m 

i=l i=l i=l 

Then, x ¢. F(xi) for all i = 1, ... , m, and hence for any y E T(x), A E 
oL(x,y), 

for all i = 1, ... , m. Since int R~ is convex, we have 

m 

_L:ai(A,TJ(Xi,x)) E -intR~. 
i=l 

Since A is a linear operater and 1J is an affine operater, we have 
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Therefore 

(A, 17(x, x)) = 0 E -int R~, 

which is inconsistent. Thus, we deduce that 

m 

conv{x1, X2, ... , Xm} C U F(xi)· 
i=l 

Next, we show that the condition (b) holds. For each u EX, let {xn} C 

F(u) such that Xn----> x EX. Since Xn E F(u) for all n, there exist Yn E T(xn) 
and An E 8L(xn, Yn) such that 

where W := RP\( -int R~). As {Yn} C Y, without loss of generality, we 
can assume that there exists y E Y such that Yn ----> y. Now T is closed, by 
the reason of Theorem 1, so y E T(x). Because of the closedness of W, the 
upper semicontinuity of 8L and (An,1J(u,xn)) E W for all n, there exists 
A E 8L(x, y) such that 

(A,7J(u,x)) E W 

Hence x E F(u). As a result the condition (b) holds. 
Finally in order to prove the condition (c). Since F(x) is closed and B is 

compact, it is sufficient to show that F(x) c B. Suppose to the contrary that 
there exists x E F(x) such that x ¢. B. Since x E F(x), there exist y E T(x) 
and A E 8L(x, y) such that 

(A, 17(:1:, x)) ¢. -int R~. 

Since x ¢. B, by the hypothesis, for any y E T(x) and A E 8L(x, y), 

(A,7J(:f:,x)) E -intR~, 

(5) 

which contradicts condition (1). Hence F(x) c B. Since B is compact and 
F(x) is also closed, F(x) is compact, that is the condition (c) holds. Con­
sequently by Fan-KKM Theorem, it follows that n F(x) =/= </>. Thus, there 

xEX 

exists xo EX and Yo E T(yo) such that 

(A,7J(x,xo)) ¢. -intR~, 

for all x EX. As a result there exists at least one solution of (P). 

Definition 4. Suppose we are given vector-valued functions f and h, which 
consist of p real-valued functions h, ... , fp and h1, ... , hp on X x Y, re­
spectively. h is said to be a vector convex envelope of f if hi is the convex 
envelope of fi for every i E {1, ... ,p}. 
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Assuption A. For f X ----+ RP and its vector convex envelope h, the 
following condition holds: 

{x EX I h(x)- h(y) tJ. intR~ Vy EX} 

C {x EX I f(x)- f(y) tJ. intR~ Vy EX}. 

Corollary 1. Let X and Y be nonempty closed convex and nonempty com­
pact in Rn and Rm, respectively. Suppose that a vector-valued function H : 
X x Y ----+ RP is the convex envelope of L : X x Y ----+ RP in the first argument 
and that H satisfies the conditions on L in Theorem4. If h(x) := H(x, y) 
and f(x) := L(x,y) satisfy AssumptionA for each y E Y and Lis continu­
ous with respect to the second argument, then problem (P) has at least one 
solution. 

Proof. In the definition ofF in the proof of Theorem 4, we replace 8L(x, y) 
by 8H(x, y). Then we see there exist x0 EX, Yo E T(x0 ) and A E 8H(x0 , y0 ) 

such that 
(A,17(x,x0 )) tJ_ -intR~ Vx EX. 

Assumption A leads to 

L(xo, Yo) - L(x, Yo) tJ_ int R~, Vx E X 

and Yo E T(xo) leads to 

L(xo,y)- L(xo,Yo) tJ_ intR~, Vy E Y. 

Which means there exists at least one solution of (P). 
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Abstract. In the real world, we encounter many subjective evaluation problems. 
For some class of them, we can give the numerical evaluation by means of Analytic 
Hierarchy Process (AHP) approaches. Moreover, we can even identify the .A-fuzzy 
measure as the subjective evaluation by using AHP result. Although the original 
problem includes subjective estimates, this identification process has no vagueness. 
So, in this article, we discuss the identification process with vagueness. That is, fuzzy 
multiobjective programming techniques are applied to an identification problem for 
the parameter of .A-fuzzy measure. 

1 Introduction 

On a decision making problem, we select the most appropriate alternative 
among all admissible ones based on an evaluation criterion. In the case that 
the criterion and alternatives are presented by mathematical models, it is ef­
fective for us to approach them using mathematical programming techniques. 
However, it is not rare that there are plural evaluation criteria on a problem 
in the real world. In addition, it is even improper to express the criteria by 
mathematical expressions, that is, subjective evaluation criterion. For exam­
ple, design and sense. For some class of subjective evaluation problems, we can 
give the numerical evaluation by means of Analytic Hierarchy Process(AHP) 
developed by T.L. Saaty(e.g. [4)). By applying AHP, we are able to evaluate 
the alternatives based on the decision maker's intuitive and/or experiential 
judgment, and derive a numerical evaluation values for each alternative. 

Fuzzy measure and fuzzy integrals(e.g. [6)) are is also known as models 
of the subjective evaluation. A-fuzzy measures [5] are especially useful for 
evaluating alternatives with a sort of mutual relations. However, it is difficult 
to decide a parameter of the A-fuzzy measure. For the sake of overcoming 
such difficulty, we are able to utilize AHP techniques. In other words, we can 
decide the parameter of the A-fuzzy measure as the subjective evaluation by 
using AHP techniques. Then, the A-fuzzy measure is identified, and assigns a 
numerical evaluation value for any subset of the set containing all alternatives. 

In this article, we discuss an extension of the above method for a subjec­
tive evaluation on the power set of all alternatives. Namely, we introduce a 
subjective evaluation function (called A-fuzzy measure type evaluation func­
tion) with a fuzzy parameter, and formulate the identification problem as 
a fuzzy multiobjective programming problem by using the results of AHP. 
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Therefore, the evaluation values are given as fuzzy numbers. Then, decision 
maker obtains his own subjective evaluation for each subset of the set of all 
alternatives, i.e. his own subconscious evaluation for mutual relations among 
all alternatives. 

2 Preliminaries 

In this section, we recall basic definitions and properties concerned with >.­
fuzzy measures, fuzzy sets and the index of ranking fuzzy numbers based on 
Possibility Theory. Throughout this article, N = { 1, 2, ... , n} denotes a set 
of all alternatives, and 2N is the power set of N. 

2.1 A-fuzzy measures 

For a fixed parameter -1 < >. < oo, a function 9>. defined on 2N to the unit 
interval [0, 1] is called a >.-fuzzy measure (Sugeno measure) , if and only if it 
satisfies 9>.(N) = 1, 9>.(0) = 0 and 

~ {ll (I+,\· 9A(E;))- I}, if,\ J"' 0, 

n 

L9>.(Ej), if>.= 0. 
j=l 

where {E1, ···,En} is any family of disjoint subsets of N. As well-known, if 
E, FE 2N are disjoint sets then 9>.(EUF) = 9>.(E)+9>.(F)+>.·9>.(E)·9>.(F). 
Concerning >.-fuzzy measures you can find further details in [5,6], for example. 

2.2 Fuzzy sets 

a denotes a fuzzy set on an m-dimensional Euclidean space Rm with its 
membership function f.ta : Rm --+ [0, 1]. (For details, refer to [3,7]) The a­
level set, 0 :::; a :::; 1, of a is defined as [a]"' = {x E Rl f.ta(x) ~a} for 
a E (0, 1], and [a] 0 = cl (Uo<a:9 [a]"'), where "cl" denotes the closure of the 
set. A fuzzy set a on lR is a symmetric triangular fuzzy number, if and only 
if the membership function is defined by f.ta(x) =max {lx- aifua, 0}, where 
a is the center, O"a > 0 is the spread and we write a= (a, O"ah· 

According to Dubois and Prade's results [1], for a= (a, ua)T, b = (b, ub)T 
and a scalar p, E JR, the following are valid: 

Va = (va, VO"a)T, 

a±b= (a±b,ua+ubh, 

a. b ~ (ab, lalub + lbluah, 
1/a~ (1fa,ua/a2 )T, (a#O). 

where "~" denotes an approximate equation. 

(1a) 

(1b) 

(1c) 

(1d) 
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2.3 Ranking fuzzy numbers 

Possibility measure([8]) is defined by Ilt;(C) =sup., min {JL;;(x), JLt;(x) }, where 

b is a fuzzy number and cis an arbitrary fuzzy set on R Applying this concept 
and necessity measure, Dobuis and Prade proposed four indices of ranking 
fuzzy numbers based on Possibility Theory in [2]. The following is one of 
them: 

where a fuzzy interval [a, oo) is characterized by the membership function 

JL[ii,oo)(Y) = SUPx:x:5y JLa(x). They explained that Pos( a ::::; 'b) yields the grade 

of possibility of "a ::::; b". Besides, they defined the grade of possibility of 
"a=b"; 

(3) 

By the above Equations (2) and (3), the next assertion is valid. 

Proposition 1. Let a be a triangular fuzzy number, and let b be a real num­
ber. Then, the condition Pos(a =b) :;::.: a, (0 < a ::::; 1) is equivalent to 
bE [at. 

3 Subjective evaluation 

First of all, we should make sure of our purpose. It is to propose a subjective 
evaluation method based on AHP and .X-fuzzy measure. The evaluated objects 
are subsets of the set of all alternatives, assuming that there are some mutual 
relations among them and the decision maker perceives the interaction but 
his perception is not clear. 

Our proposing method is constructed from two steps. In Step 1, the de­
cision maker applies AHP techniques to his problem. In Step 2, he identifies 
his own subjective evaluation function. 

Step 1. 

The decision maker evaluates S E 2N by AHP in advance, i.e. calculates 
the importance for every nonempty subset S. In the rest of this article, the 
pairwise comparison matrix A = (asr) E JR(2n-l)x(2n-l) and the vector 
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w = (ws) E JR(2"-l) denote 

a{l},{l} a{1},{2} 

a{2},{1} a{2},{2} 

A= 

a{1},{1,2} 

a{2},{1,2} 

a{1,2},{1} a{1,2},{2} ... a{1,2},{1,2} ... a{1,2},N 

aN,{l} aN,{2} · · · aN,{1,2} · · · aN,N 

W = ( W{l} W{2} ... W{1,2} ... WN) , 

respectively. 
For our purpose, we should modify >.-fuzzy measure as follows. 

Definition 1. Let 0 ~ o: ~ 1 be a fixed grade, And let g be a fuzzy set­
valued map on 2N, i.e. g : 2N -+ F(IR), where F(IR) denotes the set of all 
fuzzy set on R TJ!.en, g is a >.-fuzzy measure type evaluation function with a 
fuzzy parameter >. > 0, if g satisfies the following conditions: 

1. g(0) = 0, 
2. g({i}) = w{i} for all i EN, 

3. g(S) = ~ { f1iES (1 + :x- · g( { i})) - 1} for all S E S, 

4. Pos(g(St = ws) ?: o: for all S E S, 

where S denotes 2N \ {0, {1}, {2}, ... , {n} }. 

We write the above g by g>.,a or simply g). in order to exhibit parameters. 

Remark 1. Properly speaking, g(S) should be calculated by Zadeh's exten­
sion principle for each S E S in Definition 1. However, this way gives rise 
to computational trouble. So, we may calculate them by composition of four 
operations (1a), (1b ), (1c) and (1d). 

Step 2. 

Based on results of Step 1, the decision maker identifies his >.-fuzzy mea­
sure type evaluation function g>.. Then, if we restrict the parameter :x- with 
symmetric triangular fuzzy numbers, images of the evaluation function are 
also approximate symmetric triangular fuzzy numbers by above mentioned 
Dubois and Prade's results. So, we assume that he selects an appropriate 
fuzzy parameter :x- = (>.,a)r > 0. Therefore, he has the following problem: 

Find :x- = (>., a)r 
such that ~(0) = 0, 

~({i}) = W{i}, ViE N, 

~(S) = ~ { f1iES ( 1 + :x- ·g).( { i})) - 1} , \IS E S, 

Pos(g>,(S) = ws) ?: o:, \IS E S, 
:x- = (>.,a)r > 0. 
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The above problem is able to formulated as a substitutive fuzzy multiobjec­
tive programming problem 

maximizeA,u Pos(ws = 9).(8)), 8 E S, 

maximizeA u ~ , (Pi) 
'Jl 

subject to ,\ = (,\, a)r > 0. 

Problem P 1 is equivalent to the following problem by Proposition 1. 

maximize a, 
. . ,\ 

maximize -, 
a a 

subject tows E [ 9).(8) ) , 8 E 2N, 

~ = (-X,a)r > 0. 

Obviously, the above fuzzy multiobjective problem P 1 (or P 2 ) has some 
Pareto optimal solutions, however they may be not always reasonable. 

Avoiding irrationality, we assume that the decision maker gives an aspi­
ration level 0 < a ::; 1. Then, his problem is the following. 

. . ,\ 
maximize-, 

a a 
subject tows E [ 9).(8) ) , 8 E 2N, 

,\>a> 0. 

lfthere exists an optimal solution (,\*,a*) for P 3 , then the triplet (,\*,a*,a) 
is a Pareto optimal solution for P 2 • Then, by setting ~(a) = (,\*, a*)r, we 
obtain that the decision maker's ,\-fuzzy measure type evaluation function 

Y'J.(a). 

4 A numerical Example 

To illustrate our subjective evaluation method, we consider the set of all 
alternatives N = {1, 2, 3}. Then S = { {1, 2}, {2, 3}, {1, 3}, N} c 2N. Suppose 
that the decision maker decides his pairwise comparison matrix 

1 1/7 1/7 1/9 1/9 1/7 1/9 
7 1 1 1/3 1/7 1 1/5 
7 1 1 1/3 1/3 1/5 1/5 

A= 9 3 3 1 1/5 1 1/5 
9 7 3 5 1 5 1/7 
7 1 5 1 1/5 1 1/5 
9 5 6 5 7 5 1 

with two levels hierarchical structure constructed from a criterion and alter­
natives. Then, we get the following normalized importance vector: 

w = (0.035 0.124 0.117 0.211 0.513 0.201 1.000). 
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Next we calculate gj:.(S) for each S E S. 

g).( {1, 2}) = ( 0.159 + 0.004A, ~(0.319 + 0.013A)) T, 

g).( {2, 3}) = ( 0.241 + 0.015A, ~ (0.482 + 0.044.X.)) T, 

n( {1, 3}) = ( o.152 + o.oo4.x., ~(o.3o3 + o.012.x.)) T, 

g).(N) = ( 0.276 + 0.023A + 0.001.X.2 , ~(0.552 + 0.069.X. + 0.002.X.2 )) T 

Now, suppose that the decision maker gives an aspiration level o: = 0.7. We 
formulate the identification problem: 

A. 
max;:' 
s.t. 0.211 E [(0.159 + 0.004A, ~(0.319 + 0.013.X.))T] 0 "7 , 

0.513 E [(0.241 + 0.015.X., ~(0.482 + 0.044.X.))T] 0 ·7 , 

0.201 E [(0.152 + 0.004A, ~(0.303 + 0.012.X.))T] 0 "7 , 

1.000 E [ (0.276 + 0.023A + 0.00lA2 , ~(0.552 + 0.069>. + 0.002.X.2 ) )T ]0 "7 , 

>.>a> 0. 

This problem has an optimal solution (.X.*, cr*) = (18.493, 3.104). Therefore, 
the decision maker obtains his own subjective evaluation for each subset of 
the set of all alternatives as following: 

gA(a) (0) = 0, 

gA(a)({2}) = 0.124, 

gA(a) ( {1, 2}) = (0.240, 0.094)r, 

g>.ca/{1, 3}) = (0.227, 0.089)r, 

5 Conclusions 

gA(a)({1}) = 0.035, 

gA(a)({3}) = 0.117, 

gA(a) ( {2, 3}) = (0.509, 0.216)r, 

gA(a) (N) = (0.873, 0.423)r. 

In this article, we introduced a fuzzy evaluation system on the power set. 
In the process of identification of the decision maker's evaluation function, a 
fuzzy multiobjective programming problem is used. By this evaluation func­
tion, the decision maker can evaluate the objects subjectively. 
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On Affine Vector Variational Inequality 
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608-737, Korea 

Abstract. The concept of vector variational inequality was introduced by Gian­
nessi ([3]) in 1980. Since then, various vector variational inequalities and their 
applications to multiobjective (vector) optimization problems have been studied. 
Very recently, many authors ([1,4,9,10,11]) have investigated the connectedness of 
solution sets of vector variational inequalities. 

In this paper, we study the connectedness of solution sets for affine vector 
variational inequalities with 2 x 2 monotone matrices. Moreover, we give examples 
to clarify our result on the connectedness. 

Key words and phrases: affine vector variational inequality, boundedness, connect­
edness. 

1 Introduction and Preliminaries 
2 0 

Let A={~= (~1,6) E JR2 I ~i ~ 0, i = 1,2, L:i=l~i = 1}, and A={~= 
(~1.~2) E JR2 I ~i > 0, i = 1, 2, L:~=l ~i = 1}. Let/:::,.= {x E JR2 I Ax~ b}, 
where A E JRmx 2 and bE JRm. Let (-,·)denote the inner product on JR2 • 

Assume that /:::,. i- 0. Let Mi E JR2 x2 and Qi E JR2 , i = 1, 2. 

Consider the following affine vector variational inequalities: 

(VVI) Find x E /:::,. such that 

((M1x + Ql. x- x), (M2x + q2, x- x)) ¢ -JR! \ {0} Vx E /:::,., 

(VVI) w Find x E /:::,. such that 

((M1x + q1, x- x), (M2x + q2, x- x)) ¢ -intJR! Vx E !::,., 

where IR! = {x := (x1,x2) E JR2 I Xi ~ 0, i = 1,2} and intJR! is the 
interior of IR~, and consider their related scalar variational inequality: let 
~=(6,6)EA. 

(VI) e Find x E /:::,. such that 

( t ~iMix + t ~iQi, x - x) ~ 0 Vx E /:::,.. 
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We denote the solution sets of (VVI), (VVI)w and (VI).; by sol(VVI), 
sol(VVI)w and sol(VI).;, respectively. 

It is clear that sol(VVI) C sol(VVI)w. 

From Theorem 2.1 in (Lee, Kim, Lee and Yen [4]) and Theorem 2.1 in 
(Lee, Yen [5]), we can obtain the following proposition: 

Proposition 1. 

sol(VVI) = U sol(VI).; c sol(VVIyw = U sol(VI).;· 
.;EA .;EA 

Now we give some well-known results for multifunctions, which will be 
used for the proof of our main result. 

Let X, Y be two topological spaces and G: X---+ 2Y a multifunction. 

Definition 1. The space X is said to be connected if there do not exist 
nonempty open subsets ViC X, i = 1, 2, such that 

Definition 2. (i) The multifunction G is said to be closed if its graph, 
{(x,y) EX x Y I y E G(x)}, is closed in X x Y. 
(ii) The multifunction G is said to be upper semicontinuous (shortly u.s.c.) if 
for every a EX and every open set [l C Y satisfying G(a) C fl, there exists 
a neighborhood U of a such that G(a') C [l Va' E U. 

Lemma 1. (Warburton [8), Theorem 3.1) Assume that X is connected. 
If for every x EX, the set G(x) is nonempty and connected, and G is upper 
semicontinuous, then the set G(X) := UxExG(x) is connected. 

In general, if sol(VVI)w is bounded, then sol(VVI) and sol(VVI)w are 
connected. However, the boundedness of sol(VVI) may not imply the bound­
edness of sol(VVI)w (see Example 2.1). So, we can raise one question: when 
sol(VVI) is bounded, are sol(VVI) and sol(VVI)w connected ? 

In this paper, we show that we can give a positive answer for the ques­
tion about affine vector variational inequalities for monotone 2 x 2 matrices. 
Furthermore we give examples to clarify our result on the connectedness. 

2 Main Result 

Now we give our main result: 

Theorem 1. Suppose that Mt, M2 are monotone on 6, that is, for each 
i = 1, 2, (x- y, Mi(x- y)) ~ 0 Vx, y E 6, and that V~ E A, sol(VI).; =!= 0. 
If sol (VVI) is bounded, then sol (VVI) and sol (VVIyw are connected. 
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Proof Let G : A ----> 2m2 be a multifunction defined by ve E A, G(e) = 
0 

sol(VI)e· Then it follows from Proposition 1 that G(A) = sol(VVI) and 

G(A) = sol(VVI)w. Since L~=l eiMi are monotone on ~. by Minty lemma 
([6]), G(e) is connected. Let { = (1, 0). Suppose that G is not u.s.c. at{. Then 

we can find an open subset n of IR2, a sequence { ek} in A. and a sequence 
{xk} in ~ such that G({) c {}, ek ----> {, xk E G(ek) and xk fj. {}. Since 
G(ek) c sol(VVI) and sol(VVI) is bounded, the sequence {xk} is bounded. 
So, without loss of generality, we may assume that xk ----> x for some x E ~. 
Since G is a closed multifunction, x E G({) C {}, However, since xk fj. {}for 
all k and {}is open, x fj. n. This is a contradiction. Thus G is u.s.c. at{. By 
the same (above) argument, we can check that G is u.s.c. ate E A\ {(1,0)}. 
Hence G is u.s.c. on A. So by Lemma 1, sol(VVI) and sol(VVI)w are con­
nected. 

Now we give examples to clarify our main result. 

Example 1. Let 

Ml = G ~) ' M2 = (~ ~) ' Ql = Q2 = (~) ' 
and ~ = {(x1, x2) E JR2 I x1 ~ 0, x2 ~ 0}. 

We consider (VVI), (VVI)w and (VI)(6 ,6 ) for the above Mi, i = 1, 2, 
Qi, i = 1, 2, and ~. Then V(6, 6) E A, sol(VI)(e1 ,e2 ) =1- 0 and sol(VVI) = 
{(0,0)}. So by Theorem 2.1, sol(VVI)w is connected. Actually, 
sol(VVI)w = {(x1, 0) I X1 ~ 0} U {(0, x2) I X2 ~ 0}. 

Example 2. This example illustrates that the monotonicity assumption in 
Theorem 2.1 is essential. This example is slightly modified from the one of 
Robinson ([7]). 
Let 

Ml=M2=G~1)' Ql=Q2=(~1), 
and ~ = {(x1, x2) E JR2 I x1 - 2x2 ~ 0, x1 + 2x2 ~ 0}. 

Then M1 and M2 are not monotone on~. V(el,e2) E A,sol(VI)(et.e2 ) = 
{(1, 0), (t, ~), (t, -~)},and sol(VVI) = sol(VVI)w = {(1, 0), (t, ~), (t, -~)}. 
Thus sol(VVI) is bounded, but sol(VVI) and sol(VVI)w are not connected. 

Example 3. This example shows that the boundedness of sol(VVI) is essential 
in Theorem 2.1. This example is modified (came from) from the one of Choo 
and Atkins ([2]). 
Let 

(0 -1) 
Ml = 1 0 ' 
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and!:::.= {(x1,x2) E JR2 I x1 ~ 2,0 ~ x2 ~ 4}. 
Then M1 and M2 are monotone on !:::. and 

By Proposition 1, we have 

sol(VVI) = U sol(VI)(€1,6 ) 

(e1,6)EA 

U sol(VI)<el,e2) 
{6,e2)EA 

= sol(VVI)w 

= {(x1, 0) I 2 ~ x1} U {(x1, 4) I 2 ~ xl}. 

So, sol(VVI) is not bounded, and sol(VVI) and sol(VVI)w are not connected. 
It is worth while noticing that the multifunction (6,6) E A----> sol(VI){€1,6 ) 

is not u.s.c. at e = ! . 

The converse of Theorem 1 may not be true. 

Example 4. Let 

M1 = M2 = (~ ~) , Ql = Q2 = (~) , 

and!:::.= {(x1,x2) E JR2 I x1 ~ O,x2 ~ 0}. 
Then M1 and M2 are monotone on !:::., 'v'(6,6) E A, sol(VI)(e"e2) 

{(O,x2) E JR2 I X2 ~ 0}, and sol(VVI) = sol(VVI)w = {(O,x2) E JR2 I X2 ~ 
0}. Thus sol(VVI) is not bounded, but sol(VVI) and sol(VVI)w are connected. 

QUESTION: Can we find an example which shows that Theorem 2.1 does 
not hold for affine vector variational inequalities for monotone 3 x 3 matrices? 
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Abstract. The comparison of different alternatives is a part of many multicriteria 
optimization and decision making methods. This task may be very demanding for 
the decision maker and illustrating the alternatives is often helpful. Unfortunately, 
with more than two criteria, the graphical illustration is not trivial and it gets even 
more demanding with more alternatives and/or more criteria. Here, we summarize 
several ways of illustrating a set of alternatives graphically. 

1 Introduction 

Real-life optimization problems often involve several conflicting criteria that 
should be minimized or maximized simultaneously. In such multicriteria op­
timization problems, there usually exist many mathematically equivalent, 
so-called Pareto optimal or efficient solutions, and a human decision maker 
(DM) is required in order to find the final solution among them. This means 
that the most preferred solution is identified based on the preferences of the 
DM. 

Quite a few interactive multicriteria methods (see, e.g., [10] and references 
therein) assume the DM to select the most preferred alternative from a given 
set as a part of the solution process but they do not necessarily assist the 
DM in this comparison task. However, usually, the comparison problem is 
difficult to be solved directly. In these cases, we need tools that describe 
different features and elements involved in a simple but rigorous way and, 
here, graphical illustration of the alternatives is a noteworthy tool. It can 
be used in exploring the data in order to gain insight into the data itself as 
well as understanding of the underlying phenomena and the problem solving 
process. 

In this paper, we treat graphical illustration of alternative solutions with 
the goal of supporting comparison. In the literature, one can find surprisingly 
seldom methods where graphical illustration is used in assisting the DM. 
Short summaries of graphical illustration tools are given, for example, in 
[6,7,13] but they mostly concentrate on one or two tools and only mention 
some of the others. That is why it is in order to present a general summary 
of the possibilities available. The aim here is to help all those who need an 
overview of the existing possibilities including those who develop multicriteria 
methods. The potential and restrictions of different graphics tools are treated 
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and some clarifying figures are enclosed. The presentation is based on the 
background laid in [10]. 

In what follows, we assume that we have at least two criteria and a finite 
set of alternatives that we wish to illustrate. The alternatives consist of cri­
terion values. We assume that lower criterion values are preferred to higher 
in each criterion. 

In many illustrations, we need to know the ranges of the criterion values 
in the Pareto optimal set. A vector consisting of the best (that is, smallest) 
values of each criterion is called an ideal criterion vector. Correspondingly, 
the worst values are the components of a nadir criterion vector. How these 
vectors are formed, depends on the form of the problem and we do not touch 
that topic here. Note that in many occasions, it is advisable to normalize the 
criteria. With the help of the ideal and the nadir criterion vectors, it is easy 
to normalize the criteria so that their ranges equal [0, 1]. 

2 Graphical Illustration 

The ultimate goal of graphical illustration is to enable the DM to gain more 
understanding of the problem and new insight into the alternatives and the 
underlying phenomena. It is essential that the graphics must be clear as well 
as easy to comprehend and interpret by the DM. On the one hand, not too 
much information should be allowed to be lost and, on the other hand, no 
extra unintentional information should be included in the presentation. 

Our intention is to show several possibilities for illustrating alternatives 
so that the DM can more easily differentiate between them. The graphical 
illustrations can bring out similarities and differences, which helps the DM in 
dropping uninteresting alternatives and identifying the most preferred one. 

Nevertheless, utilizing graphical illustration does not mean that the lim­
its on human information processing capacity are transcended. Several psy­
chological tests are summarized in [12] to prove that the span of absolute 
judgement and the span of immediate memory in human beings is rather 
limited. We cannot receive, process or remember large amounts of informa­
tion. As stressed in [8], experiments in psychology indicate that the amount 
of information provided to the DM has a crucial role. If more information is 
given to the DM, the percentage of the information used decreases. In other 
words, more information is not necessarily better than less information. More 
information may increase the confidence of the DM in the solution obtained 
but the quality of the solution may nonetheless be worse. 

In what follows, we briefly discuss several possibilities of illustrating graph­
ically a given set of alternative criterion vectors. We also give examples of 
these graphical tools. Unfortunately, because of lack of space, we can only 
show the general appearance of each tool for one alternative. Naturally, this 
does not give the right impression about the general usability of the tools in 
comparison. 
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Value Path In value paths, [4,13] horizontal lines of different colours or of 
different line styles represent the values of the criteria in different alternatives. 
In other words, one line is associated with one alternative. This is depicted in 
Fig. 1(a). The bars in the figure show the ranges of the criteria in the Pareto 
optimal set. Thus, they give additional information about the goodness of 
the criterion values at hand. Here, each criterion can have a scale of its own 
in the bars, if necessary. Note that the roles of the lines and the bars can also 
be interchanged so that bars denote alternatives and lines represent criteria. 

Value paths are used, for example, in [2] and in the interactive multiob­
jective optimization system WWW-NIMBUS http:/ /nimbus.mit.jyu.fi/ [11]. 

Bar Chart In bar charts, a group of bars represents the alternative values of 
a single criterion. The bars of the same colour are related to one alternative. 
Separate ranges for criteria are possible as well. Naturally, the roles of the 
alternatives and the criteria can be interchanged so that the bars are grouped 
according to alternatives instead of criteria (as in Fig. 1 (b)) . 

Fig. 1. Value path (a) and bar chart (b) 

Bar charts take horizontally quite a lot of space. In this case, the bars may 
be located, for example, in three dimensions [11] or in a vertical direction. 
The flexibility is increased if the DM can affect the order of the alternatives, 
that is, the order and the assignment of the bars. 

Star Coordinate System In star coordinate system [9] or star presenta­
tions [14], rays emanating from the origin represent criteria. For example, an 
alternative involving three criteria is represented as an irregular triangle. An 
example with four criteria is given in Fig. 2(a). Each circle represents one 
alternative and the area of each star depicts the goodness of that alternative. 
In each ray, the ideal criterion value is located at the centre and the nadir 
criterion value is at the circumference. 

If the areas are not filled, we can locate several alternatives in the same 
circle. Up to some point, this may make the comparison easier (it is evident 
that too many alternatives cannot fit in one circle). Note that if the order of 
the criteria is altered, the shape and the area of the star change. This can be 
considered a weakness of the system [15]. Alternatively, it is possible to only 
display the line segments along the rays, as in Fig. 2(b). Naturally, the order 
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of the criteria affects the appearance even then but the strong association 
with areas is avoided. 

EB EB 
Fig. 2. Star coordinate system (a) and the same with line segments (b) 

Spider-Web Chart In spider-web or radar charts [5], each apex of a polygon 
represents one criterion. For example, with three criteria we have triangles in 
question. An example is presented in Fig. 3(a) . The outer polygon shows the 
nadir criterion vector, the inner polygon stands for the ideal criterion vector 
and the middle polygon (the grey one) represents one alternative criterion 
vector. Thus, only the middle polygon is different in each chart . Note that 
one can also locate the polygons of several alternatives in the same chart. 

Petal Diagram In petal diagrams [15], a circle is divided into as many 
equal sectors as there are criteria. The size (radius) of each slice indicates the 
magnitude of the criterion value. Thus, we have one circle for each alternative. 
Each segment of the diagram, that is, each criterion can be associated with 
a different colour, as in Fig. 3(b). Notice that the order of the criteria has 
no effect on the actual shape of the diagram or the total area covered by the 
segments. Petal diagrams are utilized, for example, in [1,3,11] . 

Fig. 3. Spider-web chart (a) and petal diagram (b) 

It is mainly a matter of taste in the star coordinate system, the spider-web 
chart and the petal diagram, how the ideal criterion vector is situated. The 
roles can be interchanged so that the ideal criterion value is located on the 
circumference and the nadir criterion value at the centre. In this case, the 
larger the area the better. Alternatively, one can locate some reference values 
(if available) on the circumference. In this case, the figures may extend beyond 



Graphical Illustration of Pareto Optimal Solutions 201 

the circumference and, thus, the DM can easily identify desirable criterion 
values. 

Because of lack of space, we do not here touch projection or icon based 
approaches or other illustrative means. 

3 Discussion 

There is no straight-forward answer to the question when to use which type 
of graphical illustrations. The choice is up to the DMs and the problems in 
question. Even though new graphical tools may bring along new possibilities, 
they necessitate time for training the DMs in interpreting them. 

One should not forget that tables of alternative data may still be needed 
because tables usually perform better in information acquisition tasks whereas 
graphs are valuable in viewing data at a glance or evaluating relationships 
in the data. Thus, one can say that graphs and tables emphasize different 
characteristics of the same data and they complement each other. 

People often prefer colourful pictures but it is not always clear that the 
colours will make the pictures easier to comprehend. Above all, the colours 
must be easy to discriminate. The advantage of colours is that they make 
it easier for the DM to visually associate information belonging to the same 
context like alternative or criterion. Unfortunately, it is very easy to overload 
the DM with too much colour information. 

A recommended way of presenting information to the DM is to offer the 
same data in different forms. A simple tabular format may be one of the 
figures. In this way, the DM can choose the most illustrative and informative 
representations. The illustrations may also supplement each other. This idea 
is used WWW-NIMBUS [11]. 

4 Conclusions 

Many solution approaches for multicriteria optimization problems involve 
comparison of alternatives, that is, criterion vectors. Yet, the DM is not nec­
essarily supported in this task. One possibility to help the DM in selecting the 
most preferred alternative is to use graphical illustration of the alternatives. 
For some reason, illustration is used relatively seldom. Some explanation 
may be found in the fact that there are no surveys in the literature of the 
appropriate illustrative tools available. That is why we have here presented 
a collection of different possibilities for graphical illustration. The idea has 
been to provide a summary as a starting point for those willing to illustrate 
alternatives graphically. None of the graphical representations can be claimed 
to be better than the others but some fit certain problem types better than 
the others. It is always good to leave the final decision to the DM who can 
select those illustrations that (s)he is most comfortable with. 
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Abstract. The company system organization is focused as a decentralization orga­
nization of the company recently. Generally, the company system organization has 
headquarters, companies and divisions from the top. So, It has multiple hierarchical 
structure. Hence, an integrated evaluation for the company system organization is 
not simple. In this paper, we propose an efficiency evaluation model for company 
system organization in consideration of the characteristics of the company system 
organization via data envelopment analysis concept. 

1 Introduction 

Many Japanese enterprises have been doing the rationalizations of the struc­
ture of the various management aspects after the bubble economic collapse. 
The company system organization is focused as a trend which the structure 
of the management is changed into from the side of the reform of the or­
ganization [2]. In the company sysmtem organization, the decentralization 
of the business management is done, and it has responsibility for a business 
cleared, so each company aims to increase its management efficiency. It is 
useful to know what kind of activities each company and division under the 
headquaters is doing in the enterprise. 

In this paper, we evaluate relatively the activity of company system orga­
nization via data envelopment analysis (DEA) [1] which evaluate the relative 
efficiency among plural decision making units (DMUs). Though various DEA 
models have been proposed, there is no DEA model for company system orga­
nization. So, we propose an efficiency evaluation model for company system 
organization. We utilize the cross-efficiency to evaluate the companies, inte­
gratively. We propose an improved method to obtain the unique weights for 
the cross-efficiency. 

2 Characteristics of the Company System Organization 

We enumerate the characteristics of the company system organization in this 
paper. 

1. The company has three hierarchical structure about management, i.e. 
headquaters, company and division. 
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Company 1 

~ 
Company 2 

~ 
Company 3 

~ 
Division31 Division32 

~ 
~sion12 Division21 Division22 

Dev. Prod. Sales Dev. Prod. Sales 

Fig. 1. Outline of company system organization 

2. Each company is the business unit that has the authority which is close 
to an independent firm, and responsibility. 

3. All divisions have the same sections (functions), and the inputs and out­
puts of division are distributed into the sections. 

4. Same section has same inputs and outputs. 

Figure 1 shows the outline of company system organization. Headquarters 
plans the whole enterprise strategies, and entrusts the measure and practice 
of executive strategies to each company. Each company entrusts to practice 
the business strategies and managment to divisions under the company. Each 
division practices business strategies by controlling its sections. Each com­
pany is managed just like an independent firm in the enterprise. So, each 
company want to evaluate fairly among all companies, but ones best as much 
as possible. Therefore, when the companies are evaluated, they are expected 
to hold the conditions that each other can cut in about the evaluation cri­
terion, so an evaluation criterion may be difficult to be understood by the 
other company. 

3 Evaluation Model 

We propose an integrated efficiency evaluation model in consideration of the 
above characteristics and structure. The evaluation process is roughly divided 
into three steps. In step 1, we evaluate each division. In step 2, we evaluate 
each company by the integrated criterion based on the mutual evaluation 
information among companies. In step 3, we evaluate each company from the 
headquarters' point of view. 

3.1 Variables 

e1 , o and a are subscripts that mean the division in the jth company, target 
company and the target division, nand s1 are the number of companies and 
divisions in the company j, respectively. q is the number of sections. m and 
k are the number of inputs and outputs, mp and kp are the number of inputs 
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and outputs of the pth section. So, the sum of mp and kp with respect to p 
are m and k, respectively. Xuii' Yrlji are the ith input and the rth output 
of the ljth division in the jth company, respectively. Viiii and Urlii are the 
decision variables which weights for the ith input and the rth output of the 
ljth division in the jth company. 

3.2 Evaluation Procedure 

We explain the detail of the evaluation procedure in the following. 

Step 1. We evaluate the efficiency of each division on the whole by [P1] in 
accordance with Yang et al. [5] which is a DEA model with the subsystems. 

[P1] (a= 1, ... , S0 j o = 1, ... , n) 

h _ E~-1 UraoYrao (1a) 
max ao - "'m X 

L..i= 1 Viao iao 

E~==kp- 1 +1 UraoYrljj 
s.t. mv :::; 1, 

Ei=mv-1 +1 ViaoXiljj 

j = 1, ... ,n;p= 1, ... ,q;fi = 1, ... ,sj (1b) 

Viao,Urao 2": 0, i = 1, ... ,m;r = 1, ... ,k (1c) 

This formulation maximizes the efficiency score of the target division under 
the constraints that the efficiency scores of all sections (subsystems) is less 
than or equal unity. 

Step 2. The inputs and outputs of all divisions under each company are 
collected, and we calculate the efficiency score of each company. The inputs 
and outputs of company j, Xii and Yrj, are the sum of input and output of 
all divisions under each compnay, respectively, that is Xij = E;~=1 Xujj and 

Yrj = E;~=1 Yrljj with respct to i = 1, ... , m, r = 1, ... , k and j = 1, ... , n. 
In this step, to integrate the evaluation criterion, the accommodation 

of the evaluation of each company is done by using the mutual evaluation 
information among the companies. 

The cross-efficiency [2] is a mutual evaluation method which the mutual 
evaluation information among DMUs is used for. But, the cross-efficiency 
has a serious problem when the optimal weights are not unique, its score is 
not determined uniquely . To this problem, Hibiki [3] has proposed a way 
to determine the optimal weights. His method is need a decision maker's 
judgement for score in advance. But, it is not so easy to get the proper value. 
So, we propose a method which obtains the cross-efficiency score uniquely 
without decision maker's judgement based on his method thruough the next 
sub-steps. 

Step 2-1. The efficiency score of each company 8~ is calculated by the 
ordinal DEA model. 
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Step 2-2. If the optimal weight is unique then the cross-efficiency value is 
obtained by equation (2), else go to step 2-3. 

j = 1, ... , n; a= 1, ... , n (2) 

where v';0 , u;0 are the optimal weights of the ith input and the rth output of 
DMU0 , respectively. 

Step 2-3. We obtain the maximum and minimum cross-efficincy score of 
the other DMUs with holding(}~ by solving [P2] and [P3], respectively. 

[P3] (a= 1, ... , n; b = 1, ... , n; b -j. a) 

E L _ L;-1 UrbYrb 
min bo- '\'m X 

L..i=l Vib ib 

s.t. Equations (3b)-(3d) 

(3a) 

(3b) 

(3c) 

(3d) 

(4) 

Step 2-4. The optimal weights for the cross-efficiency is obtained by [P4]. 

[P4] (a= 1, ... , n) 
max do (5a) 

s.t. (5b) 

j=1, ... ,n;j-j.a (5c) 

(5d) 

where Efo* and Efo* are the optimal value of [P2] and [P3]. [P4] can not be 
transformed to a linear programming problem, but optimal solution of [P4] 
is in [0, 1], so can be solved by using simplex method and bisection method. 
Then, optimal cross-efficinecy score Ej0 is obtained by equation (2) with 
respect to the optimal solution of [P4]. 

The average of the cross-efficiency score of each DMU is finally made the 
efficiency of each company as equation (6). 
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Table 1. Example data 

Div. 11 12 0 Div. 11 12 I 0 
Company 1 Company 3 
Development section Development section 

L 320 65 250 Q 700 140 

I 
200 

M 183 7 200 R 450 110 200 
Product section Product section 

L 350 150 250 Q 750 126 

I 
330 

M 200 15 150 R 650 123 180 
Sales section Sales section 

L 330 335 175 Q 717 250 

I 
254 

M 200 210 33 R 400 250 227 
Company 2 Company 4 
Development section Development section 

N 800 90 300 s 650 80 

I 
150 

0 300 85 300 T 400 90 200 
p 210 67 250 Product section 

Product section s 650 90 

I 
100 

N 410 57 120 T 600 70 150 
0 200 53 250 Sales section 
p 130 34 110 s 700 170 

I 
80 

Sales section T 500 200 50 
N 456 90 163 
0 166 130 112 
p 160 90 59 

- 1 n 
Ej = ;;: L Ej0 , j = 1, ... , n 

o=l 

(6) 

Step 3. We evaluate each company from the headquarters' point of view, 
synthetically, based on the results of Step 1 and 2. 

4 Example 

We show a simple exapmle in table 1. The enterprise has four companies, 
company 1, 2, 3 and 4. Company 1, 3 and 4 has each two divisions, and com­
pany 2 has three one. Each division has three sections, that is development, 
product and sales. Each section has two inputs and one output. Input 1 (11), 
2 (12) are common for all sections, the employee and budget. Output (0) is 
the number of patents, the number of product, and the sales ammount for 
development, product and sales section, respectively. 

From step 1, the efficiency score of division L, Q, R, S and Tare 0.7860, 
0.8602, 0.9634, 0.5991 and 0.4319, respectively, and the others are unity. 
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When we applying CCR model, only divisions S and T are inefficient that 
the scores are 0.5305 and 0.5968, respectively. From this result, the number 
of inefficient DMUs increase. 

The weights of company 1, 2 and 3 is not uniquely. The next is the cross­
efficinecy matrix by our method. 

* 0.9995 1 0.9999 1 [ 
1 0.9997 0.9999 1 l 

[Ejo] = 0.9396 0.6423 1 0.8529 
0.6025 0.3014 0.5823 0.6325 

The final company scores are Ej are 0.9999, 0.9998, 0.9337 and 0.6047, re­
spectively. 

From the results for evaluation of company and division, we can evaluate 
company 2 to be the most efficient, synthetically. Compnay 3 is evaluated 
almost efficient by our method, but the divisions under company 3 are inef­
ficient. So, we need some attention. 

5 Conclusion 

In this paper, we have proposed an evaluation model for company system or­
ganization. In our method, we have considered the multiply hierarchy struc­
ture of company system organization and we proposed a way to determine 
the optimal weight for the cross-efficiency. 

We treat static case, in this paper. The activity of enterprise always moves, 
so we should extend our method to time-series evaluation. 
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Abstract. In this paper, to cope with hierarchical decision making problems under 
uncertainty, we formulate a two-level linear programming problem in which random 
variable coefficients are involved in objective functions and constraints, and reduce 
the problem into deterministic problems by using two models. While one of the 
deterministic problems is a usual two-level linear programming problem, the other 
is a two-level quadratic one. We present a computational method for obtaining 
Stackelberg solutions to the reduced deterministic two-level quadratic programming 
problems. 

1 Introduction 

In real-world decision making problems, there are many uncertain elements 
and coefficients of the formulated mathematical models cannot be always 
determined precisely. From the viewpoint, we deal with two-level linear pro­
gramming problems with random variable coefficients in this paper. Charnes 
and Cooper [5] proposed stochastic programming models from various dif­
ferent viewpoints: E-model, V-model and P-model. The E-model aims at 
optimizing the expected value of an objective function and the V-model min­
imizes the variance of an objective function value. The P-model maximizes 
the probability that an objective function is smaller than an aspiration level 
in the minimization problem. 

From the point of view that we give the leader some advice on how to 
make a decision, we reduce two-level linear programming problems with ran­
dom variable coefficients into certain deterministic problems by using the 
E- and the V-models. Because the deterministic problem corresponding to 
the V-model is a two-level quadratic programming problems, we develop a 
computational method for obtaining Stackelberg solutions to the reduced 
deterministic two-level quadratic programming problems. 

2 Two-level linear programming problems with 
random variable coefficients 

Let a: E ~n1 and y E ~n2 denote a pair of decision variable column vectors 
of the leader and the follower. We deal with the following two-level linear 
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programming problems with random variable coefficients: 

minimize Z1 (x, y) = c1x + d1Y 
"' where y solves 

minimize z2(x, y) = c2x + d2Y 
y 

subject to A1x + A2y:::; b 
X::::: 0, y::::: 0, 

(1) 

where z1(x, y) is an objective function of the leader; z2(x, y) is an objective 
functions of the follower; c1, c2 are n1-dimensional row vectors of random 
variable coefficients; d1, d2 are n2-dimensional row vectors of random variable 
coefficients; A1 and A2 are m x n1 and m x n2 coefficient matrices; b is an 
m-dimensional column vector of random variable coefficients. 

Because problem (1) contains random variable coefficients, definitions and 
solution methods for ordinary mathematical programming problems cannot 
be directly applied. In this paper, for the constraints, we employ the concept 
of the chance constrained conditions [4]. Namely, the probability that the 
constraints are satisfied is not less than a given probability level. Let ai be 
a probability level for the ith constraint specified by the leader. The chance 
constrained condition is represented by 

(2) 

where Ai, A~ and bi are coefficients of the ith constraint. Let Fi(r) be a 
distribution function of the random variable bi. Since Pr{A{x+A~y:::; bi} = 

1- F(Aix + A~y), the inequality (2) is rewritten as F(Aix + A~y):::; 1-
ai. Let K 1_a; denote the maximal value of r satisfying r = F-1(1 - ai)· 
From monotonicity of the distribution function, the inequality (2) can be 
transformed into 

Ai x + A~y :S: K1-a;, i = 1, ... , m. 

Then, we have the following problem: 

minimize z1 (x, y) = c1x + d1y 
"' where y solves 

minimize z2(x, y) = c2x + d2y 
y 

subject to A1x + A2y:::; K1-a 
X::::: 0, y::::: 0, 

(3) 

(4) 

where K1-a = (KI-a1 , .•. , Kl-am)T and the superscript T represents trans­
position of vectors or matrices. 

For problem (4), we examine theE- and the V-models. In theE-model, 
the expected values of the objective functions z1(x,y) and z2(x,y) of the 
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leader and the follower are minimized, and the corresponding deterministic 
problem is formulated as: 

minimize E(c1x + d1y] = m~x + mfy 
"' where y solves 

minimize E(c2 x + d2y] = m~x + m~y 
y 

subject to A1x + A2y:::; K1-a 

X~ 0, y ~ 0 

(5) 

where E[/] denotes the expected value of f; mi, mf, i = 1, 2 are vectors of 
expected values of C;, di, i = 1, 2. Because problem (5) is a usual two-level 
linear programming problem, algorithms previously developed can be applied 
[1,3,2,6,7]. 

Although the expected value of the objective function value is minimized 
as in the E-model, it does not seem that the obtained solution is appropriate 
for the decision making under uncertainty if the variance is considerably 
large. In such a case, it is natural to employ the variance minimization model, 
i.e., the V-model. In the V-model, the variances of the objective functions 
z1(x,y) and z2(x,y) of the leader and the follower are minimized and it is 
often desirable to search solutions satisfying certain levels specified by the 
leader for the expected values of the objective functions. Such a problem can 
be represented by 

min~mize Var[c1x + d1y] = [:r Vt [:] 
where y solves 

min~mize Var[c2x + d2y] = [:r V2 [:] 

subject to A1x + A2y :::; K1-a 

m~x + mfy :::; fJ1 
m~x+m~y :::;{32 
X~ 0, y ~ 0 

(6) 

where Var[f] denotes the variance off; Vi, i = 1, 2 are covariance matrices 
with respect to (ci, di), i = 1, 2; fJ1 and f32 are satisfactory level for the 
expected values of the objective function of the leader and the follower. 

We consider a computational method for obtaining Stackelberg solutions 
in the V-model. The leader chooses a decision so as to minimize the variance 
of the objective function value on the assumption that, for the given decision 
of the leader, the follower takes an optimal response, i.e., a decision such that 
the decision minimizes the variance of the follower's objective function value. 
We develop a computational method for obtaining such a pair of decisions, 
i.e., the Stackelberg solution. 

After the leader has chosen a decision :i:, if the follower intends to minimize 
the variance of the objective function, it follows that the follower chooses an 
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optimal solution to the problem 

[xy'] T , r2 [xy' J minimize V ar[c2:i: + ~y] = v' 

subject to A1:i: + A2y :::; K1-a 
m!:i: + mty:::; /31 
m~:i: + m~y :::; /32 
y2:0 

(7) 

and such an optimal solution is called a rational response. Let R(x) denote 
the set of rational responses. 

Then, the Stackelberg solution is an optimal solution to the problem 

minimize Var[c1x + d1y] = [: r liJ. [:] } 
subject toy E R(x) 

Aix + A~y:::; b' 
X 2:0, y 2:0, 

(8) 

where, for simplicity, we use coefficient matrices and a vector, Ai, A~ and b', 
for the coefficients represented by A1, A2, m!, mt, m~, m~, K1-a, /31 and 
{32 of the constraints. 

In computation of Stackelberg solutions, it is often assumed that the set 
of rational responses R(x) is a singleton. In the V-model, however, because 
problem (7) is a convex programming problem and the objective function is 
also a strictly convex function due to positive definiteness of V2 , the set R(x) 
is a singleton without the assumption. 

By replacing the condition of rational responses y E R(x) by the Kuhn­
Thcker conditions, we have the following quadratic programming problem 
including the linear complementarity constraints: 

minimize Var[c1x + d1y] = [:r V1 [:] 

nt n1+n2 

subject to 2 L V2(n1 +i)jXj + 2 L V2(n1 +i)jYj-n1 

j=1 j=nt+1 

+AA~ ·i - wi = 0, i = 1, ... , n2 

Aix + A~y- b':::; 0 
A(Aix + A~y- b') = 0, wy = 0 
X ::::: 0, y ::::: 0, A ::::: 0, w ::::: 0 

(9) 

Although it is difficult to directly solve problem (9) because problem 
(9) is not a convex programming problem, it is noted that problem (9) is 
reduced into a quadratic programming problem with only linear constraints 
by removing the linear complementarity constraints. 
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In this paper, we employ the branch-and-bound scheme with branching 
procedure for the linear complementarity constraints and by iteratively solv­
ing quadratic programming problems, we find an optimal solution to problem 
(9). This method is similar to the Bard and Moore method [2] for solving two­
level linear programming problems, in which linear programming problems 
are iteratively solved. 

3 A numerical example 

We consider the following two-level linear programming problem in which 
each of the leader and the follower has only one decision variable x and y, 
and five constraints: 

minimize z1 (x, y) = c1x + d1y 
X 

where y solves 
minimize z2(x,y) = c2x + d2y 

y 

subject to -x + 3y ~ b1 , lOx- y ~ b2 
3x+y ~ ba, x+2y ~ b4 
3x + 2y ~ bs, x ~ 0, y ~ 0. 

(10) 

Means of the random variable coefficients c1, d1, c2 and d2 of the objective 
functions in the numerical example are -2.0, -3.0, 2.0 and 1.0, respectively, 
and the covariance matrices with respect to ( c1, d1) and ( c2, d2 ) are V1 = 

[~ ~], V2 = [ ! 1 ~1] . For the right-hand-side constants of the constraints, 

means, variances and probability levels of satisfaction are shown in Table 1. 
Incorporating the chance constrained conditions and employing the pro­

posed formulation, we have the following deterministic two-level quadratic 
programming problem corresponding to the original problem with random 
variable coefficients. 

minimize [ x y] 
X [~ ~] [;] 

where y solves 

. . . [ ] [ 1 -1] [X] mm~m1ze x y _ 1 6 y 

subject to -x + 3y ~ 47, lOx- y ~ 110 
-3x - y ~ -19, -x - 2y ~ -15 
-3x- 2y ~ -29, -2x- 3y ~ -31 
2x + y ~ 33, x ~ 0, y ~ 0 

(11) 

where the last two constraints -2x- 3y ~ -31, 2x + y ~ 33 are those of 
the expected values of the objective functions of the leader and the follower, 
respectively. Problem (11) can be transformed to the single level quadratic 
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Table 1. Random variable coefficients of the constraints 

coefficient b1 b2 b3 b4 bs 
mean 50.11 113.15 15.16 13.16 25.63 

variance 9.0 36.0 9.0 4.0 16.0 
probability 0.85 0.70 0.90 0.70 0.80 

Table 2. The Stackelberg solution of each model 

model solution 
E-value of E-value of variance of 
the leader the follower the leader 

V-model (5.1667, 6.8889) -31 17 266.94 
V-model w/o* (7,4) -26 18 202 

E-model (1,16) -50 18 802 

variance of 
the follower 

240.25 
89 

1505 
* V-model w/o means the V-model without the expected value constraints. 

programming problem including the linear complementarity constraints as 
described in the previous section. 

As shown in Table 2, although the expected values of the leader and the 
follower in theE-model are smaller than those of the V-models, the variances 
of theE-model are considerably larger than those of the V-models. Especially, 
while the expected values of the follower in the V-models with/without the 
expected value constraints are almost the same with that of theE-model, the 
variances are diminished in the V-models to a large extent. It is found that 
the expected values in the V-model with the expected value constraints can 
control the level of the expected values, keeping suppressing the variance. 
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Abstract. In this paper, we consider several kinds of convexity and semicontinu­
ity of multifunctions with respect to ordering cones, and we investigate inherited 
properties of convexity and semicontinuity through scalarization of multifunctions. 
We introduce four kinds of scalarizing functions to characterize images of a multi­
function by using Tchebyshev scalarization; these (real-valued) scalarizing functions 
have the same sorts of convexity and semicontinuity which correspond to those of 
parent multifunctions. 

1 lntrod uction 

This paper consists of two parts which are concerned with inherited properties 
of convexity and semicontinuity. Convexity and lower semicontinuity of real­
valued functions are useful properties for analysis of optimization problems, 
and they are dual concepts to concavity and upper semicontinuity, respec­
tively. These properties are related to the total ordering of R. We consider 
certain generalizations and modifications of convexity and semicontinuity for 
multifunctions in a topological vector space with respect to a cone preorder 
in the target space, which have motivated by [3,4] and studied in [1] for gen­
eralizing the classical Fan's inequality. These properties are inherited by the 
following scalarizing functions; 

inf{hc(x, y; k) I y E F(x)} (1) 

and 

sup{hc(x, y; k) I y E F(x)} (2) 

where hc(x, y; k) = inf{t I y E tk- C(x)}, F: E-+ 2Y is a set-valued map, 
C(x) a closed convex cone with nonempty interior, x and y are vectors in 
two topological vector spaces E and Y, respectively, and k E intC(x). Note 
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that hc(x, ·; k) is positively homogeneous and subadditive for every fixed 
x E E and k E intC(x), and that hc(x,y; k) S 0 for y E -C(x). Moreover, 
we have -hc(x, -y; k) = sup{t I y E tk + C(x)}. This function hc(x, y; k) 
has been treated in some papers. Essentially, hc(x, y; k) is equivalent to the 
strictly monotonic function defined by Luc [5]. For each y E Y, hc(x, y; k) · k 
corresponds the mimimum vector of upper bounds with respect to the cone 
C(x) restricted to the direction k. Similarly, -hc(x, -y; k) ·k corresponds the 
maximum vector of lower bounds with respect to the cone C(x) restricted to 
the direction k. By using such inherited properties as properties of convexity 
and semicontinuity are inherited from multifunctions into scalarizing func­
tions (1) and (2), four variants of Fan's type inequality for multifunctions 
have been presented in [2]. Thus, we know that inherited properties are very 
useful and important. 

2 Inherited Properties of Convexity 

The aim of this section is to investigate how properties of cone-convexity and 
cone-concavity are inherited from multifunctions into scalarizing functions (1) 
and (2). Let E andY be topological vector spaces and F and C: E---+ 2Y 
two multivalued mappings. Denote B(x) = (intC(x)) n (2S\S) (which plays 
a role of base for intC(x) without uniqueness), where Sis a neighborhood of 
0 in Y. We observe the following four types of scalarizing functions: 

1/Jf:(x; k) := sup hc(x, y; k), 
yEF(x) 

cp[;(x;k) := inf hc(x,y;k); 
yEF(x) 

-cp(/(x;k) = sup -hc(x,-y;k), -1/J(jF(x;k) = inf -hc(x,-y;k). 
yEF(x) yEF(x) 

The first and fourth functions have symmetric properties and then results 
for the fourth function -1/J 0 F ( x; k) can be easily proved by those for the first 
function 1/J[:(x; k). Similarly, the results for the third function -cp(jF (x; k) 
can be deduced by those for the second function cp[;(x; k). By using these 
four functions we measure each image of multifunction F with respect to its 
4-tuple of scalars, which can be regarded as standpoints for the evaluation 
of the image. To avoid confusion for properties of convexity, we consider 
the constant case of C(x) = C (a convex cone) and B(x) = B firstly, and 
hc(x,y; k) = hc(Y; k) := inf{t I y E tk- C}. 

To begin with, we recall some kinds of convexity for multifunctions. 

Definition 1. A multifunction F : E ---+ 2Y is called C-quasiconvex, if the 
set {x E E I F(x) n (a- C) f= 0} is convex (or empty) for every a E Y. If-F 
is C-quasiconvex, then F is said to be C-quasiconcave, which is equivalent to 
( -C)-quasiconvex mapping. 

Remark 1. The above definition is exactly that of Ferro type ( -1) -quasiconvex 
mapping in [4, Definition 3.5]. 
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Definition 2. A multifunction F : E ---+ 2Y is called (in the sense of [4, 
Definition 3.6]) 

(a) type-(iii) C-properly quasiconvex if for every two points x1,x2 E E and 
every A E [0, 1] we have either F(x1 ) C F(Ax1 + (1 - A)x2) + C or 
F(x2) C F(Axl + (1 - A)x2) +C. 

(b) type-( v) C -properly quasi convex if for every two points x1 , x2 E E and 
every A E [0, 1] we have either F(AXl + (1 - A)x2) C F(xl) - C or 
F(Axl + (1 - A)x2) C F(x2) - C; 

If-F is type-(iii) [resp., type-(v)] C-properly quasiconvex then F is said to 
be type-(iii) [resp., type-(v)] C-properly quasiconcave, which is equivalent to 
type-(iii) [resp., type-(v)] (-C)-properly quasiconvex mapping. 

However, there is no relationship between those for types (iii) and (v) in 
general. 

Definition 3. A multifunction F : E ---+ 2Y is called (in the sense of [4, Def­
inition 3. 7]) type-( v) C -naturally quasiconvex, if for every two points x1 , x2 E 

E and every A E (0, 1), there exists f.L E [0, 1] such that 

F(Axl + (1 - A)x2) C f.LF(xl) + (1 - f.L)F(x2) -C. 

If-F is type-(v) C-naturally quasiconvex, then F is said to be type-(v) C­
naturally quasiconcave, which is equivalent to type-(v) (-C)-naturally qua­
siconvex mapping. 

Theorem 1. 

1. IfF: E---+ 2Y is type-(v) C-properly quasiconvex, then 

inf 1/J!'J(x; k) = inf sup hc(y; k) 
kEB kEB yEF(x) 

is quasiconvex, and especially 1/l{;(x; k) is also quasiconvex with respect to 
variable x for every k E int C; 

2. IfF : E ---+ 2Y is type-(iii) C-properly quasiconcave, then 1/J!;(x; k) is 
quasiconcave with respect to variable x for every k E int C; 

3. IfF : E ---+ 2Y is type-(v) C-properly quasiconcave, then cp{;(x; k) is 
quasiconcave with respect to variable x for every k E int C; 

4. IfF : E ---+ 2Y is type-(iii) C-properly quasiconvex, then cp{;(x; k) is 
quasiconvex with respect to variable x for every k E int C. 

Theorem 2. IfF: E---+ 2Y is C-quasiconvex, then cp{;(x; k) is quasiconvex 
with respect to variable x for every k E int C. 
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Theorem 3. IfF: E--> 2Y is type-(v) C-naturally quasiconvex, then 1/Jf!:(x; k) 
is quasiconvex with respect to variable x for every k E int C. 

Remark 2. When we replace F by - F in the theorems above, it leads to the 
quasiconvexity (or quasiconcavity) of scalarizing functions -1/J(/ and -cp(/. 

3 Inherited Properties of Semicontinuity 

The aim of this section is to investigate how properties of several kinds of 
cone-semicontinuity is inherited from multifunctions into scalarizing func­
tions. We introduce two types of cone-semicontinuity of multifunctions, which 
are regarded as extensions of the ordinary lower semicontinuity for real-valued 
functions; see [3]. 

Definition 4. Let x E E. A multifunction F is called C(x)-upper semi­
continuous at x0 , if for every y E C(x) U (-C(x)) satisfying with F(x0 ) c 
y + intC(x), there exists an open U 3 x0 such that F(x) c y + intC(x) for 
every x E U. 

Definition 5. Let x E E. A multifunction F is called C(x)-lower semicon­
tinuous at x0 , if for every open V such that F(x0 ) n V =f 0, there exists an 
open U 3 x 0 such that F(x) n (V + intC(x)) =/0 for every x E U. 

Remark 3. In the two definitions above, the notions for single-valued func­
tions are equivalent to the ordinary notion of lower semicontinuity of real­
valued ones, whenever Y = Rand C(x) = [O,oo). Usual upper semicon­
tinuous multifunction is also (cone-) upper semicontinuous. When the cone 
C(x) consists only of the zero of the space, the notion in Definition 5 coin­
cides with that of lower semicontinuous multifunction. Moreover, it is equiv­
alent to the cone-lower semicontinuity defined in [3], based on the fact that 
V + intC(x) = V + C(x); see [6, Theorem 2.2]. 

Proposition 1. ([1, Proposition 3.1]) If for some x0 E E, A C intC(x0 ) is a 
compact subset and multivalued mapping W(·) := Y\ {intC(·)} has a closed 
graph, then there exists an open set U 3 xo such that A C C(x) for every 
x E U. In particular C is lower semicontinuous. 

We shall say that (F, X), where X is a subset of E, has property (P), if 
for every x EX there exists an open U 3 x such that the set F(U n X) is 
precompact in Y, that is, F(U n X) is compact. 

Theorem 4. See [1, Lemma 3.1]. Suppose that W : E --> 2Y defined as 
W(x) = Y\intC(x) has a closed graph. IfF is ( -C(x))-upper semicontinuous 
at x for each x E E and (F, X) satisfies property (P), then 1/JFix, which is 
the restriction of 

'lj;F(x):= inf sup hc(x,y;k) 
kEB(x) yEF(x) 

to the set X, is upper semicontinuous. If the mapping C is constant-valued, 
then 'lj;F is upper semicontinuous. 
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However, we can replace Proposition 1 by another relaxed form as a con­
sequence of itself. 

Proposition 2. Assume that there exists a compact subset D C Y satisfying 
(i) A C coneD where coneD:= {.Axi.A 2: O,x ED} and (ii) DC intC(x0 ) for 
some xo E E. If W(-) := Y \ {intC(·)} has a closed graph, then there exists 
an open set U 3 xo such that A c C(x) for every x E U. In particular Cis 
lower semicontinuous. 

Therefore, we consider the following relaxed one instead of property (P): 
We shall say that (F,X), where X is a subset of E, has property (Q), if 
for every x E X there exists a compact set D(x) (D : X -+ 2Y) such that 
F(x) c coneD(x). 

Theorem 5. Suppose that W: E-+ 2Y defined as W(x) = Y \ intC(x) has 
a closed graph. IfF is ( -C(x))-upper semicontinuous at x for eachx E E and 
(F,X) satisfies property (Q), then -¢Fix, which is the restriction of'¢F(x) 
to the set X, is upper semicontinuous. If the mapping C is constant-valued, 
then -¢F is upper semicontinuous. 

Theorem 6. See [1, Lemma 3.3]. Suppose that W : E -+ 2Y defined as 
W(x) = Y\intC(x) has a closed graph. IfF is ( -C(x))-lower semicontinuous 
at x for each x E E and (F,X) satisfies property (Q), then 'PFix, which is 
the restriction of 

<pF(x) := inf inf hc(x,y;k) 
kEB(x) yEF(x) 

to the set X, is upper semicontinuous. If the mapping C is constant-valued, 
then <pF is upper semicontinuous. 

Remark 4. When we replace F by - F in the two theorems above, it leads to 
the lower semicontinuity of scalarizing functions -'1/1-F and -<p-F. 

4 Conclusions 

We have established that 

(i) if a multifunction has a certain cone-convexity [resp., cone-concavity], 
that is, C-quasiconvexity, C-properly quasiconvexity, C-naturally quasi­
convexity [resp., C- · · · quasiconcavity], then each scalarizing function 
is quasiconvex [resp., quasiconcave]. That is one of inherited properties 
from its parent multifunction; 

(ii) if a multifunction has a certain cone-upper semicontinuity [resp., cone­
lower semicontinuity], then each scalarizing function is upper semicon­
tinuous [resp., lower semicontinuous]. This is another inherited property 
from its parent multifunction. 
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Abstract. Optimal expansion of a competence set, consisting of knowledge, in­
formation and skills for a certain decision making problem and its effective solu­
tion, is considered in this paper. The competence set expansion is optimized with 
respect to minimizing costs and time, as well as maximizing efficiency and benefits 
of expansion. This problem is treated as a multicriteria combinatorial optimiza­
tion problem. A multicriteria genetic algorithm is developed to solve this optimiza­
tion problem. The multicriteria measure of closeness to the "ideal" solution is in­
troduced for the fitness assignment. An illustrative example of academic 
competence set expansion is presented. The results show the applicability of mul­
ticriteria genetic algorithm to solve a competence set expansion formulated as a 
multicriteria optimal route problem. 
Keywords: Competence Set Expansion, Multicriteria, Compromise, Genetic Al­
gorithm 

1. Introduction 

Ideas, knowledge, information, skills, and every kind of message stored in the 
human brain, form a "knowledge base" for human thoughts, judgments, actions 
and reactions. This comprehensive knowledge base is called the "Habitual lli­
main", a concept proposed by Po-Lung Yu (1990). For each decision problem, 
there is a competence set consisting of knowledge, information and skills for its 
effective solution (Yu and Zhang 1990). A habitual doORin is composed of com­
petence sets. If the existing competence sets of a decision maker are incapable to 
solve the problem, then the decision maker should expand the competence set re­
lated to the problem. Optimal expansion of competence set is considered in this 
paper as a multicriteria combinatorial optimization problem (optimal route prob­
lem). 

The Genetic Algorithm(GA) may be applied to network design problems, solv­
ing combinatorial optimization problems. A computer code for single-criterion 
genetic algorithm is presented in Goldberg (1989), and the FORTRAN program 
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for single-criterion GA was developed by Carroll (1999). The first formulations of 
GAs were essentially single-objective methods, but in the last several years inter­
est in how the multiple objectives can be handled by GA has rapidly increased. 
Fonseca and Fleming (1998), after reviewing evolutionary approaches, propose 
that fitness assignment could be interpreted as a multicriteria decision process, and 
consider the ranking of an arbitrary number of candidates. 

This paper focuses on competence set expansion formulated as multicriteria 
routing problem. Multicriteria expansion of a competence set is discussed in Sec­
tion 2. In Section 3, multicriteria genetic algorithm is developed to determine a 
compromise solution that is Pareto optimal. Particular multicriteria fitness is il­
troduced, and a multicriteria problem is transformed into a single -criterion prob­
lem solvable using GA. The evolutionary computation, and genetic algorithm as a 
special case, is chosen as a mathematical tool. A simple numerical experiment in 
Section 4 illustrates shortly the elements of competence set expansion. 

2. Multicriteria Expansion of a Competence Set 

There are four basic forms of a competence set, defined as follows: 
-the true competence set (Tr(D)): consisting of ideas, knowledge, skills, attitudes, 
information and resources that are truly needed to successfully solve problem D; 
-the perceived competence set (Tp(D)): the true competence set as perceived by 
the decision maker (DM); 
- the DM's acquired competence set (Ac(D)): consisting of ideas, knowledge, 
skills, attitudes, and information that have actually been acquired by the DM; 
-the perceived acquired competence set (Ap(D)): the acquired competence set as 
perceived by the DM. 

The above four forms are all special subsets of the habitual domain (HD) for a 
decision problem D (Yu 1990). The gaps between the true competence set (Tr(D) 
or Ac(D)) and perceived competence set (Tp(D) or Ap(D)) are due to ignorance, 
uncertainty, illusion and wishful thinking. Wisdom and certainty would lead to 
high quality decision, and illusion and ignorance could lead to low quality deci­
sion. 

A goal of multicriteria expansion is to reach a truly needed competence set 
Tr(D). If Tr(D)=t:Tp(D), then the goal of expanding the competence set could be 
one of them and it should be accepted (maybe DM insists on goal of Tp(D)). A 
simplified situation where Tr(D)=Tp(D) and Ac(D)=Ap(D) (objective perceiving) 
is considered in this paper. 

Optimal expansion of a competence set is an MCDM optimization process with 
respect to minimizing costs and time, and maximizing efficiency and benefits of 
expansion. The expansion of a competence set could be represented by a network. 
The starting network node represents existing competence set and the terminal 
node is the required competence set Tr(D), the intermediate nodes represent skills 
and resources needed to reach the terminal node. In the competence set expansion 
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problem, cost is associated with the link (i,j), but some benefit (or cost) may be re­
lated with node}, meaning that benefit is achieved if the competence} is realized. 

A new formulation of a competence set expansion problem (CSEP) is intro­
duced in this paper, as follows. 

EXT { Lh,;x ,k = 1, ... ,K} (1) 
Ns«:.{Nst) iENst ' 

where X; represents the node within set of nodes that follows node i on the route 

Nst (feasible) from starting to the terminal node, X; E [1,N;]; N; is the number 

of nodes following node i; the summation is over i E Nst continuing from start­
ing node to the terminal node (directed walk), and i is the node on the route Nst, 
with an input ordering number within the network; a feasible route Nst consists of 

a set of nodes, Nst c {x;, i = 1, ... , N}; {Nst} denotes the set of all alternative 

routes Nst; h ,;"' is the value of k-th criterion function for the link ( i, X;), or it is 

associated with node X;; K is the total number of criterion functions; and EXT 

means that the k-th criterion function has to be maximized if it represents benefit, 
or to be minimized if it represents cost. Each node has its own order number 
within network, i = 1 for the starting node and for the terminal node i = N . The 
network is represented by a matrix H with elements 

Hij'j= 1, ... ,Ni'i = 1, ... ,N, where Hij is the order number of a node that fol­

lows node i. The formulation (1) assumes that each node in the network has at 
least one following node on the route to the terminate node, and there are no 
"loops" within the network (acyclic). The task is to determine the best route, from 

the sets {X;, i E Nst, Nst E { Nst} } , in a multicriteria decision making sense. 

3. Multicriteria Genetic Algorithm 

Genetic algorithms are essentially unconstrained search techniques which re­
quire the assignment of a scalar measure of quality (fitness) to the candidate solu­
tions. For a class of constrained problem, a subroutine should be developed for 
testing feasibility. If the constraints are violated, the current solution is nonfeasi­
ble, and thus has no fitness. The fitness assignment is interpreted as a multicriteria 
decision process. 

The rrulticriteria genetic algorithm developed in this paper has the following 
general steps: 
0. Initialization: defining the representation (binary string s); population size M; 

and the ending criterion. Defining the fitness function, fit = F( d (s)) , where 
F is the MCDM aggregated function, including all criteria and decision mak­
ers' preferences; and d means decoding. Selecting the initial population 
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~ = {s: , ... ,s~} .Determine F* =max{ F(d(s~)),m = l, ... ,M}, where 

s~ denotes m-th individual (a solution) in the p-th population. 

1. Determining fitness for all individuals in a current population PP . 
The procedure for determining multicriteria fitness is presented below. 

2. Generating Pp+l = { s r+' , ... , s ~+! } ~ X c , by random performance of genetic 

operators on random selected individuals from PP with higher fitness. The 

execution of GA operators is associated with probability. The probability used 
in selection is proportional to the fitness, so that a better individual has a better 
chance to be selected for the evolutionary process. 

3. Compute Fmax. = max{F(d(s:')),m = l, ... ,M}. 

If Fmax > F*, then F* = Fmax and x* =argFmax.. 

4. If the ending criterion is satisfied, stop the procedure, and X • represents the op­
timal solution (or "near-optimum" in some cases); otherwise repeat the steps 1 
to 4 withp=p+l (next generation). 

The multicriteria aggregating function F ( d ( s)) should provide sufficient n-
formation to guide evolution in GA. The development of function F(d(s)) is 

based on the multicritera compromise ranking method (called VIKOR, Opricovic 
1998). The multicriteria measure Q (distance to the "ideal point", representing ag­
gregating function) is introduced to determine multicriteria fitness, 

fit m = 1- Qm , for m-th individual. An individual closer to the "ideal point" has 

better fitness, and the closest individual represents a "compromise'' solution (Yu 
1973). The measure Q is determined by the procedure as follows. 

Qm = v(Sm- S*)/(S-- S*)+(l-v)(Rm -R*)I(R- -R*),m=l, ... ,M 

K 

where: sm = L,wk(fk.- fkm)/(fk*- h-), 
k=! 

Rm =mr:[wk(fk* -Jkm)I(J: -Jk-)]; 

wk are the weights of criteria (given as input data); weights are introduced to ex­

press the relative importance of the criteria, and they have no clear economic 

meaning; f km is the value of the k-th criterion function, determined within a 

evaluation subroutine, for the solution s~ generated by GA; fk* and ft- are the 

best and the worst value the k-th criterion function, respectively; s* and R* are 

minimum value of Sm and Rm, respectively; s- and R- are maximum values; 

v is introduced as weight of the strategy of "the majority of criteria" (or "the 
maximum group utility"), here v = 0.5. 
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The maximal fk max , and the minimal //nin values of all criterion functions, 

k=l, ... ,K are the input data. These values can be determined by single-criterion 
optimization, or to be assessed by the analyst. The values of criterion functions for 

any feasible solution should be within given intervals. Also, s- , s• , R- , R* 
are needed as input data. These data could be given by a decision maker (firm 
data), or to be given as initial assessment. With "firm data" the results are obtained 
within one GA run. With "assessed data" entered for the first GA run, the new 

values for fkmax, /tin, k=I, ... ,K, and s-, s•, R-, R• are computed for the 

entire population size, and used as input data for the second GA run. An extreme 

(possible) value for fkmax, f/nin, k=t, ... ,K, and s- = R- = 1, s• = R• = o, may 

be given as "assessed data" for the first GA run. 
The compromise solution could be accepted by the decision makers because it 

provides a maximum "group utility" for the "majority" (with measureS represent­
ing "concordance"), and a minimum of individual regret by the "opponents" (with 
measure R representing "discordance"). 

4. Illustrative Example 

As an illustrative example, the competence set expansion for water resources 
management could be formulated. The illustrative data are taken from the course 
selection guide for Civil Engineering Department, F AMU/FSU College of Engi­
neering, Tallahassee, Florida. An input is the list of courses for developing knowl­
edge in water resources management. The prerequisite courses for the main 
courses also have their own prerequisites, as the courses for competence set et­

pansion. 
The original network for this example is formulated including all courses, with 

Calculus I as the starting node. The node with more than one competence is a 
"compound" node. There are alternative routes within such a network, from the 
starting node to the terminal node Tr(D). The terminal node represents the needed 
competence set for water resources management. The loop may be transformed in 
oriented link by adding a new node (artificial) and a new link. The compound 
node is noted with the code of first course, and the values of criterion functions for 
such node are the integral for the compound node. 

The criteria could be : fi - credit hours, fi - design credits, jj -time (needed for 
expansion), and./4 -expected efforts. The criterion functionsfi andfi are associated 
with nodes. The criterion functionjj represents the total number of courses within 
one alternative route from starting node to the terminal node Tr. The criterion 
function./4 represents expected efforts to pass the courses on a given route, and the 
values are subjectively evaluated. The total value of the criterion functions fi and 
fi are to be maximized for the optimal route, andjj and./4 are to be minimized. 

The multicriteria optimal solution (compromise) is determined by program 
EMCO (Evolutionary Multicriteria Combinatorial Optimization) based on the 
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methodology presented in this paper. Population size of 8 individuals, and 200 
generations were the GA parameters for this example. Multicriteria optimization is 
performed for two preference "scenarios" represented by the weights values, the 
CSE1 (Competence Set Expansion) solution for "preference on hydraulic engineer­
ing" and the CSEz solution representing the 'preference on credit hours". The 
DM's preference has great impact on the MCDM solution. These solutions illus­
trate two ways of competence set expansion, achieving the goal of acquiring 
knowledge for water resources management. The proficiency level of the achieved 
competence set is not considered in this example. 

5. Conclusions 

Competence set expansion for solving a certain problem is considered as mu 1-
ticriteria decision making, and it is formulated as a multicriteria optimal route 
problem. Using the newly developed multicriteria genetic algorithm, a compro­
mise solution is determined. An illustrative example shows that the proposed 
method and algorithm can solve a competence set expansion problem 

New model of a competence set expansion may be considered as a contribution 
of this paper. 

The application of genetic algorithm is efficient in solving combinatorial opti­
mization problems, although the convergence and global optimum are a task for 
future research on developing genetic algorithms. Some of the parameters in the 
model of competence set expansion may not be crisp, and there is a need to de­
velop a fuzzy multicriteria genetic algorithm that includes fuzzy logic. 

Acknowledgments-- This paper is partly a result of the project NSC90-2811-H-
009-001, which was supported by the National Science Council of Taiwan. 

References 

Carroll DL (1999) FORTRAN Genetic Algorithm (GA) Driver. WWW page, 
http://www.staff.uiuc.edu/-carroll/ga.html. 

Fonseca C,FlemingP(l998) Multiobjective Optimization and Multiple Constraint Handling 
with Evolutionary Algorithms - Part 1: A Unified Formulation. IEEE Transactions on 
Systems, Man, and Cybernetics- Part A: Systems and Humans 28(1): 26-37. 

Goldberg D (1989) Genetic Algorithms in Search, Optimization, and Machine Learning 
Addison-Wesley Publishing Company, Inc., New York. 

Opricovic S (1998) Multicriteria Optimization in Civil Engineering Faculty of Civil Engi­
neering, Belgrade. 

Yu PL (1973) A Class of Solutions for Group Decision Problems. Management Science 
19(8): 936-946. 

Yu PL (1990) Forming Winning Strategies- An Integrated Theory of Habitual Domains. 
Springer-Verlag, Heidelberg. 

Yu PL, Zhang D (1990) A Foundation for Competence Set Analysis. Mathematical Social 
Sciences 20(3): 251-299. 



Comparing DEA and MCDM Method 

Serafim Opricovic and Gwo-Hshiung Tzeng 

Faculty of Civil Engineering, University of Belgrade, Yugoslavia; in 20001/2002 
he is with the National Chiao Tung University, Hsinchu, Taiwan; e-mail: se-
ropric@yahoo.com; 2Institute of Management ofTechnology, National Chiao 
Tung University, Hsinchu, Taiwan; e-mail: ghtzeng@cc.nctu.edu.tw 

Abstract. Data Envelopment Analysis (DEA) introduces a model for weights de­
termination maximizing efficiency of the decision-making units. The primary focus 
of the DEA model is to compare decision-making units (alternatives) in terms of 
their efficiency in converting inputs into outputs. A multicriteria decision making 
(MCDM) method uses a common set of weights that express a decision maker's 
preferences. In contrast, the DEA does not provide a common set of weights that 
could express the preferences of a decision maker. A comparison of DEA and 
MCDM shows that DEA resembles MCDM, but the results differ. In spite of these 
differences, DEA could be used as a supplement for screening alternatives within 
MCDM. 
Keywords: Data envelopment analysis, Multicriteria decision making, Compari­
son 

1. Introduction 

Data Envelopment Analysis (DEA), developed by Chames et al.(l978), is a 
linear programming technique used to estimate the relative efficiency of decision­
making units (DMUs ), considering the multiple inputs that they consume, and 
multiple outputs that they produce. A standard formulation ofDEA creates a sepa­
rate linear programming model for each DMU, in which the unknown variables 
are the weights associated with inputs and outputs. The basic result of DEA is an 
envelopment surface (efficient frontier) consisting of the "best practice" decision­
making units, as well as an efficient measure that reflects the distance from each 
DMU to the frontier. 

A relationship between DEA and multicriteria decision making was considered 
by Stewart (1996), who concluded that the fields of MCDM and DEA have devel­
oped, to a large extent, independently of each other. The criteria in MCDM can be 
divided into costs (inputs) and benefits (outputs) which give the methodological 
connection between DEA and MCDM. A DMU within DEA is usually called an 
alternative within MCDM. Chames eta!. (1978) recognized the difficulty in seek­
ing a common set of weights to determine relative efficiency, and the difficulty in 
bounding the weights was considered by Stewart (1996). Chiang and Tzeng 
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(2000) applied a multiple objective programming method in determining a com­
mon set of weights. They consrlered every DMU's efficiency as one objective 
function to be maximized, and the solution is determined by maximizing mini­
mum DMUs' efficiency. 

The compromise ranking method (called VIKOR) has been introduced as a use­
ful technique to implement within MCDM (Opricovic 1998). Assuming that each 
alternative is evaluated according to each criterion function, the compromise rank­
ing could be performed by comparing the measure of closeness to the ideal alter­
native. The compromise programming method (Yu 1973) introduced LP -metric 

as an aggregating function, and the development of VIKOR method started with 
the metric introduced by Duckstein and Opricovic (1980). The main VIKOR result 
is the ranking list of alternatives, and the compromise solution with the "advan­
tage rate". Ranking by VIKOR may be performed using different values for crite­
ria weights, and then analyzing the impact of criteria weights on proposed corn­
promise solution. The compromise solutions could be the base for negotiation, 
involving the decision makers' preferences by criteria weights. 

An intention of this our paper is to compare the procedural basis of a DEA 
method (CCR model) and a MCDM method, VIKOR, as well as to apply DEA as 
a supplement within multicriteria decision making. DEA provides an efficiency 
measure that does not rely on the application of a common weighting of the inputs 
and outputs. In contrast, a multicriteria decision making approach is based on the 
assumption that a common set of weights must be applied across all units ( alterna­
tives). Numerical experiment showed difference between results obtained by DEA 
and MCDM, and the DEA results were not so useful within MCDM as we ex­
pected. Finally, it is concluded that DEA does not provide a common set of 
weights that could express the preferences of a decision maker. DEA is an ~­
proach different from the MCDM method, VIKOR. 

2. Comparison of DEA and VIKOR 

DEA introduces a linear programming model for weights determination, indi­
vidually maximizing the efficiency of the decision-making units (DMUs). There­
fore the DMUs cannot be ranked with these weights, which vary from unit to unit. 
Any common set of weights based on the DEA results has no relation with the 
preference of decision maker who is competent to assess the relative itqJortance 
of the criteria within MCDM. This is because DEA provides an efficiency meas­
ure that does not rely on the application of a common weighting of the inputs and 
outputs. On the contrary, a multicriteria decision making approach is based on the 
assumption that a common set of weights must be applied across all alternatives 
(decision-making units). 

We have analyzed similarity ofDEA and the VIKOR method ofMCDM in or­
der to find a way of using DEA results for multicriteria decision making, particu­
larly in assessing criteria weights. However, we found that the DEA approach was 
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different from a MCDM method and the DEA results were not as useful within 
MCDM as expected. 

The fields of MCDM and DEA have developed, to a large extent, independ­
ently of each other (Doyle and Green 1993; Stewart 1996). However, decision­
making units, inputs and outputs in DEA can be considered as alternatives, costs 
and benefits in MCDM, respectively. This relationship provides a basis for a com­
parison of DEA and the VIKOR method ofMCDM. From this standpoint a simi­
larity is evident, although there are essential differences within. 

We did several numerical experiments that compare DEA and VIKOR meth­
ods, and the findings are summarized below. 
• Efficiency and Pareto optimality: The concept of Pareto optimality is the core of 

DEA and MCDM. However, the frontier by DEA is in the space of output/input 
ratios, and Pareto optimality in MCDM is considered in criteria space. This is 
why the positions ofDMUs (alternatives) are different in these spaces. 

• Decision criterion: In DEA this is the ratio of multiple outputs and multiple in­
puts, while in VIKOR it is the aggregating function (distance function) of all 
criteria. Any DMU, that performs the best on one particular ratio of an output 
to an input, is found to be efficient by DEA; while a noninferior solution in 
MCDM is any DMU with at least one input or one output as the best. 

• Solution: The set of efficient units determined by DEA has no relationship with 
noninferior solutions within MCDM, whereas the compromise solution by 
VIKOR is a noninferior solution (Pareto-optimal). An efficient unit is a nonin­
ferior solution in the space of output/input ratios considered by DEA. A nonin­
ferior solution within MCDM could be inefficient unit by DEA. An efficient 
unit determined by DEA could be the best compromise solution by VIKOR, al­
though an inefficient unit by DEA also could be the best compromise solution 
by VIKOR. In many cases, efficient units by DEA are highly raked by VIKOR, 
and very inefficient units by DEA are given low rankings by VIKOR, although 
the exception could be the alternative with the extreme value of certain crite­
rion. 

• Weights: The values of weights (u,v) determined by DEA are not related to the 
decision makers' preference; whereas in MCDM the criteria weights are m­
sessed or given by decision makers. 

• Usefulness: DEA determines the efficient DMUs and generates potential im­
provements for inefficient DMUs. In contrast, the VIKOR method ranks alter­
natives by comparing the measure of closeness to the ideal alternative, and then 
selects the best (compromise) alternative from a set of alternatives in the pres­
ence of conflicting criteria. 
In spite of these differences, DEA could be a preprocess in MCDM, providing 

a substantial screening of alternatives for MCDM. Because DEA determines the 
efficient DMUs without any information of the relative importance of inputs and 
outputs, it could be a useful tool in MCDM, particularly when a decision maker is 
not able to express a preference at the beginning of system design or planning. 
However, DEA can not replace MCDM in selecting the best (compromise) solu­
tion for the MCDM problem. 
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The potential improvements (target and !if= target - actual) for inefficient 
units by DEA (obtainable by Frontier Analyst software 2000) show how an ineffi­
cient DMU needs to decrease its inputs or increase its outputs (to the target values) 
in order to become efficient. This is very useful result within DEA application, but 
it is ofless interest within MCDM. 

3. Numerical Experiment 

Previous studies of hydropower potential for the Drina River, in former Yugo­
slavia, have selected potential dam sites for reservoirs to provide hydropower. In 
addition, comprehensive analysis was required to resolve conflicting technical, so­
cial and environmental features. The reservoir systems consist from one to four 
reservoirs. The alternatives were generated by varying two system parameters, 
dam site and dam height. Six alternatives were selected and evaluated according to 

the following eight criteria: J; - Profit (106 Dinar, Yugoslav currency), fz -
Costs (106 Dinar), h - Total energy produced (GWh/year), _h - Peak energy 

produced (GWh/year), fs -Number of homes to be relocated, fr, -Area flooded 

by reservoirs (ha), /, -Number of villages to displace (even partially), fs - En­

vironmental protection (grades 1 to 5). The values of criterion functions are ob­
tained by a comprehensive study of this reservoir system on Drina River. The mu 1-
ticriteria optimization task is to maximize the criterion functions J; , h , _h , and 

fs , and to minimize functions fz , fs , fr, , and /, . 

DEA application. The decision-making units (DMUs) are: A1, A2 , A3, A4, As, A6. 

The inputs are: fz (costs), fs, fr,, and /, (social impacts, land resources). The 

outputs are: J; (profit), h and _h (energy produced), and fs (lower environ­

mental impact evaluated higher). 
Linear programming problem DEA-LP could be solved by a linear program­

ming program package, such as LINDO. Efficient DMUs (alternatives) are: A3, 

As, A6 (Fjf= 1), and inefficient DMUs are: A1. A2 , A4 (Eff< 1). Ranking based on 
efficiency is as follows: A3 ""As ""A6, A1. Az, A4. 

This application of DEA indicates the set {A3, A6 , As} as good alternatives, se­
lecting them as candidates for the best solution within MCDM. This is DEA 's 
main usefulness for multicriteria decision making. 

VIKOR application. Alternatives A1. Az, A3, A4, As, A6 are ranked using the 
VIKOR method with five sets of weights values. The even criteria weights, un-
normalized values W1 = { W; = 1, Vi }, represent indifference of the decision 

maker. The criteria W!ights W2 = { W; = 2,i = 1,2,3,4; W; = l,i =5,6,7,8} ex-
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press an economic preference. The weights W3 = { W; = l,i = I,2,3,4; 

W; = 2,i =5,6,7,8} express preference for social attributes and environment, and 

W4 = { W; = l,i = I,2,3,4; W; = 3.2,i =5,6,7,8} emphasizes more social crite­

ria. 
The ranking results indicate alternative As as the best ranked. It has a good ad­

vantage for the weight sets WI and W2. With the weights W3and W4 the com­
promise sets are obtained {As, A3, A6 }, {A3, As, A6}, respectively. In these cases 
the first ranked alternative has no advantage to be a single solution. If the weights 
of social criteria are increased, such as W4, the alternative A3 moves to the first 
place. 
A comparison of DEA and VIKOR results. The weight sets WI, W2, W3, and 
W4 were proposed by the decision maker for the Drina project in order to analyze 
the preference stability ofthe compromise solution. 

The preference of a decision maker (DM) regarding the relative inportance of 
criteria is not included within a DEA application. This preference could strongly 
affect the selection of an alternative as a final preferred) solution. Inclusion of 
DM preference is one ofthe main differences between DEA and MCDM. 

All six akernatives At.· .. ,A6 are noninferior solutions within MCDM. Three of 
these alternatives, {A3, As, A6 }, are efficient by DEA, and three are inefficient 
DMUs, {At. A2 , A4}. Efficient DMUs {A3, As, A6 } are highly mnked by VIKOR, 
and inefficient DMUs {At. A2,A4 } are mainly low ranked. Alternative As (orA3) is 
the best ranked by VIKOR. 

Alternative A3 has the best ratios of fs I fs and fs I .f, , it is an efficient 

DMU, and it is the best compromise solution by VIKOR for certain weights. Al­
ternative A4 is inefficient by DEA since it has no single best ratio output/input. 

However, it is the best according to J;., h , and h, (all outputs), and it 6 the 

best as mnked by VIKOR with the weights W5 = {3, I, 3, 3, I, I, I, 2}. 

Discussion and Proposed Solution. The results by both methods, DEA and 
VIKOR, indicate the set {A3, As, A6} as good alternatives. As an alternative for a 
final solution, alternative As could be considered the best compromise. Alternative 

As is closer to the ideal according to the "economic" criteria J;., J;, h, h,. The 

alternative A3 has an additional "defect" in that it is more expensive, although it 
would be preferred from the social point of view. It may be concluded that three 
alternatives {A3, As, A6} indicated as good solutions. The alternatives As and ~ 
are similar three-reservoir systems, where two reservoirs are the same. The alter­
native A3 is a system of four small reservoirs. The decision makers for the Drina 
project prefer alternative As, which could be developed in two phases. The first 
phase develops the system of two reservoirs, and the second phase adds the third 
reservoir, with a different dam site that could be analyzed later (alternatives As and 
A6)· 
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4. Conclusions 

The focus ofthe VIKOR method is that of selecting from a set of alternatives in 
the presence of conflicting criteria by analyzing the criteria space. The weights in 
MCDM do not have a clear economic significance, but their use provides the op­
portunity to model actual aspects of decision making. 

The primary focus of DEA model is that of comparing decision-making units 
(alternatives) from the point of view of their efficiency in converting inputs into 
outputs. DEA introduces a model for weights determination individually maximiz­
ing efficiency of the decision making units. Therefore the DMUs cannot be ranked 
with these weights that vary from unit to unit. However, DEA could be a preproc­
ess in MCDM, providing screening of alternatives, particularly when the decision 
maker is not able to express preferences at the beginning of system design or 
planning. 

Finally, DEA resembles MCDM, but it provides different results. In spite of 
these differences, DEA could be useful in screening alternatives, and identifying 
efficient units as candidates for the best solution within MCDM. DEA and 
MCDM method both are helping decision makers to decide the preferred solution. 
Further research on DEA modifications could bring DEA closer to MCDM. 
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At present, the most commonly used satisficing method for multi-objective linear 
programming (MOLP) is goal programming (GP) based methods but these methods 
do not always generate efficient solutions. Recently, an efficient GP-based method, 
which is called reference goal programming (RGP), has been proposed. However, it is 
limited to only a triangular preference. The more flexible preferences such a convex 
polyhedral type is preferred in many practical problems. In this research, a satisfactory 
effective linear coordination method for MOLP problems with convex polyhedral 
preference functions is proposed. It can be solved by existing linear programming 
solvers and can find all of the efficient solutions, which satisfy decision maker's 
requirements. The convex polyhedral function enriches the existing preferences for 
efficient methods and increases the flexibility in designing preferences. 

1 Introduction 

Fundamental to a multi-objective linear programming (MOLP) problem is 
Pareto optimal concept, which is also known as an efficient solution or a 
nondominated solution. The efficient solution of the MOLP problem is one where 
any improvement of one objective function can be achieved only at the expense of 
another [13]. However, the efficient solutions of the ~:al-world problems are 
noncomparable and so large for the practical uses. So, the need of considering 
additional information such a preference function arises. Normally, the preference 
modeling technique is applied to goal programming (GP) based methods [1-4], 
which are MOLP under satisficing concept [10-12]. The solution from GP-based 
method may not be the efficient solutions. Recently, reference goal programming 
(RGP) [6,7,11] is proposed for finding the efficient solution of an MOLP problem. 
This method expresses the reference point method (RPM) [12] by GP. It always 
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guarantees the efficiency of the solution, which is different from typical GP 
formulations. However, only a triangular preference is considered. Interval 
preference structures, increasing in preferences, decreasing in preferences, or other 
piecewise linear preferences are more flexible [4]. These kinds of preference 
structures can be collectively called convex polyhedral [9] preference functions. 
GP with these preference functions have been used in many practical problems 
[4,5]. However, it can find only satisficing solutions, which are not always 
efficient. This weakness has led to the development of the satisfactory efficient 
linear coordination method in this research. 

2 Lexicographic Models 

Consider a minimization problem withK objective functions as follows: 

min[/; (x),.fz(x), ... ,JK(x)]: x E Q} (2.1) 

where x denotes a vector of decision variables to be selected with in the feasible 

set Q; x = [x1 x 2 • • • xn Y, and fk (x) is the kth objective function. 

RPM is the technique where the decision maker specifies preferences in terms 
of reference levels, which can be modeled by the following problem:[6,7] 

lex min {[max {gk(lk,yk)},fgk(lk,yk)]: xe Q} <2·2) 
ISkSK k=l 

where Yt denotes the mathematical expression of kth objective, (yk = fk(x) ), h 
denote reference levels, and gk :R2~R. for k = 1,2, ... ,K, are the individual 
achievement functions measuring actual achievement of the kth objective with 
respect to the corresponding reference level, h. 

The advantage of the above lexicographic model is that it allows the DM to 
generate all efficient solutions. Recently, Ogryczak [7] has proposed 4 priority 
levels of RGP model. The corresponding RGP model always guarantees the 
efficiency of solutions. However, only a triangular preference can be used. 
Various preference functions gk provide a wide modeling environment for 
measuring individual achievements. The piecewise linear preference functions 
which is called convex polyhedral preference functions as shown in Fig.l. should 
be employed. 

a.IJI-I ai<P, 

Fig.l. The convex polyhedral preference function of the kth objective 
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Convex preference function can be mathematically represented by 

s;tYk + ck~> if ako ~ Yk < akl> 

s;2Yk +ck2> if akl ~ Yk < ak2• 

gk(rk, Yk) = s;qyk +ckq• if akq--1 ~ Yk < akq; where akq = rk 

s:q+IYk + ckqtl • if akq ~ Yk < akq+l 

where 
rk be the aspiration level or the reference level, ft, 
akd be the dth breakpoint of gk(rk,yk)' d = 0, 1, ... , Ph k = 1, ... ,K, 

(2.3) 

s ~ and s ~ be the slope of the line segment in the range f.:lkd-bakd) of the 

negative and the positive side of rk, 
CkJ be the y -intercept of the corresponding line segment, 
s ~, Ckq and s ;+I, Ckq+l are the corresponding slope and the y-intercept of the 

line segment of the negative and the positive side of a~rq, akq = rk . 

3 Efficient Linear Coordination Method Based on Convex 
Cone Concept 

3.1 The concept of convex cone 

In the concept of convex cone, it is possible to find any vector Z in the convex 
cone V by the following equation: 

V = {t~ = tA.kDt,A.t;;::: O,k= 1,2, ... , K} (3.1) 

where D k are vectors from an extreme point, E to some points on considering 

space and ;.t are coefficients related to jjk. With the additional constraint, 
K L Ak s; 1 (3.2) 

k=l 

a bounded convex cone V8 can be formed within the convex cone V. This bounded 
convex cone means a convex polyhedral [9]. 

The convex cone concept in Eq.(3.1) and Eq.(3.2) can be used to form convex 
polyhedral preference functions in MOLP problems by linear functions so it can 
be called a linear coordination method. 
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3.2 Formulation of linear coordination method based on convex cone 
concept 

MOLP with convex polyhedral preference functions as shown in Fig.l. can be 
formulated. The detail of formulation is shown in Ref.[9]. 

Let b~ and b~ be deviational constants in the negative and positive sides ofthe 

aspiration level, rk on Yt axis, where d = 0,1, ... , q for bf.t d= q+l, ... ,Pk, for 

bi:j and g'"' be the normalized value of function gk(rk ,yk)at breakpoint Btcd. 
The formulation of a convex polyhedral preference function for a single 

objective problem based on convex cone concept can be shown as 
ll 

min LK'bi A.'"'' (3.3) 

subject to 
q d=l P, 

fk(x)+ ~)k.JA.kd- .~);dA.kd =rk, 
d:$J d=q+l 

P, 

2,A.bl ~1· 
d=l 

xeQ; x.~~O,,d=O,l, ... ,Pk. 

Both additive model and minmax model can be applied. However, they are 
based on the satisficing concept, which cannot ensure the efficiency of solutions. 

3.3 Efficient linear coordination method based on convex cone 
concept 

From(3.3), Lexicographic RPM formulation stated in (2.2) can be considered as, 
~ P, 

(_h(x) -rk) =-L b,WA.'"' + 2,h~A.'"'' (3.4) 
d=l R d=q+l 

with additional constraint ~)~A.'"' x ! b~A.'"' = 0 for all k. Then, the efficient 
d=l d=q+l 

linear coordination method can be formulated as 

lex~J rnru( Itkd-\d),f,( fgk,Ad),max(-ttkd-\d),f.(--±tkd-\d)] 
UJ.Ul(Sk,;K: d=qil. k=1 d=q+l R lSk,;K d=l k=l d=l 

subject to fk(x)+ ibjdA.'"'- tb~A.'"' =rk,k=l,2, ... ,K, 
d=O d=q+l 

P, 

2,A.'"' ~ l,k = 1,2, ... , K, 
d=l 

xe Q; x, A.'"' ;;:: O, k = 1, ... , K, d = O,l, ... ,P,t. 

(3.5) 

Note that ~)~A.'"' x fb~A.'"' = 0 is directly put into the model in Eq.(3.5) by 
d=l d=q+l 

considering the negative and positive vectors from the reference level 
lexicographically so this constraint can be omitted. The effective linear 
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coordination model is more advantage than existing methods because it can 
generate the efficient solutions. The effectiveness is illustrated in the example. 

4. Numerical Example 

We compare the results between linear coordination method and GP-based 
methods (Jones and Tamiz' s formulation [10]) ofthe following example. 

min (4.1) 

min Ji(x) =x1, 

3x1 +4x2 ;;?:30, XJ2:2,x1 2::.3. subject to 

g't (J,,.h(x)) 

.jg~;M 
11 f..(x) /2 /2(x) 

Fig. 2. Preferences function ofjj(x) Fig. 3. Preferences function offi(x) 

Let 11 and 11 represents the aspiration or reference levels of objective l and 
objective 2 accordingly. Effective linear coordination model can be formulated as: 

lexmi{ mru£~,0.5-\ +~),(~ +05As +),),mai-.\,-As -O.S-\;),(-.\-As -05..\;)] (4.2) 

subJectto x1 +A, -2~-2.5A.4 =/1 , 

A, +A-3 + A.4 ~ }, 

x 2 +6A.5 +4A.6 -4A.g-6~ =/2 , 

A.s+~+A.s+~~l. 

3x1 +4x2 ;;?:30, XJ2::.2,x1 2:3. 

Table 4.1 Optimal solutions from different methods solving by linear programming 

1,8 
2,8 
2,5 
3,4 
4,4 
4,5 
5,4 
5,5 

WGP 

*[2,3],8 
*[2,4],8 

![3.33,4],5 
![4.66,5],4 
1[4.66,5],4 

*[4,6],5 
*[5,7],4 
*[5,7],5 

* Non-efficient solution 

MinmaxGP 

*[2,3],8 
*[2,4],8 

![3.33,4],5 
![4.66,5],4 
![4.66,5],4 
*[4,6],5 
*[5,7],4 
*[5,7],5 

! The solutions contain efficient solution and non-efficient solutions 

Proposed method 

2,6 
2.73,5.45 
3.82,4.64 
4.91,3.82 
3.77,4.67 

3,5.25 
4,4.5 
6,3 
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As shown in Table 4.1, the proposed method can find all of the efficient 
solutions, while existing method could not find all of the efficient solutions. 

5 Conclusion 

The linear coordination method for convex polyhedral preference functions of an 
MOLP problem is proposed in this research. Convex cone concept and the 
existing lexicographic model of RPM are applied to formulate the efficient linear 
coordination method, which can be easily solved by linear programming. The 
solution from this method is always efficient and also close to the decision 
maker's requirements. This method has the better solution than the existing 
methods in the sense of the Pareto optimality. Furthermore, the flexibility in 
designing preference functions is also enhanced. This method can generate a 
single efficient solution for the decision maker by only one reference point. 
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Abstract. Recently, Triantaphyllou reported that, when evaluating binomial rela­
tion by the original analytic hierarchy process (AHP), the ranking of alternatives 
is different from that obtained when evaluating all alternative simultaneously, even 
if the preference transitivity holds and if all pairwise comparison matrices are com­
pletely consistent. In this paper, we show that the aspiration level AHP, one of the 
AHP modifications proposed by Tamura et al., does not cause such irrational rank­
ing for completely consistent case. We also estimate how often irrational rankings 
occur in practical cases by experimental analysis. 

1 Introduction 

AHP (Analytic Hierarchy Process) proposed by Saaty [1] is one of decision 
making tools. To apply to a decision making problem, AHP first extracts the 
hierarchy structure of the problem, and then the local weights of alternatives 
under each criterion are obtained by the eigenvector method. These weights 
are normalized as the sum of weights is equal to one. Finally, the global 
weights of alternatives are calculated by weighted additive sum. The AHP 
has been applied to various fields such as operations research, regional science 
and so on, since it is easier to use than other decision making tools, and since 
it can deal with the data difficult to be quantified. 

However, AHP has been criticized for rank reversal phenomenon [2]. This 
phenomenon is that the ranks of alternatives can be reversed when a new 
alternative is added or an existing alternative is removed. Since the phe­
nomenon invades the independence of alternatives, which is a major AHP 
assumption, it has been considered to be a contradiction of the methodology 
and some revisions have been proposed [3-6]. 

Recently, Triantaphyllou [7] reported that AHP sometimes made irra­
tional rankings, of which the ranking obtained by AHP applied to all alter­
natives is different from the one obtained by the method to all pairs of alter­
natives, even when the transitivity property holds. He concluded in his paper 
that the phenomenon was caused by the additive sum to obtain the global 
weights, which is the last step of the AHP procedure, and he also presented 
that the multiplicative AHP (M-AHP) did not lead to the phenomenon. 

This paper shows that the normalization method may also cause irrational 
rankings. In section 2, we first define the irrational ranking, and then give 
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an example that the original AHP leads to the irrational rankings even when 
all pairwise comparisons are completely consistent. In section 3, we represent 
the cause of the irrational ranking and show that the Aspiration level AHP1 

(AL-AHP) [8,9], a revised AHP model proposed by Tamura et al., never lead 
to irrational rankings when all pairwise comparisons are completely consis­
tent. We evaluate in section 4 how often irrational rankings occur for some 
AHP models by computational experiment in practical case, in which the all 
consistency indices ( C I) of pairwise comparison matrices are less than 0.1. 
Finally in section 5, we give conclusions and subjects of future works. 

2 Irrational Ranking 

We first give the definition of the transitivity property. 

Definition 1 (Transitivity property) For given alternatives A;, (i = 1, · · ·, m) 
and the binomial relation (::S), the transitivity property of the preference is 
said to hold if the condition 

A; ::S A1, A1 ::S Ak => A; ::S Ak 

is satisfied for any three alternatives A;, Aj, Ak ( i, j, k E { 1, · · · , m}). 

According to the definition, the alternatives are ranked uniquely if the 
transitivity property holds and if there is no indifferent alternative. On the 
other hand, when the transitivity property does not hold such as making a 
toss (that is, rock >-- scissor, scissor >-- paper and paper >-- rock), the ranks of 
three choice (scissor, paper, rock) cannot be determined uniquely. 

However, we sometimes observe different rankings by evaluating all alter­
natives simultaneously by AHP and those obtained from binomial relations 
of alternatives, in which transitivity holds, evaluated by AHP. In this paper, 
we call the phenomenon "irrational ranking." The next example illustrates 
irrational ranking. 

Example 1 We evaluate three alternatives A1 , A2, A3 under three criteria 
C1 , C2 , C3 , whose weights are 4/22, 9/22, 9/22, respectively. We assume 
that all pairwise comparisons are completely consistent. The local and global 
weights obtained by AHP are shown in Table 1. From the table, we have the 
preference A3 >-- A2 >-- A1. 

Next, we evaluate binomial relations by AHP. The results are shown in 
Table 2. When pairwise comparison is completely consistent, the ratio of local 
weights is invariable. For example, the ratio of local weights in A1 and A2 
under C1 is 9 and 1 in Table 1 and is also same in Table 2. We have from Table 
2 that the preference A1 -< A2, A1 -< A3 and A2 >-- A3. These results satisfy 
the transitivity property and we have A2 >-- A3 >-- A1, which is different from 
the result obtained by evaluating all alternatives simultaneously. 

1 Aspiration level AHP is called Descriptive AHP and Behavioral AHP in [8] and 
[9], respectively. 



Experimental Analysis for Rational Decision Making by AL-AHP 241 

Table 1. Weights obtained by evaluating all alternatives simultaneously 

Ct(4/22) C2(9/22) Ca(9/22) Weight 
At 9/18 5/15 2/15 0.283 
A2 1/18 8/15 5/15 0.354 
A a 8/18 2/15 8/15 0.363 

Table 2. Weights obtained by evaluating all pairs of alternatives 

Ct(4/22) C2(9/22) Ca(9/22) Weight 
At 9/10 5/13 2/7 0.44 
A2 1/10 8/13 5/7 0.56 
At 9/17 5/7 1/5 0.47 
Aa 8/17 2/7 4/5 0.53 
A2 1/9 4/5 5/13 11 o.5o5 
Aa 8/9 1/5 8/13 II 0.495 

3 Cause and Several Revisions 

We assume that Wj denotes the weight of the criterion Gil (j = 1, ... , n) and 
aii the i-th element of the principal eigenvector of the pairwise comparison 
matrix under the criterion Cj. aii is regarded as the weight of the alternative 
i (i = 1, ... , m) before normalized. The total weight of the alternative k 
when evaluating all alternatives simultaneously with the original AHP can 
be written as (1). While the total weight of the alternative k when we evaluate 
two alternatives k and l with the original AHP is written as (2). 

(1) 

(2) 

By comparing these equations, there may be the case of which the both 
Ak > A1 and A~ <A; holds (See Example 1). This means the original AHP 
can lead to irrational rankings. 

Triantaphyllou [7] presented that the irrational ranking was caused by 
the additive sum, which is the most popular way to integrate global weights 
in AHP. He also showed that the Multiplicative AHP (M-AHP) did not lead 
to irrational rankings. In M-AHP, the global weight of the alternative k is 
calculated by 

(3) 
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Thus irrational ranking does not occur, since Ak > A1 is equivalent to 
n;=l(akj)Wj > n;=l(alj)wi, which means the weight ratio between Ak and 
A1 does not depend on the weights of the other alternatives. 

By comparing the equations (1) and (3), we see that the additive sum 
does not cause irrational rankings if we may use the weight normalization 
method, in which the weight of an alternative does not depend on the other 
alternatives. AL-AHP [8,9], which was proposed by Tamura et al., is one of 
such methods. This revised AHP requires an aspiration level, a hypothetical 
alternative, under each criterion and the aspiration level is added to the set 
of alternatives to perform pairwise comparisons. Weights of alternatives are 
determined by the principal eigenvector of the pairwise comparison matrix 
normalized as the element corresponding to the aspiration level equal to one. 
The total weight of the alternative is calculated by the additive sum, which 
is same as the original AHP. For a detailed description of the procedure of 
AL-AHP, please refer to [8,9]. 

Theorem 1 AL-AHP does not cause the irrational ranking when pairwise 
comparisons are completely consistent. 
Proof Let aoj denote the weight of the aspiration level under the criterion 
Cj before normalized. Then the total weight of the alternative k is calculated 
by 

n 
, """' ak · Ak = ~Wj-3 , 

J=l aoj 
(4) 

when evaluating all alternatives simultaneously with AL-AHP. This is also 
the total weight of the alternative k when evaluating the two alternatives k 
and l with AL-AHP unless aspiration levels change. Therefore, the irrational 
ranking does not occur when using AL-AHP. 

4 Experimental Analysis 

We have already shown that the original AHP leads to irrational rankings 
even when all pairwise comparisons are completely consistent, and the both 
M-AHP and AL-AHP does not. 

However, pairwise comparison is not always completely consistent in prac­
tical case. Saaty [1] introduced the consistency index (CI) of the pairwise 
comparison matrix, which represents how consistent the pairwise comparison 
is. CI is defined by 

C I = >-max - n' 
n-1 

where n denotes the dimension of the matrix and Amax denotes the principal 
eigenvalue of the matrix. CI is equal to zero when the pairwise comparison 
is completely consistent, and it becomes larger when the pairwise compari­
son is more inconsistent. Saaty [1] regards that the pairwise comparison is 
practically consistent when CI is less than 0.1 or 0.15. 
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We examine several AHP models for how often irrational ranking occurs 
under the condition that CI $ 0.1 by computational experiment. In the ex­
periment we evaluate three alternatives (A1 , A2 , A3 ) under three criteria, and 
we assume that the pairwise comparison value is chosen from seven values, 
{1/7,1/5,1/3,1,3,5,7}. 

We compare four models in the experiment. These are the original AHP, 
M-AHP which uses the multiplicative integration, AL-AHP which uses the 
aspiration level based normalization, and MAL-AHP which uses both the 
multiplicative integration and the aspiration level based normalization. 

At first, we make all the 3-dimensional and 4-dimensional pairwise com­
parison matrices whose each element is one of the above seven pairwise com­
parison values, and remove the matrices not satisfying CI $ 0.1. As a result, 
121 matrices out of the total 73 = 343 remain in the 3-dimensions and 6547 
matrices out of the total 76 = 117649 remain in the 4-dimensions. We next 
examine whether the transitivity property holds for the case where compar­
ison matrices are selected from the remaining matrices. When the transi­
tivity property holds, we also compare the ranking led from the binomial 
relations with the ranking obtained by evaluating all alternatives simultane­
ously. These comparisons are performed for all combinations of matrices for 
each four AHPs. 

The results are shown in Table 3. The table shows that the transitivity 
property does not hold in about 1% of the cases in all AHPs. It also shows that 
irrational ranking occurs about 43.47% in the original AHP and 39.52% in 
the M-AHP. But, in AL-AHP and MAL-AHP, the ratio of irrational rankings 
decreases to less than 14%. 

Total cases 
Anti-Transitivity 
1st rank reversal 
2nd/3rd rank reversal 
Irrational ranking 
Irrational Ratio 

Table 3. Computational Results 

AHP M-AHP AL-AHP MAL-AHP 
214,358,881 214,358,881 33,955,676,948,083 33,955,676,948,083 

2,133,230 2,054,972 413,386,972,384 318,649,995,742 
45,690,574 44,253,767 2,641,563,197,250 1,984,855,287,550 
46,565,199 39,643,403 1,977,030,291,391 1,708,868,121,307 
92,255,773 83,897,170 4,618,593,488,641 3,693,723,408,857 

43.47% 39.52% 13.77% 10.98% 

From these results, we can conclude that Saaty's consistency index is 
valid for preserving the transitivity property, but not appropriate for legal 
rankings. We can also conclude that both the weight normalization method 
with the aspiration level and the weight integration method with multiplica­
tive form decrease the ratio of irrational rankings, but the normalization has 
much more effective to rid irrational rankings than the multiplicative inte­
gration. 
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5 Conclusion 

We showed in this paper that the irrational ranking was caused by not only 
the additive sum for the global weight integration, but also the weight nor­
malization method in which the sum of the principal eigenvector of the pair­
wise comparison matrix is equal to one. We also showed mathematically that 
M-AHP and AL-AHP never lead to such irrational rankings under the com­
pletely consistent conditions, and examined by computational experiment 
how often these models cause irrational rankings in practical case, in which 
CI of the pairwise comparison matrix is less than 0.1. The computational 
results showed that the weight normalization methods influence on irrational 
rankings greater than the weight integration methods. Thus we conclude that 
it may be desirable for rational decision making in AHP to introduce a cer­
tain standard alternative. Our future works are to propose a new criterion 
for examining the validity of the pairwise comparison matrices instead of 
Saaty's consistency index, and to propose a new AHP model which never 
causes irrational rankings when the pairwise comparisons are regarded to be 
valid. 
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Abstract. Choquet integral type DEA is a global evaluation model of cross effi­
ciency scores which calculated by ¢>. transformation type fuzzy measure and Cho­
quet integral model. As D-efficient DMU's input and output weights are not deter­
mined uniquely, the DMU's cross-efficiency scores are not determined uniquely. So, 
we propose the maximum model and the averaging model of the scores. 

1 Introduction 

CCR models evaluate DMUs (decision making units) using most favorable 
input and output weights for the DMU, i.e. most favorable evaluation. The 
weights are the direction that the DMU aims, that is the DMU's evaluation 
method. Therefore, this evaluation is one of self-evaluations. Cross-efficiency 
scores are evaluation scores that are evaluated by other DMU's input and 
output weights. For one DMU, we get n cross-efficiency scores (n is the num­
ber of DMUs). The averaging scores are global evaluations of DMUs. If we 
use maximum values of cross-efficiency scores (one of averaging score), the 
evaluation is most optimistic evaluation, that is CCR model's efficiency score. 

In this paper, we do intermediate evaluations among minimum, average 
and maximum evaluations by varying parameter {. Using line charts, we 
enable graphical representations of DMU's global evaluations. 

2 Fuzzy Measure Choquet Integral Model 

Fuzzy measure Choquet integral models are averaging models that enable av­
eraging evaluation among maximum and minimum including weighted arith­
metic average[4]. 

Let X = {1, ... , n} be a set of inputs of Choquet integrals and p, be a 
fuzzy measure satisfying p, : 2x ----> [0, l],p,(0) = 0, p,(X) = 1 and A <;;:; B <;;:; 

X ----> p,(A) ~ p,(B). 
Let h(l), ... ,h(n),h(i) E [0,1] be input variables. Choquet integral is 

defined as (C) J hdp, = f0
1 p,({x; h(x) > r})dr. 

The averaging evaluation is calculated by cPs transformation[!] from every 
inputs' weights and interaction index {such that: 

{ 
(p) 

cPs(P) = i _ (1- p} 
(sP- 1)/(s- 1) 

if s = 0 
ifs=l {1 
if s = +oo 'where (p) = 0 

otherwise 

ifO<p~l 
ifp = 0 
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and 8 = (1- ~)2 I e (if~ = 0 then 8 = +oo) Fig. 1 shows ~s meaning. A fuzzy 
measure J.lt; is assigned from ~ and each input weights ( Wi, wi E [0, 1], i = 
1, ... , n, LWi = 1): 

J.lr;(A) = ¢.(~= wi)· (1) 
iEA 

0 0.5 

Minimum Average Maximum 

pessimistic evaluation optimistic evaluation 

Fig. 1. e's means 

3 CCR Model (Notations) 

DMUo :o-th DMUo = 1, 2, ... , n 
Xio :DMU0 's i-th input value (nonnegative),i = 1, .. . ,m 
YJo :DMUa's j-th output value (nonnegative),j = 1, ... , k 
Via :DMUa's i-th input weight 
Ujo :DMU0 's j-th output weight 
Baa : DMUa 's cross-efficiency score using DMU0 's weights 

We get DMU0 's efficiency score Boo by following LP; 

Maximize: Boo= (L~= 1UjoYjo)/(L';.1 VioXio) (2) 

Subject to: (L~=1UJoYja)/(2:';.1 VioXia) ::::; 1, a= 1, ... ) n, Via, Ujo :::: 0, Vi, j, 

and cross-efficiency scores Baa by 

k m 

Baa = (L UjoYja)/(L VioXia)· (3) 
j=1 i=1 

4 Choquet Integral Type DEA (Maximum Model) 

4.1 Global Evaluations 

Using Choquet integral models, we can do intermediate evaluation among 
minimum, average and maximum varying~- From DMUa's cross-efficiency 
scores Ba1, ... , Ban, we can get the DMUa's global evaluations Bt,a· 

(4) 
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If we use~= 1, this model is the same as CCR model, that is Oaa = Oi a> Va. 
As the J.Le is calculated by (1), we must identify~ and wi. ~ is ide~tified 

by Fig.1's means. To do sensitivity analysis, we vary the~ in [0, 1]. In CCR 
models, i.e. ~ = 1, the wis are ignored, because, CCR model are maximum 
evaluations of cross-efficiency scores. In this model, we can introduce the 
weights, that mean importance or impacts of DMUs. Default values are wi = 
1/n. 

4.2 Uniqueness of Efficiency DMU's Weights 

If DMUo is a D-efficient DMU, that is 000 = 1, Ujo and Vj0 (j = 1, .. . n) 
are not determined uniquely. So, cross-efficiency scores Oa0 (Va E {1, ... , n} \ 
{ o}) are not determined uniquely. Sexton[2], Hibiki[3] and many researchers 
proposed some solutions. In this section, we use maximum adjusted cross­
efficiency scores. In this method, we make sub DEA model S that is maxi­
mize own efficiency value under the(}~ = 1, where(}~ is the DMU0 's cross­
efficiency score of the sub model: 

Maximize: (Oao =)O~a = (~=~=1 ufaYia)/(~~1 vfaxia) (5) 

subject to: (~~=1 ufaYib)/(~~1 vfaxib):::; 1, Vb E {1, ... , n} \ {o} 

(}~ = (~J=1 ufaYio)/(~~1 vfaxio) = 1, vfa, ufa ;:=:: 0, Vi, j, a, 

where ufa and vfa are sub model's output and input weights. 

5 Choquet Integral Type DEA{Average Model) 

In §4, sub model's global evaluation scores are maximum values of cross­
efficiency scores. However, by varying~' we can do many global evaluations. 
So, from sub model's cross-efficiency scores, we calculate global evaluation 
scores with original model's ~· 

In original model, if DMU0 is D-efficient, we make sub model S with 
00 = 1. From the LP model (5), we can get sub model's input and output 
weights (vfa, ufa ;:=:: 0, Vi, j, a). From those weights, we can calculate cross­
efficiency scores: 

8 m 

(J~b = c:L: ufbYja)f(L vf,yia), Va E {1, ... ' n} \ {o}. (6) 
j=1 i=1 

Using the (J~b> we calculate global evaluation Oao, such that: 

Oao =of; = (C) j hadJ.Le, ha(b) = (J~b' b = 1, ... , o -1, o + 1, ... , n. (7) 

However, in the sub modelS, it is possible that there are D-efficient DMUs. 
Let aD-efficient DMU in the sub modelS be p. So ufP and vfp(Vj) are not 
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determined uniquely. Then, cross-efficiency scores O~P are neither determined. 
In this case, we make sub model T, that is a DEA model under the 0'[; = 1 
and OJ= 1: 

Maximize: O'!;a = (2:::~= 1 u]aYJa)/(2:~ 1 v'faxia) (8) 

subject to: (2::::=1 u]aYJb)/(2:7:1 v'faxib) ~ 1, 'ib E {1, ... , n} \ {o,p} 

0'[; = (2:::j=1 u]aYJa)/(2:7: 1 v'faxia) = 1 

OT _ ('\'s T . )j('\'m T . ) _ 1 T T > Q w· · 
P - L...,j=1 ujaYJp L...,i=1 viaXtp - 'via> uja - 'vz, J, a 

If there is D-efficient D MUq in sub model T, we make sub model U under 
the Of = Oif = Of = 1. This process continues until not existing D-efficient 
DMUs. 

DMU 
Dl 
D2 

Table 1. Input-Output Data 

2.249 163.523 26 158.713 49.196 5.561 105.321 
4.617 338.671 30 73.756 78.599 18.106 314.682 

D3 3.873 281.655 51 149.881 176.381 16.498 542.349 
D4 5.541 400.993 78 166.155 189.397 30.810 847.872 
D5 11.381 363.116 69 311.548 192.235 57.279 758.704 
D6 10.086 541.658 114 379.632 194.091 66.137 1438.746 
D7 5.434 508.141 61 176.388 228.535 35.295 839.597 
D8 7.524 338.804 74 203.489 238.691 33.188 540.821 
D9 5.077 511.467 84 210.652 267.385 65.391 1562.274 

DlO 7.029 393.815 68 251.715 277.402 41.197 978.117 
D11 11.121 509.682 96 308.207 330.609 47.032 930.437 

6 Numerical Examples 

6.1 Maximum Model 

Table 1 is the input-output data of 11 DMUs. Table 2 and Fig.2 is the result 
of maximum model. 

• As D9 is always 1, D9 get always D-efficient evaluations from all DMUs . 
• D5 and D6 are D-efficient DMUs, but evaluations of D5 and D6 in view 

of other DMUs are low. So, in Fig.2, D5 and D6's decrease greatly and 
almost DMUs do not support the D5 and D6's good self-evaluations. 

• In Fig.2, D4's line is almost horizon, so D4 is not dependent on other 
DMU's evaluations. 
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Table 2. Maximum model 

Cross-Efficiency Scores Aggregation 
DMU D1 D2 D3 D4 D5 D6 D7 DB D9 DlO Dll MIN Average MAX 

D1 0.35 0.25 0.21 0.23 0.35 0.35 0.27 0.21 0.35 0.24 0.24 0.21 0.2B 0.35 
D2 0.76 0.90 0.30 0.66 O.B9 0.90 0.75 0.47 0.90 0.37 0.37 0.30 0.66 0.90 
D3 0.39 0.37 0.63 0.52 0.53 0.5B 0.44 0.43 0.63 0.53 0.53 0.37 0.51 0.63 
D4 0.59 0.65 0.69 0. 75 0.66 0. 75 0.52 0.60 0. 75 0.64 0.64 0.52 0.66 0. 75 
D5 1.00 0.95 0.6B 0.57 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.57 0.93 1.00 
D6 1.00 1.00 O.B7 1.00 1.00 1.00 0.74 O.B3 1.00 0.92 0.92 0.74 0.93 1.00 
D7 0.65 0.63 0.54 0.63 0.74 0.67 0.74 0.56 0.74 0.54 0.54 0.54 0.64 0.74 
DB 0.54 0.56 0.52 0.3B 0.70 0.61 0.55 0.70 0.70 0.66 0.66 0.3B 0.60 0.70 
D9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DlO 0.63 0.5B O.B1 0.59 O.B2 0.75 0.7B 0.73 O.B2 O.B2 O.B2 0.5B 0.74 O.B2 
Dll 0.56 0.55 0.60 0.47 0.67 0.63 0.61 0.66 0.67 0.67 0.67 0.47 0.61 0.67 

0.8 

\o3 

~ 0.2L_L_ ________ ___..__J 

0 1 I; 

Fig. 2. Maximum Model Fig. 3. Average Model 

6.2 Averaging Model 

Fig.4 is the procedure of averaging model. 

1. We calculate the original model, but D5,D6,D8 and D9 are D-efficient 
DMU. 

2. To calculate the D5's cross-efficiency scores, we make sub model S, but 
D6 and D9 are D-efficient DMU inS. 

3. To calculate the D6's cross-efficiency score of sub modelS, we make sub 
model T, but D9 is D-efficient DMU in T. 

4. To calculate the D9's cross-efficiency score of sub model T, we make sub 
model U. In sub model U, all DMUs are not D-Efficient, all cross-efficiency 
scores are determined uniquely. So, from the cross-efficiency scores, using 
original model's e ' we can calculate global evaluation scores of u, that 
are D9's cross-efficiency score of sub model T. 

5. In this way, all cross-efficiency scores are calculated from each sub model's 
global evaluations. 
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I, Original Modet oll""l'l"l"l"r .:l.nll .1!!1':1r=1!..1'~~'11'"1"1''1:::. ~====~ .. 

.. H ... ~ .000 [.000 1.000 ... 
~~~~-.:---.._ ro.i.: ro .... n •lfo.nrl lm• ·"' ~"" f.,. I..,,. o.ro 

-SUb Model s r -.. 
8." = 1 ~ '-ti ---...::::::: .... " ~· ~· Sub Mode~ I' ~ " ~ 

e.~ ! = 1 "'l -"' "' 

I •~- oo "' '" oo o),. oo oo ; ooo on 

Sub Model T 
l e.T -1 andS,T - t 

i .. " " " . : ... ~ 
Fig. 4. Procedure of Averaging Model 

7 Conclusions 

We present global evaluation methods of cross efficiency scores that enable 
pessimistic and optimistic view by varying parameter~- The outputs of our 
model are line charts like Fig.2 and 3. Comparing the two charts, 

• in maximum model, D9 is always 1, but in averaging model, not 
• other DMU's rows are similar variations. 

So, without strictly analyses, we proper to use maximum model, because 
averaging model's calculation amount is big. 
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Abstract. The paper is devoted to application of period target values in hierarchical goal 
dynamic programming. Period backward approach is considered. An interactive procedure 
is proposed an numerical example is also provided. The presented approach can be 
extended to multiperiod target values, changeable hierarchy of criteria and forward 
separable vector criteria functions. It can be found in Trzaskalik (1998). 

Keywords. Dynamic programming, vector optimization, goal programming, 
interactive procedure. 

1. Discrete Multi-Objective Dynamic Programming Problem 

We consider a discrete decision process that consists of T periods. 
Let Yt be the set of all feasible state variables for period t and ~(y1)- the set 
of all feasible decision variables for period t and state )(EY1 (t=l, ... ,T). Set 
Yr+l includes all the states at the end of the process. We assume that all 
these sets are finite. Let }lE Yt and xte Xt(Yt). Period realization is defined as 
d1 = {y1, xt). Dt is the set of all period realizations in period t. We assume that 
for t=l, ... ,T there are given transformations? 1: U? Yt+l· We denoted as a 
process realization. Set of all process realizations is defined as follows: 

D :: { d=( d1, ... ,dr ): 'v'te 1, ... ,r Yt+l = ? t(Yt. Xt), XtE Xt(Yt) } . 
We assume, that in each period t there are defined K period criteria 
functions F1k: Q? R, (k=l, ... ,K, t=l, ... , T). 
Each M-dimensional (M=2) function with components Fm = Fm(F1\ 

F12, ... ,FrK) for m=l, ... ,M where Fm is a scalar function can be considered as 
vector-valued criterion function. Let F = [F1 , ... ,FM]'. Components Fm are 

• Research partly supported by the 2H02B00622 grant of the Polish State Committee for 

Scientific Research 
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called multiperiod criteria functions. In the further considerations we 
postulate maximization of all components ofF. 

Let us assume that there are given two process realizations d, d' and 
vectors F(d) = [F1(d), ... ,Fm(d)]' and F(d') = [F1(d'), ... ,Fm(d')]'. Relation of 
domination= is defined as follows: 

F(d) = F(d') <=> 'v'm=l, ... ,M pn(d) = Fm(d) A :l i=l, ... ,M Fi(d) > Fi(d') 
If F(d) = F(d'), vector F(d) dominates vector F(d') and realization dis 
better than realization d'. Realization d* is efficient, if -:JdE o F( d) = F( d\ 

D is the set of all efficient realizations. Set . . 
D (d) ::: { d* E D : F( d*) ~F( d)} 

-
consists of all efficient realizations which are better than d . 

Fm is scalar backward separable, if there exist functions {m(F-

11 , ... ,F1K) and operators o~ (m=l, ... ,M; t=1, ... ,T-1) such that 

Fm_cm 0 m (em 0 m ( (i' m 0 m fm) )) - 11 1 12 2 ... IT .J y.1 T ... 

F is backward separable, if each component Fm is scalar backward separable. 
In a similar way we can formulate the definition of forward separability 
[Trzaskalik (1998)]. IfF is backward separable and backward monotone (or 
forward separable and forward monotone) we can apply Bellman's principle 
of optimality to solve dynamic vector optimization problem [Belmann 
(1957), Trzaskalik (1998), Li and Haimes (1989)]. We can also find sets . - -
D(d)foreach dED. 

2. Goal Programming Approach 

Let rm be period matrix containing values of period goals 

+ 
and let C , C be forward weight coefficients matrices containing penalty 
coefficients for multiperiod deviations from target goals for mE 1, ... ,M, 
tE 1, ... T: 
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+I +I 

Cl Cz 
+ 

C=: 
+M +M 

Cl Cz 

We defme auxiliary functions 

+ {fm(d )- ?m hm::::: t t t 
t- o 

Let 

+I 

Cr 

C=: 
+M 

Cr 

+ + 

Cl Cz 

... 
M M 

Cl Cz 

if f 1m ( d1 ) - ?~ ~ 0 

if f 1m ( d1 ) - ?~ < 0 

if f 1m(d1)- ?~ ~0 

if f 1m(d1)- ?~ < 0 

s ~ (dJ:::c~ h~(d 1 )+c~ h~ (d 1 ) 

and 
¢= 

Cr 

... 
M 

Cr 

s m (d)= O'lm (di) 0~ ( cr;' (dz) o; ( ... ( cr;_l (dr.J) 0~-1 cr;' (dr ) ... ))) 

Dynamic goal programming problem can be formulated as follows 
M ¢= 

Min (Ls m(d): dE D}. 
m~l 

3. Hierarchical Goal Programming Approach 

We assume that a backward process is given and we deal with fixed single 
hierarchy of criteria. It means that multi-period criteria are numerated in 
such a way that a more important one has the lower number then any less 
important one. The position of each criterion is the same in all the periods. 
Procedure submitted below gives the decision maker a possibility of 
interactive modeling period backward fixed single hierarchy target goal 
structure of the final solution. 

Procedure (period backward approach) 
1. Let m=: 1 and D0 =D. 
2. The DM sets period target goal vectors 

"Y= [ ?~' ... ' ?~ ]. 
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and period tolerance limit vectors 
+ + + + 

?m := [?~ , ... , ?~ ], ?m := [?~ , ... , ?~ ], ?~' ?~ ~0. 
3. Create relaxed sets: 

+ + 

I)"' :={dE 1)"'"1: V'tel, ... ,T h~ (dt) ~?~A h~ (dt) ~ ?~ } 

If necessary, apply the procedure of generating feasible states and decisions 
[Trzaskalik (1998)]. 
4. If n:6M-1, set m = m+l and proceed to step 2. 
5. Applying the backward single criterion dynamic programming approach, 
solve problem: 

<= 

Min { s M (d): dED"'}. 

6. Let D be the set of solutions of the problem solved in step 5. The DM 

chooses realization d E D . 

7. Set D ( d ) is created. 
8. The DM makes one of the following decisions: 

a) Accepts d as the fmal realization, 

b) Chooses one of realizations from D ( d ) as the final one, 

c) Points to another solution from D and goes back to step 8, 
d) Repeats the whole procedure with changed target goal vectors or 

changed parameters. 
e) Breaks the procedure. 

4. Numerical Example 

Assume that the DM defines the following hierarchy of criteria: the most 
important is criterion 1, the less important - criterion 2. The DM sets a 
target goal vector and period tolerance limit vectors for criterion 1 as 
follows: 

+ -

"l= [5, 7, 9,]; ?1 = [2, 2, 0]; ?1 = [2, 2, 6]. 
+ 

The graph of the process with values h: (y1, Xt), h: (y~, Xt) is given in Fig. 1. 
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Fig. 1. The graph of the exemplary process. 

Form= 1 we comider such period realizations, for which 
+ 

h: (YI. X!)~ 2 A h: (yl, X!)~ 2, 
+ 

h~ (yl, X!)~ 2 A h~ (YI. X!)~ 2, 
+ 

h~ (yl, Xl) ~ 0 A h~ (YI. X!)~ 6. 

The graph of the process after the first reduction is shown in Fig. 2. 

Fig. 2. The graph of the process after the first reduction 

Assume that the DM sets target goal vector and period tolerance limit 
vectors for criterion 2 as follows: 

+ -

y= [8, 7, 8]; ?1 = [1, 1, 1]; ?1 = [2, 2, 2]. 
+ 

The graph of the process with values h; (yt, Xt), h; (Yt. Xt) is given in Fig. 3. 

Fig. 3. The graph of the process after the first reduction with the additional 
values. 

For m=2 we consider such period realizations, for which 
+ 

h~ (YI. X1) ~ 1 A h~ (YI. X!)~ 2, 
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+ -

hi (YI. XI)~ 1 A h~ (YI. XI)~ 2, 
+ 

h~ (YI. XI)~ 1 A h~ (YI. Xi)~ 2. 
The graph of the process after the second reduction is shown in Fig. 4. 

e 
Fig. 4. The graph of the process after the second reduction 

We have: 
I 2 3 

IY={d, d, d} 
~ ~ ~ 

where d=(O, 1, 1, 0, 0,1), d=(O, 1, 1, 0, 0,1), d=(O, 1, 1, 0, 0,1). 
We obtain 

<=I <=2 <=3 

S M (d) = 3, S M (d) = 4, S M (d) = 3. 
We are to solve problem: 

<= 

Min { s M (d): de oM} 
I 3 

We obtain D ={ d, d } . The DM is asked to make the final choice between 
these realizations. 
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Abstract. In this paper, we shall discuss solution concepts for coalitional games 
in constructing networks. We define the demand allocation using a concept of the 
demand operation which was defined in our previous paper. A sufficient condition 
that demand allocations belong to the core of coalitional games in constructing 
networks has been shown. By using this theorem, we have obtained a sufficient 
condition for the core of coalitional games in constructing networks with public 
vertices to be nonempty. 

1 Introduction 

In recent years, to discuss optimization problems concerned with constructing 
networks such as information systems is getting more important [ 4, 7 -9]. In 
these optimization problem, players are willing to construct some distribution 
system with the minimum cost. Once a distribution system is built with the 
minimum cost, the problem of how to allocate the cost to each member will 
arise. Such a problem was first introduced by Claus and Kleitman [2]. 

Bird [1] was the first who suggested a game theoretic approach to this 
problem. He proposed rational allocations called Bird tree allocations. A Bird 
tree allocation is an element of the cores of any coalitional games concerned 
with constructing networks[3,5]. However, Bird tree allocations are not so 
realistic. It is because a player directly connected to the supplier does not 
receive benefit by forming the grand coalition, although his/her cooperation 
is important for constructing a link between the supplier and other players 
in many cases. To improve this point, Granot and Huberman [6] proposed 
weak demand operation (w.d.o.) by a player and weak demand operation by a 
coalition. However, the w.d.o. by a coalition is not well-defined. Furthermore, 
there exist some coalitional games whose cores do not include allocations 
obtained by weak demand operation. 

In our previous paper [9], we have added a certain restriction to the weak 
demand operation by a coalition so that it is well-defined. However, some 
of the obtained allocations still do not belong to the core of all coalitional 
games for constructing networks. Hence, we have proposed a new concept of 
demand operation. Any allocation obtained through the operation on a Bird 
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tree allocation is an element of the cores of any coalitional games concerned 
with constructing networks[9]. 

On the other hand, Granot et al. [4] dealt with coalitional games con­
cerned with constructing networks with public vertices, which are not inhab­
ited by any player and which are available for all players. Granot showed a 
sufficient condition for the core to be nonempty. 

In this paper, we discuss coalitional games in constructing networks. We 
define a new concept of demand operation by a coalition, which will be called 
a demand allocation. A sufficient condition that demand allocations belong 
to the core of coalitional games in constructing networks is shown. By using 
this condition, we shall give a sufficient condition for the core of coalitional 
games in constructing networks with public vertices to be nonempty. 

2 Games in Constructing Networks 

Let N = {1, 2, ... , n} be a set of players. Then a function c : 2N -> IR+ 
satisfying c(0) = 0 is said to be a discrete cost function or a cost-sharing 
game (a game) if c(S) can be regarded as the cost for a coalition S, where 
IR+ = {r E IR I r :::=: 0}. Let Xi denote the amount charged to player i. An 
n-vector x = (x1, ... ,xn) satisfying x(N) = c(N) is called an allocation. 
Then the core of a game c is defined as follows: 

Core(c) = {x E !Rnl LXi = c(N), LXi S c(S),VS C N}. 
iEN iES 

Let (V, E) denote an undirected graph with the set of nodes V and the set 
of vertices E. An edge e E E is denoted by (u, v) if the end points of e are u 
and v. Edges ( u, v) and ( v, u) denote the same edge for any u, v E V. If there 
exists an edge (u, v) in a graph G for any u, v E V, G is said to be a complete. 
Consider a sequence P = (vo,el,vl,··· ,ez,vz), where vo,··· ,vz E V and 
e1, ... ,ez E E. A sequence Pis said to be a path if ei = (vi-l,vi) for any 
i E {1, 2, ... , l}. A path Pis said to be a circuit if v0 and v1 denote the same 
vertex. A graph G is said to be connected if there exists a path from u to v 
for any u, v E V. It is clear that a graph G is connected if it is complete. A 
connected subgraph without any circuits is called a tree. A tree is said to be 
a spanning tree for V' if its vertex set is equal to V'. 

In this paper, (V, E, w) is called a network if (V, E) is a graph and w : E -> 

IR+. For e = ( u, v), we regard w( e) = Wuv :::=: 0 as the cost of constructing 
the link between u and v. It is assumed that the underlying graph (V, E) 
in (V, E, w) is complete without loss of generality. For a network (V', E', w') 
with w' : E' -> IR+, a spanning tree is said to be a minimum spanning tree for 
V' and denoted by F[V'] if it is minimum of all spanning trees for V' in terms 
of the cost. Note that some distinct minimum spanning trees exist in many 
networks. Let (Vp, E p) denote a minimum spanning tree r'. If a vertex v1 is 
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on the unique path from the source * to a vertex v2 in a minimum spanning 
tree r' including a source *, the notation v1 ::Sr v2 is used and vertices v1 

and v2 are called a predecessor of v2 and a follower of v1 , respectively. In 
particular, if (v1, v2) E Er and v1 ::Sr v2 then the vertices v1 and v2 is said to 
be the adjacent predecessor of vertex v2 and an adjacent follower of vertex v1 

in r, respectively. Denote the adjacent predecessor of V2 by p(v2) and the set 
of adjacent follower of v1 by F(v!). For V' ~ V, let F(V') = UvEV'F(v)\V'. 

In this paper, (Vu{ * }, E, w, N, a), where N is a player set and a : N --+ V 
is an injection, is called a spanning network problem (SN-problem). We may 
identify the vertex a( i) with i E N, if there is no fear of confusion. Let 
A(S) = UiEs{a(i)} and A*(S) = A(S) U {*}. A spanning tree which is 
minimum of all spanning trees including A(N) in terms of cost is called 
minimum spanning trees w.r.t. (V u { * }, E, w, N, a) and denoted by r if 
there is no fear of confusion. A vertex v E V\A(N) is called a public vertex. 
The set of public vertices is denoted by P, i.e., P = V\A(N). Here, assume 
that public vertices are available for any player, then we have the following 
definition of the minimum spanning tree game (cf. [3,5]): 

Definition 1. A function c : 2N --+ IR+ is said to be a minimum spanning 
tree games (mst-games) w.r.t. an SN-problem (V U {*},E,w,N,a) if the 
following holds. 

c(S) = min ~ w(e), 
A.(S)~V'~A.(S)UP LJ 

eEEr[V'] 

where c(0) = 0. 

\:/SeN, 

The monotonic cover game for an SN-problem is defined as follows: 

Definition 2. [3,5] Let c be the mst-game for an SN-problem (VU{ * }, E, w, 
N, a). A function c : 2N --+ IR+ is said to be the monotonic cover of a game c or 
the monotone cover game (me-game) for the SN-problem (Vu{ * }, E, w, N, a) 
if it satisfies 

c(S) = min c(T), 
S~T~N 

\:/SeN. 

From the definition of monotonic cover, c(S) ~ c(S) holds for any S c N. 
Hence, it is apparent that Care(c) ~ Care(c) holds. 

3 Conventional Solution Concepts 

The Bird tree allocation was defined as a solution concept for games in con­
structing networks. 

Definition 3. (1,3,5] Let r be a minimum spanning tree w.r.t. an SN-problem 
(VU{*},E,w,N,a) satisfying P = V\A(N) = 0. A vector l = (h,l2 , ••• ,ln) 
is said to be the Bird tree allocation for the minimum spanning tree r or a 
Bird tree allocation for the SN-problem if li = Wp(a(i))a(i) for any i EN. 
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The following theorem holds. 

Theorem 1. {3,5} If l is a Bird tree allocation for (V U { * }, E, w, N, a) sat­
isfying P = V\A(N) = 0, then l E Core(c). 

Let l be the Bird tree allocation for r w.r.t. an SN-problem (Vu{ * }, E, w, 
N, a) satisfying P = V\A(N) = 0. Remove edges one of whose endpoints are 
a(i) from r. By using remaining vertices, construct a minimum spanning 
tree for V\ {a( i)}. Let c:;:i denote the cost of the first new edge from r to the 
source in the constructed minimum spanning tree for V\ {a( i)}. Preparatory 
to the definition of demand operation by i, define f3r for r E F(i) by 

if 2:: c;i ::::: li + 2:: lk, 
kEF(i) kEF(i) 

otherwise, 

where 0 ::; O:r ::; (c:;i- lr)/li and ~rEF(i) O:r = 1. The cost f3r, r E F(i), 
represents the cost which is needed for r E F( i) if player i does not cooperate. 

Players directly connected to the supplier does not receive benefit by 
forming the grand coalition in the Bird tree allocation, although his/her co­
operation is important for constructing a link between the supplier and other 
players in many cases. In other words, although predecessors should have an 
advantage over followers in the cost allocation, the Bird tree allocation does 
not give predecessors an advantage. To improve this point, assume that each 
player will demand that their adjacent followers should share more cost for 
him/her than that in the Bird tree allocation. Then we had demand opera­
tions as follows: 

Definition 4. [9]Let i E N and let y be an allocation. For r E N and for a 
minimum spanning tree r w.r.t. an SN-problem without public vertices, let 

{ 

f3r, if r E F(i), 

o~(y) = Yr - L (o~(y) - Yk), if r = i, 
kEF(i) 

Yr, otherwise. 

The operation 6i which associates the vector 6i(y) = (of(y), oHy), ... , o~(y)) 
with each allocation y is said to be the demand operation by player i in r. 

Theorem 2. {9}Let (V U { * }, E, w, N, a) be an SN-problem satisfying P = 
V\A(N) = 0 and let l be the Bird tree allocation for r. If 6i is the demand 
operation by a player i associated with r, then 6i(l) E Core( c) for any i EN. 

By applying demand operations by players in a coalition recursively, we 
obtained a demand operation by the coalition[9]. We showed that any ob­
tained allocation through a operation by a coalition also belongs to the core 
of the corresponding me-game. 
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Granot et al. [4] investigated properties of games in constructing networks 
with public vertices. They showed the following condition for their core to be 
nonempty. 

Theorem 3. [4.} There exists a minimum spanning tree w.r.t. (VU{ * }, E, w, 
N, a) that spans all vertices and that no two public vertices are adjacent 
therein. The core of the associated me-game is not empty. 

4 A New Concept of Demand Operations 

In this section, we define a new concept of demand operation. First, consider 
the case P = 0. Let l be the Bird tree allocation for r w.r.t. a given SN­
problem. As the case for the definition of demand operation by i, remove all 
edges ones of whose endpoints are a(i) fori E S. By using remaining vertices, 
construct a minimum spanning tree for V\A(S). Let c-;8 denote the cost of 
the first edge from r to the source in this minimum spanning tree for V\A(S). 
We define /3r w.r.t. r as follows: 

if L: c,;s::; L:li + L: lk, 

kEF(S) iES kEF(S) 

otherwise, 

where 0::; ar::; (c-;8 -lr)/li for any r E F(S) and ErEF(S)ar = 1. Here, 
we define a allocation by using a concept of demand operation. 

Definition 5. The vector 1i8 = (t5f)iEN is said to be a demand allocation 
by S for a minimum spanning tree r w.r.t. an SN-problem if it satisfies 

{ 
/3i, if i E F(S), 

8 _ li-~. L (t5~(l)-lr), ifiES, 
t5i - L....J l3 rEF(S) 

jES 

li, otherwise. 

We obtain a sufficient condition for the demand allocation to belong to 
the core of the corresponding me-game. 

Theorem 4. Let (V U {*},E,w,N,a) be an SN-problem satisfying P = 
V\A(N) = 0. A demand allocation by S for a minimum spanning tree r 
w.r.t. an SN-problem is included in the core of the corresponding me-game if 

the following holds: { } L lm 

c(T) ~ c(T\S) + max L lk - L c!8 ' 0 mESnT ' VT ~ N. 
kESUF(S) lEF(S) L lm' 

m'ES 
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By using Theorem 4, we shall show a new condition for the core of the 
me-game associated with an SN-problem with public vertices to be nonempty 
as follows: 

Theorem 5. For a given (V U { * }, E, w, N, a), assume that there exists a 
coalition S 2 P satisfying the following conditions. 

1. c(T)?: c(T\S) for any T <;;:; N, 
2. There exists a spanning tree for the given SN-problem which spans V U 

{ *}, and for the corresponding Bird tree allocation and the coalition S, 
L:iESUF(S) li s; L:iEF(S) c-;8 holds. 

Then the core of the corresponding me-game is not empty. In fact, the demand 
allocation by S for the minimum spanning tree r is an element of the core 
of the corresponding me-game, i.e., 88 E Core( c). 

5 Conclusion 

We have discussed coalitional games in constructing networks. The demand 
allocation, which can be considered as a new version of demand operation by 
a coalition, has been given. A sufficient condition that demand allocations 
belong to the cores of coalitional games in constructing networks has been 
shown. By using this theorem, we have obtained a sufficient condition for the 
cores of coalitional games in constructing networks with public vertices to be 
nonempty. 
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Abstract. In this paper we propose a new model of competitive facility location 
on a plain. We consider the two objectives that are maximization of reward for a 
firm and convenience of facility location for customers. We formulate the model as 
a single facility location problem under the condition that a competitive facility has 
been already located. We construct efficient algorithms to solve the problem, and 
give numerical experiments to illustrate our algorithms. 

1 Introduction 

The medianoid problem, which was suggested by Hakimi [2], deals with the 
location of new facilities under the condition that competitive facilities have 
been already located [5]. Hakimi [2] considered the problem on a network that 
all demand points are nodes in. On the other hand, Drezner [1 J considered 
the problems on the plane which includes demand points. 

In these problems, it is usually assumed that each customer on demand 
points selects the closest facility to him/her. Karkazis [4] extended Hakimi's 
medianoid problems by assuming that customers decide their using facilities 
based on the following two generalized criteria: a "distance criterion" regard­
ing the vicinity of the facility and a "level criterion" regarding the type of the 
facility. Uno et al. [6] extended Drezner's medianoid problems by assuming 
attractive function of the distance and the level. 

In most competitive facility location models, main objective of each de­
cision maker is maximization of its reward obtained by customers. However, 
the location of facilities only based on such an objective is often inconvenient 
for customers. The models with multi-objective for firms and customers on a 
network have been studied [7,8]. 

In this paper we propose a new model of competitive facility location 
with considering convenience of the location for customers. We extend Uno 
et al.'s medianoid problems [6] to multi-objective problems for a firm and 
customers. We construct algorithms to solve the problems and give numerical 
experiments to illustrate the algorithms. 
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The remainder of this paper is organized as follows. In Section 2, we 
introduce the medianoid problem of Uno et al. [6] and show some features 
of solutions for the problem. In Section 3, we formulate a multi-objective 
problem for a firm and customers that extends the problem in Section 2. In 
Section 4, we propose efficient algorithms for the problem in Section 3. In 
Section 5, we present results of computational experiments for an example of 
our models. Finally, in Section 6, we make mention of conclusions. 

2 Medianoid problem with single objective 

There are n demand points on the plane R 2 = R x R, which are indicated in 
I= {1, · · · , n}. Let Vi= (xi, Yi) E R 2 denote a site of demand points i E I, 
and Wi E (0, oo) a sum of purchasing powers with customers on demand 
points i E I. 

It is assumed that a competitive facility, denoted by A, has already located 
on R 2 . Let UA = (xA, YA) E R 2 and lA E {1, · · · , L} denote a site and 
a quality level of A, respectively, where L is a natural number that means 
maximal quality level of facility. 

Now we consider the location of a new facility, denoted by B. Let u8 = 
(xn,Yn) E R 2 andln E {1,··· ,L}denoteasiteandalevelofB,respectively. 
LetT= R 2 x {1, · · · ,L} denote a set of solutions for B. 

We consider the following two functions about levels. Let k : { 1, · · · , L} -4 

[1, oo) denote a function which estimates attractiveness of facilities such that 
oo > k(1) > ··· > k(L) ~ 1. Let C: {1,··· ,L} -4 [O,oo) denote a function 
which estimates a building cost of a facility such that 0 s C(1) < · · · < 
C(L) < oo. 

Let d(pl, p2 ) denote a distance between two points p1 , p2 of R 2 . In this 
problem, for demand point i E I, customers at vi always use A if 

(1) 

otherwise, the customers always use B. Let N 8 denote a set of indices of 
demand points whose purchasing powers are captured by B. 

In this problem, the objective of decision maker is to maximize his/her 
reward obtained from B. It is assumed that the reward is linear for captured 
purchasing powers. Let a ~ 0 denote a coefficient about the reward for B. 
The reward obtained by facility B is represented as 

r(un, ln) =a· L wi- C(ln). 
iENB 

Therefore the medianoid problem is formulated as follows: 

(2) 

PR: max r(un, ln) (3) 
s.t. (un, ln) E T, (4) 

Nn = {i E I I k(lA)d(vi,uA) > k(ln)d(vi,un)}. (5) 
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In order to solve Problem (Pn), we need to examine B's site to all levels 
of B. For levels of A and B, the following three cases are considered. 

In cases that lB = lA, the problem to find optimal sites forB is equivalent 
to the medianoid problem of Drezner [1]. Then the following theorem is given 
as Theorem 1 in Drezner [1]: 

Theorem 1. Let lB = lA. One of the optimal location for a follower firm is 
infinitesimally close to UA but not on UA. 

In cases that lB > lA, the following theorem is given as Proposition 2 in 
Uno et al. [6]: 

Theorem 2. Let lB > lA. Then one of the optimal sites forB is common 
to A's site. 

In cases that lB < lA, algorithm to find one of optimal sites forB is given 
as Algorithm 2 in Uno et al. [6]. The complexity of the algorithm is 0(1113 ). 

Note that optimal sites forB usually separate from UA· 
In the former two cases location of A and B is usually inconvenient for 

customers. In the following section, we extend Problem (Pn) to a multi­
objective problem for a firm and customers. 

3 Medianoid problem with multi-objective 

First we formulate a single objective problem for customers. From the point of 
view of customers on demand point Vi, we represent degree of inconvenience of 
facility FE {A, B} as k(lF )d(vi, Up). This means that a facility is convenient 
for customers if its level is high and its site is near to the customers. We 
assume that customers only use a facility whose degree of inconvenience is 
minimal in A or B. Then we represent degree of improvement in convenience 
for all customers on demand points vi after B is located as 

f ·(u l )={Wi·(k(lA)d(vi,UA)-k(lB)d(vi,UB)), ifiEN8 , 
• B' B - 0 otherwise. (6) 

Therefore we formulate location problem for customers as the following 
maximizing problem: 

(7) 
iEI 

(8) 

Next we combine Problem (Pc) with Problem (Pn) in order to formulate 
multi-objective problem for a firm and customers. We assume that the B 
can be shifted in R 2 under the condition that the decision maker can obtain 
maximal reward. We denote a feasible set of Problem (PR) as 

(9) 
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Therefore we formulate multi-objective problem for a firm and customers as 
follows: 

(10) 
iEI 

(11) 

4 Algorithm for competitive facility location problems 

First we divide the feasible set of Problem (P) according to sets of customers 
which use B. Let Ss denote a total set of Ns if (us, ls) E Ts. Let firs E Ss 
be given and Ts(flrs) denote a feasible set of Problem (P) such that a set 
of B's customers is firs. Since sum of terms about A in (6) for all demand 
points in firs is fixed, we can estimate improvement in convenient by using 
only a term about Bin (6). Then in a part of feasible set firs, the following 
problem is equivalent to Problem (P): 

PNB: min L Wi · k(ls)d(us, vi) (12) 
iENn 

s.t. (us,ls) E Ts(flrs), (13) 

firs is given. (14) 

We solve Problem (PR8 ) for all elements in Ss so that we can find optimal 
solution for Problem (P). Problem (PR8 ) is an application of Weber prob­
lems [9], which are one of classical optimal location problems whose objective 
is to find the facility location which is convenient for customers. 

Now we construct an efficient algorithm to solve Problem (PR8 ). For firs, 
a feasible set of Problem (PR8 ) is represented as 

Ts(flrs) = n {(us, ls) E Ts I k(ls)d(us, Vi)< k(lA)d(uA, Vi)} 0 (15) 
iENn 

From the second term in (2), the optimal level for Problem (PR8 ) is given 
uniquely. From (12), obJective function of Problem (PR8 ) is convex. From 
(15), a set of site in Ts(Ns) is an intersection of convex sets. Therefore Prob­
lem (PR8 ) is a convex programming problem. In Section 2, we have already 
introduced the method of finding feasible interior-point solutions for Problem 
(PR8 ) by dividing into the three cases. We use quasi-Newton method [3] to 
solve Problem (PR8 ) for each firs E Ss. 

5 Numerical experiments 

We illustrate our medianoid problems by the following numerical example. 
Distribution of customers is given in Table 1. For a level of facility that the 
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Table 1. Distribution of customers 

Index i Site u; = (x;, y;) Purchasing power w; 

1 (0.00, 2.00) 300 
2 (2.00, 5.00) 300 
3 ( 4.00, 0.00) 200 
4 (5.00, 3.00) 400 
5 (8.00, 5.00) 100 
6 (9.00, 2.00) 200 

firm can locate, L = 3. A has already been located on v4 and its level is that 
lA = 2. Functions that describe attractiveness and cost of building are given 
by Table 2. 

Table 2. Numerical data of k(lF) and C(lB) 

Level of facilities Attractive function Cost function 
lF,F E {A,B} k(lF) C(lB) 

1 4.00 100 
2 2.00 200 
3 1.00 400 

First we solve Problem (PR) introduced in Section 2. If 0 ::; a ::; 3/2, 
optimal level of B is that ln = 3, and from Theorem 2, one of optimal sites 
is on v4 • Then B can capture purchasing powers from all demand points 
except demand point No.4, and B's reward is 1100- a· 400. If 3/2 ::; a ::; 2, 
optimal level of B is that ln = 2, from Theorem 1, one of optimal sites 
is infinitesimally close from the left side of UA to UA but not on UA. Then 
B can capture from demand points No.1, 2, and 3, and B's reward is that 
800-a·200. If a?: 2, optimal level of B is that ln = 1, and we use Algorithm 
2 in Uno et al. [6] to find one of optimal sites that un = (1.17, 3.76) in a line 
segment between VI and v2 . Then B can capture from demand points No.1 
and 2, B's reward is 600 - a · 100. 

Secondly, in order to solve Problem (P), we use our algorithm proposed 
in Section 4. If 0 ::; a ::; 3/2, an optimal site for Problem (P) is that un = 

(2.65, 3.01). Then improvement in convenience is 4.86 x 103 • If 3/2::; a::; 2, 
an optimal site for Problem (P) is that un = (2.73, 1.47). Then improvement 
in convenience is 2.62 x 103 . If a ?: 2, optimal sites for Problem (P) are in 
the line segment between VI and v2. This means that the optimal site for 
Problem (PR) is one of optimal sites for Problem (P). Then improvement in 
convenience is 8.96 x 102 • 
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From the result of our numerical experiments, we know that the less 
the weight of building cost to captured purchasing powers is, the more the 
facility location is convenience for customers. However, in cases that level of 
B is higher than that of A, from Theorem 1 and 2, we know that the location 
of facilities only based on reward is not so convenient for customers. These 
mean importance of estimation of convenience for customers in competitive 
facility location problems. 

6 Conclusions 

In this paper we have extended Uno et al.'s medianoid problems [6] to multi­
objective problems for a firm and customers. We have constructed efficient 
algorithms for solving the problems, and as the result of numerical experi­
ments for an example of our model, we have obtained facility locations that 
are convenient for customers. 

We have considered medianoid problems but not centroid problems, which 
was also suggested by Hakimi [2]. The problems deal with location of new fa­
cilities under the condition that competitive facilities will be located after [5]. 
Studies of centroid problems with multi-objective are future researches. 
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Abstract. It is important that the limited amount of investing funds should be 
efficiently allocated to many stocks so as to reduce its risk. This problem is for­
mulated as a mixed integer programming problem. However, it is not so easy to 
solve the mixed integer programming problem because of its combinatorial nature. 
Therefore, an efficient approximate method is required to solve a large--scale mixed 
integer programming problem. In this paper we propose a Meta-controlled Boltz­
mann machine to obtain an approximate solution of the large--scale mixed integer 
programming problem. 

1 Introduction 

A mean-variance approach to portfolio selection problem has been originally 
proposed by H. Markowitz [3]. It, based on time-series data of return rate, 
theoretically decides the best investing rate to each of stocks which minimizes 
the risk or the variance of the profits in keeping the least expected return 
rate that a decision maker expects. The objective of the Markowitz' model is 
to reduce its risk in allocating the amount of investing funds to many stocks. 

In this paper, we propose a Meta-controlled Boltzmann machine [7], based 
on a Two-layered Boltzmann machine which is proposed by J. Watada et. 
al [4], to solve the portfolio selection problem which limits the number of 
invested stocks. The meta-controlled Boltzmann machine consists of a Hop­
field network [2] as the Meta-controlling layer and a Boltzmann machine [1] 
as the lower layer. The Meta-controlling layer supervises the subordinated 
lower layer to obtain the best portfolio within the optimal combination of 
invested stocks and the lower layer decides the optimal investment rate over 
the limited number of stocks supervised by the Meta-controlling layer. This 
model deletes the units of the lower layer which are not selected in the Meta­
controlling layer in the execution. Then the lower layer is restructured by 
using the selected units. Executing the meta-controlled Boltzmann machine 
according to the above-mentioned algorithm, the meta-controlled Boltzmann 
machine converges more efficiently than a conventional Boltzmann machine. 
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In this paper, we evaluate the efficiency of the Meta-controlled Boltzmann 
machine employing various size of real data. 

2 Portfolio Selection Problem 

The mean-variance approach to the portfolio selection problem was originally 
proposed by H. Markowitz [3]. In the formulation of portfolio selection model, 
H. Markowitz started his discussion with the assumption that almost all 
decision makers have aversion to risk even if its return may be obtained less 
in decreasing the risk. Since the risk is estimated under the condition of fixing 
the expected return rate, the decision maker cannot be fully satisfied with 
its solution. 

In a real problem, it is important to find the optimal selection of invested 
stocks out of many feasible stocks in a market, because of the limit amount 
of funds to invest into a stock market. This problem is formulated by a mixed 
integer programming problem as follows: 
FORMULATION 1. 

n 

maximize L J.Limixi 

i=l 
n n 

minimize L L aijmiximjXj 

i=l j=l 

n n 

subject to L mixi = 1, L mi = S 
i=l i=l 

miE{O,l}, xi:::::o (i=1,2, ... ,n) 

where aij denotes a covariance between stocks i and j, J.li an expected return 
rate of stock i and Xi an investing rate to stock i, respectively. mi denotes a 
selection variable out of investing stocks which takes one for a selected stock 
and zero for a not-selected stock and S a total number of selected stocks. 

However, it is not so easy to solve the mixed integer programming problem 
because of its combinatorial nature. Therefore, it needs an efficient approxi­
mate method to solve a large-scale mixed integer programming problem. 

3 Energy Functions for Meta-controlled Boltzmann 
Machine 

The energy function, which is proposed by J. Hopfield, is written in the 
following equation: 

1 n n 

E = -2 L WijViVj + LOiVi, (1) 
ij=l i=l 
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where Wij is a weight between neuron i and j, ()i is a threshold of neuron i 
and Vi is output value of unit i, respectively. J. Hopfield has shown that this 
energy function monotonously decreases as the neural network is executed. 
There is a possibility that this energy function converges to one of local min­
ima. In the case of a Boltzmann machine, the energy function can increase 
with a minute probability. Therefore, the energy function hardly falls into a 
local minimum. Therefore, transforming the objective function of a portfo­
lio selection problem into an energy function of the Boltzmann machine, the 
Boltzmann machine can solve the portfolio selection problem as its approx­
imate solution. However the computing time of a conventional Boltzmann 
machine becomes so much large as the number of units increases. Therefore, 
it is necessary to delete the useless units in order to shorten the computing 
time. 

As the investable fund is limited in real stock investment, the fund should 
be allocated over the small number of stocks out of a huge stock market. 
Therefore, we propose a Meta-controlled Boltzmann machine to solve the 
portfolio selection problem with a huge number of stocks, which is illustrated 
in Fig. 1. 

We can formulate the energy functions of the Meta-controlled Boltzmann 
machine as in equations (2) and (3). Each unit of the Boltzmann machine 
corresponds to each stock for investment, and the number of units and the 
number of stocks should be equal. The investing rate to each stock is obtained 
as the value which divides the output value of each unit by the total of 
output value. The covariance between stocks i and j, aij, corresponds to 
weight between neurons i and j, Wij· The expected return rate of stock i, J.Li, 

corresponds the threshold of neuron i, ()i· On the condition that the energy 
function should be minimized, the energy functions are written as follows: 
Meta-Controlling Layer 

(2) 

Lower Layer 

(3) 

where Ku and Kt are a weight of the expected return rate for each layer and 
si is an output value of unit i of the Meta-controlling layer. 

The output value of the Meta-controlling layer, si, is 0 or 1. If stock i 
is selected, the output value of unit i is 1. The output value of the lower 
layer is investing ratio to each stock. In the Meta-controlling layer if Ku is 
set to a larger value, the selected number of stocks will increase. In the lower 
layer if Kt is set to a smaller value, we will obtain the solution nearer to 
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Mtt~..Controlling Layer 

LowcrLayc..-

Fig. 1. Meta-controlled Boltzmann Machine 

Step 1. Set each parameter to an initial value. 
Step 2. Input the value of K,andKt. 

M~:ta·Controlling Layer 

lower Layer after rcstrucruring 

Sclmcdllnit 

Step 3. If output value of the Meta-controlling layer is 1, increase the value of the correspond­
ing lower layer's unit . 

Step 4. If the output value is sufficiently large, increase the value of the corresponding Meta-
controlling layer's unit. 

Step 5. Iterate from Step 3 to 4 until the temperature reaches the restructuring temperature. 
Step 6. Restructure the lower layer using the selected units. 
Step 7. Execute the lower layer until reaching at the termination. 

Fig. 2. Algorithm of a Meta-controlled Boltzmann machine 

the minimum risk solution. Therefore, as we change each parameter K, we 
will obtain various investing pattern according to the aspiration of a decision 
maker's in the same as a fuzzy portfolio selection model which is proposed by 
J. Watada et al [5,6]. Algorithm of the meta-controlled Boltzmann machine 
is shown in Fig. 2. Restructure the lower layer can make its computing time 
much shorter to reach at the termination. 

4 Numerical Example 

In this section, we show the effectiveness of a Meta-controlled Boltzamnn 
machine employing various size of real data from 10 stocks to 1286 stocks 
in Tokyo Market. The results are shown in Table 1 and Fig. 3. Computing 
efficiency is given by the following equation: 

Ce = tMeta X 100 
tconv. 

(4) 
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Table 1. Comparison of Meta-controlled Boltzmann Machine with conventional 
Boltzmann Machine 

Number of CPU Time (sec.) Computing Expected return rate Risk Selected units 
units 1vonven- Meta- Efficiency t_;_onven- Meta- L:onven- Meta- lt.;onven- Meta-

tiona! controlled (%) tiona! controlled tiona! controlled tiona! controlled 
10 7.28 6.20 85.2 0.00138 0.00138 0.00088 0.00088 6 3 
20 9.03 6.44 71.3 0.00090 0.00091 0.00073 0.00073 4 3 
40 13.08 7.38 56.4 0.00081 0.00080 0.00053 0.00052 5 5 
80 21.81 8.56 39.2 0.00137 0.00138 0.00063 0.00063 8 7 

160 39.50 9.96 25.2 0.00306 0.00307 0.00057 0.00058 4 6 
320 103.56 19.18 18.5 0.00402 0.00400 0.00044 0.00042 5 9 
640 229.43 38.02 16.6 0.00738 0.00739 0.00095 0.00096 15 

1286 491.49 87.96 17.9 0.00736 0.00742 0.00092 0.00099 15 

where Ce denotes computing efficiency, tMeta a computing time of the Meta­
controlled Boltzmann machine and tconv. a computing time of a conventional 
Boltzmann machine, respectively. In Table 1, it is shown that the comput­
ing time of the Meta-controlled Boltzmann machine is drastically shorter 
than a conventional Boltzmann machine. The reason of this result is because 
the Meta-controlled Boltzmann machine deletes useless units in step of re­
structuring in the execution. On the other hand in the case of a conventional 
Boltzmann machine, it is computed employing all units until reaching the ter­
mination. Therefore, the computing time of the Meta-controlled Boltzmann 
machine is effectively and efficiently shorter than a conventional Boltzmann 
machine. Comparing with the value of computing efficiency, it shows that 
the Meta-controlled Boltzmann machine is more efficient, so that an initial 
unit value is large. Comparing between expected return rate and risk, we can 
obtain satisfactorily a good result employing the Meta-controlled Boltzmann 
machine. 

5 Concluding Remarks 

In this paper, we proposed the Meta-controlled Boltzmann machine, based on 
a Two-layered Boltzmann machine which is proposed by J. Watada et. al [4], 
to solve the portfolio selection problem which limits the number of invested 
stocks. The result of the numerical example stresses that the solution with a 
limited number of selected stocks can be obtained more efficiently employing 
the Meta-controlled Boltzmann machine. 
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1 Introduction 

In this paper, we provide a short survey of tradeoff concepts and present a scalari­
zation the parameters of which allow one to calculate the tradeoffs as efficient 
points of the contingent cone in its optimal solution, if certain differentiability as­
sumptions are fulfilled at this efficient point. The scalarization is based on the idea 
to look for vectors being efficient w.r.t. some widened dominance cone. 

From now on, we will assume F = f(X) to be the feasible point set in the objec-

tive space 9tP of the multicriteria optimization problem 
f1(x) ~ min 

mm 

xeX, 

where X stands for some arbitrary set of feasible alternatives and f:= (f1, ••• , {.l 
consists of the real-valued functions fi: X~ 9t, i=l,2, ... ,p, p ~ 2. 

We define the optima of this problem as follows: 
Definition 1. 

1. ye F is said to be an efficient element of F iff F n ( y- 9t ~) = { y } 

Eff(F) will denote the set of all efficient elements ofF. 

2. yeF is a weaklyefficientelementofF iff F n (y-int 9tn = 0 . 

3. y0 eF is called a properly efficient element ofF (in the sense of Geoffrion) 

iff 3K>O :'Vye Fwithyi <y? forsomeie {1,2, ... ,p}: 

3je {1,2, ... ,p}\{i}:yj -yi ~ K(yj -yj). 

The set of all properly efficient elements ofF is expressed by G-Eff(F). 

Moreover, we define optimality with respect to an arbitrary set D ~ 9tP that can 
be an aggregation of the decision maker's dominance directions or - in the sec­
tions to come- a set related to the scalarizing problem. 

Definition 2. Let D ~ 9tP be an arbitrary set. 

ye F is said to be an efficient element ofF w.r.t. D iff F n ( y- D) ~ { y} . 



276 Petra Weidner 

Eff(F,D) will specify the set ofthese elements. 

Obviously, Eff(F, 9\~)=Eff(F) . 
Throughout, cone(F) will denote the cone generated by the set F, cl F the topo­

logical closure of the set F, bd Fits topological boundary, 

T(F,y<) :={dE 9\P I forallq) c9\ with ti J- 0 and all(~h;;; F with yi ~y0 , 

thereexistssomesequence(di) c9\P with di ~ d and yi +tidi E F} 

the tangent cone ofF in l and 

K(F ,y<) :={dE 9\P ithereexistsequences(tj) c 9\ with t i J- 0 and (di) c 9\P 

with di ~ d such that y0 + t idi E F} 

the contingent cone ofF in l. 

2 Tradeoff Concepts 

Traditionally, tradeoffs are thougt to be the price one is willing to pay by a worse 
value in one objective function for improving the value of another one. This view 
has been extended by introducing vectors that express a combined imparment and 
a combined improvement of objective function values. In this way the considera­
tion changes from directions parallel to the axes to sets of potential tradeoff vec­
tors. 

The classical local tradeoff between objective functions~ and fj expresses how 
much the decision maker is willing to or has to gain in objective i for a unit in­
crease in objective j, if the other objective function values are fixed. 

Assuming u to be some explicit or implicit value function that has to be maxi­
mized over f(X) such type of definition is given as the marginal rate of substitu-

a~f~~l) 
tion or local tradeoff ratio by ilu(t(xO)) . The local tradeoff ratio measured by val-

dl'jTxJ 
ues of relative changes in the objective function values has also been investigated 

. h . I fi . af;(xo) wtt out usmg a va ue unctwn as --0-. 
afj(x ) 

Not being based on infinitesimal properties, the point-to-point tradeoff 

(yo ) Y? -Yi b b. · r · .. d .. fi fi ·bl t.. , y : = --0 etween o ~ectlve unctwns -'i an .; or east e outcomes 
lJ Yj-Yj 

l and y expresses how many units of the decrease in attribute i are gained for a 

unit of increase in attribute j, if the other function values Yk coincide with the 
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corresponding function values y~ . Without this assumption, -tij(y0, y) is called a 

total tradeoff by Haimes and Chankong (1979), otherwise a partial tradeoff. A to­
tal tradeoff turns out to be useful for the comparison of a small number of efficient 
solutions. 

Kaliszewski (1994) modified this definition in such a way that other objective 
function values are allowed to alter as long as they do not become worse and that 

the tradeoff compares y0 with the entire feasible outcome set. He defined the 

0 y~-Yi 
tradeoff T .. (y ) : = sup ~ , 

lJ > 0 y·-y. 
yeZi(y) J J 

where zj (y~ :={ye F I Yj > yJ, y k :S; y~ forallk :;t: j}. This as well as the to­

tal tradeoff extends the tradeoff directions from vectors parallel to the coordinate 
axes to other vectors of interest. 

Haimes and Chankong (1979) investigated tradeoff rates in x0 w.r.t. a direc-

. . . . ,. flxo +a.d)-fi(xo) d I I d h b tton d m the dectston space as tm 0 0 an ca cu ate t em y 
a--+0 fj(x +a.d)-fj(x ) 

means of the Kuhn-Tucker multipliers in the £-constraint approach. Similar cal­
culations were applied to the weighted Tchebycheff norm method by Yano and 
Sakawa (1987). 

A generalization ofthis infinitesimal concept was introduced by Henig and Bu-

chanan 1997. They defined the cone of tradeoff directions for F at y0 as 

Eff(cl cone(F- y0 )) under the assumption, that F +9t~ is convex. An extension of 

this definition for feasible point sets without convexity properties was introduced 
by Lee and Nakayama 1997 as well as by Miettinen and Makela 2002. They con-

sidered the efficient point set of the contingent cone of F at y0 as the cone of 

tradeoff directions ofF at l. This contingent cone is always closed, but not nec­

essarily convex for a nonconvex set F. It is contained in cl cone(F- y0 ) and coin­

cides with it, ifF is starshaped at y0 . 

In (Kaliszewski 1994, 2000, Kaliszewski and Michalowski 1997) parameters of 
scalarizing problems are used to compute bounds for tradeoffs in the properly or 
weakly efficient solution obtained. These scalarizing problems are just of the type 
(Pa,k,c) that we will present in the next section with C being polyhedral cones. 

This was pointed out in (Weidner 1994) in connection with (Weidner 1990). 
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3 A Scalarization using Widened Dominance Sets 

In (Weidner 1990, 200 I) a general scalarization was discussed that extends an ap­
proach by Pascoletti and Serafini (1984) by replacing the dominance coneD, here 

9\~, by some parameter-depending set C containing D\{0} : 

(Pa,k,c): t ~min 
YE a-clC+tk 
YE F,tE 9\ 

with parameters a,k E 9\P ,C ~ 9\P. 

In (Weidner 1993) we investigated the foiiowing scalarization: 
(P): t ~min 

-WiYi- vi+ t~O Vi=l, ... ,p 
p 

IJ(-wiyi- vi+ t)~b 
H 

yEF,tE9\ 

with parameters WE int9\~, bE 9\+ \{0}, vE 9\P. 

This problem is equivalent to (P a,k,c) with 

c ~ {yE 9t' I 1}(ws; +Rib)> b, W;Y; +Rib >O \1; ~ l, ... ,pj 
vi +'(/b 1 . 

ai =- , ki =- Vt =l, ... ,p. 
wi wi 

Geometricaiiy, (Pa,k,c) and thus (P) can be interpreted as foiiows: 
Stick the set -clC to the point a and shift the set a- clC along the line 

{a+ t kItE 9\) until the smaiiest parameter t = t0 is reached for which the inter­

section with F is nonempty, that is for which F n (a- clC +t0k) # 0. Then t0 is 

the optimal value of the scalarizing problem and F n(a- clC + t 0k) is just the set 

of optimal solutions y of this problem. 
If C and k fulfil the conditions 

• 9\P = u (bdC+ak), 
<XE9l 

• intC = U (bdC+ak), 
<XE9l+ \{0} 

• clC +int9\~ ~ clC and 

• bdC+(9\~\{0})~intC, 

then each solution y0 of (P a,k,c) belongs to Eff(F). The conditions are fulfiiied for 
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several classes of sets C containing 9t~ \{0} in its interior and vectors k E int9t~, 
especially by the polyhedral cones in the scalarizing problems considered by 
Kaliszewski and by the set C and the vector k appearing in problem (P). In many 

of these cases the optimal solutions y0 of (P a.k,c) are efficient elements ofF w.r.t. 

C such that C can be interpreted to be an enlargement of the dominance cone 9t~ , 
a widened dominance set. 

4 Calculation of Tradeoffs 

From now on, consider C, a and k to be as specified for problem (P). 

Cis a closed, strictly convex set with C+ (9t~ \{0}) ~ intC and 

OE bdC" { yE 91' I u( W;Y; +~) "b, W;Y; +!!ib ~0 Vi" l, ... ,p}. Sinoo tho 

surface ofC is smooth, each tangent cone ofC is a halfspace. 

Let t0 be the optimal value and y0 E F be an arbitrary optimal solution of (P). 

Then l belongs to a-C+t0k and T(a-C+t0k,l)={yE9tPinTy~nTy 0}, 
where a normal n to the set a- bdC + t0k can be determined by the pararreters of 

(P): 
p 

ni=wi·IJ{-wiy?-v. +~) Vj=l, ... ,p. 
i=l 
i;<j 

Moreover, the formulation of (P) immediately yields n E int9t~. 

(I) 

If F is closed and K(F ,y0 ) turns out to contain some hyperplane H, then 

H={yE9tPI nTy=nTy 0} andK(F,y0)~{yE9tPinTy::?:nTy 0} becauseofthe 

strict convexity of C and the definition of the contingent cone. Hence 
Eff(K(F ,l)) = Eff(H) = {y E 9tP In T y = n T l} holds. Thus we can prove a 

method for the determination of tradeoff directions for certain efficient outcomes 
by means of a generalization ofLyustemik's theorem in (Jahn 1996): 

Theorem. Assume that F is closed and that there exists some neighbourhood U 

of l E bdF in which the boundary of F coincides with some set 

S = {yE 9tP lh(y) =0}, where h: 9tP ~ 9t is differentiable on U and continu­

ously differentiable in l with Vh(y0) -:t:. 0. If y0 is an optimal solution of prob­
lem (P) and n is calculated according to equation (1), then 

Eff(K(F,y0)) = {yE 9tP 1 n TY = nTy0 }. (2) 
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Finally, let us illustrate that problem (P) can be used to calculate tradeoffs of an 
efficient point even if the properly efficient point set is empty. Lee and Nakayama 
(1997) underlined by this example that the tradeoff concept of Henig and fu­
chanan ( 1997) can fail for non-convex feasible point sets in the outcome space. 

Example. 

Define F := { y E 9i2 I y 2 :2: I} u{ y E 9i2 I y 2 :2:- )\} u { yE 9i2 I y 1 :2: I} . 

Then G-Eff(F) = 0, but y0 := (O,O)T E Eff(F) . l solves (P) e.g. for parameters 

w 1 = w 2 = b =I and v1 = v 2 = -1 with the optimal value t0 = 0 . Hence 

Eff(K(F,l)) = {yE 9i2 I nTy = 0} with n = (l,l)T is the set of tradeoff directions 

ofF in l in the sense ofLee and Nakayama. 
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Abstract. Generalization error bounds in Support Vector Machines are based on 
the minimum distance between training points and the separating hyperplane. The 
error of soft margin algorithm can be bounded by a target margin and some norms of 
the slack vector. In this paper, we propose a new method controlling allowable error 
and formulate considering the contamination by noise in data directly. The method 
can provide desirable separating hyperplanes easily by controlling a restricted slack 
parameter. Additionally, through an artificial numerical example, we compare the 
proposed method with a conventional soft margin algorithm. 

1 Introduction 

When considering large margin classifiers, where the complexity of a hypoth­
esis is measured by its margin with respect to the data, the presence of noise 
leads to further problems. For example, solutions found by maximizing a mar­
gin are not stable with respect to the training points-slight modifications in 
the training set can significantly change the hypothesis- a brittleness which 
makes the maximal margin solution somehow undesirable. These problems 
have led to a method of "soft-margin", a procedure aimed at extending the 
large margin algorithms to noisy cases by permitting a slight sacrifice of ac­
curacy. Using the existing soft margin algorithm, we can get a large margin, 
but the algorithms are very sensitive to penalty parameter in the formulated 
mathematical programming problem. 

In this paper, we propose a new method controlling allowable error for 
noisy data. It will be shown that the proposed method can diminish the 
corruption of noise, and also make an improvement of generalization ability 
through a numerical example. 

2 Error Bound for Soft Margin Algorithms 

We begin the section by introducing the definition of margin slack vari­
ables[2,3], which show how much each point fails to meet the given threshold 
for classification. This threshold is called a target margin in this paper. 

Definition 1. Let X be the space of data. For a real-valued classification 
function f on X and a target margin 1, if an example (Xi, Yi)) E X x { -1, 1} 
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holds 

then Xi is correctly classified: On the other hand, if yd(xi) < "(, then the 
Xi is incorrectly classified. 

Definition 2. For a real-valued classification function f on X, the margin 
slack variable of an example (xi, Yi) EX x { -1, 1} with respect to a function 
f E :F, where :Fis a class of real-valued functions, and a target margin "( is 
given by 

For a training set S, the norm of ( is given by 

L (((xi,Yi),f,"f)2 
(m;,yi)ES 

Note that (i > 0 implies the incorrect classification of (xi, Yi), because the 
points with non-zero (((xi, Yi), f, "f) fail to achieve a positive margin of"(. 

In terms of the target margin"( and 2-norm of the margin slack variables, 
the generalization error bound of soft margin algorithms for linear classifica­
tion functions has been derived by Shawe-Taylor and Cristianini [3]: 

Theorem 1. Fix Ll > 0. Consider a fixed but unknown probability distribu­
tion on the space X x { -1, 1} with support in the ball of radius R about the 
origin in X. Then with probability 1 - 8 over randomly drawn training sets 
S of size£ for all"(> 0, the generalization of a linear classifier u on X with 
llull = 1, thresholded at 0 is bounded by 

E(£, d, 8) = ~ ( dlog2 c:£) log2 (32£) + log2 (~£)), 

where 

(1) 

provided £ ~ ~, d ~ e£ and there is no discrete probability on misclassified 
training points. 

Theorem 1 means that the generalization error is bounded by the amount 
how much the data fail to meet a target margin "Y· The error bound is in 
terms of a norm of the slack variable, which implies that this quantity should 
be minimized in order to increase the generalization ability. The error bound 
does not rely on whether the training data are linearly separable or not, 
and hence can also handle the case when the data are corrupted by noise. 
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Furthermore, the error bound is monotonically increasing with respect to d, 
since for fixed e and o, 

{ dlog2 c~e) r = 
1 

log2 8e£ - log2 d - -1 -­oge 2 

( 8e£) 1 > log2 d -loge 2 > 0. (-.· d ~ e£), 

where 1 denotes the derivative. 

In the next section, through a simple example, we will investigate the 
relation between d and a target margin 'Y in several linear classifier functions, 
and suggest a revised formulation of conventional soft margin algorithms. 

3 The Proposed Method 

Consider four cases of linear classifier functions / 1, f 2 , f 3 and r with 11 
training data points as shown in Fig. 1. The classification function f 1 is 
perfectly separating the data, but the others P, f 3 and f 4 are not. 

/ 1(x1,x2) -x1, f 2(x1,x2)= -4x1+3x2, 

f 3 (xl, X2) = -3Xl + 4x2, f 4 (x1, X2) = X2- 0.1. 

Without loss of generality, put R = 1 and L1 = 1 in the equation (1). Then 
d for several target margins are shown in Table 1. We can find the fact that 
d is the smallest by (i) the linear classifier function f 1 for a target margin 
'Y ~ 0.25, (ii) f 2 for 0.30 ~ 'Y ~ 0.65, (iii) f 3 for 0.7 ~ 'Y ~ 1.0 and (iv) r 
for 'Y ~ 1.05, respectively. 

For data without any noise, the classification may be well performed for 
a relatively small 'Y. In other words, completely separating hyperplanes such 
as f 1 may be the best for data without noise. For noisy cases, however, a 
relatively large 'Y is more desirable. How large 'Y is appropriate depends on 

Fig. 1. example data and linear functions for classification 
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Table 1. Values of d for given a target margin 1 

I d 

r r f f 
0.05 51600 51740 52325 52684 
0.10 12900 12998 13271 13416 
0.15 5737 5833 6038 6135 
0.20 3264 3342 3525 3597 
0.25 2190 2210 2387 2445 
0.30 1710 1625 1799 1851 
0.35 1550 1312 1485 1532 
0.40 1596 1158 1330 1375 
0.45 1793 1118 1281 1326 
0.50 2114 1171 1313 1361 
0.55 2542 1306 1419 1467 
0.60 3068 1520 1593 1638 
0.65 3685 1810 1835 1875 
0.70 4391 2175 2147 2182 
0.75 5182 2613 2529 2559 
0.80 6057 3125 2980 3005 
0.85 7014 3711 3502 3522 
0.90 8052 4371 4095 4108 
0.95 9171 5105 4758 4766 
1.00 10370 5914 5494 5495 
1.05 11648 6797 6302 6296 
1.10 13006 7756 7183 7170 
1.15 14443 8790 8137 8117 
1.20 15959 9900 9165 9137 

how much we consider the influence of noise. In the soft margin algorithm, 
the slack variable ~i, i = 1, ... , £are introduced in order to take into account 
the influence of noise. 

A conventional soft margin problem with £1-norm in SVMs can be for­
mulated as follows[5]: 

minimize 
w,wo,ei 

subject to 
i=1 

Yi ((w,xi) + wa) ~ 1- ~i, 

~i~o, i=1, ... ,£, 

(S) 

where C is a weight parameter for slack variables and L;=1 lwil is denoted 
by llwll1-

The optimal separating hyperplane can be found by solving the above 
problem (S) for the given parameter C. In practice, the parameter C is em­
pirically chosen according to the influence of noise: for example, C is taken 
to be properly small if the influence of noise is large. 

Using the soft margin algorithm (S), we find a separating hyperplane 
for the data employed in the previous section. In this case, let C=0.0001, 
0.001, 0.01, 0.1, 1.0, 2.0. Fig. 2 shows the optimal separating hyperplanes 
for several values of C. Although the parameter C is varying, we obtain 
only two kinds of hyperplanes. That is, we can not obtain non-vertical/non­
horizontal hyperplanes such as j 2 and j 3 by the conventional soft margin 
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Fig. 2. separating hyperplanes by (S) varying C 

algorithm whatever the value of C may be. This implies that we can not take 
into account the influence of noise in a subtle way. 

In this paper, therefore, we suggest a new formulation in order to overcome 
these problems and control the influence of noise directly: 

£ 

llwlh +CL_)i minimize 
w,wa,ei 

i=l 

subject to Yi ((w,:vi) + Wo) ~ 1- ei, 
0 ~ ei ~ emax, i = 1, ... '£, 

where c is a weight parameter for slack variables and emax is given as a fixed 
number. 

In our formulation, the upper limit emax to the margin slack variables, 
which means an allowable error, is introduced. We can control the influence 
of noise. For a relatively large value of emax, for example, we can take into 
account the influence of noise by emax more directly than by the weight 
parameter C. 

Fig. 3 shows the optimal separating hyperplanes obtained by the pro­
posed method. For example, in the case of C = 1.0, compare the proposed 
method (SemaJ with the existing method (S). The several forms of separating 
hyperplanes are produced by varying emax in the proposed method ' while the 
optimal separating hyperplane is only the horizontal by solving the problem 
(S). By adjusting the value of emax, it is possible to obtain an appropriate sep­
arating hyperplanes according to the degree how much the influence of noise 
should be considered. Since emax itself plays a role as the level of allowable 
error, we can easily set the value of it. 

4 Conclusion 

In this paper, we have proposed a new formulation for the soft margin algo­
rithm in order to consider the allowable error for noisy data. We have shown 
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that the proposed method can control the influence of noise directly and pro­
vide desirable separating hyperplanes easily by controlling a parameter emax. 
Therefore, it is expected that the proposed method can treat the corruption 
of noise effectively. 
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Abstract. In this paper, we investigate an analysis of expected utility based on 

fuzzy interval data. We establish a data processing method that can treat fuzzy 

interval data. Unfortunately, the method that direct usage of membership functions 

of fuzzy interval data has the problems of the efficiency when we carry out a 

calculation. To solve such problems, we propose a practical method that uses the 

midpoints of membership functions as the representative values. 

Keywords:Fuzzy Interval Data, F-moment, Expected Utility, Value of Fuzzy 
Information, Amount of Fuzzy Information 

1. Introduction 

The theory of expected utility is systematized in the field of statistical decision 
making. Conventional theory of expected utility is formulated based on probabilis­
tic uncertainty. However, when there is human intervention, it is not easy tore­
move the data that includes vagueness. 

This paper aims at giving the method of analysis of expected utility based on 
fuzzy interval data. Usually, the observation value is handled as a fixed value, but 
here it is regarded as the case of being able to obtain observation data whose 
boundaries of intervals are vague. These data are called fuzzy interval data, so it is 
desirable to establish a data processing method that is able to treat the vague data. 
However, the method that direct usage of membership functions of fuzzy interval 
data has the problems of the efficiency of calculations and so on. Therefore, a 
practical method that uses the midpoints of membership functions as the represen­
tative values is proposed in this paper. The problems mentioned above can be 
solved by our method. 
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2. Fuzzy Interval Data and Membership Functions 

The vagueness is grasped as a fuzzy event (fuzzy set) J1 j defined on the inter­

val Ij = [xj- hi 2,xj + h/2]. In this paper, membership functions are defined on 

[-hi 2,h 12]. They are represented by the following symmetrical function [I]. It 
is assumed as a basic form of fuzzy interval data. 

(trapezoidal type) 

J.L(x)=max{o,min(l,--1 lxl+~+_!_)~ 
2q 8q 2 ~ 

(I) 

The q that appears on the right side of equation (I) is the shape parameter of the 

trapezoidal membership function and 0 < q ~hI 4 . In order to statistically process 

fuzzy interval data J1 j , it is necessary to calculate Pj , the appeamnce probability 

of J1 j • From Zadeh's definition[2], this probability is expressed as 

(2) 

Here, defining F-moment of degree r of J1 j as 

Jx .+h/2 

dr = 1 J.Lj(x)(x-xj)'dx, 
xj-h/2 

(3) 

it is possible to rewrite the equation (2) as 

~ =dof(xj)+ ~~ J<2l(xj)+ ~; j<4 l(xj)+···+ (~~)J<2"l(xj)+······. (4) 

3.Expected Utility using Fuzzy Interval Data 

We express the prior probability distribution of population parameter 8 as ~(8) 

and the conditional density function as f(x I 8). Then we can introduce the poste-

rior probability of 8 by means of fuzzy interval data J1 j • As for the posterior 

probability of 8 based on J.Lj, using a Taylor expansion with the F-moment of 

J1 j , it becomes 

~(8iJ.Lj)=~(8ixj)+ 2do {J<2l~~~:~(8) 
(5) 
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In this way, the posterior probability ~ (8 I x j) that uses the representative value 

xj can be formulated by the usual Bayesian method, and by adding to it a com­

pensation amount that is expressed in the second term on the right side of equation 

(5). Further, O(h 4 ) in the equation (5) is the high order term. Usually, this term 

becomes a minute value. In the argument here, the width h of membership func­
tion is considered to the extent that it does not practically harm even ifthis term is 
ignored. 
When we set ~ (8) and f(x 18) as the following function 

1 { (8-80 )
2

} 1 { (x-8) 2
} 

~(8)= .fiiia exp 'ln2 'f(xl8)= .fiiiv exp - 2v2 (6) 

respectively, the first term on the right side of equation (5) is expressed as 

1 { (8-17j)2
} 

~(8lxj)= .fii;. exp - 2).2 ' 

( I )-1 ( )-1/2 80 X j 1 1 1 1 
17· = -+- -+- 1.= -+-' a 2 v 2 a2 v2 ' a 2 v2 

(7) 

And by setting the utility function to the action a; as follows; 

u(a; ,8)=K; +k;8 (8) 

we can obtain the expected utility U (a; I J1 j) written as 

d2 k; ;.2 
U(a; I Jlj) =K; + k;17j +-d - 4-(17j -xj). 

0 v 
(9) 

The first term and second term on the right side of equation (9) are described by 
the conventional method. When we treat the fuzzy interval data, we have to add 
the compensation amount that is expressed as the third term on the right side. 

4.The Value of Fuzzy Information 

We denote the best action as a11j which maximizes the expected utility. Then 

U (a pj I J1 j) becomes as follows. 

U(aw I J.Lj)= max {U(a; IJ.Lj)} (10) 
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The value of expected utility differs by the given fuzzy information J1 j , 

j=-oo,···,oo, respectively. We consider the expected value with respect to Jlj. 

Then, the formulation of expected value U (a ifj I j1 j) is expressed as follows. 

U(aifj I jij) = l:,U(a11j I Jlj )P(J.Lj) 
j 

[( ) d2 ksj},} ] 
= ~ Ksj + ks/'lj + d';T(T'/j- Xj) P(Jlj) 

Here, we set the best utility function as 

u(aJii,(J)=Ksj +k/}. 

( 11) 

(12) 

And when we can't get information at all, the best utility function is described as 

U(a 0 ) = [ u(a 0 ,e)!;(e)de 

(13) 

The a 0 in the equation (13) is the best action. Therefore, from equation (11) and 

(13), the value of fuzzy information is formulated as follows. 

V(jij) = U(aJii I iU- U(a 0 ) 

""'[( ) d2 ksjA} } ( ) =-'-' Ksj +ksjT'/j +--4-(T'/j -xj) (J.Lj)- K0 +k0 e0 (14) 
j d0 v 

5.The Amount of Fuzzy Information f.l j 

The entropy on the state space {e}, when we can't get information at all, is for­
mulated as 

H(~) =-[~(e) Iog~(e)de. (15) 

On the other hand, when we can get fuzzy information J1 j , the entropy is formu­

lated as follows. 

H(~(J.L )) =-[ ~(e 1 Jlj) Iog~(e 1 Jlj )de 

= -[ ~(e I xj)log~(e I xj)de- ~o [Jl +log~(e lxj)} 

X {f(2)(Xj I e)~( e) ~(e lxj) r !(2) (xj le)~(e)de}de (16) 
f(xj) f(x) ~ 
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Here, we consider the expected value with respect to J1 j • The expected value 

M(ji j I~) is formulated as 

M(jij I~) =Eilj{H(~(J.l j))} 

=-I[[ ~(8 IJ1j)log~(8 I J.lj)JP(J.lj). 
1 

(17) 

Then, the amount of information J(jij I~) given by J.lj is expressed as 

I(jii I~)=M(jii 1~)-H(~). 

As for I (ji j I~), we can show the following theorem. 

[Theorem 1] 

For any fuzzy information J1 j ( j = -oo, • • ·, oo ), 

I(jij I~) ~o 
is assured. 
The proof of Theorem 1 is shown as follows. 

J(ji i I~) =M(jii I~)- H(~) 

(18) 

(19) 

=I[[ ~(8 I J.lj)log~(8 I J.LJ]P(J.lj)-I[[ ~(8)P(J.lj l8)log~(8)d8 J 
1 1 

~0 (20) 

6.Numerical Example 

The Table.1 shows a result of the value of fuzzy information and the amount of 
fuzzy information expressed by the right side of equation (14) and (18), respec­
tively. In order to show the efficiency of our proposed method, the simulation here 
regards the handling of fuzzy interval data as the following three types (A), (B) 
and (C). 
(A) Only the representative value 
(B) Fuzzy interval data itself 
(C) After compensation 
As for (A), it is expressed by the central value of the membership function, and 
using only representative value, statistical processing is carried out. As for (B), it 
is a method of direct calculation and treating the membership function that does 
not depend on our proposed method. As for (C), this means the method that we are 
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Table.l. Result of the value of fuzzy information and the amount of fuzzy information 

--------
(A)Only the repre- (B)Fuzzy interval (C)After compensa-

sentative value data itself tion 

Equation (14) 1.814326 1.911372 1.904871 

Equation (18) 0.353129 0.391658 0.391208 

proposing here. 

In our example, we assumed that ~(O)·-·-N(80,20 2 ) and f(x!O)~N(l50,12 2 ), 

respectively. And as for the membership functions, we assumed that h = 10 and 
q = 1.25 . Consequently, in regard to the value of fuzzy information and the 

amount of information in (A), they do not become accurate values based on fuzzy 
interval data respectively. But by compensating by means of (C), they become ap­
proximately the values derived from (B). 

7 .Conclusion 

We have described a method of the analysis of expected utility based on fuzzy 
interval data, and this method's practicability has been clarified by the numerical 
example. 

The method that only uses the representative values of m:mbership functions, as 
does (A), it is not possible to carry out the proper processing of fuzzy interval data 
in which bias has occurred in the result. But the method (C) that is proposed here, 
the bias in (A) is removed. As for this method, the result becomes almost the same 
as that of the method (B) which handles fuzzy interval data in detail. 

Consequently, with respect to actual problems from which vague data are ob­
tained, the application of this method becomes possible. 
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Abstract. In this paper, the asymptotic stability of linear discrete time-invariant 
descriptor systems is studied via a generalized Lyapunov equation. The analysis 
covers both the causal and noncausal cases. In particular, the asymptotic stabil­
ity of a discrete descriptor system (DDS) is related to the existence of a positive 
semidefinite solution of the generalized Lyapunov equation. The results strength­
ened those of earlier works for causal descriptor systems. 

1 Introduction 

It is well known that Lyapunov theory has played an important role in asymp­
totic stability analysis and related control problems. From the amount of 
literature on the subject, it is clear that Lyapunov equations for normal 
state space systems are well understood. However, only a few results related 
asymptotic stability to Lyapunov equations for descriptor systems [1-3]. Since 
descriptor systems arise in many engineering fields [1-4], it is very important 
to extend the well known Lyapunov theory to descriptor systems. 

DDS may possess noncausal phenomenon which is alien to normal sys­
tems. The generalized Lyapunov equations for the systems, as proposed in 
previous works [5,6,4,7], cannot be directly utilized to analyze the asymptotic 
stability of noncausal DDS. These results are only valid for the causal case. 
The main issue here is to relate asymptotic stability for noncausal DDS to 
generalized Lyapunov equations. Zhang and Xu [4, 7] investigated structural 
stability and linear quadratic control problems for causal DDS. Syrmos et al. 
[6] discussed the relationship between asymptotic stability and the solutions 
of a generalized Lyapunov equation for causal systems. Unfortunately, the 
noncausal discrete case has not been covered. Hence, it is very desirable to 
fill this gap and have a complete solution which provides a unification of the 
Lyapunov treatment to problems involving noncausal systems. 

The aim of this paper is to analyze the asymptotic stability for both 
causal and noncausal DDS in terms of solutions of a generalized Lyapunov 
equation, which appeared in Zhang and Xu [7], as well as Syrmos et al. [6]. 
New conditions characterizing asymptotic stability are provided. In particu­
lar, the uniqueness of the positive semidefinite solution is discussed. It is also 
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emphasized that the results obtained here are also valid for both causal DDS 
as well as normal discrete systems. 

The outline of this paper is as follows. Related preliminary results are 
first presented in Section 2, then in Section 3 we study the solutions of a 
generalized Lyapunov equation and relate them to the asymptotic stability 
of DDS. For the limit of space, all proof is omitted. 

2 Preliminaries 

Consider a linear time-invariant DDS given by 

Ex (k + 1) =Ax (k) + Bu (k) 
y(k)=Cx(k) 

(1) 

(2) 

where x (k), u(k) and y (k) are respectively the n-dimensional state vector, 
m-dimensional input vector and [-dimensional output vector; E, A, Band C 
are real matrices of appropriate dimensions. The DDS in (1) and (2) will be 
identified by its realization denoted by the quadruple (E, A, B, C) for short. 
In the sequel, whenever an argument, E, A, B, or C, of a realization is of 
no consequence in the development, we may replace it by a *· To ensure 
the existence and uniqueness of solution, DDS (E, A, B, C) is assumed to be 
regular, that is det(zE- A) ,i=O. The finite poles of DDS (E, A, B, C) are the 
finite roots of the characteristic equation det(zE- A)= 0. A DDS is said to 
be asymptotically stable (in Lyapunov sense) if all its finite poles lie in the 
open unit circle. 

When the DDS is regular, there exist real invertible matrices P and Q 
such that 

E := PEQ = diag(InuN), A:= PAQ = diag(Al,ln2 ) (3) 

where A1 E Rn1 xn1 , N E Rn2 xn2 is nilpotent with nilpotent index h, i.e. 
Nh-l =F 0, Nh = 0, and It E Rtxt denotes the identity matrix of order t. 
Here, n1 + n2 = n. (3) is called the Weierstrass canonical form. The above 
transformation induces a conformal partition on B, C, and x (k) such that 

- [B1] B:=PB= B2 , (4) 

Obviously, the DDS with realization (E,A,fJ,C), or 

x!(k + 1) = A1x!(k) + B1u (k), y!(k) = C1x!(k), (5) 

Nx2 (k + 1) = x2 (k) + B2u (k), Y2 (k) = C2x2 (k), (6) 

YW=~w+~w, m 
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is restricted system equivalent to DDS (E, A, B, C). The above decomposition 
is generally referred to as a forward-backward decomposition. The solutions 
to (5) and (6) are given by 

k-1 

x1 (k) = Aixw + LA~-i- 1B1u(i) , (8) 
i=O 

h-1 

x2(k) =- LNiB2u(i+k) , (9) 
i=O 

where x 1 (0) = x 10 , is a given admissible initial state vector. 
Notice that det(zE- A) = det (PQ) - 1 det(zln, - A1) det(zN- In,) and 

det(zN- ln2 ) =f 0, thus DDS (E, A, B, C) is asymptotically stable if and only 
if the forward subsystem (5) is asymptotically stable. Although the asymp­
totic stability of DDS can be analyzed based on the above decomposition, 
Nichols pointed out that the decomposition is numerically sensitive to system 
data which may makes such decomposition sometimes unreliable [8]. There­
fore, it is desirable to solve the problem without a decomposition. 

DDS (E, A, B, C) is said to be R-controllable if its forward subsystem (5) 
is controllable which is equivalent to the fulfilment of the condition 

rank([B1 A1B1 ··· A~'- 1Bl]) =n1. 

The dual concept of R-observability can also be defined similarly and it can be 
established that R-observability, equivalent to the observability of the forward 
subsystem, of a DDS. Other equivalent conditions on these concepts may be 
found in [2]. 

The Laurent parameters ¢k, -h::::; k < +oo, are introduced to specify the 
unique series expansion of the resolvent matrix about z = oo, 

00 

(zE- A)- 1 = z-1 L ¢kz-k 
k=-h 

Numerical reliable computation of ¢k can be found in [9]. In particular, in 
Weierstrass canonical form, we have [10] 

<f>-1 := Q-1¢_1p-1 = [~ -~n2]. 
Based on this, we have 

E¢_ 1 = p-l [ J0, ~] Q-lQ [~ -~nJ p = p-l [~ -~] p, 

and for WE lRnxn, W = WT, we also have 

"'r ErWE"' = pr [o o J p-rwp-1 [o o J P '~-'-1 'Y-l 0 -NT 0 -N 

= pT [ ~ NT~3N] p ' 
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where 

We define the set 

w ={WE JRnxn I w:::::: 0, ¢>'!_lETWE¢>-l = o}. (10) 

It is easily seen that W E W if and only if W :::::: 0 and 

¢>'!_ 1 ETW = 0 {o} NTW3N = 0 {o} W3N = 0. 

Hence, W E W is in the nullspace of matrix ¢>'!_ 1 ET. An admissible W can be 
obtained from the linear matrix equation ¢>'!_ 1 ETW = 0 under the restriction 
that W:::::: 0. 

3 Asymptotic Stability 

To motivate the use of a generalized Lyapunov equation in the study of 
asymptotic stability of DDS, we note that 

since 

xl(k)#O =} Ex(k)#O, 

PEx(k) = PEQQ-1x(k) = [ x1 (k) ] 
Nx2 (k) 

Thus one can construct a Lyapunov function of DDS (E, A, B, C) as 

V(Ex(k)) = xT (k)ETVEx(k) , 

where V E JRnxn, V 2:: 0, with the property that V (Ex (k)) > 0, if Ex (k) # 
0; V (0) = 0, if Ex (k) = 0. Relating this function to DDS (1) and (2), we can 
see that Ex (k) # 0 is equivalent to x 1 (k) # Owhen x (k) is the solution (see 
(8) and (9) with u (k) = 0 and t > 0). The generalized Lyapunov equation 
associated to DDS (E, A, B, C) and Vis given by 

(11) 

where W :::::: 0. It is easily seen that (11) is a generalized form of Lyapunov 
equation in standard Lyapunov theory which corresponds to a discrete nor­
mal system if E = In. The generalized Lyapunov equation with h = 1 was 
considered in [11,6,7]. 

From (3), generalized Lyapunov equation (11) becomes 

Af ViA1- V1 = -W1 , 

A[V2- V2N = -W2N , 

v3- NrV3N = -NrW3N , 

(12) 

(13) 

(14) 
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where 

(15) 

such that the partitions are conformal to the dimensions of ln1 and N. It is 
seen that for any given w3, a closed-form solution for v3 in (14) is given by 

h-1 

v3 =- 2::::: (Ni{ W3Ni (16) 
i=l 

Moreover, from (16) we have V3 = 0 if W3 :::0: 0 and V3 :::0: 0. We are now in a 
position to give a theorem which relates asymptotic stability of a DDS to its 
associated generalized Lyapunov equation. 

Theorem 1. DDS (E, A,*,*) is asymptotically stable if and only if for any 
given WE W, which satisfies 

rank (ETWE) = degdet(zE- A) , (17) 

generalized Lyapunov equation ( 11) has unique solution V :::0: 0 which satisfies 

rank(V) = degdet(zE- A) . (18) 

When (E, A,*,*) is causal, i.e. N = 0, which is also equivalent to 

degdet(zE- A)= rank (E), (19) 

we have the following result. 

Corollary 1. A causal DDS is asymptotically stable if and only if for any 
given W > 0, generalized Lyapunov equation {11} has unique solution V :::0: 
0 which satisfies rank (V) =rank (E). 

Remark 1. Corollary 1 is related to Theorem 3.5 of [6] where in our case, 
strengthened to that solution V is unique. In that paper, it was only estab­
lished that ETV E is unique. Theorem 1 gives a new asymptotic stability 
theorem which generalizes the previous results. From its proof, we see that 
generalized Lyapunov equation (11) is solvable if it is asymptotically stable. 
In general, the unique positive semidefinite solution V of generalized Lya­
punov equation (11) may be expressed as 

In relating (11) to controllability and observability for DDS, we also have 
the following result. 
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Proposition 1. Suppose DDS ( E, A, B, C) is asymptotically stable. Then 
the DDS (E, A, B, C) with ere E W (resp. BET E W) is R-observable 
(resp. R-controllable) if and only if the generalized Lyapunov equation 

ATVA- ETVE = -ETCTCE (20) 

(resp.AVAT- EVET = -EBBT ET), 

has unique solution V 2 0, with 

rank(V) = degdet(zE- A). (21) 

Remark 2. It should be mentioned that C2N = 0 in (??) is equivalent to 
that the DDS is causal from state to output. This is seen from 

Y2 (k) = C2X2 (k) = C2NX2 (k) = 0. 

Meanwhile, if BET E W, then B'[ NT N B 2 = 0, which is equivalent to that 
the DDS is causal from input to state (see (9)). In general, from (9), we have 

h-1 

Y2 (k) = C2x2 (k) =-L C2NiB2u (k + i) = -C2B2u(k), 
i=O 

and hence the DDS is causal from input to output if C2N = 0 or N B 2 = 0. 
In practice, causality is essential for the implementation of a DDS. 
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Solving DEA via Excel 

Joe Zhu 

Department of Management, Worcester Polytechnic Institute, Worcester, MA 
OI520 USA 

Abstract The paper discusses how the Excel Solver can be used to solve various 
Data Envelopment Analysis (pEA) models. The structure of the DEA models 
allo\\<S one to use simple visual basic for applications (VBA) codes to automate 
the DEA calculation. As a result, one can easily establish the DEA spreadsheets 
and solve any existing or new DEA models. 

Key words: data envelopment analysis (DEA), Excel, Solver. 

1. Introduction 

Data Envelopment Analysis (DEA) is designed to measure the relative 
efficiency within non-for-profit organizations where market prices are not 
available (Chames et a!. I978). However, by its ability to model multiple-input 
and nultiple-output relationships without a priori underlying functional form 
assumption, DEA has also been widely applied to other areas. The following DEA 
model is an input-oriented variable returns to scale (VRS) model where the inputs 
are minimized and the outputs are kept at their current levels. 

o· =min o 
subject to 

i Ajx!i s; lkio 
j=l 

iA.jylj ~Yro 
j=I 

iA.. =1 
j=l 1 

A.j ~0 

(I) 

i = 1,2, ... ,m; 

r = 1,2, ... ,s; 

j = 1,2, ... ,n. 

where DMU represents one of the n DMUs under evaluation, and x. and 
Yro are the i;h input and 11:h output for DMUO' respectively. If o· = 17 then 
the current input levels cannot be reduced (proportionally), indicating that 
DMU is on the frontier. Otherwise, if o· < I, then DMU is dominated by 
the fro~tier. 0 • represents the (input-oriented) efficiency score0 of DMU 0 • 



302 Joe Zhu 

By changing the constraint of _L~1 Aj in model (1 ), we can obtain other DEA 

models (see, e.g., Zhu (2002)). In the next section, we demonstrate how model (I) 
can be solved by Excel spreadsheets and the Excel Solver. 

2. DEA Spreadsheets 

We begin this section by organizing the data in Table I in a spreadsheet (see 
Figure I). A spreadsheet model of (I) contains the following four major 

components: (i) cells for the decision variables (e.g., llj and () ); (ii) cell for the 

objective function (efficiency) (e.g., () ); (iii) cells containing formulas for 
computing the DEA reference set (the right-hand-side of the constraints) 

(L~IAj Xii,_L~1 Aj yr:i, and _L~1 Aj ); and (iv) cells containing formulas for 

computing the DMU under evaluation (left-hand-side of the constraints) (e.g., 
() xio and Yro ). 

Table 1. Data 

Company Assets Equity Employees Revenue Profit 
Mitsubishi 91920.6 10950 36000 184365.2 346.2 
Mitsui 68770.9 5553.9 80000 181518.7 314.8 
Itochu 65708.9 4271.1 7182 169164.6 121.2 
General Motors 217123.4 23345.5 709000 168828.6 6880.7 
Sumitomo 50268.9 6681 6193 167530.7 210.5 
Marubeni 71439.3 5239.1 6702 161057.4 156.6 
Ford Motor 243283 24547 346990 137137 4139 
Toyota Motor 106004.2 49691.6 146855 111052 2662.4 
Exxon 91296 40436 82000 110009 6470 
Royal Dutch/Shell Group 118011.6 58986.4 104000 109833.7 6904.6 
Wal-Mart 37871 14762 675000 93627 2740 
Hitachi 91620.9 29907.2 331852 84167.1 1468.8 
Nippon Life Insurance 364762.5 2241.9 89690 83206.7 2426.6 
Nippon Telegraph & Telephone 127077.3 42240.1 231400 81937.2 2209.1 
AT&T 88884 17274 299300 79609 139 

In Figure I, cells I2 through Il6 represent Aj (j = I, 2, ... , IS). Cell Fl9 

represents the efficiency score 0 which is the objective function. 
For the DEA reference set (left-hand-side of the envelopment model), we enter 

the following formulas that calculate the weighted sums of inputs and outputs 
across all DMUs, respectively. 

Cell B20 =SUMPRODUCT(B2:B 16,$I$2:$I$16) 
Cell B21 =SUMPRODUCT(C2:C16,$I$2:$I$I6) 
Cell B22 =SUMPRODUCT(D2:Dl6,$I$2:$I$I6) 
Cell B23 =SUMPRODUCT(F2:FI6,$I$2:$I$16) 
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Cell B24 =SUMPRODUCT(G2:G16,$1$2:$1$16) 

For the DMU under evaluation (DMU1: Mitsubishi), we enter the following 
formulas into cells D21 :D24. 

Cell D20 =$F$19*1NDEX(B2:B16,E18,l) 
Cell D21 =$F$19*1NDEX(C2:Cl6,E18,1) 
Cell D22 =$F$19*INDEX(C2:Cl6,El8,l) 
Cell D23 =INDEX(F2:F16,E18,1) 
Cell D24 =INDEX(G2:G16,E18,1) 

I A B 
Company ASseiS 
MiiSublshl 91920.6 

F I G H I ! J K 
~+=-~~__:..:...._ __ __._.=-...,....---.,;::-,,..._,::-="--'-.=...1---,:Rewoue Proftt :. ~ 

184365.2 346.2 1 
MiiSui 6S770.9 181518.7 314.8 0 
ltochu 65706.9 4271.1 169184.6 121.2 0 
General Motors 217123.4 23345.5 168628.6 6S80.7 0 

50268.9 6681 167530.7 210.5 0 
71439.3 5239.1 161057.4 156.6 0 
243293 24547 137137 4139 0 

106004.2 49691 .6 146655 111052 2662.4 0 
91296 40436 82000 

118011.6 58986.4 104000 
110009 8470 0 ·-::~~~ 

109833.7 6904.6 0 -
37871 14762 675000 93627 2740 0 

91620.9 29907 .2 331852 84167.1 1468.8 0 
384762.5 2241 .9 89690 83206.7 2426.6 0 
127077.3 42240.1 231400 81937.2 2209.1 0 

88884 17274 299300 79609 139 0 

Reference DMUl.Older 
set EvakJe!ion 1~ 

91920.6 ~ 91920.6 
10950 ~ 10950 
36000 ~ 36000 

J 
184365.2 ~ 184365.2 

346.2 ~ 346.2 

Finally, we enter the formula for If=1 A.j = 1 into cells B25 (=SUM(I2:116)) 

and D25 (=1), respectively. 
Cell El8 is reserved to indicate the DMU under evaluation. The function 

INDEX(array,row number,column number) returns the value in the specified row 
and column of the given array. Because cell E 18 contains the current value of 1, 
the INDEX function in cell D23 returns the value in first row and first column of 
the Revenue array F2:F16 (or the value in cell F2, the Revenue output for DMU1). 
When the value in cell E18 changes from l to 15, the INDEX functions in cells 
D20:D24 return the input and output values for a specific DMU under evaluation. 
This feature becomes obvious and useful \\hen we provide the Visual Basic for 
Applications (VBA) code to automate the DEA computation. 

After the DEA model is set up in the spreadsheet, we can use Solver to find the 
optimal solutions. First, we need to invoke Solver in Excel by using the 
Tools/Solver menu item. Now, you should see the Solver Parameters dialog box 
shown in Figure 2 
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'..::otver Purumeters ." 

~tTargatCell: 1} 
Eq.Jal To: r. (!lax r MIQ r llaUI or: 
iiY Chiroghg calls: 

I 1} 
5\tlject ID lha COnsll'aW>Is:----

Fig. 2. Excel Solver Parameters 

Cbse 

BeoetAII 

Set Target Cell indicates the objective function cell in the spreadsheet, and 
whether its value should be maximized or minimized. In our case, the target cell is 
the DEA efficiency represented by cell Fl9, and its value should be minimized, 
because of model (1). If the DEA model is output-oriented, then choose max. 

Changing Cells represent the decision variables in the spreadsheet. In our case, 
they represent the Aj (j = 1,2, ... , 15) and (;}, and should be cells I2:Il6 and 

Fl9, respectively 
Constraints represent the constraints in the spreadsheet. In our case, they are 

determined by cells B20:B25 and D20:D25. For example, click the Add button 
shown in Figure 2, you will see the Add Constraint dialog box shown in Figure 3. 

Change Constraint " 

Cell &eference : Qnstrant: 

l$8$20:$8$22 

Carcel Add 

Fig. 3. Adding Constraints 

In the spreadsheet model shown in Figure l , we have six constraints. The "Cell 
Reference" corresponds to the DEA Reference Set, and "Constraint" corresponds 
to the DMU under evaluation. The first three constraints are related to the three 
inputs (see Figure 3). Click the Add button to add additional constraints (output 

constraints and 2;~1 Aj = l ), and click the OK button when you have finished 

adding the constraints. The set of the constraints are shown in Figure 4. Note that 
Aj and (;} are all non-negative, and the model (l) is a linear programming 

problem. This can be achieved by clicking the Option button in Figure 2, and then 
checking the Assume Non-Negative and Assume Linear Model boxes. Now, we 
have successfully set up the Solver Parameters dialog box, as shown in Figure 4. 
Click the Solve button to solve the model. 



Solver Purumetc ro;, -w 

$8$20:$8$22 <~ $0$<!1J:$0$22 
$8$23:$8$24 >~ W$2.3 :~ 
$6$25 : $t)$25 

jj 

..:J 

a-s 
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Fig. 4. Solver Parameters for DEA Model 
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To complete the analysis for the remammg 14 companies, one needs to 
manually change the value in cell E 18 to 2, 3, ... , 15 and use Solver to re -optimize 
the spreadsheet model for each company and record the efficiency scores (in 
column J, for instance). When the number of DMUs becomes large, the manual 
process is apparently cumbersome. 

Note that exactly the same Solver settings will be used to find the optimal 
solutions for the remaining DMUs. This allows us to write a simple VBA code to 
carry out the process automatically. 

Before we write the VBA code, we need to set a reference to Solver Add-In in 
Visual Basic (VB) Editor. Otherwise, VBA will not recognize the Solver functions 
and you will get a "Sub or function not defined" error message. 

We may follow the following procedure to set the reference. Enter the VB 
Editor by pressing Alt-Fl 1 key combination (or using the Tools/MacroNisual 
Basic Editor menu item). Open the Tools/References menu in the VB Editor. This 
brings up a list of references. One of these should be Solver.xla To add the 
reference, simply check its box. 

After the Solver reference is added, we should see "Reference to Solver.xla" 
under the "References" in the VBA Project Explorer window. Next, select the 
Insert/Module menu item in the VB Editor. This action will add a Module (e.g., 
Module 1) into the Excel file. 

Now, we can insert the VBA code into the Module I. Type "Sub DEA()" in the 
code window. This generates a VBA procedure called DEA which is also the 
Macro name. Figure 5 shows the VBA code for automating the DEA calculation. 

The Macro statement "SolverSolve U;erFinish:=True" tells the Solver to solve 
the DEA problem without displaying the Solver Results dialog box. The 
"Offset(rowOffiet, columnOffiet)" property takes two arguments that correspond 
to the relative position from the upper-left cell of the specified Range. When we 
evaluate the first DMU, i.e., DMUNo = 1, Range("Jl").Offset(l,O) refers to cell 
J2. The statements "With Range("Jl") and " .Offset(DMUNo, O)=Range("Fl9") 
take the optimal objective function value (efficiency score) in cell Fl9 and place it 
in cell J "DMUNo" (that is, cell J2, J3, .. . , Jl6). 
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ll .. llllllllllll~rri~~.=M=n~Q==================31EI~~~ ================ 

Fig. S. VBA Code for DEA 

Sub D&A() 
'Dec late DHUNo as inteqet . Tl!.is D.'IUIIo teptesents the DMU under 
'evaluation . In the e:~811ple, DI'!UNO goes fot11 1 to 15 

DiD CMUIIo As Integet 
Fot CMUIIo • 1 TO 15 

' set the value of cell El8 equal to DM1JNo (l, 2, . .. , 15) 
Range 1 "rae "l ; DMUNo 

' Run he solver •odel. The UserFinish is set to True so that 
' the Solver Results dialog box will not be shown 

So1verso1ve userFin.ish:-True 
' ~lace the efficiency into column J 

li i th Range (' J 1') 
.Offset(DMUNo, 0) = Range( ' F19') 
End l i th 
Next DHUNO 

End sub 

Enter the Run Macro dialog box by pressing Alt-F8 key combination (or using 
the Tools/Macro/Macros menu item). You should see "DEA". Select "DEA" and 
then click the Run button. This action will generate the efficiency scores. 

3. Conclusions 

This paper shows how DEA models can be solved in Excel spreadsheets. 
Although the paper only deals with one DEA model, the procedure can be applied 
to other DEA models. Zhu (2002) provides a detailed discussion on solving DEA 
via Excel spreadsheets and Excel Solver. Zhu (2002) also provides an easy -to-use 
DEA software - DEA Excel Solver. This DEA Excel Solver is an Add-In for 
Microsoft Excel and provides a custom menu of DEA approaches which include 
more than 150 different DEA models. It is an extremely powerful tool that can 
assist decision-makers in benchmarking and analyzing complex operational 
efficiency issues in manufacturing organizations as well as evaluating processes in 
banking, retail, franchising, health care, e-business, public services and many 
other industries. The DEA Excel Solver does not set limit on the number of units, 
inputs or outputs. With the capacity of Excel Solver, the DEA Excel Solver can 
deal with large sized performance evaluation tasks. 
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Planning and Scheduling Staff Duties by Goal 
Programming 
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Abstract. We propose goal programming (GP) models for an integrated problem 
of staff duties planning and scheduling, for baggage services section staff at the 
Hong Kong International Airport. The problem is solved via its decomposition into 
a GP planner, followed by a GP scheduler. The results can be adopted as a good 
crew schedule in the sense that it is both feasible, satisfying various work conditions, 
and "optimal" in minimizing overtime shifts. 

1 Introduction 

This paper advocates a general modeling framework for a complete crew 
assignment system. It arises naturally as a mathematical description for the 
staff deployment problem of their baggage handling agents at BSS-HAS, the 
Baggage Services Section of the Hongkong Airport Services, Ltd. HAS of the 
(new) Hong Kong International Airport (at Chak Lap Kok of Lantau Island) 
is the primary handler of all ground services and support functions, including 
aircrafts and passengers alike. 

Our project of optimization modeling for staffing is motivated by the need 
to produce daily work plan of the baggage service agents at the passenger 
terminal. Our complete BSS crew system consists of its three component 
GP models: the Duties Generation Problem (DGP), the Crew Scheduling 
Problem (CSP) and the Crew Rostering Problem (CRP). While such model­
ing may well be regarded as one among the vast literature of the commonly 
known area of workforce planning/scheduling (an excellent review is given by 
Bodin et al, 1983), our decomposition approach has, for the actual case study, 
exhibited its significant impact albeit its modeling simplicity. The resulting 
preemptive goal programming formulations have very satisfactorily addressed 
the planningfschedulingfrostering issues to handle frequent changes of flight 
schedules by flexibility in work patterns of agent duties. 

1.1 Crew Scheduling 

In the general area of routing and scheduling of vehicle and crew (Bodin et al, 
1983), it is common to separate the overall problem into two steps consisting 
of the determination of the time tables - vehicle routing, followed by the staff 
assignment - crew scheduling. 
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Various useful models for crew scheduling problem (CSP) aiming at dif­
fering merits and purposes have been proposed, such as (matching based) 
heuristics models of Ballet al, 1983; network models of Carraresi and Gallo, 
1984; and set partitioning models of Falkner and Ryan, 1987. Among the 
mathematical programming approaches, there are work of Lessard et al, 1981; 
column generation approach of Desrochers and Soumis, 1989, Desrochers et 
al, 1992; integer programming approach of Ryan and Foster, 1981, Ryan 
and Falkner, 1987; decomposition approaches of Patrikalakis and Xerocostas, 
1992, Vance et al, 1997; and complementary approaches of Wren et al, 1985. 

These quoted above constitute only a tiny fraction of the vast litera­
ture, not to mention techniques of implementation for practical applications, 
notably computerized scheduling such as the various reported systems of 
"HASTUS" of Lessard et al, 1981, "CREW-OPT" by Desrochers, et al, 1992, 
"EXPRESS" by Falkner and Ryan, 1992; and that of Chu and Chan, 1998. 

Successful real applications are extremely significant for the airlines. Be­
sides the "household name" of SABRE, we mention two most recent "mile­
stone" works of Vance et al, 1997 and of Mason et al, 1998. 

1.2 Crew Rostering 

The outcome of the crew scheduling phase is typically a set of daily staff as­
signments required to cover the (actual or forecast) demand. "In the (next) 
crew rostering phase, a set of working rosters is constructed that determine 
the sequence of duties that each single crew has to perform ... , to cover ev­
eryday all the duties selected in the first phase" (quoted from Caprara et al, 
1998). This has been referred to as the Crew Rostering Problem (CRP) by 
Caprara et al in their FARO prize winning work for the Italian Railway Fer­
rovie della Stato SpA, jointly sponsored by the Italian Operational Research 
Society during 1994-1995. 

Similar to the case of crew scheduling, past work on CRP has seen nu­
merous approaches and applications. There are optimization approaches such 
as that of Gamache and Soumis, 1993; network model of Balakrishnan and 
Wong, 1990; and column generation approach of Gamache et al, 1994. Novel 
heuristics approaches integrating Set Covering and/or Assignment Problem 
are reported by Hagberg, 1985, Carpaneto and Toth, 1987, and Caprara et al, 
1995. More recently, Valouxis and Housos, 2002, propose a quick heuristics for 
combined bus and driver scheduling, consisting of minimum cost matching, 
set partitioning and shortest path. 

1.3 Duties Generation 

The modeling formulation of DGP that we put forth here can be interpreted 
as the basic core - the planner - of a more sophisticated DGP /CSP /CRP 
integrated model in the following sense. DGP in its simplest form (computes 
and) allocates duties (of given fixed structure of work pattern, rather than 
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crew or staff needing further varying requirements of scheduling) to cover 
known demands. Demands are given, for equally spaced (such as half-hourly) 
time intervals of (the working time of) a day. As such, DGP is the prerequisite 
to CSP and CRP in that it provides the planning inputs needed in subsequent 
scheduling and rostering of staff. The logical flow of their relationships can 
be summarized below, where t = hour of day, j =day of week, p =weekly 
work pattern and a = agent, 

Hourly Demands D(t) 
<<Planner: DGP Model>> 

Duties X(i, k) 
Allocations R(j, t) 

l 
Daily Requirements R(j) = Lt R(j, t) 

<<Scheduler: CSP Model>> 
Daily Staffing S(j) 
Allocations R(j, t) 

l 
<<Roster: CRP Model>> 

Duty Rosters l(p,a,j,t) 

2 Goal Programming Models 

As its name implies, DGP allocates duties (performed by crew) in an optimal 
way to meet known demand over a contiguous number of time intervals. We 
describe only its extended formulation below. A detailed account of DGP 
formulations is given in an earlier paper of Chu, 2001. 

DGP Model 
We use the following common notations for all the subsequent models. Let 
H be the working time horizon, and h = 1, · · · , H index the individual hours 
(or half-hours). Rh denotes the demand for interval hand dh represents the 
over allocation (or over-achievement deviation variable in a goal programming 
context) at interval h. 

The length of a duty is denoted by J. The primary decision variable Xij 

is the number of allocated staff that starts duty from interval i and breaks 
at the jth interval after the start of duty, j = 1, · · · , J. Hence for a working 
horizon of intervals 1 · · · H, we have for the index i = S, · · · , T. The earliest 
start interval S is such that S ~ 1 whereas the latest start interval T is 
limited toT~ H- J + 1 (to finish work at interval H). Note that normally 
S = 1 as long as R1 > 0 (there is demand for the very first interval); and 
T = H- J + 1 whenever RH > 0 (there is demand for the very last interval). 

As noted by Mason et al, 1998, personnel scheduling problems (or referred 
to as workforce allocation problems by Baker, 1976) have been studied for 
many years. Network flow formulations, such as in Segal, 197 4 and Bartholdi 
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and Ratliff, 1978 can well handle their simplest forms. Additional side con­
straints such as break requirements demand more complex procedures. 

One advantage of the DGP model is its ease of extension in various ways. 
One such concern is the inclusion of flexibility in staffing mode: introducing 
over-time (OT) for any number of on-duty staff. This simply calls for adding 
another decision variable Ymn representing the number of allocated OT staff 
who start work at interval m and finish work in interval n. Defined generally 
as such, OT work can take different modes: a (limited) number of intervals 
immediately before a regular time (RT) duty only, or a (similarly limited) 
number of intervals immediately after an RT duty only. 

As an illustration, the DGP model with OT allocation is given below. 

H m+L-1 n 

Min I: I: (LTh) Ymn (1a) 
m=1 n=m h=m 

T J 

Min L L CijXij (1b) 
i=S j=1 

Min WD (1c) 

Subject to 

h 

I: Rh , h = 1, · · · , H (2) 
i=p #h-i+l m=h-L+1 n=h 

i-1 (i+J)+L-1 J 

L Ym,i-1 + L Yi+J,n < L Xij' 
j=1 m=(i-1)-£+1 n=i+J 

T J 

L L Xij S MaxRT 
i=S j=1 

H H 

L L Ymn S MaxOT 
m=1 n=1 

h= 1,··· ,H 

i = S, · · ·, T (3) 

(4) 

(5) 

(6) 

Here p = max { h - J + 1, S}, q = min { h, T}, and both the RT allocation 
{ Xij } and the OT allocation { Ymn } are non-negative integer variables. 
Note that L stands for the maximum number of (additional) OT intervals 
allowed before or after the J RT intervals. 

We see that the LHS of constraint (2) is the total work contribution as a 
function of both RT and OT staff. The RT (or Xij) portion is straight-forward, 
while the OT (or Ymn) part picks out the total number of OT staff for a 
maximum span of L intervals which cover h. Constraint (3) ensures that each 
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Ymn is indeed an OT allocation, by stipulating that an OT is assigned only if 
there is already an RT Xij allocation (before or after). The single parameter 
MaxRT of constraint (4) denotes the maximum number (or strength) of RT 
staff and that MaxOT of constraint (5) is the maximum permitted number 
of OT staff. Suitably mixed (i.e. RT +OT) duties allocation can be obtained 
by varying these two parameters in repeated runs of the model, preemptively 
with the three goals (1a) to (1c) in that order. 

Finally, the coefficients { Th } in (1a) represent the unit OT pay rates, 
possibly different for different time intervals of the day, whereas the coeffi­
cients { Cij } in (1b) represent the usual unit RT pay rates. The single variable 
D of constraint (6) records the maximum (i.e. over achievement) deviation 
over all time intervals. Its non-smoothed penalty term W Din (1c) is treated 
as a lowest priority goal in search of an "optimal" mixed duties allocation 
plan that includes both (positive) Xij and Ymn· 

CSP Model 
Next, the CSP model, which is often referred to as the (cyclic or weekly) 
staffing model (see, for example, Schrage, 1999) is stated below. 

Inputs: (from DGP Model) 
R(j) = Lt R(j, t) Required no. of start duties on day j 

Constratints: 

L START(@wrap(j- i + 1, 7)) - OVER(j) = R(j), j = 1, ... , 7 
l~i~5 

Objective functions: 
Min L START( i) 

i 

Min MaxOVER ( = Maxi OVER(j)) 

CRP Model 
Finally, the CRP model, which in many ways has the interpretation of a 
set-covering formulation is given below. 
Indices: 

p = roster pattern (1, ... , 7) 
a= baggage service agent (BSA) 
j = start time half-hour (1, ... , 11, or 12, ... , 22) 
t = day of week (1, ... , 7) 

Inputs: 

R(j, t) =required no. of start duties (at half-hour j on day t) 
- output from DGP Model 

S(t) = required no. of starting crew (on day t) 
- output from CSP Model 
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Covering (Roster) Variables: 

I(p, a, j, t) = 1, 
if agent a is assigned to cover roster pattern p at time j on day t 

I(p, a, j, t) = 0, if one or more of the following conditions hold: 

i) a> S(p) 
ii) t = @ warp(p + 5, 7) [= t1(p)] 

iii) t = @ warp(p + 6, 7) [= t2(p)] 
iv) R(j, t) = 0 

Covering (Roster) Constraints: 

1) Each (assigned) agent gets 1 duty on each working day 

L l(p,a,j,t) = 1, 'ip,a~S(p),t-j-t1(p),t2(p) 
jJR(j,t);:::l 

2) Each (assigned) agent gets 5 duties each week 

L I(p,a,j,t) = 5, 'ip,a ~ S(p) 
j,tJ R(j,t) ::0:1 ,t#tl(p ),t2(p) 

3) Start duties (R(j, t)) of each slot are covered 

L I(p,a,j,t) ~ R(j,t), 'ij,tiR(j,t) ~ 1;t -1- t1(p),t2(p) 
p,a<;S(p) 

4) Start rosters (S(t)) of each day are allocated 

L L I(p,a,j, t) - D(t) = S(t), 'it -1- t1(p), t2(p) 
p,a$S(p) jJR(j,t)::C:l 

where D(·) is the over allocation to be minimized in the objective func­
tion. 

3 A Concluding Remark 

The purpose of this paper is to illustrate by way of this DGP /CSP /CRP mod­
eling and computational experience, the advantage of its readily producing 
significant improvement over existing manual staff assignment. Its usefulness 
is somehow, in our opinion and experience of actually applying it in real situ­
ations, rather highly out of proportion with regard to its modeling simplicity. 
The system's usefulness to the HAS users is indeed decreasing from planning 
(DGP), to scheduling (CSP), and finally to dispatching (CRP). The last is 
still influenced regularly by day-to-day actual dispatching and rostering needs 
(which are left more to the field operational supervisors). 
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Abstract 

In order to win in the violent global competition, it is necessary for vendors to 
shorten the product development of novel, better product on quality consideration. 
It is expected to be an efficient way to extend robust design to the early stage of 
design. In this paper, we defme multiple aspects of robust design from the view of 
multi-objective optimization. For the existing two problems in related researches, 
a new robust design model is proposed and embedded into an interactive approach 
as a decision making procedure. Fuzzy LR Number is used in this model to deal 
with asymmetric distributed variables and capture the imprecision in design vari­
ables in the early phases of design. Assisting by the proposed approach in which a 
proposed reference mechanism is embedded, designer is available to use progres­
sively generating preference structure to select satisfactory solution from the op­
timized Pareto solution set. Pressure vessel design is used as an example to dem­
onstrate the proposed approach. 

Key Words: Robust Design; Interactive Approach; Fuzzy LR Number; Decision 
Making; Pareto Solution 

1. Introduction 

Every engineering design is inevitably subject to variability that arises from a 
variety of sources, such as manufacturing process, it is necessary to firstly achieve 
the robustness of design in the preliminary stage of design process. Disregarding 
uncertainty will cause rejected parts, high manufacturing cost, or failure in use and 
service. Elimination of uncertainty in the above sources is usually expensive or 
impossible in technique aspect. Robust design is regarded as an efficient tool to 
evaluate uncertainty and find relatively robust solution to existing uncertainty. 

Taguchi's robust design methods have been widely used to improve design 
quality of products and processes. From the concept of Taguchi's method, the 
quality of a product is improved by minimizing the effect of the cause of variation 
without eliminating the causes£1•21• AlthouBh the methods Taguchi offered for ro­
bust design have received some criticisms 1, fundamental principles and concepts 
of robust design have been widely accepted. One of them is that variation of per-
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formance decides loss in quality and tradeoff between performance and variation 
of performance will determine the quality of design. This philosophy can be ad­
dressed as a multi objective optimization problem. 

There are two problems existed in previous researches. One is how to properly 
quantify uncertainty in design variables and parameters. However, normal distri­
bution widely used in most of research is not adequate£4-71 • Another problem is 
more difficult and challenging --how to clearly express the designer's preference 
structure for optimal solution. 

We use Fuzzy LR number to solve the first problem. Though Arakawa intro­
duced Fuzzy theory into robust design [SJ to express the imprecision in robust de­
sign, how to get the robust optimal from Pareto solutions has not been adequately 
addressed in their research, and separately maximizing variation of design variable 
causes critical technical obstacle in performing optimization. 

To solve the second problem, a feasible way is to create an Pareto alternative 
section for selection, and designer select the "relatively best" one from it. De­
signer's preference information is generated progressively based on optimized re­
sults from the previous step. This is an interactive approach. 

2. Proposed Approach 

2.1 Multiple Aspects of Robust Design 

Taguchi uses the quality loss function as a metric for robust optimization. It is 
from the view of probabilistic[l1. Using the Taguchi's robust design conception, it 
is necessary to model multiple aspects of robust design fully as at least two objec­
tive functions. Arakawa addressed the features of robust design as three rules and 
formulated from the view of Fuzzy theory. 

In this paper, we consider the robust design problem as the following four as­
pects: 

1. solution should be the satisfactory one selected from the Pareto optimal 
set; 

2. the closer is the solution to the utopia point, the better; 
3. the expected performance and the variation of performance should be 

minimized simultaneously; 
4. variables should be selected with considering flexibility in manufactur­

ing. 
Based on these, we proposed to deal with robust design problem as a Tri­

Objective Decision Making (TODM) problem. 
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2.2 Proposed Robust Design Model 

From the above four aspects, we formulate robust design as the following TODM 
problem: 

Find x = (x,,x,L ,x~ )c D 

for given z =(z,,z;,z:) 

J(x,z> 
minimize 

J'(x,'Z> 

minimize A(x' z) 
A'(x,'Z> 

maximize 

subject to 

,(i = 1,2,···,n) 

,(k = 1,2,···,m) 

g1(x,'Z> + Ag1(x,'Z>- gja(x,'Z>- Agja(x,'Z> !> o 

Agp,z)= L og. ·x~- L ogm ·xf 
~>0 ox, Og. <0 ox, 
iJx1 iJx1 

(1) 

where x and z are design variables and uncontrollable parameters respec­

tively. xf ,x: are the lower and upper bound of x, which expressed using triangle 

Fuzzy LR Number. j" (x, z) , A" (x, z) are the individually optimized solutions 

of taking performance f(x, z) and variation of performance A(x, z) as objective 

function respectively. D called the feasible region which means design variable 

satisfy all of constraints. x; is a normalized factor which uses the optimal solution 

without considering the uncertainty in objective functions and constraints. 
Ag ja (x' z) is the upper bound of allowable limit of the j-th constraint g ja (x' z) 0 

(Ax~)L ,(Ax,L)u are the Fuzzy left and right number, which represent lower and 

upper limit of variation Ax~ , Ax: . Constraints are formulated in the worst case 
which assumed all variations of system performance will occur simultaneously in 

the worst possible combination of design variables. [ j" (x, z), A" (x, z)] can be 

denoted as utopia pint of Pareto solution set. 
A robust design problem is modeled as a TODM problem, in which perform­

ance and variation in performance are minimized to obtain robustness of perform­
ance, while total sum of variations of variables are maximized for relaxation in ac­
ceptable range of variations in manufacturing. 

Using the proposed model, decision making is proposed to be embodied in an 

interactive process. 
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2.3 f - constraint interactive procedure 

In this paper, the interactive approach developed by Pallil9J is improved. 
The ~:-constraint method can be formulated as 

minimize /, ( x) 

subject to f(x)5,E;,i=2,···,m, 

g/x) 5, O,j = 1,···,k 

XED (2) 

where the most principal function / 1 (x) is still taken as primary objective 
function, while other objective functions are taken as constraints. 

When the upper limit E; of i-th converted objective function is decided, the 

value of primary function will be available to be identified. So even spread Pareto 
solutions can be achieved even in concave case. 

2.4 Robust Design Procedure through an Interactive Approach 

The proposed procedure employs an interactive procedure in which the de-
signer's preferences are obtained progressively. 

The interactive approach which embedded robust design consists of six steps: 
Step I-- problem formulation 
To formulate a certain robust design problem as a TODM problem as in Eq. (1) 

and consider it under the constraints from the worst scenario. 
Step 2-- choose optimized candidate size P and a primary objective function 
P means the number of optimized candidates presented to designer to make 

tradeoff in every stage. 
Step 3-- determine limits of the objective functions 
Designer has to determine the upper and lower limits of objective functions in 

the first stage. Since the objective functions are normalized, the lower limits are 
greater than 1. Or designer can simply use the utopia point as the lower value of 
design variables. But the initial upper limit has to be determined vaguely accord­
ing to actual technical context. 

Step 4-- convert to a constrained form 
In order to ensure Pareto solutions are widely dispersed, the clustering tech­

nique [!Olean be used here. 
For i=2, ... ,m, 

E i = E ;,lower +a (e i,upper - E ;,lower) 
(3) 

where a is a random number between 0 and 1. 
Then the secondary objective functions can be converted into the constraint 

form. This step is repeated P times to obtain P Pareto solutions. 
Step 5-- present solutions to the designer 
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The obtained Pareto solutions are provided to designer through a graphical user 
interface. The most preferred solution may be the best value of the primary objec­
tive function while the values ofthe other objective functions are acceptable. 

We propose a reference choice mechanism, which use the information of sce­
narios in current stage. One scenario with the least sum of squares of deviation is 
recommended as the reference one. 

1 P6 m 
ave=- I I obj(i, j) 

Pm i=lj=l 

sqdev(i) = I (obj(i, j)- ave) 2 , i = 1, ·· ·, P (4) 
j=l 

where ave is the mean of m objective functions in current stage, sqdev(i) is sum of 
squares of deviation of m objective functions in i-th scenario. With reference 
mechanism, designer can perform interactive approach efficiently. 

Once the preferred scenario is chosen, the new &-interval is generated around 
the chosen point. A reduction factor r(r> 1) is chosen to decrease the each &­
interval. Steuer gave a recommended value for r : 

(1/ p)m :.:::; r :O::::v 1/(H-IJ (5) 

where, v is the final length ,and H is the number of total interactive times which 
designer prefers. 
The generation of new &-interval was discussed by Palli[9J as the following: 

~&; ~&; 
~&;=&;,upper -ei,lower'&i,upper =&; +-r-,&i,/ower =&; --r- (6) 

where ~e, is the length of the original interval for f. (i = 2, ... , m) . The new e, in­

terval is generated around the current a; . 
Step 6-- check for convergence 
If the solution is converged to an acceptable preferred solution or &-interval is 

less than some prescribed small value, the iteration process stops. Otherwise, steps 
3-5 are repeated and another set of P Pareto optimal points are generated and pre­
sented to the designer. 

If the solutions obtained are not satisfactory to the designer at the beginning of 
step 5, the clustering procedure in step 4 can be repeated to obtain a new set of 
Pareto solutions for the objective functions. 

3. Pressure Vessel Design Problem 

We use a simple pressure vessel design problem [Ill to demonstrate the advan­
tage of the proposed procedure. Motivation is that the total manufacture cost is to 
be minimized. Design variables are : x 1 and x2 , the thickness and length of shell, 

x3 and x4 , the thickness and diameter D of the head. 
The problem is formulated as follows: 
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+ 2cs1tp1x1x2x3 + 2ch1tp1x4x; 
where care cost factors[IIJ. 

(7) 

Assumed the case without sufficient statistical information about design vari­
ables and parameters, we use Fuzzy LR number to express the evaluation of varia­
tion of design variables and tabulated in Table I. Asymmetric distribution of 
variation of variables is considered according to actual needs from manufacturing. 

Table 1. initial nominal value and range of variables 

M LB UB LBL UBL LBR UBR 
XI 3.0 0.0 0.09 2.7e- 4.5e- 2.7e- 4.5e-3 

3 3 3 

X2 305 9.15 15.25 0.1 83 0.366 0.183 0.366 

XJ 1.5 0.0 0.045 9e-l 1.5e- 9e-4 1.5e-3 
3 

X4 125 3.75 3.75 0.188 0.188 0.188 0.188 

In this example, parameters p1 and p2 are density and welding angle respec­
tively. Variation of parameters are assumed as within 5% of the corresponding 
mean value. 

Objective function of total sum of variations of variables is chosen as the pri­
mary function, and P is determined as 6 in every stage. Objective functions of cost 
and variation of cost are converted into e-interval constraints. In order to decide 
the lower and upper bound of converted constraints, individual optimization is 
performed for objective functions of cost and variation in cost with consideration 
of uncertainty in constraints. Optimization is performed to decide ideal variables 

x; without consideration of uncertainty in objective functions and constraints. 
Ideal variables ={2.8575,298.958,1.5875,121.158}, and lower bound of cost and 
variation in cost are 7198.20 and 294.51 dollars respectively. Upper limits are as­
sumed as 5 times of corresponding lower limits. 

Then optimized results are presented to designer for making tradeoff as in Fig.l. 

(a) initial stage (b) second stage (c) last stage 

Fig. 1. stages in proposed interactive approach 

Blue stick represents cost, red one variation of cost, and yellow one global varia­
tion of variables in Fig.l . 
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Based on reference mechanism described in Eq. (4), the referred solution is the 
5th, 3m, and znd one in sequence from 1"1 stage to last stage. However, its potential 
assumption is the same priority among objective functions. The referred solution 
can be taken as a benchmark at least. Designer can choose satisfactory solution 
according to his preference. And around the chosen solution, Pareto candidate sec­
tion will be extended in the next stage. Till the 3rd stage, all candidates are nearly 
same and is a hint of convergence. For its random nature of approach, it is reason­
able to take this convergence point as a global optimal one. 

Besides the optimized value of objective function, some useful information can 
be found in the optimized variables and variation of variables. Applying general 
robust design model 12•71, both of the lower limits and upper limits tend to the pre­
scribed minimum limit. Compared with general robust design model 12•71, opti­
mized upper limits of all variables are greater than those of other models. Com­
pared with optimized mean value, high percentage of upper limit of optimized 
variation of variable means cheap material may be used or relax in manufacturing 
and check. Low percentage means stem management of quality has to be per­
formed. Of course, high percentage is desired. In this example, x4 is at low per-

centage (2% )and needed stem quality management, while x2 is at high percentage 

(6.4%) and will tolerate more random variation in length dimension. 

4. Conclusions 

In this paper, the proposed robust design model is embodied in an interactive 
procedure to help designer in finding satisfying solutions from Pareto solutions. 

There are several major advantages of using proposed approach: 
• To assist designer in selecting satisfied solution from candidates of Pareto so­

lution set using even originally ambiguous preference through progres­
sively interactive approach. Reference mechanism is proposed to provide 
designer a benchmark to select efficiently. 

• Asymmetric distributed variables can be dealt with using Fuzzy LR number. 
Instead of normal distribution, Fuzzy LR number shows designer more 
useful information, such as the sensitive tendency of tolerance of variables. 
It is helpful for designer to escape potential sensitive risk and obtain robust 
solution. 

• Proposed approach provides flexibility and guideline for manufacturing by 
maximizing total sum of variations of variables. It is helpful in extending 
the acceptable tolerance range of variables which is too narrow optimized 
by general robust design models. It is also helpful in reducing the potential 
risk to critical accumulated tolerance and harmful collision in service 
caused by over-relaxed tolerance range. 

In this paper, for illustration purpose, a simple pressure vessel design problem 
is introduced. From the results of example, the validity of the proposed method 
has been demonstrated. 
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Abstract. Disaster has often led to many damage points throughout total trans­
portation network. In this paper we deal with the capacity constrained truckload 
transportation problem with a post-crashed point. Our objective is to reconstruct 
an optimal route to minimize the number of truck and vehicle movements after oc­
curring a post-crashed point. We propose a Hybrid-Genetic Algorithm consisting of 
ordinary GA and Sweeping algorithm. A detailed numerical study is conducted and 
its results show the advantages of our proposed algorithm comparing with other 
heuristic. Moreover, we demonstrate the optimal GA-parameters setting using the 
design of experiments for efficiency of our algorithm. 

1 Introduction 

As for the transportation network in the world, many disaster (earthquake, 
storm, accident and others) may always happen, and hampering the transit 
for basic life and economical activities. In this paper, we consider the case 
crashed customer model in the Vehicle Routing Problem (VRP). To promote 
reconstructing effectiveness, well considered reconstruction plan for the road­
network has to be considered. 

First of all, the damage characteristics of road-network are taken into con­
sideration. The reconstruct task for each damage point (crushed customers) 
should be reasonably assigned so as to maximize the reconstruction effective­
ness. The effectiveness of reconstruction can be maximized by minimizing the 
total travelled distance or time. 

Secondly, the schedule model for reconstruction is a combinational opti­
mization problem. In actually, the schedule model is the expansion of work 
assignment model to incorporate the desired object, e.g., minimizing the total 
working time[6,9]. Relative researches by many authors could be easily found, 
for example, the scheduling problem solved by branch and bound method [3, 
5], by genetic algorithm approach [1, 2, 4], etc .. 

Thirdly, this study is far differnt from aforementioned traditional models 
in some aspect: Our problem is the case that customers get damaged by dis­
asters; thus, our problem has more complexity than others. For example, if 
one customer is crashed by disaster, liked all routes will be disappeared. Mar­
ever, the VRP is well-known NP-hard problem. In view of the aforementioned 
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reasolution complexity, the concept of genetic algorithm (GA) is applied in 
this study as to obtain a heuristic solution [6, 16]. Although our problem is 
a well-known combinatorial optimization problem, but a satisfying heuristic 
solution can be more easily and efficiently derived by the recent developted 
GA [15, 25, 26]. 

Fianlly, the A simple road network will be illustrated as a numerial ex­
ample to validate our model. Study show that a satisfying solution can be 
efficiently derived by our modified Hybrid Genetic Algorithm (HGA). Thus, 
this study can be a powerful basis for the case of crashed customers simula­
tion. 

2 The Vehicle Routing Problem; the case of crashed 
customers 

2.1 Classical VRP 

The Vehicle Routing Problem (VRP) was originally proposed by Dantzig 
and Ramser [5] and defined as follows: vehicles with a fixed capacity Q must 
deliver order quantities Qi (i = 1, ... , n) of goods from a single depot (i = 
0) to n customers. Knowing the distance dij between customers i and j 
(i,j = 0, ... , n), the objective of the problem is to minimize the total distance 
travelled by the vehicles in such a way that only one vehicle handles the 
deliveries for a given customer and the total quantity of goods that a single 
vehicle delivers is not larger than Q. 

. . 
• 

• • • 
• 

• • • • • • • • • • :. . ...... • • • • • • \ 
• • • • • • • • • • • • • • • • • • • 

• 
(a) A Vehicle Routing Problem 

Fig. 1. The example of VRP 

• • • • • 
• 

(b) A possible solution 

Fig. 1. gives a graphical representation of a VRP and one possible solution. 
The square (in the middle of Fig 1(a) and (b)) represents the base (where the 
trucks start and finish their tour) and the diamonds represent the sub-routes. 
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Figure 1 (b) shows the tours of the different trucks. It should be observed that, 
in this case, all the customers have been allocated. 

Problem formulation 
Let G = (V; A) be a graph with a set V of vertices and a set A of arcs. We 

have V = OUN, where 0 corresponds to the depot and N = 1, ... ,n is the set 
of customers. For the set of arcs, we have A= ({0} xN)UIU(Nx {0}), where 
I~ N x N is the set of arcs connecting the customers, {0} x N contains the 
arcs from the depot to the customers, and N x {0} contains the arcs from 
the customers to the depot. Every customer i E N has a positive demand 
Qi· For each arc (i,j) E A we have a cost Cii· Furthermore, we assume that 
the vehicles are identical and have the capacity Q. All the above mentioned 
factors are assumed to be known in advance. Thus the model examined is 
deterministic. 

We have the following variables: For each customer i E N, Yi is the load of 
the vehicle when it arrives at the customer. Now the problem is to determine 
which of the arcs (i,j) E A are used by routes. For each arc (i,j) E A, 
the decision variable Xii is equal to 1 if arc ( i, j) is used by a vehicle and 0 
otherwise. Formally 

Minimize E CijXij (1) 
(i,j)EA 

subject to LXij = 1 Vi EN (2) 
jEV 

LXii = 1 Vi EN (3) 
iEV 

Xij = 1 :::} Yi - Qi = Yi V(i,j) E I (4) 

Qi ~ Yi ~ Q ViE V (5) 
Xij E {0, 1} V(i,j) E A (6) 

We minimize the total costs that consist of travel costs and a fixed cost c 
of vehicles (included in the travel cost Co between depot and first customer). 
The object is, firstly minimize the number of routes or vehicles, and then 
the total distance of all routes. By equation (2), (3) and (6), we require that 
every customer be visited exactly once. Equation (4), (5) enforce that the 
loads of the vehicles when arriving at the customers are feasible. 

2.2 VRP with crashed customers 

Basic model structure is similar to classical VRP model. However, this crashed 
customer problem is the special case in the VRP. According to the crash of 
customers in the road-network, the situation varying with time can be con­
sidered. Meanwhile, this crashed customer case can be thought the case that 
customer canceled his order for goods. The example illustrated as below. 
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Fig. 2. Distribution Network in Osaka, Japan 

' . ..• " 
~~~ 

/{\ 
/v 

' . 

J 
Fig. 3. crashed points and pathes Fig. 4. reconstruct new path 

In upper example, Fig.2. is the map of the distribution network in Osaka, 
Japan. The shape of cylinder indicate depot and circle indicate customers. 
In Fig.3., suppose that three customers crashed and crashed simultaneously 
with liked all routes. Reconstruction in the road-network will be dynamically 
updated as the Fig.4.. When we reconstruct new route after crashed, we 
must consider the cost (in this study, the cost is traveled distance). So, we 
re-calculate the new-route, considering the present routes (Method-2). That 
is, calculate the new route from the rest routes. The another method is full 
calculation from the first (Method-1). We will compare these two method in 
numerical examples on the section 4. 

3 A hybrid methodology for Vehicle Routing Problem 

The basic concept behind the hybrid methodology is not to use the GA to 
directly optimize the parameters of the solution, but rather to use the GA 
to optimize the parameters of a simple heuristic problem solving strategy. 
The approach is shown in the following diagram Fig.5. The representation of 
a feasible solution in a chromosome structure may be much more complex 
for the VRP than other problems. In addition to the problem of finding an 
optimal route for each vehicle, there is also the problem of distributing the 
number of visits required by each customer in the planning horizon, while 
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sub-optimal solution 

1 
L--1 _v_RP_--J~I--He-ur-:~-i: S- ol-ve:Yf_ ·--lkl 

0 ~~ I-ITJ [D 

Use initial individual in the GA Genetic Operation 

Fig. 5. Hybrid Genetic Algorithm for VRP 

• Selection 
{Elite Strategy) 

• Crossover 

• Mutation 

Best Solution 

satisfying all the constraints. Meanwhile, GA operator (crossover, mutation) 
make lethal genes in VRP generally. To control lethal gene, we developed a 
HGA with controlling lethal gene[]. 

(1) Gene type 
If we have the following solution: 

Route No. 1 is 0 --> 1 --> 2 --> 0 
Route No. 2 is 0 --> 3 --> 4 --> 5 --> 0 
Route No. 3 is 0 --> 6 --> 7 --> 0 

Route 1 Route 2 

Fig. 6 . Chromosome representation 

(2) Crossover 

Route 3 

To prevent invalid offsprings (lethal genes) from being reproduced, we 
propose an order based crossover operators as below. 

Let H and P2 be the parent strings, P 1 [1], .... , P![n] and P2[1], .... , P2[n], 
respectively. And, let C be the child string. Assuming a minimization prob-
lem, then for all i = 1, ... , n: 

SO Let U[·J = [1, ... , i, i + 1, .. . , n] as set of all customers. 
S 1 Select any customer i in U. 
S2 Pick out subroutes including i from P1 and P2 , respectively. 
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81 [·] : subroute of pl 
82[·] : subroute of P2 

S2-l If 81[·] and 82[·] C U, 
then the one is selected of them with below probabilities. 

Probability to select 81[·] = h/(11 +h) 
Probability to select 82[·] = 11/(11 +h) 

11 and hare the number of times that 81[·], 82[·] are selected 
as subroute of C, respectively. 

S2-2 If 81[·] C U or 82[·] C U, 
then the subset indued in U is used for C as subset. 

S2-3 If 8 1 [·] 1;. U and 8 2 [·] 1;. U, 
then both 81[·] and 82[·] are not selected. 

S2-3-1 Select any customer j in U at random. 
Let 8[·] is subroute of C. 

S2-3-2 8[·] + [j] ---+ Calculate amount of deliveries 
If amount of deliveries of 8 > Q (vehicle capacity), 
then end. 
else 8[·] + [j] then return to 82-3-1. 

S2-3-3 If U becomes a null set, then end. 
S3 Omit 8[·] (decided upper procedure) in U and then, go to Sl 
If U becomes a null set, then end. 

To generate another offspring, the upper procedure performs one more 
time. 

(3) Mutation 
The mutation operator adopted in this paper is as follows : 

SO Select any two customers i, j in the P[·] at random. 
Sl Try swap i for j 

l 
If subroutes including i or j < Q 

l 
then swap i from j 
else not swapping 

end 

4 Numerical Example and Discussions 

As a assumed VRP with crashed customer in Fig. 2. is used to validate our 
HGA. The reconstruct effectiveness for a damage customer depends on the 
number of defeated customer. The results of simulation is shown in Table.l.. 

From result in the table 1., over almost all the problem, Method-2 shows 
better than method-1 almost. Problem 3 and problem 5 are not better than 
initial results. Maybe, it is because of the random property of GA and the 
seisitivity of GA-parameters. However, we can control the parameters by the 
design of experiments method[]. 
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Table 1. Results for various customer sizes 

Before Crash Post-crashed Customers 

Initial Result Method 1 Method 2 

Problem 1 1344.22 1681.984 1699.097 

Problem 2 590.2655 651.8612 713.1203 

Problem 3 460.9023 458.8078 514.5714 

Problem 4 332.513 332.918 395.0115 

Problem 5 249.6133 243.127 284.8044 

Problem 6 199.9878 196.6487 237.6387 

All results are the value of fitness. 

5 Conclusions and Recommendations 

VRP is one of the classic problems associated with TSP, and it has been 
applied in various fields. Since VRP is difficult to solve in real time, heuristic 
methods have been adapted to solve it. We developed an efficient Sweep­
Genetic Algorithm for the special type of VRP and then, we could get good re­
sults from the proposed method. Morever, the design of experiments method 
makes we identify the correlation of GA-parameters (crossover probability 
and mutation probability) and decide adaptable probabilities. Furthermore, 
we compared method-1 with method-2 mentioned on section 2.2 for our prob­
lem using Hybrid-GA. Since GA has Randomize property, it cannot guarantee 
the result in general, but the proposed method HGA could find the optimal 
solution or at least sub-optimal. GA and Hybrid-GA are valid realistic VRP 
as well as the homogeneous VRP. We believe that our method can easily be 
adapted to solve the realistic problem. 
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Abstract. A multi-objective programming approach is presented for evaluating 
agri-environmental policy, in which various management practices are introduced 
to reduce environmental problems caused by, for example, fertilizer and pesticide 
application. Particular attention is paid to environmental impacts of agricultural 
practices. After comparing with an economic approach based on mathematical pro­
gramming, possibility of integrating various kinds of indicators is discussed. Some 
implications of constructing integrated evaluation models are also considered. 

1 Introduction 

Various agricultural systems have been analyzed by mathematical program­
ming. Cropping, fertilizer application, pest and disease control, livestock feed­
ing, and livestock breeding and replacement have been modeled as mathemat­
ical programs [3]. In addition, planning models in which risks are incorporated 
are commonly used in agricultural economics and farm management [4] as 
well as in, for example, finance. The pervasiveness of the programming is re­
flected in the fact that linear programming is taught as an indispensable tool 
for farm management [8]. One of the recent trends in mathematical program­
ming applied to agricultural systems is that the number of applications of 
multi-objective programming (including goal programming) is increasing [5]. 

As the increase in number suggests, considering multiplicity of evaluation 
criteria has become important in analyzing agri-environmental issues. For ex­
ample, as a result of the seriousness of environmental degradation caused by 
intensive farming practices, the trade-offs between agriculture and the envi­
ronment have attracted public attention. A typical example of the environ­
mental problem is water pollution (the nitrate issue) caused by chemical fer­
tilizers and manure. Moreover, introduction of agri-environmental programs 
in, for example, Western Europe has increased public interest in the evalua­
tion of the program and thus necessitated the discussion on how to construct 
a variety of criteria for the evaluation. There are, however, difficulties in cop­
ing with multiple objectives in the agri-environmental problems, because the 
problems are related to a wide range of phenomena and the problems have 
complicated cause-effect relationships. 

In this paper, therefore, we review the appropriateness of a multi-objective 
programming approach to the evaluation of agri-environmental policy by 
comparing with an economic approach based on mathematical programming 
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and by constructing a conceptual model for environmental impacts of agri­
cultural practices. 

2 Mathematical Programming Approach to 
Agri-Environmental Problems 

In this section, the main feature of a multi-objective programming approach 
is outlined through the comparison with an economic usage of mathematical 
programming in the area of agricultural economics. Then some issues we face 
in modeling agri-environmental problems are presented. 

The mathematical programming approach based on micro economics is 
positive mathematical programming (PMP), which is developed by Howitt [7]. 
The model has a non-linear (quadratic) function instead of a linear objec­
tive function and has a capacity to overcome the calibration problem, the 
difficulty of programming models in calibrating against a base year or an 
average over several years. This approach has been applied to the evaluation 
of agri-environmental policies [12]. 

As contrasted with the approach, the fundamental characteristic of a 
multi-objective approach to agri-environmental problems is explicit modeling 
of multiple objectives. That is, trade-offs between agricultural production and 
the environment are articulated in modeling. For example, Lakshminarayan 
et al. [9] applied a multi-objective approach to watershed-level cropping deci­
sions. In addition to an economic objective (profit), soil loss, nitrate-N leach­
ing, and Atrazine leaching, which were estimated by a physical simulation 
model (EPIC; Erosion Productivity Impact Calculator), were used as envi­
ronmental objectives. Falconer and Hodge [1] used a planning model in which 
maximization of profit and minimization of a hazard score can be considered 
as objectives, although they did not explicitly formulate the model as a two­
objective program. The impacts of pesticide taxation were analyzed by the 
model. 

Because of the development of the methodology such as aspiration level 
approaches, which can cope with the situation where many objectives have 
to be included in the model, this direction of modeling will be useful for 
solving real-world problems. For example, such kind of methodology has been 
applied to land use planning using GIS [2], in which many objectives such as 
maximization of food output, maximization of net revenue, and minimization 
of erosion are included. 

In agri-environmental problems, however, we have to confront the follow­
ing issues. (1) Although maximum admissible concentrations of, for example, 
nitrate-N in drinking water are defined in regulations, it is still preferable 
to reduce the level of contamination because there is uncertainty about the 
impacts of nitrate on human health. (2) The trade-offs between economic 
returns and the levels of nitrate-N in groundwater may be difficult to under-
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stand for most decision makers as compared with, for example, the trade-offs 
between a salary and a vacation in a job decision. 

Thus, in the next section an integration of agri-environmental indicators, 
which can be recognized as raw data in many cases, is illustrated as an alter­
native way of evaluation. In addition, appropriateness of criteria for evaluat­
ing agri-environmental issues is discussed with considering understandability 
of criteria. 

3 Possibility of Integrated Evaluation 

In this section, conceptual modeling is utilized to illustrate environmental 
impacts of agricultural practices. Conceptual models have been used in, 
for example, ecological risk assessments and serve the following three pur­
poses [14,13]: (1) to help understand the situation being assessed and to 
make explicit assumptions concerning the situation; (2) to provide a commu­
nication tool between risk managers and stakeholders; (3) to provide a basis 
for organizing and conducting risk assessment. 

Concept mapping is utilized in this study to clarify the following difficul­
ties in constructing integrated evaluation models for environmental impacts 
of agricultural practices, although visual representation techniques such as 
flow charts have been used in conceptual modeling applied to ecological risk 
assessments. The first difficulty is related to the way of understanding the di­
verse environmental impacts of agricultural practices. As OECD [10] shows, 
environmental impacts of agriculture cover a wide range of aspects such as 
soil and water quality, biodiversity, and landscape. The second is how to rec­
ognize complicated cause-effect relationships. In assessing environmental im­
pacts of agricultural practices long-term effects have to be taken into account 
in addition to short-term effects. Moreover, macro (global) effects have to be 
depicted in addition to micro (local) effects. For example, the emission of 
C02 from a specific area is a global problem from the outset, whereas nitrate 
concentrations in groundwater is a local problem that has global impacts as 
cumulative local problems. Concept mapping will be useful in considering 
these points. 

Although the concept map constructed in the study [6] contains many 
agricultural practices, many indicators (intermediate variables), and risk con­
cepts, only the impacts of fertilizer application are illustrated in Fig. 1. The 
impacts are related to the earth system such as climate change and ozone 
layer depletion, to ecosystems such as vegetation change and eutrophication, 
and to air and water quality. These impacts of agricultural practices are made 
through the nitrogen and carbon cycles in the atmosphere, soil, and water. 
The crucial point in this figure is that the impacts can be integrated into 
risk concepts. Ecological and human health risks are used in the modeling. 
Minimizing these risks can be considered as dual goals of laws and regulations 
that use risk assessment to inform decision making [11]. 
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One of the important implications of the conceptual model is that it 
illustrates explicitly two kinds of modeling as shown in Table 1. That is, 
in Type A many indicators (intermediate variables) are used as evaluation 
criteria, whereas in Type B risk concepts are used and therefore a risk-benefit 
framework can be applicable. 

Table 1. Examples of objectives used in two types of multi-objective models 

Type A 

(Max.) Economic return 

(Min.) N20 

(Min.) NOx 

(Min.) NH3 

(Min.) N03 

(Min.) CH4 

(Min.) C02 

TypeB 

(Max.) Economic return 

(Min.) Health risks 

(Min.) Ecological risks 

Since our primary concern is to make a conceptual model for environmen­
tal impacts of agricultural practices in order to think about the possibility 
of a multi-objective programming approach, although conceptual models can 
provide a basis for quantitative models, some theoretical considerations are 
given in the next section. 

4 Concluding Remarks 

A multi-objective programming approach based on Type B in Table 1 will 
help decision makers understand the meaning of trade-offs between evaluation 
criteria by relying on risk concepts using life-years such as disability adjusted 
life years (DALY) as well as on economic performance and thus it has the 
potential to be used in actual policy making processes, although numerical 
evaluation of risks may not be straightforward and expert knowledge may be 
necessary for estimating the numerical values. In interpreting properly the 
results obtained from the multi-objective approach, tripartition of methodol­
ogy (normative, descriptive, and prescriptive) will be helpful, because the ap­
proach can be considered as a kind of decision analysis. This makes a striking 
contrast with the case of economic analysis, in which bipartition (normative 
and positive) is common. An implication of the difference in methodology for 
the evaluation of agri-environmental policy is that the meaning of calibration 
in the multi-objective approach becomes different from the case of calibration 
methods in economic analysis using mathematical programming because of 
the introduction of preference information into the model. 
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Abstract 

The aim of this paper is to establish an application to review and control the ship­
ping performance of build-to-order (BTO) product in semiconductor wafer manu­
facturing. The final goals are to avoid shortage of each order released from wafer 
bank to fulfill the finished goods requirement and minimize the overage quantity 
that will induce the high inventory. We apply the statistical method in wafer sort 
yield prediction via history data. Base on this, we can model 
The overage and shortage quantity with the influential variables, namely order 
size, yield variability, uncertain demand and customer acceptance criterion. The 
model also allows estimating the expected overage as the review criterion between 
manufacturing unit and sales unit. 
Keywords: BTO, Shortage, Overage, Yield Distribution 

1.1ntroduction 

The core competency of semiconductor manufacturing is composed by the high 
yield, the short manufacture leading time and the low unit cost. There are two 
planning strategies for product production. One is the build-to-stock (BTS) or 
make-to-stock (MTS). The other is the build-to-order (BTO) or make-to-order 
(MTO) [1]. The BTS strategy is to produce the finish product according to the 
production plan. The BTO strategy is to produce the finish good until receiving 
the order from customers. 

The unit during the process in semiconductor wafer manufactory is the wafer. 
Several wafers will be grouped into a lot during the process. But the order taken 
from customer is counted via dies for BTO product. So the order quantity in die 
must be changed into equivalent wafers before manufacturing. The equivalent wa­
fers can be transferred by gross die, yield and order quantity in formula (I). 
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R I d W fi OrderQuantitybyDie e ease a ers = __ _;:;_---,--''--,'...,.--:--
Gross Die * Yield 

(l) 

The yield in the formula ( l) includes manufacturing line yield, circuit probe 
(CP) yield, assembly yield and final test yield. The CP yield has the largest varia­
tion than the others . So we will only focus on the impact from CP yield in this pa­
per. 

..BIS 

Fig. 1. Semiconductor Manufacturing Process with BTO and BTS strategy 

The result of each delivered order is either shortage or overage. It depends on 
the difference of forecasted yield (Yp) and the actual yield (YA). If YA is less than 
Yp, then the order will be shortage. Otherwise, it will be overage. For guarantee 
the order on time and on quantity to deliver to customer, the wafer manufactory 
would rather produce the overage quantity to avoid shortage. But the problem of 
the overage quantity is usually ignored since there is no direct pressure from the 
customer. The high overage quantity will induce the high inventory. This kind of 
inventory usually is the dead inventory and induces the lost in finance if no re­
peated order entry in the future. 

The BTO product in other industry, such as computer or the main board assem­
bly, has defined the fixed discount rate between the wafer manufactory and cus­
tomer. The major inventory of these industries is come from the uncertainty de­
mand quantity which is caused by the customer committed quantity and the order 
entry time [2-7]. But for the semiconductor manufacturing, the characteristic of 
BTO product is that the wafer, in terminate part, will be divided into hundreds of 
final product (die). The change rate is depended on the actual yield, which is a 
random variable with statistical distribution. So, the inventory of this kind of 
product is caused by the combination of uncertain supply and the uncertain de­
mand. 

The aim of this paper is to develop a yield forecast model. With this model, we 
can develop the application to avoid shortage of each order released from wafer 
bank to fulfill the order and minimize the overage quantity. 
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2. The Yield Forecast Model 

There are two methods to forecast the CP yield in semiconductor manufacturing. 
One is calculated from the defect data, which is collected during manufacturing 
[8]. The other is to apply statistical method to the yield distribution. In this paper, 
we will focus on the distribution model. There are two assunptions to ~ply in 
this model. The first is the yield of lot is a random variable from normal distribu­
tion with mean ( f..l) and standard deviation (s ). The second assumption is each 
lot assigned to manufacture is of full si:re with 25 wafers. The number of lot for 
each order can be derived from the requested wafer via the second assumption. 

According to the central limit theorem [9], we can derive the yield distribution 
of order from the yield distribution by lot and the released lot quantity. The mean 
of yield distribution by order will not change from the different order size by lot, 
but the variance will change with the number of lot. 

To guarantee the on time delivery rate and reduce the shortage by order, the 
yield must be forecasted lower than f..l -k*s , where k can be adjusted by the cus­
tomer grade level. The customer grade level is depended on the priority of order 
and the importance of customer. For example, the manufactory can divide the cus­
tomers into 3 grades: N, A and B. The on time delivery rate can be defined as 
95%, 85% and 66%, respectively. The corresponding k is 1.645, 1.035 and 0.385, 
which can be got from normal distribution table. The overage of order can be de­
fined as formula (2): 

Overage(YA)= W * GSD* (YA -Yp) 

where 
W :the number of wafers released to manufactur e 
GSD :the gross die of product 

(2) 

We can assume the YA comes from the normal distribution then derive the ex­
pected overage from formula (3). The result shows that the factors impacted the 
overage is the released lot quantity of order, the standard deviation of product 
yield, the tolerance of on time delivery rate of the customer grade and the gross 
die of product. We can also define the performance metrics of overage, 00 ratio, by 
formula (4). This index, 00 ratio, can indicate the performance of each order or by 
product. 
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E(Overage) = I'Overage(YA )f(YA)dY Jy; 

l [ k 2 
1 -(-) 

=W*GSD* s * --*e 2 +k*f 
.fiP 

=W*GSD*s * f(k) 

where 

Yp =Jl-k*s 

k= (J.t-Yp) 
s 

rp: the standard normal probability desnityfuntion 

f(k) :the function related to order size 

00 ratio Overage Quantityby Die *l OO% 
OrderQantityby Die 

3. Computational Simulation 

(3) 

(4) 

The overage model and performance metric can be verified by computational 
simulation. The conditions of the simulation are: the wstomer grade is N grade 
with acceptance delivery level 95% and the order size is one lot with 25 wafers. 
We change the yield distributions with different mean and standard deviation. The 
result is as Table (1). From Table (1), we can find that the forecasted yield (Yp) 
must be forecasted lower to meet the acceptance delivery level if the standard de­
viation (std) is large. But it will be suffered the increasing of overage quantity and 
higher the 00 ratio. 

Table 1. The simulation Result (l) 

Mean std Yp OOratio 

0.8 0.02 0.7671 4.3% 

0.8 0.05 0.7178 11.6% 

0.8 0.1 0.6355 26.2% 

0.7 0.05 0.6178 13.5% 

0.8 0.05 0.7178 11.6% 

0.9 0.05 0.8178 10.2% 
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We can apply another simulation to check the impact of order size to overage. 
We use the same conditions of simulation oflast simulation and fix the yield mean 
to 0.8. We change the order size from l lot to 10 lots and change the standard de­
viation. The final result is as Fig. 2. We can find that the 00 ratio will be small if 
the order size is large .. For example, if we want to control 00 ratio under 5%, 
then the required order size for Product B needs release 6 lots and for Product C 
needs l 0 lots. Since the standard deviation of Product D is large, it is hard to con­
trol the 00 ratio under 5%. This means the standard deviation of yield is the key 
factor for overage control. 

Fig. 2. The simulation result (2) 

4. An Empirical Case and the Application 

The data of this empirical case is come from a semiconductor company located in 
Taiwan. There are several products in this company. We can examine the actual 
00 ratio with the order size and standard deviation in Table 2. The result is con­
sistent with the result of simulation. There are several applications in the system to 
assist the production control engineers to control the inventory and cost (Fig. 3). 

Table 2.: An Empirical Case of the Overage Model 

Tech Prod Mean Std Actual 00 ratio 

N A 8 

M25 A 94.36 1.12 1.5% 1.5% 0.7% 

8 91 .09 2.35 4.7% 2.6% 1.8% 
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c 88.37 3.46 6.6% 4.3% 2.5% 

D 86.11 3.44 7.7% 4.2% 2.3% 

E 85.29 3.21 6.7% 4.3% 2.4% 

F 83.21 5.97 14.1% 8.7% 4.5% 

G 81 .07 3.03 6.7% 4.3% 2.3% 

H 79.80 5.25 12.0% 7.8% 4.5% 

72.57 7.30 19.2% 12.5% 6.2% 

5. Conclusion and Future Work 

In this paper, we define the expected overage is function of the order size and 
customer grade. We also distinguish the overage amount by the manufacturing and 
non-manufacturing factors.From the model, we can conclude the standard 
deviation is the key factor for the overage of BTO product. The product with 
unstable yield (large standard deviation) will increase the overage quantity and 
00 ratio when the order s2e is small. At last ,The empirical yield distribution is 
always skew with lorng tail in the real environment..This violates the assumption 
of normal distribution We can enhance the methodology by changing from normal 
to skew distribution in the future. 

Prod: AAAA Total lot oount= 60 

0 1 N1 2 Al 3 81 4 81 6 st<l 

1 1 0. 015278 0.015278 0. 006899 0 . 0 06899 94 . 3607111 1. 115779 
2 2 0.014777 0 . 005611 0 . 005611 0 . 005611 94 . 360718 o. 788975 
3 3 0.014675 0.005070 0.005070 0 . 005070 94 . 3607111 0. 644195 
4 4 0. 014646 0.004765 0 . 004765 0 . 0 04765 94 . 3607111 0 . 557889 
5 5 0 . 0 04567 o . 004567 o . 004567 0 . 004567 94 . 360718 0 . 498992 
6 II 0.0042411 0 . 0042411 0 . 0042411 0 . 0042411 94 . 3607111 0.3944117 
7 10 0 . 004137 0 . 004137 0 . 004137 0 . 004137 94 . 360718 o. 352840 
8 15 0 . 0 03992 0.003992 0 . 0 0 3992 0 . 0 03992 94 . 360718 0 . 288093 
9 20 0.003925 0.003925 0 . 003925 0 . 003925 94 . 360718 0 . 249496 

10 30 0. 003871 0.003871 0.003871 0.003871 94 . 360718 0. 203712 F[I] 0 Lots 1 N 2 A 3 D 4 s 
r --------------------------.. 1 1 93 93 94 94 
q 

::::: ~~?(~935,0. 0275) 2 2 93 94 94 94 
u 3 3 93 94 94 94 .. 4 4 93 94 94 94 
D 5 5 94 94 94 94 
<: 6 8 94 94 94 94 
y ' 7 10 94 94 94 94 

.• •.• 1.. 8 15 94 94 94 94 
9 20 94 94 94 94 

10 30 94 94 94 94 

Fig. 3. The output of the order release system to estimate the expected overage 
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Abstract 

In this pape~; to reach safe driving, a new method is proposed to acquire project 
schedules by competence set expansion for developing intelligent transportation systems 
(ITSS), that can promote security, efficiency and comfort for drivers. Since for each 
decision problem, there is a competence set consisting of ideas, knowledge, information, 
and skills needed to solve that problem, this paper treats ITSS as the needed competence 
set to attain the goal of safe driving. Schedules can be further obtained by using a known 
method proposed by Li (1999) for expanding competence sets. An empirical study is 
utilized to demonstrate the usefulness of the proposed method. 
Keywords: Competence set; Scheduling; Intelligent transportation systems; Integer 
programming. 

1. Introduction 
Intelligent transportation systems (ITS) aim to provide improvements to the efficiency 

and safety of transportation systems by applying new information and communication 
technologies (Berbineau, 1999). ITS can also provide real-time information to help 
drivers or travelers avoid possible traffic problems, such as traffic congestion. With the 
growing awareness of the potential importance of ITS, the governments of many country 
have paid more attention on the development and the academic studies on ITS. 

Several kinds of necessary information can be provided to drivers while they are 
driving, such as rescue services or emergency services ~guchi, 2002). However, the 
traffic information services should be primarily aimed for safe driving (Iguchi, 2002). In 
the statistical data reported by the US Department of Transportation Federal Highway 
Administration (1998, 1999), it can be found that the effects of intelligent transportation 
security systems (ITSS) on the traffic transportation were significant. For reaching the 
goal of safe driving, the acquisition of schedules in the project with respect to the 
development of ITSS is significant. ITSS project can be divided into a number of 
activities for developing security information subsystems. However, it is possible that 
the exact order among the activities is not easily determined. 

Competence sets were initiated by Yu (1990). Its mathematical foundations were 
further established by Yu and Zhang (1990). It is considered that fir each decision 
problem there exists a competence set consisting of ideas, knowledge, information, and 
skills for solving that problem When decision makers have acquired the needed 
competence set and are proficient in it, they will be comfortable and confident in making 
decisions (Li, Chiang, & Yu, 2000). In order to acquire a needed competence set to make 
a decision, finding appropriate learning sequences to acquire single skills needed for 
decision makers, the so-called competence set expansion, is necessary. From these 
viewpoints, it is reasonable that we treat a set of undeveloped subsystems in ITSS as a 
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needed competence set for attaining the goal of safe driving. If each subsystem is further 
treated as a needed skill, then the competence set expansion can serve as a scheduling 
plan for undeveloped subsystems. 

On the other hand, it is also known that earning directly from one skill to another 
skill requires learning cost Generally speaking, the stronger the relationship that exists 
between two skills, the smaller is the learning cost between these two skills (Hu, Chen, 
Tzeng, & Chiu, 2002). We thus propose a relationship-based method based on the grey 
relational analysis (Deng, 1982) to determine learning costs. To effectively facilitate the 
promotion of ITSS, the main aim of this paper is to provide a new method that can 
acquire the appropriate schedules of undeveloped subsystems through the proposed 
relationship -based method and a known integer programming method proposed by Li 
(1999) for effectively expanding the competence set. 

The rest of this paper is organized as follows. At first, we introduce the concepts of 
the competence set expansion in Section 2. A relationship-based method used for 
determining the learning costs is proposed in Section 3. Section 4 briefly describes the 
Li's integer programming method. A real case for demonstrating the feasibility of 
facilitating the development of several ITSS subsystems is demonstrated in Section 5. 
We end this paper with conclusions in Section 6. 

Fig 1. Competence set expansion. 

2. Competence Set Expansion 
For each decision problem£, there is a competence set, denoted by CS(E), consisting 

of ideas, knowledge, information, and skills for successfully solving that problem In 
addition, there exists a skill set denoted by Sk(E) that has been acquired by decision 
makers, and a truly needed competence set denoted by Tr(E). Decision makers must 
acquire Tr(E)\Sk(E) from the existing competence set (i.e., Sk(E)) through the 
competence set expansion to resolve E. 

A competence set expansion represents the way to find an effective way to generate 
learning sequences by acquiring the skills which are truly needed so that Tr(E)\Sk(E) can 
be obtained (Feng & Yu, 1998). We depict the concept of the competence set expansion 
in Fig. 1, where the shaded area containing no any lines is Tr(E)\Sk(E). When decision 
makers have not acquired Tr(E)\Sk(E), it is more difficult for them to make decisions. In 
this paper, for simplicity we assume that Sk(E) is an empty set. 

We consider that if the relationship that exists between two single skills, say ft and.f:i, 
is much stronger than that between another two skills, say fz and Ji, then it is more 
practical to acquire .f:i from ft instead of from fz. We further interpret the learning cost, 
say c(ji,jj), to be promotion cost for acquiringh from.fi. In fact, it seems to be impossible 
to exactly measure learning costs in advance using either money or time. 
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3. A Relationship-Based Method 
A relationship-based method based on the grey relational analysis is proposed for 

finding learning costs. Actually, here exist distinct relationships between any two 
subsystems in the real world (Deng, 1982). Grey theory, as proposed by Deng (1982), 
can perform grey relational analysis for these subsystems by dealing with finite and 
incomplete output data series obtained from these subsystems (Huang & Huang, 1997). 

We treat each ITSS subsystem as a needed skill J;,, and its finite output data series is 

(j , f , ... , f ) where f (0 :5: f :5: 1) is the part-worth ofthe i-th P1 P2 P, P; P; 
criterion with respect to J;,. That is, we assume that each subsystem can be evaluated by n 
various criteria. Then, the grey relations can be employed to find the learning cost 

between any two skills. Generally speaking, the larger the grey relation that exists 

between two skills, say J;, and/;, the smaller is learning cost between!;, and/;. 

Given one reference sequence, say the p-th single skill J;, ( 1 :5: p :5: K, where K is the 

number of single skills), and some comparative sequences, say the i-th single skill/; ( 1 :5: 

i :5: K), we can easily obtain the grey relation between J;, and .li by viewing!;, as a desired 

goal. Formally, given the reference sequence J;, and the comparative sequences .li with the 

normalized form, the grey relational coefficient (GRC) ~( f , f. ) between f 
P; lj P; 

and Ji; (1 :5:}:5: n) can be computed as Eq. (!)(Huang & Huang, 1997; Hsu & Chen, 

2000). 
A · +pA 

fJ. J. ' J ) = Lvmn LVnax (I) 
,, P; &i+P&nax 

where p is the discriminative coefficient (0 :5: p :5: 1), and usually p = 0.5 (Hsu & Chen, 
2000). Moreover, 

6min = minmin 1/. -J.I,l:5:i:5:K,l:5:j:5:n (2) 
I J P, ., 

6max = maxmax If -f. I, 1 :5:i :5:K, 1 :5:j:5:n (3) 
i j P; '.1 

6ij=lfPj -f;) (4) 

where f I denotes the absolute value. Clearly, fJ. f. , f ) is between zero and one. 
lj P; 

Then, the grey relational grade (GRG) denoted by J(ji,J;,) can be computed as Eq. (5). 
1 n 

n.ti,J;,)= -I fJ.!i, fp) (5) 
nJ=I .1 ; 

Thus holds 0:5: rr}i,J;,) :5: 1, and the larger the value of rr}i,J;,), the closer the relationship 
is between!;, and/;. The learning cost for directly learningJ;,from/;, denoted by c(fi,J;,), 
is heuristically computed as Eq. (6). 

c(fi, J;,) = 1 - Y(fi, J;,), 1 :5: i, p :5: K (6) 
It is clear that 0 :5: c(Ji,J;,) :5: 1 also holds here. Eq. (6) indicates the relationship between 
the learning cost (i.e., c(fi,/p)) and the grade of relationship (i.e., Y(fi,/p)). A learning cost 
table can be thus built. As we have mentioned above, it is also reasonable that c(fi,J;,) is 
interpreted as the costfor directly promoting!;, from/;. It is noted that c(t;,,J;,) ( 1 :5:p :<;;K) 
does not exist. 
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4. Generate Learning Sequences 
Below, we briefly describe a useful integer programming method proposed by Li 

(1999), which is used to effectively generate learning sequences with minimum learning 
cost. In fact, a competence set expansion can also be roughly regarded as a spanning tree 
construction process (Feng & Yu, 1998). Moreover, the arc in the tree is directed. 
Additionally, all nodes representing single skills must take part in the generation of the 
final learning sequence. 

Actually, all skills construct a digraph G consisting of subgraphs S and T, and each 
skill corresponds to a node. S consists of skills in Sk(E), and T consists of skills in 
Tr(E)\Sk(E). The learning sequences are generated for Tr(E)\Sk(E) starting from Sk(E). 
For G, several definitions must be given. First, define f4(i)l and IB(i)l as the numbers of 
nodes immediately before node i and immediately after node i, respectively. In addition, 
define ui for node i as ui = I if node i takes part in the generation of the learning sequence; 
otherwise ui = 0. Also, define v(i,J) for the arc connecting node ito node j as v(i,j) = I if 
v(i,j) is one path ofthe learning sequence; otherwise v(i,J) = 0. Let V(S) and V(1) be sets 
of nodes of SandT, respectively, then both ui and v(i,J) are 0-l variables that satisfy the 
following properties: 

a. ui = I, for each i E V(S) or i corresponding to a single skill in T (7) 

b.f4(i)l Ui~ _Lv(i,j), ifi E V(S) (8) 
jEA(i) 

c. ui :<:; L v(j, i) , if i E V(T) and i is not a compound node (9) 
jEB(i) 

d. (IA(i)l + fJ(i)l) ui?. L v(j,i) + L v(i,j), if i E V(T) (10) 
jEB(i) jEA(i) 

In addition, let A; be the sequence number of node i in the learning sequence; then the 
following relations hold: 

a. A;=O, ifi E V(S) (ll) 

b.A;-}y+Kv(i,J):<;;K-1 (12) 
c.ui:<;;A;:<;;Kui (13) 

where A; is an integer variable. Eqs. (7)-(10) find those arcs which can be contained in 
the learning sequence, and Eqs. (11)-(13) find the sequence number of each node in the 
learning sequence. The more details on the above-mentioned properties can be found in 
(Li, 1999). 

Since Sk(E) is assumed to be an empty set, several revisions of the Li's method must 
be made. LetS consist of a virtual node labeled by O(i.e., V(S) = {0}). Furthermore, the 

virtual node (i.e., node 0) is directly linked to each node i by a directed arc with learning 
cost being equal to zero, where node i E T. Our purpose is to find the starting node 
labeled by nbT) (i.e., nfl E V(1)) immediately after node 0 in the learning sequence. 

If nodes it. i2, ••• , iK represent single skills fi, Jz, ... , JK, respectively, then the following 
relation holds: 

K 

.Lv(O,ij) =I (14) 
j=l 

An integer program can be further formulated by combining Eqs. (7)-(14) and giving an 

object function as follows: 

Minimize cost(G) = _Lc(i,j)·v(i,j) (15) 
r(i,j)EE 
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where E is the set of arcs of G. That is, the objective is to find a spanning tree with 
minimum learning cost in G (i.e., minimum spanning tree). 

5. Empirical Results 
The development of i>urteen undeveloped subsystems in ITSS, as suggested in the 

technical reports of the Taiwan Ministry of Transportation and Communications (1998, 
1999), and from opinions ofiTS project managers in the official or academic institutions, 
such as the Institute of Transportation of the Taiwan Ministry of Transportation and 
Communications, are considered in this section. These subsystems should be completed 
in the near future. 

The basic functions of the undeveloped subsystems include information on weather 
and on road status, intelligent navigation, status examination of the vehicle, with 
warning for hazards {14), warning for the dangerous status of the vehicle, warning for the 
driver's physical conditions and abnormal operations (/(,), assistance in driving (f7), 
automatic extinguishing fire (fs), air bags g9), the notification of an accident (li0), 

absorption of collision and deceleration speed of the vehicle (fi 1), recording of driving 
status {liz), automatic reliefoflocked status (/i3), and intelligent tires {fi4). 

Additionally, seventeen criteria with equal weight (i.e., 1117) are used to evaluate 
each subsystem, including easy use or contro~ easy maintenance of equipments (c2), and 
high protection (c3), and so on. The part-worth of each criterion's level is obtained using 
the questionnaire asking decision makers to pick a statement that best describes the 
given criterion's level (Yoon & Hwang, 1995). Actually, each criterion is evaluated on a 
five-point scale. That is, 'very insignificant' is evaluated with part-worth l and 
'insignificant' with part-worth 2, and so on. Considering response quality, the 10 
professional respondents were chosen from ITS project managers in the government or 
academic institutions. The learning cost table can be thus obtained by Eqs. (5) and (6), 
and is omitted for simplicity. 

Let fi be the i-th node ( l ::;; i ::;; 14) in G. Then, a mathematical integer program to find 
a learning sequence with minimum learning cost can be formulated by Li' s method. The 
detailed program is omitted for simplicity. Then solve this mathematical program by the 
LINGO package to obtain the optimal solution. The sequence depicted in Fig. 2 serves as 
a scheduling plan to develop the subsystems, providing relative orders of construction or 
promotion of these subsystems are obtained. In addition, the scheduling of the fourteen 
subsystems ofiTSS is also easily described. For example, we can see that.f2 is suggested 
for decision makers to construct first among the fourteen subsystems. Subsequently, ./4 
andft 1 can be developed simultaneously when.fs has been constructed. 

6. Conclusions 
A new method is proposed to acquire appropriate schedules for undeveloped 

subsystems through two primary steps: one, to find learning costs between any two 
subsystems in ITSS by using the proposed relationship-based method derived from grey 
relational analysis; and the othe~; to generate a schedule with the minimum learning or 
promotion cost. The main characteristic of the proposed method is to pertinently treat a 
set of undeveloped subsystems in ITSS as a needed COJilletence set for attaining the goal 
of safe driving. Additionally, it seems that the proposed method can be utilized to 
evaluate the development order of other types of information systems. 
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Fig. 2. Scheduling in ITSS. 
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Abstract. This study used Data Envelopment Analysis (DEA) to examine the 
relative managerial efficiency for evaluating current-period and cross-period effi­
ciency of 38 technological institutes upgraded from junior colleges in Taiwan in 
1998. In addition, the managerial efficiency variations of each individual institute 
in between 1995 and 1998 were also determined. The study results show that the 
operational category is significant among primary analysis variants, in other 
words, private schools perform significantly better than public schools in terms of 
managerial efficiency. Furthermore, school size is significant, with schools having 
more than 201 classes achieving higher managerial efficiency. However, geo­
graphical location is not significant. This study also verified that integration of the 
results of both relative managerial efficiency analysis and managerial efficiency 
variation analysis could be a powerful approach to help design managerial 
strategies that are both appropriate and feasible. 
Keywords: data envelopment analysis (DEA), managerial efficiency, perform­
ance evaluation, technological institute 

1. Introduction 

Most of those previous studies evaluating higher education quality employed 
holistic performance indices, which had a significant weakness in that very few of 
them considered the weighting distribution for each criteria performance (Higgins, 
1989). Bates (1997) employed Data Envelopment Analysis (DEA) technique to 
study the relative efficiency ofthe Great Britain education enterprise from a socio­
economic aspect. In their study on the evaluation of school managerial efficiency 
and curriculum planning, Bessent et al. (1983) employed the DEA technique and 
suggested some input and output weightings. Kao ( 1994) used the Pareto Optima 1-
ity theory to survey the performance ofTaiwan'sjunior colleges and to sort their 
grade rankings, yielding outcomes that met those of the official study by the Edu­
cation Ministry of Taiwan. As compared to conventional evaluation approaches, it 
is possible for the DEA technique to produce more reasonable and accurate out­
comes, and some studies have supported this conclusion, such as Charnes et al. 
(1981) and Ahnet al. (1989). In the published studies, to administer a school per-
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formance evaluation, researchers commonly employed field visits, although they 
did not consider the individual differences of those schools struggling to be up­
graded from junior colleges. This researcher proposes that a critical study should 
examine the differentiations among governing variables, such as geographic envi­
ronment, educational resources, developmental potentials, and school size. This 
specific concern is the goal of this paper. In an attempt to specify strategies that 
are more reasonable and feasible for increasing school efficiencies, there is a need 
for a new evaluation model that is more careful and objective as well as designing 
related administration process. This model should assess the reasonability of both 
resource inputs and outputs, and provide decision makers sufficient information to 
formulate more appropriate educational plans. Therefore, this study measured the 
managerial efficiencies of 38 of Taiwan's technological institutes, examing the ef­
ficiency of inputs and outputs. First evaluation indices are constructed by means 
of group brainstorming, literature investigation, and interviews with experts. 
Then, the relative managerial efficiencies of each individual target institute for the 
year 1998 were evaluated, as were the managerial efficiency variations between 
1995 and 1998, by employing the cross-period DEA approach. Study results are 
listed as the following: (I) outcomes of relative efficiency show significant differ­
ences in which school managerial categories and school size; (2) there are not sig­
nificant differences due to geographic location of schools. Analysis results of 
cross-period efficiency variations show that both Malmquist productivity indices 
and technical change (TC) are declining, and that technical efficiency change (EC) 
is increasing. This study should provide site management with some improvement 
directions and governing indices fur both operational management and resource 
application, and also provide educational officials and experts with a appropriate 
evaluation system. 

The remainder of this paper is organized as follows. Section 2 explains the s e­
lection of input and output variables; the section 3 states the static and dynamic 
evaluations of the DEA approach; section 4 includes the empirical analysis andre­
lated discussions; and the last section provides discussion and recommendations. 

2. The Selection of School Objects and Variables for 
Performance Evaluation 

This study use the DEA technique to measure school efficiency. Original data 
come from both input and output data of each decision making unit (DMU) of 38 
technological institutes . Determining the relationship between organizational goals 
as well as both input and output is the goal of this study. 

2.1 Research samples 

This study procedure was two-stepwise: firstly, the researchers collected reach­
able data of these 38 technological institutes for empirical study, then administer­
ing a series of efficiency evaluations; secondly, the researchers analyzed the cross­
period efficiency variation of these technological institutes between 1995 and 
1998. 
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2.2 Selection of both Input and Output Indices 

Those suggested indices of both input and output, collected from related stud­
ies, are listed as the following: educational resources as well as the quality of fac­
ulty and students (Wang, 1993 & 1995); the unit cost per student (Power, 1989; 
Chang, 1995); the number of full-time faculty (Hufner, 1987; Chang, 1995); fac­
ulty-to-student ratio (Hufner, 1987; Power, 1989); general affairs and managerial 
expenditures (Ahn et al., 1989); and the expenditures of constant properties (Ahn 
et al., 1989). The suggested output indices include: the achievement of instruction, 
research, and service (Chang, 1995); the case numbers and budgets of contracted 
projects (Hufner, 1987; Ahnet al, I989); as well as the number of graduates (In­
bar, 1988). The input and output indices of this study came from the synthesis of 
those suggested in the related studies above, and from the concerns of the feasibil­
ity in practical administration and data collection. These input variables have four 
dimensions: physical resources, human resources, hardware resources, and infor­
mation resources. The five input indices include: building area, numbers of assis­
tant professors and higher, annual expenditures, size of library collection, and 
numbers of periodicals. Output variables are three dimensional, teaching effi­
ciency, practical research efficiency, and service efficiency. The output indices 
are: the number of graduates, research expenditures, and incomes from both 
school-industry-collaboration and continuing education. 

3. Building the Performance Model 

This study employs the DEA technique, presented by Chames et al. (I978), to 
do an analysis of the same kind. 

3.1 Classical Radial Efficiency Measure 

According to the CCR model, presented by Chames, et al. (1978): 
s 

LUrYra 
Max h0 = r~ (I) 

L V;X;a 
i=l 

subject to: 
s 
LUrYrk 

.:.;r=:::.l.__ __ ~ I, k = I,2, · · ·, n 
m 

LV;X;k 
i=l 

O<e~u,,O<e~ lf• i=I,-··,m, r=I,-··,s 

where xik stands for the i1h input value of the k!h DMU; yrk stands for the 

r1h output value of the k!h DMU; u, and v; stand for the weight of the r1h output 



356 11 -Chen Liu, Chuan Lee and Gwo-Hshiung Tzen 

and i'h input respectively, e is a non-archimedean quantity which is usually given 
a small possitive value, for instance 1 o-s ; ha is relative efficiency value. 

Charnes eta!. (1978) transformed the CCR model from a fractional program­
ming model into a linear programming model in a major attempt to improve the 
operational convenience, necessary because the conventional CCR model is sub­
jected to numerous constraints amid the searching of solutions. 

s 
Maxha = LUrYra 

i=l 

subject to: 
m s 
L,vixik- L,urYrk ~0; k=l,···,n 
i=l r=l 
m 

L,vixia = 1 
i=l 
u,~€>0, r=l,-··,s; v;~€>0, i=l,···,m 

(2) 

The number of elements in the dual problem in Eq. (2) can be reduced for the 
sake of simplicity and the dual problem after conversion becomes: 

Min { ? a - e [ f s: +! s: J } 
i=l r=l 

subject to: 
n 

?axia- L?kxik -S"fu =Q i=l,···,m 
k=l 

Y,a-I?kYrk+S:;,=O; r=1,···,s 
k=l 

s~, s:;,,;.k ~ o 

(3) 

where s-;,. and s;a are slack variables. The dual problem, presented by Banker et 

a!. ( 1986), has two primary strengths, the reduction of calculation barriers and the 
provision of more helpful information. When an individual DUM achieve Pareto's 
optimality situation e; = 1 ("*" stands for the optimal solution) i.e., 

{ •• , +. } - + (x;a ,y,a) .s;;; = S,a = 0, 1 = 1,-··, m; r = 1,-··,s , and Sia = Sra =0 When a 

DMU has not achieve Pareto's optimality situation, we can make some adjust­
ments by using Eq.(4), and then helping individual DMU to achieve Pareto's op­
timality situation (relative efficientness). 

~: =flxn -s~·,i=l,-··,m (4) 
Y;a =Yra +S;a·,r=I,···,s 

3.2 Cross-period Efficiency Analysis- Testing Malmquist Index 
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According to Fare et al. (I992), the Malmquist productivity index is a prod­
uct oftechnical change (1C) and efficiency change (EC). Eqs. (5), (6), and (7) de­
note TC, EC, and the Malmquist productivity index respectively. 

(a) Technical Change (TC) is denoted by Eq. (5). When TC >I, technical gress is 
indicated, on the contrary, TC < I indicates technical regress. 

TC=[Dt+l(Xt+l,yt+l) nt+l(Xt.Yt)]y; (5) 
Dt(Xt+l,yt+l) nf(Xt.Yt) 

(b) Efficiency Change (EC) is an efficiency comparison between the efficiency of 
the production frontier ofthe t period and that of the t+ I period. Eq. (6) denotes 
the EC. IfEC > l, it indicates improved efficiency, whereas EC < l indicates 
reduced efficiency. 

EC=[At+I(xt+I,yt+l)l I [Dt+I(Xt+I,yt+I)l 

At(xt,Yt) Dt(Xt,Yt) 

= [ Dt(xt,Yt) ] x [At+l(xt+l,yt+l )] 
Dt+I(xt+I,yt+l) At(Xt,yt) 

(6) 

(c) The Malmquist Productivity Index (M) is denoted by Eq. (7), which is a 
product ofEq. (5) and Eq. (6). M > l indicates improved productivity, whereas M 
< I indicates decreased productivity. 

M~t+l =TC~t+lxECt,t+l 

[ 
d+l(Xt,Y) 

= If+l~+l_yt+l) 

[ 
vt+J(Xt.r) 

= JJ+l(Xt+l,yt+l) 

4. Emperical Study: Taiwan's 38 Upgraded Technical 
Institutes 

This section analyzes the managerial efficiencies of Taiwan's 38 technological 
institutes which were upgraded from junior college status between I995 and I998. 
The outcomes of this section includes two subsections: (I) relative efficiency 
analysis by current-period, shown in Table 2-3, and (2) performance variation 
analysis by cross-period, shown in Table 4. 

4.1 Relative Efficiency Analysis by Current-period 

The ANOV A results are as follows: 
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( l) According to the school type analysis result, the managerial efficiencies of 
private schools are superior to those of public schools, with the differences 
under a significant level at a= 0.05. 

(2) There is no significant difference between managerial efficiencies of public 
and private schools in the analysis according to geographical location. This 
means that geographical location will not cause school managerial efficiency 
differentiation. 

(3) According to the results of school size analysis, with a significant level at a = 
0.05, the managerial efficiencies of larger schools, having 201 classes and 
above, are superior to those of smaller schools. This indicates that school 
managerial efficiency is relates to school size. 

4.2 Cross-period Efficiency Analysis 

Both technical change (TC) and efficiency change (EC), spanning 1995 and 
1998, can be calculated through these four distance function values. The product 
of TC and EC is the Malmquist productivity index (M). If M > l, it indicates im­
proved efficiency, in other words, the productivity of specific institute increased 
over the previous four years; and if M < 1, it indicates reduced efficiency, in other 
words, the productivity of specific institute decreases over the previous four years. 

The average value of the Malmquist productivity index for these institutes is 
0.9855; indicating that the efficiency performance during the target period was re­
ducing, which was caused primarily by the change of production frontier; while 
the technical efficiency change (EC) of these institutes during the target period 
was increasing. The average value of the technical change of the 38 institutes 
overall, was 0.9043, which is slightly declining; indicating the overall production 
technique of all sample institutes is recessing. The average value of the EC is 
1.1111, which is increasing; indicating the overall efficiency variation ms im­
proved in comparison with the referenced period. 
4.3 Analysis of Managerial Decision-making 

This matrix can play the role of managerial decision-making matrix of further 
improvement efforts. Four groups of technological institutes are described below: 

A. "Star group" includes Mingchi, Southern Taiwan, Chengshiu, Lien Ho, Chia 
Nan, Van Nung, and Ta-Hwa Institute of Technology. They are role models for 
the other technological institutes and have achieved outstanding managerial effi­
ciency in the past and currently. They will be able to stay in the leading position if 
they control better those suggested resource indices and avoid committing vital 
administrative mistakes. 

B. "Potential group" includes Fooyin, Huwei, Yuanpei, Tajen, Kung Shan, 
Chungtai, and Chien Hsin Institute of Technology. Their current resource input 
does not have efficient output, although their effort invested over the past four 
years produced positive production efficiency. It is possible for them to move up 
into the "star group" if they make improvements. 
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C. "General group" includes Dahan, Kao Yuan, China, Tainan Woman's, 
Lunghwa, Hungkuang, Far East, Chien Kuo, Mingshin, Yung Ta, Chung Hwa, 
Jin-Wen, Ling Tung, Wen Tzao Ursuline, Fortune, and Chin-Yi Institute of Tech­
nology. Their current resource input has not brought about efficient output, their 
efforts invested over the past four years have not achieved cause satisfactory effi­
ciency, and they do not have the competitive advantages of the institutes of the 
"potential group". Suggested strategies would be: revising mid-range plans to de­
velop unique development strengths and re-scheduling the application of resource 
input. 

D. "Left-behind group" includes Ilan, Kaohsiung, Tzu Chi, Taichung, Chiayi, 
Pingtung, Kaohsiung, and St. John's & St. Mary's Institute of Technology. They 
currently have low relative efficiency in present. Recommended improvement 
approaches include: a complete revision to their short-, middle-, and long-term 
plans, as well as continued efforts to determine feasible endeavors. 

5. Conclusions 

Analyses incorporated the influences of school type, geographical location, 
and school size on school managerial efficiency performances. The analysis re­
sults indicated the following three main points: first, there is a significant correla­
tion between school types and relative efficiency; seconds, there is a significant 
correlation between school size and relative efficiency; third, there is no signifi­
cant correlation between geographical location and managerial efficiency, this in­
dicates that the geographical location will not cause significant differences in 
managerial efficiency. According to the analysis results of cross-period efficiency 
variation, the technical changes one slightly increasing in Taiwan's technical insti­
tutes which have been upgraded from junior colleges. This means there is an im­
provement of overall technical level with a minimal scale. The improvement of ef­
ficiency change is higher than the technical change; indicating that there is a 
recession of school production technique. Matrices ofthis type can help site man­
agement to design more appropriate inprovement strategies and to accomplish 
greater improvements. They can also help educational authorities officials to pre­
sent a more appropriate evaluation system, which will provide accurate feedback 
information, making a professional school evaluation and guidance possible. 
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Abstract. The purpose of this study is to improve the assessment system for voca­
tional education, thus helping to increase technology college education efficiency. 
This study employs both classical and new data envelopment analysis (DEA) to 
study relative radial efficiency, management efficiency and scale efficiency of the 
application of resources for the 38 technology colleges in Taiwan during 1998. 
Analysis outcomes showed that ranking differentiation between relative classical 
radial efficiency measure (REM) and efficiency achievement measure (EAM) is 
consistent, if the same group index differentiation, of an institution, is consistent. 
Both models support each other and provide clearer relative Pareto efficiency and 
efficiency achievement for comparison of results. 
Keywords: data envelopment analysis, efficiency achievement measure, man­
agement efficiency, scale efficiency, multiple objective programming, technology 
college 

1. Introduction 

Currently, Data Envelopment Analysis (DEA) is an assessment approach in 
management science being extensively adopted to assess the efficiency of multi­
ple-input and multiple -output systems. There are rmny successful cases in non­
profit businesses such as schools, libraries, and public hospitals in addition to for­
profit business such as banks and hotels. However, it has not been widely used for 
technology colleges. 

According to the data collected, both classical and new DEA approaches 
(Chames et al., 1978; Chiang and Tzeng, 2000) are used to explore the manage­
ment efficiency of these technology colleges. The results indicate that the effi­
ciency measure approach of classical DEA belongs to relative Pareto's efficiency 
measure approach. Along with efficiency achievement measure, this can further 
provide more accurate results for relative Pareto efficiency and efficiency 
achievement for comparisons. It can also improve the measurement oftechnology 
college management efficiency, which is useful for policy-making in these institu­
tions. 
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There are five sections following; the second section illustrates how sample and 
variables were selected for efficiency assessment. The third section illustrates both 
the assessment of classical DEA. 

2. Selection of Variables and Samples for Efficiency 
Assessment 

Both classical DEA and new Fuzzy multiple objective DEA were employed to 
explore the organizational goal and selected i:J.put and output relation of the 38 
junior coHeges that reformed and upgraded to technology colleges in Taiwan. 

Since otherwise researchers' ideology and interests, as well as the models em­
ployed could create variation in the definition of input and output. Previously, 
Hufner (1987) listed indexes to assess the reputation of universities, including the 
number of full-time teachers, teacher-student ratio, number of passed doctoral dis­
sertation published, number of published papers for qualifying for the position of 
professor, and number of trusted research cases. Inbar (1988) listed percentage of 
GNP taken by educational expanses and percentage of public expenses taken by 
education expenses as input indexes, with the number of graduate, mathematic 
competence, and language ability as three output indexes. 

The indexes selected in this study cover those indexes mentioned above, and it 
also considers both the feasibility of practical operation and the possibility of ob­
taining data. Educational input variables covered four phases that are physical, 
human resource, facility, and information. Input variables are the total floor area 
of school buildings; number of faculty above, including assistant professor; tx­

penditure; volumes of books and categories of journals in the library. Outputs 
variables are divided into the three phases of teaching efficiency, practical e­
search efficiency, and service efficiency. Output assessment indexes are numbers 
of graduates, total amount of faculty's research fund, and income from the co-op 
program and extension education. 

3. Measure of Assessment Model 

This study adopted both the classical Data Envelopment Analysis proposed by 
Chames et a!. (1978) and the new DEA Fuzzy Multiple Objective Programming 
Approach proposed by Chiang and Tzeng (2000) to conduct assessment of relative 
and absolute rank. 

3.1 Classical Radial Efficiency Measure 

According to the CCR Model proposed by Chames, eta!. in 1978: 
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where X;k stands for the i1" input of the e" DMU; y rk stands for the "" output of It' 
DMU; U r, V; stand for the weight of the I" output and ith input respectively; h a is 

relative efficiency value. Since Eq.(l) involves fractional programming, that is 
difficult to solve, Charnes et al. (1978) therefore, converted it to linear program­
ming (LP) model in order to find solution. 
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The number of elements in the dual problem in Eq. (2) can be reduced for the 
sake of finding answer, the dual problem after conversion becomes: 
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where S;~ and S~ are slack variables. 

(3) 
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3.2 Multiple Objective Programming Assessment Model for Efficiency 
Reach 

To achieve this goal, the concept of multiple objective programming can be 
employed to find a set of consistent weight combination approach so that the op­
timized efficiency value can be calculated for each DMUk in overall relative effi­
ciency achievement. This idea can be formulated as Eq.(4). l-~U,Y,, _ !,u,yrl _ ~UrYrn j 

Max hl- m ,hl- r~ , ... ,hn --'=m--

L vixil L v;x;2 L vixin 
i=l i=l i=l 

subject to: 
s 

Iu,y'* 
..:..:'~::!.1--< I , k = I,2, ... ,n 

m 

Ivixik 
i~l 

u, ~ £ > 0, r = l,2, ... ,s, vi~£> 0, i = I,2, ... ,m 

(4) 

Given a linear identity function, hf and h: , donate the left and right fron­

tier value of hk, the k th objective function value, respectively. The span of 

hf and h: lies between 0 and I due to the outcome of the objective equation 

ofEq.(4) is efficiency ratio, that is hf = 0 and h: = 1, and the identity value 

is u(hk), which can be considered as the achieved value of efficiency ratio hk 
for the DMU. No doubt that the value is between 0 and 1. Such a function is 
called an identity function. Therefore, Eq. (4) can be converted to the pattern of 
fuzzy multiple objective programming (Tzeng and Chen, 1999; Chen and 
Tzeng, 1999) 

Max a 

subject to: 
s m 
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(5) 

A set of ~*,v*) can be calculated according to Eq. (5) and the efficiency 

value hk of a DMU can be calculated with the value of (u*,v*). Since the effi­

ciency value hk of each DMU actually equals its efficiency achievement of the ef­
ficiency value hk (because satisfaction is assumed to be identity function), there­
fore, we can define the efficiency achievement measure as: 
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ak = f,u: ·y,k I~:,V; ·X;k 
r=l i=l 

4. Analysis and Conclusion for the Results of Case 
Study 

This section is divided into three subsection: 

(1) Radial Efficiency Measure 

(6) 

At a =0.05, private schools perform better than public schools, in terms of 
school management efficiency; the difference of the management efficiency of 
schools, at different geographic location is insignificant; and the management effi­
ciencies oflarge-sized schools, more than 201 classes, are better. 

(2) Measurement of Scale Efficiency 

There are two technology colleges, Chin-Yi and Lien Ho, that achieved 
Pareto optimal organization, although this does not mean there is no room for 
them to improve. Because DEA is a concept of relative comparison, therefore, if 
one of the two colleges has improvement in some area, the assessment grade could 
be less than 1 and become Pareto non-optimal organization. 

Among those technology colleges that has less than 100 classes, there are 
two technology colleges, Mingchi and Wen Tzao, that achieved POO and both 
were ranked as No. 1; the other four are PNO and are ranked by aggregate effi­
ciency. Six technology colleges are in the stage of "Increasing Return to Scale". 
Decision makers of these schools may try to improve operational efficiency 
through expanding school size. 

(3) Efficiency Achievement Measure and Comparative Analysis with 
Radial Efficiency 

Applying the efficiency achievement multiple objective programming model, 
only three schools tum out to be relatively efficient, among then Chia Nan 
(ak = 1), Lien Ho (ak = 1), and Van Nung Institute of Technology (ak = 1), the 
rest part of subject schools are relatively inefficient, such an approach is similar 
with the De Novo programming approach (Zeleny, 1986, 1995), which is capable 
of breaking through the barriers of Pareto's solution and provid more room for fur­
ther development. 
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Furthermore, this study applied cluster analysis after normalizing the infor­
mation to categorize the 38 technology colleges into seven groups by their charac­
teristics. The effectiveness of efficiency ranking obtained from both efficiency 
achievement measure and radial efficiency measure are quite similar. 

By efficiency achievement measure, we can further find that nine technology 
colleges including Southern Taiwan, Chengshiu, Mingchi, Wen Tzao, Ta-Hwa, 
and Hungkuang were relatively nefficient compared to Chia Nan College of 
Pharmacy and Science, Lien Ho, and Van Nung. This provides more accurate re­
sults for comparing the relative efficiency ratio and absolute achievement ratio. 

G. Conclusions 

The results of case analysis shows that the efficiency measure approach of 
classical DEA is in the relative Pareto's efficiency measure approach. The results 
of this show that 12 institutes of technology are relatively efficient; that is, there­
sult of radial efficiency measure are 1. Along with efficiency achievement meas­
ure, this can further provide more accurate results for relative Pareto efficiency 
and efficiency achievement for comparisons. 
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Abstract. Risk management have developed substantially so it became a distinc­
tive subfield in the theory of finance. As the banks operate on the large scale on 
the financial markets, the risk management is an important issue in the banking 
industry [1]. 

This paper presents the stochastic extension of the deterministic model origi­
nally developed by the author. The model comprises main financial risks and allows 
the use of most important financial instruments, so it can be regarded as a basic 
module of the risk management support system in a commercial bank. 

1 Introduction 

There is a long history of optimization models designed as a support for 
decision making in the field of financial risk management in the commercial 
banks. Usually the models were limited to one type of risk and/or single 
period [2]-[4]. Some projects attained practical realizations. The examples 
are: linear goal programming model of Giokas and Vassiloglou [5] and two­
stage linear goal programming model of Korhonen [8]. Both these models 
were based on balance sheet data so they were designed rather to support 
financial planning then to risk management itself. 

The deterministic multicriteria! model especially designed for financial 
risk management was developed by the author [9,10]. The model was based 
on future cash-flows and comprised the main financial risks and allowed the 
use of wide variety of financial instruments. The stochastic, single-objective 
linear programming model, founded on the same framework, was presented 
by the author last year [11]. This work presents the union of these previous 
ideas- the model was developed to be multiobjective and to has stochastic 
nature as well. 

* Research partly supported from a KBN Grant no. 2 H02B 006 22 "The Multicri­
teria Methods on Polish Financial Market. 
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2 Model formulation 

We assume that the risk the bank is exposed to, is a result of the uncertainty 
of the time structure of future cash-flows. Let's consider the finite period of 
time. We divide it into finite number of periods and assume that all cash­
flows take place only at the end of any period. Then every instrument is 
characterized by the set of its cash-flows Xt(v, z), i.e. 

x= [xt(v,z)]tET (1) 

where T = {0, 1, ... , tn}, v E V z E Z. The index t is used for numbering 
the ends of periods, v for currency, while z refers to all other characteristics 
of given instrument. The randomness come into the model through the two 
sets of parameters: interest rates - i\ ( v, z) and exchange rates - iit (VI, v2) 
(currency VI against currency v2). 

2.1 Decision variables 

As the decision variable connected with given instrument, we will use single 
non-negative number Xt ( v, z), from which the all cash-flows can be derived. 
For example, in case of purchase of interest instrument with coupons, decision 
variable Xt(v, z) is a volume which is purchased. It generates -xt(v, z) flow at 
a moment of purchase and several interest flows of the form ft' ( v, z )xt ( v, z) 
in later moments t', and the return of the capital at maturity. When we con­
sider forward contract or derivative instrument the future cash-flows have an 
optional form. Lets consider purchase of interest rate option as an example. 
The principal amount of the option Xt (t > 0) is the decision variable (for 
simplicity we omit for the moment v and z). The initial cash-flow is -roXt, 
where r0 is the unit price of the option (expressed as percentage) The con­
ditional flow in the future, which depends on the actual value of the interest 
rate at moment t, will be 

(2) 

where r is exercise rate of the option I. 

2.2 Constraints 

The external and internal economic conditions, which a bank operates in, 
impose several constraints of different nature and structure. We grouped them 

1 We use following notation: 

a+= { ao if a:::: 0 
otherwise 
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according to their essential meaning. Market and technical limits arise from 
the situation of a bank in it's economical environment. These limits has to 
be proposed by the bank specialists and confirmed by the management of a 
bank. Some of them are simply top limits for bank's dealers transactions and 
open positions. For this limits we assume the form 

Bx:::; b, (3) 

where matrix B and vector b are deterministic. 
The other important group contains all the constraints which are imposed 

by the legal system of the country, the bank operates in. The detailed rules are 
usually issued by banking supervisory. To this group belong e.g.: the bottom 
limits for the capital adequacy ratio and for cash reserves. The latter ones can 
be regarded as the part of risk management constraints as well, because it 
is common that the management of a bank impose more strict conditions on 
cash reserves, dependent on bank's situation. The limit for capital adequacy 
ratio has the form (3), while the limits for cash reserves has the stochastic 
character. This type of constraints can be written as 

ll(r,q)x:::; h(r,q) (4) 

where both matrix ll and vector h generally depend on stochastic parameters 
rand q. 

2.3 Criteria 

When the problem of risk management is of concern, the decision maker are 
to minimize the several types of risk and achieve the maximum possible profit 
at the same time. This guidelines the contents of typical optimization model. 
In the financial management of the commercial bank, the interest rate and 
foreign exchange risk are of most interest. The popular method of controlling 
the interest risk is the duration gap management. We take as the criterion 
the minimization of risk of market value of bank's capital. This is the only 
criterion based on duration which is linear form of decision variables. Let's 
define 

D'X = DxPVx =LIt cfx,t(x), (5) 

where X = A for assets, X = L for liabilities, 
Dx,PVx and cfx,t(x)- duration, present value and sum of all positive (neg­
ative) cash-flows in moment t of assets (liabilities), respectively, It- discount 
factor. As the risk is minimal for zero gap, in the goal programming frame 
we receive the constraint: 

D£ - DA_ - y: + y; = 0, (6) 
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where Yt, y; are over- and underachievement auxiliary variables. 
The foreign exchange risk with can be controlled via foreign currency 

position. It can be defined it as follows: 

Pt(v) = Pt(v) + L Xt(v, z), t E T, v E V', (7) 
zEZt 

where Pt(v)- position for period t and for foreign currency v, Pt(v)- initial 
position for period t and currency v, Z :J ZJ- transactions changing position 
in a given foreign currency, V' = V \ {vo}, vo- local currency. 

Again the minimal risk is when the position is zero (closed), so we can 
formulate another set of linear constraints for goal programming model 

Pt(v)- Yi,t(v) + Yf,t(v) = 0, t E T, v E V'. (8) 

As it was said above, we need some profitability criterion as a counter­
part of risk minimization criteria. The profit for interest instrument can be 
written as simple as i't(v,z)xt'(v,z). For derivative instruments the profit 
has the form xt[(i't- ft)+- ro]. We use general form R[i't(v,z)] for these 
expressions. If we assume, that R[i't(v,z)] = 1 for foreign exchange trans­
actions, we will be able to write down every contribution to profit as single 
expression R[i't(v, z)]xt'(v, z). Now, all positive and negative contributions to 
profit has to be translated to single currency (usually local one), discounted 
to one point in time and added together in the end. The resulting constraint 
for goal programming model is 

L L L /'tR[i't(v,z)]xt'(v,z)qt(v,v0 )-yt+Y; =P, (9) 
vEV zEZ t,t'ET 

where P is the desirable level of profit. 

2.4 Stochastic model and it's deterministic equivalent 

The presented model takes the following form 

minx,y [c+y+ + c-y-] 
s.t. 
Bx:::; b 

ll(r,q)x:::; h(r,q) 
D(r,q)x- y+ + y- = G 

(10) 

This is the stochastic linear goal programming model and such a model can 
not be solved explicitly (for general reference see the monography [7]). For 
solving it we need to transform it to deterministic equivalent form. It was 
shown by Heras and Aguado [6], that stochastic goal programming model 
is a particular case of stochastic linear programming with recourse. In our 
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case it is convenient to formulate it as the multistage recourse program. We 
need additional auxiliary variables y' which serve to compensate the violation 
of stochastic constraints in some realizations of random parameters. The 
number of variables y' is equal the number of stochastic inequalities in (10). 

The deterministic equivalent of our model is 

minx E;;,q{ Q 1(x, r, q) + Q2(x, y', r, q)} 
s.t. 
Ex:::; b 

H(r, q)x- y' :::; h(r, q) 
D(r,q)x- y+ + y- = G 

where Er,q- expectation with respect to the distributions of r, q. 

(11) 

Q2 (x, y', r, q) in (11) is the third stage recourse function and is given by 

Q2(x,y',r,q) = min{cTy I y:::: 0}, (12) 
y 

The variables y in above equation are the usual over- and under-achievement 
variables in goal programming, consequently the coefficients c reflect the rel­
ative importance of different criteria for the decision maker. 

Q1(x,r,q) in (11) is the second stage recourse function and is given by 

Ql (x, r, q) = min{ dT y' I y' :::: [H(r, q)x- h(r, q)]+} (13) 
y' 

Variables y' can be interpreted as the amounts of additional hedging trans­
actions which have to be done whenever the particular stochastic constraint 
is violated as the result of concrete realization of random variables. Conse­
quently coefficients d can be interpreted as interest or exchange rates of these 
hedging transactions and they are usually less favourable for the bank. 

3 The exemplary model and computational tests 

As there is no enough room for detailed description of the model we present 
here only brief picture of it2 . 

There are a wide variety of financial tools commonly used in a financial 
risk management process. For the purpose of testing we use some typical 
examples which represent different types of instruments which have similar 
cash-flow structure. For every instrument we have in the model a decision 
variable which generates all it's cash-flows. 

Fixed rate spot transactions represent the purchase and sell of treasury 
bills and transactions with other banks on money market. The treasury bonds 
with coupon payments represent variable rate instruments. The other spe­
cific group are foreign exchange spot and forward transactions. Derivative 

2 Those who are interested in some details are requested to contact the author. 
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instruments contribute to the model through the call and put interest rate 
options. 

The set of constraints comprised the top limits for every instrument, the 
bottom limits for capital adequacy ratio and cash reserves. Three criteria 
presented earlier, were incorporated: minimization of interest rate risk and 
foreign exchange risk and maximization of profitability. 

For numerical tests there were chosen three periods (tn = 2) and two 
currencies ( v = 2), so the size of the model was reasonable. It had 30 decision 
variables and 30 auxiliary variables (y and y'). Calculations were made for 
different selection of coefficients c to observe different solutions for different 
decision maker attitudes. It proved the possibility to use this method as 
quasi-interactive technique which enables elastic reaction to decision maker 
needs. 

4 Conclusions 

The financial risk management in a commercial bank is a very complicated 
process which obeys a great number of elements - instruments and param­
eters. So it is clear that the any method of optimization type can be useful 
auxiliary tool in such process. 

The proposal presented in this paper has the advantage of taking the 
random nature of main parameters which appear in the process and comprises 
a number of instruments used for risk control in commercial banks. It is quite 
general as it allows the wide choice of time horizon and its division into time 
periods - from days and weeks up to months or even years. So it can be easily 
adjusted for daily risk control operations, medium-time risk management or 
long-time strategic plans. 

Multicriteria! formulation of optimization models proved their dominance 
over single criteria! formulation for a long time. Goal programming version 
gives the opportunity to use simple method for model solution. 
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Abstract: This paper reports evidence on the effectiveness of the balanced 
scorecard framework (BSC) in measuring and monitoring the performance of 6-

commerce companies. The study utilizes an integrated Data Envelopment 
Analysis (DEA) model to examine and evaluate the relative efficiency of the 
measures identified within the BSC framework for measuring the performance of 
E-Commerce companies. Finally, the study examines the effectiveness of the BSC 
framework in predicting the success or failure of E-commerce companies. 

Keywords : Data Envelopment Analysis (DEA); Balanced Scorecard; 
Performance Measurement; Electronic Commerce. 

1. Introduction 

In the last decade, researchers have become increasingly interested in 
analyzing the impact of non-financial performance measures on firm performance. 
Kaplan and Norton (1992) proposed the Balanced Scorecard framework, which 
emphasizes the need to measure both financial and non-financial parameters of 
performance. Non-financial measures are particularly relevant for new age 
companies (dot.coms, business to consumer companies) that have revolutionized 
the marketplace and appear to defy the basic rules of business. Dot-com or & 
commerce companies have necessitated the development of a whole new set of 
performance measurement parameters for monitoring and measuring their 
performance (Seybold & Marshak, 1999). 

Although the Balanced Scorecard model was initially proposed in 1992, 
and the model has been widely accepted by most practitioners, little empirical 
analysis has focused on validating the model. In this paper, we develop four sets 
of performance measurement parameters specifically designed for E-commerce 
companies, drawing on the Balanced Scorecard framework. We then employ Data 
Envelopment Analysis (DEA) using these measures to examine the efficiency of 
Balanced Scorecard parameters in measuring the performance of eighteen E­
commerce companies. Finally, we focus on six ofthe eighteen companies to 
compare the three most successful companies with three that subsequently failed 
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in order to examine the effectiveness of the Balanced Scorecard pammeters in 
predicting bankruptcy. 

2. Background and Significance 

Kaplan and Norton ( 1992) used a balanced scorecard, which requires 
managers to balance four different but linked perspectives in order to identify 
appropriate measures of performance. The first perspective represents traditional 
accounting measures that report the financial consequences of actions already 
taken. This financial perspective highlights how the company appears to 
shareholders and concentrates on measures relating to profitability and growth, 
cash flow and gearing. The Balanced Scorecard supplements these financial 
measures with three other perspectives dealing with (a) customers, (b) internal 
processes, and (c) the firm's innovation and learning record- all three areas that 
are important drivers of future financial performance. The customer perspective is 
designed to highlight the factors that really matter to customers such as value for 
money, time and performance. The internal business perspective is designed to 
focus on those critical business activities that must be performed in order to satisfy 
the expectations of its customers. These include cycle time, quality and efficiency 
of operations. The innovation and learning perspective highlights the fact that, in 
the face of intense competition, firms must make continual improvement and have 
the ability to introduce new products in the future. 

Measuring the performance of &commerce companies has always been a 
relatively difficult task. E-commerce firms have focused on innovation 
continuously in order to integrate technology with offering customized tailor­
made services to the customers and use parameters such as revenue, click through 
ratios and other indirect parameters to measure their performance. Thus 8 
commerce companies measure their performance by using a mix of traditional and 
new parameters. For example, McKinsey's e-performance scorecard, launched in 
1999, collects data about a variety of visitor, customer, and financial metrics 
(Agrawal, Arjona & Lemmens, 2001). The scorecard comprises 21 indicators that 
measure performance both statically (at one point in time) and dynamically (over a 
period of time). These indicators are grouped into three categories-attraction, 
conversion, and retention-and then folded into the overall e-performance 
scorecard, which is a weighted average of the twenty-one indicators. The 
scorecard highlights two key dimensions: the efficiency of costs (for example, the 
cost of attracting visitors to a site and of maintaining active customers) and the 
effectiveness of a site's operations (such as conversion rates, the rate at which the 
number of customers increases, and customer gross margins). Best practice in the 
e-business sector combines the lowest costs with the highest effectiveness. 

Thus, parameters such as the customer point of view and integration of 
technology to produce personalized web content for customers are important 
measures of performance in Ercommerce companies. Therefore, we focus on both 
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financial and non-financial measures of performance in E-commerce companies. 
We utilize DEA analysis to examine the efficiency of eighteen such companies on 
each of the BSC parameters. 

3. Methodology 

Measures of Balanced Scorecard dimensions: For each dimension of the BSC, 
we identified performance indicators developed for &commerce companies, and 
selected specific measures based on the research mentioned in the previous 
section. The specific measures are presented in Table 1. 

Table 1. Measures for the BSC dimensions 

of visitors 
Customers 

Number of Number 
Customers ofvisitors 
Number of 

Sample: The data were obtained from the &commerce Almanac data set collected 
by the Intermarket Group. This almanac compiles exhaustive information about E­
commerce companies and includes financial, marketing, operational and other 
information that can be categorized into the balanced scorecard framework. The 
original data set included eighty-two &commerce companies. However, data on 
all the performance measures we derived for each of the four BSC dimensions 
were available for only eighteen companies. 
Analyses: In the first set of analyses, DEA methodology was utilized to examine 
the efficiency of the eighteen companies on each of the four dimensions. Through 
the optimization for each individual unit, DEA yields an efficient frontier that 
represents and estimates the relations among the multiple performance measures 
(Charnes, Cooper and Rhodes, 1978). 

Suppose we have a set of n decision making units (DMUs) (e.g., 

companies), DMU j (j = 1, ... , n) and let X; (i = 1, ... , m) be the m input 

performance measures where smaller values are preferred, e.g., cost measures and 

y r (r = 1, ... , s) be the s output performance measures where larger values are 

preferred, e.g., revenue. Thus, we have m+s performance measures for the n 

DMUs. Further, we have X;j as the observed value on the ith input performance 

measure and y rj as the observed value on the rth output performance measure. 
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Based upon the observations, we have the following DEA model for 
evaluating the relative efficiency of DMU 0 among other DMUs 

mine 
m 

s.t. _L)ljxij :::; exio i = 1, ... , m 
j=l 

s 

Llljyrj ;;:: Yro r = 1, ... , s 
j=l 

n 

LAj =1 
j=l 

llj ;;:: 0, j = 1, ... ,n 

(I) 

Model (I) is called variable returns to scale (VRS) model in DEA 
(Banker, Charnes and Cooper, I984). Model (I) is input-oriented, since it 
minimizes inputs while keeping the outputs at their current levels. We have an 
output-oriented model (for the negative input values in the finance perspective), 
which maximizes outputs while keeping the inputs at their current levels. 

maxlj) 
m 

s.t. Llljxij :::; X;0 i = 1, ... ,m 
j=l 

s 

Llljyrj ;;:: lf>Yro r = 1, ... , s 
j=l 

n 

LAj =1 
j=l 

llj ;;:: 0, j = 1, ... ,n 

(2) 

The above two models allow us to deal with negative inputs and outputs. 
See Zhu (2002) for additional DEA models. 

4. Results 

In our first set of analyses, we utilize DEA methodology to assess the 
efficiency of eighteen &commerce companies on each of the four dimensions or 
perspectives of the BSC. While the finance perspective utilizes traditional 
financial measures, the customer, internal processes and innovation dimensions 
utilize non-financial measures. On each dimension, the companies are rank­
ordered based on their efficiency scores for each dimension (See Table 2). 
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Since our objective was to examine the uility of the DEA efficiency 
scores in predicting future success or failure of the companies, we identified three 
companies that subsequently failed and three that remained successful and locate 
these six companies on the rank-ordered list in Table 2. Two successful companies 
(Amazon.com and ebay) and one of the ones that subsequently failed 
(Fumiture.com), emerge as financially efficient in 1999, falling among the seven 
companies with the highest rank-orders (1-7). The two companies that 
subsequently failed (Webvan and PlanetRX.com) and one of the successful 
companies fall among the lowest ranked companies. 

From the customer perspective, we see that the three successful 
companies (Amazon.com, ebay, and Priceline.com) are highly efficient (scores 
between .90 and 1.0), whereas two of the three failed companies (Fumiture.com 
and PlanetRx.com) rank lowest on efficiency in the Customer perspective. The 
other failed company, Webvan falls in the middle range of efficiency. Apparently, 
these efficiency scores based on data from 1999 when all the companies were 
active, do differentiate between the ones that remained successful and those that 
subsequently failed. On the innovation and learning perspective, again the 
efficiency scores appear to discriminate between the subsequently successful and 
unsuccessful companies (Table 3). All three successful companies fall within the 
top 7 rank-ordered companies and have efficiency scores ranging from .79 to 1.0. 
On the other hand, the three companies that subsequently failed fall in the lowest 
six rank ordered companies, with efficiency scores less than.38. 
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On the internal process dimension, the results are mixed (as they were on 
the financial dimension). The two most successful companies (Amazon.com and 
ebay.com) were optilllllly efficient (1.0), while one failed company 
Furniture.com) also had high efficiency scores (.89). One successful and one 
failed company (Priceline.com and PlanetRx.com) had medium efficiency levels 
(.51-.68), and one failed company (Webvan) had the lowest efficiency score. 

Table 3. Innovation & Learning Perspective and Internal Process Perspective 

Comparison of Key Performance Indicators for successful and failed 
companies: In the next set of analyses, the three companies that remained 
successful were compared to the three companies that subsequently failed (filed 
for bankruptcy in 2000) on key performance indicators representing the four 
dimensions of the BSC (see Table 4). Although funding and revenues for the 
three successful companies are generally higher than for the three failed 
companies, five of the six companies show no profit (show negative profitability). 
Thus, the financial perspective does not present the complete picture. As can be 
seen from Table 4, two of the key performance indicators representing the 
Customer dimension (customer conversion factor and profitability per customer) 
appear to differentiate between the successful and failed companies, though results 
on revenue/customer is not quite as clear cut. All the key performance indicators 
for the Innovation dimension appear to differentiate between the successful and 
failed companies. This is similarly true for the Internal process dimension. 
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Table 4. Key Performance Indicators 

To summarize, all three non-financial key performance indicators do 
appear to differentiate between the successful and failed companies while the 
results of the financial perspective are mixed. Thus, the results show that the 
measures derived from the Balanced Scorecard framework can assist managers in 
predicting the success or failure of E-commerce companies. 
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Abstract 

This study investigates various scenarios with load variation and different bidding 

strategies by examining the locational prices in a deregulated power market that is 

modeled with a DC load flow approximation for minimizing production cost. 
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1. Introduction 

Deregulation of power industry has become a worldwide trend, undergoing in 

many countries including Taiwan, to restructure the traditional monopoly power 

industry for introducing fair competition and inproving economic efficiency. 

Power industry in Taiwan will be deregulated to take advantage of the operation 

efficiency on the basis of the competition of the market participants. However, the 

employment of competition in electric power markets in U.S. has not been com­

pleted [3]. As liberalization of the electric industry is becoming a reality in Tai­

wan, some questions regarding the ability of deregulated power market to provide 

an environment to openly trade electricity with operation efficiency and fair com­

petition require urgent answers. 
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This study aims to explore the mechanism for power market by using scenario 

analysis and to thus propose the appropriate operation guides to avoid possible 

failure of electric power market. A pool-based market design through auction 

mechanism and considering locational prices is proposed. We construct a power 

delivery network as the example to examine different locational prices with load 

variation and bidding price variation in five different scenarios. 

2. Proposed Market Mechanism 

The auction system is an economically efficient mechanism to set prices and 

allocate demand to suppliers. However, its uniform auction price cannot provide 

locational price signals for the suppliers and consumers. Alternatively, nodal 

prices (i.e., locational marginal prices; LMP) can send signals to suppliers and 

consumers for allocating resources and demand. The effects of transmission con­

straints are reflected in the price at each node of the power network [I]. 

A pool-based market design that operates with an auction mechanism while 

considering nodal spot pricing prices of the network to reveal efficient signals to 

market participants was proposed. The pool model relies on dispatch actions of an 

Independent System Operator (ISO) to match the most efficient sources of power 

supply with customer demand while considering transmission constraints [2]. 

Multiple goals that have to be satisfied in the solution of proposed market 

model include the least production cost, the reliability of the system operation, and 

the balance of the regional demands and supplies. A DC power flow model is ap­

plied with the objective of the least-cost economic dispatch as follows: 

Min 'LJ~G; (1) 
iel 

Subject to (a) generation constrains for all generators i: 

Gmin < G < Gmax G _ 0 ; - ; - ; or ; - ' ViE I (2) 

(b) power flow equation for each busj: 



A Study of Variance ofLocational Price in a Deregulated Generation Market 385 

, ViE I , VjE J (3) 

(c) line thermal limit constraint (i.e., transmission capacity) for all pairs j-k corre­

sponding to existing lines: 

1 8j-8k~~pj~ax ,'if}EJ ,kEJ ,jt:k 
xjk 

(4) 

where P; denotes the bid price of generator i, G; denotes the quantity of power 

produced by the generator i, Gimin denotes the minimum quantities that generator 

i can produce, and Gimax denotes the maximum quantities that generator i can 

produce. In addition, B denotes the transfer admittance matrix (i.e., Linearised 

Jacobian matrix), 8 j denotes the phase angle of bus j, Dj denotes the load of 

bus j, xjk denotes the impedance of line between bus j and k, and pj~ax de­

notes the maximum power flow between bus j and k. 

Bus 3 
Jv,JL •, --9& 

Bu}2 ~ 
~ -- ,JL 9, 

Bus 6 Load 6 

Bu\414, JL 9, 

Bus 5 Load 5 

Load 4 

Fig. 1. Power systems of six buses 

The transmission system differentiates the electric power market, where the 

flow of power cannot be easily controlled and the scarcity of transmission capacity 

leads to congestion [3]. The LMPs are calculated as dual variables (i.e., shadow 

price) for the equality constraint at the corresponding node to compute the optimal 
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dispatch. That is, a LMP is the marginal cost of supplying the next increment of 

energy at a specific bus. 

3. Scenario and Simulation Analysis 

Considering the variance of load and generation cost, ~ simulate different 

bidding strategies of the generators and discuss the congestion cost of the trans­

mission line and locational price of a power delivery network. A six-node network 

with eight generators (Gi, i=1, .. , 8), six loads (Lj, j=1, .. , 6), and eleven transmis­

sion lines was considered (Fig. 1 ). Table 1 summarizes the parameters including 

line thresholds, the capacities of generators, and the demands ofloads. 

Table 1. Parameters of generators, loads, and transmission lines 

BUS Plant Minimum Maximum Load 
Volume[MW] volume[MW] [MW] 

Gl 100 210 
BUS! G2 90 200 330 

G3 110 380 

BUS2 G4 160 650 350 
G5 100 230 

BUS3 G6 120 410 180 
BUS4 230 
BUS5 190 

BUS6 G7 90 200 250 
G8 110 390 

Line pl2 pl4 P1s p23 p24 P2s p26 P3s p36 P4s Ps6 P24+P36 
Limit 100 100 100 80 150 120 110 90 110 110 80 260 

With loss of generality, in scenario I, we use a basic example in which the 

generator units offer the supply bids as shown in table 2. The ISO will determine 

the energy quantity and generators that are scheduled to run by minimizing the to­

tal cost subject to the constraints. In this case, Generators I, 3, 4, 6, and 7 are 

scheduled to run as given in table 2. 

In scenario 2, we simulate the market operation under price war among the 

generators il which the bidding price of the all generators is reduced to be half 

and each load decrease 50MW. The solution shows that Generators I, 3, 4, and 6 
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are scheduled to run. The locational price at all buses in this condition is around 

1110. The lower locational marginal price is owing to the lower price bid. 

Table 2. Result of scenario I 

Gl G2 G3 G4 G5 G6 G7 G8 
Biddin~ Erice [$/MW] 2200 2230 2220 2150 2210 2180 2220 2240 

Scheduled amounts 210 0 288.7 650 0 291.3 90 0 
BUS! BUS2 BUS3 BUS4 BUSS BUS6 

Locational Price 
2220 2162.2 2180 2292.4 2201.2 2179 

In scenario 3, we simulate the market operation with increasing loads. It shows 

that Generators 1, 3, 4, 6, and 7 are scheduled to run. The locational price at buses 

I, 2, 3, 4, 5, and 6 are 2220, 2150, 2180, 2662.8, 2264, and 2220, respectively. 

The locational price of bus 4 is significantly increased, because the transmission 

line capacity becomes unavailable. Thus, building the transmission line to meet 

unserved load is important when the loads are increase progressively. 

In scenario 4, we simulate the market operation that the generator units all use 

high price strategies. It shows that all ofthe generators are scheduled to run except 

units I and 5. The locational price at buses I, 2, 3, 4, 5, and 6 increase to be 2230, 

2350, 2380, 2443.4, 2378.8, and 2240, respectively. Thus, ISO should prohibit the 

generators collectively control the price, especially when there are few players at 

the early stage of deregulation environment. Generator may also apply high price 

bid when the fuel price increased and thus increase the electricity cost. 

In scenario 5, we simulate the condition of the transmission grid malfunction. 

The transmission grid is basic infrastructure and its stability is important. Suppose 

that transmission lines P24 and Pzs diminish their capacities with 30MW, while the 

other conditions unchanged. It shows that the generators I, 3, 4, 6, 7, and 8 are 

scheduled to run. The locational price at buses I, 2, 3, 4, 5, and 6 are 2220, 2150, 

2224.2, 2910.7, 2312.4, and 2220, x:spectively. The locational price of bus 4 is 

significantly increased because the transmission lines P14 and P24 reach their limits. 

The transmission system retains the feature of monopoly. Thus, the ISO who co­

ordinates system operations should preserve its objectivity and reliability. 
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4. Discussion and Conclusion 

On the supply side, the generator that adopts high price bid alone may not be 

scheduled to run, but if many of the generator units adopt the high price bids (e.g., 

collusion), the locational prices will be raised. The generator that adopts low price 

bid alone may increase its opportunity to be scheduled to run, however, as most of 

the generators use the low-price bidding strategies, the locational prices will be 

lowered and cause their profit loss even though they were scheduled to run. On the 

demand side, if the load grows, the probability of the congestion or potential 

overloading will be increased and thus increase the locational prices of the corre­

sponding loads. Therefore, the generators may realize the revealed signal and 

further ncrease their bid prices. The constraints of the transmission network 

system operation affect the generator bidding and the power scheduling. The 

scarcity of transmission capacity leads to congestion and thus the locational prices 

and total system cost will be increased. Power industry with the traditional 

monopoly and have fewer participants in the supply and the transmission network. 

Therefore, the deregulation should start with increasing the generators and the 

available capacity of the transmission system. Small number of participants can 

collaboratively control the market. The transmission network should act as a 

common carrier that does not manipulate for private business interest. As the 

electrical industry becomes more competitive, transmission capacity constraints in 

production cost analysis and the accuracy of cost estimation is important. 
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Abstract. The concept of the pseudo-criterion plays an important role in com­
plex decision problems involving imprecise, uncertain and indeterminate data such 
as mangrove forests management. The outranking relation methods such as ELEC­
TRE are well known to deal with the pseudo-criterion. 

Ternary comparison method (TCM) in which a ternary AHP derives a prior­
ity vector from a single criterion concordance matrix is proposed to deal with a 
pseudo-criterion. Comparing the ranking of management alternatives for the man­
grove forests by TCM with that by ELECTRE, we discuss the advantages and 
disadvantages of TCM. 

1 Introduction 

Sustainable use of mangrove forests requires a multiple criteria approach be­
cause mangroves are valuable natural resource with distinctive diversity, high 
intrinsic natural productivity and unique habitat value. So far, a few multi­
criteriaapproaches have been reported. Among them is Janssen and Padilla's 
work [1] which evaluated management alternatives of Pagbilao mangrove 
forests in the Philippines. To derive the ranking of alternatives, they used 
a simple weighted sum of standardized effects. 

Since some values of alternatives are subjective indices and others are 
imprecise, and/or uncertain even if the criterion is quantitative, the pseudo­
criterion approach is preferable (see Roy and Vincke [2]). The outranking 
relation methods are used to deal with pseudo-criterion. Several versions of 
ELECTRE have been developed. Among others, ELECTRE III is the most 
familiar and has been widely used (see Roy [3] and Rogers et al. [4]). In 
general, it requires the weights assigned to criteria to build an outranking 
relation. It is, however, not uncommon that it is difficult to specify them 
precisely. 

Ternary comparison method (TCM) [5] in which a ternary AHP [6] derives 
a priority vector from a single criterion concordance matrix incorporates a 
restricted set of unknown weights into the model. Demonstrating the use of 
TCM to mangrove forests management, we shall discuss the advantages and 
disadvantages of TCM. 
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2 Ternary Comparison Method (TCM) 

Let us consider the set A of n alternatives: 

Let g1, g2, ... , gm be m-criteria. Thus, each alternative ai is characterized by 
a multiattribute outcome denoted by a vector 

In what follows, we assume that the decision maker prefers larger to smaller 
values for each criterion. Now, construct a ternary comparison matrix Tk = 
(tfj) for each criterion gk: 

(i) Strict preference aiPaj: gk(ai)- gk(aJ) > Pk, then tfj =(}and tji = 1/0 
(ii) Weak preference aiWaj: Qk < gk(ai)- gk(aJ) :::; Pk, then tf1 =(}and 
tji = 1 
(iii) Indifference aJa1: I gk(ai)- gk(aJ) j:::; Qk, then tf1 = tji = 1 
where Pk and Qk are respectively a preference and indifferent thresholds. 

In TCM , a ternary AHP [6] is applied to derive a priority vector being 
a ratio scale from Tk. That is, the eigenvector uk = ( u~, u~, ... , u~) (whose 
elements are normalized so that the maximum value is equal to 1) associated 
with the maximum eigenvalue of Tk is adopted as a priority vector. And the 
aggregate value of each alternative is obtained by an additive weighting rule: 

m 

ZJ = L:wkuj, 
k=l 

where Wk is a weight for criterion k. 
Let the indices of alternatives be renumbered in the descending order of 

gk( ai), that is, 

gk(a1) :::-: gk(a2) :::-: ... :::-: gk(an)· 

Then, since the corresponding ternary comparison matrix Tk = ( tt) satisfies 
t~ :::-: tj1 for all l, it follows from a well known property of the maximum 
eigenvector that uf :::-: uj. 

3 Pseudo-Criterion Approaches to Mangrove Forests 
Management 

Janssen and Padilla [1] evaluated the following eight management alterna­
tives: a 1 =Preservation (PR); a2 =Subsistence forestry (SF); a3 = Commer­
cial forestry (CF); a 4 = Aqua-silviculture (AS); a 5 = Semi-intensive aqua­
culture (SA); a6 = Intensive aquaculture (IA); a7 = Commercial forestry 
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and intensive aquaculture (CF /IA); and a 8 = Subsistence forestry and in­
tensive aquaculture (SF /lA). Then, they considered three criteria, economic 
efficiency,equity, and environmental quality simultaneously. The effects of 
management alternatives are summarized in Table 1(Table 5 in [1]). 

Table 1. Annual values of management alternatives for the Pagbilao mangrove 
forest [1]. 

unit PR SF CF AS SA lA CF/IA SF/lA 
Valued effects 
Subsistence 1000pesos 349.73 189.34 

forestry 
Commercial 1000pesos 415.84 217.77 229.00 

forestry 
Fishponds 1000pesos 6724.2 22000.0 17000.0 6328.0 6328.0 
Fish on site 1000pesos 163.05 158.63 158.63 122.58 8.14 8.14 40.00 40.00 
Fish off site 1000pesos 1.94 1.88 1.88 1.46 0.09 0.09 0.28 0.28 

Total value 1000pesos 164.99 510.24 576.35 7066.01 22008.23 17008.23 6597.28 6557.62 

Other effects 
Emissions tons/year 20.00 40.00 100.00 50.00 50.00 
Soil accretion em/year 1.00 0.34 0.42 0.22 0.10 0.05 0.13 0.15 
Biodiversity index 1.00 0.72 0.52 0.16 0.22 0.09 0.24 0.44 
Shore index 1.00 0.37 0.15 0.15 0.13 0.07 0.15 0.15 

protection 
Eco-tourism index 0.80 1.00 0.38 0.18 0.14 0.08 0.21 0.30 

The first five rows in table 1 are valued effects and are related to eco­
nomic efficiency and equity criteria. Others are not valued and are related to 
environmental criterion. The performance of the alternatives on these three 
criteria is shown in Table 2(Table 7 in [1]). Environment is defined as an index 
combining effects on soil accretion, emissions, shore protection, biodiversity, 
and eco-tourism. The relative weight of biodiversity within this index is ten 
times the relative weight of each of other effects. 

Table 2. Performance of the alternatives on three criteria [1]. 

unit PR SF CF AS SA lA CF /lA SF /lA 
Efficiency 1000pesosjyear 165 510 576 7065 22000 17000 6588 6558 
Equity lOOOpesos/year 165 510 576 341.8 8 8 260 230 
Environment index 12.8 9.0 6.2 -17.9 -37.4 -98.9 -47.1 -45.0 
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To derive the ranking of alternatives, Janssen and Padilla used a weighted 
sum (WS) of standardized effects. 

We will define threshold values: (1) economic efficiency: PI = 6600, QI = 
2200, VI = 22000; (2) equity: P2 = 172.8, Q2 = 57.6, v2 = 576; (3) emissions: 
P3 = 30, Q3 = 10, v3 = 100, ; and Pi = 0.3, Qi = 0.1, Vi = 1.0, (i = 4, 5, 6, 7), 
where (4) soil accretion, (5) biodiversity, (6) shore protection, and (7) eco 
tourism, 

Then, priority vectors which are obtained by TCM are as follows: 

UI = (0.417, 0.450, 0.450, 0.596, 1.000, 0.900, 0.596, 0.596), 
U2 = (0.484, 0.900, 1.000, 0.760, 0.343, 0.343, 0.580, 0.580), 
U3 = (1.000, 1.000, 1.000, 0.895, 0.542, 0.359, 0.490, 0.490), 
U4 = (1.000, 0.775, 0.775, 0.600, 0.458, 0.458, 0.500, 0.500), 
u 5 = (1.000, 0.900, 0.692, 0.412, 0.453, 0.374, 0.492, 0.692), 
U6 = (1.000, 0.844, 0.500, 0.500, 0.500, 0.451, 0.500, 0.500), 
U7 = (0.899, 1.000, 0.652, 0.450, 0.450, 0.413, 0.496, 0.597). 

We conducted three cases according to Janssen and Padilla. In all cases, 
following them, weights are assumed to be: Ws = l0w3, W3 = W4 = W6 = W7. 

Case 1. Efficiency, equity and environment are equally important. 

WS: CF ---+ SF ---+ AS ---+ SA ---+ PR ---+ CF /IA ---+ SF /IA ---+ IA 

SA ---+ AS ---+ PR IA 

/ ""' / ELECTRE III: SF CF 

""' / ""' SF/IA CF/IA 

TCM: SF ---+ CF ---+ PR ---+ AS ---+ SF /IA ---+ SA ---+ CF /IA ---+ IA 
The restricted set of weights is: W = { w I ws = l0w3, W3 = W4 = W6 = W7 

WI = W2 = 2::=3 Wi, Wi > 0, i = 1, 2, ... , 7}. 

We find in all methods that IA and CF /IA are less preferred alternatives 
and that SF is ranked very highly. The results of CF are mixed. While CF 
is ranked very highly in WS and TCM, it emerges as the lower ranking in 
ELECTRE III. 

Case 2. Efficiency is more important than equity, equity is more 
important than environment. 

WS: SA ---+ IA ---+ AS ---+ CF ---+ SF ---+ CF /IA ---+ SF /IA ---+ PR 
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SF 
/ 

ELECTRE III: SA ---> AS 

CF ---> PR ---> IA 
\../ 
---> 

\.. / \.. 
SF/IA CF/IA 

{SA,SF,CF} {PR, IA} 
\../ \.. 

TCM: CF/IA 
/\.. / 

AS SF/IA 

The set of weights is: W = { w I Ws = 10wa, wa = W4 = w6 = W7, 
WI> w2 > L:J=awi,Wi > O,i = 1,2, ... , 7}. 

In case 2, SA, SF, and AS are ranked very highly in ELECTRE III and 
TCM. SF emerges as around the middle of the ranking in WS. While IA is 
the second best alternative in WS, it is the lower ranking in ELECTRE III 
and TCM. 

Case 3: Environment is more important than equity, equity is more 
important than efficiency. 

WS: CF ---> SF ---> PR ---> AS ---> SA ---> CF /IA ---> SF /IA ---+ IA 

ELECTRE III: SF ---+ SF /IA ---+ AS ---+ SA ---+ CF ---+ 

IA 
/ 

/\.. 
PR --------- CF/IA 

TCM: SF ---+ PR ---> CF ---+ {AS, SF /IA} ---+ {SA, CF /IA } ---+ IA 
The set of weights is: W = { w I ws = lOwa, wa = W4 = W6 = w7 > 0, WI < 
W2 < LJ=3 Wi, Wi > 0, i = 1, 2, ... , 7}. 

In case 3, IA emerges as the least favored alternative and SF, PR are very 
favored alternatives in all methods. The results of CF are mixed. While CF is 
less favored in ELECTRE III, it is the best alternative in WS and the third 
best alternative in TCM. 



394 Santha Chenayah Ramu and Eiji Takeda 

4 Concluding Remarks 

In the situations where imprecise and/or uncertain data exist together with 
qualitative criteria, a multiple pseudo-criterion approach is the best suited. 
TCM is a method in which a ternary AHP is adopted for a pseudo-criterion. 

One of the difficulties in the outranking relation method such as ELEC­
TRE III is that it requires the weights to specify the concordance index and 
uses a distillation method involving a certain amount of arbitrariness in the 
selection of a discrimination threshold function. One of the advantages of 
TCM is that it does not require the weights precisely. One of the distinguish­
ing features of the outranking relation method is that it takes into account the 
discordance index by a veto threshold, while TCM does not. Since the proce­
dures treating a pseudo-criterion necessarily involve arbitrariness, it may be 
preferable to derive the rankings of alternatives by different procedures for 
promoting complementary viewpoints. 
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Abstract. A multi-objective optimization model in which three objectives, i.e., 
primary energy consumption, C02 emission and cost are considered, has been de­
veloped for planning future energy systems in an urban area. The model is a mixed 
integer LP and it is useful to investigate a desirable energy system in small areas 
(2km by 2km) by generating a set of non-inferior solutions. The model has been 
applied to an actual city in Japan, and effectiveness of those relatively new, energy 
efficient or environmentally viable energy systems such as co-generation, fuel cell, 
and solar systems, will be described in terms of these tradeoffs. 

1 Introduction 

It is widely recognized as an urgent problem to reduce green house gases 
(C02 , etc.) which cause the global warming issue. However, all countries do 
not perform sufficient countermeasures with diligence because people have to 
cease from current comfortable living and working space and economically 
efficient production systems to some extent. Also, in order to prevent from 
exhaustion of fossil energy resources, it is important to adopt new highly 
efficient energy technologies. Cost of the new technologies is still higher than 
those of conventional technologies. Thus, the issues of global warming, ex­
haustion of fossil energy resources and economic development can be essen­
tially treated as a class of typical multi-objective optimization problems [1]. 

This paper proposes a new multi-objective optimization model for determin­
ing urban energy systems. The proposed model is applied to an actual city 
in Japan, and the tradeoff relation among three indices is analyzed. 

2 Definitions of Energy System Alternatives 

2.1 Customer Modeling 

For simplicity, all customers in a specific area are grouped into seven types 
in the proposed model and they are geographically distributed in the area. 
These customer types are characterized by their daily end-use demand curves 
per floor space, such as space cooling and heating, and electricity (lighting, 
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computer, etc.). Also, these seven customer types are divided into two sectors 
as follows; 

• Business and Commercial sector : Office, Hotel, Hospital, Retail Store, 
Restaurant 

• Residential sector : Detached House, Apartment 

In the proposed model, a different set of energy system alternatives is 
designed for each sector as in the following section. 

2.2 Energy System Alternatives (Individual type) 

The energy system alternatives in business and commercial buildings, and 
residential houses are shown in Table 1 and Table 2, respectively. In Table 
1, the energy systems" ARH" and "ER" mean gas absorption refrigerating 
and heater, and electric turbo refrigerator, respectively. These are widely 
used in current Japanese business and commercial buildings. Because "HP" 
system is equipped with heat accumulation for space heating and cooling 
demand, the "HP" system is effective for load leveling of electric power utility. 
Also, characteristics of FC system are lower in C02 emission and higher in 
equipment cost than GE system. Two operational policies for FC and GE are 
indicated by suffix 1 and 2. In Table 2, energy system "CNV" is considered 
to be widely used in recent Japanese residential houses. The "SLR1" and 
"SLR2" are solar utilization systems. The "SLR1" includes both solar power 
generation and solar water heater. The "SLR2" includes only the solar water 
heater and, therefore the "SLR1" has higher cost and lower C02 emission 
than "SLR2". Also, "ELE" depends only on electric energy supply. The "FC" 
is small-size fuel cell system for residential house, and its C02 emission is 
lower and its energy consumption is less than "CNV" system because the 
waste heat from the fuel cell is used for heated water supply. The "FC" is 
one of powerful options in future residential houses. 

Table 1. Energy system alternatives in Business and Commercial sector 

Symbols Components 
ARH Absorption refrigerating and heating + Boiler 
ER Electric refrigerator + Boiler 
HP Heatpomp system + Heat accumuration equipment 

GE1,GE2 Gas engine+ Absorption refrigerator+ Boiler 
FC1,FC2 Fuel cell + Absorption refrigerator + Boiler 

DHC DHC(District Heating and Cooling) 
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Table 2. Energy system alternatives in Residential sector 

Symbols Components 
CNV Air-conditioner + Stove + Gas-boiler 
SLRl CNV + Solar power generation + Solar water heater 
SLR2 CNV + Solar power generation 
ELE Air-conditioner + Electric water heater 
DHC DHC(District Heating and Cooling) 

2.3 Centralized-type Alternative (District Heating and Cooling 
System) 

The proposed model considers District Heating and Cooling (DHC) system 
as a centralized-type energy system. Cooling and heating energy (as cold 
and hot water) are supplied from a DHC plant to the customers included in 
the DHC covered area through piping networks as shown in Fig. 1. The DHC 
plant is a larger cogeneration plant that can be operated more efficiently than 
individual energy systems. As for piping network for transporting thermal 
energy, since the detailed network planning naturally becomes a large scale 
mixed integer optimization problem, and therefore, this paper assumes that 
each customer is directly connected to the DHC plant as shown in Fig. 1. 

LJ 
LJCJ· 

Fig. 1. Piping network model for DHC system 

Block$ with individual 
systems 

3 Formulation of multi-objective optimization model 

3.1 Evaluation indices 

The entire optimization problem is described as a mixed integer linear pro­
gramming problem in which the share of each energy system alternative, the 
capacity and operational strategy of the DHC plant are determined simulta­
neously. The evaluating indices, i.e., cost, C02 emission and primary energy 
consumption, are calculated as follows: 
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"" "" E- a-least = L.,; C APi · Ui + L.,; lin · On + D · E + D · G 
iEJ nEN 

+ L w. L { d~t . X6,s,t + d~t . X7,s,t +dE sells,t . X9,s,t 
sES tET 

+ dGB B + dGR R } + doil T. s,t ' 9s,t s,t ' 9s,t · oil 

+ L L { L An,m} · Y::.,j · CAP:/.,j 
mEMs jEJs nEN 

+ L L { L An,m} · Y!,j · CAP:/;,j 
mEMR jEJR nEN 

Jc02 = 0.0575 · TX1 + 0.1129 · TXtay 

+ 0.0847 · TX'f:ight + 0.0805 ·Tail 

2450 { day night} 
Jpri = TX1 + 860 · TX6 + TX6 +Tail 

(1) 

(2) 

(3) 

where(variables), Ui: capacity of equipment i in DHC plant, On: block in 
DHC area (0-1 discrete variable), E, G: maximum demand of electricity and 
city-gas, yf!.,j, Y:/;,{ non-negative share of energy system alternatives, x6 ,s,h 

X7,s,t: purchased electricity and city-gas from outside utilities, gf,t, g~t:city­
gas consumption of individual energy systems at business and residential 
sector, T xtay, T X'f:ight: annual purchasing elecric energy at day time and 
night time, TX7,TXaiZ: annual purchasing gas and kerosene, (constants), 
C APi: capacity cost of equipment i, lin: piping cost, DE, D 0 : charge for peak 
demand, dlft,d<ft: electrcity and city-gas price for DHC plant, dlf'tell: selling 
price of re~erse' power, df,f, df,{l: city gas price for business a~d residen­
tial sector, doil: kerosene price, An,m: floor space, CAP!_,j, CAP:/;,{ equip­
ment cost per floor space of individual energy system, W.: number of days, 
(Suffix), n: number of block, m: customer type, s: season, t: hour, i: equip­
ment in DHC plant, j: energy system alternative, B: business and commercial 
sector, R: residential sector 
In equation (2), the C02 emission coefficient of purchased electricity at day 
time and night time are different because of the different operating mix of 
electric power sources (coal, nuclear , oil and so on). Also, in equation (3), 
for conversion of electric energy to primary energy, coefficient is a reverse 
number of generating efficiency of outside electric utilities. 

3.2 Constraints 

Detail description of constraints is ommited due to the lack of space. As 
an important constraint, share variables of energy system alternatives must 
be summed up to 100%. Also, the purchased energy, i.e. electricity, city-gas 
and kerosene, from outside utilities are defined in order to evaluate the above 
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three indices. A commercial solver package (GAMS/Cplex) is used for solving 
the above mixed integer linear programming. By using the solver package, an 
optimal solution can be obtained within a few minutes. 

4 Tradeoff analyses 

4.1 Studied area and analysis method 

The proposed model is applied to an actual city (about 2km by 2km) in Japan. 
The ratio of the residential sector is over 60% in terms of floor space as shown 
in Table 3. A reference (current) energy system is defined as in Table 3 as a 
basis for making comparisons. Also, this paper adopts the constraint method 
in order to obtain non-inferior solutions. 

Sector Customer type Floor area [%] Reference system 
Business Office 23.8 ARH(24.4%), ER(75.6%) 

and Hotel 1.7 ER 
commercial Hospital 1.6 ER 

sector Retail store 8.3 ER 
Restaurant 1.6 ER 

Residential Detached house 36.9 CNV 
sector Apartment 26.1 CNV 

Table 3. Floor space and their reference system 

4.2 Results 

In Fig. 2, the solutions are illustrated in two dimensional plane using C02 
reduction rate as a parameter. In case of no C02 constraint, the maximum 
reduction of primary energy consumption is about 30 % at the cost increase 
of about 65 % compared with the current system. Taking C02 emission con­
straint into consideration, cost index become worse in some cases, because 
more environmentally viable and more expensive energy systems are adopted 
owing to C02 emission constraint. And also, in case of 20% reduction of C02 
emission, all Pareto optimal solutions can reduce primary energy consump­
tion simultaneously, i.e., positive reduction rate of primary energy consump­
tion. It follows from this that primary energy consumption and C02 emission 
is not necessarily be independent each other. In case of no C02 constraint, 
the variations of energy systems in business and commercial sector, and res­
idential sector are shown in Fig. 3 and Fig. 4, respectively. In Fig. 3, the 
energy system varies from the mix of DHC, GE and ARH to the dominance 
of the DHC system and then to the mix of DHC and individual FC systems. 
And in Fig. 4, the energy system varies from the dominance of CNV and 
ELE to FC and then to the mix of SLRl and SLR2. 
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5 Conclusion 

This paper proposed a multi-objective planning model for energy systems in 
an urban area, and illustrated tradeoff relations among cost, C02 emission 
and primary energy consumption. Using this model, the energy system alter­
natives are characterized from the viewpoint of primary energy consumption. 
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Abstract. This paper presents an application of DEA to ex ante planning based 
on an empirical data, while many applications of DEA are directed to the ex post 
evaluations of accomplishments of competing DMUs. 

For TV advertising planning, it is crucial to identify best practice commercials. 
However, though much effort has been done on determining advertising-response 
curves, there is little conclusive evidence as to the functional form of the maximum 
awareness value of the audiences given the repetitive insertions of a certain TV 
commercial to several dayparts. 

We propose a simple non-parametric approach to an optimization problem with 
unknown functional form of the frontier based on DEA. Using the awareness data 
of TV commercials by TV-CM KARTE as past observations, an illustrative appli­
cation to the allocation of various TV commercials to dayparts is provided. 

1 Introduction 

There is no doubt that TV commercial is very attractive to advertisers. But 
we have to concede that TV commercial is costly. Thus, how to make TV 
commercial more efficient is an important theme for advertisers. 

To to this, it is crucial to identify the best practice commercials. For 
the allocation problem in TV advertising planning, however, it is difficult to 
specify the functional form of the maximum awareness value of the target 
audiences given the repetitive insertions of a certain TV commercial to sev­
eral dayparts. In such cases, the parametric approach which has been most 
frequently used may not be appropriate. 

Instead, an efficient frontier is estimated from sample data using DEA. 
Banker [1] showed that DEA estimator of the production frontier is the ML 
estimator under appropriate conditions and that the frontier estimator is 
biased below the theoretical frontier for a finite sample size and that asymp­
totically this bias reduces to zero. 

Since its introduction, many applications of DEA have been reported (see 
Charnes et al. [2], Cooper et al. [3]). In marketing applications, for instance, 
Horsky and Nelson [4] discussed the relationship between the size of sales 
personnel and sales response and the reallocation of the sales personnel using 
a bench-marking technique based on DEA. Mahajan [5] presented a DEA 
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model for assessing the relative efficiency of sales units that incorporate mul­
tiple and/ or conflicting resources and outcomes. 

This paper proposes a simple DEA model for allocating various TV com­
mercials among the dayparts based on an empirical data. An illustrative 
application in this paper is based on the awareness data collected from a 
sample of 56 commercials in 1997 by TV-CM KARTE [6] which include both 
the original awareness values in all age levels and the insertion number per 
commercial in each daypart. A column added on the right of the table in the 
appendix is the BCC efficiency score of each commercial (see Appendix). 

2 DEA approach to the allocation of various TV 
commercials to dayparts 

In general, television-broadcasting time is divided into several types that are 
termed as dayparts during each broadcast day. We consider four main day­
parts often used in real world for analysis. That is, D1 =A time, D2 =Special 
B (SB)time, D3 =B time, and D4 =C time which are ordered according to 
unit costs, that is, A time class has the highest unit cost. 

A target segment is defined in terms of demographics. According to TV­
CM KARTE, eight market segments are considered, that is, M1 = male aged 
13-19, M 2 =male aged 20-34, M3 =male aged 35-49, M4 =male aged 50-59, 
M 5 =female aged 13-19, M 6 =female aged 20-34, M 7 =female aged 35-49, 
M 8 = female aged 50-59. 

Let C 1 , C 2 , ... , C 56 be different commercials as past observations by TV­
CM KARTE. Each observed commercial Ci is characterized by an input 
vector Xi= (xli,X2i,X3i,X4i) and an output vector Yi = (Yli,Y2i,··. ,Ysi), 

where Xji is the number of insertions of Commercial ci within daypart Dj 

and Yki be the "CM"-awareness value(%) of the commercial Ci with market 
segment Mk. For simplicity, we assume that Xji is continuous. The fractional 
solutions shown in the results should be appropriately rounded up to the 
integer value in practice since the number of insertions in any daypart is 
integral. "CM"-awareness value is defined as the percentage of the number 
of individuals who answered "I watched that TV commercial" within the 
sample in each market segment. 

Since, in general, the advertiser who has various TV commercials with 
different target audiences purchases a sufficiently large number of units in 
dayparts at once, let Si be the number of units in daypart Dj available for 
the advertiser. 

Assume that the advertiser has two TV commercials of C(l) : young female 
cosmetics and C(2): senior citizen cosmetics to be inserted in TV repeatedly 
during a specified time period. 

Consider how to allocateS = (S1,S2 ,S3 ,S4 ) to C(l) and C(l) so as 
to maximize each awareness value as much as possible. To this end, the 
compromise programming is employed to get a solution that is as close to the 
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ideal point as possible. To measure the distance between each solution and 
the ideal point, it employs lp -norm. When p = 1 or oo, the problem becomes 
a linear programming problem (see Yu [7]). 

Let W1 = W2 = 1 and target population weights be respectively 
w 1 = (wn) = (0, 0, 0, 0, 0.5, 0.4, 0.1, 0) 
and 
w 2 = (wt2) = (0, 0, 0, 0.5, 0, 0, 0, 0.5). 
Given a set of observed data {(y1,xj),j = 1,2, ... ,56}, the compromise 
programming problem for a data envelopment approximation problem is then 
represented by: 

2 

min{L izZ- Zkip}lfp 

k=l 

s.t 
8 

Zk = LWtkY~k),k = 1,2, 
t=l 

56 

Y (k) = '"""'..\(k)Y· k = 1 2 
L....J J J' ' ' 
j=l 

56 

X (k)-'"""' ,(k)x· k -1 2 - L......t /\j )' - ' ' 
j=l 

(1) (2) s . xi +xi :::; i, 2 = 1, 2, 3, 4, 

56 

'"""'..\ \k) = 1 k = 1 2 
L......t J ' ' ' 
j=l 

.x]k) 2:0, k = 1,2;j = 1,2, ... ,56 

where z!, z~, are ideal points, y(k) = (y~k), y~k), ... , y~k)) and 
x(k) - (x(k) x(k) x(k) x(k)) k = 1 2 

- ll2l3l4' ' 
Note that the obtained best practice allocation may be a virtual campaign 

which is constructed by a convex combination of actual past campaigns of 
which the set is called a reference set. One of the advantages of DEA model 
is that it provides not only the optimum allocation (a virtual campaign) but 
also its reference set. The reference set consists of the actual campaigns that 
are most like the best practice virtual campaign. Therefore it serves to locate 
the best practice as benchmarking. 

Assume that S = (S1, S2 , S3 , S4) = (40, 40, 40, 40) 
Then an ideal point is z* = (zi z2) = (71.65%, 49.67%) 

For h, we have a compromise solution: Z1 = 71.0%, z2 = 27.6%, xC1l = 
(17.3, 29.1, 23.4, 20.0), xC2l = (22.7, 10.9, 16.6, 20.0) which are attained at 
.X~1)* = 0.680, ..\~~* = 0.320, ..\~2)* = 0.065, ..\~~* = 0.066, ..\~~* = 0.368, 
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,\~~· = 0.502, and ..\)i) = 0, otherwise. Thus, to achieve these awareness val­
ues, it may be useful to examine C1 and C30 for c<tl and C7 , C15 , C46 and 
C54 for c<2l as benchmarking. 

For loc" we have Zt = 59.5%, Z2 = 37.5%, :z:(l) = (18.6, 20.4, 23.2, 19.3), 
x<2l = (21.4, 19.6, 16.8, 20. 7) which are attained at ,\~~· 0.257, ,\~~· 
0.687, ,\~~)· = 0.056, ,\~2)* = 0.023, ,\i;)• = 0.442, ,\~~· = 0.238, ,\~~· = 

0.297, and ,\Y) = 0, otherwise. 
Comparing the result for lt with that for loo, we can see that SB daypart is 

effective for both C(l) and C(2) but is more effective for C(l). The awareness 
of sinior citizen cosmetics can raise at the expense of SB daypart toward 
young female cosmetics. 

3 Concluding remarks 

We have proposed a simple non-parametric approach to the allocation prob­
lem of various commercials to dayparts based on DEA. As an illustrative 
example, its application to the ex ante planning was provided using the aware­
ness data of commercials by TV-CM KARTE. 

Limitations of our simple model are: 
(1) A day is divided in 4 time classes, A,SB,B,and C. Therefore, various 
spots, which may affect TV-awareness differently, are classified into the same 
daypart. 
(2) Campaign periods vary among commercials though too-long campaigns 
periods are excluded from the analysis. 
(3) Pattern of a daypart combination is not taken into account, e.g., some 
campaigns are scheduled intensively in a short time period, others are sched­
uled extensively in a campaign period. 

As was seen in an illustration, one of the advantages of the data envelop­
ment approximation model is that it locates the reference set as well as the 
optimum virtual campaign. It is useful to examine the actual patterns of TV 
campaigns included in the reference set as benchmarking for further analysis. 
Thus, despite its simplicity, we can gain insights about the patterns of the 
combination of dayparts. 
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Appendix 

Table 1 TV-CM CARTE 

Cj x1 X2 X3 X4 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Ys BCC score 
1 16 24 26 29 60 48 35 28.1 68.4 73.1 54.2 36.5 1.00 
2 15 72 31 58 72.5 54.5 44.7 36.8 50 70.4 59.4 47.6 1.00 
3 92 114 59 75 52.5 43.1 37.9 31.6 63.2 53.7 29.2 17.5 0.27 
4 45 88 101 81 80 52.8 45.6 35.1 78.9 74.1 63.5 44.4 0.54 
5 20 26 73 30 62.5 41.5 40.8 29.8 42.1 61.1 58.3 38.1 1.00 
6 30 62 12 39 60 60.2 41.7 26.3 55.3 66.7 46.9 23.8 0.91 
7 16 8 88 2 10 8.1 13.6 8.8 15.8 25.9 25 30.2 1.00 
8 32 32 59 10 50 43.9 27.2 14 47.4 55.6 45.8 27 0.83 
9 96 69 39 64 37.5 26 27.2 15.8 50 54.6 31.3 19 0.29 
10 26 28 52 26 55 24.4 20.4 5.3 39.5 35.2 18.8 12.7 0.71 
11 17 33 8 34 55 50.4 30.1 24.6 65.8 53.7 44.8 19 1.00 
12 111 150 62 31 80 63.4 56.3 35.1 89.5 93.5 84.4 76.2 1.00 
13 27 39 41 25 47.5 34.119.4 12.3 65.8 65.7 51 36.5 0.69 
14 50 78 21 13 82.5 65 55.3 26.3 89.5 88.9 66.7 34.9 1.00 
15 20 32 20 22 70 57.7 65 47.4 57.9 78.7 63.5 57.11.00 
16 34 57 53 46 40 29.3 19.4 10.5 36.8 50.9 27.1 14.3 0.39 
17 31 80 45 62 75 65 37.9 26.3 81.6 74.147.9 28.6 0.74 
18 31 56 23 39 12.5 5.7 2.9 0 7.9 8.3 6.3 6.3 0.48 
19 37 36 11 14 70 56.9 41.7 29.8 60.5 81.5 45.8 27 1.00 
20 79 114 30 39 75 61.8 66 50.9 71.1 84.3 79.2 74.6 1.00 
21 24 30 19 49 27.5 7.3 7.8 3.5 23.7 24.1 9.4 4.8 0.54 
22 114 138 70 89 20 30.9 26.2 31.6 13.2 25 9.4 15.9 0.20 
23 28 80 40 71 40 37.4 27.2 24.6 39.5 38.9 29.2 23.8 0.48 
24 15 36 27 25 22.5 22.8 28.2 19.3 18.4 50.9 47.9 38.1 0.99 
25 93 165 92 134 72.5 65 46.6 26.3 89.5 84.3 53.1 42.9 0.44 
26 26 43 10 94 50 42.3 21.4 7 39.5 32.4 18.8 11.1 0.68 
27 27 40 63 32 32.5 19.5 22.3 7 44.7 56.5 45.8 20.6 0.58 
28 48 42 18 23 75 65 55.3 50.9 68.4 79.6 59.4 52.4 1.00 
29 26 37 70 61 70 52 48.5 19.3 63.2 56.5 55.2 31.7 0.84 
30 20 40 18 1 70 58.5 44.7 12.3 84.2 71.3 50 33.3 1.00 
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Table 1 TV-CM CARTE (continued} 

Ci X1 x2 X3 X4 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Ys BCC score 
31 42 47 98 69 52.5 51.2 53.4 50.9 47.4 59.3 55.2 61.9 0.94 
32 22 22 36 54 65 44.7 45.6 35.1 52.6 65.7 54.2 31.71.00 
33 70 77 17 44 80 71.5 60.2 31.6 65.8 77.8 61.5 42.9 0.89 
34 66 121 148 91 32.5 26 38.8 15.8 39.5 58.3 50 38.1 0.24 
35 17 13 26 27 52.5 33.3 33 21.1 50 60.2 45.8 22.2 1.00 
36 34 65 38 64 17.5 20.3 11.7 7 39.5 56.5 33.3 19 0.45 
37 39 53 48 84 22.5 16.3 4.9 0 13.2 11.1 4.2 3.2 0.30 
38 46 128 64 53 17.5 11.419.4 17.5 23.7 33.3 25 27 0.25 
39 20 19 18 18 2.5 10.6 14.6 7 2.6 10.2 13.5 9.5 0.73 
40 39 51 15 34 87.5 78 63.1 50.9 63.2 77.8 70.8 54 1.00 
41 31 22 12 8 47.5 47.2 29.1 15.8 60.5 57.5 40.6 23.8 1.00 
42 67 95 31 28 90 78.9 80.6 73.7 71.1 86.1 71.9 61.9 1.00 
43 52 105 64 95 90 73.2 51.5 28.1 89.5 85.2 68.8 27 1.00 
44 29 28 53 54 52.5 41.5 20.4 14 50 52.8 36.5 25.4 0.65 
45 37 63 19 107 40 39 35 14 39.5 57.4 41.7 23.8 0.51 
46 9 17 15 5 17.5 8.9 10.717.5 13.218.5 17.7 23.81.00 
47 20 57 82 61 85 74 67 52.6 81.6 82.4 87.5 71.4 1.00 
48 23 53 26 16 47.5 29.3 32 12.3 31.6 46.3 35.4 19 0.65 
49 32 61 46 129 90 74 58.3 24.6 89.5 88 67.7 44.4 1.00 
50 71 87 39 37 77.5 61 64.1 49.1 81.6 75.9 84.4 61.9 1.00 
51 17 27 48 38 25 19.5 34 22.8 23.7 36.1 45.8 42 0.92 
52 30 27 52 16 70 43.1 34 31.6 81.6 66.7 52.1 42.9 1.00 
53 18 11 4 46 37.5 26.8 16.5 7 31. 6 32.4 16.7 7.9 1.00 
54 34 4 8 33 35 30.9 30.1 24.6 26.3 33.3 34.4 36.5 1.00 
55 71 117 24 118 57.5 65.9 59.2 50.9 71.1 72.2 58.3 46 0.82 
56 37 59 17 5 77.5 58.5 38.8 19.3 92.1 71.3 54.2 33.3 1.00 
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Abstract 

This study integrates cost management and statistical decision analysis to con­
struct a decision framework to determine an optimal alternative that balances mul­
tiple objectives of efficiency, cost, and risk. The framework was implemented in a 
testing firm and the experimental results showed its practical viability. 
Key Words: Decision Analysis, Semiconductor Manufacturing, Final Test 

1. Introduction 

The various testing alternatives consisting of different setups and testing processes 
will affect the overkill and underkill rates of tested products. Overkill indicates 
that the product is truly good, but the test result is bad, i.e., false bad. Underkill 
indicates that the product is truly bad, but the test result is good, i.e., false good 
[ 1]. The overkilled products are rejected and thus result in the loss of the corre­
sponding manufacturing cost. The underldlled products are sold and thus result in 
customer complaints and purchase returns. There is a trade-off between the over­
kill and underkill rates [2]. little research has been done to analyze semiconductor 
final testing alternatives. This study aims to develop a framework for analyzing al­
ternative testing strategies and processes, and thus determining the optimal testing 
alternative. An empirical study was conducted in a final testing factory, whose 
primary product is Mask Read-Only-Memory (Mask ROM). 

2. Research Framework 

We propose a research framework in which the throughput of testing process, 
the various risks, and the costs associated with overkilled and underkilled products 
are considered to determine the optimal decision as illustrated in Fig. l. A testing 
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alternative is defined by its receipt that consists of several testing processes and 
the corresponding thresholds. Performing the different testing alternative will af­
fect the cost and productivity of the testing factory. Tested products are graded as 
pass or fail, by the comparing the tested parameters with the thresholds. Notably, 
the passed products consist of truly good and underkilled (i.e., false good) prod­
ucts. The failed products consist of truly defective and overkilled (i.e., false bad) 
products. 

Get Order Capadty 

Monthly N"""""'Y Input 
..onter Capadty/Good Rate 

Fig. 1. Research framework 

Moothly Input 
~Minlmum Value of Monthly N"""""'Y and 

MlUimnn Product Capadty 

Test Cost 
=Monthly Depreciation/ Monthly Input 

Estimate Unit Sales Profit In 
Eadt Alternative 

Figure out the Failure Cost 
Under Dilferent Quality 

Polides 

----, 

Determine the Test 
Result In Each 

Altemative 

Let us first consider a test process that contains two sequential test procedures, 
A and B, as illustrated in Fig. 2, where oA, uA, and dA denote the overkill rate, un­
derkill rate and defect rate of test procedure A, respectively. Also, o8 , u8 , and d8 

denote the overkill rate, underkill rate and defect rate of test procedure B, respec­
tively. Following [3], in serial tests, the underkill rate becomes u8 *(1-oA-dA).The 
total overkill rate will be [ o A +oB *(1-o A-dA)]. Then, the defect rate of procedure B 
is derived by deducting its underkill rate from that of procedure A, i.e., uA- u8 *(1-
o A -dA).J\.lso, the true good rate of the two serial tests is derived by deducting the 
overkill rate of procedure B from the yield rate of procedure A, i.e., (1- o8 )*(1-oA­
dA)-uA. 

Similar approaches may be easily extended to derive the parameters of a num­
ber of serial tests involved in different testing alternatives (see Fig. 3). 
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Pass 

Fig. 2. Results of two sequential tests 

Overkill Rate=o a 
Underkill Rate=u s 

Defect Rate=d a 

Overkill Rate=o,.. 
Underkill Rate=u A 

Defect Rate=d ,.. 

As for the input data, the defect rate, overkill rate, underkill rate, and test time 
can be obtained from the historical or experimental data. The required monthly in­
put can be calculated from both order capacity and yield rate. The throughput rate, 
i.e., unit per hour (UPH), and the maximum product capacity can be calculated by 
testing time. Certainly, the monthly input is the lesser value between the monthly 
necessary input and the maximum product capacity. Then, the numbers of good, 
defect, overkill, and underkill products are calculated from the monthly input and 
the good rate, defect rate, overkill rate, and underkill rate. Based on monthly input, 
the test cost can be calculated with the monthly depreciation of the machine. The 
unit sale profit can be estimated with manufacturing cost of wafer fabrication, wa­
fer sort and assembly. In addition, the quality policy disposes the product failure 
cost. 

3. An Empirical Study 

An empirical study was conducted in a semiconductor final testing firm in Tai­
wan. During hot seasons, the orders are nearly 30% larger than its capacities. To 
meet these orders and thus satisfy customer demand, the alternative of reducing 
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testing time to increase capacity is investigated. The tested product has to pass 
both DC and AC test procedures. A high DC voltage input is used to ensure that 
electrostatic discharge (ESD) does not fail the product. An input operational AC 
impulse voltage is used to confirm that the stored data of this product is operable. 
There are mainly two approaches to reduce AC testing time: 1) reduces the AC 
test time in each test (Tcyc Reduction) and 2) reduces test procedures (Margin 
Mode). 

Orla:tnal 
Procedure 

Tcyc 
Reduction 

Margin Mode 

Fig. 3. Alternatives for Final Testing 

Teye Reduction and Margin Mode 
Margin Mode A 

Teye Reductlan and 
Margin Mode A 

In particular, we examined six alternative testing strategies as illustrated in Fig. 
3. Tcyc denotes the cycle time in each AC test, TRDH represents the response 
time of MASK ROM during AC testing and V cc or V ce are the input voltages of 
the AC test. The first alternative is the existing alternative that consists of six pro­
cedures. The second followed the existing procedures, but reduced the cycle time 
from 250 ns to 200 ns. The third and forth alternatives consisted of only five pro­
cedures, however, the latter reduces the cycle time from 250 ns to 200 ns. The 
fifth and sixth alternatives both consisted of four procedures while the sixth alter­
native also reduced the cycle time from 250 ns to 200 ns. 

The defect rate, overkill rate, underkill rate and test time can be obtained from 
the historical and experimental data. From test data of the existing alternative, the 
corresponding underkil~ overkill, and defect rates m:re derived. Although Tcyc 
reduction test reduced cycle time, it increased the overkilled rate. Meanwhile, for 
the test procedure with an input high AC voltage signal (i.e., AC-Hi, Vcc=3.9V), 
the overkill rate was also increased. Furthermore, because of increased overkill 
rate and relaJed product quality, the TRDH was increased from 20ns to 22ns. In­
deed, experiments were conducted in two test batches that consist of 35 sets of 
underkill products. Each sample test batch contained 295 test products. Thus, the 
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total overkill and underkill rates were derived as cycle time reduced. Table 
summarizes the possible results ofthe sixalternatives. 

Table 1. Test results of the six alternatives 

Test Original Tcyc Margin 
Alternatives Procedure Reduction Mode 

Margin 
Mode& 
Tcyc 
Reduction 

Margin Margin 
Mode A Mode A & 

Tcyc 
Reduction 

Good Rate 94.656% 92.261% 94.461% 91.95% 94.454% 92.9354% 
Underkill 

Rate 
Defect rate 
Overkill 

Rate 

0.039% 0.04<)0/o 0.079% 0.070% 

5.00% 5.00% 5.00% 5.00% 
0.305% 2.690% 0.46% 2.98% 

0.0856% 0.0846% 

5.00% 5.00% 
0.46% 1.98% 

The cycle time of the original test alternative was 18.1 seconds. The total cycle 
times of the other alternatives are proportional to the involved test steps as shown 
in Table 2. We converted the cycle time into UPH based on the company's own 
formula. That is, UPH=(A*B)/((C+D)*(l+E)), where A is 3600 sec/hr, B denotes 
the number of simultaneously tested products, C denotes the test time, D denotes 
the interface time, and E denotes the interrupt rate. Table 2 summarizes the de­
rived UPH, the associated test cost, and the corresponding capacity. In addition, 
because of the different yield rates, the necessary input to deliver the order of 
520,000 passed ICs were derived as given in Table 2. 

Table 2. Test Time and Cost of the Alternatives 

Test Alternatives 

Original Procedure 
Tcyc Reduction 
Margin Mode 
Margin Mode and 

Tcyc Reduction 
Margin Mode A 
Margin Mode A & 

Tcyc Reduction 

Test UPH Test Cost Capacity Necessary Input 
Time (ea.lhr) (NTD/ea.) (ea./month) (Order=520,000) 
sec 
18.10 604.15 3.83 449,488 549,357 
14.48 718.78 3.22 534,772 563,618 
15.08 696.86 3.32 518,464 564,874 
12.07 882.69 3.06 612,081 565,525 

12.07 882.69 3.13 612,081 550,530 
9.65 962.41 3.07 716,033 559,528 

Then, we derived the various profits and costs associated with the test alter­
natives. The sale price of each M-ROM wasNT$132 dollars. The manufacturing 
cost of wafer fabrication, wafer sort, and assembly were $99.6, $1.9, and $6.9, re­
spectively. An overkilled product that is considered to be defect will not be sold 
and thus cause a profit loss of its sale price. On the other hand, an underkilled 
product that is defect, yet has been sold will be identified by the customer later. 
According to the quality policy, which is the common, customers receive full re­
fund of sale price, if they receive an underkilled (defect) product. Notably, the sale 



414 Hung-Ju Wang, Chen-Fu Chien, and Chung-Jen Kuo 

profit is the number of good products multiplied by the unit sale profit. The failure 
cost is the accumulation of defect cost, as well as overkill and underkill costs . The 
defect cost equaled the number of defects multiplied by the unit defect cost. The 
overkill cost equaled the number of overkills multiplied by the unit overkill cost. 
Similarly, the underkill cost equaled the number ofunderkills multiplied by the 
unit underkill cost. Table 3 presents the results of the above calculations, which 
are similar to the die level cost model. In particular, Margin mode A is the most 
profitable alternative in this case study. 

Table 3. Profit Analysis ofthe Alternatives (Unit: NT$ l ,000) 

Test 
Alternative 

Sales Profit 
Defect Cost 
Overkill Cost 
Underkill Cost 

Original Tcyc Margin Margin 
Procedure Reduction Mode Mode & 

Tcyc 
Reduction 

8,412 10,055 9,932 10,691 
2,522 2,985 2,896 3,151 

181 1,899 315 2,225 
23 35 54 52 

Margin Margin 
Mode ModeA& 
A Tcyc 

Reduction 
10,644 10,670 
3,070 3,118 

334 1,462 
62 62 

Operation 5,685 5,137 6,667 5,263 7,178 6,027 
Income 

4. Conclusion 

In this study, a statistical decision analysis framework that tradeoffs multiple o b­
jectives of the different risks, the associated costs, and the efficiency (i.e., UPH) 
was developed to analyze various testing alternatives. An empirical study was 
conducted in an IC testing firm in Taiwan. The experimental results validated the 
practical vilbility of the proposed framework. Further research is required to col­
lect related data and update the parameters continuously in the light of technology 
changes in IC products and testing equipment. A decision support system with the 
proposed framework embedded and the related data collected may be developed to 
assist such decisions to increase testing profits dynamically. 
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Abstract. A discrete-time European options model with uncertainty of both ran­
domness and fuzziness is presented, by introducing fuzzy logic to the stochastic fi­
nancial model. The randomness and fuzziness in the systems are evaluated by both 
probabilistic expectation and fuzzy expectation, taking account of buyer's/writer's 
subjective demand goal. Fuzzy prices of European call/put options with uncertainty 
are given and their valuation and properties are discussed under a reasonable as­
sumption. The meaning and properties of buyer's/writer's permissible range of 
expected prices are discussed in a numerical example. 

1 Introduction 

In mathematical modeling for European callfput options with uncertainty, 
the study of the discrete-time model is one of the most important approaches 
to investigate the continuous-time model through approximation (Pliska [3], 
Ross [5] and so on). We discuss the financial model with randomness and 
fuzziness as uncertainty from the viewpoint of fuzzy expectation, taking ac­
count of human subjective judgment. In this article, probability is applied 
as the uncertainty such that something occurs or not with probability, and 
fuzziness is applied as the uncertainty such that we cannot specify the exact 
values because of a lack of knowledge regarding the present stock market. By 
introducing fuzziness to stochastic processes in decision-making, we present a 
model with uncertainty of both randomness and fuzziness, which is a reason­
able and natural extension of the original stochastic process. Next we discuss 
confidence intervals of European options prices with uncertainty (random­
ness and fuzziness) to secure the expected prices under investor's fuzzy goal 
which is considered as a demand function. 

In order to describe a finance model with fuzziness, we need to extend real­
valued random variables in the classical probability theory to fuzzy random 
variables which are random variables with fuzzy number values. Fuzzy ran­
dom variables were first formulated mathematically by Puri and Ralescu [4] 
and have been studied by many authors. This article derives a recursive equa­
tion for the fuzzy option price process and gives a method to solve the problem 
without loss of worthy information contained in uncertainty like randomness 
and fuzziness. 
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2 Fuzzy stochastic processes 

First, we give some mathematical notations regarding fuzzy random variables. 
Let (D, M, P) be a probability space, where M is au-field of n and Pis a 
non-atomic probability measure. ~denotes the set of all real numbers. A fuzzy 
number is denoted by its membership function a:~ f--+ [0, 1] which is normal, 
upper-semicontinuous, fuzzy convex and has a compact support. We identify 
fuzzy numbers with its corresponding membership functions. R denotes the 
set of all fuzzy numbers. The a-cut of a fuzzy number a( E R) is given by 
aa := {x E ~ I a(x) :::-: a} for a E [0, 1] and ao := cl{x E ~ I a(x) > 0}, 
where cl denotes the closure of an interval. We write the closed intervals as 
aa := [a;;, a;t"] for a E [0, 1]. 

An R-valued map X defined on [l is called a fuzzy random variable if 
the maps w f--+ X~(w) and w f--+ x,t(w) are measurable for all a E [0, 1], 
where Xa(w) = [X~(w),X,t(w)] := {x E ~I X(w)(x) 2: a}. Next we need to 
introduce expectations of fuzzy random variables. A fuzzy random variable 
x is called integrably bounded if both w f--+ x~(w) and w f--+ x,t(w) are 
integrable for all a E [0, 1]. Let X be an integrably bounded fuzzy random 
variable. The expectation E(X) of the fuzzy random variable X is defined 
by a fuzzy number 

E(X)(x) := sup min{ a, 1E(x))x)}, x E ~' 
aE[O,l] 

where E(X)a := [E(X~),E(X,t)] for a E [0,1]. 

(1) 

We consider a discrete-time fuzzy stochastic process defined by fuzzy ran­
dom variables. Let T be a positive integer and let {Xt}f=o be a sequence 
of integrably bounded fuzzy random variables. {Mt}f=o is a family of non­
decreasing sub-u-fields of M such that for t = 0, 1, · · · , T fuzzy random 
variables Xt are Mt-adapted, i.e. random variables x;::a and x:,a are Mr 
measurable for all r = 0, 1, 2, · · · , t and a E [0, 1]. Then we call (Xt, Mt)f=o 
a fuzzy stochastic process. 

3 European options in uncertain environment 

Let a positive real number r be an interest rate of a bond price, which is 
riskless asset, and let a discount rate j3 = 1/(1 + r). Let a positive integer T 
be an expiration date. Define a stock price process {St}f=o as follows: So is a 
positive constant and 

t 

St :=So II(1 + Y;,) fort= 1,2, ·· · ,T, (2) 
s=l 

where {yt}f=1 is a uniform integrable sequence of independent, identically 
distributed real random variables on [r-1, oo) such that E(yt) = r for all t = 
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1, 2, · · · , T. This condition means that there exists a risk-neutral measure, and 
then there is no arbitrage opportunity ([5]). The a-fields {Mt}f=o are given 
as follows: Mo is the completion of {0, a} and Mt denote the completions 
of a-field generated by {Y1, Y2 · · · Yi} fort= 1, 2, · · · , T. 

We consider a finance model where the stock price process {St}f=o takes 
fuzzy values. We give fuzzy values by triangular fuzzy numbers for simplicity. 
Let {at}f=o be an Mt-adapted stochastic process such that 0 < at(w) :::; 
St(w) for almost all w E a. Then, stock price process with fuzzy values are 
represented by a fuzzy stochastic process {St}f=o= 

St(w)(x) := L((x- St(w))/at(w)) (3) 

fort= 0, 1, 2, ... , T, wE a and X E JR., where L(x) := max{1 -lxi,O} for 
x E JR. is the triangle-shape function and {at}f=o is a sequence of random 
variables with positive values. Hence, at(w) is a spread of triangular fuzzy 
numbers St(w) and corresponds to the amount of fuzziness in the process. 
The fuzziness in the process increases as at(w) becomes bigger, and at(w) 
should be an increasing function of the stock price St(w) (see AssumptionS 
in this section). The a-cuts of (3) are 

-- -+ [St,a(w), St,a(w)] = [St(w)- (1- a)at(w), St(w) + (1- a)at(w)]. (4) 

We define fuzzy stochastic processes of European call/put options by {Ct}Lo 
- T 

and {Pth=o= 
Ct(w) := e-rt(St(w)- 1{K}) V 1{o} (5) 

(6) 

fort= 0, 1, 2, · · · , T, wE a, where 1{K} and 1{o} denote the crisp number 
K and zero respectively and V is the maximum induced from the fuzzy max 
order ([2]): For fuzzy numbers a, bE 'R, the maximum iiVb is the fuzzy number 
whose a-cuts are (ii V b)a = [max{ii;:;,b;:;},max{ii;t",b;t"}] for a E [0, 1]. The 
a-cuts of (5) and (6) are 

Ct,a(w) = [max{e-rt(B£"a(w)- K),O}, max{e-rt(sta(w)- K),O}]; (7) 

1\a(w) = [max{e-rt(K- staCw)),O},max{e-rt(K- B£"a(w)),O}]. (8) 

We evaluate these fuzzy stochastic processes by the expectations introduced 
in the previous section. Then, the expectations of fuzzy price processes in 
European call/put options are given as follows: 

V0 (y, t) := E(e-r(T-t)(Sr- 1{K}) V 1{o} I St = y) (9) 

vP(y, t) := E(e-r(T-t)(1{K}- Sr) v 1{o} I St = y) (10) 

for an initial stock pricey for y > 0 and t = 0, 1, 2, · · · , T, where E(-) is the 
expectation with respect to some risk-neutral equivalent martingale measure 
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([3]). Put their a-cuts by [V~'-(y, t), V~,+(y, t)] and [V!,-(y, t), V!,+(y, t)] 
respectively. 

We introduce a valuation method of fuzzy prices, taking into account of 
investor's subjective judgment. Let a fuzzy goal by a fuzzy set rp : [0, oo) f-> 

[0, 1] which is a continuous and increasing function with rp(O) = 0 and 
limx->oo rp(x) = 1. Then we note that the a-cut is 'Pa = [rp;:;, oo) for a E (0, 1). 
For an exercise time T and the call/put options with fuzzy values given in 
(5) and (6), we define a fuzzy expectation of the fuzzy numbers V = E(Cr) 
or V = E(Fr) by 

E(V) := j V(x) dm(x) = supmin{V(x),rp(x)}, (ll) 
~O,oo) x~O 

where m is the possibility measure generated by the density rp and -f dm 
denotes Sugeno integral ([6]). The fuzzy number V = E(Cr) or V = E(Fr) 
means a fuzzy price, and the fuzzy goal rp(x) represents the achievement de­
gree of the buyer's/writer's demand prices x ([1]). Then, the fuzzy expectation 
(ll) shows a degree of expected prices which is adequate for the investor's 
demand profits. Hence, a positive number x* is called an expected price if it 
attains the supremum of the fuzzy expectation (ll), i.e. 

E(V) =sup min{V(x), rp(x)} = min{V(x*), rp(x*)}. (12) 
x~O 

Now we introduce a reasonable assumption. We can develop the theory 
in this article without the following Assumption S and triangle-type shape 
functions (3). However this article adopts them for the numerical computation 
which is important for its application. 

AssumptionS. The stochastic process { at}f=o is represented by 

at(w) := cSt(w), t = 0, 1, 2, · · · , T, wE .fl, (13) 

where c is a constant satisfying 0 < c < 1. 

Assumption S is reasonable since at(w) means a size of fuzziness and it 
should depend on the volatility and the stock price St(w) because one of the 
most difficulties is estimation of the volatility in actual cases ([5, Sect.7.5.1]). 
In this model, we represent by c the fuzziness of the volatility, and we call 
c a fuzzy factor of the process. Further, since in an uncertain environment 
the final decision making should be done under investor's own subjective 
judgments, we adopt the fuzzy expectation which is the decision-maker's 
subjective estimation for the prices of options. From now on, we suppose 
that Assumption S holds. Then we have 

t 

sta(w) = St(w) ± (1- a)at(w) = b±(a)So II (1 + Y,;(w)), wE Q (14) 
i=l 
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fort= 0, 1, · · · , T and o: E [0, 1], where b±(o:) := 1±(1-o:)c foro: E [0, 1]. The 
following recursive results regarding the fuzzy prices in European call/put 
options are obtained by dynamic programming in a similar way to [1]. 

Theorem 1. (Recursive equation}. 

(i) In European call option, it holds that 

(15) 

fort= 0, .. · ,T-1 andy> 0, where V~·±(y,T) := max{b±(o:)y-K,O}. 
(ii) In European put option, it holds that 

(16) 

fort= 0, · · · , T-1 andy> 0, where Vt•±(y, T) := max{K -b=F(o:)y,O}. 

4 The expected price of European options 

In this section, we discuss the permissible ranges of the expected prices in 
European call/put options V = ifC(y,O) or V = ifP(y,O). Fix an initial 
stock pricey. Define agradeo:C,+ :=sup{ a: E [0, 1]1 <p;;_ ~ ifetC,+(y,O)}, where 
<pet = [<p;;_, oo)(o: E (0, 1)) and the supremum of the empty set is understood to 
be 0. We obtain the following theorem by modifying the results in Yoshida [7]. 

Theorem 2. 

(i) It holds that o:C,+ = _E(VC (y, 0)). 
(ii) The grade o:C,+ satisfies <p~c.+ = V~:!;_(y,O). 

(iii) The corresponding expected price is given by xC,+ = <p~c,+. 

Since the fuzzy expectation (11) is defined by possibility measures, xC,+ 
gives an upper bound on expected prices of European call option. Therefore, 
similarly to Theorem 2 we can define another grade, which gives a lower 
bound on expected prices of European call option as follows: 

C- -
X ' = <pete·-• (17) 

where o:c,- is defined by o:c,- :=sup{ a: E [0, 1]1 <p;;_ ~ V~·-(y,O)}, and it 
satisfies 

<p~c.- = v~~ (y, 0). (18) 

Hence, from (17), (18) and Theorem 2, we can easily check the interval 

(19) 

which is the range of expected prices such that the degree of the expected 
price V(x) is adequate for buyer's demand profits <p(x). Therefore, the interval 
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[x0 ·-, x0 ·+] means the permissible range of the buyer's expected prices for 
his demand cp. Regarding European put option, similarly we obtain writer's 
permissible range of expected prices by [xP,-, xP,+], where xP,- := cp-;,P,- and 
xP,+ := tn+ and the grades aP,- and aP,+ are given by ,n- _ = ifP•-.:_ (y 0) r 0 P,+ raP, a.P, ' 

and cp-;,P,+ = V~:';_(y,O). 

Example 1. We consider a binomial CRR-model (Ross [5, Sect.7.4]) to im­
age the discrete-time European put option model presented in this article. 
Consider a fuzzy goal 

{ 
1 _ e-O.lx 

cp(x) = 0 ' 
' 

x::::o 
X< 0. 

(20) 

Then cp-;; = -o.l-1 log(1 -a) for a E (0, 1). Put an exercise time T = 8, 
an interest rate of a bond r = 0.05, a fuzzy factor c = 0.07, an initial stock 
price y = 20, a strike price K = 25 and a volatility cr = 0.25. Let p := 
(1 +r- e-a)/(ea- e-a). A sequence of random variables {Yt}f=1 is given by 

Yi := { ea; 11 w~thh probbabb~ll~ty p1 fort= 1, 2, ... 'T. (21) 
e- - w1t pro a 1 1ty - p 

Define a stock price process {St}f=o by (2) with (21). Then we can calculate 
that the grades of the fuzzy expectation of the fuzzy price are aP,- ~ 0.89218 
and aP,+ ~ 0.89262. The permissible range of the writer's expected prices in 
European put option under his demand cp is [xP,-, xP,+j ~ [22.2729, 22.3136]. 
Now we also calculate non-fuzzy option price x ~ 22.2933. Compare this with 
that fuzzy case. This difference is from the fuzziness of the process. Therefore, 
[xP,-, xP,+] is a kind of confidence intervals of the option price under the 
investor's subjective judgment. 
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Abstract. In this paper, we suggest and analyze a new support system for easy 
decision-making on housing planing. Using this, users can analyze their preferences 
by themselves individually and can select optimal alternatives. The purpose of this 
paper is to propose a rational decision-making system in housing planing based on 
the AHP (Analytic Hierarchy Process). Then, we show how standard evaluation 
can be decided on the this system. In this paper, evaluation and election of the 
room arrangements is based on the information data came from users. 

1 Introduction 

The basic problem of decision-making is how to choose best one in a set 
of competing alternatives that are evaluated under conflicting criteria. The 
method of Analytic Hierarchy Process (AHP) provides us with a compre­
hensive framework for solving such problems. Liang [1] has been reported by 
using the AHP to evaluate housing planing by qualitative elements such as 
several kinds of construction methods, room arrangement, and designs. Based 
on this research on room arrangements particularly, we observe a mathemat­
ical approach for decision-making in housing planing problems in this paper. 

2 Housing planing model by AHP 

There are the following three principles when we use the AHP method in 
problem solving. They are principles of decomposition, comparative judg­
ments, and synthesis of priorities. The decomposition principle requires struc­
turing the hierarchy to capture the basic elements of the problem. An effective 
way to do this is first to work downward from the focus in the top level to 
criteria bearing on the focus in the second level, followed by subcriteria in 
third level, and so on, from the more general to the more particular and defi­
nite. The bottom level elements are alternatives. The structure of a hierarchy 
is given by Figure 1. 

The principle of comparative judgments gives the priority of that element 
which is then used to weight the local priorities of elements in the level below 
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level 1 top level goal 

level 2 crite3EJ:::: criterion .. ::CEHrion 

level n altern~( ... ! alternative , .... ~ative 
Fig. 1. Structure of a hierarchy 

compared by it as criterion, and so on to the bottom level. The measurement 
standard based on the basic pairwise comparison is given in Table 1. 

Table 1. Pairwise comparison 

Element i is compared with element j a;i Uji 

Same important 

A little important 

Quite important 

Very important 

Most important 

1 

3 

5 

7 

9 

1 

1/3 

1/5 

1/7 

1/9 

(2, 4, 6 and 8 also can be used as mean values suitably) 

We consider to propose a systematical procedure to select optimal solu­
tions for a user who wants to build his own house. From the point of view 
of mathematical programming, we introduce a certain type of multicriteria 
evaluation function associated with a house plan by the following formula 

{ minimize (h, h, h) 
subject to ( v1, v2, v3), 

h : construction method, v1 : economical conditions, 
h : room arrangement, v2 : site-conditions, 
h : outside design, v3 : others. 

This research can give a comprehensive evaluation for users' preference 
with concrete values. At first, a user's plan is quantified by certain evalu­
ations based on each criterion, and then its comprehensive evaluation can 
be calculated by their weighted sum. If the comprehensive evaluation is not 
satisfactory for the user, quantifications will be modified by perturbing eval­
uation values. This evaluation method with multicriteria can be written as 
follows. 

Before building the house, users have to select an optimal construction 
type from some alternatives of construction styles, such as wooden, 2 x 4, 
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Criterion Quantification Weight Comprehensive evaluation 

Construction method /1 Wl 3 

Room arrangement h W2 L wd• 
Outside design /3 W3 i=l 

t modify I 
Fig. 2. Flow of comprehensive evaluation 

and so on. Moreover, outside design is also important for the evaluation as 
another preference for users; this criterion is treated in [1]. In comparison 
with these two criteria, room arrangement seems to be more complex and 
most important for users. 

3 Comprehensive evaluation for the house of room 
arrangements 

In this paper, we assume that the land for the house is sufficiently suitable 
and wide, and that it is satisfactory for general conditions of the single house. 
Furthermore, we assume that a user is satisfied with this land. 

3.1 Calculation of the weight 

It can be judged by AHP which item is the most important factor among the 
three criteria (see [3]). So it is necessary to judge the weight of each item by 
the information coming from users. It is interpreted as the factor with highest 
weight being good. Moreover, it turns out that users are thinking which eval­
uation item as most important by the value of weight. Saaty [2] proposed the 
AHP absolute measurement method and AHP relative measurement method 
as algorithm. The alternatives may be evaluated by paired comparisons (rel­
ative measurement). Weights for evaluating alternatives are given in Table 2. 
Similarly, we can obtain weights of other factors by the same method. 

Table 2. Pairwise comparison from the single house 

Construction Room Outside Weight 
method arrangement design 

Construction method 1 1/2 4 0.263 
Room arrangement 2 1 7 0.658 

Outside design 1/4 1/7 1 0.658 

3.2 Maximization of utility problem on the floor space 

For users as a family, if the area of a site is fixed, there is a problem how the 
floor space of room arrangement should be chosen. In the same situation, each 
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user may not choose the same plan. In this paper, based on the information 
came from many users, the utility problem function on selections of the floor 
space is expressed as follows: 

n 

U = U(L wiui(xi)), i = 1, ... , n, 
i=l 

where Wi is a weight of selection of floor space Xi, and ui(xi) is an evaluation 
function about selection of floor space Xi· The width of each room is not only 
restricted to the floor space of a house, but also restricted to the width of 
the next room. For a user, the biggest concern is to select floor space to the 
expected maximum utility. We can construct the following function for the 
optimal floor space which can be determined according to its utility: 

n 

minimize L wiui(xi) 
i=l 

n 

subject to L Xi ::; L 
i=l 

Xi E Si, i = 1, ... , n, 

where L is the floor space of a house, and it is related to a loan, and Si 
( i = 1, ... , n) is a set of relative to the floor space of each room. Then, we 
introduce the method of asking for the utility function ui(xi)· To calculate 
the coefficient of an utility function by using the certain degree of each floor 
area. The algorithm for finding the function ui(xi) which use Lagrange in­
terpolation polynomial is proposed as follows. 

Algorithm 
Step(1): The degree fJ is calculated with the weight of each room. 
Step(2): The Lagrange interpolation coefficient is construct as follows by 

using 1r(x): 

Step(3): Calculate utility function ui(xi) according to the following formula. 

N 

ui(xi) = LIJ(x)fi. 
j=l 

Example 
First the weighs of each factor are calculated. The degrees of each factor are 
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calculated possibly if the weights of each factor are known. A degree shows 
which factor a user thinks as most important. For example, calculate a de­
gree of a kitchen room according to the following Table 3. There values show 
that the user thinks kitchen room area 9m2 is the most impotant. Next the 
function ui(xi) is approximated by using the Lagrange interpolation polyno­
mial by the polynomial which passes though points {Xi, fi}. Here Xi and fi 
are floor space and degree, respectively. By Table 3, {x1 ,x2,x3 ,x4,x5 } = 
{6, 7.5, 9, 10.5, 12} and {ft, h fa, !4, /5} = {0.1, 0.7, 1.0, 0.7, 0.4} are floor 
space and degree of a kitchen room, respectively. Then we can obtain fol­
lowing utility function u(x) of a kitchen room by the upper algorithm, 

u(x) = 0.007x4 - 0.259x3 + 3.250x2 - 17.117x1 + 32.200. 

Similarly, we can obtain others utility functions by the same method. 

Table 3. Degree of a kitchen room 

6m 7.5m~ 9m~ 10.5m~ 12m~ Weight Degree 
6m" 1 1/5 1/7 1/5 1/3 0.043 0.1 
7.5m~ 5 1 1/3 1 5 0.244 0.7 
9m~ 7 3 1 1 3 0.336 1.0 

10.5m" 5 1 1 1 3 0.257 0.7 
12m" 3 1/5 1/3 1/3 1 0.090 0.4 

3.3 Comprehensive evaluation system of room arrangements 

After the area of each room is decided, the comprehensive evaluation system 
of room arrangement will be considered. In this paper, a ten-point method is 
used to evaluate room arrangement. The comprehensive evaluation system is 
proposed by the following Table 4. The weights of a framework are calculated 
in Subsection 3.1. The user can obtain the optimal solution easily in an 
objective framework by using qualitative data, which expresses an evaluation 
result. 

4 Algorithm 

House design software can create a floor plan quickly, and we can look at a 
floor plan from several angles, but it cannot judge the floor plan scientifi­
cally. In this paper, users not only plan a wish house by using this software, 
but also express his preference quantitatively, and evaluate it scientifically. 
Specifically, the automatic generation algorithm of the house plan arrange­
ment is proposed follows: 
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Step (1): A user's hope is arranged. 
Step (2): After deciding the total floor space, the maximum floor area is cal­

culated. If restriction conditions are satisfied, it will go to the next 
step, otherwise, it returns to Step (1) and the area of each room is 
improved. 

Step (3): The wish house in Step (1) is designed by using house design soft­
ware. 

Step ( 4): The house as an image is evaluated. If it satisfies the user's prefe­
rence sufficiently, the total cost will be calculated and a house maker 
will be chosen. Otherwise, it returns to Step (1) and improved unre­
asonable designs. 

Table 4. Comprehensive evaluation system 

Item An evaluating point Weight Result 
X w L:wx 

number of the rooms 0.066 
Homely width of the room 0.118 =6~10 

side functionality of the room 1~10 0.419 (good) 
arrangement of the room 0.111 
receipt 0.286 =4~6 

privacy 0.392 (good in general) 
Social Japanese-style room 1~10 0.079 general) 
side communication space 0.196 

change of a family 0.333 =1.5~4 

sanitary 0.054 (not good) 
Healthy sunshine 1~10 0.306 
side ventilation 0.154 =1.0~1.5 

safety 0.486 (quite bad) 

5 Conclusion and Remarks 

In this paper, a housing planning system is established that can determine 
several kinds of user's preferences in short time based on a rational decision­
making system by using AHP. 
It is necessary to determine algorithm which can connect research in this 
paper with house design software by using the various decision-making tech­
nique containing AHP. 
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